WO2021168742A1 - 变焦光学***、变焦模组及电子设备 - Google Patents

变焦光学***、变焦模组及电子设备 Download PDF

Info

Publication number
WO2021168742A1
WO2021168742A1 PCT/CN2020/076998 CN2020076998W WO2021168742A1 WO 2021168742 A1 WO2021168742 A1 WO 2021168742A1 CN 2020076998 W CN2020076998 W CN 2020076998W WO 2021168742 A1 WO2021168742 A1 WO 2021168742A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
zoom optical
zoom
image side
Prior art date
Application number
PCT/CN2020/076998
Other languages
English (en)
French (fr)
Inventor
刘彬彬
邹海荣
李明
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2020/076998 priority Critical patent/WO2021168742A1/zh
Publication of WO2021168742A1 publication Critical patent/WO2021168742A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective

Definitions

  • the present invention relates to the technical field of optical imaging, in particular to a zoom optical system, a zoom module and electronic equipment.
  • a zoom optical system a zoom module, and an electronic device are provided.
  • a zoom optical system from the object side to the image side, includes:
  • a first lens with positive refractive power the object side of the first lens is convex, and the image side is convex;
  • the third lens with refractive power is the third lens with refractive power
  • a fourth lens with refractive power the image side surface of the fourth lens is concave;
  • a fifth lens with positive refractive power, the image side surface of the fifth lens is convex;
  • the sixth lens with refractive power is the sixth lens with refractive power
  • the second lens, the third lens, and the fourth lens constitute a variable magnification group of the zoom optical system
  • the variable magnification group has a negative refractive power
  • the fifth lens and the variable magnification group The magnification group can respectively move relative to the first lens, so that the zoom optical system has an optical zoom effect.
  • a zoom module includes a photosensitive element and the aforementioned zoom optical system.
  • the photosensitive element is arranged on the image side of the zoom optical system and is fixed relative to the first lens.
  • An electronic device includes a housing and the above-mentioned zoom module, and the zoom module is installed on the housing.
  • FIG. 1 is a schematic diagram of the zoom optical system in a short-focus state in the first embodiment of the application
  • FIG. 2 is a schematic diagram of the zoom optical system in a telephoto state in the first embodiment of the application
  • FIG. 3 is a diagram of spherical aberration, astigmatism, and distortion of the zoom optical system in the first embodiment of the application;
  • FIG. 4 is a schematic diagram of the zoom optical system in a short focus state in the second embodiment of the application.
  • FIG. 5 is a schematic diagram of the zoom optical system in a telephoto state in the second embodiment of the application.
  • FIG. 6 is a diagram of spherical aberration, astigmatism, and distortion of the zoom optical system in the second embodiment of the application;
  • FIG. 7 is a schematic diagram of the zoom optical system in a short focus state in the third embodiment of the application.
  • FIG. 8 is a schematic diagram of the zoom optical system in a telephoto state in the third embodiment of the application.
  • FIG. 9 is a diagram of spherical aberration, astigmatism, and distortion of the zoom optical system in the third embodiment of the application.
  • FIG. 10 is a schematic diagram of the zoom optical system in a short focus state in the fourth embodiment of the application.
  • FIG. 11 is a schematic diagram of the zoom optical system in a telephoto state in the fourth embodiment of this application.
  • FIG. 12 is a diagram of spherical aberration, astigmatism, and distortion of the zoom optical system in the fourth embodiment of the application;
  • FIG. 13 is a schematic diagram of the zoom optical system in a short-focus state in the fifth embodiment of the application.
  • FIG. 14 is a schematic diagram of the zoom optical system in a telephoto state in the fifth embodiment of this application.
  • 15 is a diagram of spherical aberration, astigmatism, and distortion of the zoom optical system in the fifth embodiment of the application;
  • 16 is a schematic diagram of the zoom optical system in a short focus state in the sixth embodiment of the application.
  • FIG. 17 is a schematic diagram of the zoom optical system in a telephoto state in the sixth embodiment of this application.
  • FIG. 19 is a schematic diagram of a zoom module in an embodiment of the application.
  • FIG. 20 is a schematic diagram of an electronic device in an embodiment of this application.
  • the zoom optical system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5 in order from the object side to the image side. And the sixth lens L6.
  • the lenses in the zoom optical system 100 are arranged coaxially, that is, the optical axes of the lenses are on the same straight line, and the straight line is the optical axis of the zoom optical system 100.
  • the first lens L1 includes an object side surface S1 and an image side surface S2
  • the second lens L2 includes an object side surface S3 and an image side surface S4
  • the third lens L3 includes an object side surface S5 and an image side surface S6,
  • the fourth lens L4 includes an object side surface S7.
  • the image side surface S8, the fifth lens L5 includes the object side surface S9 and the image side surface S10
  • the sixth lens L6 includes the object side surface S11 and the image side surface S12.
  • the second lens L2, the third lens L3, and the fourth lens L4 constitute a variable power group L234 of the zoom optical system 100.
  • the first lens L1 has a positive refractive power, which is beneficial to shorten the total length of the zoom optical system 100, and the object side S1 and the image side S2 of the first lens L1 are both convex, which can further shorten the zoom optical system 100 on the optical axis. Total length. Therefore, the size of the zoom optical system 100 on the optical axis is relatively short, and when installed in an electronic device, it can meet the requirements of miniaturization design of the electronic device.
  • the second lens L2 has a negative refractive power
  • the variable power group L234 also has a negative refractive power, which can correct the aberration generated by the first lens L1.
  • Both the third lens L3 and the fourth lens L4 have refractive power.
  • the image side surface S8 of the fourth lens L4 is concave, which can balance the refractive power configuration of the zoom optical system 100 to avoid excessively increasing the spherical aberration of the zoom optical system 100 due to excessive refractive power concentration, and can also correct the zoom optical system 100 The astigmatism.
  • the fifth lens L5 has positive refractive power and the image side surface S10 of the fifth lens L5 is convex, which can effectively correct the Petzval sum of the zoom optical system 100, so that the light enters the convergence point of the zoom optical system 100 within the field of view. It is more concentrated on the image plane S15 of the zoom optical system 100 to improve the resolution capability of the zoom optical system 100. Therefore, while reducing the size of the zoom optical system 100 on the optical axis to meet the requirements of the miniaturization design of the electronic device, it is also possible to ensure that the zoom optical system 100 has a good imaging quality.
  • the first lens L1 constitutes the front fixed group of the zoom optical system 100
  • the sixth lens L6 is fixedly arranged relative to the first lens L1
  • the sixth lens L6 constitutes the zoom optical system 100.
  • the second lens L2, the third lens L3, and the fourth lens L4 together constitute the variable magnification group L234 of the zoom optical system 100.
  • the variable magnification group L234 can be used as the front fixed group of the first lens L1 and the rear fixed group.
  • the sixth lens L6 of the group is moved along the optical axis direction of the system to change the total effective focal length of the zoom optical system 100.
  • the second lens L2, the third lens L3, and the fourth lens L4 move synchronously to realize the zoom optical system 100.
  • the fifth lens L5 constitutes a compensation group of the zoom optical system 100, and the fifth lens L5 can also be moved in the optical axis direction of the system.
  • the fifth lens L5 can move synchronously with the variable magnification group L234, or can also move asynchronously.
  • the variable magnification group L234 moves along the optical axis between the first lens L1 and the sixth lens L6, the fifth lens L5 as the compensation group can also move along the optical axis between the first lens L1 and the sixth lens L6.
  • the optimal imaging position of the system can always be on the photosensitive surface of the photosensitive element, thereby ensuring
  • the zoom optical system 100 can still have excellent imaging quality under shooting conditions with different object distances by adjusting the total effective focal length.
  • the variable magnification group L234 moves along the optical axis in a direction away from the first lens L1
  • the fifth lens L5 moves along the optical axis in a direction close to the sixth lens L6, so that the zoom optical system 100
  • the total effective focal length is increased, and the zoom function of the zoom optical system 100 is realized.
  • the zoom optical system 100 can be used in a zoom lens (not shown in the figure), and in this case, the zoom lens further includes a zoom ring and a fixed focus ring.
  • the first lens L1 and the sixth lens L6 are fixed in the zoom lens, the zoom ring and the fixed focus ring are arranged between the first lens L1 and the sixth lens L6, and the zoom ring is fixedly connected to the variable magnification group L234, and the fixed focus ring is connected to the The fifth lens L5 is fixedly connected.
  • the zoom ring can drive the variable magnification group L234 between the first lens L1 and the sixth lens L6 along the optical axis of the system, while the fixed focus ring can drive the fifth lens L5 between the variable magnification group L234 and the sixth lens L6 Move along the optical axis of the system to achieve the zoom function of the zoom lens.
  • the zoom lens of other structures can also be used to move the zoom group L234 to achieve the zoom function of the zoom optical system 100.
  • the variable magnification group L234 is fixed in the lens barrel of the zoom lens, and when a magnet is arranged in the lens barrel, a coil is arranged in the zoom lens.
  • the zoom optical system of the zoom optical system 100 can also adopt other common zoom moving structures, which will not be repeated here.
  • the zoom optical system 100 is provided with a diaphragm STO, and the diaphragm STO may be disposed between the third lens L3 and the fourth lens L4, and the diaphragm STO moves in synchronization with the variable magnification group L234.
  • the zoom optical system 100 further includes an infrared filter L7 disposed on the image side of the sixth lens L6, and the infrared filter L7 includes an object side surface S13 and an image side surface S14.
