WO2021166234A1 - Vibration compaction device - Google Patents

Vibration compaction device Download PDF

Info

Publication number
WO2021166234A1
WO2021166234A1 PCT/JP2020/007155 JP2020007155W WO2021166234A1 WO 2021166234 A1 WO2021166234 A1 WO 2021166234A1 JP 2020007155 W JP2020007155 W JP 2020007155W WO 2021166234 A1 WO2021166234 A1 WO 2021166234A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
unit
support frame
power unit
drive transmission
Prior art date
Application number
PCT/JP2020/007155
Other languages
French (fr)
Japanese (ja)
Inventor
匡慶 石田
Original Assignee
株式会社石田製作所
株式会社大成モナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社石田製作所, 株式会社大成モナック filed Critical 株式会社石田製作所
Priority to PCT/JP2020/007155 priority Critical patent/WO2021166234A1/en
Publication of WO2021166234A1 publication Critical patent/WO2021166234A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B27/00Placing, renewing, working, cleaning, or taking-up the ballast, with or without concurrent work on the track; Devices therefor; Packing sleepers
    • E01B27/12Packing sleepers, with or without concurrent work on the track; Compacting track-carrying ballast
    • E01B27/13Packing sleepers, with or without concurrent work on the track
    • E01B27/16Sleeper-tamping machines

