WO2021169144A1 - 一种mgp新能源并网控制方法及*** - Google Patents

一种mgp新能源并网控制方法及*** Download PDF

Info

Publication number
WO2021169144A1
WO2021169144A1 PCT/CN2020/101259 CN2020101259W WO2021169144A1 WO 2021169144 A1 WO2021169144 A1 WO 2021169144A1 CN 2020101259 W CN2020101259 W CN 2020101259W WO 2021169144 A1 WO2021169144 A1 WO 2021169144A1
Authority
WO
WIPO (PCT)
Prior art keywords
new energy
power
grid
mgp
inverter
Prior art date
Application number
PCT/CN2020/101259
Other languages
English (en)
French (fr)
Inventor
陈巨龙
赵海森
刘振铭
孙斌
薛毅
李庆生
张裕
唐学用
赵庆明
邓朴
Original Assignee
贵州电网有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州电网有限责任公司 filed Critical 贵州电网有限责任公司
Priority to US17/265,818 priority Critical patent/US20220247183A1/en
Publication of WO2021169144A1 publication Critical patent/WO2021169144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • H02J3/42Synchronising a generator for connection to a network or to another generator with automatic parallel connection when synchronisation is achieved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P11/00Arrangements for controlling dynamo-electric converters
    • H02P11/06Arrangements for controlling dynamo-electric converters for controlling dynamo-electric converters having an ac output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2103/00Controlling arrangements characterised by the type of generator
    • H02P2103/20Controlling arrangements characterised by the type of generator of the synchronous type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to the technical field of power grid control, and in particular to a method and system for controlling the grid-connected MGP new energy.
  • a technical problem solved by the present invention is to propose a new energy grid-connected control method of MGP, which can control the voltage and improve the stability of the power grid.
  • an MGP new energy grid-connected control method including: a synchronous motor and a synchronous generator are connected; a new energy module drives the synchronous motor to rotate through a frequency converter; the frequency conversion The generator controls the power transmission; the synchronous motor drives the synchronous generator to be connected to the grid.
  • the frequency converter includes a rectifier and an inverter, and a DC capacitor is included between the rectifier and the inverter.
  • the new energy module includes a photovoltaic panel or a wind turbine.
  • the transmission control includes integrating the operating characteristics of each series module and combining their respective characteristics, and finally integrating the operating characteristics of each module for control .
  • the photovoltaic panel outputs direct current, which is DC/AC converted and connected to the grid through an inverter; the wind turbine adopts a full-power converter, The output of the synchronous generator is connected to the grid after AC/DC/AC conversion.
  • the new energy module is a photovoltaic panel
  • the PV characteristic curve is obtained through light intensity and ambient temperature, and according to different working occasions , To carry out maximum power point tracking control or constant power control.
  • the inverter is calculated based on data such as the speed and pitch angle of the wind turbine in combination with historical power output data.
  • the power output reference of the converter is a preferred solution of the MGP new energy grid-connected control method of the present invention.
  • the inverter controls its output power to increase, if the power sent by the new energy module is insufficient, the charging current of the DC capacitor is less than the discharge
  • the inverter controls its output power to decrease, if the power sent by the new energy module is excessive, the charging current of the DC capacitor is greater than the discharge current, and the capacitor voltage increases; if the power sent by the new energy module is equal to the inverter The power delivered by the converter is matched, and the voltage of the DC capacitor remains stable.
  • Another technical problem solved by the present invention is to propose an MGP new energy grid-connected control system, so that the above-mentioned control method can be realized based on the system.
  • an MGP new energy grid-connected control system including a synchronous motor, which can be driven by a new energy module to rotate; a synchronous generator, which can be driven by a synchronous motor Driven to achieve grid connection; frequency converter, the frequency converter also includes a rectifier, an inverter and a DC capacitor, which can control power transmission; a new energy module, the new energy module can synchronize the synchronization through the frequency converter
  • the electric motor drives.
  • control method and system provided by the present invention can improve the stability and reliability of the power grid.
  • Figure 1 is an overall flow chart of the MGP new energy grid-connected control method according to the first embodiment of the present invention
  • Figure 2 shows the P-V operating characteristics of the photovoltaic panel of the present invention
  • Fig. 3 is a schematic diagram of a method for realizing inverter DC voltage control according to the present invention.
  • Fig. 4 is a schematic diagram of a method for implementing the MGP control method of a direct-drive fan based on voltage feedback according to the present invention
  • Figure 5 is a schematic diagram of the implementation of the multi-machine voltage feedback control strategy of the present invention.
  • Figure 6 is a schematic diagram of simulation results based on the control method of the present invention.
  • Figure 7 is a schematic diagram of simulation results based on the grid-connected control method of multi-direct-drive wind turbines and MGP;
  • Fig. 8 is an overall structure diagram of the MGP new energy grid-connected control system according to the second embodiment of the present invention.
  • the "one embodiment” or “embodiment” referred to herein refers to a specific feature, structure, or characteristic that can be included in at least one implementation of the present invention.
  • the appearances of "in one embodiment” in different places in this specification do not all refer to the same embodiment, nor are they separate or selectively mutually exclusive embodiments with other embodiments.
  • connection should be understood in a broad sense, for example: it can be a fixed connection, a detachable connection or an integral connection; it can also be a mechanical connection, an electrical connection or a direct connection.
  • the connection can also be indirectly connected through an intermediate medium, or it can be the internal communication between two components.
  • the schematic diagram presents a schematic diagram of the overall flow of the method for controlling the grid-connected MGP new energy in this embodiment, which specifically includes the following steps:
  • S1 the synchronous motor 100 and the synchronous generator 200 are connected;
  • S2 the new energy module 400 drives the synchronous motor 100 to rotate through the frequency converter 300.
  • the frequency converter 300 includes a rectifier 301 and an inverter 302, and a DC capacitor 303 is included between the rectifier 301 and the inverter 302.
  • the new energy module 400 includes photovoltaic panels or wind turbines.
  • the entire grid-connected system contains photovoltaic panels or wind turbines, inverters, MGPs and other units in series, and each unit has its own Operating characteristics, therefore, the control of the grid-connected transmission includes integrating the operating characteristics of each serial module, combining their respective characteristics, and finally integrating the operating characteristics of each module for control.
  • the frequency converter 300 controls the power transmission; in this embodiment, according to the DC voltage fluctuation characteristics of the new energy grid-connected inverter 302, based on the charging and discharging laws of its DC capacitors, a photovoltaic panel + MGP control method is proposed And the control method of fan + MGP.
  • S4 The synchronous motor 100 drives the synchronous generator 200 to be connected to the grid. This kind of grid connection is called MGP grid connection.
  • the inverter 302 is connected to the new energy module 400 and the synchronous motor 100.
  • the photovoltaic panel outputs direct current, and the inverter 302 performs DC/AC conversion and grid connection; the wind turbine adopts a full-power converter, and the synchronous generator 200 outputs through AC/DC/AC conversion and grid connection.
  • the inverter 302 can control the power transmission, and the reference value of the power transmission needs to match the power output by the new energy source.
  • the new energy module 400 when the new energy module 400 is a photovoltaic panel, its P-V characteristic curve is obtained through light intensity and ambient temperature, and the maximum power point tracking control or constant power control is performed on it according to different working occasions.
  • the power output reference of the inverter is calculated according to the data such as the speed and pitch angle of the wind turbine and the historical power output data.
  • the inverter 302 controls its output power to increase, if the power sent by the new energy module 400 is insufficient, the charging current of the DC capacitor 303 is less than the discharging current, and the capacitor voltage decreases; when the inverter 302 controls its output power to decrease, if If the power sent by the new energy module 400 is excessive, the charging current of the DC capacitor 303 is greater than the discharge current, and the capacitor voltage increases; if the power sent by the new energy module 400 matches the power delivered by the inverter 302, the voltage of the DC capacitor 303 remains stable .
  • the PV operating characteristics of photovoltaic panels are shown in Figure 2, including stable operating areas and unstable operating areas.
  • the output power of photovoltaic panels increases with the increase of DC voltage, which is monotonous.
  • the characteristic of rising; in the stable operation area the output power of the photovoltaic panel decreases with the increase of the DC voltage, which is a characteristic of monotonous decrease.
  • photovoltaic panels are required to operate in a stable operation area, otherwise judgment errors may occur in the control and cause a crash.
  • the inverter 300 needs to be connected after the photovoltaic panel, including the DC capacitor 303, if the control DC side voltage changes, it will cause the output power of the photovoltaic panel to change; conversely, if the photovoltaic power curve changes due to changes in light intensity or temperature, When the DC voltage is constant, the output power of the photovoltaic panel will also change. In the process of continuous changes in illumination, it is usually necessary to make the photovoltaic panel run at the maximum power point, that is, the MPP point in Figure 2, for maximum power point tracking, and it can also control the DC side voltage of the photovoltaic panel to flexibly control its output power. .
  • the photovoltaic panels are connected to the grid through the inverter 302.
  • the photovoltaic characteristic curve does not change, assuming that the initial operating point of the photovoltaic power source is A and it is in the stable operation zone, then the photovoltaic
  • the inverter 302 is required to cooperate with the change of the DC voltage. If it is necessary to increase the output power of the photovoltaic panel, the reference value of the output power of the inverter 302 can be controlled to increase.
  • the discharge current of the DC capacitor 303 will increase, and the voltage of the DC capacitor 303 will decrease, and the photovoltaic operating point will transition from point A to Point B: If you need to reduce the output power of the photovoltaic panel, you can control the reference value of the output power of the inverter 302 to decrease. At this time, the discharge current of the DC capacitor 303 decreases, and the voltage of the DC capacitor 303 rises, and the photovoltaic operating point is from point A Transition to point C.
  • the operating characteristic of photovoltaic panels is that the voltage-power is inversely proportional in the stable operating interval.
  • the characteristic of the DC side capacitance of the inverter 302 is that the size of the capacitor voltage is related to the charging and discharging speed; at a certain moment the discharge current is greater than the charging current, that is, when the output power of the inverter 302 is greater than the input power of the DC side, the capacitor voltage will decrease; otherwise, it will increase.
  • the operating characteristic is to actively adjust the frequency of the output voltage of the inverter 302, which can change the phase difference of the source network, thereby adjusting the output power of the inverter 302.
  • the new energy module 400 is a wind turbine
  • this embodiment proposes a control strategy based on voltage feedback control.
  • the direct-drive wind turbine adopts AC/DC/AC inverters and includes a DC part. Therefore, this embodiment mainly For direct drive wind turbines.
  • the control system collects the DC side capacitor voltage, takes the DC voltage as the control target, controls the frequency of the inverter output voltage, and adjusts the MGP source through frequency modulation.
  • the phase difference of the network controls the power output of the MGP system, and finally realizes that the transmission power of the MGP system follows the output power of the fan.
  • M in FIGS. 4 and 5 is a synchronous motor 100
