WO2021166834A1 - Imaging device, and imaging method - Google Patents

Imaging device, and imaging method Download PDF

Info

Publication number
WO2021166834A1
WO2021166834A1 PCT/JP2021/005462 JP2021005462W WO2021166834A1 WO 2021166834 A1 WO2021166834 A1 WO 2021166834A1 JP 2021005462 W JP2021005462 W JP 2021005462W WO 2021166834 A1 WO2021166834 A1 WO 2021166834A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens array
lens
mode
electrode
optical sensor
Prior art date
Application number
PCT/JP2021/005462
Other languages
French (fr)
Japanese (ja)
Inventor
山田 泰美
崇文 小池
Original Assignee
日東電工株式会社
学校法人法政大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021016716A external-priority patent/JP2021132372A/en
Application filed by 日東電工株式会社, 学校法人法政大学 filed Critical 日東電工株式会社
Publication of WO2021166834A1 publication Critical patent/WO2021166834A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor

Definitions

  • the present invention relates to an imaging device and an imaging method.
  • a prenoptic camera differs from a conventional camera that records a two-dimensional light intensity distribution in that it directly acquires information on the light intensity distribution in a three-dimensional space.
  • a microlens array is placed between the main lens and the image sensor, and a spatial image is acquired as a group of light rays from a large number of point light sources.
  • angular resolution characteristics related to perspective
  • spatial resolution characteristics related to resolution
  • This prenoptic camera uses two or more microlens arrays with a fixed shape to capture microimages from image planes at different distances to improve spatial resolution in the depth direction.
  • variable focus zoom lens see, for example, Patent Document 2 in which a liquid concave lens in which a liquid is sealed in a transparent film is combined with a convex lens, or in an opening provided in an electrode by adjusting an applied voltage.
  • Microlens arrays that adjust the optical properties of optical scatterers are known (see, for example, Patent Document 3).
  • Patent Document 1 uses a plurality of microlens arrays having a fixed shape to improve spatial resolution, but does not mention compatibility or switching between spatial resolution and angular resolution.
  • An object of the present invention is to provide an imaging device capable of achieving both angular resolution and spatial resolution or switching between them with a simple configuration.
  • the imaging device is an optical sensor having a plurality of sensor elements, a main lens that guides light from an object to the optical sensor, and a micro that is arranged between the optical sensor and the main lens.
  • the microlens array includes a first electrode that is transparent to visible light, a second electrode that has a plurality of openings and is transparent to visible light that faces the first electrode, and the first electrode and the above. It has a three-layer structure of a dielectric polymer arranged between the second electrodes, and a lens is formed in the aperture by applying a voltage.
  • the imaging device selectively operates in a first mode having a good angular resolution and a second mode having a good spatial resolution, depending on the level of the applied voltage.
  • an imaging device that can achieve both angular resolution and spatial resolution, or can switch between them, will be realized.
  • FIG. 1A is a schematic diagram of a plenoptic optical system focusing on angular resolution
  • FIG. 1B is a schematic diagram of a plenoptic optical system focusing on spatial resolution.
  • the configuration of FIG. 1A is called “Plenoptic 1.0”
  • the configuration of FIG. 1B is called “Plenoptic 2.0”.
  • the image pickup device of the embodiment realizes both “Plenoptic 1.0” and “Plenoptic 2.0" by making it possible to achieve both angular resolution and spatial resolution with one image pickup device or to switch between them.
  • a light ray emitted from a certain point of the object OB is guided to the microlens ML1 on the microlens array MLA via the main lens Lmain.
  • the light rays incident on the microlens ML1 are divided into a plurality of light rays according to the direction of the light rays included in the light rays, and expose the pixels P1, P2, and P3 of the image sensor IS.
  • FIG. 1A only three pixels are shown. For example, if the diameter of the microlens ML1 is 100 ⁇ m and one side of the pixel of the image sensor IS is 10 ⁇ m, 10 ⁇ 10 information can be obtained in the angular direction. ..
  • the distance between the microlens array MLA and the image sensor IS is the focal length f of the microlens array.
  • the focal length f refers to the distance between the principal point pp, which is defined by the refractive index and radius of curvature of the microlens array, and the focal point of the microlens.
  • the convex side of the lens faces the side opposite to the image sensor IS, but it may face the image sensor IS side.
  • a light beam emitted from a certain point of the object OB is focused by a plurality of microlenses as a virtual image on the image plane IP of the main lens Lmain.
  • this configuration has a lower angular resolution than that of FIG. 1A, it detects the focused light for each microlens, so that it has a high ability to discriminate a plurality of objects in different spatial positions.
  • variable focus microlens array capable of controlling the curvature of the microlens by controlling the applied voltage is used.
  • the mode is switched between the mode with good angular resolution and the mode with good spatial resolution.
  • FIG. 2 is a schematic view of the image pickup apparatus 10 of the embodiment.
  • the image pickup apparatus 10 operates in the first mode (see FIG. 1A) having good angular resolution.
  • the image pickup apparatus 10 includes a main lens 30, an optical sensor 11, and a microlens array 20 arranged between the main lens 30 and the optical sensor 11.
  • the microlens array 20 is a dielectric polymer arranged between a first electrode 21 transparent to visible light, a second electrode 23 provided with a plurality of openings 24, and the first electrode 21 and the second electrode 23. It has a three-layer structure of 22. The first electrode 21 and the second electrode 23 are connected to the variable voltage source 26.
  • the dielectric polymer 22 includes polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polyurethane (PU), polystyrene (PSt), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), polycarbonate (PC), and polyethylene. It is terephthalate (PET), polyacrylonitrile (PAN), silicone rubber (SR), etc.
  • PVC polyvinyl chloride
  • PMMA polymethyl methacrylate
  • PU polyurethane
  • PSt polystyrene
  • PVAc polyvinyl acetate
  • PVA polyvinyl alcohol
  • PC polycarbonate
  • polyethylene It is terephthalate (PET), polyacrylonitrile (PAN), silicone rubber (SR), etc.
  • PET polyacrylonitrile
  • SR silicone rubber
  • At least one of a plasticizer, an ionic liquid, and an ionic surfactant may be added to the dielectric polymer 22.
  • the plasticizer gives the dielectric polymer 22 flexibility.
  • the ionic liquid and the ionic surfactant can promote the deformation of the dielectric polymer 22 and reduce the applied voltage.
  • the dielectric polymer 22 may be dissolved in a suitable solvent.
  • the first voltage When the first voltage is applied to the microlens array 20, a predetermined amount of the dielectric polymer protrudes from the opening 24 of the second electrode 23.
  • the protruding polymer functions as the lens 25.
  • the shape of the lens 25 is determined by the applied voltage, the type of the dielectric polymer, the surface tension acting on the dielectric polymer, and the like.
  • the aperture 24 has a size and shape that allows the lens 25 to be formed in the aperture 24 by deformation of the dielectric polymer 22 when a voltage is applied to the microlens array 20.
  • the planar shape of the opening 24 can be designed according to the application of the lens, such as a circle, an ellipse, an oval, and a rectangle. Further, the planar arrangement of the openings 24 can be freely set such as a lattice arrangement or a honeycomb arrangement.
  • the image quality of the displayed image depends on the amount of light entering through the lens 25 formed in the aperture 24, and the image quality can be obtained by arranging the arrangement so that the aperture ratio representing the area occupied by the aperture is high.
  • the aperture ratio is preferably 50% or more.
  • the range of voltage applied to the microlens array 20 is 800 V or less, more preferably 600 V or less.
  • the voltage actually applied differs depending on whether the operation of the image pickup apparatus 10 gives priority to angular resolution or spatial resolution. Further, even in the same operation mode, the size of the opening 24 of the electrode 23, the thickness of the second electrode 23, and the like are also affected.
  • the focal length of the lens 25 of the microlens array 20 depends on the protruding displacement (lens thickness) of the polymer and can be controlled by the applied voltage. In this sense, the microlens array 20 may be referred to as an "active lens".
  • the focal length of the lens 25 is 0.1 mm to 10 mm, although it depends on the diameter of the aperture 24.
  • the amount of light entering the lens depends on the brightness of the image, and it is desirable that the amount of light enters the lens as high as possible.
  • the main lens 30 is a single focus lens.
  • the main lens 30 is arranged between the optical sensor 11 and the object to be imaged, and collects light rays from a certain point on the object on the lens 25 of the microlens array 20.
  • the optical sensor 11 is a CCD sensor, a CMOS sensor, or the like having a plurality of sensor elements 111.
  • the CCD sensor, CMOS sensor, etc. digitally detect the amount of incident light and output an electric signal according to the intensity of the incident light.
  • Each sensor element 111 may be provided with a color filter such as red (R), blue (B), and green (G).
  • the lens 25 When the lens 25 is formed on the microlens array 20 by applying a voltage, the light rays from the object are focused by the main lens 30 and incident on the lens 25.
  • the incident light beam on the lens 25 is divided into a plurality of sensor elements 111 covered by the lens 25. By arithmetically processing the information obtained by each sensor element 111, a stereoscopic image having good angular resolution is formed.
  • the image pickup apparatus 10 operates in the second mode in which the spatial resolution is good.
  • the components of the image pickup apparatus 10 are the same as those in FIG. 2, and include a main lens 30, an optical sensor 11, and a microlens array 20 arranged between the main lens 30 and the optical sensor 11.
  • the main lens 30 is a single focus lens and the position of the microlens array 20 is fixed.
  • the focal length of the microlens array 20 is shortened by voltage control, and the position of the main lens 30 and the position of the optical sensor 11 are adjusted.
  • the virtual image on the image plane IP is focused on a plurality of lenses 25, and images at different spatial positions are captured by the sensor element 111 in the area covered by each lens 25.
  • the focal length f in FIG. 1A does not hold at the distance “b” in FIG. 1B (b ⁇ f), but by changing the focal length of the microlens array 20, the image plane
  • the distance b from the lens 25 to the incident surface of the optical sensor 11 may be adjusted.
  • the microlens array 20 can not only switch between the first mode and the second mode, but also adjust the focal length in the first mode or the second mode.
  • FIG. 4 shows the adjustment of the focal length in the second mode in which the spatial resolution is good.
  • the microlens array 20 may be fixed, and the positions of the main lens 30 and the optical sensor 11 may be variable.
  • the voltage applied to the microlens array 20 is set to V1
  • the lens 25 having a small curvature is formed in the aperture 24.
  • the virtual image on the image plane IP of the main lens 30 is condensed by each lens 25 and captured by the sensor element 111 covered by the lens 25.
  • the voltage applied to the microlens array 20 is set to V2 (V2> V1), which is larger than V1, and the lens 25 having a curvature larger than that in FIG. Form.
  • the virtual image on the image plane IP of the main lens 30 is collected by each lens 25 and captured by the sensor element 111 of the corresponding optical sensor 11. According to the change of the focal length of the lens 25, the position of the optical sensor 11 is adjusted to adjust the distance b from the lens 25 to the sensor surface, and the distance from the lens 25 to the image plane IP is adjusted.
  • microlens array 20 By using one microlens array 20 and controlling the voltage applied to the microlens array 20, it is possible to acquire closer spatial information or farther spatial information.
  • the change of the focal length by controlling the applied voltage can also be applied to the adjustment of the focal length in the first mode of FIG.
  • the position of the microlens array 20 is fixed, the positions of the optical sensor 11 and the main lens 30 are made variable, and the voltage applied to the microlens array 20 is changed.
  • the focal length of the lens 25 formed in the aperture 24 when the voltage V1 is applied is "f”
  • the curvature of the lens 25 formed in the aperture 24 is increased by applying a voltage V2 larger than V1. Therefore, f can be shortened.
  • the angle information from a closer space or a farther space can be acquired by adjusting the positions of the optical sensor 11 and the main lens 30.
  • FIG. 5 shows an example in which the imaging device 10 of the embodiment is used as a normal camera.
  • the lens 25 is formed in the opening 24 of the second electrode 23 and functions as a prenoptic camera.
  • the image pickup device 10 can be used as a normal camera.
  • the light collected by the main lens 30 does not form the lens 25 in the aperture 24 when no voltage is applied to the microlens array 20.
  • the light emitted from the object and focused by the main lens 30 passes through the microlens array 20 as it is and is focused on the optical sensor 11.
  • the focal point F of the main lens 30 is located on the incident surface of the optical sensor 11. Assuming that the position of the microlens array 20 is fixed, the positions of at least one of the main lens 30 and the optical sensor 11 are adjusted so that the light rays focused by the primary lens 30 are focused on the incident surface of the optical sensor 11. .. In this arrangement configuration, the optical sensor 11 captures two-dimensional light intensity information.
  • the function of the prenoptic camera and the function of the normal camera can be switched.
  • FIG. 6A shows a stereoscopic imaging setup using the imaging device 10 of the embodiment. As shown in FIG. 6A, the object 50 is photographed by the imaging device 10.
  • FIG. 6B is an object 50 actually used for photographing.
  • a plurality of lenses 25 are formed in a state where a voltage is applied to the microlens array 20.
  • the formed lens 25 is shown by omitting the first electrode 21, the second electrode 23, the dielectric polymer 22 sandwiched between the electrodes, the opening 24, and the like.
  • the distance b from the microlens array 20 to the incident surface of the optical sensor 11 is adjusted between 0.1 and 0.5 mm.
  • the distance L from the microlens array 20 to the main lens 30 is adjusted between 1 mm and 10 mm.
  • Imaging system specifications (1-1) Optical sensor 11 (image sensor) -Number of pixels: 35 million pixels-Pixel size: 4.8 ⁇ m (1-2) Main lens 35 ⁇ Size: 60mm ⁇ ⁇ Focal length: 80mm (2) Active lens specifications (2-1) Second electrode 23 (anode) -Material: Stainless steel-Opening diameter / Pitch: 50 ⁇ m / 60 ⁇ m ⁇ Arrangement: Lattice arrangement (2-2) Dielectric polymer 22 -Composition: PVC with plasticizer dibutyl adipate (addition amount 83 wt%) ⁇ Thickness: 0.2 mmt (2-3) First electrode 21 (cathode) -Material: ITO film-Thickness: 0.1 mmt ⁇ Surface resistance: 30 ⁇ / sq. Or less ⁇ Light transmittance (wavelength 550nm): 85% or more (2-4) Lens characteristics / applied voltage: 600V ⁇ Focal length: 0.4mm ⁇ F value: 8.0
  • FIG. 7 shows an image captured according to the on / off of the voltage applied to the microlens array 20.
  • FIG. 7A when the voltage applied to the microlens array 20 is off, the light rays focused by the main lens 30 are transmitted as they are without being focused by the microlens array 20. No image is formed on the individual lenses 25 constituting the microlens array 20.
  • the light transmitted through the microlens array 20 forms a two-dimensional image on the optical sensor 11.
  • Image 7-1 is an image obtained by synthesizing the outputs from a plurality of sensor elements 111 covered by the four lenses in the region 7a of the microlens array 20.
  • Image 7-2 is an image obtained by synthesizing the outputs from a plurality of sensor elements 111 covered by the four lenses in the region 7b of the microlens array 20.
  • Image 7-3 is an image obtained by synthesizing the outputs from a plurality of sensor elements 111 covered by the four lenses in the region 7c of the microlens array 20.
  • the viewpoint position of the obtained image is shifted from the lower side to the upper side.
  • the viewpoint position of the obtained image shifts from the left to the right.
  • the image pickup device 10 of the embodiment can be applied to an information processing device such as a smartphone or a tablet terminal.
  • FIG. 8 is a block diagram of the information processing device 100 in which the image pickup device 10 of the embodiment is incorporated.
  • the information processing device 100 includes an image pickup device 10, an integrated circuit board 51 such as a SoC (System-on-Chip), a display device 52, a recording device 53, an input / output device 54, a power supply 55, and a wireless communication device 56. These devices are connected to each other by a signal bus.
  • SoC System-on-Chip
  • the image pickup apparatus 10 can switch between a prenoptic camera and a normal camera by controlling voltage, switch between angular resolution and spatial resolution modes with the prenoptic camera, and adjust the focal length in each mode. Is.
  • the integrated circuit board 51 is equipped with an image processor such as GPU (Graphical Processing Unit) 511 and a control processor such as CPU (Central Processing Unit) 512.
  • the CPU 512 controls on / off of the voltage applied to the microlens array 20 of the image pickup apparatus 10 and adjusts the applied voltage level.
  • the GPU 511 performs digital arithmetic processing on the electric signal output from the optical sensor 11 of the image pickup apparatus 10 to generate image data.
  • the digital arithmetic processing by the GPU 511 may be performed based on the three-dimensional image measurement method.
  • the digital arithmetic processing may include correction for image data, noise removal, and the like.
  • the recording device 53 stores information acquired or generated by the information processing device 100, commands, parameters, programs, etc. necessary for the operation of the information processing device 100.
  • the recording device 53 includes both a memory built in the information processing device 100 and an external memory that is detachably connected.
  • the input / output device 54 includes a user interface such as a touch panel, a microphone, and a speaker.
  • the power supply 55 supplies the electric power required for the operation of each part of the information processing apparatus 100.
  • the wireless communication device 56 performs short-range wireless communication such as infrared communication in addition to communication with a wireless base station via an antenna.
  • the display device 52 displays the image data generated by the GPU 511, the image data stored in the recording device 53, the image data according to the command input by the input / output device 54, and the like.
  • the imaging device 10 of the embodiment uses the microlens array 20 having a thin three-layer structure, and the focal length of the microlens array 20 can be changed only by controlling the voltage application. Therefore, it is suitable for application to small information processing terminals and mobile terminals.
  • FIG. 9 is a flowchart of the imaging method of the embodiment.
  • the camera When the camera is turned on (S11), it is determined whether it is the normal camera mode or the prenoptic camera mode (S12). In the normal camera mode (YES in S12), the voltage application to the microlens array (abbreviated as “MLA” in the figure) is turned off (S7). At least one of the main lens 30 and the optical sensor 11 may be moved along the optical axis so that the light passing through the main lens 30 is focused on the incident surface of the optical sensor 11.
  • a mode with good spatial resolution is selected (S13).
  • a voltage V1 is applied to the microlens array (S15).
  • the image plane of the main lens 30 and the optical sensor 11 are formed so that the image plane of the main lens 30 exists on the incident side of the microlens array and the light collected by the microlens array 20 is imaged on the incident plane of the optical sensor 11. At least one position may be adjusted along the optical axis.
  • a mode with good spatial resolution is not selected (NO in S13)
  • a voltage V2 smaller than V1 is applied to the microlens array to adjust the focal length (S16).
  • At least of the main lens 30 and the optical sensor 11 so that the light rays transmitted through each point of the main lens 30 are divided into a plurality of light rays by each lens 25 of the microlens array 20 and incident on the sensor element 111 of the optical sensor 11.
  • One position may be moved along the optical axis.
  • a single microlens array 20 is used to switch between a normal camera and a plenoptic camera, and a mode having a good spatial resolution and a mode having a good angular resolution in the plenoptic camera. Can be selected.
  • the focal length of the microlens array 20 can be adjusted simply by controlling the applied voltage, regardless of whether it is a normal camera or a plenoptic camera.
  • Imaging device 11 Optical sensor 20
  • Microlens array 21 First electrode 22
  • Dielectric polymer 23 Second electrode 24
  • Aperture 25 Lens 30
  • Information processing device 51 Integrated circuit board 511 GPU 512

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

Provided is an imaging device which can achieve both angular resolution and spatial resolution or switch between the two resolutions with a simple configuration. The imaging device includes an optical sensor having a plurality of sensor elements, a main lens which guides light from an object to the optical sensor, and a micro-lens array disposed between the optical sensor and the main lens. The micro-lens array has a three-layer structure of: a first electrode that is transparent with respect to visible light; a second electrode that has a plurality of openings, faces the first electrode, and is transparent with respect to visible light; and a dielectric polymer disposed between the first electrode and the second electrode. Upon the application of voltage, a lens is formed in the openings, and the imaging device selectively operates in a first mode with favorable angular resolution and a second mode with favorable spatial resolution, depending on the level of the applied voltage.

Description

撮像装置、及び撮像方法Imaging device and imaging method
 本発明は、撮像装置、及び撮像方法に関する。 The present invention relates to an imaging device and an imaging method.
 近年の三次元(以下、「3D」とする)画像を含むコンテンツの発展にともなって、プレノプティックカメラの研究が進んでいる。プレノプティックカメラは、3次元空間の光の強度分布の情報を直接取得する点で、2次元の光の強度分布を記録する従来のカメラと異なる。 With the recent development of content including three-dimensional (hereinafter referred to as "3D") images, research on prenoptic cameras is progressing. A prenoptic camera differs from a conventional camera that records a two-dimensional light intensity distribution in that it directly acquires information on the light intensity distribution in a three-dimensional space.
 プレノプティックカメラでは、主レンズと、イメージセンサの間にマイクロレンズアレイを配置して、空間像を多数の点光源からの光線群として取得する。プレノプティックカメラの光学配置によって、角度分解能(遠近に関係する特性)が良好な構成と、空間分解能(解像度に関係する特性)が良好な構成がある。 In a prenoptic camera, a microlens array is placed between the main lens and the image sensor, and a spatial image is acquired as a group of light rays from a large number of point light sources. Depending on the optical arrangement of the plenoptic camera, there are configurations with good angular resolution (characteristics related to perspective) and configurations with good spatial resolution (characteristics related to resolution).
 空間分解能を高める構成として、異なる焦点距離を有するマイクロレンズアレイを用いたプレノプティックカメラが提案されている(たとえば、特許文献1参照)。このプレノプティックカメラは、形状が固定された2以上のマイクロレンズアレイを用いて、距離の異なる像面からのマイクロイメージを捉えて、奥行き方向の空間分解能を高めている。 As a configuration for enhancing spatial resolution, a prenoptic camera using microlens arrays having different focal lengths has been proposed (see, for example, Patent Document 1). This prenoptic camera uses two or more microlens arrays with a fixed shape to capture microimages from image planes at different distances to improve spatial resolution in the depth direction.
 一方、透明膜の中に液体を封入した液体凹レンズを凸レンズと組み合わせた可変焦点のズームレンズ(たとえば、特許文献2参照)や、印加電圧を調整して電極に設けられた開口内に形成される光学散乱体の光学特性を調整するマイクロレンズアレイが知られている(たとえば、特許文献3参照)。 On the other hand, it is formed in a variable focus zoom lens (see, for example, Patent Document 2) in which a liquid concave lens in which a liquid is sealed in a transparent film is combined with a convex lens, or in an opening provided in an electrode by adjusting an applied voltage. Microlens arrays that adjust the optical properties of optical scatterers are known (see, for example, Patent Document 3).
 一般的に、プレノプティックカメラで角度分解能と空間分解能はトレードオフの関係にあると言われ、簡単な構成で角度分解能と空間分解能を両立させることは難しい。特許文献1では、形状が固定のマイクロレンズアレイを複数用いて空間分解能を高めているが、空間分解能と角度分解能の両立、または切り替えについては触れられていない。 Generally, it is said that there is a trade-off between angular resolution and spatial resolution in a plenoptic camera, and it is difficult to achieve both angular resolution and spatial resolution with a simple configuration. Patent Document 1 uses a plurality of microlens arrays having a fixed shape to improve spatial resolution, but does not mention compatibility or switching between spatial resolution and angular resolution.
 本発明は、簡単な構成で、角度分解能と空間分解能を両立させ、または、切り替えることのできる撮像装置を提供することを目的とする。 An object of the present invention is to provide an imaging device capable of achieving both angular resolution and spatial resolution or switching between them with a simple configuration.
 本発明の一つの態様では、撮像装置は、複数のセンサ素子を有する光センサ、物体からの光を前記光センサに導く主レンズ、及び、前記光センサと前記主レンズの間に配置されるマイクロレンズアレイ、を有し、
 前記マイクロレンズアレイは、可視光に対して透明な第1電極、複数の開口を有して前記第1電極と対向する可視光に対して透明な第2電極、及び、前記第1電極と前記第2電極の間に配置される誘電性ポリマーの三層構造であり、電圧の印加により、前記開口にレンズが形成され、
 前記撮像装置は、印加される前記電圧のレベルに応じて、角度分解能が良好な第1モードと、空間分解能が良好な第2モードで、選択的に動作する。
In one aspect of the invention, the imaging device is an optical sensor having a plurality of sensor elements, a main lens that guides light from an object to the optical sensor, and a micro that is arranged between the optical sensor and the main lens. Has a lens array,
The microlens array includes a first electrode that is transparent to visible light, a second electrode that has a plurality of openings and is transparent to visible light that faces the first electrode, and the first electrode and the above. It has a three-layer structure of a dielectric polymer arranged between the second electrodes, and a lens is formed in the aperture by applying a voltage.
The imaging device selectively operates in a first mode having a good angular resolution and a second mode having a good spatial resolution, depending on the level of the applied voltage.
 簡単な構成で、角度分解能と空間分解能を両立させ、または、切り替えることができる撮像装置が実現する。 With a simple configuration, an imaging device that can achieve both angular resolution and spatial resolution, or can switch between them, will be realized.
角度分解能が良好な光学系を説明する図である。It is a figure explaining the optical system which has a good angular resolution. 空間分解能が良好な光学系を説明する図である。It is a figure explaining the optical system which has a good spatial resolution. 実施形態の撮像装置で角度分解能が良好な第1のモードを選択したときの光学系の動作を説明する模式図である。It is a schematic diagram explaining the operation of the optical system when the first mode with good angular resolution is selected in the image pickup apparatus of embodiment. 実施形態の撮像装置で空間分解能が良好な第2のモードを選択したときの光学系の動作を説明する模式図であるIt is a schematic diagram explaining the operation of the optical system when the 2nd mode with good spatial resolution is selected in the image pickup apparatus of embodiment. 第2のモードにおける焦点距離の調整を説明する図である。It is a figure explaining the adjustment of the focal length in the 2nd mode. 実施形態の撮像装置を、通常カメラとして使用する例を示す図である。It is a figure which shows the example which uses the image pickup apparatus of embodiment as a normal camera. 実施形態の撮像装置による立体撮像のセットアップを説明する図である。It is a figure explaining the setup of stereoscopic imaging by the imaging apparatus of embodiment. 撮影される物体の図である。It is a figure of the object to be photographed. 実施形態のマイクロレンズアレイに印加される電圧のオン、オフ制御により捕捉される画像である。It is an image captured by on / off control of the voltage applied to the microlens array of the embodiment. 実施形態の撮像装置が組み込まれた情報処理装置のブロック図である。It is a block diagram of the information processing apparatus which incorporated the image pickup apparatus of embodiment. 実施形態の撮像方法のフローチャートである。It is a flowchart of the imaging method of an embodiment.
 図1Aは、角度分解能に着目したプレノプティック光学系の模式図、図1Bは、空間分解能に着目したプレノプティック光学系の模式図である。図1Aの構成は、「Plenoptic 1.0」と呼ばれ、図1Bの構成は、「Plenoptic 2.0」と呼ばれている。後述するように、実施形態の撮像装置は、一台の撮像装置で角度分解能と空間分解能を両立、または切り替え可能にして、「Plenoptic 1.0」と「Plenoptic 2.0」の双方を実現する。 FIG. 1A is a schematic diagram of a plenoptic optical system focusing on angular resolution, and FIG. 1B is a schematic diagram of a plenoptic optical system focusing on spatial resolution. The configuration of FIG. 1A is called "Plenoptic 1.0", and the configuration of FIG. 1B is called "Plenoptic 2.0". As will be described later, the image pickup device of the embodiment realizes both "Plenoptic 1.0" and "Plenoptic 2.0" by making it possible to achieve both angular resolution and spatial resolution with one image pickup device or to switch between them.
 図1Aで、物体OBのある点から放射された光線は、主レンズLmainを介して、マイクロレンズアレイMLA上のマイクロレンズML1に導かれる。マイクロレンズML1に入射した光線は、光線に含まれる光の方向によって複数の光線に分割され、イメージセンサISのピクセルP1,P2、P3を露光する。 In FIG. 1A, a light ray emitted from a certain point of the object OB is guided to the microlens ML1 on the microlens array MLA via the main lens Lmain. The light rays incident on the microlens ML1 are divided into a plurality of light rays according to the direction of the light rays included in the light rays, and expose the pixels P1, P2, and P3 of the image sensor IS.
 図1Aでは、3つのピクセルのみが図示されているが、たとえば、マイクロレンズML1の径が100μm、イメージセンサISのピクセルの一辺が10μmとすると、角度方向で10×10の情報を得ることができる。マイクロレンズアレイMLAとイメージセンサISの間の距離はマイクロレンズアレイの焦点距離fとなっている。焦点距離fは、マイクロレンズアレイの屈折率と曲率半径で定義される主点ppとマイクロレンズの焦点との間の距離を指す。なお、図1Aではレンズの凸側がイメージセンサISと反対側に向いているがイメージセンサIS側に向いていてもかまわない。 In FIG. 1A, only three pixels are shown. For example, if the diameter of the microlens ML1 is 100 μm and one side of the pixel of the image sensor IS is 10 μm, 10 × 10 information can be obtained in the angular direction. .. The distance between the microlens array MLA and the image sensor IS is the focal length f of the microlens array. The focal length f refers to the distance between the principal point pp, which is defined by the refractive index and radius of curvature of the microlens array, and the focal point of the microlens. In FIG. 1A, the convex side of the lens faces the side opposite to the image sensor IS, but it may face the image sensor IS side.
 図1Bの構成では、物体OBのある点から放射された光線を、主レンズLmainの像面IPにおける仮想像として、複数のマイクロレンズで集光する。この構成は、図1Aと比較して角度分解能は低いが、マイクロレンズごとに集光された光を検出するので、異なる空間位置にある複数の物体の識別能力が高い。 In the configuration of FIG. 1B, a light beam emitted from a certain point of the object OB is focused by a plurality of microlenses as a virtual image on the image plane IP of the main lens Lmain. Although this configuration has a lower angular resolution than that of FIG. 1A, it detects the focused light for each microlens, so that it has a high ability to discriminate a plurality of objects in different spatial positions.
 マイクロレンズアレイMLAから主レンズ30の像面IPまでの距離a、マイクロレンズアレイMLAからイメージセンサISまでの距離bは、マイクロレンズの焦点距離fにより
   1/f=1/a+1/b
で決定され、図1Bの構成ではf≠bとなる。
The distance a from the microlens array MLA to the image plane IP of the main lens 30 and the distance b from the microlens array MLA to the image sensor IS are 1 / f = 1 / a + 1 / b depending on the focal length f of the microlens.
In the configuration of FIG. 1B, f ≠ b.
 実施形態では、印加電圧の制御によってマイクロレンズの曲率を制御することのできる可変焦点のマイクロレンズアレイを用いる。マイクロレンズアレイの位置を固定にし、印加電圧の制御と、主レンズと光センサの少なくとも一方の駆動により、角度分解能が良好なモードと、空間分解能が良好なモードの間を切り替える。 In the embodiment, a variable focus microlens array capable of controlling the curvature of the microlens by controlling the applied voltage is used. By fixing the position of the microlens array, controlling the applied voltage, and driving at least one of the main lens and the optical sensor, the mode is switched between the mode with good angular resolution and the mode with good spatial resolution.
 (第1モードと第2モードの切り替え)
 図2は、実施形態の撮像装置10の模式図である。図2において、撮像装置10は、角度分解能が良好な第1のモード(図1A参照)で動作する。撮像装置10は、主レンズ30、光センサ11、及び、主レンズ30と光センサ11の間に配置されるマイクロレンズアレイ20を有する。
(Switching between 1st mode and 2nd mode)
FIG. 2 is a schematic view of the image pickup apparatus 10 of the embodiment. In FIG. 2, the image pickup apparatus 10 operates in the first mode (see FIG. 1A) having good angular resolution. The image pickup apparatus 10 includes a main lens 30, an optical sensor 11, and a microlens array 20 arranged between the main lens 30 and the optical sensor 11.
 マイクロレンズアレイ20は、可視光に対して透明な第1電極21、複数の開口24が設けられた第2電極23、及び第1電極21と第2電極23の間に配置される誘電性ポリマー22の三層構造である。第1電極21と第2電極23は、可変電圧源26に接続されている。 The microlens array 20 is a dielectric polymer arranged between a first electrode 21 transparent to visible light, a second electrode 23 provided with a plurality of openings 24, and the first electrode 21 and the second electrode 23. It has a three-layer structure of 22. The first electrode 21 and the second electrode 23 are connected to the variable voltage source 26.
 誘電性ポリマー22は、ポリ塩化ビニル(PVC)、ポリメタクリル酸メチル(PMMA)、ポリウレタン(PU)、ポリスチレン(PSt)、ポリ酢酸ビニル(PVAc)、ポリビニルアルコール(PVA)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリアクリロニトリル(PAN)、シリコーンゴム(SR)等である。誘電性ポリマー22として、可視光に対して透明で、電圧応答性の良好な材料を適宜選択することができる。実施形態では、電場の作用による変形が大きく、取扱いが容易なPVCを用いる。 The dielectric polymer 22 includes polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polyurethane (PU), polystyrene (PSt), polyvinyl acetate (PVAc), polyvinyl alcohol (PVA), polycarbonate (PC), and polyethylene. It is terephthalate (PET), polyacrylonitrile (PAN), silicone rubber (SR), etc. As the dielectric polymer 22, a material that is transparent to visible light and has good voltage responsiveness can be appropriately selected. In the embodiment, PVC is used, which is greatly deformed by the action of an electric field and is easy to handle.
 誘電性ポリマー22に、可塑剤、イオン液体、イオン性の界面活性剤の少なくとも一つを添加してもよい。可塑剤は誘電性ポリマー22に柔軟性を与える。イオン液体とイオン性の界面活性剤は、誘電性ポリマー22の変形を促進し、印加電圧を低減することができる。誘電性ポリマー22を適切な溶媒に溶解させてもよい。 At least one of a plasticizer, an ionic liquid, and an ionic surfactant may be added to the dielectric polymer 22. The plasticizer gives the dielectric polymer 22 flexibility. The ionic liquid and the ionic surfactant can promote the deformation of the dielectric polymer 22 and reduce the applied voltage. The dielectric polymer 22 may be dissolved in a suitable solvent.
 マイクロレンズアレイ20に第1の電圧が印加されると、第2電極23の開口24から誘電性ポリマーが所定量、突出する。突出したポリマーはレンズ25として機能する。レンズ25の形状は、印加電圧、誘電性ポリマーの種類、誘電性ポリマーに働く表面張力等によって決まる。 When the first voltage is applied to the microlens array 20, a predetermined amount of the dielectric polymer protrudes from the opening 24 of the second electrode 23. The protruding polymer functions as the lens 25. The shape of the lens 25 is determined by the applied voltage, the type of the dielectric polymer, the surface tension acting on the dielectric polymer, and the like.
 開口24は、マイクロレンズアレイ20に電圧が印加されたときに、誘電性ポリマー22の変形によって開口24にレンズ25が形成され得る大きさと形状を有する。開口24の平面形状は、円、楕円、長円、矩形など、レンズの用途に応じて設計可能である。また開口24の平面的な配列は格子配列やハニカム配列など自由に設定される。表示画像の画質は開口24に形成されるレンズ25を通して入る光量に依存しており、開口が占める面積を表す開口率を高くなるような配列にすることで高画質を得ることができる。好ましくは開口率50%以上である。 The aperture 24 has a size and shape that allows the lens 25 to be formed in the aperture 24 by deformation of the dielectric polymer 22 when a voltage is applied to the microlens array 20. The planar shape of the opening 24 can be designed according to the application of the lens, such as a circle, an ellipse, an oval, and a rectangle. Further, the planar arrangement of the openings 24 can be freely set such as a lattice arrangement or a honeycomb arrangement. The image quality of the displayed image depends on the amount of light entering through the lens 25 formed in the aperture 24, and the image quality can be obtained by arranging the arrangement so that the aperture ratio representing the area occupied by the aperture is high. The aperture ratio is preferably 50% or more.
 マイクロレンズアレイ20に印加される電圧の範囲は、800V以下、より好ましくは600V以下である。実際に印加される電圧は、撮像装置10の動作が、角度分解能を優先するか空間分解能を優先するかによって異なる。また、同じ動作モードであっても、電極23の開口24のサイズ、第2電極23の厚さ等の影響も受ける。 The range of voltage applied to the microlens array 20 is 800 V or less, more preferably 600 V or less. The voltage actually applied differs depending on whether the operation of the image pickup apparatus 10 gives priority to angular resolution or spatial resolution. Further, even in the same operation mode, the size of the opening 24 of the electrode 23, the thickness of the second electrode 23, and the like are also affected.
 マイクロレンズアレイ20のレンズ25の焦点距離は、ポリマーの突出変位(レンズ厚さ)に依存しており、上記印加電圧により制御することができる。この意味で、マイクロレンズアレイ20を「アクティブレンズ」と呼んでもよい。レンズ25の焦点距離は、開口24の径にもよるが、0.1mm~10mmである。またレンズに入る光量は撮像の輝度に依存しておりできるだけ高い方が望ましい。その目安となるF値(=焦点距離/レンズ直径)は8.0以下が好ましい。 The focal length of the lens 25 of the microlens array 20 depends on the protruding displacement (lens thickness) of the polymer and can be controlled by the applied voltage. In this sense, the microlens array 20 may be referred to as an "active lens". The focal length of the lens 25 is 0.1 mm to 10 mm, although it depends on the diameter of the aperture 24. The amount of light entering the lens depends on the brightness of the image, and it is desirable that the amount of light enters the lens as high as possible. The F value (= focal length / lens diameter) as a guide is preferably 8.0 or less.
 主レンズ30は単焦点レンズである。主レンズ30は、光センサ11と撮影対象の物体の間に配置され、物体上のある点からの光線を、マイクロレンズアレイ20のレンズ25に集光する。 The main lens 30 is a single focus lens. The main lens 30 is arranged between the optical sensor 11 and the object to be imaged, and collects light rays from a certain point on the object on the lens 25 of the microlens array 20.
 光センサ11は、複数のセンサ素子111を有するCCDセンサ、CMOSセンサ等である。CCDセンサ、CMOSセンサ等は、入射光の光量をデジタル方式で検出し、入射光の強度に応じた電気信号を出力する。各センサ素子111に、赤(R)、青(B)、緑(G)などのカラーフィルタが設けられていてもよい。 The optical sensor 11 is a CCD sensor, a CMOS sensor, or the like having a plurality of sensor elements 111. The CCD sensor, CMOS sensor, etc. digitally detect the amount of incident light and output an electric signal according to the intensity of the incident light. Each sensor element 111 may be provided with a color filter such as red (R), blue (B), and green (G).
 電圧の印加によりマイクロレンズアレイ20にレンズ25が形成されると、対象物からの光線は、主レンズ30で集光されて、レンズ25に入射する。レンズ25への入射光線は、レンズ25がカバーする複数のセンサ素子111へと分割される。各センサ素子111で得られる情報を演算処理することで、角度分解能が良好な立体像が形成される。 When the lens 25 is formed on the microlens array 20 by applying a voltage, the light rays from the object are focused by the main lens 30 and incident on the lens 25. The incident light beam on the lens 25 is divided into a plurality of sensor elements 111 covered by the lens 25. By arithmetically processing the information obtained by each sensor element 111, a stereoscopic image having good angular resolution is formed.
 図3で、撮像装置10は、空間分解能が良好な第2のモードで動作する。撮像装置10の構成要素は、図2と同じであり、主レンズ30、光センサ11、及び、主レンズ30と光センサ11の間に配置されるマイクロレンズアレイ20を有する。 In FIG. 3, the image pickup apparatus 10 operates in the second mode in which the spatial resolution is good. The components of the image pickup apparatus 10 are the same as those in FIG. 2, and include a main lens 30, an optical sensor 11, and a microlens array 20 arranged between the main lens 30 and the optical sensor 11.
 マイクロレンズアレイ20に、図2と異なる電圧V2が印加されると、開口24に形成されるレンズ25の突出量または曲率が変わり、マイクロレンズアレイ20の焦点距離が変わる。 When a voltage V2 different from that shown in FIG. 2 is applied to the microlens array 20, the amount of protrusion or curvature of the lens 25 formed in the aperture 24 changes, and the focal length of the microlens array 20 changes.
 主レンズ30が単焦点レンズ、かつ、マイクロレンズアレイ20の位置が固定であるとする。電圧制御によりマイクロレンズアレイ20の焦点距離を短くして、主レンズ30の位置と、光センサ11の位置を調整する。像面IP上の仮想像は複数のレンズ25に集光され、各レンズ25がカバーする領域のセンサ素子111によって、異なる空間位置の像が捕捉される。 It is assumed that the main lens 30 is a single focus lens and the position of the microlens array 20 is fixed. The focal length of the microlens array 20 is shortened by voltage control, and the position of the main lens 30 and the position of the optical sensor 11 are adjusted. The virtual image on the image plane IP is focused on a plurality of lenses 25, and images at different spatial positions are captured by the sensor element 111 in the area covered by each lens 25.
 マイクロレンズアレイ20の位置が固定の場合、図1Aにおける焦点距離fは、図1Bの距離「b」では成立しないが(b≠f)、マイクロレンズアレイ20の焦点距離を変えることで、像面IPまでの距離aを調整して、空間分解能が良好な3次元画像を捕捉することができる。レンズ25から光センサ11の入射面までの距離bを調整してもよい。 When the position of the microlens array 20 is fixed, the focal length f in FIG. 1A does not hold at the distance “b” in FIG. 1B (b ≠ f), but by changing the focal length of the microlens array 20, the image plane By adjusting the distance a to the IP, it is possible to capture a three-dimensional image having good spatial resolution. The distance b from the lens 25 to the incident surface of the optical sensor 11 may be adjusted.
 (焦点距離の変更)
 マイクロレンズアレイ20は、第1のモードと第2のモードの切り替えだけではなく、第1のモードまたは第2のモードでの焦点距離の調整が可能である。
(Change of focal length)
The microlens array 20 can not only switch between the first mode and the second mode, but also adjust the focal length in the first mode or the second mode.
 図4は、空間分解能が良好な第2のモードでの焦点距離の調整を示す。たとえば、マイクロレンズアレイ20だけを固定にして、主レンズ30と光センサ11の位置を可変にしてもよい。図4の(A)で、マイクロレンズアレイ20に印加する電圧をV1に設定し、開口24に、曲率の小さいレンズ25を形成する。主レンズ30の像面IP上の仮想像は各レンズ25で集光されて、このレンズ25にカバーされるセンサ素子111で捕捉される。 FIG. 4 shows the adjustment of the focal length in the second mode in which the spatial resolution is good. For example, only the microlens array 20 may be fixed, and the positions of the main lens 30 and the optical sensor 11 may be variable. In FIG. 4A, the voltage applied to the microlens array 20 is set to V1, and the lens 25 having a small curvature is formed in the aperture 24. The virtual image on the image plane IP of the main lens 30 is condensed by each lens 25 and captured by the sensor element 111 covered by the lens 25.
 図4の(B)で、マイクロレンズアレイ20に印加する電圧を、V1よりも大きいV2(V2>V1)に設定し、開口24に、図4の(A)よりも曲率の大きいレンズ25を形成する。主レンズ30の像面IP上の仮想像は、各レンズ25で集光されて、対応する光センサ11のセンサ素子111で捕捉される。レンズ25の焦点距離の変更に従って、光センサ11の位置を調整してレンズ25からセンサ面までの距離bを調整し、かつ、レンズ25から像面IPまでの距離を調整する。 In FIG. 4B, the voltage applied to the microlens array 20 is set to V2 (V2> V1), which is larger than V1, and the lens 25 having a curvature larger than that in FIG. Form. The virtual image on the image plane IP of the main lens 30 is collected by each lens 25 and captured by the sensor element 111 of the corresponding optical sensor 11. According to the change of the focal length of the lens 25, the position of the optical sensor 11 is adjusted to adjust the distance b from the lens 25 to the sensor surface, and the distance from the lens 25 to the image plane IP is adjusted.
 ひとつのマイクロレンズアレイ20を用い、マイクロレンズアレイ20への印加電圧を制御することで、より近くの空間情報、または、より遠方の空間情報を取得することができる。 By using one microlens array 20 and controlling the voltage applied to the microlens array 20, it is possible to acquire closer spatial information or farther spatial information.
 この印加電圧の制御による焦点距離の変更は、図2の第1のモードでの焦点距離の調整にも適用可能である。マイクロレンズアレイ20の位置を固定、光センサ11と主レンズ30の位置を可変にして、マイクロレンズアレイ20への印加電圧を変える。電圧V1を印加したときに開口24に形成されるレンズ25の焦点距離を「f」とすると、V1よりも大きい電圧V2を印加することで、開口24に形成されるレンズ25の曲率を大きくして、fを短くすることができる。 The change of the focal length by controlling the applied voltage can also be applied to the adjustment of the focal length in the first mode of FIG. The position of the microlens array 20 is fixed, the positions of the optical sensor 11 and the main lens 30 are made variable, and the voltage applied to the microlens array 20 is changed. Assuming that the focal length of the lens 25 formed in the aperture 24 when the voltage V1 is applied is "f", the curvature of the lens 25 formed in the aperture 24 is increased by applying a voltage V2 larger than V1. Therefore, f can be shortened.
 マイクロレンズアレイ20の位置が固定されていても、光センサ11と主レンズ30の位置を調整することで、より近い空間、またはより遠い空間からの角度情報を取得することができる。 Even if the position of the microlens array 20 is fixed, the angle information from a closer space or a farther space can be acquired by adjusting the positions of the optical sensor 11 and the main lens 30.
 (通常カメラとの切り換え)
 図5は、実施形態の撮像装置10を、通常カメラとして使用する例を示す。マイクロレンズアレイ20に電圧を印加したときは、第2電極23の開口24にレンズ25が形成され、プレノプティックカメラとして機能する。マイクロレンズアレイ20への印加電圧をオフにすることで、撮像装置10を通常カメラとして用いることができる。
(Switching to normal camera)
FIG. 5 shows an example in which the imaging device 10 of the embodiment is used as a normal camera. When a voltage is applied to the microlens array 20, the lens 25 is formed in the opening 24 of the second electrode 23 and functions as a prenoptic camera. By turning off the voltage applied to the microlens array 20, the image pickup device 10 can be used as a normal camera.
 主レンズ30によって集光された光は、マイクロレンズアレイ20に電圧が印加されないときは、開口24にレンズ25は形成されない。物体から放射され、主レンズ30で集光された光は、そのままマイクロレンズアレイ20を透過して、光センサ11に集光される。 The light collected by the main lens 30 does not form the lens 25 in the aperture 24 when no voltage is applied to the microlens array 20. The light emitted from the object and focused by the main lens 30 passes through the microlens array 20 as it is and is focused on the optical sensor 11.
 主レンズ30の焦点Fは、光センサ11の入射面に位置する。マイクロレンズアレイ20の位置が固定だとすると、主レンズ30で集光された光線が、光センサ11の入射面で焦点を結ぶように、主レンズ30と光センサ11の少なくとも一方の位置が調整される。この配置構成では、光センサ11で2次元の光強度情報が捕捉される。 The focal point F of the main lens 30 is located on the incident surface of the optical sensor 11. Assuming that the position of the microlens array 20 is fixed, the positions of at least one of the main lens 30 and the optical sensor 11 are adjusted so that the light rays focused by the primary lens 30 are focused on the incident surface of the optical sensor 11. .. In this arrangement configuration, the optical sensor 11 captures two-dimensional light intensity information.
 マイクロレンズアレイ20に印加する電圧のオン・オフを制御することで、プレノプティックカメラの機能と、通常カメラの機能を切り替えることができる。 By controlling the on / off of the voltage applied to the microlens array 20, the function of the prenoptic camera and the function of the normal camera can be switched.
 (実験例)
 図6Aは、実施形態の撮像装置10を用いた立体撮影のセットアップを示す。図6Aに示すように、撮像装置10で物体50を撮影する。図6Bは、実際に撮影で用いた物体50である。
(Experimental example)
FIG. 6A shows a stereoscopic imaging setup using the imaging device 10 of the embodiment. As shown in FIG. 6A, the object 50 is photographed by the imaging device 10. FIG. 6B is an object 50 actually used for photographing.
 マイクロレンズアレイ20に電圧が印加された状態で、複数のレンズ25が形成されている。図示の便宜上、第1電極21、第2電極23、電極間に挟まれる誘電性ポリマー22、及び開口24等を省略して、形成されたレンズ25のみが図示されている。 A plurality of lenses 25 are formed in a state where a voltage is applied to the microlens array 20. For convenience of illustration, only the formed lens 25 is shown by omitting the first electrode 21, the second electrode 23, the dielectric polymer 22 sandwiched between the electrodes, the opening 24, and the like.
 マイクロレンズアレイ20から光センサ11の入射面までの距離bは、0.1~0.5mmの間で調整される。マイクロレンズアレイ20から主レンズ30までの距離Lは、1mm~10mmの間で調整される。
実施形態の仕様としては以下となる。
The distance b from the microlens array 20 to the incident surface of the optical sensor 11 is adjusted between 0.1 and 0.5 mm. The distance L from the microlens array 20 to the main lens 30 is adjusted between 1 mm and 10 mm.
The specifications of the embodiment are as follows.
(1)撮像系仕様
(1-1) 光センサ11(イメージセンサ)
・画素数:3,500万画素
・画素サイズ:4.8μm
(1-2) 主レンズ35
・サイズ:60mmΦ
・焦点距離:80mm
(2)アクティブレンズ仕様
(2-1) 第2電極23(陽極)
・材質:ステンレズ
・開口径/ピッチ:50μm/60μm
・配列:格子状配列
(2-2) 誘電性ポリマー22
・組成:可塑剤アジピン酸ジブチル添加PVC(添加量83wt%)
・厚さ:0,2mmt
(2-3) 第1電極21(陰極)
・材質:ITОフィルム
・厚さ:0.1mmt
・表面抵抗:30Ω/sq.以下
・光線透過率(波長550nm):85%以上 
(2-4)レンズ特性
・印加電圧:600V
・焦点距離:0.4mm
・F値:8.0
(1) Imaging system specifications
(1-1) Optical sensor 11 (image sensor)
-Number of pixels: 35 million pixels-Pixel size: 4.8 μm
(1-2) Main lens 35
・ Size: 60mmΦ
・ Focal length: 80mm
(2) Active lens specifications
(2-1) Second electrode 23 (anode)
-Material: Stainless steel-Opening diameter / Pitch: 50 μm / 60 μm
・ Arrangement: Lattice arrangement
(2-2) Dielectric polymer 22
-Composition: PVC with plasticizer dibutyl adipate (addition amount 83 wt%)
・ Thickness: 0.2 mmt
(2-3) First electrode 21 (cathode)
-Material: ITO film-Thickness: 0.1 mmt
・ Surface resistance: 30Ω / sq. Or less ・ Light transmittance (wavelength 550nm): 85% or more
(2-4) Lens characteristics / applied voltage: 600V
・ Focal length: 0.4mm
・ F value: 8.0
 図7は、マイクロレンズアレイ20に印加される電圧のオン・オフに応じて捕捉される画像を示す。図7の(A)で、マイクロレンズアレイ20への印加電圧がオフのときは、主レンズ30で集光された光線は、マイクロレンズアレイ20で焦点を結ばずに、そのまま透過する。マイクロレンズアレイ20を構成する個々のレンズ25上に、像は形成されていない。マイクロレンズアレイ20を透過した光は、光センサ11の上に2次元像を結ぶ。 FIG. 7 shows an image captured according to the on / off of the voltage applied to the microlens array 20. In FIG. 7A, when the voltage applied to the microlens array 20 is off, the light rays focused by the main lens 30 are transmitted as they are without being focused by the microlens array 20. No image is formed on the individual lenses 25 constituting the microlens array 20. The light transmitted through the microlens array 20 forms a two-dimensional image on the optical sensor 11.
 図7の(B)で、マイクロレンズアレイ20への印加電圧が400Vのとき、マイクロレンズアレイ20を構成する個々のレンズ25に物体50からの光像が形成されている。 In FIG. 7B, when the voltage applied to the microlens array 20 is 400V, an optical image from the object 50 is formed on the individual lenses 25 constituting the microlens array 20.
 画像7-1は、マイクロレンズアレイ20の領域7aの4つのレンズでカバーされる複数のセンサ素子111からの出力を合成して得られる像である。 Image 7-1 is an image obtained by synthesizing the outputs from a plurality of sensor elements 111 covered by the four lenses in the region 7a of the microlens array 20.
 画像7-2は、マイクロレンズアレイ20の領域7bの4つのレンズでカバーされる複数のセンサ素子111からの出力を合成して得られる像である。 Image 7-2 is an image obtained by synthesizing the outputs from a plurality of sensor elements 111 covered by the four lenses in the region 7b of the microlens array 20.
 画像7-3は、マイクロレンズアレイ20の領域7cの4つのレンズでカバーされる複数のセンサ素子111からの出力を合成して得られる像である。 Image 7-3 is an image obtained by synthesizing the outputs from a plurality of sensor elements 111 covered by the four lenses in the region 7c of the microlens array 20.
 マイクロレンズアレイ20で領域7a、7b、7cの位置が変わることによって、得られる画像の視点位置が、下側から上側へシフトしている。同様に、マイクロレンズアレイ20の紙面の右側から左側へ並ぶ領域では、得られる画像の視点位置が左から右へシフトする。すべてのセンサ素子111からの出力を演算処理により合成することで、奥行きのある立体画像が得られる。 By changing the positions of the regions 7a, 7b, and 7c in the microlens array 20, the viewpoint position of the obtained image is shifted from the lower side to the upper side. Similarly, in the region of the microlens array 20 arranged from the right side to the left side of the paper surface, the viewpoint position of the obtained image shifts from the left to the right. By synthesizing the outputs from all the sensor elements 111 by arithmetic processing, a three-dimensional image with depth can be obtained.
 (情報処理装置への適用)
 実施形態の撮像装置10は、スマートフォン、タブレット端末等の情報処理装置に適用可能である。
(Application to information processing equipment)
The image pickup device 10 of the embodiment can be applied to an information processing device such as a smartphone or a tablet terminal.
 図8は、実施形態の撮像装置10が組み込まれた情報処理装置100のブロック図である。情報処理装置100は、撮像装置10、SoC(System-on-Chip)等の集積回路基板51、表示装置52、記録装置53、入出力装置54、電源55、無線通信装置56などを有する。これらの装置は、信号バスによって相互に接続されている。 FIG. 8 is a block diagram of the information processing device 100 in which the image pickup device 10 of the embodiment is incorporated. The information processing device 100 includes an image pickup device 10, an integrated circuit board 51 such as a SoC (System-on-Chip), a display device 52, a recording device 53, an input / output device 54, a power supply 55, and a wireless communication device 56. These devices are connected to each other by a signal bus.
 撮像装置10は、上述したように、電圧の制御でプレノプティックカメラと通常カメラの切り替え、プレノプティックカメラで角度分解能と空間分解能のモード切り換え、各モードでの焦点距離の調整が可能である。 As described above, the image pickup apparatus 10 can switch between a prenoptic camera and a normal camera by controlling voltage, switch between angular resolution and spatial resolution modes with the prenoptic camera, and adjust the focal length in each mode. Is.
 集積回路基板51は、GPU(Graphical Processing Unit)511等の画像処理プロセッサと、CPU(Central Processing Unit)512等の制御プロセッサを搭載する。CPU512は、撮像装置10のマイクロレンズアレイ20に印加される電圧のオン・オフ制御、及び、印加電圧レベルの調整を行う。GPU511は、撮像装置10の光センサ11から出力される電気信号にデジタル演算処理を施して、画像データを生成する。撮像装置10がプレノプティックカメラモードにあるときは、GPU511によるデジタル演算処理は、三次元画像計測法に基づいて行われてもよい。デジタル演算処理には画像データに対する補正、ノイズ除去等が含まれてもよい。 The integrated circuit board 51 is equipped with an image processor such as GPU (Graphical Processing Unit) 511 and a control processor such as CPU (Central Processing Unit) 512. The CPU 512 controls on / off of the voltage applied to the microlens array 20 of the image pickup apparatus 10 and adjusts the applied voltage level. The GPU 511 performs digital arithmetic processing on the electric signal output from the optical sensor 11 of the image pickup apparatus 10 to generate image data. When the image pickup apparatus 10 is in the prenoptic camera mode, the digital arithmetic processing by the GPU 511 may be performed based on the three-dimensional image measurement method. The digital arithmetic processing may include correction for image data, noise removal, and the like.
 記録装置53は、情報処理装置100が取得または生成した情報、情報処理装置100の動作に必要なコマンド、パラメータ、プログラム等を保存する。記録装置53は、情報処理装置100に内蔵されるメモリと、着脱可能に接続される外部メモリの両方を含む。 The recording device 53 stores information acquired or generated by the information processing device 100, commands, parameters, programs, etc. necessary for the operation of the information processing device 100. The recording device 53 includes both a memory built in the information processing device 100 and an external memory that is detachably connected.
 入出力装置54は、タッチパネル、マイクロフォン、スピーカ等のユーザインタフェースを含む。 The input / output device 54 includes a user interface such as a touch panel, a microphone, and a speaker.
 電源55は、情報処理装置100の各部の動作に必要な電力を供給する。無線通信装置56は、アンテナを介した無線基地局との通信の他、赤外線通信などの短距離無線通信を行う。 The power supply 55 supplies the electric power required for the operation of each part of the information processing apparatus 100. The wireless communication device 56 performs short-range wireless communication such as infrared communication in addition to communication with a wireless base station via an antenna.
 表示装置52は、GPU511により生成された画像データ、記録装置53に保存された画像データ、入出力装置54によって入力されたコマンドに応じた画像データ等を表示する。 The display device 52 displays the image data generated by the GPU 511, the image data stored in the recording device 53, the image data according to the command input by the input / output device 54, and the like.
 実施形態の撮像装置10は、薄い三層構造のマイクロレンズアレイ20を用い、電圧印加の制御だけでマイクロレンズアレイ20の焦点距離を変えることができる。したがって小型の情報処理端末や携帯端末への適用に適している。 The imaging device 10 of the embodiment uses the microlens array 20 having a thin three-layer structure, and the focal length of the microlens array 20 can be changed only by controlling the voltage application. Therefore, it is suitable for application to small information processing terminals and mobile terminals.
 図9は、実施形態の撮像方法のフローチャートである。カメラがオンになると(S11)、通常カメラモードか、プレノプティックカメラモードかが判断される(S12)。通常カメラモードのときは(S12でYES)、マイクロレンズアレイ(図中、「MLA」と略記)への電圧印加をオフにする(S7)。主レンズ30を通過する光が、光センサ11の入射面に集光されるように、主レンズ30と、光センサ11の少なくとも一方を光軸に沿って動かしてもよい。 FIG. 9 is a flowchart of the imaging method of the embodiment. When the camera is turned on (S11), it is determined whether it is the normal camera mode or the prenoptic camera mode (S12). In the normal camera mode (YES in S12), the voltage application to the microlens array (abbreviated as “MLA” in the figure) is turned off (S7). At least one of the main lens 30 and the optical sensor 11 may be moved along the optical axis so that the light passing through the main lens 30 is focused on the incident surface of the optical sensor 11.
 通常カメラモードでない場合(S12でNO)、空間分解能が良好なモードが選択されているか否かが判断される(S13)。空間分解能が良好なモードが選択されているときは(S13でYES)、マイクロレンズアレイに電圧V1を印加する(S15)。主レンズ30の像面がマイクロレンズアレイの入射側に存在し、かつマイクロレンズアレイ20で集光された光が光センサ11の入射面で結像するように、主レンズ30と光センサ11の少なくとも一方の位置を光軸に沿って調整してもよい。 If it is not the normal camera mode (NO in S12), it is determined whether or not a mode with good spatial resolution is selected (S13). When a mode with good spatial resolution is selected (YES in S13), a voltage V1 is applied to the microlens array (S15). The image plane of the main lens 30 and the optical sensor 11 are formed so that the image plane of the main lens 30 exists on the incident side of the microlens array and the light collected by the microlens array 20 is imaged on the incident plane of the optical sensor 11. At least one position may be adjusted along the optical axis.
 空間分解能が良好なモードが選択されていない場合は(S13でNO)、角度分解能が良好なモードが選択されているか否かが判断される(S14)。角度分解能が良好なモードが選択されている場合は(S14でYES)、マイクロレンズアレイにV1よりも小さい電圧V2が印加されて、焦点距離が調整される(S16)。主レンズ30の各点を透過した光線が、マイクロレンズアレイ20の各レンズ25で複数の光線に分割されて光センサ11のセンサ素子111に入射するように、主レンズ30と光センサ11の少なくとも一方の位置を光軸に沿って動かしてもよい。 If a mode with good spatial resolution is not selected (NO in S13), it is determined whether or not a mode with good angular resolution is selected (S14). When a mode with good angular resolution is selected (YES in S14), a voltage V2 smaller than V1 is applied to the microlens array to adjust the focal length (S16). At least of the main lens 30 and the optical sensor 11 so that the light rays transmitted through each point of the main lens 30 are divided into a plurality of light rays by each lens 25 of the microlens array 20 and incident on the sensor element 111 of the optical sensor 11. One position may be moved along the optical axis.
 図9の制御フローにより、単一のマイクロレンズアレイ20を用いて、通常カメラとプレノプティックカメラの切り替え、及び、プレノプティックカメラで空間分解能が良好なモードと角度分解能が良好なモードの選択が可能になる。また、通常カメラ、プレノプティックカメラを問わず、印加電圧を制御するだけで、マイクロレンズアレイ20の焦点距離を調整することができる。 According to the control flow of FIG. 9, a single microlens array 20 is used to switch between a normal camera and a plenoptic camera, and a mode having a good spatial resolution and a mode having a good angular resolution in the plenoptic camera. Can be selected. In addition, the focal length of the microlens array 20 can be adjusted simply by controlling the applied voltage, regardless of whether it is a normal camera or a plenoptic camera.
 この出願は、2020年2月19日に日本国特許庁に出願された特許出願第2020-026360号、及び、2021年2月4日に日本国特許庁に出願された特許出願第2021-016716号を優先権の基礎とし、その全内容を参照により含むものである。 This application is filed in Patent Application No. 2020-0236360 filed with the Japan Patent Office on February 19, 2020, and Patent Application No. 2021-016716 filed with the Japan Patent Office on February 4, 2021. The issue is the basis of priority, and the entire contents are included by reference.
10 撮像装置
11 光センサ
20 マイクロレンズアレイ
21 第1電極
22 誘電性ポリマー
23 第2電極
24 開口
25 レンズ
30 主レンズ
100 情報処理装置
51 集積回路基板
511 GPU
512 CPU
IS イメージセンサ
10 Imaging device 11 Optical sensor 20 Microlens array 21 First electrode 22 Dielectric polymer 23 Second electrode 24 Aperture 25 Lens 30 Main lens 100 Information processing device 51 Integrated circuit board 511 GPU
512 CPU
IS image sensor
米国特許第8400555号U.S. Pat. No. 8400555 特開2011-13578号公報Japanese Unexamined Patent Publication No. 2011-13578 特開2019-120947号公報Japanese Unexamined Patent Publication No. 2019-120947

Claims (7)

  1.  複数のセンサ素子を有する光センサ、物体からの光を前記光センサに導く主レンズ、及び、前記光センサと前記主レンズの間に配置されるマイクロレンズアレイ、を有する撮像装置において、
     前記マイクロレンズアレイは、可視光に対して透明な第1電極、複数の開口を有して前記第1電極と対向する可視光に対して透明な第2電極、及び、前記第1電極と前記第2電極の間に配置される誘電性ポリマーの三層構造であり、電圧の印加により、前記開口にレンズが形成され、
     前記撮像装置は、印加される前記電圧のレベルに応じて、角度分解能が良好な第1モードと、空間分解能が良好な第2モードで、選択的に動作する、
    撮像装置。
    In an imaging apparatus having an optical sensor having a plurality of sensor elements, a main lens that guides light from an object to the optical sensor, and a microlens array arranged between the optical sensor and the main lens.
    The microlens array includes a first electrode that is transparent to visible light, a second electrode that has a plurality of openings and is transparent to visible light that faces the first electrode, and the first electrode and the above. It has a three-layer structure of a dielectric polymer arranged between the second electrodes, and a lens is formed in the aperture by applying a voltage.
    The imaging device selectively operates in a first mode having a good angular resolution and a second mode having a good spatial resolution according to the level of the applied voltage.
    Imaging device.
  2.  前記マイクロレンズアレイに印加される前記電圧のオン・オフを制御することで、通常カメラの機能と、プレノプティックカメラの機能が切り替え可能であることを特徴とする請求項1に記載の撮像装置。 The imaging according to claim 1, wherein the function of a normal camera and the function of a prenoptic camera can be switched by controlling the on / off of the voltage applied to the microlens array. Device.
  3.  前記第1モード、及び/または前記第2モードで、前記マイクロレンズアレイに印加される前記電圧のレベルを変えることで、前記マイクロレンズアレイの焦点距離を可変にすることを特徴とする請求項1または2に記載の撮像装置。 Claim 1 is characterized in that the focal length of the microlens array is made variable by changing the level of the voltage applied to the microlens array in the first mode and / or the second mode. Or the imaging apparatus according to 2.
  4.  複数のセンサ素子を有する光センサ、物体からの光を前記光センサに導く主レンズ、及び、前記光センサと前記主レンズの間に配置されるマイクロレンズアレイを備えた撮像装置における撮像方法であって、
     前記マイクロレンズアレイを、可視光に対して透明な第1電極と、複数の開口を有して前記第1電極と対向する可視光に対して透明な第2電極と、前記第1電極と前記第2電極の間に配置される誘電性ポリマーで形成し、
     前記マイクロレンズアレイに電圧を印加することで、前記開口にレンズを形成し、
     前記マイクロレンズアレイに印加される前記電圧のレベルに応じて、前記撮像装置を角度分解能が良好な第1モードと、空間分解能が良好な第2モードの間で選択的に動作させる、
    撮像方法。
    An imaging method in an imaging apparatus including an optical sensor having a plurality of sensor elements, a main lens that guides light from an object to the optical sensor, and a microlens array arranged between the optical sensor and the main lens. hand,
    The microlens array is provided with a first electrode that is transparent to visible light, a second electrode that has a plurality of openings and is transparent to visible light that faces the first electrode, and the first electrode and the above. Formed of a dielectric polymer placed between the second electrodes,
    By applying a voltage to the microlens array, a lens is formed in the aperture.
    Depending on the level of the voltage applied to the microlens array, the imaging device is selectively operated between a first mode having a good angular resolution and a second mode having a good spatial resolution.
    Imaging method.
  5.  前記マイクロレンズアレイに印加される前記電圧のオン・オフを制御することで、前記撮像装置において、通常カメラの機能と、プレノプティックカメラの機能を切り替えることを特徴とする請求項4に記載の撮像方法。 The fourth aspect of the present invention is characterized in that, by controlling the on / off of the voltage applied to the microlens array, the function of a normal camera and the function of a prenoptic camera are switched in the image pickup apparatus. Imaging method.
  6.  前記第1モード、及び/または前記第2モードで、前記マイクロレンズアレイに印加する前記電圧のレベルを変えることで、前記マイクロレンズアレイの焦点距離を可変にすることを特徴とする請求項4または5に記載の撮像方法。 4. The fourth or second mode, wherein the focal length of the microlens array is made variable by changing the level of the voltage applied to the microlens array in the first mode and / or the second mode. 5. The imaging method according to 5.
  7.  前記第2モードが選択されたときに、前記マイクロレンズアレイに第2の電圧を印加して前記開口に前記レンズを形成し、
     前記主レンズによって形成された像面からの光を前記マイクロレンズアレイの複数のレンズに導き、
     前記複数のレンズの各レンズに入射した光をN個のセンサ素子に集光する、
    ことを特徴とする請求項4~6のいずれか1項に記載の撮像方法。
    When the second mode is selected, a second voltage is applied to the microlens array to form the lens in the aperture.
    Light from the image plane formed by the main lens is guided to a plurality of lenses in the microlens array.
    The light incident on each lens of the plurality of lenses is focused on N sensor elements.
    The imaging method according to any one of claims 4 to 6, characterized in that.
PCT/JP2021/005462 2020-02-19 2021-02-15 Imaging device, and imaging method WO2021166834A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020026360 2020-02-19
JP2020-026360 2020-02-19
JP2021016716A JP2021132372A (en) 2020-02-19 2021-02-04 Imaging device and imaging method
JP2021-016716 2021-02-04

Publications (1)

Publication Number Publication Date
WO2021166834A1 true WO2021166834A1 (en) 2021-08-26

Family

ID=77391223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005462 WO2021166834A1 (en) 2020-02-19 2021-02-15 Imaging device, and imaging method

Country Status (2)

Country Link
TW (1) TW202136825A (en)
WO (1) WO2021166834A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054208A (en) * 2011-09-05 2013-03-21 Canon Inc Liquid lens array with variable refractive power
CN103091928A (en) * 2013-01-05 2013-05-08 东南大学 Electrically-controlled focal-adjustable liquid crystal lens array
US20140354777A1 (en) * 2013-05-29 2014-12-04 Electronics And Telecommunications Research Institute Apparatus and method for obtaining spatial information using active array lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013054208A (en) * 2011-09-05 2013-03-21 Canon Inc Liquid lens array with variable refractive power
CN103091928A (en) * 2013-01-05 2013-05-08 东南大学 Electrically-controlled focal-adjustable liquid crystal lens array
US20140354777A1 (en) * 2013-05-29 2014-12-04 Electronics And Telecommunications Research Institute Apparatus and method for obtaining spatial information using active array lens

Also Published As

Publication number Publication date
TW202136825A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
EP2227896B1 (en) Fast computational camera based on two arrays of lenses
JP5879549B2 (en) Light field imaging apparatus and image processing apparatus
US8369700B2 (en) Distance measurement and photometry device, and imaging apparatus
JP2007201915A (en) Planar camera unit
CN111552066B (en) Zoom assembly, lens module and electronic equipment
JP2008245055A (en) Image display device, photographing device, and image display method
US11812149B2 (en) Zoomable image sensor and image sensing method
JP2007065528A (en) Variable power optical system and imaging apparatus
JP2006251613A (en) Imaging lens device
US20180278859A1 (en) Image sensor and image-capturing device
US10564391B2 (en) Imaging device and control method therefor
JP2006126652A (en) Imaging apparatus
JP3140079U (en) Compound focus variable liquid crystal lens module
WO2021166834A1 (en) Imaging device, and imaging method
JP2023164919A (en) Video creating method
US20210203821A1 (en) Imaging device and electronic apparatus
US20140071317A1 (en) Image pickup apparatus
JP2005020718A (en) Multifocal imaging device and mobile device
JP2021132372A (en) Imaging device and imaging method
JP2004228645A (en) Solid-state imaging apparatus and optical apparatus using the same
JP2007081544A (en) Photographing apparatus
KR100645635B1 (en) Image pick-up module comprising an optical device
CN115022510A (en) Camera assembly, electronic equipment, shooting method of electronic equipment and shooting device
US20220343471A1 (en) Electronic apparatus
CN107786859B (en) Method and apparatus for high resolution digital photography from multiple image sensor frames

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756689

Country of ref document: EP

Kind code of ref document: A1