Definitions

  • the present invention relates to a vibration compaction device, and more particularly to a vibration compaction device that realizes a vibration-proof structure from a vibration unit to a power unit and a handle unit and improves work efficiency by making the power cord of the power unit cordless.
  • FIG. 7A is a perspective view illustrating the conventional tamping device 100.
  • FIG. 7B is an exploded side view illustrating the conventional tamping device 100.
  • the tamping device 100 mainly includes an engine 101, a fuel tank 102, a vibration unit 103, a tamping tool 104, a holding bar 105, and a pair of grips 106 and 107. Be prepared. With this structure, the operator can operate the holding bar 105 while grasping the grips 106 and 107, push the typing tool 104 into the ballast, and vibrate the ballast to compact the ballast.
  • the vibration transmission unit 108 of the vibration unit 103 mainly includes a vibration generating unit 109 and a flexible shaft 110 connected to the vibration generating unit 109, and the flexible shaft 110 is tamped. It is inserted into the insertion hole 114 inside the tool 104.
  • the vibration generating portion 109 is directly connected to the connecting portion 113 provided at the end of the rotating shaft 115 of the engine 101 via the connecting portion 112 provided at the end of the rotating shaft 111 (for example, the patent). See Reference 1.).
  • the rotating shaft 115 of the engine 101 and the rotating shaft 111 of the vibration generating portion 109 are directly connected via the connecting portions 112 and 113, and the rotational force of the engine 101 Is transmitted as the rotational force of the vibration generating unit 109.
  • the vibration generating unit 109 is an eccentric cam provided at the center of the rotating shaft 111, and vibration is generated when the eccentric cam rotates using the rotational force.
  • the ballast can be compacted as described above by transmitting the vibration to the tamping tool 104 via the universal shaft 110.
  • the tamping device 100 has a structure in which the rotating shafts 111 and 115 are directly connected to each other via the connecting portions 112 and 113, and the vibration generated by the vibration generating portion 109 is directly transmitted to the engine 101.
  • the vibration generated by the vibration generating unit 109 is mainly vibration due to lateral vibration.
  • the vibration due to the lateral vibration is transmitted to the engine 101, the balance of rotation of the engine 101 is likely to be lost.
  • the more abnormal noise is generated from the engine 101, the more the engine 101 vibrates, which may lead to damage to parts of the engine 101, shortening of the life of the engine 101, and the like.
  • the engine 101, the vibration generating portion 109, the universal shaft 110, the tamping tool 104, and the like are fastened from the upper end thereof with bolts, screws, and the like to be assembled.
  • this structure there is a problem that it is difficult to assemble the rotating shaft 115 of the engine 101 and the rotating shaft 111 of the vibration generating portion 109 on substantially the same axis line which is the center of rotation, depending on the tightening condition of each fastening portion.
  • the rotation shaft 115 of the engine 101 rotates at a rotation center different from the rotation shaft 111 of the vibration generating unit 109, so that the rotation balance of the engine 101 may be easily lost as described above.
  • the tamping device 100 has a structure in which the holding bar 105 is connected to the side surface of the housing of the vibration unit 103, and the vibration generated by the vibration generating unit 109 is directly transmitted to the holding bar 105.
  • the vibration transmitted to the holding bar 105 is transmitted to the operator as hand vibration, which makes it difficult for the operator to perceive the delicate ballast hardness and ballast state at the time of compaction, resulting in deterioration of work efficiency. There is a fear.
  • the present invention has been made in view of the above circumstances, and is a vibration compaction that realizes a vibration-proof structure from a vibrating part to a power part and a handle part and improves workability by making the power cord of the power part cordless. It provides the device.
  • the vibration compaction device of the present invention includes a vibrating body, a vibrating unit that applies vibration to the vibrating body, a power unit that drives the vibrating unit, a drive transmission unit of the power unit, and a drive transmission unit of the vibrating unit.
  • the connecting mechanism includes a first shaft joint portion to which the drive transmission portion of the power portion is mounted, and a second shaft joint portion to which the drive transmission portion of the vibration portion is mounted.
  • the shaft joint portion, the first elastic portion connected to the outer peripheral side of the first shaft joint portion, the second elastic portion connected to the outer peripheral side of the second shaft joint portion, and the first elastic portion.
  • the first elastic portion and the second elastic portion are connected to each other, and the drive transmission portion of the power portion and the drive transmission portion of the vibration portion are not directly connected to each other. It is characterized in that it is connected via the elastic portion 1 and the second elastic portion.
  • the first elastic portion is fastened to the first shaft joint portion and the connecting member, respectively, and the second elastic portion is the second shaft. It is fastened to the joint portion and the connecting member, respectively, and the rotation center of the drive transmission portion of the power portion and the rotation center of the drive transmission portion of the vibration portion are arranged on substantially the same axis. It is a feature.
  • the drive transmission unit of the power unit, the drive transmission unit of the vibration unit, and the connection mechanism are integrally rotated via the power unit.
  • the first support frame that supports the power unit the second support frame that supports the vibration unit, the first support frame, and the second support frame.
  • the anti-vibration rubber is further provided between the first support frame and the anti-vibration rubber.
  • the anti-vibration rubber disposition region of the second support frame is inclined diagonally upward with respect to the disposition region of the vibrating portion of the second support frame.
  • the anti-vibration rubber disposition region of the first support frame is characterized in that it is disposed substantially in parallel with the anti-vibration rubber disposition region of the second support frame.
  • the power unit is an engine or a battery-powered motor.
  • the vibration compaction device of the present invention further includes a handle portion for operating the vibrating body and a grip attached to the handle portion, and the region of the inside of the grip facing the handle portion is provided.
  • a plurality of vibration buffer grooves are formed along the extending direction of the handle portion.
  • the vibration compaction device of the present invention includes a connecting mechanism for connecting the drive transmission unit of the power unit and the drive transmission unit of the vibration unit, and the connection mechanism is a first type to which the drive transmission unit of the power unit is mounted.
  • the first elastic portion and the second elastic portion are fastened to the connecting member, respectively.
  • the drive transmission unit of the power unit, the drive transmission unit of the vibration unit, and the connecting mechanism rotate integrally via the power unit.
  • the vibrating unit is driven by the power from the power unit, while the vibration generated in the vibrating unit is difficult to be transmitted to the power unit.
  • the anti-vibration rubber is arranged between the first support frame and the second support frame, and the anti-vibration rubber is arranged on the first and second support frames.
  • the installation area slopes diagonally upward.
  • the power unit is an engine or a battery-powered motor.
  • the power cord becomes cordless, and the operator does not need to carry and install the generator, the power cord, etc., and the work efficiency is greatly improved.
  • a plurality of vibration buffer grooves are formed in the region facing the handle portion inside the grip portion along the extending direction of the handle portion.
  • the vibration compaction device 10 according to the embodiment of the present invention will be described in detail with reference to the drawings.
  • the same code number is used for the same member, and the repeated description is omitted.
  • the vertical direction indicates the height direction of the vibration compaction device 10
  • the left-right direction indicates the width direction when the vibration compaction device 10 is viewed from the front
  • the front-rear direction indicates the depth direction of the vibration compaction device 10. ing.
  • FIG. 1A is a front view illustrating the vibration compaction device 10 of the present embodiment.
  • FIG. 1B is a rear view illustrating the vibration compaction device 10 of the present embodiment.
  • FIG. 2 is an exploded perspective view illustrating the vibration compaction device 10 of the present embodiment.
  • the vibration compaction device 10 mainly includes a power unit 11 including an engine, a fuel tank 12 for storing fuel supplied to the power unit 11, and a power unit.
  • a connecting mechanism 14 (FIG. 2) that connects the vibrating unit 13 that vibrates by the power from the 11 and the drive shaft 21B (see FIG. 2) that transmits the power of the power unit 11 and the drive shaft 31 (see FIG. 2) of the vibrating unit 13. 2), the vibrating body 15 that vibrates through the vibrating unit 13, the anti-vibration rubber 16 that vibrates the vibration generated by the vibrating unit 13 and the like, the handle unit 17 that operates the vibrating body 15, and the power unit.
  • a support frame 18 for supporting a vibrating portion 13, an anti-vibration rubber 16, a handle portion 17, and the like is provided.
  • An example of the vibration compaction device 10 is a tie tamper.
  • the vibrating body 15 is inserted into the ballast (not shown), and the vibration from the vibrating body 15 is transmitted to the ballast. Compact by poking the ballast below the sleeper (not shown).
  • another example of the vibration compaction device 10 is a ground compaction device.
  • the vibrating body 15 is arranged on the ground, and the ground is compacted by the vibration from the vibrating body 15. Compact.
  • the case of the Titamper as the vibration compaction device 10 will be described.
  • the power unit 11 for example, a GX35 freely tilted 4-stroke engine manufactured by Nissan Motor Co., Ltd. is adopted, and the power unit 11 is driven by the fuel supplied from the fuel tank 12.
  • the power unit 11 is fixed to the first support frame 18A which is a part of the support frame 18, and is arranged between the pair of arm portions 17D and 17E of the handle portion 17.
  • the fuel tank 12 is arranged adjacent to the side of the power unit 11 and supplies fuel to the power unit 11 via a fuel hose (not shown).
  • the vibration compaction device 10 it is not necessary to supply electric power from an external power source such as a generator to the vibration unit 13, and a power cord for connecting the vibration unit 13 and the external power source is not required.
  • the power cord of the vibration compaction device 10 is made cordless, and the operator does not need to carry and install the generator, the power cord, etc., and the operator can perform the power cord according to the work range. There is no need to extend the work.
  • the operator does not need to handle the power cord so that it does not get entangled with the rail (not shown) or the sleepers during the work, and the vibrating body 15 can be operated from a direction that makes it easy to work on the sleepers. Work efficiency is greatly improved.
  • the vibrating unit 13 is below the power unit 11 and is fixed to the second support frame 18B which is a part of the support frame 18.
  • the vibrating body 15 is, for example, a beater made of a plate-shaped body, and the lower end side thereof is inclined inward from the middle portion thereof. Then, the upper end side of the vibrating body 15 is fastened to the side surface of the housing 29 (see FIG. 2) of the vibrating unit 13, so that the vibration generated by the vibrating unit 13 is transmitted to the vibrating body 15.
  • This structure makes it easy for the vibrating body 15 to be inserted below the sleepers (not shown), and by compacting the ballast below the sleepers, the phenomenon of lifting of the sleepers can be prevented.
  • the support frame 18 constitutes a frame such as an outer frame of the vibration compaction device 10, and fixes and supports the power unit 11, the vibration unit 13, the vibrating body 15, the handle unit 17, and the like.
  • four anti-vibration rubbers 16 are bolted between the first support frame 18A and the second support frame 18B of the support frame 18.
  • the four anti-vibration rubbers 16 are arranged around the vicinity of the bottom surface 11A of the power unit 11, and are arranged, for example, at intervals of approximately 90 degrees in the horizontal direction.
  • the anti-vibration rubber 16 is arranged between the vibrating portion 13 and the handle portion 17, and the vibration transmitted from the vibrating portion 13 to the handle portion 17 is significantly damped by the anti-vibration rubber 16. ..
  • the vibration at the hand of the operator is significantly reduced, and the operator can easily feel the delicate hardness of the ballast and the state of the ballast at the time of compaction.
  • the anti-vibration rubber 16 for example, an S-type mount manufactured by NOK Co., Ltd. is adopted, and the rubber is formed of natural rubber having a hardness of 60.
  • the arm portions 17D and 17E of the handle portion 17 have a box-shaped structure having a space inside, for example, using a sheet metal such as stainless steel.
  • a cylindrical anti-vibration rubber 19 (see FIG. 2) is bolted to the intermediate portion of the arm portions 17D and 17E so as to bridge the internal space thereof in the front-rear direction.
  • the anti-vibration rubber 19 also attenuates the vibration in the handle portion 17 itself, so that the vibration at the operator's hand is also significantly reduced.
  • the anti-vibration rubber 19 is formed of, for example, a natural rubber having a hardness of 60.
  • FIG. 2 shows a state in which the components of the vibration compaction device 10 are disassembled from the upper end side to the lower end side.
  • FIG. 2 for convenience of illustration, some of the component parts are omitted.
  • the handle portion 17 is arranged on the upper end side thereof, and the operator operates the handle portion 17, so that the orientation of the vibrating body 15 and the ballast of the vibrating body 15 during work are performed.
  • the amount of insertion into can be adjusted.
  • the handle portion 17 has an abbreviated shape in which a single character-shaped rod-shaped portion 17A, a pair of grips 17B and 17C attached to both ends of the rod-shaped portion 17A, and the upper end side thereof is bolted to the rod-shaped portion 17A. It has a pair of arm portions 17D and 17E. The lower ends of the arm portions 17D and 17E are bolted to the support frame 18, respectively.
  • the power unit 11 is arranged between the pair of arm units 17D and 17E and is fixed to the first support frame 18A.