  • G is a synchronous generator 200.
  • the direct-drive wind turbines can be converged from the DC side, and then use voltage feedback to drive the MGP, so that multiple wind turbines in the wind farm can be connected to the grid with a group of MGPs.
  • the wind turbines are connected to the grid in the above manner, which can reduce the number of inverters in the wind farm, and replace multiple inverters with a single inverter to increase the reliability of the system. Therefore, referring to the schematic diagram of Figure 5, the rectifiers of multiple wind turbines are connected in parallel on the DC side, and finally an inverter drives the MGP to connect to the grid, and the control mode is still the DC side voltage feedback.
  • this embodiment uses the control method provided above for verification based on simulation research.
  • the new energy module 400 is a wind turbine, and the output power of the simulated wind turbine is controllable. Rectification transfers the power to the DC capacitor, and then drives the synchronous motor 100 through the frequency converter 300, and the synchronous motor 100 drives the synchronous generator 200 to connect to the grid.
  • the simulation parameters and motor parameters are shown in Tables 1 and 2.
  • the simulation process lasts for 50s.
  • the output power of the simulated fan is set to 3000W.
  • the output of the simulated fan is adjusted to 2000W, and the output of the synchronous generator 200 and the DC side voltage are measured.
  • the simulation results are shown in Figure 6. Show.
  • the MGP system can run stably and follow the output power of the fan.
  • the output of the fan is set to suddenly decrease. At this time, the output of the fan drops, and the output power of the MGP generator It also drops, and finally can continue to follow the output of the fan.
  • Analyzing the DC side voltage of the inverter shows that after the start of the simulation, the DC side voltage of the inverter can always be maintained near the target voltage.
  • the DC voltage will also change.
  • the DC voltage can be maintained near the target voltage, which also ensures that the MGP can follow the output power of the fan.
  • FIG. 8 it schematically illustrates the overall structure diagram of the MGP new energy grid-connected control system proposed in this embodiment, and the above-mentioned MGP new energy grid-connected control method can be implemented based on this system.
  • the system includes a synchronous motor 100, a synchronous generator 200, a frequency converter 300 and a new energy module 400.
  • the synchronous motor 100 can be driven by the new energy module 400 to rotate;
  • the synchronous generator 200 can be connected to the grid under the drive of the synchronous motor 100; wherein, the synchronous motor 100 and the synchronous generator 200 can be connected through a coupling.
  • the frequency converter 300 also includes a rectifier 301, an inverter 302, and a DC capacitor 303, which can control power transmission;
  • the new energy module 400 can drive the synchronous motor 100 through the frequency converter 300.
  • the embodiments of the present invention can be realized or implemented by computer hardware, a combination of hardware and software, or by computer instructions stored in a non-transitory computer-readable memory.
  • the method can be implemented in a computer program using standard programming techniques-including a non-transitory computer readable storage medium configured with a computer program, where the storage medium so configured allows the computer to operate in a specific and predefined manner-according to the specific
  • Each program can be implemented in a high-level process or object-oriented programming language to communicate with the computer system. However, if necessary, the program can be implemented in assembly or machine language. In any case, the language can be a compiled or interpreted language. In addition, the program can be run on a programmed application specific integrated circuit for this purpose.
  • the method can be implemented in any type of computing platform that is operably connected to a suitable computing platform, including but not limited to a personal computer, a mini computer, a main frame, a workstation, a network or a distributed computing environment, a separate or integrated computer Platform, or communication with charged particle tools or other imaging devices, etc.
  • a suitable computing platform including but not limited to a personal computer, a mini computer, a main frame, a workstation, a network or a distributed computing environment, a separate or integrated computer Platform, or communication with charged particle tools or other imaging devices, etc.
  • Aspects of the present invention can be implemented by machine-readable codes stored on non-transitory storage media or devices, whether removable or integrated into computing platforms, such as hard disks, optical reading and/or writing storage media, RAM, ROM, etc., so that they can be read by a programmable computer, and when the storage medium or device is read by the computer, it can be used to configure and operate the computer to perform the processes described herein.
  • the machine-readable code, or part thereof can be transmitted through a wired or wireless network.
  • the invention described herein includes these and other different types of non-transitory computer-readable storage media.
  • the present invention also includes the computer itself.
  • a computer program can be applied to input data to perform the functions described herein, thereby converting the input data to generate output data that is stored in non-volatile memory.
  • the output information can also be applied to one or more output devices such as displays.
  • the converted data represents physical and tangible objects, including specific visual depictions of physical and tangible objects generated on the display.
  • a component may be, but is not limited to: a process running on a processor, a processor, an object, an executable file, an executing thread, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may exist in an executing process and/or thread, and the components may be located in one computer and/or distributed between two or more computers.
  • these components can execute from various computer-readable media having various data structures thereon.
  • These components can be based on, for example, having one or more data packets (for example, data from a component that interacts with another component in a local system, a distributed system, and/or via signals such as the Internet).
  • the network interacts with other systems) signals to communicate in a local and/or remote process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种MGP新能源并网控制方法及***,包括,同步电动机(100)和同步发电机(200)相连接;新能源模块(400)通过变频器(300)驱动所述同步电动机(100)转动;所述变频器(300)对功率传输进行控制;同步电动机(100)带动同步发电机(200)并网。能够提升电网的稳定性和可靠性。