  • the zoom optical system 100 further includes an image plane S15 on the image side of the sixth lens L6, and the incident light passes through the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the After adjusting the six lens L6, the image can be formed on the image plane S15.
  • the infrared filter L7 is an infrared cut-off filter, which is used to filter out interference light and prevent the interference light from reaching the image plane S15 of the zoom optical system 100 and affecting normal imaging.
  • the object side and the image side of each lens of the zoom optical system 100 are both aspherical, and the adoption of an aspherical structure can improve the flexibility of each lens design and effectively correct the spherical aberration of the zoom optical system 100. Improve image quality.
  • the material of each lens in the zoom optical system 100 may be glass or plastic. Using a plastic lens such as polycarbonate can reduce the weight and production cost of the zoom optical system 100, while a glass lens can provide the zoom optical system 100 with excellent optical performance and higher temperature resistance.
  • the material of each lens of the zoom optical system 100 can also be any combination of glass and plastic, and not necessarily all of glass or all of plastic.
  • at least two of the lenses of the zoom optical system 100 are made of plastic materials, and the plastic materials used for the at least two lenses have different optical characteristics. The balance can better balance the aberration of the zoom optical system 100 and improve the image quality.
  • the first lens L1 does not mean that there is only one lens. In some embodiments, there may be two or more lenses in the first lens L1, and two or more lenses can form a cemented lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • the first lens L1 does not form a cemented lens between the lenses, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1
  • the lens closest to the image side The image side of is the image side S2.
  • the number of lenses in the second lens L2, third lens L3, fourth lens L4, fifth lens L5, or sixth lens L6 in some embodiments may also be greater than or equal to two, and any adjacent lens It may be a cemented lens or a non-cemented lens.
  • the zoom optical system 100 satisfies the relationship: 2.1 ⁇ TTL/(ImgH*2) ⁇ 3; 10° ⁇ HFOV ⁇ 15°; and 0.7 ⁇ DL/TTL ⁇ 0.95; where TTL is The distance from the object side S1 of the first lens L1 to the image plane S15 of the zoom optical system 100 on the optical axis, ImgH is half of the diagonal length of the zoom optical system 100 in the effective pixel area, and HFOV is the maximum of the zoom optical system 100 Half of the field of view can be understood as HFOV is half of the diagonal viewing angle of the zoom optical system 100, and DL is the distance between the object side S1 of the first lens L1 and the image side S12 of the sixth lens L6 on the optical axis.
  • TTL/(ImgH*2) may be 2.7.
  • the HFOV can be 11.06°, 11.28°, 11.40°, 11.67°, 11.92°, 12.11°, 12.35°, 12.90°, 13.42°, or 13.70°.
  • DL/TTL can be 0.917, 0.921, 0.924, 0.928, 0.932, 0.933, 0.935, 0.937, 0.938, or 0.940.
  • the zoom optical system 100 satisfies the following relationship: 1 ⁇ TTL/f ⁇ 1.5; where f is the total effective focal length of the zoom optical system 100.
  • TTL/f may be 1.140, 1.151, 1.163, 1.211, 1.298, 1.301, 1.335, 1.386, 1.402, or 1.416.
  • the zoom optical system 100 satisfies the following relationship: f5>0; where f5 is the effective focal length of the fifth lens L5.
  • f5 may be 10.065, 10.098, 10.155, 10.236, 10.322, 10.458, 10.523, 10.687, 10.711, or 10.786, and the unit of f5 is mm.
  • the effective focal length of the fifth lens L5 is reasonably allocated, and when the zoom group L234 moves between the first lens L1 and the sixth lens L6 in the direction of the optical axis to realize the zoom function of the zoom optical system 100,
  • the fifth lens L5 can play a good focal length compensation function in the zoom optical system 100, so as to improve the imaging quality of the zoom optical system 100.
  • the zoom optical system 100 satisfies the following relationship: D2+D3>D1; where D1 is the distance on the optical axis from the image side surface S2 of the first lens L1 to the object side surface S3 of the second lens L2, in units of D2 is the distance from the image side S8 of the fourth lens L4 to the object side S9 of the fifth lens L5 on the optical axis, in mm, and D3 is the object from the image side S10 of the fifth lens L5 to the sixth lens L6 The distance between the side surface S11 and the optical axis, in mm.
  • D1 may be 0.433, 0.456, 0.498, 0.535, 0.574, 0.629, 0.667, 0.685, 0.722, or 0.726.
  • D2 can be 2.563, 2.855, 3.112, 3.864, 3.945, 4.102, 4.632, 4.801, 4.898 or 4.954.
  • D3 can be 0.102, 0.323, 0.587, 0.965, 1.322, 1.593, 1.865, 1.996, 2.155, or 2.377.
  • the zoom optical system 100 has a more reasonable structural layout on the optical axis, which can slow down the direction change of light entering the zoom optical system 100 during zooming, thereby reducing the intensity of stray light generated by the zoom optical system 100 , Improve imaging quality.
  • variable magnification group L234 and the fifth lens L5 move in the direction of the optical axis between the first lens L1 and the sixth lens L6, which will cause the values of D1, D2, and D3 to change, thereby causing the zoom optical system 100 to change
  • the total effective focal length changes.
  • the zoom optical system 100 has different states. In each embodiment of the present application, only the zoom optical system 100 is listed in three states of short focus, medium focus, and long focus. However, the zoom optical system 100 is not limited to changing under these three specific states.
  • the total effective focal length of the zoom optical system 100 in the short focus state is the minimum of the total effective focal lengths in the three states, and the zoom optical system 100 in the long focus state
  • the total effective focal length of is the maximum value of the total effective focal length in these three states.
  • the above three states are only an indication of the three change states when the total effective focal length of the zoom optical system 100 changes.
  • the total effective focal length of the zoom optical system 100 can also be other values.
  • the values of D1, D2, D3 can also be other numerical values. Therefore, the zoom optical system 100 in some embodiments can continuously adjust the total effective focal length, thereby having the effect of continuous zooming.
  • the zoom optical system 100 satisfies the following relationship: 0.93 ⁇
  • the zoom optical system 100 satisfies the following relationship: Vn(30) ⁇ 3; where Vn(30) is the number of lenses with a dispersion coefficient of less than 30 in the zoom optical system 100. Specifically, Vn(30) may be 4.
  • Vn(30) may be 4.
  • FIG. 1 is a schematic diagram of the zoom optical system 100 in the first embodiment in a short-focus state
  • FIG. 2 is a schematic diagram of the zoom optical system 100 in the first embodiment in a short-focus state. Schematic diagram in the telephoto state.
  • the zoom optical system 100 includes, from the object side to the image side, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a third lens L3 with a negative refractive power, a stop STO, and a positive refractive power.
  • the fourth lens L4 the fifth lens L5 with positive refractive power
  • the sixth lens L6 with negative refractive power.
  • FIG 3 is a graph of spherical aberration, astigmatism, and distortion of the zoom optical system 100 in the first embodiment in order from left to right, wherein the graphs of astigmatism and distortion are all graphs at 555 nm, and the other embodiments are the same.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the image side surface S2 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and convex at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the optical axis and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is concave at the optical axis and concave at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the optical axis and convex at the circumference.
  • the shape of the surface from the center (optical axis) to the edge direction can be a pure convex; or a convex shape from the center first Transition to a concave shape and then become convex when approaching the maximum effective radius.
  • the various shapes and structures of the surface (concave-convex relationship) are not fully reflected, but other situations can be derived from the above examples.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • TTL is the distance from the object side S1 of the first lens L1 to the image plane S15 of the zoom optical system 100 on the optical axis
  • ImgH is half of the diagonal length of the zoom optical system 100 in the effective pixel area
  • HFOV is the zoom optical Half of the maximum field angle of the system 100
  • DL is the distance from the object side S1 of the first lens L1 to the image side S12 of the sixth lens L6 on the optical axis.
  • f is the total effective focal length of the zoom optical system 100.
  • f5 is the effective focal length of the fifth lens L5.
  • the effective focal length of the fifth lens L5 is reasonably allocated, and when the zoom group L234 moves between the first lens L1 and the sixth lens L6 in the direction of the optical axis to realize the zoom function of the zoom optical system 100,
  • the fifth lens L5 can play a good focal length compensation function in the zoom optical system 100, so as to improve the imaging quality of the zoom optical system 100.
  • variable magnification group L234 is composed of the second lens L2, the third lens L3, and the fourth lens L4.
  • the variable magnification group L234 can move between the first lens L1 and the sixth lens L6, and the fifth lens L5 can move between the first lens L1 and the sixth lens L6. Move between the zoom group L234 and the sixth lens L6.
  • the diaphragm STO is integrated with the variable magnification group L234, and the diaphragm STO can move with the variable magnification group L234 relative to the first lens L1.
  • D1 is the distance on the optical axis from the image side surface S2 of the first lens L1 to the object side surface S3 of the second lens L2, in mm
  • D2 is the image side surface S8 of the fourth lens L4 to the object side surface of the fifth lens L5
  • D3 is the distance on the optical axis from the image side surface S10 of the fifth lens L5 to the object side surface S11 of the sixth lens L6, in mm.
  • the zoom optical system 100 has a more reasonable structural layout on the optical axis, which can slow down the direction change of the light after entering the zoom optical system 100 during the zooming process. This reduces the intensity of stray light generated by the zoom optical system 100 and improves the imaging quality.
  • f234 is the effective focal length of the lens group formed by the second lens L2, the third lens L3, and the fourth lens L4.
  • the relationship is satisfied: 0.93 ⁇
  • the zoom optical system 100 is zooming, the focal length between the variable magnification group L234 and the fifth lens L5 compensates each other, which is beneficial to The aberration of the zoom optical system 100 is balanced.
  • Vn(30) is the number of lenses with a dispersion coefficient of less than 30 in the zoom optical system 100.
  • the image plane S15 in Table 1 can be understood as the imaging plane of the zoom optical system 100.
  • the elements from the object plane (not shown in the figure) to the image plane S15 are arranged in the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • the surface number 1 and the surface number 2 are respectively the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the first value in the “thickness” parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the object side of the lens from the image side to the image side of the next lens on the optical axis On the distance.
  • the zoom optical system 100 may not be provided with the infrared filter L7, but at this time, the distance from the image side surface S12 to the image surface S15 of the sixth lens L6 remains unchanged.
  • the focal length and refractive index of each lens are the values under the d-line (587.56 nm), and the other embodiments are also the same.
  • the aspheric coefficients of the image side surface and the object side surface of each lens in the zoom optical system 100 are given in Table 2.
  • the surface numbers from 1-12 indicate the image side surface or the object side surface S1-S12, respectively.
  • K-A20 from top to bottom respectively represent aspherical coefficients, where K represents a conic constant, A4 represents a fourth-order aspheric coefficient, A6 represents a sixth-order aspheric coefficient, A8 represents an eighth-order aspheric coefficient, and so on.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric vertex
  • k is the conic constant
  • Ai is the aspheric surface formula
  • FIG. 4 is a schematic diagram of the zoom optical system 100 in the second embodiment in a short-focus state
  • FIG. 5 is a schematic diagram of the zoom optical system 100 in the second embodiment in a state Schematic diagram in the telephoto state.
  • the zoom optical system 100 includes, from the object side to the image side, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a third lens L3 with a positive refractive power, a stop STO, and a positive refractive power.
  • FIG. 6 is a graph showing the spherical aberration, astigmatism, and distortion of the zoom optical system 100 in the second embodiment from left to right.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the image side surface S2 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the optical axis and convex at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and convex at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the optical axis and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is concave at the optical axis and concave at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the optical axis and convex at the circumference.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • FIG. 7 is a schematic diagram of the zoom optical system 100 in the third embodiment in a short focus state
  • FIG. 8 is a schematic diagram of the zoom optical system 100 in the third embodiment in a state Schematic diagram in the telephoto state.
  • the zoom optical system 100 includes, from the object side to the image side, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a third lens L3 with a positive refractive power, a stop STO, and a positive refractive power.
  • FIG. 9 is a graph showing the spherical aberration, astigmatism and distortion of the zoom optical system 100 in the third embodiment from left to right.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the image side surface S2 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and convex at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the optical axis and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is concave at the optical axis and concave at the circumference;
  • the image side surface S12 of the sixth lens L6 is convex at the optical axis and convex at the circumference.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the aspheric coefficients of the image side surface and the object side surface of each lens in the zoom optical system 100 are given in Table 6, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 10 is a schematic diagram of the zoom optical system 100 in the fourth embodiment in a short-focus state
  • FIG. 11 is a schematic diagram of the zoom optical system 100 in the fourth embodiment in a state Schematic diagram in the telephoto state.
  • the zoom optical system 100 includes, from the object side to the image side, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a third lens L3 with a positive refractive power, a stop STO, and a positive refractive power.
  • FIG. 12 is a graph showing the spherical aberration, astigmatism, and distortion of the zoom optical system 100 in the fourth embodiment from left to right.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the image side surface S2 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and convex at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the optical axis and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the optical axis and convex at the circumference.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis
  • the image side surface S12 is concave at the optical axis
  • the image side surface S12 is convex at the circumference, that is, the image side surface S12 has at least one convex surface off-axis. point.
  • the principal point of the zoom optical system 100 is kept away from the image plane S15, thereby shortening the focal length of the zoom optical system 100, and thereby The size of the zoom optical system 100 on the optical axis is shortened, so that the zoom optical system 100 can further meet the requirements of the miniaturization design of electronic devices.
  • the aspheric coefficients of the image side surface and the object side surface of each lens in the zoom optical system 100 are given in Table 8, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • FIG. 13 is a schematic diagram of the zoom optical system 100 in the fifth embodiment in a short-focus state
  • FIG. 14 is a schematic diagram of the zoom optical system 100 in the fifth embodiment in a short-focus state. Schematic diagram in the telephoto state.
  • the zoom optical system 100 includes, from the object side to the image side, a first lens L1 with a positive refractive power, a second lens L2 with a negative refractive power, a third lens L3 with a negative refractive power, a stop STO, and a positive refractive power.
  • FIG. 15 is a graph of spherical aberration, astigmatism, and distortion of the zoom optical system 100 in the fifth embodiment in order from left to right.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the image side surface S2 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the image side surface S4 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and convex at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the optical axis and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and concave at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the optical axis and convex at the circumference.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • FIG. 16 is a schematic diagram of the zoom optical system 100 in the sixth embodiment in a short focus state
  • FIG. 17 is a schematic diagram of the zoom optical system 100 in the sixth embodiment in a state Schematic diagram in the telephoto state.
  • the zoom optical system 100 includes, from the object side to the image side, a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, a third lens L3 with positive refractive power, a stop STO, and a negative refractive power.
  • the fourth lens L4 the fifth lens L5 with positive refractive power, and the sixth lens L6 with negative refractive power.
  • FIG. 18 shows graphs of spherical aberration, astigmatism, and distortion of the zoom optical system 100 in the sixth embodiment in order from left to right.
  • the object side surface S1 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the image side surface S2 of the first lens L1 is convex at the optical axis and convex at the circumference;
  • the object side surface S3 of the second lens L2 is concave at the optical axis and concave at the circumference;
  • the image side surface S4 of the second lens L2 is convex at the optical axis and convex at the circumference;
  • the object side surface S5 of the third lens L3 is convex at the optical axis and convex at the circumference;
  • the image side surface S6 of the third lens L3 is concave at the optical axis and concave at the circumference;
  • the object side surface S7 of the fourth lens L4 is convex at the optical axis and convex at the circumference;
  • the image side surface S8 of the fourth lens L4 is concave at the optical axis and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is concave at the optical axis and concave at the circumference;
  • the image side surface S10 of the fifth lens L5 is convex at the optical axis and convex at the circumference;
  • the object side surface S11 of the sixth lens L6 is convex at the optical axis and convex at the circumference;
  • the image side surface S12 of the sixth lens L6 is concave at the optical axis and concave at the circumference.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic.
  • the zoom optical system 100 can be assembled with the photosensitive element 210 to form the zoom module 200.
  • the sixth lens L6 and the photosensitive element 210 are fixed relative to the first lens L1, and the variable magnification group L234 and the fifth lens L5 can respectively move relative to the first lens L1 to realize the zoom function of the zoom module 200.
  • the image surface S15 of the zoom optical system 100 can be regarded as the photosensitive surface of the photosensitive element 210, and the light is formed on the photosensitive surface of the photosensitive element 210 after passing through the zoom optical system 100.
  • the zoom module 200 may also be provided with an infrared filter L7, and the infrared filter L7 is provided between the image side surface S12 and the image surface S15 of the sixth lens L6.
  • the photosensitive element 210 may be a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor Sensor (CMOS Sensor).
  • CCD Charge Coupled Device
  • CMOS Sensor Complementary Metal-Oxide Semiconductor Sensor
  • the zoom module 200 may be applied to an electronic device 300.
  • the electronic device 300 includes a housing 310 on which the zoom module 200 is installed.
  • the electronic device 300 may be a smart phone, a video camera, a video camera, or a tablet computer with a zoom function. Since the zoom module 200 has good image quality and small size, the use of the zoom module 200 in the electronic device 300 can improve the image quality of the electronic device 300 and at the same time enable the electronic device 300 to achieve a miniaturized design.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种变焦光学***(100),由物侧至像侧依次包括:具有正屈折力的第一透镜(L1),第一透镜(L1)的物侧面(S1)为凸面,像侧面(S2)为凸面;具有负屈折力的第二透镜(L2);具有屈折力的第三透镜(L3);具有屈折力的第四透镜(L4),第四透镜(L4)的像侧面(S8)为凹面;具有正屈折力的第五透镜(L5),第五透镜(L5)的像侧面(S10)为凸面;以及具有屈折力的第六透镜(L6)。其中,第二透镜(L2)、第三透镜(L3)、第四透镜(L4)构成变焦光学***(100)的变倍组(L234),变倍组(L234)具有负屈折力,且第五透镜(L5)及变倍组(L234)能够分别相对第一透镜(L1)移动。

