WO2021164745A1 - 一种刷机装置、开机还原装置及电子设备 - Google Patents

一种刷机装置、开机还原装置及电子设备 Download PDF

Info

Publication number
WO2021164745A1
WO2021164745A1 PCT/CN2021/076936 CN2021076936W WO2021164745A1 WO 2021164745 A1 WO2021164745 A1 WO 2021164745A1 CN 2021076936 W CN2021076936 W CN 2021076936W WO 2021164745 A1 WO2021164745 A1 WO 2021164745A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
restoration
module
control module
power
Prior art date
Application number
PCT/CN2021/076936
Other languages
English (en)
French (fr)
Inventor
曹健
Original Assignee
闻泰科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020186635.6U external-priority patent/CN211319201U/zh
Priority claimed from CN202010102622.0A external-priority patent/CN111290312B/zh
Application filed by 闻泰科技(深圳)有限公司 filed Critical 闻泰科技(深圳)有限公司
Priority to EP21756248.7A priority Critical patent/EP4006658A4/en
Priority to US17/801,028 priority patent/US20230115005A1/en
Publication of WO2021164745A1 publication Critical patent/WO2021164745A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1417Boot up procedures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1433Saving, restoring, recovering or retrying at system level during software upgrading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1415Saving, restoring, recovering or retrying at system level
    • G06F11/1441Resetting or repowering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2201/00Indexing scheme relating to error detection, to error correction, and to monitoring
    • G06F2201/805Real-time