Description

一种MGP新能源并网控制方法及*** 技术领域
本发明涉及电网控制的技术领域,尤其涉及一种MGP新能源并网控制方法及***。
背景技术
近年来新能源发电不断发展并受到重视,新能源发电的特点与传统火电机组有很大不同,最大的区别就是新能源的输出功率具有波动性和不可控性。传统火电机组可视作利用化学能储能,随时可以调控输出功率的电源,而新能源往往是需要电网的支撑,随机向电网输送功率。这样的特点,使得新能源在基于功率反馈控制使用MGP并网的时候,需要先对其输出功率进行预测,而这个预测的过程一方面会造成控制***的输出有延迟,另一方面,如果预测数值不准确,会影响控制***的稳定性和可靠性。因此有必要根据新能源的功率输出特性,并网逆变器的直流电压波动特性以及MGP的运行控制特性和功角特性,提出适用于MGP跟随新能源功率波动的改进控制方法。网的支撑,随机向电网输送功率。这样的特点,使得新能源在基于功率反馈控制使用MGP并网的时候,需要先对其输出功率进行预测,而这个预测的过程一方面会造成控制***的输出有延迟,另一方面,如果预测数值不准确,会影响控制***的稳定性和可靠性。因此有必要根据新能源的功率输出特性,并网逆变器的直流电压波动特性以及MGP的运行控制特性和功角特性,提出适用于MGP跟随新能源功率波动的改进控制方法。
发明内容
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。
鉴于上述现有存在的问题,提出了本发明。
因此,本发明解决的一个技术问题是:提出一种MGP新能源并网控制方法,能够对电压进行控制并提升电网的稳定性。
为解决上述技术问题,本发明提供如下技术方案:一种MGP新能源并网控制方法,包括,同步电动机和同步发电机相连接;新能源模块通过变频器驱 动所述同步电动机转动;所述变频器对功率传输进行控制;同步电动机带动同步发电机并网。
作为本发明所述的MGP新能源并网控制方法的一种优选方案,其中:所述变频器包括整流器和逆变器,且所述整流器和所述逆变器之间包括直流电容。
作为本发明所述的MGP新能源并网控制方法的一种优选方案,其中:所述新能源模块包括光伏板或风机。
作为本发明所述的MGP新能源并网控制方法的一种优选方案,其中:所述传输的控制包括,融合各个串联模块的运行特性,并结合其各自特点,最终整合各模块工作特性进行控制。
作为本发明所述的MGP新能源并网控制方法的一种优选方案,其中:所述光伏板输出直流电,通过逆变器进行直/交变换并网;所述风机采用全功率换流器,同步发电机输出经过交/直/交的变换并网。
作为本发明所述的MGP新能源并网控制方法的一种优选方案,其中:所述新能源模块为光伏板时,通过光照强度、环境温度,得到其P-V特性曲线,并根据不同的工作场合,对其进行最大功率点跟踪控制或者定功率控制。
作为本发明所述的MGP新能源并网控制方法的一种优选方案,其中:所述新能源模块为风机时,根据风机的转速、桨距角等数据,结合历史功率输出数据,计算逆变器的功率输出参考。
作为本发明所述的MGP新能源并网控制方法的一种优选方案,其中:所述逆变器控制其输出功率增加时,若新能源模块发送的功率不足,则直流电容的充电电流小于放电电流,电容电压降低;逆变器控制其输出功率减少时,若新能源模块发送的功率过剩,则直流电容的充电电流大于放电电流,电容电压升高;若新能源模块发送的功率与逆变器输送的功率匹配,直流电容的电压保持稳定。
本发明解决的另一个技术问题是:提出一种MGP新能源并网控制***,使上述控制方法能够基于该***实现。
为解决上述技术问题,本发明提供如下技术方案:一种MGP新能源并网控制***,包括,同步电动机,所述能够通过新能源模块驱动而转动;同步发电机,所述能够在同步电动机的带动下实现并网;变频器,所述变频器还包括整流器、逆变器和直流电容,能够对功率传输进行控制;新能源模块,所述新 能源模块能够通过所述变频器对所述同步电动机进行驱动。
本发明的有益效果:本发明提供的控制方法和***能够提升电网的稳定性和可靠性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:
图1为本发明第一种实施例所述MGP新能源并网控制方法的整体流程图;
图2为本发明所述光伏板的P-V运行特性;
图3为本发明实现逆变器直流电压控制的一种方式示意图;
图4为本发明实现基于电压反馈的直驱式风机的MGP控制方法的一种方式示意图;
图5为本发明多机电压反馈控制策略的实现方式示意图;
图6为基于本发明所述控制方法进行仿真的结果示意图;
图7为基于多直驱式风机和MGP的并网控制方法进行仿真的结果示意图;
图8为本发明第二种实施例所述MGP新能源并网控制***的整体结构图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明,显然所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明的保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施 例互相排斥的实施例。
本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
同时在本发明的描述中,需要说明的是,术语中的“上、下、内和外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一、第二或第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本发明中除非另有明确的规定和限定,术语“安装、相连、连接”应做广义理解,例如:可以是固定连接、可拆卸连接或一体式连接;同样可以是机械连接、电连接或直接连接,也可以通过中间媒介间接相连,也可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
参照图1的示意,示意为本实施例提出一种MGP新能源并网控制方法的整体流程示意图,具体包括以下步骤,
S1:同步电动机100和同步发电机200相连接;S2:新能源模块400通过变频器300驱动所述同步电动机100转动。
其中,所述变频器300包括整流器301和逆变器302,且所述整流器301和所述逆变器302之间包括直流电容303。
新能源模块400包括光伏板或风机,新能源模块400通过MGP并网时,整个并网***中串联包含了光伏板或风机、逆变器、MGP等单元,而每个单元都有其各自的运行特性,因此针对该并网的传输的控制包括,融合各个串联模块的运行特性,并结合其各自特点,最终整合各模块工作特性进行控制。
S3:所述变频器300对功率传输进行控制;本实施例中根据新能源并网逆变器302的直流电压波动特性,基于其直流电容的充放电规律,提出了光伏板+MGP的控制方法和风机+MGP的控制方法。
S4:同步电动机100带动同步发电机200并网。这种并网方式称为MGP 并网。
逆变器302连接新能源模块400和同步电动机100,所述光伏板输出直流电,通过逆变器302进行直/交变换并网;所述风机采用全功率换流器,同步发电机200输出经过交/直/交的变换并网。逆变器302能够控制功率传输,功率传输的参考值需要与新能源输出的功率匹配。
其中,所述新能源模块400为光伏板时,通过光照强度、环境温度,得到其P-V特性曲线,并根据不同的工作场合,对其进行最大功率点跟踪控制或者定功率控制。
所述新能源模块400为风机时,根据风机的转速、桨距角等数据,结合历史功率输出数据,计算逆变器的功率输出参考。
所述逆变器302控制其输出功率增加时,若新能源模块400发送的功率不足,则直流电容303的充电电流小于放电电流,电容电压降低;逆变器302控制其输出功率减少时,若新能源模块400发送的功率过剩,则直流电容303的充电电流大于放电电流,电容电压升高;若新能源模块400发送的功率与逆变器302输送的功率匹配,直流电容303的电压保持稳定。
具体的,光伏板的P-V运行特性如图2所示,包含了稳定运行区和非稳定运行区,在非稳定运行区,光伏板的输出功率随着直流电压的升高而升高,是单调上升的特性;在稳定运行区,光伏板的输出功率随着直流电压的升高而下降,是单调下降的特性。通常光伏板要求运行在稳定运行区内,否则控制中可能会发生判断错误,造成崩溃。
由于光伏板后需要连接变频器300,包含直流电容303,若控制直流侧电压发生变化,则会引起光伏板输出功率的变化;反之,若因为光照强度变化或者温度变化,使光伏功率曲线改变,则在直流电压不变的情况下,光伏板的输出功率也会变化。在光照不断变化的过程中,通常需要使光伏板运行在最大功率点,即图2中的MPP点,进行最大功率点跟踪,也可以控制光伏板的直流侧电压,对其输出功率进行灵活控制。
本实施例中光伏板通过逆变器302并网,在外部光照强度和温度不变,即光伏特性曲线不变的条件下,假设光伏电源初始运行点为A,处于稳定运行区,则在光伏电源功率变化时,需要逆变器302配合直流电压的变化。若需要增加光伏板输出功率,则可以控制逆变器302输出功率的参考值增加,此时直流电 容303的放电电流增加,直流电容303的电压会下降,则光伏运行点会从A点过渡到B点;若需要降低光伏板输出功率,则可以控制逆变器302输出功率的参考值降低,此时直流电容303的放电电流减小,直流电容303的电压会上升,光伏运行点从A点过渡到C点。但在非稳定区,假设光伏电源工作在A’点,则如果光伏电源输出功率的需求增加时,逆变器302输出功率增加,直流电容303向外放电,直流电压降低,会过渡到B’点,反而降低了输出,从而会导致直流电压持续下降直到电压崩溃。因此光伏板运行过程中,维持其直流电压在稳定运行区域,保证对直流电压的有效控制,是至关重要的。
根据以上分析可知,光伏板的运行特性为在稳定运行区间内,电压-功率成反比关系。逆变器302直流侧电容特性为电容电压大小与充放电速度相关;某个瞬间放电电流大于充电电流,即逆变器302输出功率大于直流侧输入功率时,则电容电压降低;反之升高。运行特性为主动调节逆变器302输出电压频率,可以改变源网相位差,进而调节逆变器302输出功率。综合并网***各个单元的运行特性,可以考虑通过调频,控制输出功率,进而调节直流侧电压,进而调节光伏输出功率的方式,达到MGP跟踪光伏输出功率的效果。参照图3的示意,图3所示的直流电压反馈控制方法中,光伏发电的初级输出为直流,当源端功率发生变化时,会使得直流电压有升高或降低趋势。以稳定变频器300直流电压为控制目标,改变源网相位差,以跟随源端功率变化,改变方式使用类似于功率反馈法的方式,调节变频器300输出频率,间接调节相位差,进而控制功率,最终实现MGP跟随光伏输出的功率变化。