Description

变焦光学***、变焦模组及电子设备 技术领域
本发明涉及光学成像技术领域,特别是涉及一种变焦光学***、变焦模组及电子设备。
背景技术
近年来,具有变焦功能的电子设备由于应用范围较大而广受追捧。具有变焦功能的电子设备,在不改变拍摄距离的情况下,可以通过变动内部的变焦光学***的焦距来改变拍摄范围,以获取不同范围内景物较清晰的图像,即一个变焦光学***可兼担起多个定焦光学***的作用,使用范围广。但为了保证不同范围内的成像质量,传统的变焦光学***的尺寸较大,难以满足电子设备小型化设计的需求。
发明内容
根据本申请的各种实施例,提供一种变焦光学***、变焦模组及电子设备。
一种变焦光学***,由物侧至像侧依次包括:
具有正屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凸面;
具有负屈折力的第二透镜;
具有屈折力的第三透镜;
具有屈折力的第四透镜,所述第四透镜的像侧面为凹面;
具有正屈折力的第五透镜,所述第五透镜的像侧面为凸面;及
具有屈折力的第六透镜;
其中,所述第二透镜、所述第三透镜、所述第四透镜构成所述变焦光学***的变倍组,所述变倍组具有负屈折力,且所述第五透镜及所述变倍组能够分别相对所述第一透镜移动,以使所述变焦光学***拥有光学变焦效果。
一种变焦模组,包括感光元件以及上述变焦光学***,所述感光元件设置于所述变焦光学***的像侧,且相对所述第一透镜固定。
一种电子设备,包括壳体以及上述的变焦模组,所述变焦模组安装于所述壳体上。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中变焦光学***处于一种短焦状态下的示意图;
图2为本申请第一实施例中变焦光学***处于一种长焦状态下的示意图;
图3为本申请第一实施例中变焦光学***的球差图、像散图和畸变图;
图4为本申请第二实施例中变焦光学***处于一种短焦状态下的示意图;
图5为本申请第二实施例中变焦光学***处于一种长焦状态下的示意图;
图6为本申请第二实施例中变焦光学***的球差图、像散图和畸变图;
图7为本申请第三实施例中变焦光学***处于一种短焦状态下的示意图;
图8为本申请第三实施例中变焦光学***处于一种长焦状态下的示意图;
图9为本申请第三实施例中变焦光学***的球差图、像散图和畸变图;
图10为本申请第四实施例中变焦光学***处于一种短焦状态下的示意图;
图11为本申请第四实施例中变焦光学***处于一种长焦状态下的示意图;
图12为本申请第四实施例中变焦光学***的球差图、像散图和畸变图;
图13为本申请第五实施例中变焦光学***处于一种短焦状态下的示意图;
图14为本申请第五实施例中变焦光学***处于一种长焦状态下的示意图;
图15为本申请第五实施例中变焦光学***的球差图、像散图和畸变图;
图16为本申请第六实施例中变焦光学***处于一种短焦状态下的示意图;
图17为本申请第六实施例中变焦光学***处于一种长焦状态下的示意图;
图18为本申请第六实施例中变焦光学***的球差图、像散图和畸变图;
图19为本申请一种实施例中变焦模组的示意图;
图20为本申请一种实施例中电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一个实施例中,变焦光学***100由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6。变焦光学***100中的各透镜同轴设置,即各透镜的光轴处于同一直线,该直线即为变焦光学***100的光轴。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10,第六透镜L6包括物侧面S11及像侧面S12。第二透镜L2、第三透镜L3以及第四透镜L4构成变焦光学***100的变倍组L234。
其中,第一透镜L1具有正屈折力,有利于缩短变焦光学***100的总长,且第一透镜L1的物侧面S1与像侧面S2均为凸面,可进一步缩短变焦光学***100于光轴上的总长。由此,变焦光学***100于光轴上的尺寸较短,安装于电子设备中时,能够满足电子设备小型化设计的需求。第二透镜L2具有负曲折力,且变倍组L234也具有负屈折力,可修正第一透镜L1产生的像差。第三透镜L3和第四透镜L4均具有屈折力。第四透镜L4的像侧面S8为凹面,可平衡变焦光学***100的屈折力配置,以避免因屈折力过度集中而使变焦光学***100的球差过度增大,同时也可修正变焦光学***100的像散。第五透镜L5具有正屈折力且第五透镜L5的像侧面S10为凸面,可有效校正变焦光学***100的匹兹伐和数,使光线于视场范围内进入变焦光学***100后的汇聚点更集中于变焦光学***100的像面S15上,以提升变焦光学***100的解像能力。由此,在缩短变焦光学***100于光轴上的尺寸以满足电子设备小型化设计的需求的同时,也能够保证变焦光学***100拥有良好的成像质量。
需要注意的是,在本申请的一些实施例中,第一透镜L1构成变焦光学***100的前固定组,而第六透镜L6相对第一透镜L1固定设置,第六透镜L6构成变焦光学***100的后固定组,第二透镜L2、第三透镜L3以及第四透镜L4共同构成变焦光学***100的变倍组L234,变倍组L234能够在作为前固定组的第一透镜L1与作为后固定组的第六透镜L6之间沿***的光轴方向移动以改变变焦光学***100的总有效焦距,其中第二透镜L2、第三透镜L3以及第四透镜L4同步移动,进而实现变焦光学***100的变焦功能。另外,第五透镜L5构成变焦光学***100的补偿组,第五透镜L5也能够沿***的光轴方向移动。一些实施例中的第五透镜L5可与变倍组L234同步移动,或者也可非同步移动。当变倍组L234在第一透镜L1与第六透镜L6之间沿光轴的方向移动时,作为补偿组的第五透镜L5也能够在第一透镜L1与 第六透镜L6之间沿光轴的方向相应移动,以补偿变焦光学***100因变倍组L234移动而产生的像差以及最佳成像位置的偏离量,使***的最佳成像位置能够始终处于感光元件的感光表面上,从而保证变焦光学***100能够通过调节总有效焦距以在不同物距的拍摄条件下依然拥有优良的成像质量。例如,在一些实施例中,变倍组L234沿光轴朝向远离第一透镜L1的方向移动,而第五透镜L5沿光轴朝向靠近第六透镜L6的方向移动,以使变焦光学***100的总有效焦距增大,实现变焦光学***100的变焦功能。
在一些实施例中,变焦光学***100可运用于变焦镜头(图未示出)中,此时,变焦镜头还包括变焦环和定焦环。第一透镜L1以及第六透镜L6固定于变焦镜头中,变焦环及定焦环设置于第一透镜L1与第六透镜L6之间,且变焦环与变倍组L234固定连接,定焦环与第五透镜L5固定连接。变焦环可带动变倍组L234于第一透镜L1及第六透镜L6之间沿***的光轴方向移动,而定焦环可带动第五透镜L5于变倍组L234及第六透镜L6之间沿***的光轴方向移动,以此实现变焦镜头的变焦功能。而在另一些实施例中,还可通过其他结构的变焦镜头实现变倍组L234的移动以实现变焦光学***100的变焦功能。具体地,变倍组L234固定于变焦镜头的镜筒内,而镜筒内当设置有磁石,变焦镜头中设置有线圈,当线圈通电时,线圈与镜筒中磁石的磁场发生相互作用,以使镜筒带动变倍组L234移动,进而实现变焦光学***100的变焦功能。当然,变焦光学***100的变焦光学***还可采用其他常见的变焦移动结构,此处不一一赘述。
另外,在一些实施例中,变焦光学***100设置有光阑STO,且光阑STO可设置于第三透镜L3与第四透镜L4之间,光阑STO与变倍组L234同步移动。并且,在一些实施例中,变焦光学***100还包括设置于第六透镜L6像侧的红外滤光片L7,红外滤光片L7包括物侧面S13和像侧面S14。进一步地,变焦光学***100还包括位于第六透镜L6像侧的像面S15,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的调节后能够成像于像面S15。值得注意的是,红外滤光片L7为红外截止滤光片,用于滤除干扰光,防止干扰光到达变焦光学***100的像面S15而影响正常成像。
在一些实施例中,变焦光学***100的各透镜的物侧面和像侧面均为非球面,非球面结构的采用能够提高各透镜设计的灵活性,并有效地校正变焦光学***100的球差,改善成像质量。
在一些实施例中,变焦光学***100中的各透镜的材质可均为玻璃或均为塑料。采用例如聚碳酸酯等塑料材质的透镜能够减小变焦光学***100的重量并降低生产成本,而采用玻璃材质的透镜能够使变焦光学***100具备优良的光学性能以及较高的耐温性能。并且,变焦光学***100的各透镜的材质也可以为玻璃和塑料的任意组合,并不一定均为玻璃或均为塑料。进一步地,在一些实施例中,变焦光学***100的各透镜中的至少两个透镜的材质为塑料材质,且至少两个透镜采用的塑料材质的光学特性不同,由此,通过各透镜材料搭配的平衡,能够更好地平衡变焦光学***100的像差,提高成像质量。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5或第六透镜L6中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,变焦光学***100满足关系式:2.1<TTL/(ImgH*2)<3;10°<HFOV<15°;以及0.7<DL/TTL<0.95;其中,TTL为第一透镜L1的物侧面S1至变焦光学***100的像面S15于光轴上的距离,ImgH为变焦光学***100于有效像素区域的对角线长度的一半,HFOV为变焦光学***100的最大视场角的一半,即可理解为HFOV为变焦光学***100的对角线视角的一半,DL为第一透镜L1的物侧面S1至所述第六透镜L6的像侧 面S12于光轴上的距离。具体地,TTL/(ImgH*2)可以为2.7。HFOV可以为11.06°、11.28°、11.40°、11.67°、11.92°、12.11°、12.35°、12.90°、13.42°或13.70°。DL/TTL可以为0.917、0.921、0.924、0.928、0.932、0.933、0.935、0.937、0.938或0.940。满足上述关系式时,变焦光学***100具有较紧凑且合理的结构布局,由此,变焦光学***100对处于一定范围内不同距离的被摄物体,通过自身内部各透镜的移动,都能达到清晰的图像拍摄要求。
在一些实施例中,变焦光学***100满足以下关系式:1<TTL/f<1.5;其中,f为变焦光学***100的总有效焦距。具体地,TTL/f可以为1.140、1.151、1.163、1.211、1.298、1.301、1.335、1.386、1.402或1.416。满足上述关系式时,通过紧凑合理的结构布局以及总有效角度的合理分配,提高变焦光学***100的成像质量,以使对不同视场范围内的景物进行拍摄时,变焦光学***100的像面S15均能形成较清晰的图像。
在一些实施例中,变焦光学***100满足以下关系式:f5>0;其中,f5为第五透镜L5的有效焦距。具体地,f5可以为10.065、10.098、10.155、10.236、10.322、10.458、10.523、10.687、10.711或10.786,f5的单位为mm。满足上述关系式时,通过合理分配第五透镜L5的有效焦距,当变倍组L234在第一透镜L1和第六透镜L6之间沿光轴的方向移动实现变焦光学***100的变焦功能时,第五透镜L5能在变焦光学***100中起到良好的焦距补偿作用,以提高变焦光学***100的成像质量。