Definitions

  • the present disclosure relates to the field of electronic technology, and in particular, to a brushing device, a power-on restoration device, and electronic equipment.
  • Qualcomm 9008 mode the full name is Qualcomm HS-USB QDloader9008, 9008 mode is a download mode, and it is also the lowest online mode of the Qualcomm platform.
  • Mobile phones on the Qualcomm platform generally enter the 9008 mode through the combination of the power button and the +/- volume keys, and perform the flashing action to achieve system restoration.
  • the current device for controlling the booting and restoring of electronic equipment needs to be powered at all times in order to ensure that the booting and restoring actions can be realized.
  • one of the objectives of the present disclosure includes providing a flashing device, a boot restoring device, and electronic equipment. It can quickly and conveniently realize the startup action and the restoration action without the +/- volume keys, and can reduce power consumption and save energy.
  • an embodiment provides a flashing device, which is applied to an electronic device.
  • the electronic device includes a startup trigger module, a restoration trigger module, a startup control module, and a restoration control module.
  • the flashing device includes a startup processing module and The restoration processing module electrically connected to the boot processing module;
  • Both the power-on trigger module and the restoration trigger module are electrically connected to the power-on control module through the power-on processing module, and the power-on trigger module and the restoration trigger module are all connected to the restoration control module through the restoration processing module. Module electrical connection;
  • the boot processing module is configured to provide a first control signal to the boot control module according to the first trigger signal provided by the boot trigger module and the second trigger signal provided by the restoration trigger module, so that the boot control module Judging whether to perform a booting action according to the first control signal;
  • the restoration processing module is configured to provide a second control signal to the restoration control module according to the first trigger signal and the second trigger signal, so that the restoration control module determines whether to proceed according to the second control signal Restore action.
  • the restoration processing module includes a first logic judgment unit, a voltage divider circuit, and a first comparison unit.
  • the input terminal is electrically connected
  • the output terminal of the first logic judgment unit is electrically connected with the input terminal of the inverting unit of the boot processing module
  • the output terminal of the first logic judgment unit is also connected to the voltage divider circuit respectively.
  • the input terminal of the first comparison unit is electrically connected with the input terminal of the second comparison unit of the boot processing module
  • the restoration trigger module is electrically connected with the input terminal of the first comparison unit
  • the first comparison unit The output terminal of is electrically connected with the restoration control module;
  • the first logic judgment unit is configured to generate a first processing signal according to the first trigger signal and the second trigger signal;
  • the voltage dividing circuit is configured to perform voltage dividing processing on the first processed signal to generate a second processed signal
  • the first comparison unit is configured to generate the second control signal according to the second processing signal and the second trigger signal.
  • the first comparison unit includes a first comparator and a first resistor, and the input terminal of the first comparator and the output terminal of the voltage divider circuit and the reduction trigger module are both electrically charged.
  • the output terminal of the first comparator is electrically connected to the reduction control module, one end of the first resistor is electrically connected to the power supply, and the other end of the first resistor is electrically connected to the Between the output terminal and the restoration control module.
  • the power-on processing module further includes a second logic judgment unit, and the power-on trigger module and the restoration trigger module are respectively electrically connected to the input terminals of the second logic judgment unit, and the first The output terminal of the second logic judgment unit is electrically connected with the input terminal of the second comparison unit, and the output terminal of the second comparison unit and the output terminal of the inversion unit are both electrically connected with the boot control module;
  • the second logic judgment unit is configured to generate a third processing signal according to the first trigger signal and the second trigger signal;
  • the second comparison unit is configured to generate a fourth processed signal according to the third processed signal and the second processed signal;
  • the inverting unit is configured to generate a fifth processed signal according to the first processed signal, so that the power-on control module obtains the first control signal according to the fourth processed signal and the fifth processed signal.
  • the startup processing module further includes an anti-backflow unit, and both the second comparison unit and the inversion unit are electrically connected to the startup control module through the anti-backflow unit;
  • the second comparison unit is configured to provide the fourth processing signal to the start-up control module through the backflow prevention unit;
  • the inverter unit is configured to provide the fifth processing signal to the startup control module through the anti-backflow unit.
  • the anti-backflow unit includes a first diode and a second diode
  • the output terminal of the inverter unit is electrically connected to the anode of the first diode
  • the first diode The output terminals of the two comparison units are electrically connected with the anode of the second diode
  • the cathode of the first diode and the cathode of the second diode are both electrically connected with the start-up control module.
  • the first trigger signal includes a non-start signal
  • the second trigger signal includes a restore signal
  • the first logical judgment unit is configured to generate a first logical judgment signal according to the restoration signal and the non-boot signal;
  • the voltage dividing circuit is configured to perform voltage dividing processing on the first logic judgment signal to generate a first voltage dividing signal
  • the first comparison unit is configured to generate a first comparison signal according to the first divided voltage signal and the restoration signal, so that the restoration control module performs a restoration action according to the first comparison signal;
  • the second logical judgment unit is configured to generate a second logical judgment signal according to the restoration signal and the non-power-on signal;
  • the second comparison unit is configured to generate a second comparison signal according to the first voltage division signal and the second logic judgment signal;
  • the inverting unit is configured to generate a first inverted signal according to the first logic judgment signal, so that the startup control module performs a startup action according to the second comparison signal and the first inverted signal.
  • the first trigger signal includes a power-on signal
  • the second trigger signal includes a non-restore signal
  • the first logical judgment unit is configured to generate a first logical judgment signal according to the power-on signal and the non-restore signal;
  • the voltage dividing circuit is configured to perform voltage dividing processing on the first logic judgment signal to generate a first voltage dividing signal
  • the first comparison unit is configured to generate a third comparison signal according to the first divided voltage signal and the non-reduction signal, so that the reduction control module does not perform a reduction action according to the third comparison signal;
  • the second logical judgment unit is configured to generate a second logical judgment signal according to the power-on signal and the non-restore signal;
  • the second comparison unit is configured to generate a second comparison signal according to the first voltage division signal and the second logic judgment signal;
  • the inverting unit is configured to generate a first inverted signal according to the first logic judgment signal, so that the startup control module performs a startup action according to the second comparison signal and the first inverted signal.
  • the first logical judgment unit includes an OR gate
  • the second logical judgment unit includes an AND gate
  • the flashing device provided by the embodiment of the present disclosure provides the first control signal to the boot control module through the boot processing module according to the first trigger signal provided by the boot trigger module and the second trigger signal provided by the restoration trigger module, so that the boot control module is based on the first trigger signal.
  • a control signal determines whether to perform a boot operation;
  • the restoration processing module provides a second control signal to the restoration control module according to the first trigger signal and the second trigger signal, so that the restoration control module determines whether to perform the restoration operation according to the second control signal.
  • an embodiment of the present disclosure provides a power-on restoration device, which is applied to an electronic device, the electronic device includes a restoration trigger module, the power-on restoration device includes a power-on control module, a restoration control module, and a power supply module, the restoration The trigger module, the power supply module, the restoration control module, and the start-up control module are electrically connected in sequence;
  • the power supply module is configured to provide a working voltage to the restoration control module according to the restoration signal provided by the restoration trigger module;
  • the power supply module is further configured to send a restoration processing signal to the restoration control module according to the restoration signal;
  • the restoration control module is configured to perform a restoration operation according to the restoration processing signal when the operating voltage is received, and send a startup processing signal to the startup control module according to the restoration processing signal;
  • the boot control module is configured to perform a boot operation according to the boot processing signal.
  • the power supply module includes an inverter and a first power chip
  • the restoration trigger module is electrically connected to the first power chip and the restoration control module through the inverter.
  • the first power chip is also electrically connected with the restoration control module;
  • the inverter is configured to perform inversion processing on the restoration signal to obtain the restoration processing signal;
  • the first power chip is configured to provide the operating voltage to the restoration control module according to the restoration processing signal.
  • the power supply module further includes a delay chip, and the inverter is electrically connected to the first power supply chip and the restoration control module through the delay chip;
  • the delay chip is configured to perform delay processing on the restoration processing signal to obtain a delayed restoration processing signal
  • the first power chip is configured to provide the operating voltage to the restoration control module according to the delayed restoration processing signal
  • the restoration control module is configured to, upon receiving the operating voltage, perform a restoration operation according to the delayed restoration processing signal, and send to the boot control module according to the delayed restoration processing signal Start processing signal.
  • the power supply module further includes a sixth diode
  • the delay chip is electrically connected to the anode of the sixth diode
  • the cathode of the sixth diode is electrically connected to the anode of the sixth diode.
  • a power chip is electrically connected.
  • the power-on restoration device further includes a first isolation module, and the restoration trigger module is electrically connected to the power supply module through the first isolation module;
  • the first isolation module is configured to perform isolation processing on the restoration signal to obtain an isolation restoration signal
  • the power supply module is configured to provide the operating voltage to the restoration control module according to the isolation restoration signal
  • the power supply module is further configured to send the restoration processing signal to the restoration control module according to the isolation restoration signal.
  • the first isolation module includes a first buffer
  • the restoration trigger module is electrically connected to the power supply module through the first buffer.
  • the boot control module is also electrically connected to the power supply module
  • the power supply module is configured to provide a working voltage to the restoration control module according to a first enable signal provided by the boot control module; wherein, the first enable signal is generated when the boot control module performs a boot operation .
  • the restoration control module includes a controller and a processor, the input end of the controller is electrically connected to the power supply module, and the power supply end of the controller is electrically connected to the power supply module. Connected, the first output end of the controller is electrically connected to the processor, the second output end of the controller is electrically connected to the boot control module, and the third output end of the controller is electrically connected to the power supply Provide module electrical connection;
  • the controller is configured to control the processor to perform a restoration operation according to the restoration processing signal received by the input terminal of the controller when the power supply terminal receives the operating voltage;
  • the controller is further configured to send the startup processing signal to the startup control module according to the restoration processing signal;
  • the controller is further configured to send a second enable signal to the power supply module when the operating voltage is received;
  • the power supply module is configured to continuously provide the operating voltage to the controller according to the second enable signal.
  • the electronic device further includes a power-on trigger module
  • the power-on restoration device further includes a second isolation module
  • the power-on trigger module is electrically connected to the power-on control module through the second isolation module ;
  • the second isolation module is configured to perform isolation processing on the start-up signal provided by the start-up trigger module to obtain an isolated start-up signal
  • the boot control module is configured to perform a boot operation according to the isolated boot signal.
  • the power supply module provides the restoration control module with a working voltage according to the restoration signal provided by the restoration trigger module, and at the same time, provides the restoration processing signal to the restoration control module; so that the restoration control module receives the working voltage
  • the restoration operation is performed according to the restoration processing signal
  • the startup processing signal is sent to the startup control module according to the restoration processing signal
  • the startup control module is caused to perform the startup operation according to the startup processing signal.
  • the power supply module will provide the working voltage to the restoration control module, and the restoration control module can only perform the restoration operation after obtaining the working voltage; and when the electronic device does not need to perform the restoration operation, the power supply module It does not provide a working voltage to the restoration control module. Therefore, the restoration control module does not need to be powered on when the restoration operation is not required. Therefore, the restoration control module does not consume the power of the electronic equipment when the restoration operation is not performed. It can reduce the power loss of electronic equipment and save energy.
  • an embodiment provides an electronic device that includes a power-on trigger module, a restoration trigger module, a power-on control module, a restoration control module, and the flashing device according to any one of the preceding embodiments, or includes a restoration trigger module and the aforementioned The boot restoring device described in any one of the implementation manners.
  • FIG. 1 shows a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure
  • Figure 2 shows a schematic structural diagram of a brushing device provided by an embodiment of the present disclosure
  • Fig. 3 shows a schematic circuit diagram of a brushing device provided by an embodiment of the present disclosure
  • Fig. 4 shows a schematic circuit diagram of another brushing device provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a boot restoring device provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic circuit diagram of a power-on restoration device provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic circuit diagram of another power-on restoration device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another power-on restoration device provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic circuit diagram of yet another power-on restoration device provided by an embodiment of the disclosure.
  • Icon 100-electronic equipment; 110-brushing device; 111-restore processing module; 1111-first logic judgment unit; 1112-voltage divider circuit; 1113-first comparison unit; 112-boot processing module; 1121-second logic Judgment unit; 1122-Second comparison unit; 1123-Inversion unit; 113-Anti-backflow unit; 120-Turn on trigger module; 130-Restore trigger module; 140-Turn on control module; 150-Restore control module; R1-First Resistor; R2-second resistor; R3-third resistor; D1-first diode; D2-second diode; U1-first comparator; 100A-power-on restoration device; 160-power conversion module; 170 -Power supply module; 180-first isolation module; 190-second isolation module; U10-inverter; U2-first power chip; U3-delay chip; U4-first buffer; U5-controller; U6-processor; U7-second buffer; U8-second power chip; U
  • first and “second” and other relational terms are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply one of these entities or operations. There is any such actual relationship or order between.
  • the terms “include”, “include” or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes those that are not explicitly listed Other elements of, or also include elements inherent to this process, method, article or equipment. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, article, or equipment that includes the element.
  • Qualcomm 9008 mode the full name is Qualcomm HS-USB QDloader9008, 9008 mode is a download mode, and it is also the lowest online mode of the Qualcomm platform.
  • Mobile phones on the Qualcomm platform generally enter the 9008 mode through the combination of the power button and the +/- volume keys, and perform the flashing action to achieve system restoration.
  • the Qualcomm platform is used in some electronic devices (for example, computers), because the electronic device is not equipped with +/- volume keys, it is not possible to use a combination of the power button and +/- volume keys to enter the 9008 mode.
  • FIG. 1 is a schematic diagram of an implementable structure of an electronic device 100 provided by an embodiment of the present disclosure.
  • the electronic device 100 includes a boot trigger module 120, a restoration trigger module 130, a boot control module 140, a restoration control module 150, and a flashing machine. ⁇ 110 ⁇ Device 110.
  • the startup trigger module 120 and the restoration trigger module 130 are electrically connected to the startup control module 140 and the restoration control module 150 through the flashing device 110, respectively.
  • the power-on trigger module 120 is configured to generate a first trigger signal in response to a user operation; the restoration trigger module 130 is configured to generate a second trigger signal in response to a user operation; the flashing device 110 is configured to generate a second trigger signal according to the first trigger signal and the second trigger The signal generates a first control signal and a second control signal; the boot control module 140 is configured to determine whether to perform a boot operation according to the first control signal; the restoration control module 150 is configured to determine whether to perform a restore operation according to the second control signal.
  • the first trigger signal includes a power-on signal and a non-power-on signal
  • the second trigger signal includes a restoration signal and a non-restoration signal.
  • the power-on trigger module 120 includes a power-on button
  • the restoration trigger module 130 includes a restore button.
  • the power button When the user presses the power button, the power button will generate a power-on signal; when the user presses the reset button, the reset button generates a reset signal; when the user’s press operation of the power button is not received , The power-on button will generate a non-power-on signal; when the user's pressing operation on the restore button is not received, the restore button will generate a non-restore signal.
  • the start signal can be low level (for example, 0V)
  • the non-start signal can be high level (for example, 3.3V)
  • the restoration signal can be low level (for example, 0V)
  • the non-restore signal can be high level (For example, 3.3V).
  • the boot control module 140 may adopt a power chip (Power Management IC, PMIC); the restoration control module 150 includes an embedded controller (Embedded Controller, EC) and a system chip (System on Chip, SOC).
  • PMIC Power Management IC
  • EC embedded Controller
  • SOC System on Chip
  • the electronic device 100 may be a notebook computer, a desktop computer, or the like.
  • FIG. 2 is a schematic diagram of an implementable structure of the flashing device 110 shown in FIG. 1.
  • the flashing device 110 includes a boot processing module 112 and a restoration processing module 111 electrically connected to the boot processing module 112. Both the power-on trigger module 120 and the restoration trigger module 130 are electrically connected to the power-on control module 140 through the power-on processing module 112, and both the power-on trigger module 120 and the restoration trigger module 130 are electrically connected to the restoration control module 150 through the restoration processing module 111.
  • the boot processing module 112 is configured to provide a first control signal to the boot control module 140 according to the first trigger signal provided by the boot trigger module 120 and the second trigger signal provided by the restoration trigger module 130, so that the boot control module 140 determines whether to perform a boot action according to the first control signal;
  • the restoration processing module 111 is configured to provide a second control signal to the restoration control module 150 according to the first trigger signal and the second trigger signal, so that the restoration control module 150 is based on the second control signal Determine whether to perform a restore action.
  • the restoration processing module 111 includes a first logic judgment unit 1111, a voltage divider circuit 1112, and a first comparison unit 1113.
  • the module 120 and the restoration trigger module 130 are respectively electrically connected to the input end of the first logic judgment unit 1111, the output end of the first logic judgment unit 1111 is electrically connected to the boot processing module 112, and the output end of the first logic judgment unit 1111 is also
  • the voltage circuit 1112 is electrically connected with the input terminal of the first comparison unit 1113 and the boot processing module 112
  • the restoration trigger module 130 is electrically connected with the input terminal of the first comparison unit 1113
  • the output terminal of the first comparison unit 1113 is electrically connected with the restoration control module 150 Electric connection.
  • the first logic judgment unit 1111 is configured to generate a first processing signal Boot_OR according to the first trigger signal PHONE_ON and the second trigger signal Recovery;
  • the voltage divider circuit 1112 is configured to divide the first processing signal Boot_OR to generate a second Processing signal Boot_OR_1;
  • the first comparison unit 1113 is configured to generate a second control signal Recovery_ON according to the second processing signal Boot_OR_1 and the second trigger signal Recovery.
  • the first comparison unit 1113 includes a first comparator U1 and a first resistor R1.
  • the input terminal of the first comparator U1 is electrically connected to the output terminal of the voltage divider circuit 1112 and the reduction trigger module 130.
  • the output terminal of the comparator U1 is electrically connected to the restoration control module 150, one end of the first resistor R1 is electrically connected to the power source, and the other end of the first resistor R1 is electrically connected between the output terminal of the first comparator U1 and the restoration control module 150 .
  • the first logic judgment unit 1111 may adopt an OR gate.
  • the voltage divider circuit 1112 includes a second resistor R2 and a third resistor R3.
  • the output terminal of the first logic judgment unit 1111 is grounded through the second resistor R2 and the third resistor R3 connected in series with each other.
  • the input terminal of the first comparison unit 1113 and the boot processing The modules 112 are electrically connected between the second resistor R2 and the third resistor R3.
  • the power-on processing module 112 includes a second logic judgment unit 1121, a second comparison unit 1122, and an inversion unit 1123.
  • the power-on trigger module 120 and the restoration trigger module 130 are respectively connected to the input terminal of the second logic judgment unit 1121.
  • the output terminal of the second logic judgment unit 1121 and the voltage divider circuit 1112 are respectively electrically connected to the input terminal of the second comparison unit 1122, and the output terminal of the second comparison unit 1122 and the output terminal of the inverting unit 1123 are both connected to the boot control module 140 is electrically connected, and the input terminal of the inversion unit 1123 is electrically connected with the output terminal of the first logic judgment unit 1111.
  • the second logic judgment unit 1121 is configured to generate the third processing signal Boot_AND according to the first trigger signal PHONE_ON and the second trigger signal Recovery;
  • the second comparison unit 1122 is configured to generate the third processing signal Boot_AND and the second processing signal Boot_OR_1 Fourth processing signal Boot_ON_2;
  • the inverting unit 1123 is configured to generate a fifth processing signal Boot_OR_2 according to the first processing signal Boot_OR, so that the boot control module 140 obtains the first control signal Boot_ON according to the fourth processing signal Boot_ON_2 and the fifth processing signal Boot_OR_2.
  • the second logic judgment unit 1121 may adopt an AND gate.
  • the second comparison unit 1122 includes a second comparator.
  • the inverting unit 1123 may adopt an inverter.
  • the specific principle for the flashing device 110 to implement the booting action and the restoring action according to the first trigger signal and the second trigger signal is: when the first trigger signal is a non-booting signal and the second trigger signal is a restoring signal, the first A logic judgment unit 1111 is configured to generate a first logic judgment signal according to the restoration signal and a non-power-on signal; the voltage divider circuit 1112 is configured to divide the first logic judgment signal to generate a first divided voltage signal; the first comparison unit 1113 It is configured to generate a first comparison signal according to the first divided voltage signal and the restoration signal, so that the restoration control module 150 performs a restoration action according to the first comparison signal; the second logic judgment unit 1121 is configured to generate a second comparison signal according to the restoration signal and the non-boot signal Logic determination signal; the second comparison unit 1122 is configured to generate a second comparison signal according to the first divided voltage signal and the second logic determination signal; the inversion unit 1123 is configured to generate a first inverted signal according to the first logic determination signal, so that
  • the first trigger signal PHONE_ON is a non-boot signal and the second trigger signal Recovery is a restore signal, that is, the user triggers the restore button, so that the restore button generates a low-level restore signal, because the user did not trigger the boot Press the button, so the boot button generates a high-level non-boot signal.
  • the first logical judgment unit 1111 generates a high-level first logical judgment signal according to the restoration signal and the non-boot signal, that is, the first processing signal Boot_OR at this time is the first logical judgment signal; the second logical judgment unit 1121 is based on the restoration The signal and the non-booting signal are generated as a low-level second logic judgment signal, that is, the third processing signal Boot_AND at this time is the second logic judgment signal; the voltage divider circuit 1112 divides the first logic judgment signal to obtain The first divided voltage signal whose level is higher than the second logic judgment signal and the restoration signal, that is, the second processed signal Boot_OR_1 at this time is the first divided voltage signal; the first comparing unit 1113 generates the first divided voltage signal according to the first divided voltage signal and the restoration signal The first comparison signal that becomes the low level, that is, the second control signal Recovery_ON at this time is the first comparison signal; the restoration control module 150 performs the restoration action according to the second control signal Recovery_ON that is the low level; the second comparison unit 1122 according
  • the first logic judgment unit 1111 is configured to generate the first logic judgment signal according to the power-on signal and the non-recovery signal;
  • the voltage circuit 1112 is configured to perform voltage dividing processing on the first logic judgment signal to generate a first divided voltage signal;
  • the first comparing unit 1113 is configured to generate a third comparison signal according to the first divided voltage signal and the non-reduced signal, so as to control the restoration
  • the module 150 does not perform the restoration action according to the third comparison signal;
  • the second logic judgment unit 1121 is configured to generate a second logic judgment signal according to the power-on signal and the non-reduction signal;
  • the second comparison unit 1122 is configured to according to the first divided voltage signal and the second The logic determination signal generates a second comparison signal;
  • the inversion unit 1123 is configured to generate a first inversion signal according to the first logic determination signal, so that the boot control module 140 performs a boot operation based on the second comparison
  • the first trigger signal PHONE_ON is a power-on signal and the second trigger signal Recovery is a non-recovery signal, that is, the user triggers the power-on button, and the power-on button generates a low-level power-on signal, because the user did not trigger the restoration Press the button, so the restore button generates a high-level non-restore signal.
  • the first logic judgment unit 1111 generates a high-level first logic judgment signal corresponding to the non-restore signal and the boot signal, that is, the first processing signal Boot_OR at this time is the first logic judgment signal;
  • the second logic judgment unit 1121 The restoration signal and the power-on signal are correspondingly generated as a low-level second logic judgment signal, that is, the third processing signal Boot_AND at this time is the second logic judgment signal;
  • the voltage divider circuit 1112 divides the first logic judgment signal to obtain The first voltage-divided signal whose level is higher than the second logic judgment signal, and the level of the first voltage-divided signal is lower than the non-reduced signal, that is, the second processed signal Boot_OR_1 at this time is the first voltage-divided signal;
  • first comparison The unit 1113 generates a high-level third comparison signal according to the first divided voltage signal and the non-recovery signal, that is, the second control signal Recovery_ON at this time is the third comparison signal;
  • the recovery control module 150 is
  • the control signal Recovery_ON does not perform a restoration action;
  • the second comparison unit 1122 generates a low-level second comparison signal according to the first divided voltage signal and the second logic judgment signal, that is, the fourth processing signal Boot_ON_2 at this time is the second comparison signal ;
  • the inverting unit 1123 generates a low-level first inverted signal according to the first logic judgment signal, that is, the fifth processed signal Boot_OR_2 at this time is the first inverted signal; due to the second comparison signal and the first inverted signal Input the same port of the boot control module 140, and because the first inverted signal and the second comparison signal are both low, the first control signal Boot_ON at this time is low; the boot control module 140 is based on the low level The first control signal Boot_ON performs a boot action.
  • the first logic judgment unit 1111 is configured to generate the third logic judgment signal according to the power-on signal and the restoration signal;
  • the voltage divider circuit 1112 is configured to perform voltage division processing on the third logic judgment signal to generate a second divided voltage signal;
  • the first comparing unit 1113 is configured to generate a third comparison signal according to the second divided voltage signal and the restoration signal, so that the restoration control module 150 is based on The third comparison signal does not perform the restoration action;
  • the second logic judgment unit 1121 is configured to generate a second logic judgment signal according to the power-on signal and the restoration signal;
  • the second comparison unit 1122 is configured to output according to the second voltage division signal and the second logical judgment signal Uncertain signal;
  • the inverting unit 1123 is configured to generate a second inverted signal according to the third logic judgment signal, so that the boot control module 140 does not perform a startup action according to the uncertain signal and the second inverted signal.
  • the first trigger signal PHONE_ON is the power-on signal and the second trigger signal Recovery is the restoration signal, that is, the user triggers the power-on button, causing the power-on button to generate a low-level power-on signal, and the user triggers the restore button to restore The button generates a low-level restoration signal.
  • the first logical judgment unit 1111 generates a low-level third logical judgment signal according to the restoration signal and the power-on signal, that is, the first processing signal Boot_OR at this time is the third logical judgment signal; the second logical judgment unit 1121 according to the restoration signal The second logic judgment signal that is generated as a low level corresponding to the power-on signal, that is, the third processing signal Boot_AND at this time is the second logic judgment signal; the voltage divider circuit 1112 divides the third logic judgment signal to obtain the level The second divided voltage signal equal to the second logic judgment signal and the restoration signal, that is, the second processed signal Boot_OR_1 at this time is the second divided voltage signal; the first comparator U1 in the first comparing unit 1113 is based on the second divided voltage The signal and the restored signal generate signals with uncertain levels.
  • the uncertain signal output by the first comparator U1 is pulled up to a third comparison signal with a high level, namely The second control signal Recovery_ON at this time is the third comparison signal; the recovery control module 150 does not perform the recovery action according to the second control signal Recovery_ON that is high level; the second comparison unit 1122 judges according to the second voltage division signal and the second logic The signal generates a signal with an indefinite level, that is, the fourth processed signal Boot_ON_2 at this time is a signal with an indefinite level; the inverting unit 1123 generates a high-level second inverted signal according to the third logic judgment signal, that is, this The fifth processing signal Boot_OR_2 at the time is the second inverted signal; because the fourth processing signal Boot_ON_2 and the second inverted signal with uncertain levels are input to the same port of the boot control module 140, and because the second inverted signal is high The second inverted signal will pull the fourth processing signal Boot_ON_2 to a high level
  • the first logic determination unit 1111 is configured to generate the first logic determination signal according to the non-power-on signal and the non-recovery signal
  • the voltage divider circuit 1112 is configured to divide the first logic judgment signal to generate a first divided voltage signal
  • the first comparison unit 1113 is configured to generate a third comparison signal according to the first divided voltage signal and the non-reduced signal, so that The restoration control module 150 does not perform the restoration action according to the third comparison signal
  • the second logic judgment unit 1121 is configured to generate a fourth logic judgment signal according to the non-start signal and the non-reduction signal
  • the second comparison unit 1122 is configured to according to the first voltage division signal And the fourth logic determination signal to generate a fourth comparison signal
  • the inversion unit 1123 is configured to generate a first inversion signal according to the first logic determination signal, so that the boot control module 140 does not perform according to the fourth comparison signal and the first inversion
  • the first trigger signal PHONE_ON is a non-power-on signal and the second trigger signal Recovery is a non-recovery signal, that is, the user does not trigger the power-on button, and the power-on button generates a high-level non-power-on signal, and the user does not trigger it.
  • the reset button, the reset button generates a high-level non-reset signal.
  • the first logic judgment unit 1111 generates a high-level first logic judgment signal corresponding to the non-restore signal and the non-boot signal, that is, the first processing signal Boot_OR at this time is the first logic judgment signal;
  • the second logic judgment unit 1121 is based on The non-restore signal and the non-boot signal are correspondingly generated as a high-level fourth logic determination signal, that is, the third processing signal Boot_AND at this time is the fourth logic determination signal;
  • the voltage divider circuit 1112 performs voltage division processing on the first logic determination signal , Obtain the first divided voltage signal whose level is lower than the fourth logic judgment signal and the non-restored signal, that is, the second processed signal Boot_OR_1 at this time is the first divided voltage signal;
  • the first comparator U1 in the first comparison unit 1113 A third comparison signal with a high level is generated according to the first divided voltage signal and the non-recovery signal, that is, the second control signal Recovery_ON at this time is the third comparison signal;
  • the recovery control module 150
  • FIG. 4 is a schematic diagram of another implementable circuit of the flashing device 110 provided by the embodiment of the present disclosure.
  • the boot processing module 112 It also includes an anti-backflow unit 113, and both the second comparison unit 1122 and the inverter unit 1123 are electrically connected to the startup control module 140 through the anti-backflow unit 113.
  • the second comparison unit 1122 is configured to provide the fourth processing signal to the startup control module 140 through the anti-backflow unit 113; the inverting unit 1123 is configured to provide the fifth processing signal to the startup control module 140 through the anti-backflow unit 113 . Since the backflow prevention unit 113 has the function of preventing current backflow, the fourth processing signal Boot_ON_2 generated by the second comparison unit 1122 cannot be reversed to the inverting unit 1123, and the fifth processing signal Boot_OR_2 generated by the inverting unit 1123 cannot be reversed to the second Comparison unit 1122.
  • FIG. 4 is a schematic circuit diagram of another implementable brushing device 110 provided by an embodiment of the disclosure.
  • the backflow prevention unit 113 includes a first diode D1 and a second diode D2.
  • the output terminal of the inverting unit 1123 is electrically connected to the anode of the first diode D1, and the output terminal of the second comparing unit 1122 is connected to the second diode D1.
  • the anode of the pole tube D2 is electrically connected, and the cathode of the first diode D1 and the cathode of the second diode D2 are both electrically connected to the boot control module 140.
  • the first diode D1 is configured to prevent the fourth processing signal Boot_ON_2 generated by the second comparing unit 1122 from flowing back to the inverting unit 1123
  • the second diode D2 is configured to prevent the fifth processing signal generated by the inverting unit 1123 Boot_OR_2 flows back to the second comparison unit 1122.
  • FIG. 5 is a schematic diagram of an implementable structure of the electronic device 100 provided in this embodiment.
  • the electronic device 100 includes a restoration triggering module 130 and a power-on restoration device 100A, and the restoration-triggering module 130 is electrically connected to the power-on restoration device 100A.
  • the restoration trigger module 130 is configured to provide a restoration signal to the power-on restoration device 100A, and the power-on restoration device 100A is configured to obtain a working voltage according to the restoration signal and perform a restoration operation and a startup operation.
  • the electronic device 100 may be a notebook computer, a tablet computer, or the like.
  • the restoration trigger module 130 may include a restoration button.
  • the restoration button When receiving a user's pressing operation on the restoration button, the restoration button will generate a restoration signal in response to the user's pressing operation; when the user's pressing operation on the restoration button is not received, the restoration button will be Produce a non-reduced signal.
  • the restored signal is a low-level signal (e.g., 0V)
  • the non-reduced signal is a high-level signal (e.g., 3.3V).
  • the electronic device 100 further includes a power-on trigger module 120, and the power-on trigger module 120 is electrically connected to the power-on restoration device 100A.
  • the power-on trigger module 120 is configured to provide a power-on signal to the power-on restoration device 100A, and the power-on restoration device 100A is configured to perform a power-on operation according to the power-on signal.
  • the power-on trigger module 120 may include a power-on button.
  • the power-on button When receiving a user's pressing operation on the power-on button, the power-on button generates a power-on signal in response to the user's pressing operation.
  • the power-on button When the user's pressing operation on the power-on button is not received, the power-on button generates a non-power-on signal.
  • the power-on signal is a low-level signal (for example, 0V)
  • the non-power-on signal is a high-level signal (for example, 3.3V).
  • FIG. 6 is a schematic diagram of an implementable structure of the boot restoring device 100A shown in FIG.
  • the providing module 170, the restoration control module 150, and the power-on control module 140 are electrically connected in sequence.
  • the power supply module 170 is configured to provide a working voltage to the restoration control module 150 according to the restoration signal provided by the restoration trigger module 130; the power supply module 170 is also configured to send a restoration processing signal to the restoration control module 150 according to the restoration signal;
  • the restoration control module 150 is configured to perform a restoration operation according to the restoration processing signal upon receiving the working voltage, and send a startup processing signal to the startup control module 140 based on the restoration processing signal;
  • the startup control module 140 is configured to start startup based on the startup processing signal operate.
  • the restoration trigger module 130 does not provide a restoration signal to the power supply module 170.
  • the power supply module 170 does not generate a working voltage when the restoration signal is not received, and the restoration control When the module 150 has no operating voltage, it will not perform a restoration operation, nor will it generate a boot processing signal to the boot control module 140, and the boot control module 140 will not perform a boot operation. Since the power supply module 170 does not provide a working voltage to the restoration control module 150, when the restoration control module 150 does not perform a restoration operation and is in a standby state, it will not consume power.
  • FIG. 7 is a schematic diagram of an implementable circuit of the power-on restoration device 100A shown in FIG. 6.
  • the power supply module 170 includes an inverter U10 and a first power chip U2.
  • the restoration trigger module 130 passes through the inverter U10 They are electrically connected to the first power chip U2 and the restoration control module 150 respectively, and the first power chip U2 is also electrically connected to the restoration control module 150.
  • the inverter U10 is configured to perform inversion processing on the recovery signal Recovery to obtain the recovery processing signal Recovery_ON_1; the first power chip U2 is configured to provide the operating voltage EC_PWR to the recovery control module 150 according to the recovery processing signal Recovery_ON_1. The inverter U10 is also configured to transmit the recovery processing signal Recovery_ON_1 to the recovery control module 150.
  • the inverter U10 performs inverting processing for the low-level restoration signal Recovery to obtain a high-level restoration processing signal Recovery_ON_1, and the first power chip U2 obtains the high-level restoration processing signal Recovery_ON_1 and then it will work. Voltage EC_PWR.
  • the inverter U10 will receive a high-level non-reduced signal, and the inverter U10 will receive a low-level non-reduced signal when inverted, and the first power chip U2 will obtain a low level.
  • the non-reduction processing signal will not generate the working voltage EC_PWR.
  • the inverter U10 is electrically connected to the enable terminal of the first power chip U2.
  • the enable terminal of the first power chip U2 obtains a high-level signal
  • the first power chip U2 will work to generate a working voltage.
  • EC_PWR The first power chip U2 is configured to convert the system voltage VSYS of the electronic device 100 to obtain the working voltage EC_PWR
  • the first power chip U2 may be a DC-DC (direct current to direct current) conversion chip.
  • the restoration control module 150 includes a controller U5 and a processor U6.
  • the input end of the controller U5 is electrically connected to the power supply module 170, the power end of the controller U5 is electrically connected to the power supply module 170, and the controller U5 is electrically connected to the power supply module 170.
  • the first output end of the controller U5 is electrically connected to the processor U6, the second output end of the controller U5 is electrically connected to the boot control module 140, and the third output end of the controller U5 is electrically connected to the power supply module 170.
  • the controller U5 is configured to control the processor U6 to perform the restoration operation according to the restoration processing signal Recovery_ON_1 received at the input terminal of the controller U5 when the working voltage is received at the power supply terminal; the controller U5 is also configured to power on according to the restoration processing signal Recovery_ON_1
  • the control module 140 sends a boot processing signal Boot_ON; the controller U5 is further configured to send a second enable signal EC_ON_2 to the power supply module 170 when the operating voltage EC_PWR is received; the power supply module 170 is configured to send a second enable signal EC_ON_2 according to the second enable signal EC_ON_2 Continuously provide the operating voltage EC_PWR to the controller U5.
  • the third output terminal of the controller U5 is electrically connected to the enable terminal of the first power chip U2, where the second enable signal EC_ON_2 is a high-level signal.
  • the enable terminal of the first power chip U2 receives the high-level second enable signal EC_ON_2 to continuously provide the operating voltage to the controller U5.
  • the inverter U10 provides the first power chip U2 with a low-level non-restore processing signal, and the first power chip U2 can also provide the operating voltage EC_PWR to the controller U5, so that the controller U5 can Complete the restore operation.
  • controller U5 When the input terminal of the controller U5 receives a high-level restoration processing signal Recovery_ON_1 will generate a high-level control signal to the control processor U6, so that the processor U6 will perform a restoration operation after receiving the high-level control signal
  • the controller U5 is also configured to send a low-level power-on processing signal Boot_ON to the boot control module 140 according to the high-level recovery processing signal Recovery_ON_1.
  • the controller U5 may be an embedded controller (Embed Controller, EC), and the processor U6 may be a system chip (System on Chip, SOC).
  • EC embedded Controller
  • SOC System on Chip
  • the boot control module 140 is also electrically connected to the power supply module 170; the power supply module 170 is configured to provide the restoration control module 150 with a working voltage EC_PWR according to the first enable signal PHONE_ON_EC_2 provided by the boot control module 140; The first enable signal PHONE_ON_EC_2 is generated when the power-on control module 140 performs a power-on operation.
  • the first enable signal PHONE_ON_EC_2 is a high-level signal
  • the power-on control module 140 is electrically connected to the enable terminal of the first power chip U2.
  • the enable terminal of the first power chip U2 can continuously provide the operating voltage EC_PWR to the controller U5 after receiving the first enable signal PHONE_ON_EC_2 that is high level. Even if the user stops pressing the restore button, the inverter U10 provides a low-level non-restore processing signal to the first power chip U2, and the first power chip U2 can also provide the operating voltage EC_PWR to the controller U5, so that the controller U5 can complete Restore operation.
  • the power supply module 170 further includes a delay chip U3, and the inverter U10 is electrically connected to the first power chip U2 and the restoration control module 150 through the delay chip U3.
  • the delay chip U3 is configured to perform delay processing on the recovery processing signal Recovery_ON_1 to obtain the delayed recovery processing signal Recovery_ON_2;
  • the first power chip U2 is configured to provide the operating voltage EC_PWR to the recovery control module 150 according to the delayed recovery processing signal Recovery_ON_2
  • the restoration control module 150 is configured to perform a restoration operation according to the delayed restoration processing signal Recovery_ON_2 when the operating voltage EC_PWR is received, and to send the boot processing signal Boot_ON to the boot control module 140 according to the delayed restoration processing signal Recovery_ON_2 .
  • the delay chip U3 is configured to delay processing the recovery processing signal Recovery_ON_1, so that the recovery processing signal Recovery_ON_1 lasts for a period of time to ensure that after the controller U5 works, before sending the second enable signal EC_ON_2 to the first power chip U2 ,
  • the enable terminal of the first power chip U2 can continuously receive the high-level signal.
  • the delay chip U3 can make the recovery processing signal Recovery_ON_1 continue to be sent to the first power chip U2 for 500s.
  • the power supply module 170 further includes a sixth diode D6, the delay chip U3 is electrically connected to the anode of the sixth diode D6, and the cathode of the sixth diode D6 is electrically connected to the anode of the sixth diode D6.
  • the power chip U2 is electrically connected, and the sixth diode D6 is configured to prevent the current generated by the first power chip U2 from flowing back to the delay chip U3.
  • the cathode of the sixth diode D6 is electrically connected to the enable terminal of the first power chip U2.
  • the power supply module 170 further includes a seventh diode D7.
  • the third output terminal of the controller U5 of the reduction control module 150 is electrically connected to the anode of the seventh diode D7.
  • the cathode of the diode D7 is electrically connected to the enable terminal of the first power chip U2.
  • the restoration control module 150 is further configured to send a second enable signal to the enable terminal of the first power chip U2 through the seventh diode D7 when the operating voltage is received, and the first power chip U2 depends on the second enable signal Continuously provide operating voltage to the controller U5.
  • the power supply module 170 further includes a third diode D3, the boot control module 140 is electrically connected to the anode of the third diode D3, and the cathode of the third diode D3 is connected to the first diode D3.
  • the enable terminal of the power chip U2 is electrically connected.
  • the power-on control module 140 sends a first enable signal to the enable terminal of the first power chip U2 through the third diode D3, and the first power chip U2 continuously provides a working voltage to the controller U5 according to the first enable signal.
  • the boot-up restoration device 100A further includes a first isolation module 180, and the restoration trigger module 130 passes through the first isolation
  • the module 180 is electrically connected to the power supply module 170.
  • the first isolation module 180 is configured to perform isolation processing on the recovery signal Recovery to obtain an isolated recovery signal Recovery_N; the power supply module 170 is configured to provide a working voltage EC_PWR to the recovery control module 150 according to the isolated recovery signal Recovery_N; power supply The module 170 is further configured to send a restoration processing signal Recovery_ON_2 to the restoration control module 150 according to the isolation restoration signal Recovery_N.
  • restoration trigger module 130 the first isolation module 180, the inverter U10, the delay chip U3, the sixth diode D6, and the first power chip U2 are electrically connected in sequence.
  • the first isolation module 180 includes a first buffer U4, and the restoration triggering module 130 is electrically connected to the power supply module 170 through the first buffer U4.
  • the first buffer U4 may use a buffer.
  • the first isolation module 180 further includes a fourth resistor R4 and a first capacitor C1, one end of the fourth resistor R4 is electrically connected between the restoration trigger module 130 and the first buffer U4, and the other end of the fourth resistor R4 It is electrically connected to the second power chip U8, one end of the first capacitor C1 is electrically connected between the second power chip U8 and the first buffer U4, and the other end of the first capacitor C1 is grounded.
  • the boot restoring device 100A further includes a second isolation module 190, and the boot trigger module 120 is electrically connected to the boot control module 140 through the second isolation module 190.
  • the second isolation module 190 is configured to perform isolation processing on the boot signal provided by the boot trigger module 120 to obtain an isolated boot signal; the boot control module 140 is configured to perform a boot operation according to the isolation boot signal.
  • the second isolation module 190 includes a second buffer U7, a fifth resistor R5, and a second capacitor C2.
  • the boot trigger module 120 is electrically connected to the boot control module 140 through the second buffer U7, and the fifth resistor R5
  • One end of the second capacitor C2 is electrically connected between the boot trigger module 120 and the second buffer U7, the other end of the fifth resistor R5 is electrically connected to the second power chip U8, and one end of the second capacitor C2 is electrically connected to the second power chip U8 and the second power chip U8. Between the two buffers U7, the other end of the second capacitor C2 is grounded.
  • the first buffer U4 and the second buffer U7 are both used for electrical isolation, which can electrically isolate the restoration signal and the startup signal to prevent mutual interference between the restoration signal and the startup signal.
  • the power-on control module 140 includes a third power chip U9 (Power Management IC, PMIC) and a fourth diode D4.
  • the second buffer U7 and the cathode of the fourth diode D4 are electrically connected to each other.
  • the anode of the fourth diode D4 is electrically connected to the input terminal of the third power chip U9
  • the output terminal of the third power chip U9 is electrically connected to the anode of the third diode D3
  • the second output terminal of the controller U5 It is electrically connected between the anode of the fourth diode D4 and the input terminal of the third power chip U9.
  • the fourth diode D4 is used to prevent the power-on processing signal generated by the controller U5 from affecting the second buffer U7.
  • the reduction control module 150 further includes a fifth diode D5.
  • the anode of the fifth diode D5 is electrically connected between the anode of the fourth diode D4 and the input terminal of the third power chip U9.
  • the cathode of the diode D5 is electrically connected to the second output terminal of the controller U5.
  • the fifth diode D5 is used to prevent the signal between the anode of the fourth diode D4 and the input terminal of the third power chip U9 from affecting the controller U5.
  • the boot restoring device 100A further includes a power conversion module 160.
  • the power conversion module 160 includes a second power chip U8.
  • the second power chip U8 is configured to convert the system voltage VSYS provided by the electronic device 100 into the first buffer U4 and U4.
  • the voltage required for the operation of the second buffer U7 can be 3.3V
  • the voltage required for the operation of the first buffer U4 and the second buffer U7 can be 1.8V
  • the second power chip U8 converts the 3.3V direct current into 1.8V DC-DC Conversion chip.
  • the power-on and restoring operations of the electronic device can be realized. There is no need to restore the operation through the combination of the power-on button and the +/- volume key. Not only does it use fewer components, but also the operation It's more convenient and faster.
  • the embodiments of the present disclosure provide a flashing device and an electronic device.
  • the flashing device sends the startup control module to the startup control module according to the first trigger signal provided by the startup trigger module and the second trigger signal provided by the restoration trigger module through the startup processing module.
  • Provide a first control signal so that the boot control module determines whether to perform a boot operation according to the first control signal;
  • the restoration processing module provides a second control signal to the restoration control module according to the first trigger signal and the second trigger signal, so that the restoration control module According to the second control signal, it is determined whether to perform the restoration action.
  • the boot restore device includes booting The control module, the restoration control module and the power supply module, the restoration trigger module, the power supply module, the restoration control module and the boot control module are electrically connected in sequence; the power supply module is configured to provide the restoration control module with a working voltage according to the restoration signal provided by the restoration trigger module ; The power supply module is also configured to send a restoration processing signal to the restoration control module according to the restoration signal; the restoration control module is configured to perform a restoration operation based on the restoration processing signal when the operating voltage is received, and to the boot control module according to the restoration processing signal Send a power-on processing signal; the power-on control module is configured to perform a power-on operation according to the power-on processing signal.
  • the power supply module will provide the working voltage to the restoration control module, and the restoration control module can only perform the restoration operation after obtaining the working voltage; and when the electronic device does not need to perform the restoration operation, the power supply module It does not provide a working voltage to the restoration control module. Therefore, the restoration control module does not need to be powered on when the restoration operation is not required. Therefore, the restoration control module does not consume the power of the electronic equipment when the restoration operation is not performed. It can reduce the power loss of electronic equipment and save energy.
  • the startup processing module provides the first control signal to the startup control module according to the first trigger signal provided by the startup trigger module and the second trigger signal provided by the restoration trigger module, so that the startup control module determines whether to perform the startup action according to the first control signal;
  • the restoration processing module provides a second control signal to the restoration control module according to the first trigger signal and the second trigger signal, so that the restoration control module determines whether to perform a restoration action according to the second control signal.
  • the restoration control module is provided with a working voltage and a restoration processing signal is provided to the restoration control module at the same time; when the restoration control module receives the working voltage, the restoration operation is performed according to the restoration processing signal, and according to The restoration processing signal sends a startup processing signal to the startup control module; the startup control module performs a startup operation according to the startup processing signal.
  • the power supply module will provide the working voltage to the restoration control module, and the restoration control module can only perform the restoration operation after obtaining the working voltage; and when the electronic device does not need to perform the restoration operation, the power supply module It does not provide a working voltage to the restoration control module. Therefore, the restoration control module does not need to be powered on when the restoration operation is not required. Therefore, the restoration control module does not consume the power of the electronic equipment when the restoration operation is not performed. It can reduce the power loss of electronic equipment and save energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本公开实施例提出一种刷机装置、开机还原装置及电子设备,涉及电子技术领域。刷机装置应用于电子设备,电子设备包括开机触发模块、还原触发模块、开机控制模块和还原控制模块,刷机装置包括开机处理模块和与开机处理模块电连接的还原处理模块;开机触发模块和所述还原触发模块均通过开机处理模块与开机控制模块电连接,开机触发模块和还原触发模块均通过还原处理模块与还原控制模块电连接;开机处理模块和还原处理模块依据开机触发模块提供的第一触发信号及还原触发模块提供的第二触发信号分别控制开机控制模块判定是否进行开机动作,控制还原控制模块判定是否进行还原动作。其能够在无+/-音量键的情况下快捷且方便的实现开机动作和还原动作。

Description

一种刷机装置、开机还原装置及电子设备
相关申请的交叉引用
本公开要求于2020年02月19日提交中国专利局的申请号为202010102622.0、名称为“刷机装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
本公开要求于2020年02月19日提交中国专利局的申请号为202020186635.6、名称为“开机还原装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电子技术领域,具体而言,涉及一种刷机装置、开机还原装置及电子设备。
背景技术
高通9008模式,全称为Qualcomm HS-USB QDloader9008,9008模式是一种下载模式,也是高通平台最底层的联机模式。
高通平台的手机一般通过开机键和+/-音量键组合的方式进入9008模式,进行刷机动作,来实现***还原。
另外,目前控制电子设备的开机和还原的装置为了保证能够实现开机和还原动作,需要随时保持有电。
发明内容
有鉴于此,本公开的目的之一包括提供一种刷机装置、开机还原装置及电子设备。其能够在无+/-音量键的情况下快捷、方便的实现开机动作和还原动作,能够降低电源损耗,节约电能。
为了实现上述目的,本公开实施例采用的技术方案如下:
第一方面,实施例提供一种刷机装置,应用于电子设备,所述电子设备包括开机触发模块、还原触发模块、开机控制模块和还原控制模块,所述刷机装置包括开机处理模块和与所述开机处理模块电连接的还原处理模块;
所述开机触发模块、所述还原触发模块均通过所述开机处理模块与所述开机控制模块电连接,所述开机触发模块、所述还原触发模块均通过所述还原处理模块与所述还原控制模块电连接;
所述开机处理模块配置成依据所述开机触发模块提供的第一触发信号及所述还原触发模块提供的第二触发信号向所述开机控制模块提供第一控制信号,以使所述开机控制模块依据所述第一控制信号判定是否进行开机动作;
所述还原处理模块配置成依据所述第一触发信号及所述第二触发信号向所述还原控制模块提供第二控制信号,以使所述还原控制模块依据所述第二控制信号判定是否进行还原动作。
在可选的实施方式中,所述还原处理模块包括第一逻辑判断单元、分压电路和第一比较单元,所述开机触发模块和所述还原触发模块分别与所述第一逻辑判断单元的输入端电连接,所述第一逻辑判断单元的输出端与所述开机处理模块的反相单元的输入端电连接,所述第一逻辑判断单元的输出端还通过所述分压电路分别与所述第一比较单元的输入端和所述开机处理模块的第二比较单元的输入端电连接,所述还原触发模块与所述第一比较单元的输入端电连接,所述第一比较单元的输出端与所述还原控制模块电连接;
所述第一逻辑判断单元配置成依据所述第一触发信号和所述第二触发信号生成第一处理信号;
所述分压电路配置成对所述第一处理信号进行分压处理,生成第二处理信号;
所述第一比较单元配置成依据所述第二处理信号和所述第二触发信号生成所述第二控制信号。
在可选的实施方式中,所述第一比较单元包括第一比较器和第一电阻,所述第一比较器的输入端与所述分压电路的输出端和所述还原触发模块均电连接,所述第一比较器的输出端与所述还原控制模块电连接,所述第一电阻的一端与电源电连接,所述第一电阻的另一端电连接于所述第一比较器的输出端与所述还原控制模块之间。
在可选的实施方式中,所述开机处理模块还包括第二逻辑判断单元,所述开机触发模块和所述还原触发模块分别与所述第二逻辑判断单元的输入端电连接,所述第二逻辑判断单元的输出端与所述第二比较单元的输入端电连接,所述第二比较单元的输出端、所述反相单元的输出端均与所述开机控制模块电连接;
所述第二逻辑判断单元配置成依据所述第一触发信号和所述第二触发信号生成第三处理信号;
所述第二比较单元配置成依据所述第三处理信号和所述第二处理信号生成第四处理信号;
所述反相单元配置成依据所述第一处理信号生成第五处理信号,以使所述开机控制模块根据所述第四处理信号和所述第五处理信号获得所述第一控制信号。
在可选的实施方式中,所述开机处理模块还包括防倒流单元,所述第二比较单元和所述反相单元均通过所述防倒流单元与所述开机控制模块电连接;
所述第二比较单元配置成通过所述防倒流单元向所述开机控制模块提供所述第四处理信号;
所述反相单元配置成通过所述防倒流单元向所述开机控制模块提供所述第五处理信号。
在可选的实施方式中,所述防倒流单元包括第一二极管和第二二极管,所述反相单元的输出端与所述第一二极管的阳极电连接,所述第二比较单元的输出端与所述第二二极管的阳极电连接,所述第一二极管的阴极和所述第二二极管的阴极均与所述开机控制模块电连接。
在可选的实施方式中,所述第一触发信号包括非开机信号,所述第二触发信号包括还原信号;
所述第一逻辑判断单元配置成依据所述还原信号和所述非开机信号生成第一逻辑判断信号;
所述分压电路配置成对所述第一逻辑判断信号进行分压处理,生成第一分压信号;
所述第一比较单元配置成依据所述第一分压信号和所述还原信号生成第一比较信号,以使所述还原控制模块依据所述第一比较信号进行还原动作;
所述第二逻辑判断单元配置成依据所述还原信号和所述非开机信号生成第二逻辑判断信号;
所述第二比较单元配置成依据所述第一分压信号和所述第二逻辑判断信号生成第二比较信号;
所述反相单元配置成依据所述第一逻辑判断信号生成第一反相信号,以使所述开机控制模块根据所述第二比较信号和所述第一反相信号进行开机动作。
在可选的实施方式中,所述第一触发信号包括开机信号,所述第二触发信号包括非还原信号;
所述第一逻辑判断单元配置成依据所述开机信号和所述非还原信号生成第一逻辑判断信号;
所述分压电路配置成对所述第一逻辑判断信号进行分压处理,生成第一分压信号;
所述第一比较单元配置成依据所述第一分压信号和所述非还原信号生成第三比较信号,以使所述还原控制模块依据所述第三比较信号不进行还原动作;
所述第二逻辑判断单元配置成依据所述开机信号和所述非还原信号生成第二逻辑判断信号;
所述第二比较单元配置成依据所述第一分压信号和所述第二逻辑判断信号生成第二比较信号;
所述反相单元配置成依据所述第一逻辑判断信号生成第一反相信号,以使所述开机控制模块依据所述第二比较信号和所述第一反相信号进行开机动作。
在可选的实施方式中,所述第一逻辑判断单元包括或门,所述第二逻辑判断单元包括与门。
本公开实施例提供的刷机装置,通过开机处理模块依据开机触发模块提供的第一触发信号及还原触发模块提供的第二触发信号向开机控制模块提供第一控制信号,以使开机控制模块依据第一控制信号判定是否进行开机动作;还原处理模块依据第一触发信号及第二触发信号向还原控制模块提供第二控制信号,以使还原控制模块依据第二控制信号判定是否进行还原动作。可见,通过开机触发模块、还原触发模块、开机控制模块、还原控制模块和刷机装置就能够进行开机动作和还原动作,且也能保证开机动作和还原动作不会出现冲突。
第二方面,本公开实施例提供一种开机还原装置,应用于电子设备,所述电子设备包括还原触发模块,所述开机还原装置包括开机控制模块、还原控制模块和电源提供模块,所述还原触发模块、所述电源提供模块、所述还原控制模块和所述开机控制模块依次电连接;
所述电源提供模块配置成依据所述还原触发模块提供的还原信号向所述还原控制模块提供工作电压;
所述电源提供模块还配置成依据所述还原信号向所述还原控制模块发送还原处理信号;
所述还原控制模块配置成在接收到所述工作电压的情况下,依据所述还原处理信号进行还原操作,并依据所述还原处理信号向所述开机控制模块发送开机处理信号;
所述开机控制模块配置成依据所述开机处理信号进行开机操作。
在可选的实施方式中,所述电源提供模块包括反相器和第一电源芯片,所述还原触发模块通过所述反相器分别与所述第一电源芯片和所述还原控制模块电连接,所述第一电源芯片还与所述还原控制模块电连接;
所述反相器配置成将所述还原信号进行反相处理得到所述还原处理信号;
所述第一电源芯片配置成依据所述还原处理信号向所述还原控制模块提供所述工作电压。
在可选的实施方式中,所述电源提供模块还包括延时芯片,所述反相器通过所述延时芯片分别与所述第一电源芯片和所述还原控制模块电连接;
所述延时芯片配置成对所述还原处理信号进行延时处理得到延时后的还原处理信号;
所述第一电源芯片配置成依据所述延时后的还原处理信号向所述还原控制模块提供所述工作电压;
所述还原控制模块配置成在接收到所述工作电压的情况下,依据所述延时后的还原处理信号进行还原操作,并依据所述延时后的还原处理信号向所述开机控制模块发送开机处理信号。
在可选的实施方式中,所述电源提供模块还包括第六二极管,延时芯片与所述第六二极管的阳极电连接,所述第六二极管的阴极与所述第一电源芯片电连接。
在可选的实施方式中,所述开机还原装置还包括第一隔离模块,所述还原触发模块通过所述第一隔离模块与所述电源提供模块电连接;
所述第一隔离模块配置成对所述还原信号进行隔离处理,得到隔离还原信号;
所述电源提供模块配置成依据所述隔离还原信号向所述还原控制模块提供所述工作电压;
所述电源提供模块还配置成依据所述隔离还原信号向所述还原控制模块发送所述还原处理信号。
在可选的实施方式中,所述第一隔离模块包括第一缓冲器,所述还原触发模块通过所述第一缓冲器与所述电源提供模块电连接。
在可选的实施方式中,所述开机控制模块还与所述电源提供模块电连接;
所述电源提供模块配置成依据所述开机控制模块提供的第一使能信号向所述还原控制模块提供工作电压;其中,所述第一使能信号由所述开机控制模块进行开机操作时产生。
在可选的实施方式中,所述还原控制模块包括控制器和处理器,所述控制器的输入端与所述电源提供模块电连接,所述控制器的电源端与所述电源提供模块电连接,所述控制器的第一输出端与所述处理器电连接,所述控制器的第二输出端与所述开机控制模块电连接,所述控制器的第三输出端与所述电源提供模块电连接;
所述控制器配置成在所述电源端接收到所述工作电压的情况下,依据所述控制器的输入端接收的所述还原处理信号控制所述处理器进行还原操作;
所述控制器还配置成依据所述还原处理信号向所述开机控制模块发送所述开机处理信号;
所述控制器还配置成在接收到所述工作电压的情况下向所述电源提供模块发送第二使能信号;
所述电源提供模块配置成依据所述第二使能信号持续向所述控制器提供所述工作电压。
在可选的实施方式中,所述电子设备还包括开机触发模块,所述开机还原装置还包括第二隔离模块,所述开机触发模块通过所述第二隔离模块与所述开机控制模块电连接;
所述第二隔离模块配置成对所述开机触发模块提供的开机信号进行隔离处理,得到隔离开机信号;
所述开机控制模块配置成依据所述隔离开机信号进行开机操作。
本公开实施例提供的开机还原装置,通过电源提供模块依据还原触发模块提供的还原信号向还原控制模块提供工作电压,并同时向还原控制模块提供还原处理信号;使得还原控制模块在接收到工作电压的情况下,依据还原处理信号进行还原操作,并依据还原处理信号向开机控制模块发送开机处理信号;使得开机控制模块依据开机处理信号进行开机操作。可见,当电子设备进行还原操作时,电源提供模块才会向还原控制模块提供工作电压,还原控制模块在获得工作电压后才能进行还原操作;而当电子设备不需要进行还原操作时,电源提供模块并不会向还原控制模块提供工作电压,故在不需要进行还原操作时,还原控制模块并不需要上电,故还原控制模块在不进行还原操作时,并不会消耗电子设备的电能,进而能够降低电子设备的电源损耗,节约电能。
第三方面,实施例提供一种电子设备,包括开机触发模块、还原触发模块、开机控制模块、还原控制模块和如前述实施方式任意一项所述的刷机装置,或者包括还原触发模块和如前述实施方式任意一项所述的开机还原装置。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通 技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本公开实施例提供的一种电子设备的结构示意图;
图2示出了本公开实施例提供的一种刷机装置的结构示意图;
图3示出了本公开实施例提供的一种刷机装置的电路示意图;
图4示出了本公开实施例提供的另一种刷机装置的电路示意图;
图5为本公开实施例提供的一种电子设备的结构示意图;
图6为本公开实施例提供的一种开机还原装置的结构示意图;
图7为本公开实施例提供的一种开机还原装置的电路原理图;
图8为本公开实施例提供的另一种开机还原装置的电路原理图;
图9为本公开实施例提供的另一种开机还原装置的结构示意图;
图10为本公开实施例提供的又一种开机还原装置的电路原理图。
图标:100-电子设备;110-刷机装置;111-还原处理模块;1111-第一逻辑判断单元;1112-分压电路;1113-第一比较单元;112-开机处理模块;1121-第二逻辑判断单元;1122-第二比较单元;1123-反相单元;113-防倒流单元;120-开机触发模块;130-还原触发模块;140-开机控制模块;150-还原控制模块;R1-第一电阻;R2-第二电阻;R3-第三电阻;D1-第一二极管;D2-第二二极管;U1-第一比较器;100A-开机还原装置;160-电源转换模块;170-电源提供模块;180-第一隔离模块;190-第二隔离模块;U10-反相器;U2-第一电源芯片;U3-延时芯片;U4-第一缓冲器;U5-控制器;U6-处理器;U7-第二缓冲器;U8-第二电源芯片;U9-第三电源芯片;D3-第三二极管;D4-第四二极管;D5-第五二极管;D6-第六二极管;D7-第七二极管;C1-第一电容;R4-第四电阻;R5-第五电阻;C2-第二电容。
具体实施方式
下面将结合本公开实施例中附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
高通9008模式,全称为Qualcomm HS-USB QDloader9008,9008模式是一种下载模式,也是高通平台最底层的联机模式。高通平台的手机一般通过开机键和+/-音量键组合的方式进入9008模式,进行刷机动作,来实现***还原。但高通平台用于有的电子设备(例如,计算机)时,因该电子设备并不配置有+/-音量键,因此无法采用开机键和+/-音量键组合的方式进入9008模式。
请参照图1,为本公开实施例提供的电子设备100的一种可实施的结构示意图,该电子设备100包 括开机触发模块120、还原触发模块130、开机控制模块140、还原控制模块150和刷机装置110。开机触发模块120、还原触发模块130通过刷机装置110分别与开机控制模块140、还原控制模块150电连接。
在本实施例中,开机触发模块120配置成响应用户操作产生第一触发信号;还原触发模块130配置成响应用户操作产生第二触发信号;刷机装置110配置成依据第一触发信号和第二触发信号产生第一控制信号和第二控制信号;开机控制模块140配置成依据第一控制信号判定是否进行开机动作;还原控制模块150配置成依据第二控制信号判断是否进行还原动作。
其中,第一触发信号包括开机信号和非开机信号,第二触发信号包括还原信号和非还原信号。开机触发模块120包括开机按键,还原触发模块130包括还原按键。当接收到用户对开机按键的按压操作时,开机按键会产生开机信号;当接收到用户对还原按键的按压操作时,还原按键会产生还原信号;当未接收到用户对开机按键的按压操作时,开机按键会产生非开机信号;当未接收到用户对还原按键的按压操作时,还原按键会产生非还原信号。且开机信号可以为低电平(例如,0V),非开机信号可以为高电平(例如,3.3V),还原信号可以为低电平(例如,0V),非还原信号可以为高电平(例如,3.3V)。
在本实施例中,开机控制模块140可以采用电源芯片(Power Management IC,PMIC);还原控制模块150包括嵌入式控制器(Embedded Controller,EC)和***芯片(System on Chip,SOC)。
在本实施例中,电子设备100可以为笔记本电脑、台式电脑等。
请参照图2,为图1所示的刷机装置110的一种可实施的结构示意图,该刷机装置110包括开机处理模块112和与开机处理模块112电连接的还原处理模块111。开机触发模块120和还原触发模块130均通过开机处理模块112与开机控制模块140电连接,开机触发模块120和还原触发模块130均通过还原处理模块111与还原控制模块150电连接。
在本实施例中,开机处理模块112配置成依据开机触发模块120提供的第一触发信号及还原触发模块130提供的第二触发信号向开机控制模块140提供第一控制信号,以使开机控制模块140依据第一控制信号判定是否进行开机动作;还原处理模块111配置成依据第一触发信号及第二触发信号向还原控制模块150提供第二控制信号,以使还原控制模块150依据第二控制信号判定是否进行还原动作。
如图3所示,为图2所示的刷机装置110的一种可实施的电路原理图,还原处理模块111包括第一逻辑判断单元1111、分压电路1112和第一比较单元1113,开机触发模块120和还原触发模块130分别与第一逻辑判断单元1111的输入端电连接,第一逻辑判断单元1111的输出端与开机处理模块112电连接,第一逻辑判断单元1111的输出端还通过分压电路1112分别与第一比较单元1113的输入端和开机处理模块112电连接,还原触发模块130与第一比较单元1113的输入端电连接,第一比较单元1113的输出端与还原控制模块150电连接。
可以理解,第一逻辑判断单元1111配置成依据第一触发信号PHONE_ON和第二触发信号Recovery生成第一处理信号Boot_OR;分压电路1112配置成对第一处理信号Boot_OR进行分压处理,生成第二处理信号Boot_OR_1;第一比较单元1113配置成依据第二处理信号Boot_OR_1和第二触发信号Recovery生成第二控制信号Recovery_ON。
在本实施例中,第一比较单元1113包括第一比较器U1和第一电阻R1,第一比较器U1的输入端与分压电路1112的输出端和还原触发模块130均电连接,第一比较器U1的输出端与还原控制模块150电连接,第一电阻R1的一端与电源电连接,第一电阻R1的另一端电连接于第一比较器U1的输出端与还原控制模块150之间。
在本实施例中,第一逻辑判断单元1111可以采用或门。分压电路1112包括第二电阻R2和第三电阻R3,第一逻辑判断单元1111的输出端通过相互串联的第二电阻R2和第三电阻R3接地,第一比较单 元1113的输入端和开机处理模块112均电连接于第二电阻R2和第三电阻R3之间。
在本实施例中,开机处理模块112包括第二逻辑判断单元1121、第二比较单元1122和反相单元1123,开机触发模块120和还原触发模块130分别与第二逻辑判断单元1121的输入端电连接,第二逻辑判断单元1121的输出端和分压电路1112分别与第二比较单元1122的输入端电连接,第二比较单元1122的输出端和反相单元1123的输出端均与开机控制模块140电连接,反相单元1123的输入端与第一逻辑判断单元1111的输出端电连接。
可以理解,第二逻辑判断单元1121配置成依据第一触发信号PHONE_ON和第二触发信号Recovery生成第三处理信号Boot_AND;第二比较单元1122配置成依据第三处理信号Boot_AND和第二处理信号Boot_OR_1生成第四处理信号Boot_ON_2;反相单元1123配置成依据第一处理信号Boot_OR生成第五处理信号Boot_OR_2,以使开机控制模块140根据第四处理信号Boot_ON_2和第五处理信号Boot_OR_2获得第一控制信号Boot_ON。
在本实施例中,第二逻辑判断单元1121可以采用与门。第二比较单元1122包括第二比较器。反相单元1123可以采用反相器。
在本实施例中,刷机装置110依据第一触发信号和第二触发信号实现开机动作和还原动作的具体原理为:当第一触发信号为非开机信号且第二触发信号为还原信号时,第一逻辑判断单元1111配置成依据还原信号和非开机信号生成第一逻辑判断信号;分压电路1112配置成对第一逻辑判断信号进行分压处理,生成第一分压信号;第一比较单元1113配置成依据第一分压信号和还原信号生成第一比较信号,以使还原控制模块150依据第一比较信号进行还原动作;第二逻辑判断单元1121配置成依据还原信号和非开机信号生成第二逻辑判断信号;第二比较单元1122配置成依据第一分压信号和第二逻辑判断信号生成第二比较信号;反相单元1123配置成依据第一逻辑判断信号生成第一反相信号,以使开机控制模块140根据第二比较信号和第一反相信号进行开机动作。
如表1所示,当第一触发信号PHONE_ON为非开机信号且第二触发信号Recovery为还原信号时,即用户触发还原按键,使得还原按键产生为低电平的还原信号,由于用户未触发开机按键,故开机按键产生为高电平的非开机信号。第一逻辑判断单元1111根据还原信号和非开机信号对应生成为高电平的第一逻辑判断信号,即此时的第一处理信号Boot_OR为第一逻辑判断信号;第二逻辑判断单元1121根据还原信号和非开机信号对应生成为低电平的第二逻辑判断信号,即此时的第三处理信号Boot_AND为第二逻辑判断信号;分压电路1112对第一逻辑判断信号进行分压处理,得到电平高于第二逻辑判断信号和还原信号的第一分压信号,即此时的第二处理信号Boot_OR_1为第一分压信号;第一比较单元1113依据第一分压信号和还原信号生成为低电平的第一比较信号,即此时的第二控制信号Recovery_ON为第一比较信号;还原控制模块150依据为低电平的第二控制信号Recovery_ON进行还原动作;第二比较单元1122依据第一分压信号和第二逻辑判断信号生成为低电平的第二比较信号,即此时的第四处理信号Boot_ON_2为第二比较信号;反相单元1123依据第一逻辑判断信号生成为低电平的第一反相信号,即此时的第五处理信号Boot_OR_2为第一反相信号;由于第二比较信号和第一反相信号输入开机控制模块140的相同端口,且因第一反相信号和第二比较信号均为低电平,故此时的第一控制信号Boot_ON为低电平;开机控制模块140根据为低电平的第一控制信号Boot_ON进行开机动作。
Figure PCTCN2021076936-appb-000001
表1
在本实施例中,当第一触发信号PHONE_ON为开机信号,第二触发信号Recovery为非还原信号时,第一逻辑判断单元1111配置成依据开机信号和非还原信号生成第一逻辑判断信号;分压电路1112配置成对第一逻辑判断信号进行分压处理,生成第一分压信号;第一比较单元1113配置成依据第一分压信号和非还原信号生成第三比较信号,以使还原控制模块150依据第三比较信号不进行还原动作;第二逻辑判断单元1121配置成依据开机信号和非还原信号生成第二逻辑判断信号;第二比较单元1122配置成依据第一分压信号和第二逻辑判断信号生成第二比较信号;反相单元1123配置成依据第一逻辑判断信号生成第一反相信号,以使开机控制模块140依据第二比较信号和第一反相信号进行开机动作。
如表2所示,当第一触发信号PHONE_ON为开机信号,第二触发信号Recovery为非还原信号时,即用户触发开机按键,使得开机按键产生为低电平的开机信号,由于用户未触发还原按键,故还原按键产生为高电平的非还原信号。第一逻辑判断单元1111根据非还原信号和开机信号对应生成为高电平的第一逻辑判断信号,即此时的第一处理信号Boot_OR为第一逻辑判断信号;第二逻辑判断单元1121根据非还原信号和开机信号对应生成为低电平的第二逻辑判断信号,即此时的第三处理信号Boot_AND为第二逻辑判断信号;分压电路1112对第一逻辑判断信号进行分压处理,得到电平高于第二逻辑判断信号的第一分压信号,且第一分压信号的电平低于非还原信号,即此时的第二处理信号Boot_OR_1为第一分压信号;第一比较单元1113依据第一分压信号和非还原信号生成为高电平的第三比较信号,即此时的第二控制信号Recovery_ON为第三比较信号;还原控制模块150依据为高电平的第二控制信号Recovery_ON不进行还原动作;第二比较单元1122依据第一分压信号和第二逻辑判断信号生成为低电平的第二比较信号,即此时的第四处理信号Boot_ON_2为第二比较信号;反相单元1123依据第一逻辑判断信号生成为低电平的第一反相信号,即此时的第五处理信号Boot_OR_2为第一反相信号;由于第二比较信号和第一反相信号输入开机控制模块140的相同端口,且因第一反相信号和第二比较信号均为低电平,故此时的第一控制信号Boot_ON为低电平;开机控制模块140根据为低电平的第一控制信号Boot_ON进行开机动作。
Figure PCTCN2021076936-appb-000002
表2
在本实施例中,当第一触发信号PHONE_ON为开机信号,第二触发信号Recovery为还原信号时,第一逻辑判断单元1111配置成依据开机信号和还原信号生成第三逻辑判断信号;分压电路1112配置成对第三逻辑判断信号进行分压处理,生成第二分压信号;第一比较单元1113配置成依据第二分压信号 和还原信号生成第三比较信号,以使还原控制模块150依据第三比较信号不进行还原动作;第二逻辑判断单元1121配置成依据开机信号和还原信号生成第二逻辑判断信号;第二比较单元1122配置成依据第二分压信号和第二逻辑判断信号输出不确定的信号;反相单元1123配置成依据第三逻辑判断信号生成第二反相信号,以使开机控制模块140依据不确定的信号和第二反相信号不进行开机动作。
如表3所示,当第一触发信号PHONE_ON为开机信号,第二触发信号Recovery为还原信号时,即用户触发开机按键,使得开机按键产生为低电平的开机信号,用户触发还原按键,还原按键产生为低电平的还原信号。第一逻辑判断单元1111根据还原信号和开机信号对应生成为低电平的第三逻辑判断信号,即此时的第一处理信号Boot_OR为第三逻辑判断信号;第二逻辑判断单元1121根据还原信号和开机信号对应生成为低电平的第二逻辑判断信号,即此时的第三处理信号Boot_AND为第二逻辑判断信号;分压电路1112对第三逻辑判断信号进行分压处理,得到电平与第二逻辑判断信号和还原信号相等的第二分压信号,即此时的第二处理信号Boot_OR_1为第二分压信号;第一比较单元1113中的第一比较器U1依据第二分压信号和还原信号生成电平不确定的信号,由于第一电阻R1的一端与电源电连接,故会将第一比较器U1输出的不确定信号拉高为高电平的第三比较信号,即此时的第二控制信号Recovery_ON为第三比较信号;还原控制模块150依据为高电平的第二控制信号Recovery_ON不进行还原动作;第二比较单元1122依据第二分压信号和第二逻辑判断信号生成电平不确定的信号,即此时的第四处理信号Boot_ON_2为电平不确定的信号;反相单元1123依据第三逻辑判断信号生成为高电平的第二反相信号,即此时的第五处理信号Boot_OR_2为第二反相信号;由于电平不确定的第四处理信号Boot_ON_2和第二反相信号输入开机控制模块140的相同端口,且因第二反相信号为高电平,第二反相信号会将第四处理信号Boot_ON_2拉高为高电平信号,故此时的第一控制信号Boot_ON为高电平;开机控制模块140根据为高电平的第一控制信号Boot_ON不进行开机动作。
Figure PCTCN2021076936-appb-000003
表3
在本实施例中,当第一触发信号PHONE_ON为非开机信号,第二触发信号Recovery为非还原信号时,第一逻辑判断单元1111配置成依据非开机信号和非还原信号生成第一逻辑判断信号;分压电路1112配置成对第一逻辑判断信号进行分压处理,生成第一分压信号;第一比较单元1113配置成依据第一分压信号和非还原信号生成第三比较信号,以使还原控制模块150依据第三比较信号不进行还原动作;第二逻辑判断单元1121配置成依据非开机信号和非还原信号生成第四逻辑判断信号;第二比较单元1122配置成依据第一分压信号和第四逻辑判断信号生成第四比较信号;反相单元1123配置成依据第一逻辑判断信号生成第一反相信号,以使开机控制模块140依据第四比较信号和第一反相信号不进行开机动作。
如表4所示,当第一触发信号PHONE_ON为非开机信号,第二触发信号Recovery为非还原信号时,即用户不触发开机按键,开机按键产生为高电平的非开机信号,用户触发不还原按键,还原按键产生为高电平的非还原信号。第一逻辑判断单元1111根据非还原信号和非开机信号对应生成为高电平的第一逻辑判断信号,即此时的第一处理信号Boot_OR为第一逻辑判断信号;第二逻辑判断单元1121根据非还原信号和非开机信号对应生成为高电平的第四逻辑判断信号,即此时的第三处理信号Boot_AND为第四逻辑判断信号;分压电路1112对第一逻辑判断信号进行分压处理,得到电平低于第四逻辑判断信号 和非还原信号的第一分压信号,即此时的第二处理信号Boot_OR_1为第一分压信号;第一比较单元1113中的第一比较器U1依据第一分压信号和非还原信号生成为高电平的第三比较信号,即此时的第二控制信号Recovery_ON为第三比较信号;还原控制模块150依据为高电平的第二控制信号Recovery_ON不进行还原动作;第二比较单元1122依据第一分压信号和第四逻辑判断信号生成为高电平的第四比较信号,即此时的第四处理信号Boot_ON_2为第四比较信号;反相单元1123依据第一逻辑判断信号生成为低电平的第一反相信号,即此时的第五处理信号Boot_OR_2为第一反相信号;由于第四比较信号和第一反相信号输入开机控制模块140的相同端口,且因第四比较信号为高电平,第四比较信号会将第一反相信号拉高为高电平信号,故此时的第一控制信号Boot_ON为高电平;开机控制模块140根据为高电平的第一控制信号Boot_ON不进行开机动作。
Figure PCTCN2021076936-appb-000004
表4
为了防止反相单元1123生成的第五处理信号影响到第二比较单元1122,以及防止第二比较单元1122生成的第四处理信号影响到反相单元1123。请参照图4,为本公开实施例提供的刷机装置110的另一种可实施的电路示意图,图4所示的刷机装置110与图3所示的刷机装置110的区别在于,开机处理模块112还包括防倒流单元113,第二比较单元1122和反相单元1123均通过防倒流单元113与开机控制模块140电连接。
在本实施例中,第二比较单元1122配置成通过防倒流单元113向开机控制模块140提供第四处理信号;反相单元1123配置成通过防倒流单元113向开机控制模块140提供第五处理信号。由于防倒流单元113具有防止电流倒流的功能,故第二比较单元1122产生的第四处理信号Boot_ON_2不能倒流至反相单元1123,而反相单元1123产生的第五处理信号Boot_OR_2不能倒流至第二比较单元1122。
图4为本公开实施例提供的另一种可实施的刷机装置110的电路原理图。防倒流单元113包括第一二极管D1和第二二极管D2,反相单元1123的输出端与第一二极管D1的阳极电连接,第二比较单元1122的输出端与第二二极管D2的阳极电连接,第一二极管D1的阴极和第二二极管D2的阴极均与开机控制模块140电连接。
可以理解,第一二极管D1配置成防止第二比较单元1122产生的第四处理信号Boot_ON_2倒流至反相单元1123,第二二极管D2配置成防止反相单元1123产生的第五处理信号Boot_OR_2倒流至第二比较单元1122。
请参阅图5,为本实施例提供的电子设备100的一种可实施的结构示意图,该电子设备100包括还原触发模块130和开机还原装置100A,还原触发模块130与开机还原装置100A电连接。还原触发模块130配置成向开机还原装置100A提供还原信号,开机还原装置100A配置成依据还原信号获得工作电压并进行还原操作和开机操作。
在本实施例中,该电子设备100可以为笔记本电脑及平板电脑等。还原触发模块130可以包括还原按键,当接收到用户对还原按键的按压操作时,还原按键会响应用户的按压操作产生还原信号;当未接收到用户对还原按键的按压操作时,还原按键则会产生非还原信号。其中,还原信号为低电平信号(例 如,0V),非还原信号为高电平信号(例如,3.3V)。
可选的,在本实施例中,电子设备100还包括开机触发模块120,开机触发模块120与开机还原装置100A电连接。开机触发模块120配置成向开机还原装置100A提供开机信号,开机还原装置100A配置成依据开机信号进行开机操作。
在本实施例中,开机触发模块120可以包括开机按键,当接收到用户对开机按键的按压操作时,开机按键响应用户按压操作产生开机信号。当未接收到用户对开机按键的按压操作时,开机按键则会产生非开机信号。其中,开机信号为低电平信号(例如,0V),非开机信号为高电平信号(例如,3.3V)。
请参照图6,为图5所示的开机还原装置100A的一种可实施的结构示意图,开机还原装置100A包括开机控制模块140、还原控制模块150和电源提供模块170,还原触发模块130、电源提供模块170、还原控制模块150和开机控制模块140依次电连接。
在本实施例中,电源提供模块170配置成依据还原触发模块130提供的还原信号向还原控制模块150提供工作电压;电源提供模块170还配置成依据还原信号向还原控制模块150发送还原处理信号;还原控制模块150配置成在接收到工作电压的情况下,依据还原处理信号进行还原操作,并依据还原处理信号向开机控制模块140发送开机处理信号;开机控制模块140配置成依据开机处理信号进行开机操作。
可以理解,当用户未对还原触发模块130进行按压操作时,还原触发模块130无还原信号提供至电源提供模块170,电源提供模块170在未接收到还原信号时,不会产生工作电压,还原控制模块150在无工作电压的情况下,是不会进行还原操作,也不会向开机控制模块140产生开机处理信号,开机控制模块140则不会进行开机操作。因电源提供模块170无工作电压提供至还原控制模块150,当还原控制模块150不进行还原操作,处于待机状态时,不会消耗电能。
请参照图7,为图6所示的开机还原装置100A的一种可实施的电路原理图,电源提供模块170包括反相器U10和第一电源芯片U2,还原触发模块130通过反相器U10分别与第一电源芯片U2和还原控制模块150电连接,第一电源芯片U2还与还原控制模块150电连接。
在本实施例中,反相器U10配置成将还原信号Recovery进行反相处理得到还原处理信号Recovery_ON_1;第一电源芯片U2配置成依据还原处理信号Recovery_ON_1向还原控制模块150提供工作电压EC_PWR。反相器U10还配置成将还原处理信号Recovery_ON_1传输至还原控制模块150。
可以理解,反相器U10将为低电平的还原信号Recovery进行反相处理得到为高电平的还原处理信号Recovery_ON_1,第一电源芯片U2获得为高电平的还原处理信号Recovery_ON_1后会产生工作电压EC_PWR。
若用户未触发还原按键,反相器U10将接收为高电平的非还原信号,反相器U10反相则会得到为低电平的非还原处理信号,第一电源芯片U2获得为电平的非还原处理信号则不会产生工作电压EC_PWR。
其中,反相器U10与第一电源芯片U2的使能端电连接,第一电源芯片U2的使能端在获得高电平信号时,第一电源芯片U2才会进行工作,进而产生工作电压EC_PWR。第一电源芯片U2配置成将电子设备100的***电压VSYS进行转换得到工作电压EC_PWR,第一电源芯片U2可以为DC-DC(直流转直流)转换芯片。
在本实施例中,还原控制模块150包括控制器U5和处理器U6,控制器U5的输入端与电源提供模块170电连接,控制器U5的电源端与电源提供模块170电连接,控制器U5的第一输出端与处理器U6电连接,控制器U5的第二输出端与开机控制模块140电连接,控制器U5的第三输出端与电源提供模块170电连接。
控制器U5配置成在电源端接收到工作电压的情况下,依据控制器U5的输入端接收的还原处理信号Recovery_ON_1控制处理器U6进行还原操作;控制器U5还配置成依据还原处理信号Recovery_ON_1向开机控制模块140发送开机处理信号Boot_ON;控制器U5还配置成在接收到工作电压EC_PWR的情况下向电源提供模块170发送第二使能信号EC_ON_2;电源提供模块170配置成依据第二使能信号EC_ON_2持续向控制器U5提供工作电压EC_PWR。
可以理解,控制器U5的第三输出端与第一电源芯片U2的使能端电连接,其中,第二使能信号EC_ON_2为高电平信号。第一电源芯片U2的使能端接收到为高电平的第二使能信号EC_ON_2能够持续向控制器U5提供工作电压。即使在用户停止按压还原按键,反相器U10向第一电源芯片U2提供为低电平的非还原处理信号,第一电源芯片U2也能向控制器U5提供工作电压EC_PWR,使得控制器U5能够完成还原操作。控制器U5的输入端接收到为高电平的还原处理信号Recovery_ON_1会向控制处理器U6产生为高电平的控制信号,使得处理器U6在接收到高电平的控制信号后,进行还原操作;控制器U5还配置成依据为高电平的还原处理信号Recovery_ON_1向开机控制模块140发送为低电平的开机处理信号Boot_ON。
其中,控制器U5可以为嵌入式控制器(EmbedController,EC),处理器U6可以为***芯片(System on Chip,SOC)。
在本实施例中,开机控制模块140还与电源提供模块170电连接;电源提供模块170配置成依据开机控制模块140提供的第一使能信号PHONE_ON_EC_2向还原控制模块150提供工作电压EC_PWR;其中,第一使能信号PHONE_ON_EC_2由开机控制模块140进行开机操作时产生。
可以理解,第一使能信号PHONE_ON_EC_2为高电平信号,开机控制模块140与第一电源芯片U2的使能端电连接。第一电源芯片U2的使能端在接收到为高电平的第一使能信号PHONE_ON_EC_2能够持续向控制器U5提供工作电压EC_PWR。即使用户停止按压还原按键,反相器U10向第一电源芯片U2提供为低电平的非还原处理信号,第一电源芯片U2也能向控制器U5提供工作电压EC_PWR,使得控制器U5能够完成还原操作。
可选的,如图8所示,电源提供模块170还包括延时芯片U3,反相器U10通过延时芯片U3分别与第一电源芯片U2和还原控制模块150电连接。延时芯片U3配置成对还原处理信号Recovery_ON_1进行延时处理得到延时后的还原处理信号Recovery_ON_2;第一电源芯片U2配置成依据延时后的还原处理信号Recovery_ON_2向还原控制模块150提供工作电压EC_PWR;还原控制模块150配置成在接收到工作电压EC_PWR的情况下,依据延时后的还原处理信号Recovery_ON_2进行还原操作,并依据延时后的还原处理信号Recovery_ON_2向开机控制模块140发送开机处理信号Boot_ON。
可以理解,延时芯片U3配置成对还原处理信号Recovery_ON_1进行延时处理,使得还原处理信号Recovery_ON_1持续一段时间,以保证控制器U5工作后,向第一电源芯片U2发送第二使能信号EC_ON_2之前,第一电源芯片U2的使能端能持续接收到高电平信号。延时芯片U3可以使得还原处理信号Recovery_ON_1持续向第一电源芯片U2发送500s。
可选的,在本实施例中,电源提供模块170还包括第六二极管D6,延时芯片U3与第六二极管D6的阳极电连接,第六二极管D6的阴极与第一电源芯片U2电连接,第六二极管D6配置成防止第一电源芯片U2产生的电流倒流至延时芯片U3。其中,第六二极管D6的阴极与第一电源芯片U2的使能端电连接。
可选的,在本实施例中,电源提供模块170还包括第七二极管D7,还原控制模块150的控制器U5的第三输出端与第七二极管D7的阳极电连接,第七二极管D7的阴极与第一电源芯片U2的使能端电连接。还原控制模块150还配置成在接收到工作电压的情况下通过第七二极管D7向第一电源芯片U2的使能端发送第二使能信号,第一电源芯片U2依据第二使能信号持续向控制器U5提供工作电压。
可选的,在本实施例中,电源提供模块170还包括第三二极管D3,开机控制模块140与第三二极管D3的阳极电连接,第三二极管D3的阴极与第一电源芯片U2的使能端电连接。开机控制模块140通过第三二极管D3向第一电源芯片U2的使能端发送第一使能信号,第一电源芯片U2依据第一使能信号持续向控制器U5提供工作电压。
可选的,如图9所示,为本实施例提供的开机还原装置100A的另一种可实施的结构示意图,开机还原装置100A还包括第一隔离模块180,还原触发模块130通过第一隔离模块180与电源提供模块170电连接。
如图10所示,第一隔离模块180配置成对还原信号Recovery进行隔离处理,得到隔离还原信号Recovery_N;电源提供模块170配置成依据隔离还原信号Recovery_N向还原控制模块150提供工作电压EC_PWR;电源提供模块170还配置成依据隔离还原信号Recovery_N向还原控制模块150发送还原处理信号Recovery_ON_2。
可以理解,还原触发模块130、第一隔离模块180、反相器U10、延时芯片U3、第六二极管D6及第一电源芯片U2依次电连接。
第一隔离模块180包括第一缓冲器U4,还原触发模块130通过第一缓冲器U4与电源提供模块170电连接。第一缓冲器U4可以采用buffer。
可选的,第一隔离模块180还包括第四电阻R4和第一电容C1,第四电阻R4的一端电连接于还原触发模块130与第一缓冲器U4之间,第四电阻R4的另一端与第二电源芯片U8电连接,第一电容C1的一端电连接于第二电源芯片U8与第一缓冲器U4之间,第一电容C1的另一端接地。
可选的,开机还原装置100A还包括第二隔离模块190,开机触发模块120通过第二隔离模块190与开机控制模块140电连接。第二隔离模块190配置成对开机触发模块120提供的开机信号进行隔离处理,得到隔离开机信号;开机控制模块140配置成依据隔离开机信号进行开机操作。
在本实施例中,第二隔离模块190包括第二缓冲器U7、第五电阻R5和第二电容C2,开机触发模块120通过第二缓冲器U7与开机控制模块140电连接,第五电阻R5的一端电连接于开机触发模块120与第二缓冲器U7之间,第五电阻R5的另一端与第二电源芯片U8电连接,第二电容C2的一端电连接于第二电源芯片U8与第二缓冲器U7之间,第二电容C2的另一端接地。
其中,第一缓冲器U4和第二缓冲器U7均用于起到电气隔离的作用,可以将还原信号和开机信号进行电气隔离,防止还原信号和开机信号之间的相互干扰。
可选的,在本实施例中,开机控制模块140包括第三电源芯片U9(Power Management IC,PMIC)和第四二极管D4,第二缓冲器U7与第四二极管D4的阴极电连接,第四二极管D4的阳极与第三电源芯片U9的输入端电连接,第三电源芯片U9的输出端与第三二极管D3的阳极电连接,控制器U5的第二输出端电连接于第四二极管D4的阳极与第三电源芯片U9的输入端之间。第三电源芯片U9的输入端接收到低电平信号时,会进行开机操作。第四二极管D4用于防止控制器U5产生的开机处理信号对第二缓冲器U7造成影响。
可选的,还原控制模块150还包括第五二极管D5,第五二极管D5的阳极电连接于第四二极管D4的阳极与第三电源芯片U9的输入端之间,第五二极管D5的阴极与控制器U5的第二输出端电连接。第五二极管D5用于防止第四二极管D4的阳极与第三电源芯片U9的输入端之间的信号对控制器U5产生影响。
可选的,开机还原装置100A还包括电源转换模块160,电源转换模块160包括第二电源芯片U8,第二电源芯片U8配置成将电子设备100提供的***电压VSYS转换为第一缓冲器U4和第二缓冲器U7 工作所需的电压。例如,***电压可以为3.3V,第一缓冲器U4和第二缓冲器U7工作所需的电压可以为1.8V,那么第二电源芯片U8则为将3.3V直流电转换为1.8V的DC-DC转换芯片。
同时,通过还原触摸模块和还原控制模块就能实现电子设备的开机和还原操作,并不需要通过开机键和+/-音量键的组合方式进行还原操作,不仅使用的元器件更少,且操作起来更加方便和快捷。
综上所述,本公开实施例提供了一种刷机装置和电子设备,该刷机装置通过开机处理模块依据开机触发模块提供的第一触发信号及还原触发模块提供的第二触发信号向开机控制模块提供第一控制信号,以使开机控制模块依据第一控制信号判定是否进行开机动作;还原处理模块依据第一触发信号及第二触发信号向还原控制模块提供第二控制信号,以使还原控制模块依据第二控制信号判定是否进行还原动作。可见,通过开机触发模块、还原触发模块、开机控制模块、还原控制模块和刷机装置就能够进行开机动作和还原动作,且也能保证开机动作和还原动作不会出现冲突;该开机还原装置包括开机控制模块、还原控制模块和电源提供模块,还原触发模块、电源提供模块、还原控制模块和开机控制模块依次电连接;电源提供模块配置成依据还原触发模块提供的还原信号向还原控制模块提供工作电压;电源提供模块还配置成依据还原信号向还原控制模块发送还原处理信号;还原控制模块配置成在接收到工作电压的情况下,依据还原处理信号进行还原操作,并依据还原处理信号向开机控制模块发送开机处理信号;开机控制模块配置成依据开机处理信号进行开机操作。可见,当电子设备进行还原操作时,电源提供模块才会向还原控制模块提供工作电压,还原控制模块在获得工作电压后才能进行还原操作;而当电子设备不需要进行还原操作时,电源提供模块并不会向还原控制模块提供工作电压,故在不需要进行还原操作时,还原控制模块并不需要上电,故还原控制模块在不进行还原操作时,并不会消耗电子设备的电能,进而能够降低电子设备的电源损耗,节约电能。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换和/或改进等,均应包含在本公开的保护范围之内。
工业实用性
通过开机处理模块依据开机触发模块提供的第一触发信号及还原触发模块提供的第二触发信号向开机控制模块提供第一控制信号,以使开机控制模块依据第一控制信号判定是否进行开机动作;还原处理模块依据第一触发信号及第二触发信号向还原控制模块提供第二控制信号,以使还原控制模块依据第二控制信号判定是否进行还原动作。可见,通过开机触发模块、还原触发模块、开机控制模块、还原控制模块和刷机装置就能够进行开机动作和还原动作,且也能保证开机动作和还原动作不会出现冲突;同时,通过电源提供模块依据还原触发模块提供的还原信号向还原控制模块提供工作电压,并同时向还原控制模块提供还原处理信号;使得还原控制模块在接收到工作电压的情况下,依据还原处理信号进行还原操作,并依据还原处理信号向开机控制模块发送开机处理信号;使得开机控制模块依据开机处理信号进行开机操作。可见,当电子设备进行还原操作时,电源提供模块才会向还原控制模块提供工作电压,还原控制模块在获得工作电压后才能进行还原操作;而当电子设备不需要进行还原操作时,电源提供模块并不会向还原控制模块提供工作电压,故在不需要进行还原操作时,还原控制模块并不需要上电,故还原控制模块在不进行还原操作时,并不会消耗电子设备的电能,进而能够降低电子设备的电源损耗,节约电能。

Claims (19)

  1. 一种刷机装置,其特征在于,应用于电子设备,所述电子设备包括开机触发模块、还原触发模块、开机控制模块和还原控制模块,所述刷机装置包括开机处理模块和与所述开机处理模块电连接的还原处理模块;
    所述开机触发模块和所述还原触发模块均通过所述开机处理模块与所述开机控制模块电连接,所述开机触发模块和所述还原触发模块均通过所述还原处理模块与所述还原控制模块电连接;
    所述开机处理模块配置成依据所述开机触发模块提供的第一触发信号及所述还原触发模块提供的第二触发信号向所述开机控制模块提供第一控制信号,以使所述开机控制模块依据所述第一控制信号判定是否进行开机动作;
    所述还原处理模块配置成依据所述第一触发信号及所述第二触发信号向所述还原控制模块提供第二控制信号,以使所述还原控制模块依据所述第二控制信号判定是否进行还原动作。
  2. 根据权利要求1所述的刷机装置,其特征在于,所述还原处理模块包括第一逻辑判断单元、分压电路和第一比较单元,所述开机触发模块和所述还原触发模块分别与所述第一逻辑判断单元的输入端电连接,所述第一逻辑判断单元的输出端与所述开机处理模块的反相单元的输入端电连接,所述第一逻辑判断单元的输出端还通过所述分压电路分别与所述第一比较单元的输入端和所述开机处理模块的第二比较单元的输入端电连接,所述还原触发模块与所述第一比较单元的输入端电连接,所述第一比较单元的输出端与所述还原控制模块电连接;
    所述第一逻辑判断单元配置成依据所述第一触发信号和所述第二触发信号生成第一处理信号;
    所述分压电路配置成对所述第一处理信号进行分压处理,生成第二处理信号;
    所述第一比较单元配置成依据所述第二处理信号和所述第二触发信号生成所述第二控制信号。
  3. 根据权利要求2所述的刷机装置,其特征在于,所述第一比较单元包括第一比较器和第一电阻,所述第一比较器的输入端与所述分压电路的输出端和所述还原触发模块均电连接,所述第一比较器的输出端与所述还原控制模块电连接,所述第一电阻的一端与电源电连接,所述第一电阻的另一端电连接于所述第一比较器的输出端与所述还原控制模块之间。
  4. 根据权利要求2所述的刷机装置,其特征在于,所述开机处理模块还包括第二逻辑判断单元,所述开机触发模块和所述还原触发模块分别与所述第二逻辑判断单元的输入端电连接,所述第二逻辑判断单元的输出端与所述第二比较单元的输入端电连接,所述第二比较单元的输出端和所述反相单元的输出端均与所述开机控制模块电连接;
    所述第二逻辑判断单元配置成依据所述第一触发信号和所述第二触发信号生成第三处理信号;
    所述第二比较单元配置成依据所述第三处理信号和所述第二处理信号生成第四处理信号;
    所述反相单元配置成依据所述第一处理信号生成第五处理信号,以使所述开机控制模块根据所述第四处理信号和所述第五处理信号获得所述第一控制信号。
  5. 根据权利要求4所述的刷机装置,其特征在于,所述开机处理模块还包括防倒流单元,所述第二比较单元和所述反相单元均通过所述防倒流单元与所述开机控制模块电连接;
    所述第二比较单元配置成通过所述防倒流单元向所述开机控制模块提供所述第四处理信号;
    所述反相单元配置成通过所述防倒流单元向所述开机控制模块提供所述第五处理信号。
  6. 根据权利要求5所述的刷机装置,其特征在于,所述防倒流单元包括第一二极管和第二二极管, 所述反相单元的输出端与所述第一二极管的阳极电连接,所述第二比较单元的输出端与所述第二二极管的阳极电连接,所述第一二极管的阴极和所述第二二极管的阴极均与所述开机控制模块电连接。
  7. 根据权利要求4所述的刷机装置,其特征在于,所述第一触发信号包括非开机信号,所述第二触发信号包括还原信号;
    所述第一逻辑判断单元配置成依据所述还原信号和所述非开机信号生成第一逻辑判断信号;
    所述分压电路配置成对所述第一逻辑判断信号进行分压处理,生成第一分压信号;
    所述第一比较单元配置成依据所述第一分压信号和所述还原信号生成第一比较信号,以使所述还原控制模块依据所述第一比较信号进行还原动作;
    所述第二逻辑判断单元配置成依据所述还原信号和所述非开机信号生成第二逻辑判断信号;
    所述第二比较单元配置成依据所述第一分压信号和所述第二逻辑判断信号生成第二比较信号;
    所述反相单元配置成依据所述第一逻辑判断信号生成第一反相信号,以使所述开机控制模块根据所述第二比较信号和所述第一反相信号进行开机动作。
  8. 根据权利要求4所述的刷机装置,其特征在于,所述第一触发信号包括开机信号,所述第二触发信号包括非还原信号;
    所述第一逻辑判断单元配置成依据所述开机信号和所述非还原信号生成第一逻辑判断信号;
    所述分压电路配置成对所述第一逻辑判断信号进行分压处理,生成第一分压信号;
    所述第一比较单元配置成依据所述第一分压信号和所述非还原信号生成第三比较信号,以使所述还原控制模块依据所述第三比较信号不进行还原动作;
    所述第二逻辑判断单元配置成依据所述开机信号和所述非还原信号生成第二逻辑判断信号;
    所述第二比较单元配置成依据所述第一分压信号和所述第二逻辑判断信号生成第二比较信号;
    所述反相单元配置成依据所述第一逻辑判断信号生成第一反相信号,以使所述开机控制模块依据所述第二比较信号和所述第一反相信号进行开机动作。
  9. 根据权利要求4所述的刷机装置,其特征在于,所述第一逻辑判断单元包括或门,所述第二逻辑判断单元包括与门。
  10. 一种开机还原装置,其特征在于,应用于电子设备,所述电子设备包括还原触发模块,所述开机还原装置包括开机控制模块、还原控制模块和电源提供模块,所述还原触发模块、所述电源提供模块、所述还原控制模块和所述开机控制模块依次电连接;
    所述电源提供模块配置成依据所述还原触发模块提供的还原信号向所述还原控制模块提供工作电压;
    所述电源提供模块还配置成依据所述还原信号向所述还原控制模块发送还原处理信号;
    所述还原控制模块配置成在接收到所述工作电压的情况下,依据所述还原处理信号进行还原操作,并依据所述还原处理信号向所述开机控制模块发送开机处理信号;
    所述开机控制模块配置成依据所述开机处理信号进行开机操作。
  11. 根据权利要求10所述的开机还原装置,其特征在于,所述电源提供模块包括反相器和第一电源 芯片,所述还原触发模块通过所述反相器分别与所述第一电源芯片和所述还原控制模块电连接,所述第一电源芯片还与所述还原控制模块电连接;
    所述反相器配置成将所述还原信号进行反相处理得到所述还原处理信号;
    所述第一电源芯片配置成依据所述还原处理信号向所述还原控制模块提供所述工作电压。
  12. 根据权利要求11所述的开机还原装置,其特征在于,所述电源提供模块还包括延时芯片,所述反相器通过所述延时芯片分别与所述第一电源芯片和所述还原控制模块电连接;
    所述延时芯片配置成对所述还原处理信号进行延时处理得到延时后的还原处理信号;
    所述第一电源芯片配置成依据所述延时后的还原处理信号向所述还原控制模块提供所述工作电压;
    所述还原控制模块配置成在接收到所述工作电压的情况下,依据所述延时后的还原处理信号进行还原操作,并依据所述延时后的还原处理信号向所述开机控制模块发送开机处理信号。
  13. 根据权利要求12所述的开机还原装置,其特征在于,所述电源提供模块还包括第六二极管,延时芯片与所述第六二极管的阳极电连接,所述第六二极管的阴极与所述第一电源芯片电连接。
  14. 根据权利要求10所述的开机还原装置,其特征在于,所述开机还原装置还包括第一隔离模块,所述还原触发模块通过所述第一隔离模块与所述电源提供模块电连接;
    所述第一隔离模块配置成对所述还原信号进行隔离处理,得到隔离还原信号;
    所述电源提供模块配置成依据所述隔离还原信号向所述还原控制模块提供所述工作电压;
    所述电源提供模块还配置成依据所述隔离还原信号向所述还原控制模块发送所述还原处理信号。
  15. 根据权利要求14所述的开机还原装置,其特征在于,所述第一隔离模块包括第一缓冲器,所述还原触发模块通过所述第一缓冲器与所述电源提供模块电连接。
  16. 根据权利要求10所述的开机还原装置,其特征在于,所述开机控制模块还与所述电源提供模块电连接;
    所述电源提供模块配置成依据所述开机控制模块提供的第一使能信号向所述还原控制模块提供工作电压;其中,所述第一使能信号由所述开机控制模块进行开机操作时产生。
  17. 根据权利要求10所述的开机还原装置,其特征在于,所述还原控制模块包括控制器和处理器,所述控制器的输入端与所述电源提供模块电连接,所述控制器的电源端与所述电源提供模块电连接,所述控制器的第一输出端与所述处理器电连接,所述控制器的第二输出端与所述开机控制模块电连接,所述控制器的第三输出端与所述电源提供模块电连接;
    所述控制器配置成在所述电源端接收到所述工作电压的情况下,依据所述控制器的输入端接收的所述还原处理信号控制所述处理器进行还原操作;
    所述控制器还配置成依据所述还原处理信号向所述开机控制模块发送所述开机处理信号;
    所述控制器还配置成在接收到所述工作电压的情况下向所述电源提供模块发送第二使能信号;
    所述电源提供模块配置成依据所述第二使能信号持续向所述控制器提供所述工作电压。
  18. 根据权利要求10所述的开机还原装置,其特征在于,所述电子设备还包括开机触发模块,所述开机还原装置还包括第二隔离模块,所述开机触发模块通过所述第二隔离模块与所述开机控制模块电连接;
    所述第二隔离模块配置成对所述开机触发模块提供的开机信号进行隔离处理,得到隔离开机信号;
    所述开机控制模块配置成依据所述隔离开机信号进行开机操作。
  19. 一种电子设备,其特征在于,包括开机触发模块、还原触发模块、开机控制模块、还原控制模块和如权利要求1-9任意一项所述的刷机装置;或者包括还原触发模块和如权利要求10-18任意一项所述的开机还原装置。
PCT/CN2021/076936 2020-02-19 2021-02-19 一种刷机装置、开机还原装置及电子设备 WO2021164745A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21756248.7A EP4006658A4 (en) 2020-02-19 2021-02-19 FLASH DEVICE, BOOTING AND RECOVERY DEVICE AND ELECTRONIC DEVICE
US17/801,028 US20230115005A1 (en) 2020-02-19 2021-02-19 Flashing apparatus, booting and recovery appartus, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010102622.0 2020-02-19
CN202020186635.6 2020-02-19
CN202020186635.6U CN211319201U (zh) 2020-02-19 2020-02-19 开机还原装置和电子设备
CN202010102622.0A CN111290312B (zh) 2020-02-19 2020-02-19 刷机装置和电子设备

Publications (1)

Publication Number Publication Date
WO2021164745A1 true WO2021164745A1 (zh) 2021-08-26

Family

ID=77390454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076936 WO2021164745A1 (zh) 2020-02-19 2021-02-19 一种刷机装置、开机还原装置及电子设备

Country Status (3)

Country Link
US (1) US20230115005A1 (zh)
EP (1) EP4006658A4 (zh)
WO (1) WO2021164745A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237378A (zh) * 2022-02-24 2022-03-25 荣耀终端有限公司 电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163071A (zh) * 2011-01-20 2011-08-24 海能达通信股份有限公司 一种控制电路及其复位时的电源控制方法
CN107145282A (zh) * 2017-05-04 2017-09-08 北京奇虎科技有限公司 基于安卓操作***的智能设备的刷机方法和装置
US10056897B1 (en) * 2017-10-23 2018-08-21 Vanguard International Semiconductor Corporation Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same
CN209170331U (zh) * 2018-11-21 2019-07-26 深圳市远望谷信息技术股份有限公司 一种实现便携式rfid读写器的开关机复位电路
CN110780611A (zh) * 2019-10-31 2020-02-11 上海闻泰信息技术有限公司 辅助刷机设备
CN111290312A (zh) * 2020-02-19 2020-06-16 上海闻泰电子科技有限公司 刷机装置和电子设备
CN211319201U (zh) * 2020-02-19 2020-08-21 上海闻泰电子科技有限公司 开机还原装置和电子设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7702896B1 (en) * 2006-10-03 2010-04-20 American Megatrends, Inc. Interactive firmware recovery
US20100082963A1 (en) * 2008-10-01 2010-04-01 Chun Hui Li Embedded system that automatically updates its software and the method thereof
US8161322B2 (en) * 2009-12-07 2012-04-17 Intel Corporation Methods and apparatus to initiate a BIOS recovery
US8707019B2 (en) * 2011-07-02 2014-04-22 Intel Corporation Component update using management engine
EP2817715A4 (en) * 2012-02-23 2015-10-28 Hewlett Packard Development Co MICROLOGICAL PRODUCT FOR MODIFYING AN ACTIVE MICROLOGICIEL
KR20140099757A (ko) * 2013-02-04 2014-08-13 삼성전자주식회사 전자장치 및 전자장치의 펌웨어 업그레이드 방법
US9891996B2 (en) * 2014-07-15 2018-02-13 Dell Poducts, L.P. Apparatus and method for recovering an information handling system from a non-operational state
US10606605B2 (en) * 2016-09-29 2020-03-31 Verizon Patent And Licensing, Inc. Software upgrade and disaster recovery on a computing device
CN108873861A (zh) * 2018-06-11 2018-11-23 广州视源电子科技股份有限公司 恢复出厂设置的方法、装置、设备及存储介质
US11797389B2 (en) * 2020-05-19 2023-10-24 EMC IP Holding Company LLC System and method for recovering an operating system after an upgrade hang using a dual-flash device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163071A (zh) * 2011-01-20 2011-08-24 海能达通信股份有限公司 一种控制电路及其复位时的电源控制方法
CN107145282A (zh) * 2017-05-04 2017-09-08 北京奇虎科技有限公司 基于安卓操作***的智能设备的刷机方法和装置
US10056897B1 (en) * 2017-10-23 2018-08-21 Vanguard International Semiconductor Corporation Power-on control circuit with state-recovery mechanism and operating circuit utilizing the same
CN209170331U (zh) * 2018-11-21 2019-07-26 深圳市远望谷信息技术股份有限公司 一种实现便携式rfid读写器的开关机复位电路
CN110780611A (zh) * 2019-10-31 2020-02-11 上海闻泰信息技术有限公司 辅助刷机设备
CN111290312A (zh) * 2020-02-19 2020-06-16 上海闻泰电子科技有限公司 刷机装置和电子设备
CN211319201U (zh) * 2020-02-19 2020-08-21 上海闻泰电子科技有限公司 开机还原装置和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006658A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114237378A (zh) * 2022-02-24 2022-03-25 荣耀终端有限公司 电子设备

Also Published As

Publication number Publication date
EP4006658A4 (en) 2023-03-01
EP4006658A1 (en) 2022-06-01
US20230115005A1 (en) 2023-04-13

Similar Documents

Publication Publication Date Title
US9768640B2 (en) Switching the power supply source of system to one of a first battery in electronic apparatus and a second battery in extension detachable and attachable to the apparatus
US9244509B2 (en) Uninterruptible power system and power control system thereof
CN101576767A (zh) 主板供电电路
US7383452B2 (en) Electronic device and method for initiating powering-up of a processor in the electronic device
CN104270505B (zh) 一种移动终端及移动终端的开机方法
WO2021164745A1 (zh) 一种刷机装置、开机还原装置及电子设备
US7719863B2 (en) Active start judgment circuit
TWI582575B (zh) 電子裝置
US9317092B2 (en) Universal serial bus chargers and charging management methods
US9570922B2 (en) Charging method and electronic device
TWI463797B (zh) 電源開關電路
WO2012003775A1 (zh) 控制方法、控制装置及终端
TW201308063A (zh) 節能管理電路
CN111290312B (zh) 刷机装置和电子设备
CN107272864B (zh) 一种复位电路、电池及电子设备
CN211319201U (zh) 开机还原装置和电子设备
CN103257597B (zh) 控制方法和电子设备
CN111628541B (zh) 电子设备的关机供电电路及电子设备
CN111399617B (zh) 供电控制装置和电子设备
JP6838123B1 (ja) 情報処理装置、及び電源制御方法
CN107436854B (zh) 基于cpci电源对终端的主板进行供电的方法及终端
CN2901406Y (zh) 计算机电源管控装置
CN210295081U (zh) 电子设备
CN210348410U (zh) 设备线路网络状态切换装置
CN215642597U (zh) 一种同时兼容atx电源和at电源的开机电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021756248

Country of ref document: EP

Effective date: 20220223

NENP Non-entry into the national phase

Ref country code: DE