  • the drive transmission unit 21 of the power unit 11 is arranged on the bottom surface 11A of the power unit 11 and transmits the power from the power unit 11 to the vibration unit 13.
  • the drive transmission unit 21 mainly includes a clutch drum 21A assembled to a clutch (not shown) on the bottom surface 11A of the power unit 11, a drive shaft 21B arranged at the center of the clutch drum 21A, and a drive shaft 21B. It has a bearing 21C that rotatably supports it. Then, the clutch drum 21A comes into contact with the clutch as the rotation speed of the power unit 11 increases and rotates, so that the drive shaft 21B also rotates.
  • the drive transmission unit 21 is inserted into the opening 22 opened in the center of the first support frame 18A.
  • the power unit 11 is bolted to the first support frame 18A via the housing 23.
  • the second support frame 18B is arranged below the first support frame 18A.
  • the four anti-vibration rubbers 16 are bolted between the first support frame 18A and the second support frame 18B.
  • An opening 24 opened at the center of the second support frame 18B is also formed, and the drive transmission portion 21 is also inserted into the opening 24.
  • the housing 25 is bolted to the lower surface of the second support frame 18B, and the connecting mechanism 14 is arranged in the internal space of the housing 25.
  • the connecting mechanism 14 mainly includes a first shaft joint 26 to which the drive transmission 21 of the power unit 11 is mounted, and a second shaft joint 27 to which the drive transmission 30 of the vibration portion 13 is mounted. It has a connecting member 28 that connects the first shaft joint portion 26 and the second shaft joint portion 27. Details will be described later with reference to FIG. 3, but the first shaft joint 26 of the connecting mechanism 14 is fitted with the drive shaft 21B of the drive transmission unit 21, and the connecting mechanism 14 is together with the drive shaft 21B of the power unit 11. Rotate.
  • the vibrating portion 13 is arranged below the connecting mechanism 14, and is bolted to the second support frame 18B via the housing 29.
  • the drive shaft 31 of the drive transmission unit 30 of the vibration unit 13 is led out from the upper end surface of the housing 29, and the second shaft joint portion 27 of the connecting mechanism 14 fits with the drive shaft 31 of the vibration unit 13.
  • the drive shaft 31 of the vibrating unit 13 rotates integrally with the drive shaft 21B of the power unit 11 via the connecting mechanism 14, so that the power of the power unit 11 is transmitted to the vibrating unit 13.
  • the vibrating portion 13 is arranged inside the housing 29, and is mainly a drive shaft 31, a bearing 32 that rotatably supports the drive shaft 31, and an eccentric cam arranged at a substantially central portion of the drive shaft 31. 33 and.
  • the drive shaft 31 of the vibrating unit 13 rotates integrally with the drive transmission unit 21 of the power unit 11, so that the eccentric cam 33 also rotates, and vibration is generated in the vibrating unit 13.
  • the upper end side of the vibrating body 15 is arranged between the side surface of the housing 29 of the vibrating portion 13 and the support frame 18, and is fastened to the side surface of the housing 29 via the pressing plate 34. With this structure, the vibration generated in the vibrating unit 13 is transmitted to the vibrating body 15, so that the vibrating body 15 vibrates.
  • FIG. 3A is a front view illustrating the connecting mechanism 14 of the vibration compaction device 10 of the present embodiment.
  • FIG. 3B is a top view illustrating the connecting mechanism 14 of the vibration compaction device 10 of the present embodiment.
  • FIG. 3C is a side view illustrating the connecting mechanism 14 of the vibration compaction device 10 of the present embodiment.
  • FIG. 2 is referred to as appropriate.
  • the connecting mechanism 14 mainly includes a first shaft joint 26 on which the drive shaft 21B of the power unit 11 is mounted, and a drive shaft 31 of the vibration unit 13. It has a second shaft joint portion 27 to which is mounted, and a connecting member 28 that connects the first shaft joint portion 26 and the second shaft joint portion 27.
  • the connecting member 28 is, for example, a rectangular steel material having a long side in the left-right direction and a short side in the front-rear direction of the vibration compaction device 10.
  • the first shaft joint portion 26 mainly includes a cylindrical portion 41 into which the drive shaft 21B is inserted and fits with the drive shaft 21B, and a first elastic portion 42 that is fastened to the outer peripheral surface of the cylindrical portion 41.
  • the second shaft joint portion 27 is mainly a cylindrical portion 43 into which the drive shaft 31 is inserted and meshes with the drive shaft 31, and a second elastic portion that is fastened to the outer peripheral surface of the cylindrical portion 43. 44 and.
  • the cylindrical portions 41 and 43 and the connecting member 28 are each made of a rigid steel material and rotate integrally with the drive shafts 21B and 31.
  • the first and second elastic portions 42 and 44 are formed of, for example, natural rubber having a hardness of 60.
  • the first elastic portion 42 is, for example, an annular rubber member, and as shown by the circles 45 and 46, the first elastic portion 42 is in contact with the outer peripheral surface of the cylindrical portion 41 at at least four locations. Arranged in contact. Then, in the two regions indicated by the circles 45, the first elastic portion 42 is fastened to the cylindrical portion 41 via the bolt 47 (see FIG. 3A). On the other hand, in the two regions indicated by the circles 46, the first elastic portion 42 is fastened to the connecting member 28 via the bolt 48.
  • the structure of the second elastic portion 44 and the attachment structure of the second elastic portion 44 to the cylindrical portion 43 are the same as those of the first elastic portion 42, and the above description is referred to, and the description thereof is omitted here. do. Then, the cylindrical portions 41 and 43 are fitted with the drive shafts 21B and 31, respectively, by inserting a fitting pin (not shown) into the fitting groove 49.
  • the drive shaft 21B of the power unit 11 and the drive shaft 31 of the vibrating unit 13 are connected via the first and second elastic portions 42, 44 and the connecting member 28, and the drive shafts 21B, 31 are connected to each other.
  • a structure that is not directly connected is realized.
  • the vibration generated in the vibrating portion 13 is damped by the first and second elastic portions 42 and 44, so that the vibration transmitted from the drive shaft 31 to the drive shaft 21B is significantly reduced.
  • the one-point chain wire 50 indicates the axial center of the cylindrical portions 41 and 43, but in the power unit 11, the drive shaft 21B is less likely to be affected by the vibration from the drive shaft 31, and the rotation center of the drive shaft 21B is determined.
  • the power unit 11 is fixed to the first support frame 18A, and the vibrating unit 13 is fixed to the second support frame 18B.
  • the drive shafts 21B and 31 are connected to each other via the first and second elastic portions 42 and 44 and the connecting member 28. That is, since the power unit 11 and the vibrating unit 13 are fixed to different members, the rotation centers of the drive shafts 21B and 31 are abbreviated as the axial center indicated by the alternate long and short dash line 50 depending on the tightening condition of each fastening portion. It becomes difficult to arrange them on the same axis.
  • the first and second elastic portions 42, 44 are arranged between the drive shafts 21B, 31 so that the vibration compaction device 10 can be assembled during the assembling work.
  • the first and second elastic portions 42 and 44 are slightly twisted and function as a member for adjusting the position. As a result, it becomes easy to adjust so that the rotation centers of the drive shafts 21B and 31 are located on substantially the same axis as the axis indicated by the alternate long and short dash line 50, respectively.
  • the first and second elastic portions 42 are in operation. , 44 makes it easier for the center of rotation of the drive shafts 21B and 31 to rotate on substantially the same axis as the axis indicated by the one-point chain line 50.
  • the drive shaft 21B rotates stably on substantially the same axis as the axial center indicated by the alternate long and short dash line 50, so that the parts of the power unit 11 are damaged and the life of the power unit 11 is reached. Is prevented from decreasing.
  • FIG. 4 is a perspective view illustrating the attachment structure 51 of the vibration-proof rubber 16 of the vibration compaction device 10 of the present embodiment.
  • anti-vibration rubbers 16 are arranged between the first support frame 18A and the second support frame 18B.
  • the upper end side of the anti-vibration rubber 16 is bolted to the first support frame 18A, and the lower end side of the anti-vibration rubber 16 is bolted to the second support frame 18B.
  • the first support frame 18A has four disposition areas 52 to which the anti-vibration rubber 16 is fastened, and a disposition area 53 to which the power unit 11 is fastened in the middle of the four disposition areas 52. And have. That is, the four arrangement regions 52 are arranged in the outer peripheral region of the arrangement region 53, for example, at intervals of approximately 90 degrees in the horizontal direction. Further, the arrangement region 53 is a horizontal plane substantially parallel to the bottom surface 11A (see FIG. 2) of the power unit 11 (see FIG. 2), and each of the four arrangement regions 52 with respect to the arrangement region 53. For example, it tilts diagonally upward by about 30 degrees.
  • the second support frame 18B has substantially the same shape as the first support frame 18A, and the second support frame 18B also has four disposition areas 54 to which the anti-vibration rubber 16 is fastened and four. It has an arrangement region 55 in which the vibrating portion 13 (see FIG. 2) is fastened in the middle of the arrangement area 54.
  • the arrangement region 55 of the second support frame 18B is a horizontal plane substantially parallel to the top surface 13A (see FIG. 2) of the vibrating portion 13 (see FIG. 2), and the four arrangement regions 54 are each substantially parallel. For example, it is inclined diagonally upward by about 30 degrees with respect to the arrangement region 55.
  • the power unit 11 is in a state of being inclined and supported by the four anti-vibration rubbers 16 via the first and second support frames 18A and 18B.
  • the load of the power unit 11 is supported by the combination of the compression direction and the shear direction of the anti-vibration rubber 16, so that the vibration in the horizontal direction and the rotation direction in the front-rear direction and the left-right direction can be easily damped.
  • the power unit 11 rotates in a direction substantially parallel to the arrangement region 53 of the first support frame 18A, but the vibration in the rotation direction is significantly damped by the four anti-vibration rubbers 16.
  • the four anti-vibration rubbers 16 significantly reduce the horizontal vibration transmitted from the vibrating unit 13 to the power unit 11.
  • the vibration in the rotation direction generated by the power unit 11 and the vibration in the horizontal direction generated from the vibration unit 13 resonate.
  • the center of rotation thereof stably rotates on the same axis as the axis indicated by the alternate long and short dash line 50, so that the parts of the power unit 11 are damaged and the power unit is damaged. The decrease in the life of 11 is prevented.
  • FIG. 5A is a cross-sectional view illustrating the grip 17B of the vibration compaction device 10 of the present embodiment, and shows a cross section of the rod-shaped portion 17A along the extending direction.
  • FIG. 5B is a side view illustrating the grip 17B of the vibration compaction device 10 of the present embodiment.
  • the structure of the grip 17C of the handle portion 17 is substantially the same as the structure of the grip 17B.
  • the description of the grip 17B will be referred to, and the description thereof will be omitted.
  • FIG. 2 is referred to as appropriate.
  • the grip 17B is made of, for example, a rubber member having a substantially cylindrical shape, one end side in the extending direction is opened, and the grip 17B is attached to the rod-shaped portion 17A of the handle portion 17 by using the opening. Will be done. Then, two annular protrusions 61 and 62 are arranged on the outer peripheral surface of the grip 17B, and the operator operates the handle portion 17 while gripping between the annular protrusions 61 and 62. On the other hand, inside the grip 17B, a space portion 64 having a substantially cylindrical shape is formed around the axis indicated by the alternate long and short dash line 63.
  • the inner diameter of the space portion 64 is designed according to the outer diameter of the rod-shaped portion 17A of the handle portion 17, and in the region of the thickness T1 of the grip 17B, the inner peripheral surface of the grip 17B is the outer peripheral surface of the rod-shaped portion 17A. It will be in a state of contact.
  • a vibration buffer groove 65 having a semicircular cross section is in the extending direction of the rod-shaped portion 17A.
  • Five lines are formed at regular intervals along the outer peripheral surface.
  • the contact area between the inner peripheral surface of the grip 17B and the outer peripheral surface of the rod-shaped portion 17A is significantly reduced. Then, the area where the operator's hand comes into contact with the rod-shaped portion 17A via the grip 17B is reduced, so that the operator's hand vibration is further reduced. In the region L2 of the grip 17B, the grip 17B is in close contact with the rod-shaped portion 17A over substantially the entire surface, and the grip 17B is prevented from falling out of the rod-shaped portion 17A.
  • FIG. 6 is a front view for explaining a vibration compaction device 70 which is a modified example of the present embodiment, and shows a case where a motor 71 is adopted as a power unit 11.
  • the driving method of the motor 71 as the power unit 11 is, for example, a battery type, two batteries 72 are attached to the upper surface of the motor 71, and the motor 71 receives electric power from the battery 72. Driven by.
  • the motor 71 and the battery 72 as the power unit 11 are fixed to the first support frame 18A and are arranged between the pair of arm portions 17D and 17E of the handle portion 17.
  • the vibration compaction device 70 is different from the vibration compaction device 10 described above with reference to FIGS. 1 to 5, mainly in a drive system adopted as its power unit 11, and other constituent members. Are the same. Therefore, in the vibration compaction device 70, the same components as the vibration compaction device 10 are assigned the same number, and the description thereof will be referred to the above-mentioned description.
  • the vibration compaction device 70 it is not necessary to supply electric power from an external power source such as a generator to the vibration unit 13, and a power cord for connecting the vibration unit 13 and the external power source is not required.
  • the power cord of the vibration compaction device 70 is made cordless, and the work efficiency of the operator is greatly improved as in the vibration compaction device 10.
  • the vibration compaction device 70 the same effect as described above can be obtained in the vibration compaction device 10.
  • various modifications can be made without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)