在一些实施例中,变焦光学***100满足以下关系式:D2+D3>D1;其中,D1为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴上的距离,单位为mm,D2为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴上的距离,单位为mm,D3为第五透镜L5的像侧面S10至第六透镜L6的物侧面S11于光轴上的距离,单位为mm。具体地,D1可以为0.433、0.456、0.498、0.535、0.574、0.629、0.667、0.685、0.722或0.726。D2可以为2.563、2.855、3.112、3.864、3.945、4.102、4.632、4.801、4.898或4.954。D3可以为0.102、0.323、0.587、0.965、1.322、1.593、1.865、1.996、2.155或2.377。满足上述关系式时,变焦光学***100于光轴上有较合理的结构布局,可减缓变焦过程中光线进入变焦光学***100后的方向变化,以此降低变焦光学***100产生的杂散光的强度,提高成像质量。
进一步地,变倍组L234以及第五透镜L5在第一透镜L1与第六透镜L6之间沿光轴的方向移动,会导致D1、D2、D3的数值发生变化,进而导致变焦光学***100的总有效焦距改变。根据变焦光学***100的总有效焦距的不同,变焦光学***100具有不同的状态,在本申请的各实施例中,仅列举了变焦光学***100处于短焦、中焦以及长焦三种状态下的D1、D2、D3所对应的数值大小,但变焦光学***100并不仅限于在该三种具体状态下变换。并且,在本申请的各实施例中,处于短焦状态下时变焦光学***100的总有效焦距为这三种状态下的总有效焦距的最小值,而处于长焦状态下时变焦光学***100的总有效焦距为这三种状态下的总有效焦距的最大值。
当然,以上三种状态仅为变焦光学***100的总有效焦距发生变化时的其中三种变化状态示意,变焦光学***100的总有效焦距还可为其他数值,相应地,D1、D2、D3的数值也可为其他数值。因此,一些实施例中的变焦光学***100能够连续调节总有效焦距,从而拥有连续变焦的效果。
在一些实施例中,变焦光学***100满足以下关系式:0.93<|f234/f5|<1.1;其中,f234为第二透镜L2、第三透镜L3、第四透镜L4所构成的透镜组的有效焦距,f234的单位为mm。具体地,f234可以为-10.907、-10.862、-10.655、-10.363、-10.124、-9.989、-9.753、-9.711、-9.685或-9.504。满足上述关系式时,变焦光学***100在变焦的过程中,变倍组L234与第五透镜L5之间的焦距互相补偿,有利于平衡变焦光学***100的像差。
在一些实施例中,变焦光学***100满足以下关系式:Vn(30)≥3;其中,Vn(30)为变焦光学***100中色散系数小于30的透镜的数量。具体地,Vn(30)可以为4。满足上述关系式时,变焦光学***100的各透镜具有较好的品质,能够更好地平衡变焦光学***100 的像差,提高成像质量。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1、图2和图3,图1为第一实施例中的变焦光学***100处于一种短焦状态下的示意图,图2为第一实施例中的变焦光学***100处于一种长焦状态下的示意图。变焦光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图3由左至右依次为第一实施例中变焦光学***100的球差、像散及畸变的曲线图,其中像散和畸变图均为555nm下的曲线图,其他实施例相同。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于光轴处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;
第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于光轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于光轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于光轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
需要注意的是,在本申请中,当描述透镜的一个表面于光轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该表面于光轴附近的区域为凸面,因此也可认为该表面于光近轴处为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于光轴处为凸面,且于圆周处也为凸面时,该表面由中心(光轴)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
进一步地,变焦光学***100满足关系式:TTL/(ImgH*2)=2.7;DL/TTL=0.916666667。且当变焦光学***100处于一种短焦状态下时,HFOV=13.7;处于一种中焦状态下时,HFOV=13.1;处于一种长焦状态下时,HFOV=12.55。其中,TTL为第一透镜L1的物侧面S1至变焦光学***100的像面S15于光轴上的距离,ImgH为变焦光学***100于有效像素区域的对角线长度的一半,HFOV为变焦光学系100统的最大视场角的一半,DL为第一透镜L1的物侧面S1至第六透镜L6的像侧面S12于光轴上的距离。满足上述关系式时,变焦光学***100具有较紧凑且合理的结构布局,由此,变焦光学***100对处于一定范围内不同距离的被摄物体,通过自身内部各透镜的移动,都能达到清晰的图像拍摄要求。
变焦光学***100满足关系式:当变焦光学***100处于一种短焦状态下时,TTL/f=1.304833;处于一种中焦状态下时,TTL/f=1.195911;处于一种长焦状态下时,TTL/f=1.13961。其中,f为所述变焦光学***100的总有效焦距。满足上述关系式时,通过紧凑合理的结构布局以及总有效角度的合理分配,提高变焦光学***100的成像质量,以使当对不同视场范围内的景物进行拍摄时,变焦光学***100的像面S15也能形成较清晰的图像。
变焦光学***100满足关系式:f5=10.78613。其中,f5为第五透镜L5的有效焦距。满足上述关系式时,通过合理分配第五透镜L5的有效焦距,当变倍组L234在第一透镜L1和第六透镜L6之间沿光轴的方向移动实现变焦光学***100的变焦功能时,第五透镜L5能在变焦光学***100中起到良好的焦距补偿作用,以提高变焦光学***100的成像质量。
具体地,变倍组L234由第二透镜L2、第三透镜L3以及第四透镜L4组成,变倍组L234能够在第一透镜L1及第六透镜L6之间移动,而第五透镜L5能够在变倍组L234及第六透镜L6之间移动。并且,光阑STO与变倍组L234为一体,光阑STO能够随变倍组L234相对第一透镜L1移动。
变焦光学***100满足关系式:当变焦光学***100处于一种短焦状态下时,D1=0.5518224,D2=3.611136,D3=2.140662;处于一种中焦状态下时,D1=0.607735,D2=4.40985,D3=1.289771;处于一种长焦状态下时,D1=0.644651,D2=4.854519,D3=0.794074。其中,D1为第一透镜L1的像侧面S2至第二透镜L2的物侧面S3于光轴上的距离,单位为mm,D2为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴上的距离,单位为mm,D3为第五透镜L5的像侧面S10至第六透镜L6的物侧面S11于光轴上的距离,单位为mm。满足上述条件式时,即满足条件式:D2+D3>D1时,变焦光学***100于光轴上有较合理的结构布局,可减缓变焦过程中光线进入变焦光学***100后的方向变化,以此降低变焦光学***100产生的杂散光的强度,提高成像质量。
进一步地,当变焦光学***100处于一种短焦状态时,变焦光学***100的总有效焦距f=10.76mm;处于一种中焦状态时,f=11.74mm;处于一种长焦状态时,f=12.32mm。并且,参考图1和图2所示,在一种变焦调节的方式下,当变焦光学***100由短焦状态向长焦状态变化时,第一透镜L1与第六透镜L6位置固定,而变倍组L234沿光轴朝向远离第一透镜L1的方向移动,第五透镜L5沿光轴朝向靠近第六透镜L6的方向移动,且变倍组L234与第五透镜L5之间于光轴上的距离变大,其他实施例中的移动趋势也相同。
变焦光学***100满足关系式:f234=-11.5791mm。其中,f234为第二透镜L2、第三透镜L3、第四透镜L4所构成的透镜组的有效焦距。满足上述关系式时,即满足关系式:0.93<|f234/f5|<1.1时,变焦光学***100在变焦的过程中,变倍组L234与第五透镜L5之间的焦距互相补偿,有利于平衡变焦光学***100的像差。
变焦光学***100满足关系式:Vn(30)=4;其中,Vn(30)为变焦光学***100中色散系数小于30的透镜的数量。满足上述关系式时,变焦光学***100的各透镜具有较好的品质,能够更好地平衡变焦光学***100的像差,提高成像质量。
另外,变焦光学***100的各项参数由表1给出。其中,表1中的像面S15可理解为变焦光学***100的成像面。由物面(图未示出)至像面S15的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。面序号1和面序号2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一透镜的物侧面于光轴上的距离。
需要注意的是,在该实施例及以下各实施例中,变焦光学***100也可不设置红外滤光片L7,但此时第六透镜L6的像侧面S12至像面S15的距离保持不变。
在第一实施例中,第一透镜L1物侧面S1至像面S15于光轴上的距离TTL=14.04mm,第一透镜L1的物侧面S1至第六透镜L6的像侧面S12于光轴上的距离DL=12.87mm,变焦光学***100于有效像素区域的对角线长度的一半ImgH=2.6mm,变焦光学***100于像面S15成像的最大成像圆直径MIC=5.5m。
且各透镜的焦距和折射率为d线(587.56nm)下的数值,其他实施例也相同。
表1
Figure PCTCN2020076998-appb-000001
Figure PCTCN2020076998-appb-000002
进一步地,变焦光学***100中各透镜的像侧面及物侧面的非球面系数由表2给出。其中,面序号从1-12分别表示像侧面或物侧面S1-S12。而从上到下的K-A20分别表示非球面系数,其中,K表示圆锥常数,A4表示四次非球面系数,A6表示六次非球面系数,A8为八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2020076998-appb-000003
其中,Z是非球面上相应点到与表面顶点相切的平面的距离,r是非球面上相应点到光轴的距离,c是非球面顶点的曲率,k是圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数,如A4、A6或A8。
表2
Figure PCTCN2020076998-appb-000004
Figure PCTCN2020076998-appb-000005
第二实施例
请参见图4、图5和图6,图4为第二实施例中的变焦光学***100处于一种短焦状态下的示意图,图5为第二实施例中的变焦光学***100处于一种长焦状态下的示意图。变焦光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有正屈折力的第六透镜L6。图6由左至右依次为第二实施例中变焦光学***100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于光轴处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凸面;
第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于光轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于光轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于光轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,变焦光学***100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2020076998-appb-000006
Figure PCTCN2020076998-appb-000007
并且,当变焦光学***100处于一种短焦状态时,变焦光学***100的总有效焦距f=10.75mm;处于一种中焦状态时,f=11.75mm;处于一种长焦状态时,f=12.31mm。
进一步地,变焦光学***100中各透镜的像侧面及物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
Figure PCTCN2020076998-appb-000008
并且,根据上述所提供的各参数信息,可推得以下关系式:
TTL/(ImgH*2)=2.7;DL/TTL=0.940883191;f5=10.57311mm;f234=-10.6176mm;
Vn(30)=4。
且当变焦光学***100处于一种短焦状态下时,HFOV=13.16°;TTL/f=1.306047; D1=0.544513mm;D2=3.564296mm;D3=1.853047mm。处于一种中焦状态下时,HFOV=12.2°;TTL/f=1.194894;D1=0.664997mm;D2=4.469058mm;D3=0.837801mm。处于一种长焦状态下时,HFOV=11.75°;TTL/f=1.140536;D1=0.690522mm;D2=4.954337mm;D3=0.326996mm。
第三实施例
请参见图7、图8和图9,图7为第三实施例中的变焦光学***100处于一种短焦状态下的示意图,图8为第三实施例中的变焦光学***100处于一种长焦状态下的示意图。变焦光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图9由左至右依次为第三实施例中变焦光学***100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于光轴处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于光轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于光轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于光轴处为凹面,于圆周处为凹面;
第六透镜L6的像侧面S12于光轴处为凸面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,变焦光学***100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2020076998-appb-000009
Figure PCTCN2020076998-appb-000010
并且,当变焦光学***100处于一种短焦状态时,变焦光学***100的总有效焦距f=10.8mm;处于一种中焦状态时,f=11.7mm;处于一种长焦状态时,f=12.2mm。
进一步地,变焦光学***100中各透镜的像侧面及物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
Figure PCTCN2020076998-appb-000011
并且,根据上述所提供的各参数信息,可推得以下关系式:
TTL/(ImgH*2)=2.7;DL/TTL=0.939458689;f5=10.54453mm;f234=-10.8067mm;
Vn(30)=4。
且当变焦光学***100处于一种短焦状态下时,HFOV=13.2°;TTL/f=1.3;D1=0.529575mm;D2=3.518013mm;D3=1.562384mm。处于一种中焦状态下时,HFOV=12.24°;TTL/f=1.2;D1=0.654841mm;D2=4.310994mm;D3=0.654137mm。处于一种长焦状态下时,HFOV=11.79°;TTL/f=1.15082;D1=0.68837mm;D2=4.731202mm;D3=0.2004mm。
第四实施例
请参见图10、图11和图12,图10为第四实施例中的变焦光学***100处于一种短焦状态下的示意图,图11为第四实施例中的变焦光学***100处于一种长焦状态下的示意图。变焦光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透 镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图12由左至右依次为第四实施例中变焦光学***100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于光轴处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于光轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于光轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
进一步地,第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凹面,且像侧面S12于圆周处为凸面,即像侧面S12于离轴处至少具有一个凸点。如此设置,可有效校正变焦光学***100的像散,修正离轴像差,进一步提高成像质量,同时使得变焦光学***100的主点远离像面S15,由此缩短变焦光学***100的焦距,进而缩短变焦光学***100于光轴上的尺寸,使变焦光学***100能够进一步满足电子设备小型化设计的需求。
另外,变焦光学***100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2020076998-appb-000012
Figure PCTCN2020076998-appb-000013
并且,当变焦光学***100处于一种短焦状态时,变焦光学***100的总有效焦距f=10.8mm;处于一种中焦状态时,f=11.76mm;处于一种长焦状态时,f=12.2mm。
进一步地,变焦光学***100中各透镜像侧面及物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
Figure PCTCN2020076998-appb-000014
并且,根据上述所提供的各参数信息,可推得以下关系式:
TTL/(ImgH*2)=2.7;DL/TTL=0.934472934;f5=10.50032mm;f234=-10.9074mm;
Vn(30)=4。
且当变焦光学***100处于一种短焦状态下时,HFOV=13.42°;TTL/f=1.3;D1=0.504692mm;D2=3.435929mm;D3=1.561913mm。处于一种中焦状态下时,HFOV=12.4°;TTL/f=1.193878;D1=0.64634mm;D2=4.272064mm;D3=0.59065mm。处于一种长焦状态下时,HFOV=11.97°;TTL/f=1.15082;D1=0.678644mm;D2=4.645257mm;D3=0.188634mm。
第五实施例
请参见图13、图14和图15,图13为第五实施例中的变焦光学***100处于一种短焦状态下的示意图,图14为第五实施例中的变焦光学***100处于一种长焦状态下的示意图。变焦光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图15由左至右依次为第五实施例中变焦光学***100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于光轴处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于光轴处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于光轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于光轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凹面;
第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,变焦光学***100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure PCTCN2020076998-appb-000015
并且,当变焦光学***100处于一种短焦状态时,变焦光学***100的总有效焦距f=9.93mm;处于一种中焦状态时,f=11.62mm;处于一种长焦状态时,f=12.13mm。
进一步地,变焦光学***100中各透镜的像侧面及物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure PCTCN2020076998-appb-000016
Figure PCTCN2020076998-appb-000017
并且,根据上述所提供的各参数信息,可推得以下关系式:
TTL/(ImgH*2)=2.7;DL/TTL=0.929487179;f5=10.11845mm;f234=-10.5499mm;
Vn(30)=4。
且当变焦光学***100处于一种短焦状态下时,HFOV=13.11°;TTL/f=1.413897;D1=0.455355mm;D2=2.691823mm;D3=2.301812mm。处于一种中焦状态下时,HFOV=11.47°;TTL/f=1.208262;D1=0.704234mm;D2=4.211118mm;D3=0.538792mm。处于一种长焦状态下时,HFOV=11.06°;TTL/f=1.157461;D1=0.721666mm;D2=4.628373mm;D3=0.104509mm。
第六实施例
请参见图16、图17和图18,图16为第六实施例中的变焦光学***100处于一种短焦状态下的示意图,图17为第六实施例中的变焦光学***100处于一种长焦状态下的示意图。变焦光学***100由物侧至像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6。图18由左至右依次为第六实施例中变焦光学***100的球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于光轴处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于光轴处为凸面,于圆周处为凸面;
第二透镜L2的物侧面S3于光轴处为凹面,于圆周处为凹面;
第二透镜L2的像侧面S4于光轴处为凸面,于圆周处为凸面;
第三透镜L3的物侧面S5于光轴处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于光轴处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于光轴处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于光轴处为凹面,于圆周处为凹面;
第五透镜L5的物侧面S9于光轴处为凹面,于圆周处为凹面;
第五透镜L5的像侧面S10于光轴处为凸面,于圆周处为凸面;
第六透镜L6的物侧面S11于光轴处为凸面,于圆周处为凸面;
第六透镜L6的像侧面S12于光轴处为凹面,于圆周处为凹面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5以及第六透镜L6的材质均为塑料。
另外,变焦光学***100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2020076998-appb-000018
并且,当变焦光学***100处于一种短焦状态时,变焦光学***100的总有效焦距f=9.91mm;处于一种中焦状态时,f=11.62mm;处于一种长焦状态时,f=12.13mm。
进一步地,变焦光学***100中各透镜的像侧面及物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
Figure PCTCN2020076998-appb-000019
Figure PCTCN2020076998-appb-000020
并且,根据上述所提供的各参数信息,可推得以下关系式:
TTL/(ImgH*2)=2.7;DL/TTL=0.925925926;f5=10.06431mm;f234=-9.50306mm;
Vn(30)=4。
且当变焦光学***100处于一种短焦状态下时,HFOV=13.53°;TTL/f=1.416751;D1=0.432284mm;D2=2.562738mm;D3=2.377303mm。处于一种中焦状态下时,HFOV=11.83°;TTL/f=1.208262;D1=0.707238mm;D2=4.119785mm;D3=0.547578mm。处于一种长焦状态下时,HFOV=11.4°;TTL/f=1.157461;D1=0.726793mm;D2=4.547918mm;D3=0.101815mm。
请参见图19,在一些实施例中,变焦光学***100可与感光元件210组装形成变焦模组200。其中,第六透镜L6以及感光元件210相对第一透镜L1固定,而变倍组L234及第五透镜L5可分别相对第一透镜L1移动,以实现变焦模组200的变焦功能。此时,变焦光学***100的像面S15可视为感光元件210的感光面,光线经变焦光学***100后于感光元件210的感光面成像。变焦模组200还可设置有红外滤光片L7,红外滤光片L7设置于第六透镜L6的像侧面S12与像面S15之间。具体地,感光元件210可以为感光耦合元件(Charge Coupled Device,CCD)或互补性氧化金属半导体元件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在变焦模组200中采用变焦光学***100,能够使变焦模组200拥有良好的成像质量,且能够使变焦模组200的尺寸较小,运用于电子设备中时能够满足电子设备小型化设计的需求。
请参见图20,在一些实施例中,变焦模组200可运用于电子设备300中,电子设备300包括壳体310,变焦模组200安装于壳体310上。具体地,电子设备300可以为具有变焦功能的智能手机、摄像机、摄影机或平板电脑。由于变焦模组200的拥有良好的成像质量,且尺寸较小,在电子设备300中采用变焦模组200,能够提高电子设备300的成像质量,同时使电子设备300能够实现小型化设计。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术 语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种变焦光学***,由物侧至像侧依次包括:
    具有正屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凸面;
    具有负屈折力的第二透镜;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜,所述第四透镜的像侧面为凹面;
    具有正屈折力的第五透镜,所述第五透镜的像侧面为凸面;及
    具有屈折力的第六透镜;
    其中,所述第二透镜、所述第三透镜、所述第四透镜构成所述变焦光学***的变倍组,所述变倍组具有负屈折力,且所述第五透镜及所述变倍组能够分别相对所述第一透镜移动,以使所述变焦光学***拥有光学变焦效果。
  2. 根据权利要求1所述的变焦光学***,其特征在于,满足以下关系式:
    2.1<TTL/(ImgH*2)<3;
    10°<HFOV<15°;
    0.7<DL/TTL<0.95;
    其中,TTL为所述第一透镜的物侧面至所述变焦光学***的像面于光轴上的距离,ImgH为所述变焦光学***于有效像素区域的对角线长度的一半,HFOV为所述变焦光学***的最大视场角的一半,DL为所述第一透镜的物侧面至所述第六透镜的像侧面于光轴上的距离。
  3. 根据权利要求1所述的变焦光学***,其特征在于,满足以下关系式:
    1<TTL/f<1.5;
    其中,f为所述变焦光学***的总有效焦距。
  4. 根据权利要求1所述的变焦光学***,其特征在于,满足以下关系式:
    f5>0;
    其中,f5为所述第五透镜的有效焦距。
  5. 根据权利要求1所述的变焦光学***,其特征在于,满足以下关系式:
    D2+D3>D1;
    其中,D1为所述第一透镜的像侧面至所述第二透镜的物侧面于光轴上的距离,D2为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离,D3为所述第五透镜的像侧面至所述第六透镜的物侧面于光轴上的距离。
  6. 根据权利要求1所述的变焦光学***,其特征在于,满足以下关系式:
    0.93<|f234/f5|<1.1;
    其中,f234为所述第二透镜、所述第三透镜、所述第四透镜所构成的透镜组的有效焦距。
  7. 根据权利要求1所述的变焦光学***,其特征在于,满足以下关系式:
    Vn(30)≥3;
    其中,Vn(30)为所述变焦光学***中色散系数小于30的透镜的数量。
  8. 根据权利要求1-7任一项所述的变焦光学***,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的物侧面和像侧面均为非球面。
  9. 根据权利要求1-7任一项所述的变焦光学***,其特征在于,还包括光阑,所述光阑设置于所述第三透镜与所述第四透镜之间。
  10. 根据权利要求9所述的变焦光学***,其特征在于,所述光阑与所述变倍组同步移动。
  11. 根据权利要求1-7任一项所述的变焦光学***,其特征在于,还包括红外滤光片,所述红外滤光片设置于所述第六透镜的像侧。
  12. 根据权利要求1-7任一项所述的变焦光学***,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的材质均为玻璃。
  13. 根据权利要求1-7任一项所述的变焦光学***,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜中的至少两个透镜的材质为塑料,且其中至少两个透镜采用的塑料材质的光学特性不同。
  14. 根据权利要求13所述的变焦光学***,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的材质均为塑料。
  15. 根据权利要求1-7任一项所述的变焦光学***,其特征在于,所述第六透镜的位置相对所述第一透镜固定。
  16. 根据权利要求1-7任一项所述的变焦光学***,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜以及所述第六透镜的光轴处于同一直线,该直线为所述变焦光学***的光轴。
  17. 一种变焦模组,其特征在于,包括感光元件以及权利要求1-16任一项所述的变焦光学***,所述感光元件设置于所述变焦光学***的像侧,且相对所述第一透镜固定。
  18. 根据权利要求17所述的变焦模组,其特征在于,所述感光元件为感光耦合元件或互补性氧化金属半导体元件。
  19. 根据权利要求17所述的变焦模组,其特征在于,所述感光元件具有感光面,光线经所述变焦光学***后于所述感光元件的感光面成像。
  20. 一种电子设备,其特征在于,包括壳体以及权利要求17-19任一项所述的变焦模组,所述变焦模组安装于所述壳体上。
PCT/CN2020/076998 2020-02-27 2020-02-27 变焦光学***、变焦模组及电子设备 WO2021168742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076998 WO2021168742A1 (zh) 2020-02-27 2020-02-27 变焦光学***、变焦模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076998 WO2021168742A1 (zh) 2020-02-27 2020-02-27 变焦光学***、变焦模组及电子设备

Publications (1)

Publication Number Publication Date
WO2021168742A1 true WO2021168742A1 (zh) 2021-09-02

Family

ID=77490623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076998 WO2021168742A1 (zh) 2020-02-27 2020-02-27 变焦光学***、变焦模组及电子设备

Country Status (1)

Country Link
WO (1) WO2021168742A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911040A (zh) * 2022-05-09 2022-08-16 惠州市星聚宇光学有限公司 红外镜头以及红外镜头模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816321B2 (en) * 2002-05-10 2004-11-09 Leica Microsystems (Schweiz) Ag Afocal zoom for use in microscopes
CN102308243A (zh) * 2009-02-05 2012-01-04 株式会社腾龙 微距镜头
CN109116530A (zh) * 2018-08-17 2019-01-01 福建福光股份有限公司 一种短波红外光学无热化连续变焦镜头
CN109116529A (zh) * 2018-08-22 2019-01-01 哈尔滨新光光电科技有限公司 一种高分辨率微小型可见光变焦光学***
CN209086534U (zh) * 2018-12-19 2019-07-09 武汉跨元光电有限公司 一种高分辨率连续变焦投影镜头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816321B2 (en) * 2002-05-10 2004-11-09 Leica Microsystems (Schweiz) Ag Afocal zoom for use in microscopes
CN102308243A (zh) * 2009-02-05 2012-01-04 株式会社腾龙 微距镜头
CN109116530A (zh) * 2018-08-17 2019-01-01 福建福光股份有限公司 一种短波红外光学无热化连续变焦镜头
CN109116529A (zh) * 2018-08-22 2019-01-01 哈尔滨新光光电科技有限公司 一种高分辨率微小型可见光变焦光学***
CN209086534U (zh) * 2018-12-19 2019-07-09 武汉跨元光电有限公司 一种高分辨率连续变焦投影镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114911040A (zh) * 2022-05-09 2022-08-16 惠州市星聚宇光学有限公司 红外镜头以及红外镜头模组
CN114911040B (zh) * 2022-05-09 2024-04-05 广东省星聚宇光学股份有限公司 红外镜头以及红外镜头模组

Similar Documents

Publication Publication Date Title
TWI424190B (zh) 取像透鏡系統
WO2020140788A1 (zh) 长焦镜头及移动终端
CN211786312U (zh) 光学***、摄像模组及电子装置
CN114578512A (zh) 光学***、摄像模组及电子设备
CN113625425A (zh) 光学镜头、摄像模组及电子设备
WO2021184164A1 (zh) 光学***、摄像模组及电子装置
WO2021168742A1 (zh) 变焦光学***、变焦模组及电子设备
CN112505890A (zh) 光学镜头、摄像头模组及电子装置
CN114415353B (zh) 光学***、摄像模组及电子设备
CN115166949B (zh) 光学镜头、摄像模组及智能终端
CN114415343B (zh) 光学***、摄像模组及电子设备
CN113484998B (zh) 光学***和具有其的取像模组、电子装置
CN113433652B (zh) 光学***、镜头模组和电子设备
CN113253436B (zh) 光学***、摄像模组及电子设备
CN214474193U (zh) 光学***、摄像模组及电子设备
CN214474191U (zh) 光学成像镜头、摄像模组及电子设备
WO2022151157A1 (zh) 光学***、取像模组及电子设备
WO2022120678A1 (zh) 光学***、取像模组及电子设备
CN112925085B (zh) 光学***、取像模组及电子设备
WO2022236663A1 (zh) 光学变焦***、变焦模组及电子设备
WO2021203277A1 (zh) 光学***、取像模组及电子设备
CN114460723A (zh) 光学***、摄像模组及电子设备
CN114675407A (zh) 光学***、镜头模组及电子设备
CN114578515A (zh) 光学镜头、摄像模组及电子设备
CN113311564A (zh) 变焦光学***、变焦模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920933

Country of ref document: EP

Kind code of ref document: A1