WO2021164350A1 - 一种生成光体积变化描记图法信号的方法和装置 - Google Patents

一种生成光体积变化描记图法信号的方法和装置 Download PDF

Info

Publication number
WO2021164350A1
WO2021164350A1 PCT/CN2020/129640 CN2020129640W WO2021164350A1 WO 2021164350 A1 WO2021164350 A1 WO 2021164350A1 CN 2020129640 W CN2020129640 W CN 2020129640W WO 2021164350 A1 WO2021164350 A1 WO 2021164350A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
generate
digital signal
green light
red light
Prior art date
Application number
PCT/CN2020/129640
Other languages
English (en)
French (fr)
Inventor
吴泽剑
王斌
王思翰
曹君
Original Assignee
乐普(北京)医疗器械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乐普(北京)医疗器械股份有限公司 filed Critical 乐普(北京)医疗器械股份有限公司
Priority to US17/904,692 priority Critical patent/US20220409077A1/en
Priority to EP20919740.9A priority patent/EP4108167A4/en
Publication of WO2021164350A1 publication Critical patent/WO2021164350A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/725Details of waveform analysis using specific filters therefor, e.g. Kalman or adaptive filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/023Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation

Definitions

  • the present invention relates to the technical field of electrophysiological signal processing, in particular to a method and device for generating a photoplethysmography signal.
  • ECG electrocardiogram
  • Photoplethysmography is a non-invasive detection method that uses photoelectric means to detect changes in blood volume in living tissues.
  • the blood flow per unit area in the blood vessel changes periodically, and the corresponding blood volume also changes accordingly, resulting in a periodic change trend in the PPG signal reflecting the amount of light absorbed by the blood.
  • the PPG signal can be measured by fingers, ears and other areas.
  • a series of directional analysis of heart activity can also be done through PPG signals, and the PPG mode can improve the experience comfort of the monitored object compared with the ECG mode.
  • the illumination light source only uses a single red light or infrared light
  • the most common front-end collection refers to custom mechanical equipment such as clips and ear clips.
  • the collected data needs to be analyzed by a specific sensor, etc., and such problems have increased the difficulty of obtaining PPG signal data for upper-level medical applications.
  • the purpose of the present invention is to provide a method and device for generating light volumetric change tracing signals in view of the defects of the prior art, using a mobile terminal to photograph the skin surface so that data collection is separated from the customized equipment; using video recording methods and Provide analysis and processing methods for the recorded video to generate PPG signals to make the data generation process free from dependence on specific sensor modules; provide a remote backup mechanism for the recorded video and provide data analysis and processing methods for the remote video, which improves the data sharing of upper-level applications It is helpful for upper-level applications to establish a large PPG database.
  • the first aspect of the embodiments of the present invention provides a method for generating a photoplethysmography signal, the method including:
  • the mobile terminal performs continuous collection and shooting operations on the local skin surface of the biological body.
  • the preset buffer segment time threshold is used as the segment length to perform continuous video segment buffer processing on the video data generated by shooting.
  • the buffered fragment frame image sequence includes a plurality of buffered fragment frame images
  • the image quality detection result is a standard image identifier
  • performing one-dimensional green light source signal extraction processing on all the buffer segment frame images of the buffer segment frame image sequence according to a preset green pixel threshold range to generate a first green light digital signal
  • the preset band-pass filter frequency threshold range perform signal band-pass filter preprocessing on the first red light digital signal to generate a second red light digital signal, and perform signal band-pass filter pre-processing on the first green light digital signal.
  • Process to generate a second green light digital signal perform signal maximum frequency difference judgment processing on the second red light digital signal and the second green light digital signal to generate a first judgment result; when the first judgment result is a standard signal
  • the second red light digital signal and the second green light digital signal are subjected to photoplethysmography PPG signal generation processing to generate the first PPG signal of the buffered segment video data.
  • the method further includes:
  • the mobile terminal performs graphical conversion processing on the first PPG signal to generate a current segment PPG waveform image, and performs local real-time waveform display processing on the current segment PPG waveform image through a display interface.
  • the method further includes:
  • the mobile terminal After the continuous capture and shooting operation ends, the mobile terminal performs video splicing processing of all the buffered video data in the buffer in chronological order to generate complete skin surface video data, and sends the complete skin surface video data to the remote Server sent;
  • the server performs frame image extraction processing on the complete skin surface video data to generate a complete skin surface video frame image sequence;
  • the complete skin surface video frame image sequence includes a plurality of complete skin surface video frame images;
  • the preset server band-pass filter frequency threshold range perform signal band-pass filter preprocessing on the red light digital signal of the first server to generate the red light digital signal of the second server, and signal the green light digital signal of the first server
  • the band-pass filtering preprocessing generates the green light digital signal of the second server; performs the signal maximum frequency difference judgment processing on the red light digital signal of the second server and the green light digital signal of the second server to generate the judgment result of the first server;
  • the judgment result of the first server is the standard signal identifier
  • the signal-to-noise ratio judgment processing is performed on the red light digital signal of the second server and the green light digital signal of the second server to generate the judgment result of the second server;
  • PPG signal generation processing is performed on the red light digital signal of the second server and the green light digital signal of the second server to generate the second PPG signal of the complete skin surface video data ;
  • the server performs PPG data file conversion processing on the second PPG signal to generate a complete skin surface PPG data file, and stores the complete skin surface video data and the complete skin surface PPG data file in a medical database.
  • the frame image extraction process is performed on the buffer segment video data to generate a buffer segment frame image sequence, and all the buffer segment frame images of the buffer segment frame image sequence are processed according to a preset red light pixel threshold range.
  • Perform image quality inspection to generate image quality inspection results including:
  • For the buffered video data extract data segments in sequence according to the preset length of the buffered segment frame data, and generate multiple buffered segment frame images according to the extracted multiple data segments, and then combine all the buffered segment frame images Sorting in order to generate the buffered segment frame image sequence;
  • the buffered fragment frame image extraction process is performed on the buffered fragment frame image sequence to generate the current buffered fragment frame image; in the current buffered fragment frame image, the total number of pixels is counted to generate the total number of full pixels Calculate the total number of pixels with pixel values within the red light pixel threshold range to generate the total number of red pixels; generate the current frame red proportion parameter according to the ratio of the total number of red pixels to the total number of all pixels; Perform image quality detection on the red ratio parameter of the current frame according to the preset red ratio lower limit threshold, and set the image quality detection result to no when the current frame red ratio parameter is less than the red ratio lower limit threshold.
  • the image identifies and continues to perform the buffer-fragment frame image extraction processing on the buffered-fragment frame image sequence.
  • one-dimensional red light source signal extraction processing is performed on all the buffered fragment frame images of the buffered fragment frame image sequence according to the red light pixel threshold value range Generate the first red light digital signal, and perform one-dimensional green light source signal extraction processing on all the buffer segment frame images of the buffer segment frame image sequence according to the preset green pixel threshold range to generate the first green light digital signal, specifically include:
  • Step 51 When the image quality detection result is the up-to-standard image identifier, initialize the first red light digital signal to be empty, initialize the first green light digital signal to be empty, and initialize the value of the first index to 1. , Initialize the first total number to be the total number of buffered fragment frame images of the buffered fragment frame image sequence;
  • Step 52 Set the first index frame image as the buffer segment frame image corresponding to the first index in the sequence of buffer segment frame images
  • Step 53 Count all the pixels that meet the red light pixel threshold range in the first index frame image to generate a red pixel point set, and calculate the sum of the pixels included in the red pixel point set to generate a total number of red points.
  • the pixel values of all the pixels in the red pixel point set are summed to generate a sum of red pixel values, and the first index frame red light channel data is generated according to the quotient of the sum of the red pixel values divided by the total number of red points;
  • Step 54 Count all the pixels that meet the threshold range of the green light pixel in the first index frame image to generate a green pixel point set, and calculate the sum of the pixel points included in the green pixel point set to generate a total number of green points.
  • the pixel values of all the pixels in the green pixel point set are summed to generate a green pixel value sum, and the first index frame green light channel data is generated according to the quotient of the green pixel value sum divided by the total number of green points;
  • Step 55 Add 1 to the first index
  • Step 56 Determine whether the first index is greater than the first total, if the first index is less than or equal to the first total, then go to step 52, if the first index is greater than the first total, then Go to step 57;
  • Step 57 Use the first red light digital signal as a one-dimensional red light source signal extraction processing result, and transmit the first green light digital signal as a one-dimensional green light source signal extraction processing result to an upper processing flow.
  • the signal band-pass filtering preprocessing is performed on the first red light digital signal to generate a second red light digital signal according to a preset band-pass filtering frequency threshold range, and the first green light digital signal is processed
  • the signal band-pass filtering preprocessing generates the second green light digital signal, which specifically includes:
  • the band-pass filter frequency threshold range in the first red light digital signal, the low-frequency noise signal points whose signal frequency is lower than the band-pass filter frequency threshold range and the signal frequency is higher than the band-pass filter frequency Performing digital signal filtering processing on the high-frequency noise signal points in the threshold range from the first red light digital signal to generate the second red light digital signal;
  • the band-pass filter frequency threshold range in the first green light digital signal, the low-frequency noise signal points whose signal frequency is lower than the band-pass filter frequency threshold range and the signal frequency is higher than the band-pass filter frequency
  • the high-frequency noise signal points in the threshold range are subjected to digital signal filtering processing from the first green light digital signal to generate the second green light digital signal.
  • the signal maximum frequency difference judgment processing is performed on the second red light digital signal and the second green light digital signal to generate a first judgment result; when the first judgment result is an up-to-standard signal identification The second red light digital signal and the second green light digital signal are subjected to signal-to-noise ratio judgment processing to generate a second judgment result; when the second judgment result is the compliance signal identifier, the second red light The digital signal and the second green light digital signal are processed to generate the first PPG signal of the buffered segment video data by photovolography PPG signal generation processing, which specifically includes:
  • Step 71 Use discrete Fourier transform to perform digital signal time domain frequency domain conversion on the second red light digital signal to generate a red light frequency domain signal, and use discrete Fourier transform to perform digital digital signal on the second green light digital signal.
  • Signal time domain frequency domain conversion generates a green light frequency domain signal; extracts the highest energy frequency from the red light frequency domain signal to generate the maximum red light frequency, and extracts the highest energy frequency from the green light frequency domain signal to generate the maximum green light frequency
  • the result is the up-to-standard signal identifier, and when the red-green maximum frequency difference exceeds the maximum frequency difference threshold range, the first judgment result is set as the non-standard signal identifier;
  • Step 72 When the first judgment result is the mark of the up-to-standard signal, according to the preset band-stop filter frequency threshold range, the signal frequency meets the band-stop filter frequency threshold range through multi-order Butterworth band-stop filtering
  • the effective signal point is removed from the second red light digital signal to generate a red light noise signal, and the effective signal point whose signal frequency meets the frequency threshold range of the band stop filter is removed from the first 2.
  • the green light noise signal is removed and generated from the green light digital signal;
  • Step 73 Calculate the signal energy of the second red light digital signal to generate red light signal energy, calculate the signal energy of the red light noise signal to generate red light noise energy, and subtract the red light from the red light signal energy The difference in noise energy generates effective red light signal energy, and generates a red light signal-to-noise ratio according to the ratio of the effective red light signal energy to the red light noise energy;
  • Step 74 Calculate the signal energy of the second green light digital signal to generate green light signal energy, calculate the signal energy of the green light noise signal to generate green light noise energy, and subtract the green light from the green light signal energy The difference in noise energy generates effective green light signal energy, and generates a green light signal-to-noise ratio according to the ratio of the effective green light signal energy to the green light noise energy;
  • Step 75 When the red light signal-to-noise ratio and the green light signal-to-noise ratio are both less than a preset signal-to-noise ratio threshold, the second judgment result is set as the substandard signal identifier, and when the red light signal-to-noise ratio If any one of the ratio and the green light signal-to-noise ratio is greater than or equal to the signal-to-noise ratio threshold, the second judgment result is set as the standard-compliant signal identifier;
  • Step 76 When the second judgment result is the compliance signal identifier, the red light digital signal of the first PPG signal is set to the second red light digital signal, and the green light of the first PPG signal is set The digital signal is the second green light digital signal; the first PPG signal includes the red light digital signal and the green light digital signal.
  • the method further includes:
  • the continuous acquisition and shooting operation is stopped and the skin surface separation error message is generated, and then the skin surface separation error message is transmitted to the mobile terminal.
  • the terminal performs warning information display processing on the skin surface separation error information through the display interface;
  • the mobile terminal When the first judgment result is the non-standard signal identification, stop the continuous acquisition and shooting operation and the PPG signal generation processing flow and generate signal quality error information, and then transmit the signal quality error information to the mobile terminal , The mobile terminal performs warning information display processing on the signal quality error information through the display interface;
  • the second judgment result is the non-standard signal indicator
  • stop the continuous acquisition and shooting operation and the PPG signal generation processing flow and generate signal quality error information, and then transmit the signal quality error information to the mobile terminal .
  • the mobile terminal performs warning information display processing on the signal quality error information through the display interface.
  • the first aspect of the embodiments of the present invention provides a method for generating light volumetric change tracing mapping signals.
  • Use the customized sensor analysis module to analyze, only need to extract the video pixel value, and then further use the conventional signal processing methods such as band-pass filtering, frequency difference comparison and band-stop filtering to perform noise reduction and feature extraction on the extracted signal, and finally generate an effective PPG signal; provides a remote backup mechanism for the captured video, as well as remote data analysis to generate PPG signal function, which improves the data sharing degree of upper-layer applications and is conducive to the establishment of PPG large databases by upper-layer applications.
  • a second aspect of the embodiments of the present invention provides a device, the device including a memory and a processor, the memory is used to store a program, and the processor is used to execute the first aspect and the methods in each implementation manner of the first aspect.
  • a third aspect of the embodiments of the present invention provides a computer program product containing instructions, which when the computer program product runs on a computer, causes the computer to execute the first aspect and the methods in the implementation manners of the first aspect.
  • a fourth aspect of the embodiments of the present invention provides a computer-readable storage medium on which a computer program is stored.
  • the computer program implements the first aspect and the methods in the first aspect when executed by a processor. .
  • FIG. 1 is a schematic diagram of a method for generating a photoplethysmography signal according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a method for generating a photoplethysmography signal according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of the device structure of an apparatus for generating a photoplethysmography signal according to the third embodiment of the present invention.
  • the embodiment of the present invention does not set a specific light source requirement, does not use a specific light source to illuminate the skin, and uses a specific sensor to collect light intensity.
  • the embodiment of the present invention uses natural light (even if a strong light source such as a flash is only used to increase the light intensity rather than setting the light source properties), and a conventional photographing device (such as a common camera device such as a mobile terminal camera) is used for the tester
  • a conventional photographing device such as a common camera device such as a mobile terminal camera
  • the specified skin surface finger, earlobe, neck, forehead, etc.
  • frame image extraction is performed on the obtained video data to generate a sequence of frame images.
  • the embodiment of the present invention uses these continuous frame images as another medium to capture the changing trend of red and green light.
  • the specific implementation method is to perform weighted statistics on the red and green pixel values in the frame image to generate the original red and light signal points corresponding to the time point of the frame image, and perform the corresponding filtering and noise reduction processing on the original red and green light signals to generate the PPG signal The value of the red and green data channels.
  • the embodiment of the present invention provides a processing method for the local shooting device to obtain the PPG signal through video shooting, and adopts the local display device to provide a synchronous display function; at the same time, the embodiment of the present invention also provides a remote server's PPG signal analysis function for uploaded video data , And transfer the analyzed PPG signal data to the medical database to realize the function of data backup and sharing.
  • Fig. 1 is a schematic diagram of a method for generating a photoplethysmography signal according to Embodiment 1 of the present invention. The method mainly includes the following steps:
  • Step 1 The mobile terminal performs continuous collection and shooting operations on the local skin surface of the organism.
  • the preset buffer segment time threshold is used as the segment length to perform continuous video segment buffer processing on the video data generated by the shooting. Multiple buffered fragments of video data.
  • a mobile terminal with a camera and a video shooting function can serve as the video shooting device of the embodiment of the present invention; before shooting, the flash of the mobile terminal needs to be turned on and kept on. Meet the needs of stable illumination light source;
  • Step 2 Perform frame image extraction processing on the video data of the buffer segment to generate a buffer segment frame image sequence, and perform image quality detection on all the buffer segment frame images of the buffer segment frame image sequence according to the preset red light pixel threshold range to generate image quality detection result;
  • the buffered fragment frame image sequence includes a plurality of buffered fragment frame images
  • Step 21 for the buffered video data, extract the data segments in sequence according to the preset length of the buffered segment frame data, and generate multiple buffered frame images according to the extracted multiple data segments, and then all the buffered segment frame images Sorting in order to generate a sequence of buffered frame images;
  • Step 22 in chronological order, sequentially perform the buffer fragment frame image extraction processing on the buffered fragment frame image sequence to generate the current buffered fragment frame image; in the current buffered fragment frame image, the total number of pixels is counted to generate the total number of all pixels, Count the total number of pixels whose pixel values are within the threshold range of red light pixels to generate the total number of red pixels; generate the current frame red proportion parameter according to the ratio of the total number of red pixels to the total number of all pixels; according to the preset red proportion The lower threshold value detects the image quality of the red ratio parameter of the current frame.
  • the image quality detection result is set as the substandard image identification and the buffering of the buffered fragment frame image sequence is stopped.
  • Image extraction processing when the red ratio parameter of the current frame is greater than or equal to the lower limit of the red ratio threshold, the image quality detection result is set as the standard image identifier and the buffer segment frame image sequence is continued to perform the buffer segment frame image extraction processing on the buffer segment frame image sequence.
  • steps 21-22 are used to sequentially scan the sub-frame images in the video data to check whether the proportion of red pixels in all sub-frame images meets the standard; the reason for this operation is: If it is completely covered on the camera lens, most of the sub-frame images in the video should be red pixels. On the contrary, if the skin surface is not compressed or the camera position has been moved, the red pixels may decrease; when the current When the sub-frame image being scanned does not meet the standard, it will directly exit the current full scan process and set the image quality detection result as the non-compliant image identification.
  • the subsequent upper application processing for the non-compliant image identification can be: stop continuous capture and shooting operations And generate the skin surface detachment error message, and then transmit the skin surface detachment error message to the mobile terminal, and the mobile terminal performs warning information display processing on the skin surface detachment error message through the display interface.
  • Step 3 When the image quality detection result is the standard image identification, perform one-dimensional red light source signal extraction processing on all the buffered fragment frame images of the buffered fragment frame image sequence according to the red light pixel threshold range to generate the first red light digital signal.
  • the set green light pixel threshold range performs one-dimensional green light source signal extraction processing on all buffered fragment frame images of the buffered fragment frame image sequence to generate a first green light digital signal;
  • Step 31 When the image quality detection result is a standard image identification, initialize the first red light digital signal to be empty, initialize the first green light digital signal to be empty, initialize the value of the first index to 1, and initialize the first total Is the total number of buffered fragment frame images of the buffered fragment frame image sequence;
  • Step 32 Set the first index frame image as a buffer segment frame image corresponding to the first index in the sequence of buffer segment frame images
  • Step 33 In the first index frame image, count all the pixels that meet the red pixel threshold range to generate a red pixel point set, count the sum of the pixels included in the red pixel point set to generate a total number of red points, and for all the red pixel point sets The pixel values of the pixel points are calculated to generate the sum of the red pixel values, and the first index frame red light channel data is generated according to the quotient of the sum of the red pixel values divided by the total number of red points; the first index frame red light channel data is used as the signal point data Add a signal point to the first red light digital signal;
  • the red in the video will also produce a difference in color depth, so the total number of pixels in the pixel threshold range) is used to generate the total number of red points, and the pixel values of all the pixels that meet the red light pixel threshold range in the first frame of image are extracted and the sum is calculated.
  • the sum of red pixel values, then the red light channel data of the first index frame is equal to the sum of red pixel values/total number of red points;
  • Step 34 Count all the pixels that meet the threshold range of the green pixel in the first index frame image to generate a green pixel set, and calculate the sum of the pixels included in the green pixel set to generate the total number of green pixels.
  • the pixel values of the pixels are summed and calculated to generate the total green pixel value, and the first index frame green channel data is generated according to the quotient of the total green pixel value divided by the total number of green points; the first index frame green channel data is used as the signal point data Add a signal point to the first green light digital signal;
  • Step 35 Add 1 to the first index
  • Step 36 Determine whether the first index is greater than the first total, if the first index is less than or equal to the first total, go to step 32, if the first index is greater than the first total, go to step 37;
  • Step 37 Use the first red light digital signal as a one-dimensional red light source signal extraction processing result, and use the first green light digital signal as a one-dimensional green light source signal extraction processing result to transmit to the upper processing flow.
  • step 3 is to perform two types of light source information extraction operations on all the buffered fragment frame images in the buffered fragment frame image sequence converted from the buffered fragment video data; red light and green light; and the way of extracting light signals, It is to obtain a pixel average value by calculating the weighted average of specific pixels in the frame image, and use this to represent the color channel data of the light source in the frame image; in chronological order, do the same processing for each frame in the video , You can get two segments of one-dimensional digital signals: the first red digital signal and the first green digital signal.
  • Step 4 Perform signal band-pass filter preprocessing on the first red light digital signal according to the preset band-pass filter frequency threshold range to generate a second red light digital signal, and perform signal band-pass filter preprocessing on the first green light digital signal Generate the second green light digital signal; perform the signal maximum frequency difference judgment processing on the second red light digital signal and the second green light digital signal to generate the first judgment result; when the first judgment result is the standard signal identification, the second red light The digital signal and the second green light digital signal are subjected to signal-to-noise ratio judgment processing to generate a second judgment result; when the second judgment result is a standard signal identification, the second red light digital signal and the second green light digital signal are subjected to optical volume changes
  • the tracing method PPG signal generation process generates the first PPG signal of the buffered segment video data.
  • the first red light digital signal is preprocessed by signal bandpass filtering to generate the second red light digital signal
  • the first green light digital signal is preprocessed by signal bandpass filtering to generate The second green light digital signal
  • Step 41 according to the band-pass filter frequency threshold range, in the first red light digital signal, the low-frequency noise signal points whose signal frequency is lower than the band-pass filter frequency threshold range and the signal frequency is higher than the band-pass filter frequency threshold range Perform digital signal filtering processing on the high-frequency noise signal points from the first red light digital signal to generate a second red light digital signal;
  • Step 42 According to the band-pass filter frequency threshold range, in the first green light digital signal, the low-frequency noise signal points whose signal frequency is lower than the band-pass filter frequency threshold range and the high-frequency noise signal points whose signal frequency is higher than the band-pass filter frequency threshold range are The noise signal point performs digital signal filtering processing from the first green light digital signal to generate a second green light digital signal;
  • steps 41-42 are to perform signal preprocessing on the digital signals of the two light sources extracted from the video data, that is, noise reduction processing;
  • the noise reduction method used in the first embodiment is band-pass filtering, namely Preset a band-pass filter frequency threshold range, based on the principle of band-pass filtering to suppress signals, interference and noise below or above the frequency band; generally the band-pass filter frequency threshold range here is common 0.5 Hz to 10 Hertz; when performing band-pass filtering on some mobile terminals, a finite-length unit impulse response ((Finite Impulse Response, FIR) filter module is used;
  • FIR Finite Impulse Response
  • the second red light digital signal and the second green light digital signal are subjected to signal maximum frequency difference judgment processing to generate the first judgment result; when the first judgment result is the standard signal identification, the second red light digital signal and the second green light digital signal The optical digital signal is processed by the signal-to-noise ratio judgment process to generate the second judgment result; when the second judgment result is the standard signal identification, the second red light digital signal and the second green light digital signal are subjected to photoplethysmography PPG signal generation Processing to generate the first PPG signal,
  • step 43 using discrete Fourier transform for the second red light digital signal to perform digital signal time-domain frequency domain conversion to generate a red light frequency domain signal, and using discrete Fourier transform for the second green light digital signal to generate a digital signal
  • Time domain frequency domain conversion generates green light frequency domain signal; extracts the highest energy frequency from the red light frequency domain signal to generate the maximum red light frequency, and extracts the highest energy frequency from the green light frequency domain signal to generate the maximum green light frequency; calculates the maximum red light frequency
  • the frequency difference between the frequency and the maximum frequency of the green light generates the maximum red and green frequency difference; when the maximum red and green frequency difference does not exceed the preset maximum frequency difference threshold range, the first judgment result is set as the standard signal indicator.
  • the first judgment result is set as the non-standard signal identifier
  • the frequency domain signals of the second red digital signal and the second green digital signal are first obtained through the discrete Fourier transform, and the frequency with the highest energy is obtained from the frequency domain signal (generally this frequency usually corresponds to the heart rate), the basic principle here It is to check whether the frequencies with the highest energy of the two digital signals are the same.
  • the processing of the upper-level application for the non-compliant signal identification can be: the upper-level application stops the continuous acquisition and shooting operation and the PPG signal generation process and generates the signal quality error information, and then transmits the signal quality error information to the mobile terminal, and the mobile terminal checks the signal through the display interface. Signal quality error information for warning information display processing;
  • Step 44 When the first judgment result is the up-to-standard signal identification, according to the preset band-stop filter frequency threshold range, through multi-order Butterworth band-stop filtering, the effective signal point whose signal frequency meets the band-stop filter frequency threshold range is from the first The second red light digital signal is removed to generate a red light noise signal, and the effective signal points whose signal frequency meets the frequency threshold range of the band stop filter are removed from the second green light digital signal to generate a green light noise signal through multi-order Butterworth band rejection filtering ;
  • Step 45 Calculate the signal energy of the second red light digital signal to generate red light signal energy, calculate the signal energy of the red light noise signal to generate red light noise energy, and generate effective red light according to the difference of the red light signal energy minus the red light noise energy Signal energy, based on the ratio of the effective red light signal energy to the red light noise energy to generate the red light signal-to-noise ratio;
  • Step 46 Calculate the signal energy of the second green light digital signal to generate green light signal energy, calculate the signal energy of the green light noise signal to generate green light noise energy, and generate effective green light according to the difference of the green light signal energy minus the green light noise energy Signal energy, based on the ratio of the effective green light signal energy to the green light noise energy to generate the green light signal-to-noise ratio;
  • Step 47 When the red light SNR and the green light SNR are both less than the preset signal-to-noise ratio threshold, the second judgment result is set as a substandard signal indicator, and when any one of the red light S/N ratio and the green light S/N ratio is greater than or If it is equal to the signal-to-noise ratio threshold value, the second judgment result is set as the standard signal identification;
  • steps 44-47 are to perform secondary filtering processing on the red and green light.
  • This filtering is a band-stop filtering method, that is, to suppress the signals within the band-stop filter frequency threshold range.
  • the specific use is multi-stage Butterworth band-stop filtering method (for example, 4th-order Butterworth band-stop filter, 1st-order Butterworth band-stop filter); through band-stop filtering, the noise and interference signal are retained to generate noise signal, and then the effective signal and The noise signal is calculated to generate the signal-to-noise ratio; finally, the signal-to-noise ratio is used to identify whether the red and green digital signals are up to standard or not; the reference parameter for the up-to-standard determination is the second judgment result; the subsequent upper application applies the processing for the non-standard signal identification It can be: the upper application stops the continuous acquisition and shooting operation and the PPG signal generation processing flow and generates the signal quality error information, and then transmits the signal quality error information to the mobile terminal, and the mobile terminal displays the warning information of the signal quality error
  • Step 48 When the second judgment result is the up-to-standard signal identification, the red light digital signal of the first PPG signal is set as the second red light digital signal, and the green light digital signal of the first PPG signal is set as the second green light digital signal;
  • the first PPG signal includes a red light digital signal and a green light digital signal.
  • Step 5 The mobile terminal performs graphical conversion processing on the first PPG signal to generate the current segment PPG waveform image, and performs local real-time waveform display processing on the current segment PPG waveform image through the display interface.
  • the time to cache a segment is not too long, so the analysis of the cache segment will be faster, and the display of the first PPG signal generated by the analysis of the cache segment will also be faster.
  • the delay time during this period is basically negligible, that is, the user can simultaneously observe the PPG waveform and the heart pressure change state mapped by the PPG state change through his mobile terminal while shooting.
  • the medical data analysis software already installed on the mobile terminal can also use the data to start local related data analysis and calculations.
  • Fig. 2 is a schematic diagram of a method for generating a photoplethysmography signal according to the second embodiment of the present invention. The method mainly includes the following steps:
  • Step 101 After the continuous capture and shooting operation ends, the mobile terminal performs video splicing processing on all buffered video data in a chronological order to generate complete skin surface video data, and sends the complete skin surface video data to a remote server.
  • the mobile terminal locally generates 10 buffered video data, which are buffered video data 1 to 10, then the complete skin surface video data is buffered video data 1+cached video data 2+ hence+cached clip Video data 10.
  • Step 102 The server performs frame image extraction processing on the complete skin surface video data to generate a complete skin surface video frame image sequence;
  • the complete skin surface video frame image sequence includes multiple complete skin surface video frame images.
  • the complete skin surface video data includes 10 buffer segment video data, and each segment includes 24 frames, then the complete skin surface video
  • the server extracts and reproduces the PPG signal of the complete collection data uploaded by the mobile terminal.
  • the video data uploaded by the server by default has passed the proportion of the local pigment points.
  • the image quality is up to the standard, so the comparison operation of the proportion of pigment points is not performed.
  • Step 103 Perform one-dimensional red light source signal extraction processing on all complete skin surface video frame images of the complete skin surface video frame image sequence according to the preset server red light pixel threshold range to generate the first server red light digital signal; Server green light pixel threshold value range, one-dimensional green light source signal extraction processing is performed on all complete skin surface video frame images of the complete skin surface video frame image sequence to generate the first server's green light digital signal;
  • Step 1031 initialize the red light digital signal of the first server to be empty, initialize the green light digital signal of the first server to be empty, initialize the value of the second index to 1, initialize the second total to the complete skin surface video frame image sequence The total number of full skin video frames;
  • Step 1032 Extract the complete skin surface video frame image corresponding to the second index from the complete skin surface video frame image sequence to generate a second index frame image;
  • Step 1033 Count all pixels that meet the server's red light pixel threshold range in the second index frame image, and perform a pixel value weighted average calculation to generate a second index frame red light pixel weighted average;
  • the weighted average calculation here is usually the conventional average method, for example, extracting all the pixels in the first frame of image that meet the server red light pixel threshold range (because different positions are illuminated by the light source due to the internal structure or the degree of reflection and transmission of blood vessels are different , It will cause the difference in the light transmission rate, and further will cause the red in the captured video to have a difference in color depth, so the total number of pixels in the pixel threshold range) is used to generate the total number of red pixels, and all the red pixels in the first frame of image are extracted.
  • the pixel values of the pixels in the red pixel threshold range of the server are summed to generate the sum of red pixel values, then the weighted average of red pixels in the second index frame is equal to the sum of red pixel values/total number of red pixels;
  • the server red light pixel threshold range and server green light pixel threshold range used on the server side can be compared to the range on the mobile terminal side.
  • the accuracy is greater, and it can also be consistent.
  • the specific configuration is determined by the application party in the actual application;
  • Step 1034 Count all the pixels that meet the server's green pixel threshold range in the second index frame image, and perform a pixel value weighted average calculation to generate a second index frame green pixel weighted average;
  • the weighted average calculation here is common in the conventional average method, for example, extract all the pixels in the first frame of image that meet the server's green light pixel threshold range (because different positions are illuminated by the light source due to the internal structure or the degree of reflection and transmission of blood vessels are different , It will cause the difference in the light transmission rate, and further cause the difference in the color depth of the green in the captured video, so the total number of pixels in the pixel threshold range) is used to generate the total number of green pixels, and all the pixels in the first frame of image are extracted.
  • the pixel values of the pixels in the green pixel threshold range of the server are summed to generate the sum of green pixel values, then the weighted average of green pixels in the second index frame is equal to the sum of green pixel values/total number of green pixels;
  • Step 1035 Add the weighted average value of the red light pixels of the second index frame to the red light digital signal of the first server for signal point addition; add the weighted average value of the green light pixels of the second index frame to the green light digital signal of the first server for signal points Add operation
  • Step 1036 add 1 to the value of the second index
  • Step 1037 Determine whether the second index is greater than the second total. If the second index is less than or equal to the second total, go to step 1032, and if the second index is greater than the second total, go to step 104.
  • steps 1031-1037 all the complete skin surface video frame images in the complete skin surface video frame image sequence converted from the complete skin surface video data are subjected to two kinds of light source information extraction operations; red light and green light;
  • the signal extraction method is to obtain a pixel average value by calculating the weighted average of specific pixels in the frame image, and use this to represent the pixel value of the light source in the frame image; in chronological order, for each frame in the video
  • two pieces of one-dimensional digital signals can be obtained: the first server's red digital signal and the first server's green digital signal.
  • Step 104 Perform signal band-pass filtering preprocessing on the red light digital signal of the first server to generate the red light digital signal of the second server according to the preset server bandpass filtering frequency threshold range, and perform signal banding on the green light digital signal of the first server.
  • Pass filtering preprocessing generates the green light digital signal of the second server; performs the signal maximum frequency difference judgment processing on the red light digital signal of the second server and the green light digital signal of the second server to generate the judgment result of the first server; when the judgment result of the first server is The signal-to-noise ratio judgment process is performed on the red light digital signal of the second server and the green light digital signal of the second server to generate the judgment result of the second server; PPG signal generation processing is performed on the optical digital signal and the green light digital signal of the second server to generate the second PPG signal of the complete skin video;
  • the preset server band-pass filter frequency threshold range perform signal band-pass filter preprocessing on the red light digital signal of the first server to generate the red light digital signal of the second server, and perform signal band pass on the green light digital signal of the first server Filter preprocessing to generate a green light digital signal of the second server;
  • Step 1041 according to the server bandpass filter frequency threshold range, in the first server red light digital signal, the signal frequency is lower than the low-frequency noise signal point of the server bandpass filter frequency threshold range and the signal frequency is higher than the server bandpass Filtering high-frequency noise signal points in the frequency threshold range from the first server's red light digital signal to perform digital signal filtering processing to generate the second server's red light digital signal;
  • Step 1042 According to the server's band-pass filter frequency threshold range, in the first server's green light digital signal, the low-frequency noise signal points whose signal frequency is lower than the server's band-pass filter frequency threshold range and the signal frequency is higher than the server's band-pass filter frequency threshold The high-frequency noise signal points in the range are subjected to digital signal filtering processing from the green light digital signal of the first server to generate the green light digital signal of the second server;
  • steps 1041-1042 are to perform signal signal preprocessing on the digital signals of the two light sources extracted from the skin surface video data, that is, noise reduction processing;
  • the noise reduction method used in the second embodiment is a band-pass filtering method. That is, preset a band-pass filter frequency threshold range, and perform signal suppression processing on signals, interference and noise below or above the frequency band based on the principle of band-pass filtering;
  • the server bandpass filter frequency threshold range used on the server side can be more accurate than the range on the mobile terminal side.
  • the specific configuration is determined by the application party in the actual application
  • the signal maximum frequency difference judgment process is performed on the second server red light digital signal and the second server green light digital signal to generate the judgment result of the first server; when the judgment result of the first server is the standard signal identification, the red light digital signal of the second server The signal and the green light digital signal of the second server are subjected to signal-to-noise ratio judgment processing to generate the judgment result of the second server; when the judgment result of the second server is the standard signal identification, the red light digital signal of the second server and the green light digital signal of the second server are checked Performing PPG signal generation processing to generate a second PPG signal;
  • Step 1043 using discrete Fourier transform for the digital signal time domain frequency domain conversion on the second server red light digital signal to generate the server red light frequency domain signal, and using discrete Fourier transform for the second server green light digital signal Perform digital signal time domain frequency domain conversion to generate server green light frequency domain signal; extract the highest energy frequency from the server red light frequency domain signal to generate the server red light maximum frequency, and extract the highest energy frequency from the server green light frequency domain signal to generate the server green Maximum frequency of light; calculate the frequency difference between the maximum frequency of server red light and the maximum frequency of server green light to generate the maximum frequency difference of server red and green; when the maximum frequency difference of server red and green does not exceed the preset server maximum frequency difference threshold, set the first server The judgment result is an up-to-standard signal identification, and when the server's maximum red-green frequency difference exceeds the server's maximum frequency difference threshold range, the first server's judgment result is set as a non-compliant signal identification;
  • the frequency domain signal of the red digital signal of the second server and the green digital signal of the second server through the discrete Fourier transform, and obtain the highest energy frequency through the frequency domain signal (generally this frequency usually corresponds to the heart rate), here
  • the basic principle is to check whether the highest energy frequencies of the two digital signals are the same. If the error is within the allowable range, continue the analysis. If the error is large, the signal quality is considered bad, and the server will display the interface or customize the wrong parameters. Prompt signal quality issues to users and upper-level applications;
  • Step 1044 When the first server determines that the result is the up-to-standard signal identification, according to the preset server band-stop filter frequency threshold range, in the second server's red light digital signal, the signal frequency is satisfied by the multi-order Butterworth band-stop filter
  • the effective signal points of the server band stop filter frequency threshold range are removed from the second server red light digital signal to generate the server red light noise signal, and the signal frequency meets the server band stop filter frequency threshold range through multi-order Butterworth band stop filtering.
  • the signal point is removed from the green light digital signal of the second server to generate a green light noise signal of the server;
  • Step 1045 Calculate the signal energy of the red light digital signal of the second server to generate the server red light signal energy, calculate the signal energy of the server red light noise signal to generate the server red light noise energy, and subtract the server red light noise energy from the server red light signal energy The difference of, generates the server's effective red light signal energy, and generates the server's red light signal-to-noise ratio based on the ratio of the server's effective red light signal energy to the server's red light noise energy;
  • Step 1046 Calculate the signal energy of the green light digital signal of the second server to generate the server green light signal energy, calculate the signal energy of the server green light noise signal to generate the server green light noise energy, and subtract the server green light noise energy from the server green light signal energy The difference between, generates the server's effective green light signal energy, and generates the server's green light signal-to-noise ratio based on the ratio of the server's effective green light signal energy to the server's green light noise energy;
  • Step 1047 If the server red light SNR and the server green light SNR are both smaller than the preset server SNR threshold, then the second server judgment result is set as a non-compliant signal flag. If the server red light SNR is equal to the server green light SNR If any one of the optical signal-to-noise ratios is greater than or equal to the server's signal-to-noise ratio threshold, then the judgment result of the second server is set as an up-to-standard signal identifier;
  • steps 1043-1047 are to perform secondary filtering processing on the red and green light.
  • This filtering is a band-stop filtering method, that is, to suppress the signals within the band-stop filter frequency threshold range.
  • the specific use is multi-stage Butterworth band-stop filtering method (for example, 4th-order Butterworth band-stop filter, 1st-order Butterworth band-stop filter); through band-stop filtering, the noise and interference signal are retained to generate noise signal, and then the effective signal and The noise signal is calculated to generate the signal-to-noise ratio; finally, the signal-to-noise ratio is used to identify whether the red and green digital signals are up to standard; if the signal quality is not up to standard, the server will display the interface or customize the wrong parameters to the user and the host Application prompts signal quality problems;
  • the multi-order Butterworth band-stop filtering method used on the server side can be larger than the order on the mobile terminal side ( For example, the mobile terminal adopts level 1 and the server side adopts level 4 or higher), which can also be consistent, and the specific configuration is determined by the application party in the actual application;
  • Step 1048 When the judgment result of the second server is the compliance signal identification, the red digital signal of the second PPG signal is set as the red digital signal of the second server, and the green digital signal of the second PPG signal is set as the green light of the second server. Digital signal;
  • the second PPG signal includes: a red light digital signal and a green light digital signal.
  • Step 105 The server performs PPG data file conversion processing on the second PPG signal to generate a complete skin surface PPG data file, and stores the complete skin surface video data and the complete skin surface PPG data file in the medical database.
  • the remote backup function of the original video data collected by the local mobile device by the server segment is realized, and the corresponding PPG signal is generated after further analysis of the video data by the server and stored in the medical database.
  • the software, hardware, system, and network connected to the database can all reuse the data for a variety of application development.
  • Fig. 3 is a schematic diagram of the device structure of a device for generating a photoplethysmography signal according to the third embodiment of the present invention.
  • the device includes a processor and a memory.
  • the memory can be connected to the processor through a bus.
  • the memory may be a non-volatile memory, such as a hard disk drive and a flash memory, and a software program and a device driver program are stored in the memory.
  • the software program can execute various functions of the foregoing method provided by the embodiments of the present invention; the device driver may be a network and interface driver.
  • the processor is used to execute a software program, and when the software program is executed, the method provided in the embodiment of the present invention can be implemented.
  • the embodiment of the present invention also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the method provided in the embodiment of the present invention can be implemented.
  • the embodiment of the present invention also provides a computer program product containing instructions.
  • the processor is caused to execute the above method.
  • the embodiment of the present invention provides a method and device for generating a photovolography signal.
  • the PPG signal front-end acquisition device is simplified; the video recording method is used and the analysis and processing of the recorded video is provided
  • the method to generate PPG signals makes the data generation process free from dependence on specific sensor modules; provides remote backup of the recorded video, and provides remote data analysis and processing methods to generate PPG signals, which improves the data sharing degree of upper-layer applications and is beneficial to the establishment of upper-layer applications PPG large database.
  • the steps of the method or algorithm described in combination with the embodiments disclosed herein can be implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Hematology (AREA)
  • Image Analysis (AREA)