Abstract

Prior-art tamping devices for tracks have had problems in that the rotating shaft of an engine and the rotating shaft of a vibration-generating section are directly linked, and vibration from the vibration-generating section is readily transmitted to the engine. This vibration compaction device 10 comprises a linking mechanism 14 that links a motive power section 11 and a vibration section 13, and the linking mechanism 14 has a first shaft joint section 26 to which a drive transmission section 21 of the motive power section 11 is mounted, a second shaft joint section 27 to which a drive transmission section 30 of the vibration section 13 is mounted, and a linking member 28 that links the first shaft joint section 26 and the second shaft joint section 27. Due to this structure, the drive transmission section 21 and the drive transmission section 30 are not directly linked, vibration generated in the vibration section 13 is not readily transmitted to the motive power section 11, and the motive power section 11 is driven in a stable state, whereby damage to the components of the motive power section 11 and decrease in life span are prevented.

Description

振動締め固め装置Vibration compaction device
 本発明は、振動締め固め装置に関し、特に、振動部から動力部やハンドル部への防振構造を実現すると共に、動力部の電源コードのコードレス化により作業効率を向上させる振動締め固め装置に関する。 The present invention relates to a vibration compaction device, and more particularly to a vibration compaction device that realizes a vibration-proof structure from a vibration unit to a power unit and a handle unit and improves work efficiency by making the power cord of the power unit cordless.
 従来の軌道用タンピング装置100(以下、「タンピング装置100」と呼ぶ。)として、図7に示す構造が知られている。図7(A)は、従来のタンピング装置100を説明する斜視図である。図7(B)は、従来のタンピング装置100を説明する分解側面図である。 As a conventional track tamping device 100 (hereinafter, referred to as "tamping device 100"), the structure shown in FIG. 7 is known. FIG. 7A is a perspective view illustrating the conventional tamping device 100. FIG. 7B is an exploded side view illustrating the conventional tamping device 100.
 図7(A)に示す如く、タンピング装置100は、主に、エンジン101と、燃料タンク102と、振動ユニット103と、タンピングツール104と、保持バー105と、一対のグリップ106,107と、を備える。この構造により、作業者は、グリップ106,107を握りながら保持バー105を操作し、バラスト内にタイピングツール104を押し込んで、振動させることで、バラストを締め固めることができる。 As shown in FIG. 7A, the tamping device 100 mainly includes an engine 101, a fuel tank 102, a vibration unit 103, a tamping tool 104, a holding bar 105, and a pair of grips 106 and 107. Be prepared. With this structure, the operator can operate the holding bar 105 while grasping the grips 106 and 107, push the typing tool 104 into the ballast, and vibrate the ballast to compact the ballast.
 図7(B)に示す如く、振動ユニット103の振動伝達部108は、主に、振動発生部109と、振動発生部109に接続された自在シャフト110と、を備え、自在シャフト110は、タンピングツール104の内部の挿入孔114へと挿入される。一方、振動発生部109は、その回転軸111の端部に設けられた接続部112を介して、エンジン101の回転軸115の端部に設けられた接続部113と直接連結する(例えば、特許文献1参照。)。 As shown in FIG. 7B, the vibration transmission unit 108 of the vibration unit 103 mainly includes a vibration generating unit 109 and a flexible shaft 110 connected to the vibration generating unit 109, and the flexible shaft 110 is tamped. It is inserted into the insertion hole 114 inside the tool 104. On the other hand, the vibration generating portion 109 is directly connected to the connecting portion 113 provided at the end of the rotating shaft 115 of the engine 101 via the connecting portion 112 provided at the end of the rotating shaft 111 (for example, the patent). See Reference 1.).
特開2014-12984号公報Japanese Unexamined Patent Publication No. 2014-12984
 図7(B)に示す如く、タンピング装置100では、エンジンの101の回転軸115と振動発生部109の回転軸111とは、接続部112,113を介して直接連結し、エンジン101の回転力が、振動発生部109の回転力として伝達される。そして、振動発生部109は、回転軸111の中央部に設けられた偏心カムであり、偏心カムが、上記回転力を利用して回転することで振動が発生する。振動発生部109では、自在シャフト110を介してその振動をタンピングツール104に伝えることで、上記したようにバラストを締め固めることができる。 As shown in FIG. 7B, in the tamping device 100, the rotating shaft 115 of the engine 101 and the rotating shaft 111 of the vibration generating portion 109 are directly connected via the connecting portions 112 and 113, and the rotational force of the engine 101 Is transmitted as the rotational force of the vibration generating unit 109. The vibration generating unit 109 is an eccentric cam provided at the center of the rotating shaft 111, and vibration is generated when the eccentric cam rotates using the rotational force. In the vibration generating unit 109, the ballast can be compacted as described above by transmitting the vibration to the tamping tool 104 via the universal shaft 110.
 しかしながら、タンピング装置100では、回転軸111,115同士が、接続部112,113を介して直接連結する構造であり、振動発生部109にて発生する振動が、直接、エンジン101に伝達してしまう、という課題がある。具体的には、振動発生部109にて発生する振動は、主に、横振れによる振動である。その横振れによる振動が、エンジン101に伝達されると、エンジン101の回転のバランスが崩れ易くなる。そして、エンジン101から異音が発生する程、エンジン101が振動することで、エンジン101の部品の破損やエンジン101の寿命が低下等を招く恐れがある。 However, the tamping device 100 has a structure in which the rotating shafts 111 and 115 are directly connected to each other via the connecting portions 112 and 113, and the vibration generated by the vibration generating portion 109 is directly transmitted to the engine 101. , There is a problem. Specifically, the vibration generated by the vibration generating unit 109 is mainly vibration due to lateral vibration. When the vibration due to the lateral vibration is transmitted to the engine 101, the balance of rotation of the engine 101 is likely to be lost. Then, the more abnormal noise is generated from the engine 101, the more the engine 101 vibrates, which may lead to damage to parts of the engine 101, shortening of the life of the engine 101, and the like.
 タンピング装置100では、その上端部から、エンジン101、振動発生部109、自在シャフト110やタンピングツール104等がボルトやネジ等により締結されて、組み立てられる。この構造により、各締結箇所の締め付け具合等により、エンジン101の回転軸115と振動発生部109の回転軸111とを、回転中心である略同一軸線上に組み付ける作業が難しいという課題がある。そして、エンジン101の回転軸115が、振動発生部109の回転軸111と異なる回転中心にて回転することで、上述したように、エンジン101の回転のバランスが崩れ易くなる恐れがある。 In the tamping device 100, the engine 101, the vibration generating portion 109, the universal shaft 110, the tamping tool 104, and the like are fastened from the upper end thereof with bolts, screws, and the like to be assembled. With this structure, there is a problem that it is difficult to assemble the rotating shaft 115 of the engine 101 and the rotating shaft 111 of the vibration generating portion 109 on substantially the same axis line which is the center of rotation, depending on the tightening condition of each fastening portion. Then, the rotation shaft 115 of the engine 101 rotates at a rotation center different from the rotation shaft 111 of the vibration generating unit 109, so that the rotation balance of the engine 101 may be easily lost as described above.
 また、タンピング装置100では、保持バー105が、振動ユニット103の筐体の側面に連結する構造であり、振動発生部109にて発生する振動が、直接、保持バー105に伝達してしまう、という課題がある。具体的には、保持バー105に伝達した振動が、手元振動として作業者に伝わり、作業者は、締め固め時における微妙なバラストの固さやバラストの状態を感じ取り難くなり、作業効率の悪化を招く恐れがある。 Further, the tamping device 100 has a structure in which the holding bar 105 is connected to the side surface of the housing of the vibration unit 103, and the vibration generated by the vibration generating unit 109 is directly transmitted to the holding bar 105. There are challenges. Specifically, the vibration transmitted to the holding bar 105 is transmitted to the operator as hand vibration, which makes it difficult for the operator to perceive the delicate ballast hardness and ballast state at the time of compaction, resulting in deterioration of work efficiency. There is a fear.
 本発明は、上記事情に鑑みてなされたものであり、振動部から動力部やハンドル部への防振構造を実現すると共に、動力部の電源コードのコードレス化により作業性を向上させる振動締め固め装置を提供するものである。 The present invention has been made in view of the above circumstances, and is a vibration compaction that realizes a vibration-proof structure from a vibrating part to a power part and a handle part and improves workability by making the power cord of the power part cordless. It provides the device.
 本発明の振動締め固め装置は、振動体と、前記振動体に振動を加える振動部と、前記振動部を駆動させる動力部と、前記動力部の駆動伝達部と前記振動部の駆動伝達部とを連結させる連結機構と、を備え、前記連結機構は、前記動力部の前記駆動伝達部が装着される第1の軸継手部と、前記振動部の前記駆動伝達部が装着される第2の軸継手部と、前記第1の軸継手部の外周側に連結される第1の弾性部と、前記第2の軸継手部の外周側に連結される第2の弾性部と、前記第1の弾性部と前記第2の弾性部とを連結させる連結部材と、を有し、前記動力部の前記駆動伝達部と前記振動部の前記駆動伝達部とは、直接連結することなく、前記第1の弾性部及び前記第2の弾性部を介して連結することを特徴とする。 The vibration compaction device of the present invention includes a vibrating body, a vibrating unit that applies vibration to the vibrating body, a power unit that drives the vibrating unit, a drive transmission unit of the power unit, and a drive transmission unit of the vibrating unit. The connecting mechanism includes a first shaft joint portion to which the drive transmission portion of the power portion is mounted, and a second shaft joint portion to which the drive transmission portion of the vibration portion is mounted. The shaft joint portion, the first elastic portion connected to the outer peripheral side of the first shaft joint portion, the second elastic portion connected to the outer peripheral side of the second shaft joint portion, and the first elastic portion. The first elastic portion and the second elastic portion are connected to each other, and the drive transmission portion of the power portion and the drive transmission portion of the vibration portion are not directly connected to each other. It is characterized in that it is connected via the elastic portion 1 and the second elastic portion.
 また、本発明の振動締め固め装置では、前記第1の弾性部は、前記第1の軸継手部及び前記連結部材に対してそれぞれ締結され、前記第2の弾性部は、前記第2の軸継手部及び前記連結部材に対してそれぞれ締結され、前記動力部の前記駆動伝達部の回転中心と前記振動部の前記駆動伝達部の回転中心とは、略同一軸線上に配設されることを特徴とする。 Further, in the vibration compaction device of the present invention, the first elastic portion is fastened to the first shaft joint portion and the connecting member, respectively, and the second elastic portion is the second shaft. It is fastened to the joint portion and the connecting member, respectively, and the rotation center of the drive transmission portion of the power portion and the rotation center of the drive transmission portion of the vibration portion are arranged on substantially the same axis. It is a feature.
 また、本発明の振動締め固め装置では、前記動力部の前記駆動伝達部、前記振動部の前記駆動伝達部及び前記連結機構は、前記動力部を介して一体に回転することを特徴とする。 Further, in the vibration compaction device of the present invention, the drive transmission unit of the power unit, the drive transmission unit of the vibration unit, and the connection mechanism are integrally rotated via the power unit.
 また、本発明の振動締め固め装置では、前記動力部を支持する第1の支持フレームと、前記振動部を支持する第2の支持フレームと、前記第1の支持フレームと前記第2の支持フレームとの間に配設される防振ゴムと、を更に備え、前記第1の支持フレームの前記防振ゴムの配設領域は、前記第1の支持フレームの前記動力部の配設領域に対して斜め上方へと傾斜し、前記第2の支持フレームの前記防振ゴムの配設領域は、前記第2の支持フレームの前記振動部の配設領域に対して斜め上方へと傾斜し、前記第1の支持フレームの前記防振ゴムの配設領域は、前記第2の支持フレームの前記防振ゴムの配設領域と略並行に配設されることを特徴とする。 Further, in the vibration compaction device of the present invention, the first support frame that supports the power unit, the second support frame that supports the vibration unit, the first support frame, and the second support frame. The anti-vibration rubber is further provided between the first support frame and the anti-vibration rubber. The anti-vibration rubber disposition region of the second support frame is inclined diagonally upward with respect to the disposition region of the vibrating portion of the second support frame. The anti-vibration rubber disposition region of the first support frame is characterized in that it is disposed substantially in parallel with the anti-vibration rubber disposition region of the second support frame.
 また、本発明の振動締め固め装置では、前記動力部は、エンジンまたはバッテリ式モータであることを特徴とする。 Further, in the vibration compaction device of the present invention, the power unit is an engine or a battery-powered motor.
 また、本発明の振動締め固め装置では、前記振動体を操作するハンドル部と、前記ハンドル部に装着されるグリップと、を更に備え、前記グリップの内部の前記ハンドル部との対向領域には、前記ハンドル部の延在方向に沿って複数の振動緩衝溝が形成されることを特徴とする。 Further, the vibration compaction device of the present invention further includes a handle portion for operating the vibrating body and a grip attached to the handle portion, and the region of the inside of the grip facing the handle portion is provided. A plurality of vibration buffer grooves are formed along the extending direction of the handle portion.
 本発明の振動締め固め装置では、動力部の駆動伝達部と振動部の駆動伝達部とを連結させる連結機構と、を備え、連結機構は、動力部の駆動伝達部が装着される第1の軸継手部と、振動部の駆動伝達部が装着される第2の軸継手部と、第1の軸継手部の外周側に連結される第1の弾性部と、第2の軸継手部の外周側に連結される第2の弾性部と、第1の弾性部と第2の弾性部とを連結させる連結部材と、を有する。そして、動力部の駆動伝達部と振動部の駆動伝達部とは、直接連結することなく、第1の弾性部及び第2の弾性部を介して連結する。この構造により、振動部にて発生した振動が、動力部へと伝達し難くなり、動力部が安定した状態にて駆動することで、動力部の部品の破損や寿命の低下が防止される。 The vibration compaction device of the present invention includes a connecting mechanism for connecting the drive transmission unit of the power unit and the drive transmission unit of the vibration unit, and the connection mechanism is a first type to which the drive transmission unit of the power unit is mounted. A shaft joint portion, a second shaft joint portion to which a drive transmission portion of a vibrating portion is mounted, a first elastic portion connected to the outer peripheral side of the first shaft joint portion, and a second shaft joint portion. It has a second elastic portion connected to the outer peripheral side, and a connecting member for connecting the first elastic portion and the second elastic portion. Then, the drive transmission unit of the power unit and the drive transmission unit of the vibration unit are connected via the first elastic portion and the second elastic portion without being directly connected. With this structure, it becomes difficult for the vibration generated in the vibrating part to be transmitted to the power part, and by driving the power part in a stable state, damage to parts of the power part and shortening of the life can be prevented.
 また、本発明の振動締め固め装置では、第1の弾性部と第2の弾性部とは、それぞれ連結部材に対して締結される。この構造により、動力部の駆動伝達部の回転中心と振動部の駆動伝達部の回転中心とは、略同一軸線上に配設され易くなり、動力部が安定した状態にて駆動することで、動力部の部品の破損や寿命の低下が防止される。 Further, in the vibration compaction device of the present invention, the first elastic portion and the second elastic portion are fastened to the connecting member, respectively. With this structure, the rotation center of the drive transmission unit of the power unit and the rotation center of the drive transmission unit of the vibration unit can be easily arranged on substantially the same axis, and the power unit can be driven in a stable state. Damage to parts of the power unit and shortening of life are prevented.
 また、本発明の振動締め固め装置では、動力部の駆動伝達部、振動部の駆動伝達部及び連結機構は、動力部を介して一体に回転する。この構造により、振動部は、動力部からの動力により駆動する一方、振動部に発生する振動は、動力部へと伝達し難くなる。 Further, in the vibration compaction device of the present invention, the drive transmission unit of the power unit, the drive transmission unit of the vibration unit, and the connecting mechanism rotate integrally via the power unit. With this structure, the vibrating unit is driven by the power from the power unit, while the vibration generated in the vibrating unit is difficult to be transmitted to the power unit.
 また、本発明の振動締め固め装置では、防振ゴムは、第1の支持フレームと第2の支持フレームとの間に配設され、第1及び第2の支持フレームの上記防振ゴムの配設領域は、斜め上方へと傾斜する。この構造により、動力部は、防振ゴムにより傾斜支持された状態となり、動力部にて発生する回転方向の振動や振動部にて発生する前後方向や水平方向への振動が大幅に減衰される。 Further, in the vibration compaction device of the present invention, the anti-vibration rubber is arranged between the first support frame and the second support frame, and the anti-vibration rubber is arranged on the first and second support frames. The installation area slopes diagonally upward. With this structure, the power unit is tilted and supported by the anti-vibration rubber, and the vibration in the rotational direction generated in the power unit and the vibration in the front-rear direction and the horizontal direction generated in the vibrating unit are significantly damped. ..
 また、本発明の振動締め固め装置では、動力部は、エンジンまたはバッテリ式モータである。この構造により、振動締め固め装置では、電源コードのコードレス化が実現され、作業者は、発電機や電源コード等の運搬、設置作業が不要となる等、その作業効率が、大幅に向上する。 Further, in the vibration compaction device of the present invention, the power unit is an engine or a battery-powered motor. With this structure, in the vibration compaction device, the power cord becomes cordless, and the operator does not need to carry and install the generator, the power cord, etc., and the work efficiency is greatly improved.
 また、本発明の振動締め固め装置では、ハンドル部に装着されるグリップに関し、その内部のハンドル部との対向領域に、ハンドル部の延在方向に沿って複数の振動緩衝溝が形成される。この構造により、作業者の手元振動が大幅に低減される。 Further, in the vibration compaction device of the present invention, with respect to the grip attached to the handle portion, a plurality of vibration buffer grooves are formed in the region facing the handle portion inside the grip portion along the extending direction of the handle portion. With this structure, the vibration at the operator's hand is greatly reduced.
本発明の一実施形態の振動締め固め装置を説明する(A)正面図、(B)背面図である。It is (A) front view and (B) back view explaining the vibration compaction apparatus of one Embodiment of this invention. 本発明の一実施形態の振動締め固め装置を説明する分解斜視図である。It is an exploded perspective view explaining the vibration compaction apparatus of one Embodiment of this invention. 本発明の一実施形態の振動締め固め装置の連結機構を説明する(A)正面図、(B)上面図、(C)側面図である。It is (A) front view, (B) top view, (C) side view explaining the connection mechanism of the vibration compaction apparatus of one Embodiment of this invention. 本発明の一実施形態の振動締め固め装置の防振構造を説明する斜視図である。It is a perspective view explaining the vibration-proof structure of the vibration compaction apparatus of one Embodiment of this invention. 本発明の一実施形態の振動締め固め装置のハンドル部のグリップを説明する(A)断面図、(B)側面図である。It is (A) sectional view and (B) side view explaining the grip of the handle part of the vibration compaction apparatus of one Embodiment of this invention. 本発明の一実施形態の振動締め固め装置の変形例を説明する正面図である。It is a front view explaining the modification of the vibration compaction apparatus of one Embodiment of this invention. 従来のタンピング装置を説明する(A)斜視図、(B)分解側面図である。It is (A) perspective view and (B) disassembled side view explaining the conventional tamping apparatus.
 以下、本発明の一実施形態に係る振動締め固め装置10を図面に基づき詳細に説明する。尚、本実施形態の説明の際には、同一の部材には原則として同一の符番を用い、繰り返しの説明は省略する。 Hereinafter, the vibration compaction device 10 according to the embodiment of the present invention will be described in detail with reference to the drawings. In the description of the present embodiment, in principle, the same code number is used for the same member, and the repeated description is omitted.
 また、上下方向は振動締め固め装置10の高さ方向を示し、左右方向は振動締め固め装置10を前方から見た場合の横幅方向を示し、前後方向は振動締め固め装置10の奥行方向を示している。 Further, the vertical direction indicates the height direction of the vibration compaction device 10, the left-right direction indicates the width direction when the vibration compaction device 10 is viewed from the front, and the front-rear direction indicates the depth direction of the vibration compaction device 10. ing.
 図1(A)は、本実施形態の振動締め固め装置10を説明する正面図である。図1(B)は、本実施形態の振動締め固め装置10を説明する背面図である。図2は、本実施形態の振動締め固め装置10を説明する分解斜視図である。 FIG. 1A is a front view illustrating the vibration compaction device 10 of the present embodiment. FIG. 1B is a rear view illustrating the vibration compaction device 10 of the present embodiment. FIG. 2 is an exploded perspective view illustrating the vibration compaction device 10 of the present embodiment.
 図1(A)及び図1(B)に示す如く、振動締め固め装置10は、主に、エンジンから成る動力部11と、動力部11に供給する燃料を貯蔵する燃料タンク12と、動力部11からの動力により振動する振動部13と、動力部11の動力を伝達する駆動軸21B(図2参照)と振動部13の駆動軸31(図2参照)とを連結させる連結機構14(図2参照)と、振動部13を介して振動する振動体15と、振動部13等にて発生する振動を防振する防振ゴム16と、振動体15を操作するハンドル部17と、動力部11、振動部13、防振ゴム16及びハンドル部17等を支持する支持フレーム18と、を備える。 As shown in FIGS. 1A and 1B, the vibration compaction device 10 mainly includes a power unit 11 including an engine, a fuel tank 12 for storing fuel supplied to the power unit 11, and a power unit. A connecting mechanism 14 (FIG. 2) that connects the vibrating unit 13 that vibrates by the power from the 11 and the drive shaft 21B (see FIG. 2) that transmits the power of the power unit 11 and the drive shaft 31 (see FIG. 2) of the vibrating unit 13. 2), the vibrating body 15 that vibrates through the vibrating unit 13, the anti-vibration rubber 16 that vibrates the vibration generated by the vibrating unit 13 and the like, the handle unit 17 that operates the vibrating body 15, and the power unit. 11. A support frame 18 for supporting a vibrating portion 13, an anti-vibration rubber 16, a handle portion 17, and the like is provided.
 振動締め固め装置10の一例としては、タイタンパであり、タイタンパの場合には、振動体15が、バラスト(図示せず)内へと挿入され、振動体15からの振動をバラストへと伝達し、まくらぎ(図示せず)下方のバラストを突くことで、締め固める。また、振動締め固め装置10の他の一例としては、地固め装置であり、地固め装置の場合には、振動体15が、地面上に配置され、振動体15からの振動により、地面を転圧し、締め固める。尚、以下の説明では、振動締め固め装置10として、タイタンパの場合について説明する。 An example of the vibration compaction device 10 is a tie tamper. In the case of the tie tamper, the vibrating body 15 is inserted into the ballast (not shown), and the vibration from the vibrating body 15 is transmitted to the ballast. Compact by poking the ballast below the sleeper (not shown). Further, another example of the vibration compaction device 10 is a ground compaction device. In the case of the ground compaction device, the vibrating body 15 is arranged on the ground, and the ground is compacted by the vibration from the vibrating body 15. Compact. In the following description, the case of the Titamper as the vibration compaction device 10 will be described.
 動力部11としては、例えば、本田技研工業株式会社製のGX35の自在傾斜4ストロークエンジンが採用され、動力部11は、燃料タンク12から供給される燃料により駆動する。そして、動力部11は、支持フレーム18の一部である第1の支持フレーム18Aに対して固定されると共に、ハンドル部17の一対のアーム部17D,17Eの間に配設される。一方、燃料タンク12は、動力部11の側方に隣接して配設され、燃料ホース(図示せず)を介して動力部11に燃料を供給する。 As the power unit 11, for example, a GX35 freely tilted 4-stroke engine manufactured by Honda Motor Co., Ltd. is adopted, and the power unit 11 is driven by the fuel supplied from the fuel tank 12. The power unit 11 is fixed to the first support frame 18A which is a part of the support frame 18, and is arranged between the pair of arm portions 17D and 17E of the handle portion 17. On the other hand, the fuel tank 12 is arranged adjacent to the side of the power unit 11 and supplies fuel to the power unit 11 via a fuel hose (not shown).
 この構造により、振動締め固め装置10では、発電機等の外部電源から振動部13へと電力を供給する必要がなく、振動部13と外部電源とを接続する電源コードが不要となる。その結果、振動締め固め装置10の電源コードのコードレス化が実現され、作業者は、発電機や電源コード等の運搬、設置作業が不要となると共に、作業者が、作業範囲に応じて電源コードを延長する作業が不要となる。更には、作業者は、作業中に電源コードがレール(図示せず)やまくらぎ等に絡まない様に取り扱う必要がなく、まくらぎに対して作業し易い方向から振動体15を操作でき、作業効率が大幅に向上される。 With this structure, in the vibration compaction device 10, it is not necessary to supply electric power from an external power source such as a generator to the vibration unit 13, and a power cord for connecting the vibration unit 13 and the external power source is not required. As a result, the power cord of the vibration compaction device 10 is made cordless, and the operator does not need to carry and install the generator, the power cord, etc., and the operator can perform the power cord according to the work range. There is no need to extend the work. Furthermore, the operator does not need to handle the power cord so that it does not get entangled with the rail (not shown) or the sleepers during the work, and the vibrating body 15 can be operated from a direction that makes it easy to work on the sleepers. Work efficiency is greatly improved.
 振動部13は、動力部11の下方であり、支持フレーム18の一部である第2の支持フレーム18Bに対して固定される。一方、振動体15は、例えば、板状体から成るビーターであり、その中間部から下端部側が内側へと向けて傾斜する。そして、振動体15の上端部側が、振動部13の筐体29(図2参照)の側面に締結されることで、振動部13にて発生した振動が、振動体15へと伝達される。この構造により、振動体15が、まくらぎ(図示せず)の下方まで挿入し易くなると共に、まくらぎ下方のバラストを締め固めることで、まくらぎの浮き上がり現象を防止できる。 The vibrating unit 13 is below the power unit 11 and is fixed to the second support frame 18B which is a part of the support frame 18. On the other hand, the vibrating body 15 is, for example, a beater made of a plate-shaped body, and the lower end side thereof is inclined inward from the middle portion thereof. Then, the upper end side of the vibrating body 15 is fastened to the side surface of the housing 29 (see FIG. 2) of the vibrating unit 13, so that the vibration generated by the vibrating unit 13 is transmitted to the vibrating body 15. This structure makes it easy for the vibrating body 15 to be inserted below the sleepers (not shown), and by compacting the ballast below the sleepers, the phenomenon of lifting of the sleepers can be prevented.
 支持フレーム18は、振動締め固め装置10の外枠等骨組みを構成し、動力部11、振動部13、振動体15やハンドル部17等を固定し、支持する。図示したように、支持フレーム18の第1の支持フレーム18Aと第2の支持フレーム18Bとの間には、4つの防振ゴム16がボルト締結される。そして、4つの防振ゴム16は、動力部11の底面11A近傍の周囲に配設され、例えば、それぞれ水平方向に略90度間隔にて配設される。 The support frame 18 constitutes a frame such as an outer frame of the vibration compaction device 10, and fixes and supports the power unit 11, the vibration unit 13, the vibrating body 15, the handle unit 17, and the like. As shown, four anti-vibration rubbers 16 are bolted between the first support frame 18A and the second support frame 18B of the support frame 18. The four anti-vibration rubbers 16 are arranged around the vicinity of the bottom surface 11A of the power unit 11, and are arranged, for example, at intervals of approximately 90 degrees in the horizontal direction.
 この構造により、振動部13とハンドル部17との間に防振ゴム16が配設され、振動部13からハンドル部17へと伝達される振動が、防振ゴム16にて大幅に減衰される。その結果、作業者の手元振動が大幅に低減され、作業者は、締め固め時における微妙なバラストの固さやバラストの状態を感じ取り易くなる。尚、防振ゴム16としては、例えば、NOK株式会社製のS型マウントが採用され、硬度60の天然ゴムから形成される。 With this structure, the anti-vibration rubber 16 is arranged between the vibrating portion 13 and the handle portion 17, and the vibration transmitted from the vibrating portion 13 to the handle portion 17 is significantly damped by the anti-vibration rubber 16. .. As a result, the vibration at the hand of the operator is significantly reduced, and the operator can easily feel the delicate hardness of the ballast and the state of the ballast at the time of compaction. As the anti-vibration rubber 16, for example, an S-type mount manufactured by NOK Co., Ltd. is adopted, and the rubber is formed of natural rubber having a hardness of 60.
 また、ハンドル部17のアーム部17D,17Eは、例えば、ステンレス等の板金を用いて、その内部に空間を有する箱型構造となる。図示したように、アーム部17D,17Eの中間部には、例えば、円柱形状の防振ゴム19(図2参照)が、その内部空間を前後方向に架橋するようにボルト締結される。そして、上記防振ゴム19により、ハンドル部17自体においても、上記振動を減衰することで、作業者の手元振動も大幅に低減される。尚、防振ゴム19は、例えば、硬度60の天然ゴムから形成される。 Further, the arm portions 17D and 17E of the handle portion 17 have a box-shaped structure having a space inside, for example, using a sheet metal such as stainless steel. As shown in the figure, for example, a cylindrical anti-vibration rubber 19 (see FIG. 2) is bolted to the intermediate portion of the arm portions 17D and 17E so as to bridge the internal space thereof in the front-rear direction. The anti-vibration rubber 19 also attenuates the vibration in the handle portion 17 itself, so that the vibration at the operator's hand is also significantly reduced. The anti-vibration rubber 19 is formed of, for example, a natural rubber having a hardness of 60.
 図2では、振動締め固め装置10の上端側から下端側へと向けて、その構成部品を分解した状態を示す。尚、図2では、その図示の都合上、構成部品の一部を省略して図示する。 FIG. 2 shows a state in which the components of the vibration compaction device 10 are disassembled from the upper end side to the lower end side. In FIG. 2, for convenience of illustration, some of the component parts are omitted.
 図示したように、振動締め固め装置10では、その上端側にハンドル部17が配設され、作業者がハンドル部17を操作することで、作業時に、振動体15の向きや振動体15のバラストへの挿入量等を調整できる。そして、ハンドル部17は、一文字形状の棒状部17Aと、棒状部17Aの両端部に装着される一対のグリップ17B,17Cと、その上端側が棒状部17Aにボルト締結される略くの字形状の一対のアーム部17D,17Eと、を有している。尚、アーム部17D,17Eの下端側は、それぞれ支持フレーム18へとボルト締結される。 As shown in the figure, in the vibration compaction device 10, the handle portion 17 is arranged on the upper end side thereof, and the operator operates the handle portion 17, so that the orientation of the vibrating body 15 and the ballast of the vibrating body 15 during work are performed. The amount of insertion into can be adjusted. The handle portion 17 has an abbreviated shape in which a single character-shaped rod-shaped portion 17A, a pair of grips 17B and 17C attached to both ends of the rod-shaped portion 17A, and the upper end side thereof is bolted to the rod-shaped portion 17A. It has a pair of arm portions 17D and 17E. The lower ends of the arm portions 17D and 17E are bolted to the support frame 18, respectively.
 動力部11は、一対のアーム部17D,17Eの間に配設され、第1の支持フレーム18Aに対して固定される。動力部11の駆動伝達部21が、動力部11の底面11Aに配設され、動力部11からの動力を振動部13へと伝達する。駆動伝達部21は、主に、動力部11の底面11Aのクラッチ(図示せず)に組付けられるクラッチドラム21Aと、クラッチドラム21Aの中心部に配置される駆動軸21Bと、駆動軸21Bを回転自在に支持するベアリング21Cと、を有する。そして、クラッチドラム21Aが、動力部11の回転数の上昇に伴いクラッチと接触し、回転することで、駆動軸21Bも回転する。図示したように、駆動伝達部21は、第1の支持フレーム18Aの中央に開口した開口部22へと挿入される。尚、動力部11は、筐体23を介して第1の支持フレーム18Aに対してボルト締結される。 The power unit 11 is arranged between the pair of arm units 17D and 17E and is fixed to the first support frame 18A. The drive transmission unit 21 of the power unit 11 is arranged on the bottom surface 11A of the power unit 11 and transmits the power from the power unit 11 to the vibration unit 13. The drive transmission unit 21 mainly includes a clutch drum 21A assembled to a clutch (not shown) on the bottom surface 11A of the power unit 11, a drive shaft 21B arranged at the center of the clutch drum 21A, and a drive shaft 21B. It has a bearing 21C that rotatably supports it. Then, the clutch drum 21A comes into contact with the clutch as the rotation speed of the power unit 11 increases and rotates, so that the drive shaft 21B also rotates. As shown, the drive transmission unit 21 is inserted into the opening 22 opened in the center of the first support frame 18A. The power unit 11 is bolted to the first support frame 18A via the housing 23.
 第2の支持フレーム18Bは、第1の支持フレーム18Aの下方に配設される。4つの防振ゴム16は、第1の支持フレーム18Aと第2の支持フレーム18Bとの間にボルト締結される。第2の支持フレーム18Bにもその中央に開口した開口部24が形成され、駆動伝達部21は、開口部24にも挿入される。そして、第2の支持フレーム18Bの下面には、筐体25がボルト締結され、筐体25の内部空間に連結機構14が配設される。 The second support frame 18B is arranged below the first support frame 18A. The four anti-vibration rubbers 16 are bolted between the first support frame 18A and the second support frame 18B. An opening 24 opened at the center of the second support frame 18B is also formed, and the drive transmission portion 21 is also inserted into the opening 24. Then, the housing 25 is bolted to the lower surface of the second support frame 18B, and the connecting mechanism 14 is arranged in the internal space of the housing 25.
 連結機構14は、主に、動力部11の駆動伝達部21が装着される第1の軸継手部26と、振動部13の駆動伝達部30が装着される第2の軸継手部27と、第1の軸継手部26と第2の軸継手部27とを連結する連結部材28と、を有している。詳細は図3を用いて後述するが、連結機構14の第1の軸継手部26は、駆動伝達部21の駆動軸21Bと嵌合し、連結機構14は、動力部11の駆動軸21Bと共に回転する。 The connecting mechanism 14 mainly includes a first shaft joint 26 to which the drive transmission 21 of the power unit 11 is mounted, and a second shaft joint 27 to which the drive transmission 30 of the vibration portion 13 is mounted. It has a connecting member 28 that connects the first shaft joint portion 26 and the second shaft joint portion 27. Details will be described later with reference to FIG. 3, but the first shaft joint 26 of the connecting mechanism 14 is fitted with the drive shaft 21B of the drive transmission unit 21, and the connecting mechanism 14 is together with the drive shaft 21B of the power unit 11. Rotate.
 振動部13は、連結機構14の下方に配設され、筐体29を介して第2の支持フレーム18Bへとボルト締結される。筐体29の上端面からは、振動部13の駆動伝達部30の駆動軸31が導出し、連結機構14の第2の軸継手部27は、振動部13の駆動軸31と嵌合する。この構造により、振動部13の駆動軸31は、連結機構14を介して動力部11の駆動軸21Bと一体に回転することで、動力部11の動力が振動部13へと伝達される。 The vibrating portion 13 is arranged below the connecting mechanism 14, and is bolted to the second support frame 18B via the housing 29. The drive shaft 31 of the drive transmission unit 30 of the vibration unit 13 is led out from the upper end surface of the housing 29, and the second shaft joint portion 27 of the connecting mechanism 14 fits with the drive shaft 31 of the vibration unit 13. With this structure, the drive shaft 31 of the vibrating unit 13 rotates integrally with the drive shaft 21B of the power unit 11 via the connecting mechanism 14, so that the power of the power unit 11 is transmitted to the vibrating unit 13.
 振動部13は、筐体29の内部に配設され、主に、駆動軸31と、駆動軸31を回転自在に支持するベアリング32と、駆動軸31の略中央部に配設される偏心カム33と、を有する。上記したように、振動部13の駆動軸31が、動力部11の駆動伝達部21と一体に回転することで、偏心カム33も回転し、振動部13では、振動が発生する。 The vibrating portion 13 is arranged inside the housing 29, and is mainly a drive shaft 31, a bearing 32 that rotatably supports the drive shaft 31, and an eccentric cam arranged at a substantially central portion of the drive shaft 31. 33 and. As described above, the drive shaft 31 of the vibrating unit 13 rotates integrally with the drive transmission unit 21 of the power unit 11, so that the eccentric cam 33 also rotates, and vibration is generated in the vibrating unit 13.
 振動体15は、その上端部側が、振動部13の筐体29の側面と支持フレーム18との間に配設され、押さえ板34を介して筐体29の側面へと締結される。この構造により、振動部13にて発生した振動が、振動体15へと伝達されることで、振動体15が振動する。 The upper end side of the vibrating body 15 is arranged between the side surface of the housing 29 of the vibrating portion 13 and the support frame 18, and is fastened to the side surface of the housing 29 via the pressing plate 34. With this structure, the vibration generated in the vibrating unit 13 is transmitted to the vibrating body 15, so that the vibrating body 15 vibrates.
 次に、本実施形態の振動締め固め装置10の連結機構14について説明する。図3(A)は、本実施形態の振動締め固め装置10の連結機構14を説明する正面図である。図3(B)は、本実施形態の振動締め固め装置10の連結機構14を説明する上面図である。図3(C)は、本実施形態の振動締め固め装置10の連結機構14を説明する側面図である。尚、図3を用いた連結機構14の説明では、適宜、図2を参照する。 Next, the connecting mechanism 14 of the vibration compaction device 10 of the present embodiment will be described. FIG. 3A is a front view illustrating the connecting mechanism 14 of the vibration compaction device 10 of the present embodiment. FIG. 3B is a top view illustrating the connecting mechanism 14 of the vibration compaction device 10 of the present embodiment. FIG. 3C is a side view illustrating the connecting mechanism 14 of the vibration compaction device 10 of the present embodiment. In the description of the connecting mechanism 14 with reference to FIG. 3, FIG. 2 is referred to as appropriate.
 図3(A)及び図3(C)に示す如く、連結機構14は、主に、動力部11の駆動軸21Bが装着される第1の軸継手部26と、振動部13の駆動軸31が装着される第2の軸継手部27と、第1の軸継手部26と第2の軸継手部27とを連結する連結部材28と、を有する。そして、連結部材28は、例えば、振動締め固め装置10の左右方向に長辺を有し、その前後方向に短辺を有する矩形形状の鋼材である。 As shown in FIGS. 3A and 3C, the connecting mechanism 14 mainly includes a first shaft joint 26 on which the drive shaft 21B of the power unit 11 is mounted, and a drive shaft 31 of the vibration unit 13. It has a second shaft joint portion 27 to which is mounted, and a connecting member 28 that connects the first shaft joint portion 26 and the second shaft joint portion 27. The connecting member 28 is, for example, a rectangular steel material having a long side in the left-right direction and a short side in the front-rear direction of the vibration compaction device 10.
 第1の軸継手部26は、主に、駆動軸21Bが挿入され、駆動軸21Bと勘合する円筒部41と、円筒部41の外周面に対して締結される第1の弾性部42と、を有する。同様に、第2の軸継手部27は、主に、駆動軸31が挿入され、駆動軸31と勘合する円筒部43と、円筒部43の外周面に対して締結される第2の弾性部44と、を有する。尚、円筒部41,43及び連結部材28は、それぞれ剛性を有する鋼材から成り、駆動軸21B,31と一体に回転する。尚、第1及び第2の弾性部42,44は、例えば、硬度60の天然ゴムから形成される。 The first shaft joint portion 26 mainly includes a cylindrical portion 41 into which the drive shaft 21B is inserted and fits with the drive shaft 21B, and a first elastic portion 42 that is fastened to the outer peripheral surface of the cylindrical portion 41. Has. Similarly, the second shaft joint portion 27 is mainly a cylindrical portion 43 into which the drive shaft 31 is inserted and meshes with the drive shaft 31, and a second elastic portion that is fastened to the outer peripheral surface of the cylindrical portion 43. 44 and. The cylindrical portions 41 and 43 and the connecting member 28 are each made of a rigid steel material and rotate integrally with the drive shafts 21B and 31. The first and second elastic portions 42 and 44 are formed of, for example, natural rubber having a hardness of 60.
 図3(B)に示す如く、第1の弾性部42は、例えば、環状のゴム部材であり、丸印45,46にて示すように、円筒部41の外周面と少なくとも4箇所にて当接して配設される。そして、丸印45にて示す2箇所の領域にて、第1の弾性部42は、円筒部41に対してボルト47(図3(A)参照)を介して締結される。一方、丸印46にて示す2箇所の領域にて、第1の弾性部42は、連結部材28に対してボルト48を介して締結される。尚、第2の弾性部44の構造及び第2の弾性部44の円筒部43への取り付け構造は、第1の弾性部42と同様であり、上記説明を参照し、ここではその説明を割愛する。そして、円筒部41,43は、勘合用溝49に勘合ピン(図示せず)を挿入することで、それぞれ駆動軸21B,31と勘合する。 As shown in FIG. 3B, the first elastic portion 42 is, for example, an annular rubber member, and as shown by the circles 45 and 46, the first elastic portion 42 is in contact with the outer peripheral surface of the cylindrical portion 41 at at least four locations. Arranged in contact. Then, in the two regions indicated by the circles 45, the first elastic portion 42 is fastened to the cylindrical portion 41 via the bolt 47 (see FIG. 3A). On the other hand, in the two regions indicated by the circles 46, the first elastic portion 42 is fastened to the connecting member 28 via the bolt 48. The structure of the second elastic portion 44 and the attachment structure of the second elastic portion 44 to the cylindrical portion 43 are the same as those of the first elastic portion 42, and the above description is referred to, and the description thereof is omitted here. do. Then, the cylindrical portions 41 and 43 are fitted with the drive shafts 21B and 31, respectively, by inserting a fitting pin (not shown) into the fitting groove 49.
 この構造により、動力部11の駆動軸21Bと振動部13の駆動軸31とは、第1及び第2の弾性部42,44及び連結部材28を介して連結し、駆動軸21B,31同士が、直接連結しない構造が実現される。その結果、振動部13にて発生した振動が、第1及び第2の弾性部42,44にて減衰されるため、駆動軸31から駆動軸21Bへと伝達される振動が大幅に低減される。そして、一点鎖線50は、円筒部41,43の軸心を示すが、動力部11では、駆動軸21Bが、駆動軸31からの振動による影響を受け難くなり、駆動軸21Bの回転中心が、一点鎖線50にて示す軸心と略同一軸線上にて安定して回転する。その結果、動力部11から異音が発生する程、動力部11が振動することが防止され、動力部11の部品の破損や動力部11の寿命の低下が防止される。 With this structure, the drive shaft 21B of the power unit 11 and the drive shaft 31 of the vibrating unit 13 are connected via the first and second elastic portions 42, 44 and the connecting member 28, and the drive shafts 21B, 31 are connected to each other. , A structure that is not directly connected is realized. As a result, the vibration generated in the vibrating portion 13 is damped by the first and second elastic portions 42 and 44, so that the vibration transmitted from the drive shaft 31 to the drive shaft 21B is significantly reduced. .. The one-point chain wire 50 indicates the axial center of the cylindrical portions 41 and 43, but in the power unit 11, the drive shaft 21B is less likely to be affected by the vibration from the drive shaft 31, and the rotation center of the drive shaft 21B is determined. It rotates stably on substantially the same axis as the axis indicated by the one-point chain line 50. As a result, the more abnormal noise is generated from the power unit 11, the more the power unit 11 is prevented from vibrating, and the parts of the power unit 11 are prevented from being damaged and the life of the power unit 11 is prevented from being shortened.
 また、上述したように、動力部11は、第1の支持フレーム18Aに対して固定され、振動部13は、第2の支持フレーム18Bに対して固定される。そして、駆動軸21B,31同士は、第1及び第2の弾性部42,44及び連結部材28を介して連結される。つまり、動力部11及び振動部13は、それぞれ別部材に対して固定されるため、各締結箇所の締め付け具合等により、駆動軸21B,31の回転中心を一点鎖線50にて示す軸心と略同一軸線上に配設し難くなる。 Further, as described above, the power unit 11 is fixed to the first support frame 18A, and the vibrating unit 13 is fixed to the second support frame 18B. Then, the drive shafts 21B and 31 are connected to each other via the first and second elastic portions 42 and 44 and the connecting member 28. That is, since the power unit 11 and the vibrating unit 13 are fixed to different members, the rotation centers of the drive shafts 21B and 31 are abbreviated as the axial center indicated by the alternate long and short dash line 50 depending on the tightening condition of each fastening portion. It becomes difficult to arrange them on the same axis.
 しかしながら、本実施形態の連結機構14では、第1及び第2の弾性部42,44が、駆動軸21B,31間に配設されることで、振動締め固め装置10の組付け作業時において、第1及び第2の弾性部42,44が若干捻じれる等、位置調整用の部材として機能する。その結果、駆動軸21B,31の回転中心が、それぞれ一点鎖線50にて示す軸心と略同一軸線上に位置するように調整し易くなる。 However, in the connecting mechanism 14 of the present embodiment, the first and second elastic portions 42, 44 are arranged between the drive shafts 21B, 31 so that the vibration compaction device 10 can be assembled during the assembling work. The first and second elastic portions 42 and 44 are slightly twisted and function as a member for adjusting the position. As a result, it becomes easy to adjust so that the rotation centers of the drive shafts 21B and 31 are located on substantially the same axis as the axis indicated by the alternate long and short dash line 50, respectively.
 また、駆動軸21B,31の回転中心が、一点鎖線50にて示す軸心に対して若干ずれた状態にて組付けられた場合でも、その稼働時において、第1及び第2の弾性部42,44の弾性力により、駆動軸21B,31同士の回転中心が、一点鎖線50にて示す軸心と略同一軸線上にて回転し易くなる。その結果、動力部11では、駆動軸21Bが、一点鎖線50にて示す軸心と略同一軸線上にて、安定して回転することで、動力部11の部品の破損や動力部11の寿命の低下が防止される。 Further, even when the drive shafts 21B and 31 are assembled in a state where the rotation centers of the drive shafts 21B and 31 are slightly deviated from the axis indicated by the one-point chain wire 50, the first and second elastic portions 42 are in operation. , 44 makes it easier for the center of rotation of the drive shafts 21B and 31 to rotate on substantially the same axis as the axis indicated by the one-point chain line 50. As a result, in the power unit 11, the drive shaft 21B rotates stably on substantially the same axis as the axial center indicated by the alternate long and short dash line 50, so that the parts of the power unit 11 are damaged and the life of the power unit 11 is reached. Is prevented from decreasing.
 次に、本実施形態の振動締め固め装置10の防振ゴム16の取り付け構造51について説明する。図4は、本実施形態の振動締め固め装置10の防振ゴム16の取り付け構造51を説明する斜視図である。 Next, the mounting structure 51 of the anti-vibration rubber 16 of the vibration compaction device 10 of the present embodiment will be described. FIG. 4 is a perspective view illustrating the attachment structure 51 of the vibration-proof rubber 16 of the vibration compaction device 10 of the present embodiment.
 図4に示す如く、4つの防振ゴム16が、第1の支持フレーム18Aと第2の支持フレーム18Bとの間に配設される。そして、防振ゴム16の上端側は、第1の支持フレーム18Aに対してボルト締結され、防振ゴム16の下端側は、第2の支持フレーム18Bに対してボルト締結される。 As shown in FIG. 4, four anti-vibration rubbers 16 are arranged between the first support frame 18A and the second support frame 18B. The upper end side of the anti-vibration rubber 16 is bolted to the first support frame 18A, and the lower end side of the anti-vibration rubber 16 is bolted to the second support frame 18B.
 図示したように、第1の支持フレーム18Aには、防振ゴム16が締結される4つの配設領域52と、4つの配設領域52の真ん中に動力部11が締結される配設領域53と、を有する。つまり、4つの配設領域52は、配設領域53の外周領域に、例えば、それぞれ水平方向に略90度の間隔にて配設される。また、配設領域53は、動力部11(図2参照)の底面11A(図2参照)と略平行となる水平面であり、4つの配設領域52は、それぞれ配設領域53に対して、例えば、略30度斜め上方へと傾斜する。 As shown in the figure, the first support frame 18A has four disposition areas 52 to which the anti-vibration rubber 16 is fastened, and a disposition area 53 to which the power unit 11 is fastened in the middle of the four disposition areas 52. And have. That is, the four arrangement regions 52 are arranged in the outer peripheral region of the arrangement region 53, for example, at intervals of approximately 90 degrees in the horizontal direction. Further, the arrangement region 53 is a horizontal plane substantially parallel to the bottom surface 11A (see FIG. 2) of the power unit 11 (see FIG. 2), and each of the four arrangement regions 52 with respect to the arrangement region 53. For example, it tilts diagonally upward by about 30 degrees.
 尚、第2の支持フレーム18Bは、第1の支持フレーム18Aと略同一形状であり、第2の支持フレーム18Bにも、防振ゴム16が締結される4つの配設領域54と、4つの配設領域54の真ん中に振動部13(図2参照)が締結される配設領域55と、を有する。そして、第2の支持フレーム18Bの配設領域55は、振動部13(図2参照)の天面13A(図2参照)と略平行となる水平面であり、4つの配設領域54は、それぞれ配設領域55に対して、例えば、略30度斜め上方へと傾斜する。 The second support frame 18B has substantially the same shape as the first support frame 18A, and the second support frame 18B also has four disposition areas 54 to which the anti-vibration rubber 16 is fastened and four. It has an arrangement region 55 in which the vibrating portion 13 (see FIG. 2) is fastened in the middle of the arrangement area 54. The arrangement region 55 of the second support frame 18B is a horizontal plane substantially parallel to the top surface 13A (see FIG. 2) of the vibrating portion 13 (see FIG. 2), and the four arrangement regions 54 are each substantially parallel. For example, it is inclined diagonally upward by about 30 degrees with respect to the arrangement region 55.
 この構造により、動力部11は、第1及び第2の支持フレーム18A,18Bを介して4つの防振ゴム16により傾斜支持された状態となる。動力部11の荷重は、防振ゴム16の圧縮方向とせん断方向の合成により支持されることで、前後方向や左右方向の水平方向や回転方向への振動を減衰し易くなる。そして、動力部11は、第1の支持フレーム18Aの配設領域53と略平行となる方向に回転するが、4つの防振ゴム16により、その回転方向の振動が大幅に減衰される。また、上述したように、4つの防振ゴム16により、振動部13から動力部11へと伝達される水平方向の振動も大幅に低減される。 With this structure, the power unit 11 is in a state of being inclined and supported by the four anti-vibration rubbers 16 via the first and second support frames 18A and 18B. The load of the power unit 11 is supported by the combination of the compression direction and the shear direction of the anti-vibration rubber 16, so that the vibration in the horizontal direction and the rotation direction in the front-rear direction and the left-right direction can be easily damped. Then, the power unit 11 rotates in a direction substantially parallel to the arrangement region 53 of the first support frame 18A, but the vibration in the rotation direction is significantly damped by the four anti-vibration rubbers 16. Further, as described above, the four anti-vibration rubbers 16 significantly reduce the horizontal vibration transmitted from the vibrating unit 13 to the power unit 11.
 その結果、動力部11では、動力部11で発生する回転方向の振動と振動部13から発生する水平方向の振動とが共振することが防止される。そして、動力部11の駆動軸21Bでは、その回転中心が、一点鎖線50にて示す軸心と略同一軸線上にて、安定して回転することで、動力部11の部品の破損や動力部11の寿命の低下が防止される。 As a result, in the power unit 11, it is prevented that the vibration in the rotation direction generated by the power unit 11 and the vibration in the horizontal direction generated from the vibration unit 13 resonate. Then, in the drive shaft 21B of the power unit 11, the center of rotation thereof stably rotates on the same axis as the axis indicated by the alternate long and short dash line 50, so that the parts of the power unit 11 are damaged and the power unit is damaged. The decrease in the life of 11 is prevented.
 次に、本実施形態の振動締め固め装置10のハンドル部17のグリップ17Bの構造について説明する。図5(A)は、本実施形態の振動締め固め装置10のグリップ17Bを説明する断面図であり、棒状部17Aの延在方向に沿った断面を示す。図5(B)は、本実施形態の振動締め固め装置10のグリップ17Bを説明する側面図である。尚、ハンドル部17のグリップ17Cの構造は、グリップ17Bの構造と略同一であり、ここでは、グリップ17Bの説明を参照し、その説明を省略する。また、図5を用いたグリップ17Bの説明では、適宜、図2を参照する。 Next, the structure of the grip 17B of the handle portion 17 of the vibration compaction device 10 of the present embodiment will be described. FIG. 5A is a cross-sectional view illustrating the grip 17B of the vibration compaction device 10 of the present embodiment, and shows a cross section of the rod-shaped portion 17A along the extending direction. FIG. 5B is a side view illustrating the grip 17B of the vibration compaction device 10 of the present embodiment. The structure of the grip 17C of the handle portion 17 is substantially the same as the structure of the grip 17B. Here, the description of the grip 17B will be referred to, and the description thereof will be omitted. Further, in the description of the grip 17B with reference to FIG. 5, FIG. 2 is referred to as appropriate.
 図5(A)に示す如く、グリップ17Bは、例えば、略円筒形状のゴム部材から成り、その延在方向の一端側が開口し、その開口を用いてハンドル部17の棒状部17Aに対して装着される。そして、グリップ17Bの外周面には、2つの環状突起部61,62が配設され、作業者は、環状突起部61,62間を把持しながら、ハンドル部17を操作する。一方、グリップ17Bの内部には、二点鎖線63にて示す軸心を中心に略円柱形状の空間部64が形成される。 As shown in FIG. 5 (A), the grip 17B is made of, for example, a rubber member having a substantially cylindrical shape, one end side in the extending direction is opened, and the grip 17B is attached to the rod-shaped portion 17A of the handle portion 17 by using the opening. Will be done. Then, two annular protrusions 61 and 62 are arranged on the outer peripheral surface of the grip 17B, and the operator operates the handle portion 17 while gripping between the annular protrusions 61 and 62. On the other hand, inside the grip 17B, a space portion 64 having a substantially cylindrical shape is formed around the axis indicated by the alternate long and short dash line 63.
 グリップ17Bでは、ハンドル部17の棒状部17Aの外径に合わせて空間部64の内径が設計され、グリップ17Bの厚みT1の領域では、グリップ17Bの内周面は、棒状部17Aの外周面と当接した状態となる。 In the grip 17B, the inner diameter of the space portion 64 is designed according to the outer diameter of the rod-shaped portion 17A of the handle portion 17, and in the region of the thickness T1 of the grip 17B, the inner peripheral surface of the grip 17B is the outer peripheral surface of the rod-shaped portion 17A. It will be in a state of contact.
 その一方、図5(A)及び図5(B)に示すように、グリップ17Bの領域L1には、その断面が半円形状の振動緩衝溝65が、棒状部17Aの延在方向であり、その外周面に沿って一定間隔に5本形成される。この構造により、グリップ17Bの領域L1では、グリップ17Bの延在方向に沿って、厚みT1より薄くなる厚みT2の領域が形成され、その厚みT2の領域では、グリップ17Bの内周面は、棒状部17Aの外周面と非当接の状態となる。 On the other hand, as shown in FIGS. 5A and 5B, in the region L1 of the grip 17B, a vibration buffer groove 65 having a semicircular cross section is in the extending direction of the rod-shaped portion 17A. Five lines are formed at regular intervals along the outer peripheral surface. With this structure, in the region L1 of the grip 17B, a region having a thickness T2 thinner than the thickness T1 is formed along the extending direction of the grip 17B, and in the region of the thickness T2, the inner peripheral surface of the grip 17B has a rod shape. It is in a non-contact state with the outer peripheral surface of the portion 17A.
 この構造により、グリップ17Bの領域L1では、グリップ17Bの内周面と棒状部17Aの外周面との当接領域が大幅に低減される。そして、作業者の手が、グリップ17Bを介して棒状部17Aと接触する面積が低減することで、作業者の手元振動が、更に低減される。尚、グリップ17Bの領域L2では、グリップ17Bは棒状部17Aに対して略全面に渡り密着した状態であり、グリップ17Bが、棒状部17Aから抜け落ちることは防止される。 With this structure, in the area L1 of the grip 17B, the contact area between the inner peripheral surface of the grip 17B and the outer peripheral surface of the rod-shaped portion 17A is significantly reduced. Then, the area where the operator's hand comes into contact with the rod-shaped portion 17A via the grip 17B is reduced, so that the operator's hand vibration is further reduced. In the region L2 of the grip 17B, the grip 17B is in close contact with the rod-shaped portion 17A over substantially the entire surface, and the grip 17B is prevented from falling out of the rod-shaped portion 17A.
 尚、本実施形態では、動力部11として、エンジンが採用される場合について説明したが、この場合に限定するものではない。例えば、図6は、本実施形態の変形例である振動締め固め装置70を説明する正面図であり、動力部11として、モータ71が採用される場合を示す。図示したように、動力部11としてのモータ71の駆動方法は、例えば、バッテリ式であり、モータ71の上面に2個のバッテリ72が取り付けられ、モータ71は、バッテリ72から電力供給を受けることで駆動する。そして、動力部11としてのモータ71及びバッテリ72は、第1の支持フレーム18Aに対して固定されると共に、ハンドル部17の一対のアーム部17D,17Eの間に配設される。尚、振動締め固め装置70は、図1から図5を用いて上述した振動締め固め装置10とは、主に、その動力部11として採用される駆動方式が異なるのみであり、その他の構成部材は同一である。そのため、振動締め固め装置70では、振動締め固め装置10と同一の構成部材には同一の符番を付し、その説明は上述した説明を参照する。 In the present embodiment, the case where the engine is adopted as the power unit 11 has been described, but the present invention is not limited to this case. For example, FIG. 6 is a front view for explaining a vibration compaction device 70 which is a modified example of the present embodiment, and shows a case where a motor 71 is adopted as a power unit 11. As shown in the figure, the driving method of the motor 71 as the power unit 11 is, for example, a battery type, two batteries 72 are attached to the upper surface of the motor 71, and the motor 71 receives electric power from the battery 72. Driven by. The motor 71 and the battery 72 as the power unit 11 are fixed to the first support frame 18A and are arranged between the pair of arm portions 17D and 17E of the handle portion 17. The vibration compaction device 70 is different from the vibration compaction device 10 described above with reference to FIGS. 1 to 5, mainly in a drive system adopted as its power unit 11, and other constituent members. Are the same. Therefore, in the vibration compaction device 70, the same components as the vibration compaction device 10 are assigned the same number, and the description thereof will be referred to the above-mentioned description.
 この構造により、振動締め固め装置70では、発電機等の外部電源から振動部13へと電力を供給する必要がなく、振動部13と外部電源とを接続する電源コードが不要となる。その結果、振動締め固め装置70の電源コードのコードレス化が実現され、振動締め固め装置10と同様に、作業者の作業効率が大幅に向上される。その他、振動締め固め装置70においても、振動締め固め装置10において上述した同様な効果を得ることができる。その他、本発明の要旨を逸脱しない範囲にて種々の変更が可能である。 With this structure, in the vibration compaction device 70, it is not necessary to supply electric power from an external power source such as a generator to the vibration unit 13, and a power cord for connecting the vibration unit 13 and the external power source is not required. As a result, the power cord of the vibration compaction device 70 is made cordless, and the work efficiency of the operator is greatly improved as in the vibration compaction device 10. In addition, in the vibration compaction device 70, the same effect as described above can be obtained in the vibration compaction device 10. In addition, various modifications can be made without departing from the gist of the present invention.
 10,70 振動締め固め装置
 11 動力部
 12 燃料タンク
 13 振動部
 14 連結機構
 15 振動体
 16,19 防振ゴム
 17 ハンドル部
 17A 棒状部
 17B,17C グリップ
 17D,17E アーム部
 18 支持フレーム
 18A 第1の支持フレーム
 18B 第2の支持フレーム
 21,30 駆動伝達部
 21A クラッチドラム
 21B,31 駆動軸
 26 第1の軸継手部
 27 第2の軸継手部
 28 連結部材
 33 偏心カム
 41,43 円筒部
 42 第1の弾性部
 44 第2の弾性部
 51 取り付け構造
 52,53,54,55 配設領域
 61,62 環状突起部
 65 振動緩衝溝
 71 モータ
 72 バッテリ
 