所述新能源模块400为风机时,本实施例中提出了基于电压反馈控制的控制策略,直驱式风力发电机采用交/直/交变频器并网,包含直流部分,因此本实施例主要针对直驱式风力发电机。参照图4的示意,风机输出经过不控整流之后,对直流电容进行充电,控制***采集直流侧电容电压,以直流电压为控制目标,对变频器输出电压频率进行控制,通过调频来调节MGP源网的相位差,进而控制MGP***的功率输出,最终实现MGP***的传输功率对风机输出功率的跟随。图4和5中的M为同步电动机100,G为同步发电机200。
当新能源模块400包括多台风机时,根据上述的结论,直驱式风力发电机可以从直流侧汇聚,然后利用电压反馈驱动MGP,可以实现风场中多台风机用一组MGP并网。风机采用以上方式并网,可以减少风场中逆变器的数量, 用单台逆变器取代多台逆变器,增加***的可靠性。因此,参照图5的示意,将多台风机的整流器直流侧并联,最后由一台逆变器驱动MGP并网,控制方式仍为直流侧电压反馈。
场景一:
为了验证控制策略的效果,本实施例采用上述提供的控制方法基于仿真研究进行验证,仿真***的构成参照图4所示,新能源模块400为风机,模拟风机的输出功率可控,经过不控整流将功率传输至直流电容,再经变频器300驱动同步电动机100,同步电动机100驱动同步发电机200并网,仿真参数和电机参数如下表1和2所示,
表1:仿真参数表
参数/单位 数值
交流***电压/V 380
模拟风机最大功率/kW 5
同步发电机容量/kVA 5
同步电动机容量/kVA 5
工频/Hz 50
Lg/Ω 0.005
表2:电机参数表
参数 数值 参数 数值
r s 0.003 r f 0.0003
X sl 0.12 X fl 0.052
X d 1.66 L dl 0.138
X q 1.71 L ql 0.07
仿真过程持续50s,在仿真初始阶段,设置模拟风机输出功率为3000W,在仿真运行到25s时,调节模拟风机出力降低到2000W,测量同步发电机200输出及直流侧电压,仿真结果见图6所示。根据图6所示,仿真开始后,MGP***可以稳定运行,并对风机的输出功率进行跟随,当仿真进行到25s时设定风机输出突然降低,此时风机输出下降,MGP的发电机输出功率也随之下降,并最终可以继续跟随风机的输出。分析逆变器的直流侧电压可知,在仿真开始后,逆变器的直流侧电压始终可以维持在目标电压附近,在25s风机输出功率 突变时,直流电压也随之变化,通过控制方法的调节,可以使直流电压维持在目标电压附近,这也保证了MGP可以跟随风机的输出功率。
为了进一步验证本实施例提出的控制方法,对于多直驱式风机+MGP的并网控制方法也进行仿真研究,参照图6的示意,仿真持续50s,在仿真初始阶段,设置风机1输出功率为1600W,风机2输出功率为1000W,在仿真运行到25s时,调节风机2出力提高到1200W,在仿真运行到35s时,调节风机2出力降到800W,测量发电机出力及直流侧电压,仿真结果见图7所示。可以看出,同步发电机200的输出功率可以跟随两台风机发出的功率,且两台风机功率波动时,也不会产生互相的影响。直流电压也可以有效跟随参考值。证实了控制方法的有效性。
实施例2
参照图8的示意,示意为本实施例提出的一种MGP新能源并网控制***的整体结构图,上述MGP新能源并网控制方法能够基于该***实现。***包括同步电动机100、同步发电机200、变频器300和新能源模块400。
具体的,同步电动机100能够通过新能源模块400的驱动而转动;
同步发电机200能够在同步电动机100的带动下实现并网;其中,同步电动机100和同步发电机200之间可以通过联轴器进行连接。
变频器300还包括整流器301、逆变器302和直流电容303,能够对功率传输进行控制;
新能源模块400能够通过所述变频器300对所述同步电动机100进行驱动。
应当认识到,本发明的实施例可以由计算机硬件、硬件和软件的组合、或者通过存储在非暂时性计算机可读存储器中的计算机指令来实现或实施。所述方法可以使用标准编程技术-包括配置有计算机程序的非暂时性计算机可读存储介质在计算机程序中实现,其中如此配置的存储介质使得计算机以特定和预定义的方式操作——根据在具体实施例中描述的方法和附图。每个程序可以以高级过程或面向对象的编程语言来实现以与计算机***通信。然而,若需要,该程序可以以汇编或机器语言实现。在任何情况下,该语言可以是编译或解释的语言。此外,为此目的该程序能够在编程的专用集成电路上运行。
此外,可按任何合适的顺序来执行本文描述的过程的操作,除非本文另外指示或以其他方式明显地与上下文矛盾。本文描述的过程(或变型和/或其组合) 可在配置有可执行指令的一个或多个计算机***的控制下执行,并且可作为共同地在一个或多个处理器上执行的代码(例如,可执行指令、一个或多个计算机程序或一个或多个应用)、由硬件或其组合来实现。所述计算机程序包括可由一个或多个处理器执行的多个指令。
进一步,所述方法可以在可操作地连接至合适的任何类型的计算平台中实现,包括但不限于个人电脑、迷你计算机、主框架、工作站、网络或分布式计算环境、单独的或集成的计算机平台、或者与带电粒子工具或其它成像装置通信等等。本发明的各方面可以以存储在非暂时性存储介质或设备上的机器可读代码来实现,无论是可移动的还是集成至计算平台,如硬盘、光学读取和/或写入存储介质、RAM、ROM等,使得其可由可编程计算机读取,当存储介质或设备由计算机读取时可用于配置和操作计算机以执行在此所描述的过程。此外,机器可读代码,或其部分可以通过有线或无线网络传输。当此类媒体包括结合微处理器或其他数据处理器实现上文所述步骤的指令或程序时,本文所述的发明包括这些和其他不同类型的非暂时性计算机可读存储介质。当根据本发明所述的方法和技术编程时,本发明还包括计算机本身。计算机程序能够应用于输入数据以执行本文所述的功能,从而转换输入数据以生成存储至非易失性存储器的输出数据。输出信息还可以应用于一个或多个输出设备如显示器。在本发明优选的实施例中,转换的数据表示物理和有形的对象,包括显示器上产生的物理和有形对象的特定视觉描绘。
如在本申请所使用的,术语“组件”、“模块”、“***”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地***、分布式***中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它***进行交互)的信号,以本地和/或远程过程的方式进行通信。
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种MGP新能源并网控制方法,其特征在于:包括,
    同步电动机(100)和同步发电机(200)相连接;
    新能源模块(400)通过变频器(300)驱动所述同步电动机(100)转动;
    所述变频器(300)对功率传输进行控制;
    同步电动机(100)带动同步发电机(200)并网。
  2. 如权利要求1所述的MGP新能源并网控制方法,其特征在于:所述变频器(300)包括整流器(301)和逆变器(302),且所述整流器(301)和所述逆变器(302)之间包括直流电容(303)。
  3. 如权利要求1或2所述的MGP新能源并网控制方法,其特征在于:所述新能源模块(400)包括光伏板或风机。
  4. 如权利要求3所述的MGP新能源并网控制方法,其特征在于:所述传输的控制包括,融合各个串联模块的运行特性,并结合其各自特点,最终整合各模块工作特性进行控制。
  5. 如权利要求4所述的MGP新能源并网控制方法,其特征在于:所述光伏板输出直流电,通过逆变器(302)进行直/交变换并网;所述风机采用全功率换流器,同步发电机(200)输出经过交/直/交的变换并网。
  6. 如权利要求5所述的MGP新能源并网控制方法,其特征在于:所述新能源模块(400)为光伏板时,通过光照强度、环境温度,得到其P-V特性曲线,并根据不同的工作场合,对其进行最大功率点跟踪控制或者定功率控制。
  7. 如权利要求5或6所述的MGP新能源并网控制方法,其特征在于:所述新能源模块(400)为风机时,根据风机的转速、桨距角等数据,结合历史功率输出数据,计算逆变器的功率输出参考。
  8. 如权利要求7所述的MGP新能源并网控制方法,其特征在于:所述逆变器(302)控制其输出功率增加时,若新能源模块(400)发送的功率不足,则直流电容(303)的充电电流小于放电电流,电容电压降低;逆变器(302)控制其输出功率减少时,若新能源模块(400)发送的功率过剩,则直流电容(303)的充电电流大于放电电流,电容电压升高;若新能源模块(400)发送的功率与逆变器(302)输送的功率匹配,直流电容(303)的电压保持稳定。
  9. 一种MGP新能源并网控制***,其特征在于:包括,
    同步电动机(100),所述能够通过新能源模块(400)驱动而转动;
    同步发电机(200),所述能够在同步电动机(100)的带动下实现并网;
    变频器(300),所述变频器(300)还包括整流器(301)、逆变器(302)和直流电容(303),能够对功率传输进行控制;
    新能源模块(400),所述新能源模块(400)能够通过所述变频器(300)对所述同步电动机(100)进行驱动。
PCT/CN2020/101259 2020-02-29 2020-07-10 一种mgp新能源并网控制方法及*** WO2021169144A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/265,818 US20220247183A1 (en) 2020-02-29 2020-07-10 A method for mgp new energy grid-connected control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010132449 2020-02-29
CN202010132449.9 2020-02-29

Publications (1)

Publication Number Publication Date
WO2021169144A1 true WO2021169144A1 (zh) 2021-09-02

Family

ID=76042895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101259 WO2021169144A1 (zh) 2020-02-29 2020-07-10 一种mgp新能源并网控制方法及***

Country Status (3)

Country Link
US (1) US20220247183A1 (zh)
CN (1) CN112886631B (zh)
WO (1) WO2021169144A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374229A (zh) * 2021-11-10 2022-04-19 温州电力建设有限公司 一种多场景下的光储协同控制方法及***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116388234B (zh) * 2023-06-07 2023-09-01 坎德拉(深圳)新能源科技有限公司 并网发电***的控制方法、***、控制器及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201466745U (zh) * 2009-06-24 2010-05-12 北京利德华福电气技术有限公司 低压穿越型双馈风力发电机变频器
CN105391079A (zh) * 2015-10-20 2016-03-09 株洲变流技术国家工程研究中心有限公司 一种基于新能源互连的功率融通型平衡供电***及方法
CN108414831A (zh) * 2018-02-09 2018-08-17 华北电力大学 研究高渗透率新能源电力***的实验装置和方法
US20190190274A1 (en) * 2016-06-16 2019-06-20 Swansea University An energy management system and method for grid-connected and islanded micro-energy generation
CN110504711A (zh) * 2019-08-21 2019-11-26 华北电力大学 一种基于新能源同步机的新能源并网控制***和方法
CN111245015A (zh) * 2020-02-29 2020-06-05 贵州电网有限责任公司 一种mgp***的功率反馈控制***与方法
CN111416381A (zh) * 2020-02-28 2020-07-14 贵州电网有限责任公司 一种应用于新能源发电***的新能源并网方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645767B (zh) * 2013-08-12 2015-09-30 西安理工大学 一种基于功率步进扰动的最大功率点跟踪方法
CN105305478B (zh) * 2015-01-11 2019-02-12 北京清能世福科技有限公司 一种对电网友好且扩展灵活的新能源发电***
US10084403B2 (en) * 2015-03-27 2018-09-25 Huazhong University Of Science And Technology Power supply system and control method therefor
CN105244911B (zh) * 2015-10-23 2018-05-25 华北电力大学 高渗透率的新能源电力并网***及稳定性控制方法
CN105656081A (zh) * 2016-03-03 2016-06-08 北京清能世福科技有限公司 一种大容量新能源发电***
CN105680479B (zh) * 2016-03-18 2017-11-14 清华大学 考虑光伏电源动态特性的虚拟同步发电机控制方法及***
CN105958543B (zh) * 2016-06-16 2018-12-18 华北电力大学 一种提升新能源并网稳定性的控制、实验和仿真方法
DE102019119868B3 (de) * 2019-07-23 2020-11-05 Danfoss Power Electronics A/S Verfahren zum Bestimmen eines Gleichrichterstufenausgangsstroms und/oder von netzseitigen Strömen eines Frequenzumrichters
CN110829898A (zh) * 2019-11-19 2020-02-21 贵州电网有限责任公司 一种用于新能源同步电机对并网的起动控制方法
CN113328446B (zh) * 2020-02-28 2022-12-27 贵州电网有限责任公司 一种提高新能源同步电机对运行稳定性的方法及***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201466745U (zh) * 2009-06-24 2010-05-12 北京利德华福电气技术有限公司 低压穿越型双馈风力发电机变频器
CN105391079A (zh) * 2015-10-20 2016-03-09 株洲变流技术国家工程研究中心有限公司 一种基于新能源互连的功率融通型平衡供电***及方法
US20190190274A1 (en) * 2016-06-16 2019-06-20 Swansea University An energy management system and method for grid-connected and islanded micro-energy generation
CN108414831A (zh) * 2018-02-09 2018-08-17 华北电力大学 研究高渗透率新能源电力***的实验装置和方法
CN110504711A (zh) * 2019-08-21 2019-11-26 华北电力大学 一种基于新能源同步机的新能源并网控制***和方法
CN111416381A (zh) * 2020-02-28 2020-07-14 贵州电网有限责任公司 一种应用于新能源发电***的新能源并网方法
CN111245015A (zh) * 2020-02-29 2020-06-05 贵州电网有限责任公司 一种mgp***的功率反馈控制***与方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YINGKUN ZHOU, GUORUI XU, YONGZHANG HUANG: "Experiment Analysis on Motor-Generator Pair System for Providing Inertia for Power System with Renewable Energy", LARGE ELECTRIC MACHINE AND HYDRAULIC TURBINE, no. 6, 31 December 2018 (2018-12-31), pages 12 - 17, XP055840540, ISSN: 1000-3983 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374229A (zh) * 2021-11-10 2022-04-19 温州电力建设有限公司 一种多场景下的光储协同控制方法及***

Also Published As

Publication number Publication date
US20220247183A1 (en) 2022-08-04
CN112886631A (zh) 2021-06-01
CN112886631B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US8325499B2 (en) Methods for minimizing double-frequency ripple power in single-phase power conditioners
WO2021169144A1 (zh) 一种mgp新能源并网控制方法及***
Gao et al. Indirect dc-link voltage control of two-stage single-phase PV inverter
WO2016145785A1 (zh) 空调室外机的控制方法及***
EP3086454B1 (en) Improving life of a semiconductor by reducing temperature changes therein via reactive power
Yang et al. Pursuing photovoltaic cost-effectiveness: Absolute active power control offers hope in single-phase PV systems
KR101641962B1 (ko) 최소 전력 추종 제어를 위한 전력 제어 방법 및 그 장치
CN104895774B (zh) 一种光伏水泵集群***的控制方法
JP2013138530A (ja) 太陽電池発電システム
WO2021169145A1 (zh) 一种mgp***的功率反馈控制***与方法
Shiva et al. Power quality improvement in a grid integrated solar PV system
CN113725921B (zh) 一种光伏运行在最大功率点左侧参与电网调频的控制方法
CN105680477A (zh) 一种光伏并网逆变器降额控制***及方法
Mansouri et al. Nonlinear control strategies with maximum power point tracking for hybrid renewable energy conversion systems
Mizuno et al. Optimum facility design in large hospital using renewable energy
CN107820539A (zh) 使用风力涡轮发电机的频率调节
TWI443934B (zh) 太陽能供電系統及其提升供電效率之方法
CN204574366U (zh) 空调室外机的控制***
CN104852391B (zh) 光伏电站无功补偿方法、装置、光伏逆变器和光伏电站
Shahjalal et al. Using microcontroller based solar power system for reliable power supply
US10903659B2 (en) Control of energy production errors in a wind park
TW201517445A (zh) 電力供給系統及熱泵系統
JP2009151832A (ja) 電力変換装置
KR101278533B1 (ko) 모듈 통합형 전력조절기 시스템
WO2020105031A1 (en) A dc pullup system for optimizing solar string power generation systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921290

Country of ref document: EP

Kind code of ref document: A1