Abstract

一种生成光体积变化描记图法信号的方法和装置,方法包括:对皮肤表面进行拍摄生成缓存片段视频数据;提取缓存片段视频数据的缓存片段帧图像;对缓存片段帧图像进行图像质量检测生成图像质量检测结果;当图像质量检测结果为达标图像时对缓存片段帧图像进行一维红、绿光源信号提取生成第一红、绿光数字信号;对第一红、绿光数字信号进行信号带通滤波预处理生成第二红、绿光数字信号;对第二红、绿光数字信号进行最大频差判断生成第一判断结果;当第一判断结果为达标信号时对第二红、绿光数字信号进行信噪比判断生成第二判断结果;当第二判断结果为达标信号时生成第一PPG信号。

Description

一种生成光体积变化描记图法信号的方法和装置
本申请要求于2020年2月21日提交中国专利局、申请号为202010110278.X、发明名称为“一种生成光体积变化描记图法信号的方法和装置”的中国专利申请的优先权。
技术领域
本发明涉电生理信号处理技术领域,特别涉及一种生成光体积变化描记图法信号的方法和装置。
背景技术
人体当前的健康状态、激素水平、情绪状态乃至生活方式等因素都会影响心脏的工作状态。要获得心脏运动的轨迹数据,就需要对心脏运动进行监测和数据采集,传统的方法是通过使用心电图(electrocardiogram,ECG)监测技术来完成的。该方式需要将导联电极连接到身体多个部位来进行心电信号的采集,具体操作时,被监测对象需要静卧或者再日常生活中时刻佩戴多种接触式设备(心贴、心带等等),对监测对象的行动与生活造成诸多不便。
光体积变化描记图法(Photoplethysmography,PPG),是借助光电手段在活体组织中检测血液容积变化的一种无创检测方法。在心脏搏动时,对血管内单位面积的血流量形成周期性变化,与之对应的血液体积也相应发生变化,从而导致反映血液吸收光量的PPG信号也呈现周期性变化趋势。PPG信号可以通过手指、耳朵等区域测量得到。通过PPG信号同样可以对心脏活动做一系列定向分析,且PPG方式相对ECG方式可以提高监测对象的体验舒适度。但在实际应用中,我们发现,当前的PPG信号采集装置和方式比较刻板:照射光源只采用单一的红光或者红外光居多,采集前端常见最多的是指夹、耳夹之类 的定制机械设备,采集的数据需要经过特定传感器进行分析等等,诸如此类的问题都加大了上层医疗应用对PPG信号数据的获取难度。
发明内容
本发明的目的,就是针对现有技术的缺陷,提供一种生成光体积变化描记图法信号的方法和装置,使用移动终端对皮肤表面进行拍摄使得数据采集脱离了定制设备;使用视频录取方式并提供对录取视频的分析处理方法生成PPG信号使数据生成过程脱离了对特定传感器模块的依赖;对录取的视频提供远程备份机制并对远程的视频提供数据分析处理方法,提高了上层应用的数据共享度、有利于上层应用建立PPG大数据库。
为实现上述目的,本发明实施例第一方面提供了一种生成光体积变化描记图法信号的方法,所述方法包括:
移动终端对生物体局部皮肤表面进行连续采集拍摄操作,在所述连续采集拍摄操作的过程中,以预置的缓存片段时间阈值为片段长度对拍摄产生的视频数据进行连续视频片段缓存处理生成多个缓存片段视频数据;
对所述缓存片段视频数据进行帧图像提取处理生成缓存片段帧图像序列,并根据预置的红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行图像质量检测生成图像质量检测结果;所述缓存片段帧图像序列包括多个缓存片段帧图像;
当所述图像质量检测结果为达标图像标识时,根据所述红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维红光源信号提取处理生成第一红光数字信号,根据预置的绿光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维绿光源信号提取处理生成第一绿光数字信号;
根据预置的带通滤波频率阈值范围,对所述第一红光数字信号进行信号带通滤波预处理生成第二红光数字信号,对所述第一绿光数字信号进行信号 带通滤波预处理生成第二绿光数字信号;对所述第二红光数字信号和所述第二绿光数字信号进行信号最大频差判断处理生成第一判断结果;当所述第一判断结果为达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行信号信噪比判断处理生成第二判断结果;当所述第二判断结果为所述达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行光体积变化描记图法PPG信号生成处理生成所述缓存片段视频数据的第一PPG信号。
优选的,所述方法还包括:
所述移动终端对所述第一PPG信号进行图形化转化处理生成当前片段PPG波形图像,并通过显示界面对所述当前片段PPG波形图像进行本地实时波形显示处理。
优选的,所述方法还包括:
在所述连续采集拍摄操作结束之后,所述移动终端将缓存的所有所述缓存片段视频数据按时间先后顺序进行视频拼接处理生成完整皮表视频数据,并将所述完整皮表视频数据向远程服务器发送;
所述服务器对所述完整皮表视频数据进行帧图像提取处理生成完整皮表视频帧图像序列;所述完整皮表视频帧图像序列包括多个完整皮表视频帧图像;
根据预置的服务器红光像素阈值范围对所述完整皮表视频帧图像序列的所有所述完整皮表视频帧图像进行一维红光源信号提取处理生成第一服务器红光数字信号;根据预置的服务器绿光像素阈值范围,对所述完整皮表视频帧图像序列的所有所述完整皮表视频帧图像进行一维绿光源信号提取处理生成第一服务器绿光数字信号;
根据预置的服务器带通滤波频率阈值范围,对所述第一服务器红光数字信号进行信号带通滤波预处理生成第二服务器红光数字信号,对所述第一服务器绿光数字信号进行信号带通滤波预处理生成第二服务器绿光数字信号; 对所述第二服务器红光数字信号和所述第二服务器绿光数字信号进行信号最大频差判断处理生成第一服务器判断结果;当所述第一服务器判断结果为所述达标信号标识时对所述第二服务器红光数字信号和所述第二服务器绿光数字信号进行信号信噪比判断处理生成第二服务器判断结果;当所述第二服务器判断结果为所述达标信号标识时对所述第二服务器红光数字信号和所述第二服务器绿光数字信号进行PPG信号生成处理生成所述完整皮表视频数据的第二PPG信号;
所述服务器对所述第二PPG信号进行PPG数据文件转换处理生成完整皮表PPG数据文件,并将所述完整皮表视频数据和所述完整皮表PPG数据文件存储于医疗数据库。
优选的,所述对所述缓存片段视频数据进行帧图像提取处理生成缓存片段帧图像序列,并根据预置的红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行图像质量检测生成图像质量检测结果,具体包括:
对所述缓存片段视频数据,按预置的缓存片段帧数据长度依次进行数据段提取,并根据提取的多个数据段生成多个所述缓存片段帧图像,再将所有所述缓存片段帧图像按顺序进行排序生成所述缓存片段帧图像序列;
按时间先后顺序,依次对所述缓存片段帧图像序列进行缓存片段帧图像提取处理生成当前缓存片段帧图像;在所述当前缓存片段帧图像中,对像素点的总数进行统计生成全像素点总数,对像素值在所述红光像素阈值范围内的像素点的总数进行统计生成红色像素点总数;根据所述红色像素点总数与所述全像素点总数的比值生成当前帧红色占比参数;根据预置的红色占比下限阈值对所述当前帧红色占比参数进行图像质量检测,在所述当前帧红色占比参数小于所述红色占比下限阈值时设置所述图像质量检测结果为不达标图像标识并停止对所述缓存片段帧图像序列进行缓存片段帧图像提取处理,在所述当前帧红色占比参数大于或等于所述红色占比下限阈值时设置所述图像质 量检测结果为达标图像标识并继续对所述缓存片段帧图像序列进行缓存片段帧图像提取处理。
优选的,所述当所述图像质量检测结果为达标图像标识时,根据所述红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维红光源信号提取处理生成第一红光数字信号,根据预置的绿光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维绿光源信号提取处理生成第一绿光数字信号,具体包括:
步骤51,当所述图像质量检测结果为所述达标图像标识时,初始化所述第一红光数字信号为空,初始化所述第一绿光数字信号为空,初始化第一索引的值为1,初始化第一总数为所述缓存片段帧图像序列的缓存片段帧图像总数;
步骤52,设置第一索引帧图像为所述缓存片段帧图像序列中与所述第一索引对应的所述缓存片段帧图像;
步骤53,在所述第一索引帧图像中统计所有满足所述红光像素阈值范围的像素点生成红色像素点集合,统计所述红色像素点集合中包括的像素点总和生成红色点总数,对所述红色像素点集合的所有像素点的像素值进行求和计算生成红色像素值总和,根据所述红色像素值总和除以所述红色点总数的商生成第一索引帧红光通道数据;将所述第一索引帧红光通道数据作为信号点数据向所述第一红光数字信号进行信号点添加操作;
步骤54,在所述第一索引帧图像中统计所有满足所述绿光像素阈值范围的像素点生成绿色像素点集合,统计所述绿色像素点集合中包括的像素点总和生成绿色点总数,对所述绿色像素点集合的所有像素点的像素值进行求和计算生成绿色像素值总和,根据所述绿色像素值总和除以所述绿色点总数的商生成第一索引帧绿光通道数据;将所述第一索引帧绿光通道数据作为信号点数据向所述第一绿光数字信号进行信号点添加操作;
步骤55,将所述第一索引加1;
步骤56,判断所述第一索引是否大于所述第一总数,如果所述第一索引 小于或等于所述第一总数则转至步骤52,如果所述第一索引大于所述第一总数则转至步骤57;
步骤57,将所述第一红光数字信号作为一维红光源信号提取处理结果,将所述第一绿光数字信号作为一维绿光源信号提取处理结果向上位处理流程传送。
优选的,所述根据预置的带通滤波频率阈值范围,对所述第一红光数字信号进行信号带通滤波预处理生成第二红光数字信号,对所述第一绿光数字信号进行信号带通滤波预处理生成第二绿光数字信号,具体包括:
根据所述带通滤波频率阈值范围,在所述第一红光数字信号中,将信号频率低于所述带通滤波频率阈值范围的低频噪声信号点和信号频率高于所述带通滤波频率阈值范围的高频噪声信号点从所述第一红光数字信号中进行数字信号滤波处理,生成所述第二红光数字信号;
根据所述带通滤波频率阈值范围,在所述第一绿光数字信号中,将信号频率低于所述带通滤波频率阈值范围的低频噪声信号点和信号频率高于所述带通滤波频率阈值范围的高频噪声信号点从所述第一绿光数字信号中进行数字信号滤波处理,生成所述第二绿光数字信号。
优选的,所述对所述第二红光数字信号和所述第二绿光数字信号进行信号最大频差判断处理生成第一判断结果;当所述第一判断结果为达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行信号信噪比判断处理生成第二判断结果;当所述第二判断结果为所述达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行光体积变化描记图法PPG信号生成处理生成所述缓存片段视频数据的第一PPG信号,具体包括:
步骤71,对所述第二红光数字信号使用离散傅里叶变换进行数字信号时域频域转换生成红光频域信号,对所述第二绿光数字信号使用离散傅里叶变换进行数字信号时域频域转换生成绿光频域信号;从所述红光频域信号中提取能量最高频率生成红光最大频率,从所述绿光频域信号中提取能量最高频 率生成绿光最大频率;计算所述红光最大频率与所述绿光最大频率的频率差生成红绿最大频差;当所述红绿最大频差未超过预置的最大频差阈值范围时设置所述第一判断结果为所述达标信号标识,当所述红绿最大频差超过所述最大频差阈值范围时设置所述第一判断结果为不达标信号标识;
步骤72,当所述第一判断结果为所述达标信号标识时,根据预置的带阻滤波频率阈值范围,通过多阶巴特沃斯带阻滤波将信号频率满足所述带阻滤波频率阈值范围的有效信号点从所述第二红光数字信号中去除生成红光噪声信号,通过多阶巴特沃斯带阻滤波将信号频率满足所述带阻滤波频率阈值范围的有效信号点从所述第二绿光数字信号中去除生成绿光噪声信号;
步骤73,计算所述第二红光数字信号的信号能量生成红光信号能量,计算所述红光噪声信号的信号能量生成红光噪声能量,根据所述红光信号能量减去所述红光噪声能量的差生成有效红光信号能量,根据所述有效红光信号能量与所述红光噪声能量的比值生成红光信噪比;
步骤74,计算所述第二绿光数字信号的信号能量生成绿光信号能量,计算所述绿光噪声信号的信号能量生成绿光噪声能量,根据所述绿光信号能量减去所述绿光噪声能量的差生成有效绿光信号能量,根据所述有效绿光信号能量与所述绿光噪声能量的比值生成绿光信噪比;
步骤75,当所述红光信噪比与所述绿光信噪比均小于预置的信噪比阈值设置所述第二判断结果为所述不达标信号标识,当所述红光信噪比与所述绿光信噪比中任一个大于或等于所述信噪比阈值则设置所述第二判断结果为所述达标信号标识;
步骤76,当所述第二判断结果为所述达标信号标识时,设置所述第一PPG信号的红光数字信号为所述第二红光数字信号,设置所述第一PPG信号的绿光数字信号为所述第二绿光数字信号;所述第一PPG信号包括所述红光数字信号和所述绿光数字信号。
优选的,所述方法还包括:
当所述图像质量检测结果为所述不达标信号标识时,停止所述连续采集拍摄操作并生成皮肤表面脱离错误信息,再将所述皮肤表面脱离错误信息向所述移动终端传送,所述移动终端通过所述显示界面对所述皮肤表面脱离错误信息进行警示信息显示处理;
当所述第一判断结果为所述不达标信号标识时,停止所述连续采集拍摄操作和PPG信号生成处理流程并生成信号质量错误信息,再将所述信号质量错误信息向所述移动终端传送,所述移动终端通过所述显示界面对所述信号质量错误信息进行警示信息显示处理;
当所述第二判断结果为所述不达标信号标识时,停止所述连续采集拍摄操作和PPG信号生成处理流程并生成信号质量错误信息,再将所述信号质量错误信息向所述移动终端传送,所述移动终端通过所述显示界面对所述信号质量错误信息进行警示信息显示处理。
本发明实施例第一方面提供了一种生成光体积变化描记图法信号的方法,无需定制的采集设备,只需要采用一般移动终端摄像头对皮肤表面进行拍摄即可;对所拍摄的视频数据无需使用定制的传感器分析模块进行分析,只需通过视频像素值提取,再进一步对提取信号使用带通滤波、频差比较和带阻滤波等常规信号处理方法进行降噪和特征提取,最终生成有效的PPG信号;对所拍摄的视频提供远程备份机制,以及远程数据分析生成PPG信号功能,提高了上层应用的数据共享度,有利于上层应用建立PPG大数据库。
本发明实施例第二方面提供了一种设备,该设备包括存储器和处理器,存储器用于存储程序,处理器用于执行第一方面及第一方面的各实现方式中的方法。
本发明实施例第三方面提供了一种包含指令的计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行第一方面及第一方面的各实现方式中的方法。
本发明实施例第四方面提供了一种计算机可读存储介质,计算机可读存 储介质上存储有计算机程序,计算机程序被处理器执行时实现第一方面及第一方面的各实现方式中的方法。
附图说明
图1为本发明实施例一提供的一种生成光体积变化描记图法信号的方法示意图;
图2为本发明实施例二提供的一种生成光体积变化描记图法信号的方法示意图;
图3为本发明实施例三提供的一种生成光体积变化描记图法信号的装置的设备结构示意图。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在进行发明实施例的进一步阐述之前,将本发明实施例涉及的技术实现做如下简要描述。
常规PPG信号采集,是采用特定光源对皮肤表面进行照射,然后使用特定光源接收传感器对由该皮肤表面反射或者透射的光信号进行接收;该传感器的分析模块会按时间顺序对光强变化进行统计分析最终以归一化的PPG信号方式对动态脉搏波进行呈现。
参考PPG信号分析原理,在连续的心动过程中,我们又发现测试者皮肤表面对自然光中的红光与绿光的光能吸收与常规PPG采集设备的特定光源的光能吸收趋势是一样的。那么借助另外的介质,只要能够体现时间周期内皮肤表面红、绿光变化趋势,也就同样可以获得归一化的PPG信号。
基于上述发现,本发明实施例相对常规PPG信号采集设备,不设置特定光源要求,不使用特定光源对皮肤表明进行照射并使用特定传感器对光强进行采集。本发明实施例采用自然光(即使使用闪光灯之类的强光源只是为了提高光照强度而非设定光源性质),使用常规的拍摄装置(比如移动终端的摄像头之类常见的摄像装置),对测试者的指定皮肤表面(手指头、耳垂、脖子、额头等等)进行拍摄,并将获得的视频数据进行帧图像提取就生成一个帧图像的序列。本发明实施例就是以这些连续的帧图像作为另外的介质对红、绿光的变化趋势进行捕捉。具体实现方法是,将帧图像中的红、绿色像素值进行加权统计生成该帧图像对应时间点的原始红、光信号点,将原始红、绿光信号进行相应的滤波降噪处理生成PPG信号的红、绿数据通道值。
本发明实施例提供本地拍摄设备通过视频拍摄获取PPG信号的处理方式,并采用本地显示设备提供同步显示功能;与之同时,本发明实施例还提供远端服务器对上传视频数据的PPG信号解析功能,并将解析后的PPG信号数据转存入医疗数据库从而实现了数据备份与共享的功能。
如图1为本发明实施例一提供的一种生成光体积变化描记图法信号的方法示意图所示,本方法主要包括如下步骤:
步骤1,移动终端对生物体局部皮肤表面进行连续采集拍摄操作,在连续采集拍摄操作的过程中,以预置的缓存片段时间阈值为片段长度对拍摄产生的视频数据进行连续视频片段缓存处理生成多个缓存片段视频数据。
此处,在日常所见的,只要带有摄像头、具备视频拍摄功能的移动终端均可充当本发明实施例的视频拍摄设备;在拍摄之前,需要打开移动终端的闪光灯并保持常亮,以此满足稳定的照射光源需求;
在拍摄时,需要保持被拍摄生物体的局部皮肤表面轻微按压在移动终端的摄像头上;对于闪光灯和摄像头比较接近的移动终端,需要将皮肤表面同时覆盖住闪光灯和摄像头;对于闪光灯和摄像头比较远的移动终端,只需要将皮肤表面覆盖住摄像头即可;拍摄过程中皮肤表面与镜头间相对需保持静止且 按压尽量用力均匀。
步骤2,对缓存片段视频数据进行帧图像提取处理生成缓存片段帧图像序列,并根据预置的红光像素阈值范围对缓存片段帧图像序列的所有缓存片段帧图像进行图像质量检测生成图像质量检测结果;
其中,缓存片段帧图像序列包括多个缓存片段帧图像;
具体包括:步骤21,对缓存片段视频数据,按预置的缓存片段帧数据长度依次进行数据段提取,并根据提取的多个数据段生成多个缓存片段帧图像,再将所有缓存片段帧图像按顺序进行排序生成缓存片段帧图像序列;
步骤22,按时间先后顺序,依次对缓存片段帧图像序列进行缓存片段帧图像提取处理生成当前缓存片段帧图像;在当前缓存片段帧图像中,对像素点的总数进行统计生成全像素点总数,对像素值在红光像素阈值范围内的像素点的总数进行统计生成红色像素点总数;根据红色像素点总数与全像素点总数的比值生成当前帧红色占比参数;根据预置的红色占比下限阈值对当前帧红色占比参数进行图像质量检测,在当前帧红色占比参数小于红色占比下限阈值时设置图像质量检测结果为不达标图像标识并停止对缓存片段帧图像序列进行缓存片段帧图像提取处理,在当前帧红色占比参数大于或等于红色占比下限阈值时设置图像质量检测结果为达标图像标识并继续对缓存片段帧图像序列进行缓存片段帧图像提取处理。
此处,步骤21-22是用于对视频数据中的子帧图像进行依次扫描,检查所有子帧图像中的红色像素占比是否达标;之所以这么操作,原因是:如果拍摄过程中皮肤表面是完全覆盖在摄像镜头上的话,则视频中子帧图像里大多数都应是红色像素点,反之如果皮肤表面未压紧或者已经移开摄像头位置则都可能造成红色像素点减少;当发现当前正在扫描的子帧图像不达标时,就直接退出当前的全扫描过程,并将图像质量检测结果设置为不达标图像标识,后续上位应用针对不达标图像标识的处理可以是:停止连续采集拍摄操作并生成皮肤表面脱离错误信息,再将皮肤表面脱离错误信息向移动终端传送,移 动终端通过显示界面对皮肤表面脱离错误信息进行警示信息显示处理。
步骤3,当图像质量检测结果为达标图像标识时,根据红光像素阈值范围对缓存片段帧图像序列的所有缓存片段帧图像进行一维红光源信号提取处理生成第一红光数字信号,根据预置的绿光像素阈值范围对缓存片段帧图像序列的所有缓存片段帧图像进行一维绿光源信号提取处理生成第一绿光数字信号;
具体包括:步骤31,当图像质量检测结果为达标图像标识时,初始化第一红光数字信号为空,初始化第一绿光数字信号为空,初始化第一索引的值为1,初始化第一总数为缓存片段帧图像序列的缓存片段帧图像总数;
步骤32,设置第一索引帧图像为缓存片段帧图像序列中与第一索引对应的缓存片段帧图像;
步骤33,在第一索引帧图像中统计所有满足红光像素阈值范围的像素点生成红色像素点集合,统计红色像素点集合中包括的像素点总和生成红色点总数,对红色像素点集合的所有像素点的像素值进行求和计算生成红色像素值总和,根据红色像素值总和除以红色点总数的商生成第一索引帧红光通道数据;将第一索引帧红光通道数据作为信号点数据向第一红光数字信号进行信号点添加操作;
例如,提取第1帧图像中所有满足红光像素阈值范围(因为不同位置受到光源的照射因内部结构或者血管的反射和透射的程度不一样,会导致光通过率由差异,进一步会导致拍摄下来的视频中红色也会产生颜色深浅的差别,因此采用像素阈值范围)的像素点总数生成红色点总数,提取第1帧图像中所有满足红光像素阈值范围的像素点的像素值进行总和计算生成红色像素值总和,那么第一索引帧红光通道数据就等于红色像素值总和/红色点总数;
步骤34,在第一索引帧图像中统计所有满足绿光像素阈值范围的像素点生成绿色像素点集合,统计绿色像素点集合中包括的像素点总和生成绿色点总数,对绿色像素点集合的所有像素点的像素值进行求和计算生成绿色像素 值总和,根据绿色像素值总和除以绿色点总数的商生成第一索引帧绿光通道数据;将第一索引帧绿光通道数据作为信号点数据向第一绿光数字信号进行信号点添加操作;
例如,提取第1帧图像中所有满足绿光像素阈值范围(因为不同位置受到光源的照射因内部结构或者血管的反射和透射的程度不一样,会导致光通过率由差异,进一步会导致拍摄下来的视频中绿色也会产生颜色深浅的差别,因此采用像素阈值范围)的像素点总数生成绿色点总数,提取第1帧图像中所有满足绿光像素阈值范围的像素点的像素值进行总和计算生成绿色像素值总和,那么第一索引帧绿光通道数据就等于绿色像素值总和/绿色点总数;
步骤35,将第一索引加1;
步骤36,判断第一索引是否大于第一总数,如果第一索引小于或等于第一总数则转至步骤32,如果第一索引大于第一总数则转至步骤37;
步骤37,将第一红光数字信号作为一维红光源信号提取处理结果,将第一绿光数字信号作为一维绿光源信号提取处理结果向上位处理流程传送。
此处,步骤3,是将由缓存片段视频数据转化而来的缓存片段帧图像序列中的所有缓存片段帧图像进行两种光源信息的提取操作;红光和绿光;对光信号的提取方式,就是通过对帧图像中特定像素的加权平均计算得到一个像素均值,并以此代表该光源在所在帧图像中的颜色通道数据;按时间先后顺序,对视频中的每一帧都做同样的处理,可以得到两段一维数字信号:第一红光数字信号和第一绿光数字信号。
步骤4,根据预置的带通滤波频率阈值范围,对第一红光数字信号进行信号带通滤波预处理生成第二红光数字信号,对第一绿光数字信号进行信号带通滤波预处理生成第二绿光数字信号;对第二红光数字信号和第二绿光数字信号进行信号最大频差判断处理生成第一判断结果;当第一判断结果为达标信号标识时对第二红光数字信号和第二绿光数字信号进行信号信噪比判断处理生成第二判断结果;当第二判断结果为达标信号标识时对第二红光数字信 号和第二绿光数字信号进行光体积变化描记图法PPG信号生成处理生成缓存片段视频数据的第一PPG信号。
其中,根据预置的带通滤波频率阈值范围,对第一红光数字信号进行信号带通滤波预处理生成第二红光数字信号,对第一绿光数字信号进行信号带通滤波预处理生成第二绿光数字信号,
具体包括:步骤41,根据带通滤波频率阈值范围,在第一红光数字信号中,将信号频率低于带通滤波频率阈值范围的低频噪声信号点和信号频率高于带通滤波频率阈值范围的高频噪声信号点从第一红光数字信号中进行数字信号滤波处理,生成第二红光数字信号;
步骤42,根据带通滤波频率阈值范围,在第一绿光数字信号中,将信号频率低于带通滤波频率阈值范围的低频噪声信号点和信号频率高于带通滤波频率阈值范围的高频噪声信号点从第一绿光数字信号中进行数字信号滤波处理,生成第二绿光数字信号;
此处,步骤41-42是是对通过视频数据提取的两种光源的数字信号进行信号信号预处理,即降噪处理;此处,实施例一使用的降噪手段是带通滤波方式,即预置一个带通滤波频率阈值范围,基于带通滤波原理对低于或高于该频段的信号、干扰和噪声进行信号抑制处理;一般此处的带通滤波频率阈值范围常见的0.5赫兹到10赫兹;在某些移动终端上进行带通滤波处理时,使用的是有限长单位冲激响应((Finite Impulse Response,FIR)滤波模块;
其中,对第二红光数字信号和第二绿光数字信号进行信号最大频差判断处理生成第一判断结果;当第一判断结果为达标信号标识时对第二红光数字信号和第二绿光数字信号进行信号信噪比判断处理生成第二判断结果;当第二判断结果为达标信号标识时对第二红光数字信号和第二绿光数字信号进行光体积变化描记图法PPG信号生成处理生成第一PPG信号,
具体包括:步骤43,对第二红光数字信号使用离散傅里叶变换进行数字信号时域频域转换生成红光频域信号,对第二绿光数字信号使用离散傅里叶 变换进行数字信号时域频域转换生成绿光频域信号;从红光频域信号中提取能量最高频率生成红光最大频率,从绿光频域信号中提取能量最高频率生成绿光最大频率;计算红光最大频率与绿光最大频率的频率差生成红绿最大频差;当红绿最大频差未超过预置的最大频差阈值范围时设置第一判断结果为达标信号标识,当红绿最大频差超过最大频差阈值范围时设置第一判断结果为不达标信号标识;
此处,首先通过离散傅里叶变换得到第二红色数字信号和第二绿色数字信号的频域信号,通过频域信号得到能量最高的频率(一般这个频率通常对应着心率),此处基本原理是检查这两个数字信号的能量最高的频率是否一致,如果误差在允许范围之内则设置第一判断结果为达标信号标识;如果误差较大则设置第一判断结果为不达标信号标识;后续上位应用针对不达标信号标识的处理可以是:上位应用进而停止连续采集拍摄操作和PPG信号生成处理流程并生成信号质量错误信息,再将信号质量错误信息向移动终端传送,移动终端通过显示界面对信号质量错误信息进行警示信息显示处理;
步骤44,当第一判断结果为达标信号标识时,根据预置的带阻滤波频率阈值范围,通过多阶巴特沃斯带阻滤波将信号频率满足带阻滤波频率阈值范围的有效信号点从第二红光数字信号中去除生成红光噪声信号,通过多阶巴特沃斯带阻滤波将信号频率满足带阻滤波频率阈值范围的有效信号点从第二绿光数字信号中去除生成绿光噪声信号;
步骤45,计算第二红光数字信号的信号能量生成红光信号能量,计算红光噪声信号的信号能量生成红光噪声能量,根据红光信号能量减去红光噪声能量的差生成有效红光信号能量,根据有效红光信号能量与红光噪声能量的比值生成红光信噪比;
步骤46,计算第二绿光数字信号的信号能量生成绿光信号能量,计算绿光噪声信号的信号能量生成绿光噪声能量,根据绿光信号能量减去绿光噪声能量的差生成有效绿光信号能量,根据有效绿光信号能量与绿光噪声能量的 比值生成绿光信噪比;
步骤47,当红光信噪比与绿光信噪比均小于预置的信噪比阈值设置第二判断结果为不达标信号标识,当红光信噪比与绿光信噪比中任一个大于或等于信噪比阈值则设置第二判断结果为达标信号标识;
此处,步骤44-47是对红绿光做二次滤波处理,本次滤波是一种带阻滤波方式,即将属于带阻滤波频率阈值范围内的信号进行抑制,具体的采用的是多阶巴特沃斯带阻滤波方式(例如,4阶巴特沃斯带阻滤波、1阶巴特沃斯带阻滤波);通过带阻滤波将噪声及干扰信号进行保留生成噪声信号,再进一步对有效信号和噪声信号进行计算生成信噪比;最后使用信噪比再对红、绿光数字信号进行达标与否的识别操作;达标判定参考参数为第二判断结果;后续上位应用针对不达标信号标识的处理可以是:上位应用进而停止连续采集拍摄操作和PPG信号生成处理流程并生成信号质量错误信息,再将信号质量错误信息向移动终端传送,移动终端通过显示界面对信号质量错误信息进行警示信息显示处理;
步骤48,当第二判断结果为达标信号标识时,设置第一PPG信号的红光数字信号为第二红光数字信号,设置第一PPG信号的绿光数字信号为第二绿光数字信号;
其中,第一PPG信号包括红光数字信号和绿光数字信号。
步骤5,移动终端对第一PPG信号进行图形化转化处理生成当前片段PPG波形图像,并通过显示界面对当前片段PPG波形图像进行本地实时波形显示处理。
此处,一般在实际应用中缓存片段时间都不会太长,所以对缓存片段的分析也会比较快,对由缓存片段进行分析生成的第一PPG信号的显示也会比较快,对于使用者来说,这其间的延迟时间基本上是可以忽略的,也即,使用者可以通过自己的移动终端边拍摄边同步观测PPG波形及由PPG状态变化映射出的心压变化状态,同理,在移动终端上已经安装的医疗数据分析软件等也可 以同步利用该项数据启动本地的相关数据分析和计算工作。
如图2为本发明实施例二提供的一种生成光体积变化描记图法信号的方法示意图所示,本方法主要包括如下步骤:
步骤101,在连续采集拍摄操作结束之后,移动终端将缓存的所有缓存片段视频数据按时间先后顺序进行视频拼接处理生成完整皮表视频数据,并将完整皮表视频数据向远程服务器发送。
此处,假设移动终端本地生成了10个缓存片段视频数据,分别是缓存片段视频数据1到10,那么完整皮表视频数据就是缓存片段视频数据1+缓存片段视频数据2+……+缓存片段视频数据10。
步骤102,服务器对完整皮表视频数据进行帧图像提取处理生成完整皮表视频帧图像序列;
其中,完整皮表视频帧图像序列包括多个完整皮表视频帧图像。
假设,1个缓存片段视频数据时长为1秒,1秒内规定子帧图像为24帧,那么完整皮表视频数据包括10个缓存片段视频数据,每个片段包括24帧,那么完整皮表视频帧图像序列包括10*24=240个完整皮表视频帧图像。
此处,与移动终端本地边采集边比对的方式不同,服务器是对移动终端上传的完整采集数据进行PPG信号的提取和重现,服务器默认上传的视频数据已经经过本地色素点占比的比对了,其图像质量是达标的,所以不做色素点占比的比对操作。
步骤103,根据预置的服务器红光像素阈值范围对完整皮表视频帧图像序列的所有完整皮表视频帧图像进行一维红光源信号提取处理生成第一服务器红光数字信号;根据预置的服务器绿光像素阈值范围,对完整皮表视频帧图像序列的所有完整皮表视频帧图像进行一维绿光源信号提取处理生成第一服务器绿光数字信号;
具体包括:步骤1031,初始化第一服务器红光数字信号为空,初始化第一服务器绿光数字信号为空,初始化第二索引的值为1,初始化第二总数为完 整皮表视频帧图像序列的完整皮表视频帧图像总数;
步骤1032,从完整皮表视频帧图像序列中提取与第二索引对应的完整皮表视频帧图像生成第二索引帧图像;
步骤1033,在第二索引帧图像中统计所有满足服务器红光像素阈值范围的像素点,并进行像素值加权平均计算,生成第二索引帧红光像素加权平均值;
此处的加权平均计算常见的是常规平均方式,例如,提取第1帧图像中所有满足服务器红光像素阈值范围(因为不同位置受到光源的照射因内部结构或者血管的反射和透射的程度不一样,会导致光通过率由差异,进一步会导致拍摄下来的视频中红色也会产生颜色深浅的差别,因此采用像素阈值范围)的像素点总数生成红色像素点总数,提取第1帧图像中所有满足服务器红光像素阈值范围的像素点的像素值进行总和计算生成红色像素值总和,那么第二索引帧红光像素加权平均值就等于红色像素值总和/红色像素点总数;
此处,因为当前步骤是在服务器端运行,鉴于服务器端的计算能力大于移动终端的计算能力,所以在服务器端使用的服务器红光像素阈值范围与服务器绿光像素阈值范围可以较移动终端侧的范围精度更大,也可以保持一致,具体配置由应用方在实际应用中把握;
步骤1034,在第二索引帧图像中统计所有满足服务器绿光像素阈值范围的像素点,并进行像素值加权平均计算,生成第二索引帧绿光像素加权平均值;
此处的加权平均计算常见的是常规平均方式,例如,提取第1帧图像中所有满足服务器绿光像素阈值范围(因为不同位置受到光源的照射因内部结构或者血管的反射和透射的程度不一样,会导致光通过率由差异,进一步会导致拍摄下来的视频中绿色也会产生颜色深浅的差别,因此采用像素阈值范围)的像素点总数生成绿色像素点总数,提取第1帧图像中所有满足服务器绿光像素阈值范围的像素点的像素值进行总和计算生成绿色像素值总和,那么第二索引帧绿光像素加权平均值就等于绿色像素值总和/绿色像素点总数;
步骤1035,将第二索引帧红光像素加权平均值向第一服务器红光数字信 号进行信号点添加操作;将第二索引帧绿光像素加权平均值向第一服务器绿光数字信号进行信号点添加操作;
步骤1036,将第二索引的值加1;
步骤1037,判断第二索引是否大于第二总数,如果第二索引小于或等于第二总数则转至步骤1032,如果第二索引大于第二总数则转至步骤104。
此处,步骤1031-1037将由完整皮表视频数据转化而来的完整皮表视频帧图像序列中的所有完整皮表视频帧图像进行两种光源信息的提取操作;红光和绿光;对光信号的提取方式,就是通过对帧图像中特定像素的加权平均计算得到一个像素均值,并以此代表该光源在所在帧图像中的像素取值;按时间先后顺序,对视频中的每一帧都做同样的处理,可以得到两段一维数字信号:第一服务器红光数字信号和第一服务器绿光数字信号。
步骤104,根据预置的服务器带通滤波频率阈值范围,对第一服务器红光数字信号进行信号带通滤波预处理生成第二服务器红光数字信号,对第一服务器绿光数字信号进行信号带通滤波预处理生成第二服务器绿光数字信号;对第二服务器红光数字信号和第二服务器绿光数字信号进行信号最大频差判断处理生成第一服务器判断结果;当第一服务器判断结果为达标信号标识时对第二服务器红光数字信号和第二服务器绿光数字信号进行信号信噪比判断处理生成第二服务器判断结果;当第二服务器判断结果为达标信号标识时对第二服务器红光数字信号和第二服务器绿光数字信号进行PPG信号生成处理生成完整皮表视频的第二PPG信号;
其中,根据预置的服务器带通滤波频率阈值范围,对第一服务器红光数字信号进行信号带通滤波预处理生成第二服务器红光数字信号,对第一服务器绿光数字信号进行信号带通滤波预处理生成第二服务器绿光数字信号;
具体包括:步骤1041,根据服务器带通滤波频率阈值范围,在第一服务器红光数字信号中,将信号频率低于服务器带通滤波频率阈值范围的低频噪声信号点和信号频率高于服务器带通滤波频率阈值范围的高频噪声信号点从 第一服务器红光数字信号中进行数字信号滤波处理,生成第二服务器红光数字信号;
步骤1042,根据服务器带通滤波频率阈值范围,在第一服务器绿光数字信号中,将信号频率低于服务器带通滤波频率阈值范围的低频噪声信号点和信号频率高于服务器带通滤波频率阈值范围的高频噪声信号点从第一服务器绿光数字信号中进行数字信号滤波处理,生成第二服务器绿光数字信号;
此处,步骤1041-1042是对通过皮表视频数据提取的两种光源的数字信号进行信号信号预处理,即降噪处理;此处,实施例二使用的降噪手段是带通滤波方式,即预置一个带通滤波频率阈值范围,基于带通滤波原理对低于或高于该频段的信号、干扰和噪声进行信号抑制处理;
此处,因为当前步骤是在服务器端运行,鉴于服务器端的计算能力大于移动终端的计算能力,所以在服务器端使用的服务器带通滤波频率阈值范围可以较移动终端侧的范围精度更大,也可以保持一致,具体配置由应用方在实际应用中把握;
其中,对第二服务器红光数字信号和第二服务器绿光数字信号进行信号最大频差判断处理生成第一服务器判断结果;当第一服务器判断结果为达标信号标识时对第二服务器红光数字信号和第二服务器绿光数字信号进行信号信噪比判断处理生成第二服务器判断结果;当第二服务器判断结果为达标信号标识时对第二服务器红光数字信号和第二服务器绿光数字信号进行PPG信号生成处理生成第二PPG信号;
具体包括:步骤1043,对第二服务器红光数字信号使用离散傅里叶变换进行数字信号时域频域转换生成服务器红光频域信号,对第二服务器绿光数字信号使用离散傅里叶变换进行数字信号时域频域转换生成服务器绿光频域信号;从服务器红光频域信号中提取能量最高频率生成服务器红光最大频率,从服务器绿光频域信号中提取能量最高频率生成服务器绿光最大频率;计算服务器红光最大频率与服务器绿光最大频率的频率差生成服务器红绿最大频 差;当服务器红绿最大频差未超过预置的服务器最大频差阈值范围时设置第一服务器判断结果为达标信号标识,当服务器红绿最大频差超过服务器最大频差阈值范围时设置第一服务器判断结果为不达标信号标识;
此处,首先通过离散傅里叶变换得到第二服务器红色数字信号和第二服务器绿色数字信号的频域信号,通过频域信号得到能量最高的频率(一般这个频率通常对应着心率),此处基本原理是检查这两个数字信号的能量最高的频率是否一致,如果误差在允许范围之内,则继续分析,如果误差较大,则认为信号质量不好,服务器会通过显示界面或者定制错误参数向使用者和上位应用提示信号质量问题;
步骤1044,当第一服务器判断结果为达标信号标识时,根据预置的服务器带阻滤波频率阈值范围,在第二服务器红光数字信号中,通过多阶巴特沃斯带阻滤波将信号频率满足服务器带阻滤波频率阈值范围的有效信号点从第二服务器红光数字信号中去除生成服务器红光噪声信号,通过多阶巴特沃斯带阻滤波将信号频率满足服务器带阻滤波频率阈值范围的有效信号点从第二服务器绿光数字信号中去除生成服务器绿光噪声信号;
步骤1045,计算第二服务器红光数字信号的信号能量生成服务器红光信号能量,计算服务器红光噪声信号的信号能量生成服务器红光噪声能量,根据服务器红光信号能量减去服务器红光噪声能量的差生成服务器有效红光信号能量,根据服务器有效红光信号能量与服务器红光噪声能量的比值生成服务器红光信噪比;
步骤1046,计算第二服务器绿光数字信号的信号能量生成服务器绿光信号能量,计算服务器绿光噪声信号的信号能量生成服务器绿光噪声能量,根据服务器绿光信号能量减去服务器绿光噪声能量的差生成服务器有效绿光信号能量,根据服务器有效绿光信号能量与服务器绿光噪声能量的比值生成服务器绿光信噪比;
步骤1047,如果服务器红光信噪比与服务器绿光信噪比均小于预置的服 务器信噪比阈值则设置第二服务器判断结果为不达标信号标识,如果服务器红光信噪比与服务器绿光信噪比中任一个大于或等于服务器信噪比阈值则设置第二服务器判断结果为达标信号标识;
此处,步骤1043-1047是对红绿光做二次滤波处理,本次滤波是一种带阻滤波方式,即将属于带阻滤波频率阈值范围内的信号进行抑制,具体的采用的是多阶巴特沃斯带阻滤波方式(例如,4阶巴特沃斯带阻滤波、1阶巴特沃斯带阻滤波);通过带阻滤波将噪声及干扰信号进行保留生成噪声信号,再进一步对有效信号和噪声信号进行计算生成信噪比;最后使用信噪比再对红、绿光数字信号进行达标与否的识别操作;如果信号质量未达标,服务器会通过显示界面或者定制错误参数向使用者和上位应用提示信号质量问题;
此处,因为当前步骤是在服务器端运行,鉴于服务器端的计算能力大于移动终端的计算能力,所以在服务器端使用的多阶巴特沃斯带阻滤波方式可以较移动终端侧的阶数更大(例如移动终端采用1阶,服务器端采用4阶或更高),也可以保持一致,具体配置由应用方在实际应用中把握;
步骤1048,当第二服务器判断结果为达标信号标识时,设置第二PPG信号的红光数字信号为第二服务器红光数字信号,设置第二PPG信号的绿光数字信号为第二服务器绿光数字信号;
其中,第二PPG信号包括:红光数字信号和绿光数字信号。
步骤105,服务器对第二PPG信号进行PPG数据文件转换处理生成完整皮表PPG数据文件,并将完整皮表视频数据和完整皮表PPG数据文件存储于医疗数据库。
此处,经过步骤101-105,实现了服务器段对本地移动设备采集的原始视频数据的远端备份功能,且通过服务器对视频数据作进一步分析之后生成对应的PPG信号存储于医疗数据库中,所有与该数据库连接的软件、硬件、***、网络都可以重复使用该数据进行多种应用拓展。
如图3为本发明实施例三提供的一种生成光体积变化描记图法信号的装 置的设备结构示意图所述,该设备包括:处理器和存储器。存储器可通过总线与处理器连接。存储器可以是非易失存储器,例如硬盘驱动器和闪存,存储器中存储有软件程序和设备驱动程序。软件程序能够执行本发明实施例提供的上述方法的各种功能;设备驱动程序可以是网络和接口驱动程序。处理器用于执行软件程序,该软件程序被执行时,能够实现本发明实施例提供的方法。
需要说明的是,本发明实施例还提供了一种计算机可读存储介质。该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时,能够实现本发明实施例提供的方法。
本发明实施例还提供了一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得处理器执行上述方法。
本发明实施例提供的一种生成光体积变化描记图法信号的方法和装置,通过使用本发明实施例的方法,简化了PPG信号前端采集装置;使用视频录取方式并提供对录取视频的分析处理方法生成PPG信号使数据生成过程脱离了对特定传感器模块的依赖;对录取的视频提供远程备份,并提供远程数据分析处理方法生成PPG信号,提高了上层应用的数据共享度,有利于上层应用建立PPG大数据库。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器 (RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种生成光体积变化描记图法信号的方法,其特征在于,所述方法包括:
    移动终端对生物体局部皮肤表面进行连续采集拍摄操作,在所述连续采集拍摄操作的过程中,以预置的缓存片段时间阈值为片段长度对拍摄产生的视频数据进行连续视频片段缓存处理生成多个缓存片段视频数据;
    对所述缓存片段视频数据进行帧图像提取处理生成缓存片段帧图像序列,并根据预置的红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行图像质量检测生成图像质量检测结果;所述缓存片段帧图像序列包括多个缓存片段帧图像;
    当所述图像质量检测结果为达标图像标识时,根据所述红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维红光源信号提取处理生成第一红光数字信号,根据预置的绿光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维绿光源信号提取处理生成第一绿光数字信号;
    根据预置的带通滤波频率阈值范围,对所述第一红光数字信号进行信号带通滤波预处理生成第二红光数字信号,对所述第一绿光数字信号进行信号带通滤波预处理生成第二绿光数字信号;对所述第二红光数字信号和所述第二绿光数字信号进行信号最大频差判断处理生成第一判断结果;当所述第一判断结果为达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行信号信噪比判断处理生成第二判断结果;当所述第二判断结果为所述达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行光体积变化描记图法PPG信号生成处理生成所述缓存片段视频数据的第一PPG信号。
  2. 根据权利要求1所述的生成光体积变化描记图法信号的方法,其特征在于,所述方法还包括:
    所述移动终端对所述第一PPG信号进行图形化转化处理生成当前片段PPG波形图像,并通过显示界面对所述当前片段PPG波形图像进行本地实时波形显示处理。
  3. 根据权利要求1所述的生成光体积变化描记图法信号的方法,其特征在于,所述方法还包括:
    在所述连续采集拍摄操作结束之后,所述移动终端将缓存的所有所述缓存片段视频数据按时间先后顺序进行视频拼接处理生成完整皮表视频数据,并将所述完整皮表视频数据向远程服务器发送;
    所述服务器对所述完整皮表视频数据进行帧图像提取处理生成完整皮表视频帧图像序列;所述完整皮表视频帧图像序列包括多个完整皮表视频帧图像;
    根据预置的服务器红光像素阈值范围对所述完整皮表视频帧图像序列的所有所述完整皮表视频帧图像进行一维红光源信号提取处理生成第一服务器红光数字信号;根据预置的服务器绿光像素阈值范围,对所述完整皮表视频帧图像序列的所有所述完整皮表视频帧图像进行一维绿光源信号提取处理生成第一服务器绿光数字信号;
    根据预置的服务器带通滤波频率阈值范围,对所述第一服务器红光数字信号进行信号带通滤波预处理生成第二服务器红光数字信号,对所述第一服务器绿光数字信号进行信号带通滤波预处理生成第二服务器绿光数字信号;对所述第二服务器红光数字信号和所述第二服务器绿光数字信号进行信号最大频差判断处理生成第一服务器判断结果;当所述第一服务器判断结果为所述达标信号标识时对所述第二服务器红光数字信号和所述第二服务器绿光数字信号进行信号信噪比判断处理生成第二服务器判断结果;当所述第二服务器判断结果为所述达标信号标识时对所述第二服务器红光数字信号和所述第二服务器绿光数字信号进行PPG信号生成处理生成所述完整皮表视频数据的第二PPG信号;
    所述服务器对所述第二PPG信号进行PPG数据文件转换处理生成完整皮表PPG数据文件,并将所述完整皮表视频数据和所述完整皮表PPG数据文件存储于医疗数据库。
  4. 根据权利要求1所述的生成光体积变化描记图法信号的方法,其特征在于,所述对所述缓存片段视频数据进行帧图像提取处理生成缓存片段帧图像序列,并根据预置的红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行图像质量检测生成图像质量检测结果,具体包括:
    对所述缓存片段视频数据,按预置的缓存片段帧数据长度依次进行数据段提取,并根据提取的多个数据段生成多个所述缓存片段帧图像,再将所有所述缓存片段帧图像按顺序进行排序生成所述缓存片段帧图像序列;
    按时间先后顺序,依次对所述缓存片段帧图像序列进行缓存片段帧图像提取处理生成当前缓存片段帧图像;在所述当前缓存片段帧图像中,对像素点的总数进行统计生成全像素点总数,对像素值在所述红光像素阈值范围内的像素点的总数进行统计生成红色像素点总数;根据所述红色像素点总数与所述全像素点总数的比值生成当前帧红色占比参数;根据预置的红色占比下限阈值对所述当前帧红色占比参数进行图像质量检测,在所述当前帧红色占比参数小于所述红色占比下限阈值时设置所述图像质量检测结果为不达标图像标识并停止对所述缓存片段帧图像序列进行缓存片段帧图像提取处理,在所述当前帧红色占比参数大于或等于所述红色占比下限阈值时设置所述图像质量检测结果为达标图像标识并继续对所述缓存片段帧图像序列进行缓存片段帧图像提取处理。
  5. 根据权利要求1所述的生成光体积变化描记图法信号的方法,其特征在于,所述当所述图像质量检测结果为达标图像标识时,根据所述红光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维红光源信号提取处理生成第一红光数字信号,根据预置的绿光像素阈值范围对所述缓存片段帧图像序列的所有所述缓存片段帧图像进行一维绿光源信号提取 处理生成第一绿光数字信号,具体包括:
    步骤51,当所述图像质量检测结果为所述达标图像标识时,初始化所述第一红光数字信号为空,初始化所述第一绿光数字信号为空,初始化第一索引的值为1,初始化第一总数为所述缓存片段帧图像序列的缓存片段帧图像总数;
    步骤52,设置第一索引帧图像为所述缓存片段帧图像序列中与所述第一索引对应的所述缓存片段帧图像;
    步骤53,在所述第一索引帧图像中统计所有满足所述红光像素阈值范围的像素点生成红色像素点集合,统计所述红色像素点集合中包括的像素点总和生成红色点总数,对所述红色像素点集合的所有像素点的像素值进行求和计算生成红色像素值总和,根据所述红色像素值总和除以所述红色点总数的商生成第一索引帧红光通道数据;将所述第一索引帧红光通道数据作为信号点数据向所述第一红光数字信号进行信号点添加操作;
    步骤54,在所述第一索引帧图像中统计所有满足所述绿光像素阈值范围的像素点生成绿色像素点集合,统计所述绿色像素点集合中包括的像素点总和生成绿色点总数,对所述绿色像素点集合的所有像素点的像素值进行求和计算生成绿色像素值总和,根据所述绿色像素值总和除以所述绿色点总数的商生成第一索引帧绿光通道数据;将所述第一索引帧绿光通道数据作为信号点数据向所述第一绿光数字信号进行信号点添加操作;
    步骤55,将所述第一索引加1;
    步骤56,判断所述第一索引是否大于所述第一总数,如果所述第一索引小于或等于所述第一总数则转至步骤52,如果所述第一索引大于所述第一总数则转至步骤57;
    步骤57,将所述第一红光数字信号作为一维红光源信号提取处理结果,将所述第一绿光数字信号作为一维绿光源信号提取处理结果向上位处理流程传送。
  6. 根据权利要求1所述的生成光体积变化描记图法信号的方法,其特征 在于,所述根据预置的带通滤波频率阈值范围,对所述第一红光数字信号进行信号带通滤波预处理生成第二红光数字信号,对所述第一绿光数字信号进行信号带通滤波预处理生成第二绿光数字信号,具体包括:
    根据所述带通滤波频率阈值范围,在所述第一红光数字信号中,将信号频率低于所述带通滤波频率阈值范围的低频噪声信号点和信号频率高于所述带通滤波频率阈值范围的高频噪声信号点从所述第一红光数字信号中进行数字信号滤波处理,生成所述第二红光数字信号;
    根据所述带通滤波频率阈值范围,在所述第一绿光数字信号中,将信号频率低于所述带通滤波频率阈值范围的低频噪声信号点和信号频率高于所述带通滤波频率阈值范围的高频噪声信号点从所述第一绿光数字信号中进行数字信号滤波处理,生成所述第二绿光数字信号。
  7. 根据权利要求1所述的生成光体积变化描记图法信号的方法,其特征在于,所述对所述第二红光数字信号和所述第二绿光数字信号进行信号最大频差判断处理生成第一判断结果;当所述第一判断结果为达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行信号信噪比判断处理生成第二判断结果;当所述第二判断结果为所述达标信号标识时对所述第二红光数字信号和所述第二绿光数字信号进行光体积变化描记图法PPG信号生成处理生成所述缓存片段视频数据的第一PPG信号,具体包括:
    步骤71,对所述第二红光数字信号使用离散傅里叶变换进行数字信号时域频域转换生成红光频域信号,对所述第二绿光数字信号使用离散傅里叶变换进行数字信号时域频域转换生成绿光频域信号;从所述红光频域信号中提取能量最高频率生成红光最大频率,从所述绿光频域信号中提取能量最高频率生成绿光最大频率;计算所述红光最大频率与所述绿光最大频率的频率差生成红绿最大频差;当所述红绿最大频差未超过预置的最大频差阈值范围时设置所述第一判断结果为所述达标信号标识,当所述红绿最大频差超过所述最大频差阈值范围时设置所述第一判断结果为不达标信号标识;
    步骤72,当所述第一判断结果为所述达标信号标识时,根据预置的带阻滤波频率阈值范围,通过多阶巴特沃斯带阻滤波将信号频率满足所述带阻滤波频率阈值范围的有效信号点从所述第二红光数字信号中去除生成红光噪声信号,通过多阶巴特沃斯带阻滤波将信号频率满足所述带阻滤波频率阈值范围的有效信号点从所述第二绿光数字信号中去除生成绿光噪声信号;
    步骤73,计算所述第二红光数字信号的信号能量生成红光信号能量,计算所述红光噪声信号的信号能量生成红光噪声能量,根据所述红光信号能量减去所述红光噪声能量的差生成有效红光信号能量,根据所述有效红光信号能量与所述红光噪声能量的比值生成红光信噪比;
    步骤74,计算所述第二绿光数字信号的信号能量生成绿光信号能量,计算所述绿光噪声信号的信号能量生成绿光噪声能量,根据所述绿光信号能量减去所述绿光噪声能量的差生成有效绿光信号能量,根据所述有效绿光信号能量与所述绿光噪声能量的比值生成绿光信噪比;
    步骤75,当所述红光信噪比与所述绿光信噪比均小于预置的信噪比阈值设置所述第二判断结果为所述不达标信号标识,当所述红光信噪比与所述绿光信噪比中任一个大于或等于所述信噪比阈值则设置所述第二判断结果为所述达标信号标识;
    步骤76,当所述第二判断结果为所述达标信号标识时,设置所述第一PPG信号的红光数字信号为所述第二红光数字信号,设置所述第一PPG信号的绿光数字信号为所述第二绿光数字信号;所述第一PPG信号包括所述红光数字信号和所述绿光数字信号。
  8. 根据权利要求1所述的生成光体积变化描记图法信号的方法,其特征在于,所述方法还包括:
    当所述图像质量检测结果为所述不达标信号标识时,停止所述连续采集拍摄操作并生成皮肤表面脱离错误信息,再将所述皮肤表面脱离错误信息向所述移动终端传送,所述移动终端通过所述显示界面对所述皮肤表面脱离错 误信息进行警示信息显示处理;
    当所述第一判断结果为所述不达标信号标识时,停止所述连续采集拍摄操作和PPG信号生成处理流程并生成信号质量错误信息,再将所述信号质量错误信息向所述移动终端传送,所述移动终端通过所述显示界面对所述信号质量错误信息进行警示信息显示处理;
    当所述第二判断结果为所述不达标信号标识时,停止所述连续采集拍摄操作和PPG信号生成处理流程并生成信号质量错误信息,再将所述信号质量错误信息向所述移动终端传送,所述移动终端通过所述显示界面对所述信号质量错误信息进行警示信息显示处理。
  9. 一种设备,包括存储器和处理器,其特征在于,所述存储器用于存储程序,所述处理器用于执行如权利要求1至8任一项所述的方法。
  10. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1至8任一项所述的方法。
  11. 一种计算机可读存储介质,包括指令,当所述指令在计算机上运行时,使所述计算机执行根据权利要求1至8任一项所述的方法。
PCT/CN2020/129640 2020-02-21 2020-11-18 一种生成光体积变化描记图法信号的方法和装置 WO2021164350A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/904,692 US20220409077A1 (en) 2020-02-21 2020-11-18 Method and device for generating photoplethysmography signals
EP20919740.9A EP4108167A4 (en) 2020-02-21 2020-11-18 METHOD AND DEVICE FOR GENERATION OF PHOTOPLETHYSMOGRAPHIC SIGNALS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010110278.XA CN111297347B (zh) 2020-02-21 2020-02-21 一种生成光体积变化描记图法信号的方法和装置
CN202010110278.X 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021164350A1 true WO2021164350A1 (zh) 2021-08-26

Family

ID=71154898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129640 WO2021164350A1 (zh) 2020-02-21 2020-11-18 一种生成光体积变化描记图法信号的方法和装置

Country Status (4)

Country Link
US (1) US20220409077A1 (zh)
EP (1) EP4108167A4 (zh)
CN (1) CN111297347B (zh)
WO (1) WO2021164350A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111297347B (zh) * 2020-02-21 2022-07-29 乐普(北京)医疗器械股份有限公司 一种生成光体积变化描记图法信号的方法和装置
CN111759292B (zh) * 2020-06-24 2021-06-22 中国科学院西安光学精密机械研究所 一种人体心率、呼吸及血氧综合测量装置与方法
CN112315437A (zh) * 2020-10-12 2021-02-05 乐普(北京)医疗器械股份有限公司 一种基于视频数据进行血压预测的***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639799A (zh) * 2013-11-14 2015-05-20 财团法人工业技术研究院 影像式心率活动侦测装置及其方法
US20170007185A1 (en) * 2015-07-09 2017-01-12 National Taiwan University Of Science And Technology Non-contact method for detecting physiological signal and motion in real time
US20180360330A1 (en) * 2015-12-18 2018-12-20 Xim Limited A method, information processing apparatus and server for determining a physiological parameter of an individual
CN109820499A (zh) * 2018-12-24 2019-05-31 杨爽 基于视频的高抗干扰心率检测方法、电子设备及存储介质
US10398353B2 (en) * 2016-02-19 2019-09-03 Covidien Lp Systems and methods for video-based monitoring of vital signs
CN111297347A (zh) * 2020-02-21 2020-06-19 乐普(北京)医疗器械股份有限公司 一种生成光体积变化描记图法信号的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244949B2 (en) * 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
CN103702014B (zh) * 2013-12-31 2017-02-15 中国科学院深圳先进技术研究院 非接触式生理参数检测方法、***及装置
US10888280B2 (en) * 2016-09-24 2021-01-12 Sanmina Corporation System and method for obtaining health data using a neural network
CN109480808A (zh) * 2018-09-27 2019-03-19 深圳市君利信达科技有限公司 一种基于ppg的心率检测方法、***、设备和存储介质
CN110251115B (zh) * 2019-06-20 2022-02-18 张远 基于体表视频的ppg信号提取方法、***、设备及介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639799A (zh) * 2013-11-14 2015-05-20 财团法人工业技术研究院 影像式心率活动侦测装置及其方法
US20170007185A1 (en) * 2015-07-09 2017-01-12 National Taiwan University Of Science And Technology Non-contact method for detecting physiological signal and motion in real time
US20180360330A1 (en) * 2015-12-18 2018-12-20 Xim Limited A method, information processing apparatus and server for determining a physiological parameter of an individual
US10398353B2 (en) * 2016-02-19 2019-09-03 Covidien Lp Systems and methods for video-based monitoring of vital signs
CN109820499A (zh) * 2018-12-24 2019-05-31 杨爽 基于视频的高抗干扰心率检测方法、电子设备及存储介质
CN111297347A (zh) * 2020-02-21 2020-06-19 乐普(北京)医疗器械股份有限公司 一种生成光体积变化描记图法信号的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4108167A4

Also Published As

Publication number Publication date
EP4108167A4 (en) 2023-08-09
CN111297347A (zh) 2020-06-19
US20220409077A1 (en) 2022-12-29
CN111297347B (zh) 2022-07-29
EP4108167A1 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2021164350A1 (zh) 一种生成光体积变化描记图法信号的方法和装置
WO2021164348A1 (zh) 一种光体积变化描记图法信号的生成方法和装置
US10004410B2 (en) System and methods for measuring physiological parameters
AU2016293110B2 (en) Processing biological data
CN103702014B (zh) 非接触式生理参数检测方法、***及装置
WO2021184805A1 (zh) 一种多数据源的血压预测方法和装置
CN111797817B (zh) 情绪识别方法、装置、计算机设备及计算机可读存储介质
CN106063702A (zh) 一种基于人脸视频图像的心率检测***及检测方法
US12036021B2 (en) Non-contact fatigue detection system and method based on RPPG
CN112890792A (zh) 一种基于网络摄像头的云计算心血管健康监护***及方法
WO2022077887A1 (zh) 一种基于视频数据进行血压预测的***
KR102243012B1 (ko) 피부 영상을 이용한 혈관탄성도와 부정맥 진단 방법
CN113033358A (zh) 一种基于深度神经网络的无袖带血压建模方法
CN114271800B (zh) 一种办公环境下的非侵扰式连续血压监测方法及应用
KR20200061016A (ko) 얼굴 피부 영상을 이용한 우울증 지수 측정 및 진단 방법
EP3649613A2 (en) Method to derive a person's vital signs from an adjusted parameter
EP4027874B1 (fr) Procédé de détermination du taux respiratoire
CN115054209A (zh) 一种基于智能移动设备的多参数生理信息检测***和方法
CN109770885A (zh) 一种基于预览帧的快速心率检测方法
TWI783904B (zh) 非接觸式生理訊號量測方法與設備
CN116269285B (zh) 一种非接触式常态化心率变异性估计***
CN115736865A (zh) 基于视频脉搏波的同步无创血糖血压监测***
CN114931364A (zh) 一种非接触式心率和呼吸率检测方法、***、装置和存储介质
CN117158926A (zh) 一种长距离非接触式的生理参数的检测方法、***、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020919740

Country of ref document: EP

Effective date: 20220921