 
10,70 Vibration compaction device 11 Power unit 12 Fuel tank 13 Vibration unit 14 Connection mechanism 15 Vibration body 16, 19 Vibration isolation rubber 17 Handle part 17A Rod-shaped part 17B, 17C Grip 17D, 17E Arm part 18 Support frame 18A 1st Support frame 18B Second support frame 21,30 Drive transmission part 21A Clutch drum 21B, 31 Drive shaft 26 First shaft joint part 27 Second shaft joint part 28 Connecting member 33 Eccentric cam 41,43 Cylindrical part 42 First Elastic part 44 Second elastic part 51 Mounting structure 52, 53, 54, 55 Arrangement area 61, 62 Annular protrusion 65 Vibration buffer groove 71 Motor 72 Battery

Claims (6)

  1.  振動体と、
     前記振動体に振動を加える振動部と、
     前記振動部を駆動させる動力部と、
     前記動力部の駆動伝達部と前記振動部の駆動伝達部とを連結させる連結機構と、を備え、
     前記連結機構は、
     前記動力部の前記駆動伝達部が装着される第1の軸継手部と、
     前記振動部の前記駆動伝達部が装着される第2の軸継手部と、
     前記第1の軸継手部の外周側に連結される第1の弾性部と、
     前記第2の軸継手部の外周側に連結される第2の弾性部と、
     前記第1の弾性部と前記第2の弾性部とを連結させる連結部材と、を有し、
     前記動力部の前記駆動伝達部と前記振動部の前記駆動伝達部とは、直接連結することなく、前記第1の弾性部及び前記第2の弾性部を介して連結することを特徴とする振動締め固め装置。
    Vibrating body and
    A vibrating part that applies vibration to the vibrating body and
    The power unit that drives the vibrating unit and
    A connecting mechanism for connecting the drive transmission unit of the power unit and the drive transmission unit of the vibration unit is provided.
    The connecting mechanism
    The first shaft joint portion to which the drive transmission portion of the power unit is mounted and the first shaft joint portion
    The second shaft joint portion to which the drive transmission portion of the vibrating portion is mounted and
    The first elastic portion connected to the outer peripheral side of the first shaft joint portion and
    A second elastic portion connected to the outer peripheral side of the second shaft joint portion and
    It has a connecting member for connecting the first elastic portion and the second elastic portion.
    The vibration characterized in that the drive transmission unit of the power unit and the drive transmission unit of the vibration unit are connected via the first elastic portion and the second elastic portion without being directly connected. Compaction device.
  2.  前記第1の弾性部は、前記第1の軸継手部及び前記連結部材に対してそれぞれ締結され、
     前記第2の弾性部は、前記第2の軸継手部及び前記連結部材に対してそれぞれ締結され、
     前記動力部の前記駆動伝達部の回転中心と前記振動部の前記駆動伝達部の回転中心とは、略同一軸線上に配設されることを特徴とする請求項1に記載の振動締め固め装置。
    The first elastic portion is fastened to the first shaft joint portion and the connecting member, respectively.
    The second elastic portion is fastened to the second shaft joint portion and the connecting member, respectively.
    The vibration compaction device according to claim 1, wherein the rotation center of the drive transmission unit of the power unit and the rotation center of the drive transmission unit of the vibration unit are arranged on substantially the same axis. ..
  3.  前記動力部の前記駆動伝達部、前記振動部の前記駆動伝達部及び前記連結機構は、前記動力部を介して一体に回転することを特徴とする請求項1または請求項2に記載の振動締め固め装置。 The vibration tightening according to claim 1 or 2, wherein the drive transmission unit of the power unit, the drive transmission unit of the vibration unit, and the connection mechanism rotate integrally via the power unit. Hardening device.
  4.  前記動力部を支持する第1の支持フレームと、
     前記振動部を支持する第2の支持フレームと、
     前記第1の支持フレームと前記第2の支持フレームとの間に配設される防振ゴムと、を更に備え、
     前記第1の支持フレームの前記防振ゴムの配設領域は、前記第1の支持フレームの前記動力部の配設領域に対して斜め上方へと傾斜し、
     前記第2の支持フレームの前記防振ゴムの配設領域は、前記第2の支持フレームの前記振動部の配設領域に対して斜め上方へと傾斜し、
     前記第1の支持フレームの前記防振ゴムの配設領域は、前記第2の支持フレームの前記防振ゴムの配設領域と略並行に配設されることを特徴とする請求項1から請求項3のいずれか1項に記載の振動締め固め装置。
    A first support frame that supports the power unit and
    A second support frame that supports the vibrating portion and
    Further provided with anti-vibration rubber disposed between the first support frame and the second support frame.
    The anti-vibration rubber disposition region of the first support frame is inclined obliquely upward with respect to the disposition region of the power unit of the first support frame.
    The anti-vibration rubber disposition region of the second support frame is inclined obliquely upward with respect to the disposition region of the vibrating portion of the second support frame.
    According to claim 1, the anti-vibration rubber disposition region of the first support frame is disposed substantially in parallel with the anti-vibration rubber disposition region of the second support frame. Item 3. The vibration compaction device according to any one of items 3.
  5.  前記動力部は、エンジンまたはバッテリ式モータであることを特徴とする請求項1から請求項4のいずれか1項に記載の振動締め固め装置。 The vibration compaction device according to any one of claims 1 to 4, wherein the power unit is an engine or a battery-powered motor.
  6.  前記振動体を操作するハンドル部と、
     前記ハンドル部に装着されるグリップと、を更に備え、
     前記グリップの内部の前記ハンドル部との対向領域には、前記ハンドル部の延在方向に沿って複数の振動緩衝溝が形成されることを特徴とする請求項1から請求項5のいずれか1項に記載の振動締め固め装置。
    The handle part that operates the vibrating body and
    Further provided with a grip attached to the handle portion,
    Any one of claims 1 to 5, wherein a plurality of vibration buffer grooves are formed in the region of the inside of the grip facing the handle portion along the extending direction of the handle portion. The vibration compaction device described in the section.
PCT/JP2020/007155 2020-02-21 2020-02-21 Vibration compaction device WO2021166234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007155 WO2021166234A1 (en) 2020-02-21 2020-02-21 Vibration compaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007155 WO2021166234A1 (en) 2020-02-21 2020-02-21 Vibration compaction device

Publications (1)

Publication Number Publication Date
WO2021166234A1 true WO2021166234A1 (en) 2021-08-26

Family

ID=77390525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007155 WO2021166234A1 (en) 2020-02-21 2020-02-21 Vibration compaction device

Country Status (1)

Country Link
WO (1) WO2021166234A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122810U (en) * 1977-03-07 1978-09-29
JPS54104109A (en) * 1978-02-03 1979-08-16 Shibaura Eng Works Ltd Tieetamper
JPS5980801A (en) * 1982-10-27 1984-05-10 精工技研株式会社 Vibration-proof tie tamper
JPH0978834A (en) * 1995-09-12 1997-03-25 Kenzo Era Concrete compaction vibrator
JP2005307561A (en) * 2004-04-21 2005-11-04 Koshin Kensetsu Kk Beater for tie tamper
WO2012139687A1 (en) * 2011-04-13 2012-10-18 Robel Bahnbaumaschinen Gmbh Hand-held tamper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122810U (en) * 1977-03-07 1978-09-29
JPS54104109A (en) * 1978-02-03 1979-08-16 Shibaura Eng Works Ltd Tieetamper
JPS5980801A (en) * 1982-10-27 1984-05-10 精工技研株式会社 Vibration-proof tie tamper
JPH0978834A (en) * 1995-09-12 1997-03-25 Kenzo Era Concrete compaction vibrator
JP2005307561A (en) * 2004-04-21 2005-11-04 Koshin Kensetsu Kk Beater for tie tamper
WO2012139687A1 (en) * 2011-04-13 2012-10-18 Robel Bahnbaumaschinen Gmbh Hand-held tamper

Similar Documents

Publication Publication Date Title
CN100335239C (en) Vibration decoupled percussion mechanism assembly
JP4081232B2 (en) Chainsaw with vibration isolator
US3824417A (en) Handle mounting construction for electric paving breaker
CN107175723B (en) Chain saw
CA2496061A1 (en) Portable vibratory screed with vibration restraint
JP3919827B2 (en) Device for generating directed vibrations
GB2430638A (en) Vibration damping in rotary power tools
WO2021166234A1 (en) Vibration compaction device
EP1699678B1 (en) Drive track support with vibration isolation
AU2018425114A1 (en) Impact wrench for tightening and loosening nuts and screws on a track
WO2020202573A1 (en) Compaction device
JPH032403A (en) Vibrating mechanism for compression roller
JP4310725B2 (en) Floor material peeling device
JP2022183132A (en) Hand-held tamping machine for compacting track ballast
JP2023103700A (en) Vibrating compaction device
JPS601454B2 (en) Elastic yoke mounting device for vibratory pile driving and pulling machines
JP7048724B2 (en) Battery mounting structure and work equipment
CN1872500B (en) Machine cover device for hand tool
CN1644957A (en) Antivibrationselement
JP6249484B2 (en) Pile driver
CN220142110U (en) Hand-held therapeutic head
CN219547494U (en) Compacting machine
US20220010504A1 (en) Plate compactor
JP3225954U (en) Rechargeable tie tamper
JP2023045137A (en) plate compactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP