WO2021166269A1 - Communication device, communication system, communication method, and communication program - Google Patents

Communication device, communication system, communication method, and communication program Download PDF

Info

Publication number
WO2021166269A1
WO2021166269A1 PCT/JP2020/007261 JP2020007261W WO2021166269A1 WO 2021166269 A1 WO2021166269 A1 WO 2021166269A1 JP 2020007261 W JP2020007261 W JP 2020007261W WO 2021166269 A1 WO2021166269 A1 WO 2021166269A1
Authority
WO
WIPO (PCT)
Prior art keywords
metadata
packet
communication
unit
communication device
Prior art date
Application number
PCT/JP2020/007261
Other languages
French (fr)
Japanese (ja)
Inventor
雅幸 西木
勇樹 武井
雅人 西口
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/007261 priority Critical patent/WO2021166269A1/en
Publication of WO2021166269A1 publication Critical patent/WO2021166269A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing

Definitions

  • the present invention relates to a communication device, a communication system, a communication method and a communication program.
  • INT In-band Network Telemetry
  • INT adds a time stamp as metadata to grasp the delay in each device in detail (see Non-Patent Document 1).
  • the metadata collected by INT can be distributed only within the INT domain formed within each business operator, and it is difficult to link with the metadata collected by other business operators. there were.
  • the present invention has been made in view of the above, and an object of the present invention is to grasp the communication quality of End to End via a plurality of business equipment.
  • the communication device is a communication device in which an additional unit that adds metadata to a received packet and the packet to which the metadata is added are adjacent to each other.
  • a transfer unit that has a transfer unit that transfers data to the packet, and a transfer unit that is adjacent to a communication device of another operator or a final destination of communication among the transfer units is further added in association with the packet.
  • the data is transferred to a collection unit that collects metadata.
  • FIG. 1 is a diagram for explaining an outline of the communication system of the present embodiment.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of the communication system of the present embodiment.
  • FIG. 3 is a diagram for explaining the processing of the transfer unit.
  • FIG. 4 is a diagram for explaining the processing of the transfer unit.
  • FIG. 5 is a diagram for explaining the processing of the transfer unit.
  • FIG. 6 is a diagram for explaining the processing of the transfer unit.
  • FIG. 7 is a diagram for explaining the processing of the transfer unit.
  • FIG. 8 is a diagram for explaining the processing of the transfer unit.
  • FIG. 9 is a diagram for explaining the processing of the transfer unit.
  • FIG. 10 is a sequence diagram showing a communication processing procedure.
  • FIG. 11 is a diagram showing an example of a computer that executes a communication program.
  • FIG. 1 is a diagram for explaining an outline of the communication system of the present embodiment.
  • the communication device (NE, Network Element) 10 adds a time stamp indicating the time passing through the own device as metadata to the received packet, and the adjacent communication device 10 Transfer to. Further, the communication device 10 transfers the metadata in association with the packet to the collection device 20 in the own company network by the communication process described later.
  • the cloud service is an end-to-end between the user and the service server, and the service is provided to the user via a plurality of business network.
  • the end user is routed through three business networks: a business network that accommodates the end user, a business network that has a general-purpose server, and a business network that has a service server for the provided service.
  • the service is provided to.
  • the collecting device 20 in each business network collects the metadata transferred from the communication device 10 in the own business network. Then, the monitoring device 30 combines the metadata collected by the collecting device 20 of each operator network for each packet.
  • the communication system 1 can grasp the transmission delay in each communication device 10 in detail by collecting the metadata including the time stamp for each packet, for example. In this way, the communication system 1 can quickly and in detail grasp the communication quality of End to End via the equipment of a plurality of business operators.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of the communication system of the present embodiment.
  • the communication system 1 of the present embodiment includes a communication device (NE) 10, a collection device 20, and a monitoring device 30.
  • the communication device 10 is realized by an NP (Network Processor), an FPGA (Field Programmable Gate Array), or the like, executes a processing program stored in a memory, and functions as a control unit 11. Further, the communication device 10 includes a storage unit 12 realized by a semiconductor memory element such as a RAM or a flash memory. Further, the communication device 10 includes a communication control unit (not shown), and communicates with an external device such as the collection device 20 or another communication device 10 via the communication control unit.
  • NP Network Processor
  • FPGA Field Programmable Gate Array
  • the control unit 11 functions as a reception unit 11a, an addition unit 11b, and a transfer unit 11c, as illustrated in FIG. Note that these functional units may be implemented in different hardware. Further, the control unit 11 may include other functional units.
  • the reception unit 11a receives the packet. Specifically, the reception unit 11a receives a packet generated in response to a user's operation input or a packet transferred from an adjacent communication device 10, a service server, or the like.
  • the addition unit 11b adds metadata to the received packet. Specifically, the addition unit 11b adds, for example, a time stamp indicating the time when the packet passes through the own device as metadata to the packet received by the reception unit 11a.
  • the transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10. Further, among the transfer units 11c, the communication device 10 of another operator or the transfer unit 11c adjacent to the final destination of the communication collects the added metadata in association with the packet to collect the metadata. Transfer to unit 21a (described later).
  • FIGS. 3 to 9 are diagrams for explaining the processing of the transfer unit 11c.
  • the transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10 as it is.
  • metadata is added each time the packet passes through the communication device 10. Further, even if the packet passes through the communication device 10 of another operator, the metadata is similarly added.
  • the transfer unit 11c transfers the added metadata to the collection unit 21a of the collection device 20. Specifically, as shown in FIG. 3, in the transfer unit 11c, it is the last stage in the own business network and is adjacent to the final destination of communication such as the communication device 10 or the service server of another business.
  • the transfer unit 11c performs a process of transferring to the collection unit 21a of the collection device 20 in the own company network.
  • the collection device 20 in the operator network which is the final destination of communication, can collect the accumulated metadata for each packet each time it passes through the communication device 10.
  • the metadata including the time stamp is aggregated for each packet, so that it is possible to easily confirm the end-to-end transmission time and grasp the transmission delay.
  • the transfer unit 11c is added at the starting point and the ending point in the own company network when transferring metadata to the collecting unit 21a. You may transfer only the metadata. For example, as shown in FIG. 4, the transfer unit 11c may transfer only the time stamps of the start point and the end point in each operator network to another operator network. In this case, it is possible to grasp the communication quality for each business operator in the collection device 20 in the business operator network, which is the final destination. In addition, the metadata distributed to other operator networks can be reduced, and the increase in header length can be suppressed as the number of relay stages increases. On the other hand, since all the metadata added in the own business network is transferred to the collection device 20 of each business network, it is possible to grasp the communication quality within each business.
  • the transfer unit 11c also transfers the payload of the packet when transferring the metadata to the collection unit 21a, and transfers the added metadata when transferring the packet to the communication device 10 of another adjacent operator. You may delete it.
  • the communication system 1 as shown in FIG. 5, it is possible to associate the packet with the metadata by identifying the packet by the payload of the packet.
  • the transfer unit 11c it is adjacent to the communication device 10 of another operator or the service server which is the final destination of communication, which is the last stage in the own operator network.
  • the transfer unit 11c performs a process of transferring the added metadata and the payload of the packet to the collection unit 21a of the collection device 20 in the own company network.
  • the transfer unit 11c transfers to the communication device 10 of another adjacent business operator, the transfer unit 11c performs a process of deleting the added metadata.
  • the coupling unit 31a which will be described later, can identify the packet by the payload of the packet and aggregate the metadata for the same packet. At that time, the connecting portion 31a does not need to consider the form of the metadata for each business operator, and can be easily aggregated.
  • the access control unit 21b which will be described later, can control the range in which information is disclosed.
  • the transfer unit 11c hashes the payload with a hash function and transfers the calculated hash value together with the metadata to the collection unit 21a as shown in FIG. May be good.
  • the communication system 1 can identify packets by hash values and aggregate metadata for the same packets.
  • the data capacity can be compressed and the data can be anonymized.
  • the transfer unit 11c When the transfer unit 11c transfers the metadata to the collection unit 21a, the transfer unit 11c adds the identification information (packet ID) for identifying the packet, transfers the identification information together, and transfers the communication device 10 of another adjacent business operator.
  • the added metadata may be deleted from the packet to which the identification information is added.
  • the packet in the communication system 1, as shown in FIG. 7, the packet can be associated with the metadata by identifying the packet by the packet ID added by the transfer unit 11c.
  • the transfer unit 11c it is adjacent to the communication device 10 of another operator or the service server which is the final destination of communication, which is the last stage in the own operator network.
  • the forwarding unit 11c adds a packet ID to the packet.
  • the transfer unit 11c transfers the added metadata and the packet ID to the collection unit 21a of the collection device 20 in the own company network.
  • the transfer unit 11c transfers to the communication device 10 of another adjacent business operator, the transfer unit 11c performs a process of deleting the added metadata from the packet to which the packet ID is added.
  • the coupling unit 31a which will be described later, can identify the packet by the packet ID and aggregate the metadata for the same packet.
  • the access control unit 21b which will be described later, can control the range in which information is disclosed.
  • the transfer unit 11c adds the packet ID illustrated in FIG. 8 or 9 to the received packet and transfers the packet ID.
  • FIG. 8 shows an example in which Probemarker is used as the packet ID.
  • the transfer unit 11c may set a unique value for each packet in the Probemarker as a packet ID within a predetermined range of values.
  • FIG. 9 shows an example in which a TCP sequence number is used as the packet ID.
  • the transfer unit 11c may use a default sequence number included in the TCP header as the packet ID, as shown in FIG. In this case, the transfer unit 1c does not need to add the packet ID again, and can identify the packet without distributing the packet ID between the operators on the data screen.
  • the collection device 20 is realized by a CPU (Central Processing Unit), an NP, an FPGA, or the like, executes a processing program stored in a memory, and functions as a control unit 21. Further, the collecting device 20 includes a storage unit 22 realized by a semiconductor memory element such as a RAM or a flash memory. Further, the collecting device 20 includes a communication control unit (not shown), and communicates with an external device such as the communication device 10 and the monitoring device 30 via the communication control unit.
  • a CPU Central Processing Unit
  • NP Central Processing Unit
  • FPGA Field Programmable gate array
  • the storage unit 22 stores the metadata 22a collected from the communication device 10.
  • the metadata 22a is, for example, a time stamp added to the packet by each communication device 10.
  • the control unit 21 functions as a collection unit 21a and an access control unit 21b, as illustrated in FIG. Note that these functional units may be implemented in different hardware. Further, the control unit 11 may include other functional units. For example, the control unit 21 in the operator network of the service operator having the service server may include the coupling unit 31a described later.
  • the collection unit 21a collects the metadata transferred from the transfer unit 11c and stores it in the storage unit 22. Specifically, the collection unit 21a collects the metadata transferred by each communication device 10 in addition to the packet from each communication device 10 in the own company network. For example, as shown in FIG. 3 or 4, the collecting unit 21a adds metadata to the packet from the communication device 10 which is the last stage in the own business network and is adjacent to the other business network. To collect.
  • the collecting unit 21a is added to the packet payload and the packet from the communication device 10 which is the last stage in the own business network and is adjacent to the other business network. Collect metadata and.
  • the collecting unit 21a receives the packet ID and the meta added to the packet from the communication device 10 which is the last stage in the own business network and is adjacent to the other business network. Collect data and.
  • the collecting unit 21a stores the collected metadata in the storage unit 22 in association with the packet. For example, as shown in FIG. 3 or 4, the collecting unit 21a stores the metadata added to each packet in the storage unit 22 for each packet. Alternatively, as shown in FIG. 5, the collecting unit 21a associates the payload of the packet with the metadata added to the packet and stores it in the storage unit 22. Alternatively, as shown in FIG. 7, the collecting unit 21a associates the packet ID with the metadata added to the packet and stores it in the storage unit 22.
  • the collection unit 21a of the collection device 20 in the operator network which is the final destination of communication such as a service server, is a meta added to the packet in all the operator networks. Get the data.
  • the collecting unit 21a can acquire the metadata in which the metadata for each operator network is combined for each packet, regardless of the coupling unit 31a described later.
  • the access control unit 21b will be described later.
  • the monitoring device 30 is realized by a CPU, NP, FPGA, or the like, executes a processing program stored in a memory, and functions as a control unit 31. Further, the monitoring device 30 includes a storage unit 32 realized by semiconductor memory elements such as RAM and flash memory. Further, the monitoring device 30 includes a communication control unit (not shown), and communicates with the collection device 20 and an external device via the communication control unit. The storage unit 32 may be configured to communicate with the control unit 31 via the communication control unit.
  • the control unit 31 functions as a coupling unit 31a.
  • the coupling portion 31a may be mounted on hardware other than the monitoring device 30.
  • the coupling unit 31a may be mounted on the collection device 20 in the operator network of the service operator having the service server.
  • the control unit 31 may include other functional units.
  • the coupling unit 31a acquires the metadata 22a from the storage units 22 of the plurality of collection devices 20, and combines the metadata 22a for each packet. For example, as shown in FIG. 5, the coupling unit 31a acquires the metadata 22a associated with the payload of the packet from the storage unit 22 of the collection device 20 of each operator network. Further, the coupling unit 31a can combine the metadata of the same packet by identifying the packet by the payload.
  • the coupling unit 31a acquires the metadata associated with the packet ID 22a from the storage unit 22 of the collection device 20 of each operator network. Further, the coupling unit 31a can combine the metadata of the same packet by identifying the packet by the packet ID.
  • the access control unit 21b of the collection device 20 manages the coupling unit 31a that can acquire the metadata 22a from the storage unit 22 for the coupling unit 31a. For example, in the example shown in FIG. 5 or 7, the access control unit 21b determines whether or not to allow access to the storage unit 22 of its own device according to the attributes of the coupling unit 31a. For example, by identifying the coupling portion 31a according to the user or the installation location of the monitoring device 30, it is possible to set the coupling portion 31a to which access is permitted in advance. As a result, the collecting device 20 can control the distribution destination of the metadata in the own business operator.
  • FIG. 10 is a sequence diagram showing a communication processing procedure.
  • the sequence of FIG. 10 is started, for example, at the timing when the user inputs an operation instructing the start of communication.
  • the addition unit 11b adds a time stamp indicating, for example, the time when the packet passes through the own device as metadata to the packet received by the reception unit 11a (step S1).
  • the transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10 (step S2). Further, among the transfer units 11c, the transfer unit 11c, which is the last stage in the own company network and is adjacent to the communication device 10 of another company or the final arrival point of the communication, is added in association with the packet. The metadata is transferred to the collecting device 20 (step S3).
  • the collecting unit 21a collects the metadata transferred by each communication device 10 in the own company network in addition to the packet, and stores the metadata in the storage unit 22 in association with the packet (step S4).
  • the coupling unit 31a acquires the metadata 22a for each operator network from the storage units 22 of the plurality of collection devices 20, and combines the metadata 22a for each packet (step S5). As a result, a series of communication processes is completed.
  • the addition unit 11b adds metadata to the received packet. Further, the transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10. Further, among the transfer units 11c, the communication device 10 of another operator or the transfer unit 11c adjacent to the final arrival point of the communication transfers the added metadata to the collection unit 21a in association with the packet.
  • the metadata collected by the conventional INT can be grasped in flow units by recording in association with 5 types in the own company network.
  • the same packet in the same flow could not be identified.
  • the 5-tuple configuration may be changed by NAT or the like, and the added metadata could not be grasped for each packet.
  • the communication device 10 of the present embodiment even when communication is performed via another carrier network, the metadata added to the collection device 20 of each carrier network is added to the other in the previous stage. It is transferred for each packet, including those added by the operator's equipment. Therefore, for example, the collection device 20 of the service provider can link the metadata added via a plurality of business equipment for each packet. As a result, according to the communication device 10 of the present embodiment, it is possible to grasp the communication quality in End to End via the equipment of a plurality of business operators.
  • the transfer unit 11c may transfer the metadata only to the metadata added at the start point and the end point in the own company network.
  • the communication device 10 can prevent the header length from increasing as the number of relay stages increases.
  • the transfer unit 11c also transfers the payload of the packet when transferring the metadata to the collection unit 21a, and the meta added when the packet is transferred to the communication device 10 of another adjacent operator. You may delete the data.
  • the communication device 10 can suppress the influence on the data screen and the distribution of metadata to other businesses.
  • the transfer unit 11c adds identification information for identifying the packet, transfers the identification information together, and transmits the packet to the communication device 10 of another adjacent business operator.
  • the added metadata may be deleted from the packet to which the identification information is added.
  • the communication device 10 can suppress the increase in the header length on the data screen within the range of the packet ID and prevent the distribution of metadata for other businesses.
  • the collecting unit 21a collects the metadata transferred from the transfer unit 11c and stores it in the storage unit 22. Further, the coupling unit 31a acquires the metadata 22a from the plurality of storage units 22 and combines the metadata for each packet. As a result, the communication system 1 can link the metadata added via a plurality of operator equipment for each packet.
  • the access control unit 21b manages the coupling unit 31a capable of acquiring the metadata 22a from the storage unit 22.
  • the collecting device 20 can control the distribution destination of the metadata in the own business operator.
  • the communication device 10, the collection device 20, and the monitoring device 30 can be implemented by installing a communication program that executes the above communication processing as package software or online software on a desired computer.
  • the information processing device can function as the communication device 10, the collecting device 20, or the monitoring device 30.
  • the information processing device referred to here includes a desktop type or notebook type personal computer.
  • information processing devices include smartphones, mobile communication terminals such as mobile phones and PHS (Personal Handyphone System), and slate terminals such as PDAs (Personal Digital Assistants).
  • the functions of the communication device 10, the collection device 20, or the monitoring device 30 may be implemented in the cloud server.
  • FIG. 11 is a diagram showing an example of a computer that executes a communication program.
  • the computer 1000 has, for example, a memory 1010, a CPU 1020, a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. Each of these parts is connected by a bus 1080.
  • the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012.
  • the ROM 1011 stores, for example, a boot program such as a BIOS (Basic Input Output System).
  • BIOS Basic Input Output System
  • the hard disk drive interface 1030 is connected to the hard disk drive 1031.
  • the disk drive interface 1040 is connected to the disk drive 1041.
  • a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041.
  • a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050.
  • a display 1061 is connected to the video adapter 1060.
  • the hard disk drive 1031 stores, for example, the OS 1091, the application program 1092, the program module 1093, and the program data 1094. Each piece of information described in the above embodiment is stored in, for example, the hard disk drive 1031 or the memory 1010.
  • the communication program is stored in the hard disk drive 1031 as, for example, a program module 1093 in which a command executed by the computer 1000 is described.
  • the program module 1093 in which each process executed by the communication device 10 described in the above embodiment is described is stored in the hard disk drive 1031.
  • the data used for information processing by the communication program is stored as program data 1094 in, for example, the hard disk drive 1031.
  • the CPU 1020 reads the program module 1093 and the program data 1094 stored in the hard disk drive 1031 into the RAM 1012 as needed, and executes each of the above-described procedures.
  • the program module 1093 and program data 1094 related to the communication program are not limited to the case where they are stored in the hard disk drive 1031. For example, they are stored in a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. May be done. Alternatively, the program module 1093 and the program data 1094 related to the communication program are stored in another computer connected via a network such as LAN or WAN (Wide Area Network), and read by the CPU 1020 via the network interface 1070. You may.
  • LAN or WAN Wide Area Network
  • Communication system 10 Communication device (NE) 11, 21, 31 Control unit 11a Reception unit 11b Addition unit 11c Transfer unit 12, 22, 32 Storage unit 20 Collection device 21a Collection unit 21b Access control unit 30 Monitoring device 31a Coupling unit

Abstract

In the present invention, an attaching unit (11b) attaches metadata to a packet which was received. A transfer unit (11c) transfers the packet, to which metadata has been attached, to an adjacent communication device (10). In addition, among transfer units (11c), a transfer unit (11c) adjacent to a communication device (10) of another business operator or to a final arrival point of communication transfers metadata that was associated with and attached to said packet to a collection unit (21a) for collecting metadata.

Description

通信装置、通信システム、通信方法および通信プログラムCommunication devices, communication systems, communication methods and communication programs
 本発明は、通信装置、通信システム、通信方法および通信プログラムに関する。 The present invention relates to a communication device, a communication system, a communication method and a communication program.
 クラウドサービスの普及により、多様な品質要件をもつアプリケーションサービスがネットワークを介して提供されている。これらのサービスは、一般に、複数の事業者を介してエンドユーザに提供される。そのため、特に、障害発生時には、各事業者を介してEnd to Endでの通信品質の把握が必要となっている。 With the spread of cloud services, application services with various quality requirements are being provided via networks. These services are generally provided to end users through multiple operators. Therefore, in particular, when a failure occurs, it is necessary to grasp the communication quality end-to-end through each operator.
 一方、ネットワークの通信品質を監視するINT(In-band Network Telemetry)技術が知られている。INTは、パケットが転送装置を経由する際に、メタデータとしてタイムスタンプを付加することにより、各装置における遅延を詳細に把握する(非特許文献1参照)。 On the other hand, INT (In-band Network Telemetry) technology for monitoring network communication quality is known. When a packet passes through a transfer device, INT adds a time stamp as metadata to grasp the delay in each device in detail (see Non-Patent Document 1).
 しかしながら、従来技術によれば、INTで収集されるメタデータは、各事業者内で形成されるINTドメイン内でのみ流通可能であって、他事業者が収集したメタデータとの連携が困難であった。 However, according to the prior art, the metadata collected by INT can be distributed only within the INT domain formed within each business operator, and it is difficult to link with the metadata collected by other business operators. there were.
 本発明は、上記に鑑みてなされたものであって、複数の事業者設備を介したEnd to Endでの通信品質を把握することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to grasp the communication quality of End to End via a plurality of business equipment.
 上述した課題を解決し、目的を達成するために、本発明に係る通信装置は、受信したパケットにメタデータを付加する付加部と、前記メタデータが付加された前記パケットを、隣接する通信装置に転送する転送部と、を有し、前記転送部のうち、他の事業者の通信装置または通信の最終到達点に隣接する転送部がさらに、前記パケットに対応づけて、付加された前記メタデータを、メタデータを収集する収集部に転送することを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the communication device according to the present invention is a communication device in which an additional unit that adds metadata to a received packet and the packet to which the metadata is added are adjacent to each other. A transfer unit that has a transfer unit that transfers data to the packet, and a transfer unit that is adjacent to a communication device of another operator or a final destination of communication among the transfer units is further added in association with the packet. The data is transferred to a collection unit that collects metadata.
 本発明によれば、複数の事業者設備を介したEnd to Endでの通信品質を把握することが可能となる。 According to the present invention, it is possible to grasp the end-to-end communication quality via a plurality of business operator facilities.
図1は、本実施形態の通信システムの概要を説明するための図である。FIG. 1 is a diagram for explaining an outline of the communication system of the present embodiment. 図2は、本実施形態の通信システムの概略構成を例示する模式図である。FIG. 2 is a schematic diagram illustrating a schematic configuration of the communication system of the present embodiment. 図3は、転送部の処理を説明するための図である。FIG. 3 is a diagram for explaining the processing of the transfer unit. 図4は、転送部の処理を説明するための図である。FIG. 4 is a diagram for explaining the processing of the transfer unit. 図5は、転送部の処理を説明するための図である。FIG. 5 is a diagram for explaining the processing of the transfer unit. 図6は、転送部の処理を説明するための図である。FIG. 6 is a diagram for explaining the processing of the transfer unit. 図7は、転送部の処理を説明するための図である。FIG. 7 is a diagram for explaining the processing of the transfer unit. 図8は、転送部の処理を説明するための図である。FIG. 8 is a diagram for explaining the processing of the transfer unit. 図9は、転送部の処理を説明するための図である。FIG. 9 is a diagram for explaining the processing of the transfer unit. 図10は、通信処理手順を示すシーケンス図である。FIG. 10 is a sequence diagram showing a communication processing procedure. 図11は、通信プログラムを実行するコンピュータの一例を示す図である。FIG. 11 is a diagram showing an example of a computer that executes a communication program.
 以下、図面を参照して、本発明の一実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this embodiment. Further, in the description of the drawings, the same parts are indicated by the same reference numerals.
[通信システムの概要]
 図1は、本実施形態の通信システムの概要を説明するための図である。図1に示すように、通信システム1において、通信装置(NE、Network Element)10は、受信したパケットに、自装置を経由する時刻を示すタイムスタンプをメタデータとして付加し、隣接する通信装置10に転送する。また、通信装置10は、後述する通信処理により、自事業者ネットワーク内の収集装置20に、パケットに対応づけてメタデータを転送する。
[Outline of communication system]
FIG. 1 is a diagram for explaining an outline of the communication system of the present embodiment. As shown in FIG. 1, in the communication system 1, the communication device (NE, Network Element) 10 adds a time stamp indicating the time passing through the own device as metadata to the received packet, and the adjacent communication device 10 Transfer to. Further, the communication device 10 transfers the metadata in association with the packet to the collection device 20 in the own company network by the communication process described later.
 ここで、クラウドサービスは、ユーザとサービスサーバとの間のEnd to Endで、複数の事業者ネットワークを介してユーザにサービスが提供される。図1に示す例では、エンドユーザを収容する事業者ネットワークと、汎用のサーバを有する事業者ネットワークと、提供サービスのサービスサーバを有する事業者ネットワークとの3つの事業者ネットワークを介して、エンドユーザにサービスが提供されている。 Here, the cloud service is an end-to-end between the user and the service server, and the service is provided to the user via a plurality of business network. In the example shown in FIG. 1, the end user is routed through three business networks: a business network that accommodates the end user, a business network that has a general-purpose server, and a business network that has a service server for the provided service. The service is provided to.
 各事業者ネットワーク内の収集装置20は、自事業者ネットワーク内の通信装置10から転送されたメタデータを収集する。そして、監視装置30が、各事業者ネットワークの収集装置20が収集したメタデータを、パケットごとに結合する。これにより、通信システム1では、複数の事業者ネットワークを介した場合にも、同一のパケットに対して複数の事業者設備で付加されたメタデータを把握することが可能となる。したがって、通信システム1は、例えば、タイムスタンプを含むメタデータをパケットごとに収集することにより、各通信装置10での伝送遅延を詳細に把握することができる。このように、通信システム1は、複数の事業者設備を介したEnd to Endの通信品質を迅速かつ詳細に把握することが可能となる。 The collecting device 20 in each business network collects the metadata transferred from the communication device 10 in the own business network. Then, the monitoring device 30 combines the metadata collected by the collecting device 20 of each operator network for each packet. As a result, in the communication system 1, it is possible to grasp the metadata added by the plurality of operator equipment to the same packet even through the plurality of operator networks. Therefore, the communication system 1 can grasp the transmission delay in each communication device 10 in detail by collecting the metadata including the time stamp for each packet, for example. In this way, the communication system 1 can quickly and in detail grasp the communication quality of End to End via the equipment of a plurality of business operators.
[通信システムの構成]
 図2は、本実施形態の通信システムの概略構成を例示する模式図である。図2に例示するように、本実施形態の通信システム1は、通信装置(NE)10、収集装置20、および監視装置30を含んで構成される。
[Communication system configuration]
FIG. 2 is a schematic diagram illustrating a schematic configuration of the communication system of the present embodiment. As illustrated in FIG. 2, the communication system 1 of the present embodiment includes a communication device (NE) 10, a collection device 20, and a monitoring device 30.
[通信装置]
 通信装置10は、NP(Network Processor)やFPGA(Field Programmable Gate Array)等で実現され、メモリに記憶された処理プログラムを実行して、制御部11として機能する。また、通信装置10は、RAM、フラッシュメモリ等の半導体メモリ素子で実現される記憶部12を備える。また、通信装置10は、図示しない通信制御部を備え、通信制御部を介して収集装置20や他の通信装置10等の外部の装置と通信する。
[Communication device]
The communication device 10 is realized by an NP (Network Processor), an FPGA (Field Programmable Gate Array), or the like, executes a processing program stored in a memory, and functions as a control unit 11. Further, the communication device 10 includes a storage unit 12 realized by a semiconductor memory element such as a RAM or a flash memory. Further, the communication device 10 includes a communication control unit (not shown), and communicates with an external device such as the collection device 20 or another communication device 10 via the communication control unit.
 制御部11は、図2に例示するように、受付部11a、付加部11bおよび転送部11cとして機能する。なお、これらの機能部は、それぞれ異なるハードウェアに実装されてもよい。また、制御部11は、その他の機能部を備えてもよい。 The control unit 11 functions as a reception unit 11a, an addition unit 11b, and a transfer unit 11c, as illustrated in FIG. Note that these functional units may be implemented in different hardware. Further, the control unit 11 may include other functional units.
 受付部11aは、パケットを受け付ける。具体的には、受付部11aは、ユーザの操作入力に応じて発生したパケット、あるいは隣接する通信装置10やサービスサーバ等から転送されたパケットを受け付ける。 The reception unit 11a receives the packet. Specifically, the reception unit 11a receives a packet generated in response to a user's operation input or a packet transferred from an adjacent communication device 10, a service server, or the like.
 付加部11bは、受信したパケットにメタデータを付加する。具体的には、付加部11bは、受付部11aが受け付けたパケットに、メタデータとして、例えば、パケットが自装置を通過する時刻を示すタイムスタンプを付加する。 The addition unit 11b adds metadata to the received packet. Specifically, the addition unit 11b adds, for example, a time stamp indicating the time when the packet passes through the own device as metadata to the packet received by the reception unit 11a.
 転送部11cは、メタデータが付加されたパケットを、隣接する通信装置10に転送する。さらに、転送部11cのうち、他の事業者の通信装置10または通信の最終到達点に隣接する転送部11cが、該パケットに対応づけて、付加されたメタデータを、メタデータを収集する収集部21a(後述)に転送する。 The transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10. Further, among the transfer units 11c, the communication device 10 of another operator or the transfer unit 11c adjacent to the final destination of the communication collects the added metadata in association with the packet to collect the metadata. Transfer to unit 21a (described later).
 ここで、図3~図9は、転送部11cの処理を説明するための図である。例えば、転送部11cは、図3に示すように、メタデータが付加されたパケットをそのまま隣接する通信装置10に転送する。この場合には、パケットが通信装置10を経由する度にメタデータが追加される。また、パケットが他の事業者の通信装置10を経由しても同様に、メタデータが追加される。 Here, FIGS. 3 to 9 are diagrams for explaining the processing of the transfer unit 11c. For example, as shown in FIG. 3, the transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10 as it is. In this case, metadata is added each time the packet passes through the communication device 10. Further, even if the packet passes through the communication device 10 of another operator, the metadata is similarly added.
 また、転送部11cは、付加されたメタデータを、収集装置20の収集部21aに転送する。具体的には、図3に示すように、転送部11cのうち、自事業者ネットワーク内の最後段であって他の事業者の通信装置10またはサービスサーバ等の通信の最終到達点に隣接する転送部11cが、自事業者ネットワーク内の収集装置20の収集部21aに転送する処理を行う。この場合には、通信の最終到達点となる事業者ネットワーク内の収集装置20において、パケットごとに、通信装置10を経由する度に蓄積されたメタデータを収集することが可能となる。 Further, the transfer unit 11c transfers the added metadata to the collection unit 21a of the collection device 20. Specifically, as shown in FIG. 3, in the transfer unit 11c, it is the last stage in the own business network and is adjacent to the final destination of communication such as the communication device 10 or the service server of another business. The transfer unit 11c performs a process of transferring to the collection unit 21a of the collection device 20 in the own company network. In this case, the collection device 20 in the operator network, which is the final destination of communication, can collect the accumulated metadata for each packet each time it passes through the communication device 10.
 このようにして、通信システム1では、タイムスタンプを含むメタデータがパケットごとに集約されることにより、End to Endの伝送時間を確認して伝送遅延を把握することが容易に可能となる。 In this way, in the communication system 1, the metadata including the time stamp is aggregated for each packet, so that it is possible to easily confirm the end-to-end transmission time and grasp the transmission delay.
 なお、中継段数の増加に応じてヘッダ長が増大することを抑止するために、転送部11cは、収集部21aにメタデータを転送する際に、自事業者ネットワーク内の起点および終点で付加されたメタデータに限定して転送してもよい。例えば、図4に示したように、転送部11cは、各事業者ネットワーク内の起点および終点のタイムスタンプのみを他の事業者ネットワークに転送してもよい。この場合には、最終到達点となる事業者ネットワーク内の収集装置20において、事業者単位での通信品質の把握は可能である。また、他の事業者ネットワークに流通するメタデータが削減される上に、中継段数の増加に応じたヘッダ長の増大を抑止できる。一方、各事業者ネットワークの収集装置20には、自事業者ネットワーク内で付加された全てのメタデータが転送されるので、各事業者内での通信品質の把握は可能である。 In order to prevent the header length from increasing as the number of relay stages increases, the transfer unit 11c is added at the starting point and the ending point in the own company network when transferring metadata to the collecting unit 21a. You may transfer only the metadata. For example, as shown in FIG. 4, the transfer unit 11c may transfer only the time stamps of the start point and the end point in each operator network to another operator network. In this case, it is possible to grasp the communication quality for each business operator in the collection device 20 in the business operator network, which is the final destination. In addition, the metadata distributed to other operator networks can be reduced, and the increase in header length can be suppressed as the number of relay stages increases. On the other hand, since all the metadata added in the own business network is transferred to the collection device 20 of each business network, it is possible to grasp the communication quality within each business.
 転送部11cは、収集部21aにメタデータを転送する際に、パケットのペイロードを併せて転送し、隣接する他の事業者の通信装置10にパケットを転送する際に、付加されたメタデータを削除してしてもよい。この場合には、通信システム1では、図5に示すように、パケットのペイロードでパケットを識別することにより、メタデータにパケットを対応づけることが可能となっている。 The transfer unit 11c also transfers the payload of the packet when transferring the metadata to the collection unit 21a, and transfers the added metadata when transferring the packet to the communication device 10 of another adjacent operator. You may delete it. In this case, in the communication system 1, as shown in FIG. 5, it is possible to associate the packet with the metadata by identifying the packet by the payload of the packet.
 具体的には、図5に示すように、転送部11cのうち、自事業者ネットワーク内の最後段であって他の事業者の通信装置10または通信の最終到達点であるサービスサーバに隣接する転送部11cが、付加されたメタデータとパケットのペイロードとを、自事業者ネットワーク内の収集装置20の収集部21aに転送する処理を行う。 Specifically, as shown in FIG. 5, in the transfer unit 11c, it is adjacent to the communication device 10 of another operator or the service server which is the final destination of communication, which is the last stage in the own operator network. The transfer unit 11c performs a process of transferring the added metadata and the payload of the packet to the collection unit 21a of the collection device 20 in the own company network.
 また、この転送部11cが、隣接する他の事業者の通信装置10に転送する際には、付加されたメタデータを削除する処理を行う。これにより、通信システム1では、他の事業者に対して、データプレン上の影響もメタデータが流通することも抑止できる。また、後述する結合部31aが、パケットのペイロードでパケットを識別して、同一のパケットに対するメタデータを集約することが可能となる。その際に、結合部31aは、事業者ごとのメタデータの形態を考慮する必要がなく、容易に集約することが可能である。また、後述するアクセス制御部21bが、情報を公開する範囲を制御することが可能となる。 Further, when the transfer unit 11c transfers to the communication device 10 of another adjacent business operator, the transfer unit 11c performs a process of deleting the added metadata. As a result, in the communication system 1, it is possible to prevent the influence on the data screen and the distribution of metadata to other operators. Further, the coupling unit 31a, which will be described later, can identify the packet by the payload of the packet and aggregate the metadata for the same packet. At that time, the connecting portion 31a does not need to consider the form of the metadata for each business operator, and can be easily aggregated. In addition, the access control unit 21b, which will be described later, can control the range in which information is disclosed.
 なお、転送部11cは、ペイロード自体をそのまま収集部21aに転送するかわりに、図6に示すように、ペイロードをハッシュ関数でハッシュ化し、算出したハッシュ値をメタデータとともに収集部21aに転送してもよい。このように、通信システム1は、ハッシュ値でパケットを識別して、同一のパケットに対するメタデータを集約することが可能となる。この場合には、データ容量の圧縮と、データの匿名化が可能となる。 Instead of transferring the payload itself to the collection unit 21a as it is, the transfer unit 11c hashes the payload with a hash function and transfers the calculated hash value together with the metadata to the collection unit 21a as shown in FIG. May be good. In this way, the communication system 1 can identify packets by hash values and aggregate metadata for the same packets. In this case, the data capacity can be compressed and the data can be anonymized.
 転送部11cは、収集部21aにメタデータを転送する際に、パケットを識別する識別情報(パケットID)を付加し、該識別情報を併せて転送し、隣接する他の事業者の通信装置10にパケットを転送する際に、該識別情報が付加されたパケットから、付加されたメタデータを削除してもよい。この場合には、通信システム1では、図7に示すように、転送部11cが付加したパケットIDでパケットを識別することにより、メタデータにパケットを対応づけることが可能となっている。 When the transfer unit 11c transfers the metadata to the collection unit 21a, the transfer unit 11c adds the identification information (packet ID) for identifying the packet, transfers the identification information together, and transfers the communication device 10 of another adjacent business operator. When forwarding the packet to, the added metadata may be deleted from the packet to which the identification information is added. In this case, in the communication system 1, as shown in FIG. 7, the packet can be associated with the metadata by identifying the packet by the packet ID added by the transfer unit 11c.
 具体的には、図7に示すように、転送部11cのうち、自事業者ネットワーク内の最後段であって他の事業者の通信装置10または通信の最終到達点であるサービスサーバに隣接する転送部11cが、パケットにパケットIDを付加する。この転送部11cは、付加されたメタデータとパケットIDとを、自事業者ネットワーク内の収集装置20の収集部21aに転送する。 Specifically, as shown in FIG. 7, in the transfer unit 11c, it is adjacent to the communication device 10 of another operator or the service server which is the final destination of communication, which is the last stage in the own operator network. The forwarding unit 11c adds a packet ID to the packet. The transfer unit 11c transfers the added metadata and the packet ID to the collection unit 21a of the collection device 20 in the own company network.
 また、この転送部11cが、隣接する他の事業者の通信装置10に転送する際には、パケットIDが付加されたパケットから、付加されたメタデータを削除する処理を行う。これにより、通信システム1では、他の事業者に対して、データプレン上でのヘッダ長の増加をパケットIDの範囲に抑止して、メタデータが流通することを抑止できる。また、後述する結合部31aが、パケットIDでパケットを識別して、同一のパケットに対するメタデータを集約することが可能となる。また、後述するアクセス制御部21bが、情報を公開する範囲を制御することが可能となる。 Further, when the transfer unit 11c transfers to the communication device 10 of another adjacent business operator, the transfer unit 11c performs a process of deleting the added metadata from the packet to which the packet ID is added. As a result, in the communication system 1, it is possible to suppress the increase in the header length on the data screen within the range of the packet ID and prevent the distribution of metadata to other operators. Further, the coupling unit 31a, which will be described later, can identify the packet by the packet ID and aggregate the metadata for the same packet. In addition, the access control unit 21b, which will be described later, can control the range in which information is disclosed.
 例えば、転送部11cは、図8または図9に例示するパケットIDを、受信したパケットに付加して転送する。図8には、パケットIDとして、Probemarkerを用いる例が示されている。図8に示すように、従来技術において、パケットにINTメタデータが付加されていることは、「INT Metadata」および「Probemarker」からなる拡張ヘッダによって示される。そこで、転送部11cは、パケットIDとして、このProbemarkerに、予め定義された範囲の値でパケットごとにユニークな値を設定してもよい。 For example, the transfer unit 11c adds the packet ID illustrated in FIG. 8 or 9 to the received packet and transfers the packet ID. FIG. 8 shows an example in which Probemarker is used as the packet ID. As shown in FIG. 8, in the prior art, the addition of INT metadata to a packet is indicated by an extended header consisting of "INT Metadata" and "Probemarker". Therefore, the transfer unit 11c may set a unique value for each packet in the Probemarker as a packet ID within a predetermined range of values.
 また、図9には、パケットIDとして、TCPのシーケンス番号を用いる例が示されている。TCPパケットの場合には、転送部11cは、図9に示すように、TCPのヘッダに含まれる既定のシーケンス番号を、パケットIDとしてもよい。この場合には、転送部1cは、あらためてパケットIDを付加する必要がなく、データプレン上において事業者間でパケットIDを流通させることなく、パケットを識別することが可能となる。 Further, FIG. 9 shows an example in which a TCP sequence number is used as the packet ID. In the case of a TCP packet, the transfer unit 11c may use a default sequence number included in the TCP header as the packet ID, as shown in FIG. In this case, the transfer unit 1c does not need to add the packet ID again, and can identify the packet without distributing the packet ID between the operators on the data screen.
[収集装置]
 図2の説明に戻る。収集装置20は、CPU(Central Processing Unit)やNPやFPGA等で実現され、メモリに記憶された処理プログラムを実行して、制御部21として機能する。また、収集装置20は、RAM、フラッシュメモリ等の半導体メモリ素子で実現される記憶部22を備える。また、収集装置20は、図示しない通信制御部を備え、通信制御部を介して通信装置10や監視装置30等の外部の装置と通信する。
[Collection device]
Returning to the description of FIG. The collection device 20 is realized by a CPU (Central Processing Unit), an NP, an FPGA, or the like, executes a processing program stored in a memory, and functions as a control unit 21. Further, the collecting device 20 includes a storage unit 22 realized by a semiconductor memory element such as a RAM or a flash memory. Further, the collecting device 20 includes a communication control unit (not shown), and communicates with an external device such as the communication device 10 and the monitoring device 30 via the communication control unit.
 本実施形態においては、記憶部22は、通信装置10から収集したメタデータ22aを記憶する。このメタデータ22aは、例えば、各通信装置10でパケットに付加されたタイムスタンプである。 In the present embodiment, the storage unit 22 stores the metadata 22a collected from the communication device 10. The metadata 22a is, for example, a time stamp added to the packet by each communication device 10.
 制御部21は、図2に例示するように、収集部21aおよびアクセス制御部21bとして機能する。なお、これらの機能部は、それぞれ異なるハードウェアに実装されてもよい。また、制御部11は、その他の機能部を備えてもよい。例えば、サービスサーバを有するサービス事業者の事業者ネットワーク内の制御部21が、後述する結合部31aを備えてもよい。 The control unit 21 functions as a collection unit 21a and an access control unit 21b, as illustrated in FIG. Note that these functional units may be implemented in different hardware. Further, the control unit 11 may include other functional units. For example, the control unit 21 in the operator network of the service operator having the service server may include the coupling unit 31a described later.
 収集部21aは、転送部11cから転送されたメタデータを収集して記憶部22に格納する。具体的には収集部21aは、自事業者ネットワーク内の各通信装置10から、各通信装置10がパケットに付加して転送したメタデータを収集する。例えば、収集部21aは、図3または図4に示したように、自事業者ネットワーク内の最後段であって他の事業者ネットワークに隣接する通信装置10から、パケットに付加されているメタデータを収集する。 The collection unit 21a collects the metadata transferred from the transfer unit 11c and stores it in the storage unit 22. Specifically, the collection unit 21a collects the metadata transferred by each communication device 10 in addition to the packet from each communication device 10 in the own company network. For example, as shown in FIG. 3 or 4, the collecting unit 21a adds metadata to the packet from the communication device 10 which is the last stage in the own business network and is adjacent to the other business network. To collect.
 あるいは、収集部21aは、図5に示したように、自事業者ネットワーク内の最後段であって他の事業者ネットワークに隣接する通信装置10から、パケットのペイロードと、パケットに付加されているメタデータとを収集する。あるいは、収集部21aは、図7に示したように、自事業者ネットワーク内の最後段であって他の事業者ネットワークに隣接する通信装置10から、パケットIDと、パケットに付加されているメタデータとを収集する。 Alternatively, as shown in FIG. 5, the collecting unit 21a is added to the packet payload and the packet from the communication device 10 which is the last stage in the own business network and is adjacent to the other business network. Collect metadata and. Alternatively, as shown in FIG. 7, the collecting unit 21a receives the packet ID and the meta added to the packet from the communication device 10 which is the last stage in the own business network and is adjacent to the other business network. Collect data and.
 また、収集部21aは、収集したメタデータを、パケットに対応づけて記憶部22に格納する。例えば、収集部21aは、図3または図4に示したように、各パケットに付加されていたメタデータをパケットごとに記憶部22に格納する。あるいは、収集部21aは、図5に示したように、パケットのペイロードとパケットに付加されていたメタデータとを対応付けて、記憶部22に格納する。あるいは、収集部21aは、図7に示したように、パケットIDとパケットに付加されていたメタデータとを対応づけて、記憶部22に格納する。 Further, the collecting unit 21a stores the collected metadata in the storage unit 22 in association with the packet. For example, as shown in FIG. 3 or 4, the collecting unit 21a stores the metadata added to each packet in the storage unit 22 for each packet. Alternatively, as shown in FIG. 5, the collecting unit 21a associates the payload of the packet with the metadata added to the packet and stores it in the storage unit 22. Alternatively, as shown in FIG. 7, the collecting unit 21a associates the packet ID with the metadata added to the packet and stores it in the storage unit 22.
 また、図3または図4に示した例においては、サービスサーバ等、通信の最終到達点となる事業者ネットワーク内の収集装置20の収集部21aは、全事業者ネットワークでパケットに付加されたメタデータを取得する。この場合には、収集部21aは、後述する結合部31aに依らず、事業者ネットワークごとのメタデータがパケットごとに結合されたメタデータを取得することができる。 Further, in the example shown in FIG. 3 or 4, the collection unit 21a of the collection device 20 in the operator network, which is the final destination of communication such as a service server, is a meta added to the packet in all the operator networks. Get the data. In this case, the collecting unit 21a can acquire the metadata in which the metadata for each operator network is combined for each packet, regardless of the coupling unit 31a described later.
 アクセス制御部21bについては、後述する。 The access control unit 21b will be described later.
[監視装置]
 監視装置30は、CPUやNPやFPGA等で実現され、メモリに記憶された処理プログラムを実行して、制御部31として機能する。また、監視装置30は、RAM、フラッシュメモリ等の半導体メモリ素子で実現される記憶部32を備える。また、監視装置30は、図示しない通信制御部を備え、通信制御部を介して収集装置20や外部の装置と通信する。なお、記憶部32は、通信制御部を介して制御部31と通信する構成でもよい。
[Monitoring device]
The monitoring device 30 is realized by a CPU, NP, FPGA, or the like, executes a processing program stored in a memory, and functions as a control unit 31. Further, the monitoring device 30 includes a storage unit 32 realized by semiconductor memory elements such as RAM and flash memory. Further, the monitoring device 30 includes a communication control unit (not shown), and communicates with the collection device 20 and an external device via the communication control unit. The storage unit 32 may be configured to communicate with the control unit 31 via the communication control unit.
 制御部31は、結合部31aとして機能する。なお、結合部31aは、監視装置30以外のハードウェアに実装されてもよい。例えば、結合部31aは、サービスサーバを有するサービス事業者の事業者ネットワーク内の収集装置20に実装されてもよい。また、制御部31は、その他の機能部を備えてもよい。 The control unit 31 functions as a coupling unit 31a. The coupling portion 31a may be mounted on hardware other than the monitoring device 30. For example, the coupling unit 31a may be mounted on the collection device 20 in the operator network of the service operator having the service server. Further, the control unit 31 may include other functional units.
 結合部31aは、複数の収集装置20の記憶部22からメタデータ22aを取得し、該メタデータ22aをパケットごとに結合する。例えば、結合部31aは、図5に示したように、各事業者ネットワークの収集装置20の記憶部22から、パケットのペイロードに対応付けられたメタデータ22aを取得する。また、結合部31aは、ペイロードでパケットを識別することにより、同一のパケットのメタデータを結合することが可能となる。 The coupling unit 31a acquires the metadata 22a from the storage units 22 of the plurality of collection devices 20, and combines the metadata 22a for each packet. For example, as shown in FIG. 5, the coupling unit 31a acquires the metadata 22a associated with the payload of the packet from the storage unit 22 of the collection device 20 of each operator network. Further, the coupling unit 31a can combine the metadata of the same packet by identifying the packet by the payload.
 あるいは、結合部31aは、図7に示したように、各事業者ネットワークの収集装置20の記憶部22から、パケットIDに対応付けられたメタデータを22a取得する。また、結合部31aは、パケットIDでパケットを識別することにより、同一のパケットのメタデータを結合することが可能となる。 Alternatively, as shown in FIG. 7, the coupling unit 31a acquires the metadata associated with the packet ID 22a from the storage unit 22 of the collection device 20 of each operator network. Further, the coupling unit 31a can combine the metadata of the same packet by identifying the packet by the packet ID.
 収集装置20のアクセス制御部21bは、結合部31aについて、記憶部22からメタデータ22aを取得可能な結合部31aを管理する。例えば、アクセス制御部21bは、図5または図7に示した例において、結合部31aの属性に応じて、自装置の記憶部22へのアクセスの許否を決定する。例えば、監視装置30の利用者や設置場所によって結合部31aを識別することにより、アクセスを許可する結合部31aを予め設定することが可能である。これにより、収集装置20は、自事業者内のメタデータの流通先を制御することが可能となる。 The access control unit 21b of the collection device 20 manages the coupling unit 31a that can acquire the metadata 22a from the storage unit 22 for the coupling unit 31a. For example, in the example shown in FIG. 5 or 7, the access control unit 21b determines whether or not to allow access to the storage unit 22 of its own device according to the attributes of the coupling unit 31a. For example, by identifying the coupling portion 31a according to the user or the installation location of the monitoring device 30, it is possible to set the coupling portion 31a to which access is permitted in advance. As a result, the collecting device 20 can control the distribution destination of the metadata in the own business operator.
[通信処理]
 次に、図10を参照して、本実施形態に係る通信装置10による通信処理について説明する。図10は、通信処理手順を示すシーケンス図である。図10のシーケンスは、例えば、ユーザが通信の開始を指示する操作入力を行ったタイミングで開始される。
[Communication processing]
Next, the communication process by the communication device 10 according to the present embodiment will be described with reference to FIG. FIG. 10 is a sequence diagram showing a communication processing procedure. The sequence of FIG. 10 is started, for example, at the timing when the user inputs an operation instructing the start of communication.
 まず、通信装置10において、付加部11bが、受付部11aが受け付けたパケットに、メタデータとして、例えば、パケットが自装置を通過する時刻を示すタイムスタンプを付加する(ステップS1)。 First, in the communication device 10, the addition unit 11b adds a time stamp indicating, for example, the time when the packet passes through the own device as metadata to the packet received by the reception unit 11a (step S1).
 次に、転送部11cが、メタデータが付加されたパケットを、隣接する通信装置10に転送する(ステップS2)。また、転送部11cのうち、自事業者ネットワーク内の最後段であって他の事業者の通信装置10または通信の最終到達点に隣接する転送部11cが、パケットに対応づけて、付加されたメタデータを収集装置20に転送する(ステップS3)。 Next, the transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10 (step S2). Further, among the transfer units 11c, the transfer unit 11c, which is the last stage in the own company network and is adjacent to the communication device 10 of another company or the final arrival point of the communication, is added in association with the packet. The metadata is transferred to the collecting device 20 (step S3).
 収集装置20では、収集部21aが、自事業者ネットワーク内の各通信装置10がパケットに付加して転送したメタデータを収集し、パケットに対応づけて記憶部22に格納する(ステップS4)。 In the collecting device 20, the collecting unit 21a collects the metadata transferred by each communication device 10 in the own company network in addition to the packet, and stores the metadata in the storage unit 22 in association with the packet (step S4).
 そして、監視装置30では、結合部31aが、複数の収集装置20の記憶部22から事業者ネットワークごとのメタデータ22aを取得し、このメタデータ22aをパケットごとに結合する(ステップS5)。これにより、一連の通信処理が終了する。 Then, in the monitoring device 30, the coupling unit 31a acquires the metadata 22a for each operator network from the storage units 22 of the plurality of collection devices 20, and combines the metadata 22a for each packet (step S5). As a result, a series of communication processes is completed.
 以上、説明したように、本実施形態の通信装置10において、付加部11bが、受信したパケットにメタデータを付加する。また、転送部11cが、メタデータが付加されたパケットを、隣接する通信装置10に転送する。さらに、転送部11cのうち、他の事業者の通信装置10または通信の最終到達点に隣接する転送部11cが、該パケットに対応づけて、付加されたメタデータを収集部21aに転送する。 As described above, in the communication device 10 of the present embodiment, the addition unit 11b adds metadata to the received packet. Further, the transfer unit 11c transfers the packet to which the metadata is added to the adjacent communication device 10. Further, among the transfer units 11c, the communication device 10 of another operator or the transfer unit 11c adjacent to the final arrival point of the communication transfers the added metadata to the collection unit 21a in association with the packet.
 ここで、従来のINTにより収集されるメタデータは、自事業者ネットワーク内において、5tupleと対応付けて記録することにより、フロー単位で把握することが可能であった。一方、複数の事業者ネットワークを経由する場合には、同一フロー内の同一パケットを識別できなかった。特に、NAT等により5tuple構成が変更される場合があり、付加されたメタデータをパケットごとに把握することができなかった。 Here, the metadata collected by the conventional INT can be grasped in flow units by recording in association with 5 types in the own company network. On the other hand, when passing through a plurality of operator networks, the same packet in the same flow could not be identified. In particular, the 5-tuple configuration may be changed by NAT or the like, and the added metadata could not be grasped for each packet.
 これに対し、本実施形態の通信装置10によれば、通信が他の事業者ネットワークを介した場合にも、各事業者ネットワークの収集装置20には、付加されたメタデータが、前段の他の事業者設備で付加されたものを含めて、パケットごとに転送される。したがって、例えば、サービス提供事業者の収集装置20は、パケットごとに複数の事業者設備を介して付加されたメタデータを連携することが可能となる。これにより、本実施形態の通信装置10によれば、複数の事業者設備を介したEnd to Endでの通信品質を把握することが可能となる。 On the other hand, according to the communication device 10 of the present embodiment, even when communication is performed via another carrier network, the metadata added to the collection device 20 of each carrier network is added to the other in the previous stage. It is transferred for each packet, including those added by the operator's equipment. Therefore, for example, the collection device 20 of the service provider can link the metadata added via a plurality of business equipment for each packet. As a result, according to the communication device 10 of the present embodiment, it is possible to grasp the communication quality in End to End via the equipment of a plurality of business operators.
 転送部11cは、収集部21aにメタデータを転送する際に、自事業者ネットワーク内の起点および終点で付加されたメタデータに限定して転送してもよい。これにより、通信装置10は、中継段数の増加に応じてヘッダ長が増大することを抑止することが可能となる。 When the transfer unit 11c transfers the metadata to the collection unit 21a, the transfer unit 11c may transfer the metadata only to the metadata added at the start point and the end point in the own company network. As a result, the communication device 10 can prevent the header length from increasing as the number of relay stages increases.
 また、転送部11cは、収集部21aにメタデータを転送する際に、パケットのペイロードを併せて転送し、隣接する他の事業者の通信装置10にパケットを転送する際に、付加されたメタデータを削除してもよい。これにより、通信装置10は、他の事業者に対して、データプレン上の影響もメタデータが流通することも抑止することが可能となる。また、事業者ごとのメタデータの形態を考慮することなく、複数の事業者設備を介して付加されたメタデータの連携が容易に可能となる。 Further, the transfer unit 11c also transfers the payload of the packet when transferring the metadata to the collection unit 21a, and the meta added when the packet is transferred to the communication device 10 of another adjacent operator. You may delete the data. As a result, the communication device 10 can suppress the influence on the data screen and the distribution of metadata to other businesses. In addition, it is possible to easily link the metadata added via the facilities of a plurality of business operators without considering the form of the metadata for each business operator.
 また、転送部11cは、収集部21aにメタデータを転送する際に、パケットを識別する識別情報を付加し、該識別情報を併せて転送し、隣接する他の事業者の通信装置10にパケットを転送する際に、該識別情報が付加されたパケットから、付加されたメタデータを削除してもよい。これにより、通信装置10は、他の事業者に対して、データプレン上でのヘッダ長の増加をパケットIDの範囲に抑止して、メタデータが流通することを抑止することが可能となる。 Further, when the metadata is transferred to the collection unit 21a, the transfer unit 11c adds identification information for identifying the packet, transfers the identification information together, and transmits the packet to the communication device 10 of another adjacent business operator. When transferring the data, the added metadata may be deleted from the packet to which the identification information is added. As a result, the communication device 10 can suppress the increase in the header length on the data screen within the range of the packet ID and prevent the distribution of metadata for other businesses.
 また、通信システム1において、収集部21aが、転送部11cから転送されたメタデータを収集して記憶部22に格納する。また、結合部31aが、複数の記憶部22からメタデータ22aを取得し、該メタデータをパケットごとに結合する。これにより、通信システム1は、パケットごとに複数の事業者設備を介して付加されたメタデータを連携することが可能となる。 Further, in the communication system 1, the collecting unit 21a collects the metadata transferred from the transfer unit 11c and stores it in the storage unit 22. Further, the coupling unit 31a acquires the metadata 22a from the plurality of storage units 22 and combines the metadata for each packet. As a result, the communication system 1 can link the metadata added via a plurality of operator equipment for each packet.
 また、アクセス制御部21bが、記憶部22からメタデータ22aを取得可能な結合部31aを管理する。これにより、通信システム1は、収集装置20は、自事業者内のメタデータの流通先を制御することが可能となる。 Further, the access control unit 21b manages the coupling unit 31a capable of acquiring the metadata 22a from the storage unit 22. As a result, in the communication system 1, the collecting device 20 can control the distribution destination of the metadata in the own business operator.
[プログラム]
 上記実施形態に係る通信システム1の通信装置10、収集装置20および監視装置30が実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。一実施形態として、通信装置10、収集装置20および監視装置30は、パッケージソフトウェアやオンラインソフトウェアとして上記の通信処理を実行する通信プログラムを所望のコンピュータにインストールさせることによって実装できる。例えば、上記の通信プログラムを情報処理装置に実行させることにより、情報処理装置を通信装置10、収集装置20または監視装置30として機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機やPHS(Personal Handyphone System)などの移動体通信端末、さらには、PDA(Personal Digital Assistant)などのスレート端末などがその範疇に含まれる。また、通信装置10、収集装置20または監視装置30の機能を、クラウドサーバに実装してもよい。
[program]
It is also possible to create a program in which the processes executed by the communication device 10, the collection device 20, and the monitoring device 30 of the communication system 1 according to the above embodiment are described in a language that can be executed by a computer. In one embodiment, the communication device 10, the collection device 20, and the monitoring device 30 can be implemented by installing a communication program that executes the above communication processing as package software or online software on a desired computer. For example, by causing the information processing device to execute the above communication program, the information processing device can function as the communication device 10, the collecting device 20, or the monitoring device 30. The information processing device referred to here includes a desktop type or notebook type personal computer. In addition, information processing devices include smartphones, mobile communication terminals such as mobile phones and PHS (Personal Handyphone System), and slate terminals such as PDAs (Personal Digital Assistants). Further, the functions of the communication device 10, the collection device 20, or the monitoring device 30 may be implemented in the cloud server.
 図11は、通信プログラムを実行するコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010と、CPU1020と、ハードディスクドライブインタフェース1030と、ディスクドライブインタフェース1040と、シリアルポートインタフェース1050と、ビデオアダプタ1060と、ネットワークインタフェース1070とを有する。これらの各部は、バス1080によって接続される。 FIG. 11 is a diagram showing an example of a computer that executes a communication program. The computer 1000 has, for example, a memory 1010, a CPU 1020, a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. Each of these parts is connected by a bus 1080.
 メモリ1010は、ROM(Read Only Memory)1011およびRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1031に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1041に接続される。ディスクドライブ1041には、例えば、磁気ディスクや光ディスク等の着脱可能な記憶媒体が挿入される。シリアルポートインタフェース1050には、例えば、マウス1051およびキーボード1052が接続される。ビデオアダプタ1060には、例えば、ディスプレイ1061が接続される。 The memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012. The ROM 1011 stores, for example, a boot program such as a BIOS (Basic Input Output System). The hard disk drive interface 1030 is connected to the hard disk drive 1031. The disk drive interface 1040 is connected to the disk drive 1041. A removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041. For example, a mouse 1051 and a keyboard 1052 are connected to the serial port interface 1050. For example, a display 1061 is connected to the video adapter 1060.
 ここで、ハードディスクドライブ1031は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093およびプログラムデータ1094を記憶する。上記実施形態で説明した各情報は、例えばハードディスクドライブ1031やメモリ1010に記憶される。 Here, the hard disk drive 1031 stores, for example, the OS 1091, the application program 1092, the program module 1093, and the program data 1094. Each piece of information described in the above embodiment is stored in, for example, the hard disk drive 1031 or the memory 1010.
 また、通信プログラムは、例えば、コンピュータ1000によって実行される指令が記述されたプログラムモジュール1093として、ハードディスクドライブ1031に記憶される。具体的には、上記実施形態で説明した通信装置10が実行する各処理が記述されたプログラムモジュール1093が、ハードディスクドライブ1031に記憶される。 Further, the communication program is stored in the hard disk drive 1031 as, for example, a program module 1093 in which a command executed by the computer 1000 is described. Specifically, the program module 1093 in which each process executed by the communication device 10 described in the above embodiment is described is stored in the hard disk drive 1031.
 また、通信プログラムによる情報処理に用いられるデータは、プログラムデータ1094として、例えば、ハードディスクドライブ1031に記憶される。そして、CPU1020が、ハードディスクドライブ1031に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して、上述した各手順を実行する。 Further, the data used for information processing by the communication program is stored as program data 1094 in, for example, the hard disk drive 1031. Then, the CPU 1020 reads the program module 1093 and the program data 1094 stored in the hard disk drive 1031 into the RAM 1012 as needed, and executes each of the above-described procedures.
 なお、通信プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1031に記憶される場合に限られず、例えば、着脱可能な記憶媒体に記憶されて、ディスクドライブ1041等を介してCPU1020によって読み出されてもよい。あるいは、通信プログラムに係るプログラムモジュール1093やプログラムデータ1094は、LANやWAN(Wide Area Network)等のネットワークを介して接続された他のコンピュータに記憶され、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。 The program module 1093 and program data 1094 related to the communication program are not limited to the case where they are stored in the hard disk drive 1031. For example, they are stored in a removable storage medium and read by the CPU 1020 via the disk drive 1041 or the like. May be done. Alternatively, the program module 1093 and the program data 1094 related to the communication program are stored in another computer connected via a network such as LAN or WAN (Wide Area Network), and read by the CPU 1020 via the network interface 1070. You may.
 以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。 Although the embodiment to which the invention made by the present inventor is applied has been described above, the present invention is not limited by the description and the drawings which form a part of the disclosure of the present invention according to the present embodiment. That is, all other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are included in the scope of the present invention.
 1 通信システム
 10 通信装置(NE)
 11、21、31 制御部
 11a 受付部
 11b 付加部
 11c 転送部
 12、22、32 記憶部
 20 収集装置
 21a 収集部
 21b アクセス制御部
 30 監視装置
 31a 結合部
1 Communication system 10 Communication device (NE)
11, 21, 31 Control unit 11a Reception unit 11b Addition unit 11c Transfer unit 12, 22, 32 Storage unit 20 Collection device 21a Collection unit 21b Access control unit 30 Monitoring device 31a Coupling unit

Claims (8)

  1.  受信したパケットにメタデータを付加する付加部と、
     前記メタデータが付加された前記パケットを、隣接する通信装置に転送する転送部と、
     を有し、
     前記転送部のうち、他の事業者の通信装置または通信の最終到達点に隣接する転送部がさらに、前記パケットに対応づけて、付加された前記メタデータを、メタデータを収集する収集部に転送することを特徴とする通信装置。
    An additional part that adds metadata to the received packet,
    A transfer unit that transfers the packet to which the metadata is added to an adjacent communication device, and
    Have,
    Among the transfer units, a communication device of another business operator or a transfer unit adjacent to the final destination of communication further associates the packet with the added metadata into a collection unit that collects the metadata. A communication device characterized by transferring.
  2.  前記転送部は、前記収集部に前記メタデータを転送する際に、自事業者ネットワーク内の起点および終点で付加されたメタデータに限定して転送することを特徴とする請求項1に記載の通信装置。 The first aspect of claim 1, wherein the transfer unit transfers the metadata to the collection unit only for the metadata added at the start point and the end point in the own business network. Communication device.
  3.  前記転送部は、前記収集部に前記メタデータを転送する際に、前記パケットのペイロードを併せて転送し、前記隣接する他の事業者の通信装置に前記パケットを転送する際に、付加された前記メタデータを削除することを特徴とする請求項1に記載の通信装置。 The transfer unit is added when the payload of the packet is also transferred when the metadata is transferred to the collection unit, and the packet is transferred to the communication device of the adjacent other operator. The communication device according to claim 1, wherein the metadata is deleted.
  4.  前記転送部は、前記収集部に前記メタデータを転送する際に、前記パケットを識別する識別情報を付加し、該識別情報を併せて転送し、前記隣接する他の事業者の通信装置に前記パケットを転送する際に、該識別情報が付加された前記パケットから、付加された前記メタデータを削除することを特徴とする請求項1に記載の通信装置。 When the metadata is transferred to the collection unit, the transfer unit adds identification information that identifies the packet, transfers the identification information together, and transfers the identification information to the communication device of the adjacent other business operator. The communication device according to claim 1, wherein when the packet is transferred, the added metadata is deleted from the packet to which the identification information is added.
  5.  受信したパケットにメタデータを付加する付加部と、
     前記メタデータが付加された前記パケットを、隣接する通信装置に転送する転送部と、
     前記転送部から転送された前記メタデータを収集して記憶部に格納する収集部と、
     複数の前記記憶部から前記メタデータを取得し、該メタデータを前記パケットごとに結合する結合部と、
     を有し、
     前記転送部のうち、他の事業者の通信装置または通信の最終到達点に隣接する転送部がさらに、前記パケットに対応づけて、付加された前記メタデータを、前記収集部に転送することを特徴とする通信システム。
    An additional part that adds metadata to the received packet,
    A transfer unit that transfers the packet to which the metadata is added to an adjacent communication device, and
    A collection unit that collects the metadata transferred from the transfer unit and stores it in a storage unit,
    A coupling unit that acquires the metadata from the plurality of storage units and combines the metadata for each packet, and a coupling unit.
    Have,
    Among the transfer units, a communication device of another operator or a transfer unit adjacent to the final destination of communication further transfers the added metadata to the collection unit in association with the packet. Characterized communication system.
  6.  前記記憶部から前記メタデータを取得可能な前記結合部を管理するアクセス制御部を、さらに備えることを特徴とする請求項5に記載の通信システム。 The communication system according to claim 5, further comprising an access control unit that manages the coupling unit capable of acquiring the metadata from the storage unit.
  7.  通信装置で実行される通信方法であって、
     受信したパケットにメタデータを付加する付加工程と、
     前記メタデータが付加された前記パケットを隣接する通信装置に転送する転送工程と、
     を含み、
     前記転送工程のうち、他の事業者の通信装置または通信の最終到達点に隣接する通信装置における転送工程がさらに、前記パケットに対応づけて、付加された前記メタデータを、メタデータを収集する収集装置に転送することを特徴とする通信方法。
    It is a communication method executed by a communication device.
    An additional process that adds metadata to the received packet,
    A transfer step of transferring the packet to which the metadata is added to an adjacent communication device, and
    Including
    Among the transfer steps, the transfer step in the communication device of another operator or the communication device adjacent to the final destination of the communication further collects the added metadata in association with the packet. A communication method characterized by transferring to a collection device.
  8.  受信したパケットにメタデータを付加する付加ステップと、
     前記メタデータが付加された前記パケットを隣接する通信装置に転送する転送ステップと、
     前記転送ステップのうち、他の事業者の通信装置または通信の最終到達点に隣接する転送ステップがさらに、前記パケットに対応づけて、付加された前記メタデータを、メタデータを収集する収集装置に転送する処理と、
     をコンピュータに実行させるための通信プログラム。
    An additional step to add metadata to the received packet,
    A transfer step of transferring the packet to which the metadata is added to an adjacent communication device, and
    Among the transfer steps, a communication device of another operator or a transfer step adjacent to the final destination of communication further associates the packet with the added metadata into a collection device that collects the metadata. The process of transferring and
    A communication program that allows a computer to execute.
PCT/JP2020/007261 2020-02-21 2020-02-21 Communication device, communication system, communication method, and communication program WO2021166269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007261 WO2021166269A1 (en) 2020-02-21 2020-02-21 Communication device, communication system, communication method, and communication program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007261 WO2021166269A1 (en) 2020-02-21 2020-02-21 Communication device, communication system, communication method, and communication program

Publications (1)

Publication Number Publication Date
WO2021166269A1 true WO2021166269A1 (en) 2021-08-26

Family

ID=77391550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007261 WO2021166269A1 (en) 2020-02-21 2020-02-21 Communication device, communication system, communication method, and communication program

Country Status (1)

Country Link
WO (1) WO2021166269A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112791A (en) * 2002-09-16 2004-04-08 Agilent Technol Inc Method of measuring network operation parameter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112791A (en) * 2002-09-16 2004-04-08 Agilent Technol Inc Method of measuring network operation parameter

Similar Documents

Publication Publication Date Title
JP5943331B2 (en) Service process control method and network device
US9705694B2 (en) Extension of Wi-Fi services multicast to a subnet across a Wi-Fi network using software-defined networking (SDN) to centrally control data plane behavior
US20130254339A1 (en) Safe Output Protocol for Files to Multiple Destinations with Integrity Check
US11558283B2 (en) Information collecting system and information collecting method
US8341285B2 (en) Method and system for transferring files
US20060203832A1 (en) Packet communication apparatus with function enhancement module
US7840655B2 (en) Address resolution protocol change enabling load-balancing for TCP-DCR implementations
JP2014171211A (en) Information processing system
US20120266186A1 (en) Providing inter-platform application launch in context
US10178033B2 (en) System and method for efficient traffic shaping and quota enforcement in a cluster environment
CN113595927A (en) Method and device for processing mirror flow in bypass mode
CN103188171A (en) Message scheduling method and equipment
US20190334968A1 (en) Bit rate reduction processing method for data file, and server
WO2021166269A1 (en) Communication device, communication system, communication method, and communication program
US20210306357A1 (en) Sorting device, communication system, and sorting method
US20210320899A1 (en) Notification device and notification method
WO2020040256A1 (en) Management system and management method
CN112436951A (en) Method and device for predicting flow path
JP6502783B2 (en) Bulk management system, bulk management method and program
CN113419878B (en) Data operation method and device
CN112783665B (en) Interface compensation method and device
US11836382B2 (en) Data read method, data storage method, electronic device, and computer program product
JP2007272717A (en) Information management apparatus and its method
KR101993451B1 (en) Network system and internetworking method for multi protocol
JP6165391B1 (en) Packet multiplexer, packet separator, packet multiplexing method, packet separation method, packet multiplexing program, and packet separation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP