WO2021164029A1 - 充电桩及其控制方法 - Google Patents

充电桩及其控制方法 Download PDF

Info

Publication number
WO2021164029A1
WO2021164029A1 PCT/CN2020/076276 CN2020076276W WO2021164029A1 WO 2021164029 A1 WO2021164029 A1 WO 2021164029A1 CN 2020076276 W CN2020076276 W CN 2020076276W WO 2021164029 A1 WO2021164029 A1 WO 2021164029A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
state
charging
temperatures
charging device
Prior art date
Application number
PCT/CN2020/076276
Other languages
English (en)
French (fr)
Inventor
刘革胜
杨江辉
刘峰
匡平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/076276 priority Critical patent/WO2021164029A1/zh
Priority to CN202080002351.XA priority patent/CN113544930B/zh
Priority to CN202310861519.8A priority patent/CN116901751A/zh
Priority to EP20916234.6A priority patent/EP3907848B1/en
Priority to US17/382,168 priority patent/US11801765B2/en
Publication of WO2021164029A1 publication Critical patent/WO2021164029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • This application belongs to the technical field of charging piles, and in particular relates to a charging pile and a control method thereof.
  • the cooling fan and the pile-level fan work together to cool the charging device.
  • the noise generated by the simultaneous operation of the cooling fan and the pile fan is large, and the cooling effect does not achieve the expected effect, which affects the actual user experience.
  • the cooling fan and the pile-level fan also occupy a relatively large space of the charging pile, which is not conducive to the design and optimization of the charging pile.
  • the present application provides a charging pile and a control method thereof to solve the technical problems of poor heat dissipation effect, high noise, and poor user experience of the normal charging pile.
  • this application provides a method for controlling a charging pile, including:
  • the first temperature of at least one charging device in the first state in the charging pile is the working state
  • the first temperature is the air inlet ambient temperature of the charging device in the first state.
  • the charging device is equipped with a cooling fan.
  • the second state is a dormant state
  • the second temperature is the air inlet ambient temperature of the charging device in the second state.
  • the temperature difference value is greater than a first threshold value; wherein the first threshold value is an upper limit temperature of the temperature difference value.
  • the cooling fan of the charging device in the second state is activated.
  • the charging pile can take away the heat of each charging device in time, so that the ambient temperature of the air inlet of each charging device in the first state and the charging device in the second state can be kept within the normal range.
  • the method further includes: turning off the heat dissipation fan of the charging device in the second state when the temperature difference is less than or equal to a second threshold.
  • the second threshold is a lower limit temperature of the temperature difference, and the second threshold is less than or equal to the first threshold.
  • the ambient temperature of the air inlet of the charging device in the second state is reduced to a certain extent, it can be determined that the ambient temperature of the air inlet of the charging device in the second state is already within the normal range, and the charging pile will not be affected.
  • the charging operation which turns off its cooling fan.
  • the method further includes:
  • the cooling fan of the charging device in the second state is not started.
  • the cooling fan of the charging device in the second state is not activated to save energy and prolong the service life of the cooling fan.
  • the method further includes:
  • the cooling fan of the charging device in the second state is activated.
  • the heat dissipation fan of the charging device in the second state can be activated according to the heat dissipation requirement, so as to prevent possible accidents of over-temperature shutdown.
  • the obtaining the first temperature of at least one charging device in the first state in the charging pile includes: obtaining a plurality of first temperatures based on the plurality of charging devices in the first state. Wherein, the number of the plurality of first temperatures corresponds to the number of the charging devices in the first state.
  • the calculating the temperature difference between the second temperature and the first temperature includes:
  • the lowest temperature or the average temperature of the plurality of first temperatures is obtained.
  • the second temperature is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the second temperature is compared with the average temperature of the plurality of first temperatures to obtain the temperature difference.
  • first temperatures when there are multiple charging devices in the first state, multiple first temperatures can be obtained.
  • the lowest temperature among the plurality of first temperatures with the second temperature the smallest temperature difference between the charging device in the second state and the charging device in the first state can be accurately obtained, thereby determining the subsequent temperature difference.
  • Required operation Or, by comparing the average temperature of the plurality of first temperatures with the second temperature, the average temperature difference between the charging device in the second state and the charging device in the first state is obtained, thereby determining the subsequent Required operation.
  • the highest temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the highest temperature among the plurality of second temperatures is compared with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the lowest temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the lowest temperature among the plurality of second temperatures is compared with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the average temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the average temperature in the plurality of second temperatures is compared with the average temperature in the plurality of first temperatures to obtain the temperature difference.
  • a heat dissipation strategy can be adaptively configured according to usage requirements to reduce the ambient temperature of the air inlet of the plurality of charging devices 32 in the second state.
  • the method before the calculating the temperature difference between the second temperature and the first temperature, the method further includes:
  • the third threshold is an upper limit temperature of the second temperature.
  • the heat dissipation fan of the charging device in the second state is directly activated.
  • the temperature difference between the second temperature and the first temperature is calculated.
  • the heat dissipation fan of the charging device in the second state is directly activated to improve the heat dissipation efficiency of the charging device in the second state.
  • the present application also provides a charging pile, which includes a monitor and a charging component.
  • the charging assembly includes two or more charging devices, and the charging devices are all provided with a cooling fan and an ambient temperature sensor.
  • the charging device obtains the corresponding first temperature or second temperature through the ambient temperature sensor.
  • the first temperature is the ambient temperature of the air inlet of the charging device in the first state
  • the second temperature is the ambient temperature of the air inlet of the charging device in the second state
  • the first state is the working state
  • the first state is the working state.
  • the second state is the dormant state.
  • the monitor is used to receive and analyze the first temperature and the second temperature, and when the temperature difference between the second temperature and the first temperature is greater than a first threshold, start the second state
  • the cooling fan of the charging device is used to receive and analyze the first temperature and the second temperature, and when the temperature difference between the second temperature and the first temperature is greater than a first threshold, start the second state
  • the cooling fan of the charging device is used to receive and analyze the first temperature and the second temperature, and when the temperature difference between the second temperature and the first temperature is greater than a first threshold, start the second state
  • the cooling fan of the charging device is the upper limit temperature of the temperature difference.
  • the charging pile can take away the heat of each charging device in time, so that the ambient temperature of the air inlet of each charging device in the first state and the charging device in the second state can be kept within a normal range.
  • the monitor is further configured to turn off the cooling fan of the charging device in the second state when the temperature difference is less than or equal to a second threshold.
  • the second threshold is the lower limit temperature of the temperature difference, and the second threshold is less than or equal to the first threshold.
  • the ambient temperature of the air inlet of the charging device in the second state is reduced to a certain extent, it can be determined that the ambient temperature of the air inlet of the charging device in the second state is already within the normal range, and the charging pile will not be affected.
  • the charging operation which turns off its cooling fan.
  • the monitor is further configured to not start the cooling fan of the charging device in the second state when the temperature difference is less than or equal to the first threshold. In some other embodiments, the monitor is further configured to activate the cooling fan of the charging device in the second state when the temperature difference is equal to the first threshold.
  • the cooling fan of the charging device in the second state is not activated to save energy and prolong the service life of the cooling fan.
  • the heat dissipation fan of the charging device in the second state is activated to prevent possible accidents of over-temperature shutdown.
  • the monitor is configured to receive a plurality of first temperatures, and obtain the lowest temperature or an average temperature of the plurality of first temperatures.
  • the number of the plurality of first temperatures corresponds to the number of the charging devices in the first state.
  • the monitor is further used to compare the second temperature with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the second temperature is compared with the average temperature of the plurality of first temperatures to obtain the temperature difference.
  • the lowest temperature among the plurality of first temperatures is compared with the second temperature to accurately obtain the charging devices in the second state and the charging devices in the first state.
  • the minimum temperature difference between charging devices in a state thereby determining the subsequent required operations.
  • the average temperature difference between the charging device in the second state and the charging device in the first state is obtained, thereby determining the subsequent Required operation.
  • the monitor when there are multiple second temperatures, the monitor is also used to obtain the highest temperature, the lowest temperature or the average temperature among the multiple second temperatures.
  • the monitor is also used to compare the highest temperature among the plurality of second temperatures with the lowest temperature among the plurality of first temperatures to obtain the temperature difference. or,
  • the highest temperature among the plurality of second temperatures is compared with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the lowest temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the lowest temperature among the plurality of second temperatures is compared with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the average temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the average temperature in the plurality of second temperatures is compared with the average temperature in the plurality of first temperatures to obtain the temperature difference.
  • a heat dissipation strategy can be adaptively configured according to usage requirements to reduce the ambient temperature of the air inlet of the plurality of charging devices 32 in the second state.
  • the monitor is a device configured in the charging assembly, and the charging devices of the charging assembly communicate with each other through the monitor.
  • the monitor and the charging assembly are independent of each other. As a result, different monitors can be configured for the charging pile according to usage requirements.
  • the monitor is also used to determine whether the second temperature is greater than a third threshold.
  • the third threshold is the upper limit temperature of the second temperature.
  • the heat dissipation fan of the charging device in the second state is directly activated to improve the heat dissipation efficiency of the charging device in the second state.
  • the heat dissipation efficiency of the charging pile can be improved, and the possibility that the internal temperature of the charging pile may be too high can affect the charging efficiency, so as to improve the user experience effect.
  • the pile-level fan required by the normal charging pile can be removed, so as to reduce the cost of the charging pile and simplify the internal structure of the charging pile.
  • Figure 1 is a schematic diagram of a normal charging pile.
  • Fig. 2 is a schematic diagram of a charging pile provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of another charging pile provided by an embodiment of the present application.
  • Fig. 4 is a flowchart of a method for controlling a charging pile provided by an embodiment of the present application.
  • Fig. 5 is a flowchart of another charging pile control method provided by an embodiment of the present application.
  • a normal charging pile 1000 for an electric vehicle uses a charging device 1100 to charge the electric vehicle to support the normal driving of the electric vehicle.
  • the charging device 1100 In order to support high-power charging or fast charging of electric vehicles, the charging device 1100 also generates a large amount of heat during the charging process. If heat dissipation is not performed in time, the temperature of the charging pile 1000 will be too high and the charging efficiency will be reduced, or the charging pile 1000 will be shut down due to over-temperature. If the heat dissipation is not timely, there is also a greater safety hazard.
  • the normal charging pile 1000 sets the charging device 1100 between the air inlet 1000a and the air outlet 1000b, the cooling fan 1200 is arranged on the charging device 1100, and the high-power pile corresponding to the charging device 1100 is arranged on the air outlet 1200b.
  • the stage fan 1300 cooperates with the heat dissipation fan 1200 and the pile stage fan 1300 to take away the heat generated by the charging device 1100 during operation.
  • a high-power pile fan 1300 is provided corresponding to each charging device 1100 to dissipate heat of each charging device 1100.
  • the pile-level fan 1300 has a larger volume, higher energy consumption, and generates a lot of noise during operation, which makes the user experience poor, and also causes the product competitiveness of the charging pile 1000 to be relatively high. weak.
  • the working charging device 1100 when only part of the charging device 1100 in the normal charging pile 1000 is working, the working charging device 1100 will generate hot air with a lot of heat. Based on the suction effect of the working cooling fan 1200, the hot air easily flows back to the air inlet of the working charging device 1100 through the inoperative charging device 1100, as shown by the dotted line in FIG. 1. As a result, the normal charging pile 1000 may affect the normal operation due to the abnormal increase in the temperature of the air inlet of the charging device 1100 that is not working. When the pile-level fan 1300 fails and reduces its speed or stops rotating, the impact on the charging pile 1000 will be more serious.
  • the embodiments of the present application provide a charging pile and a control method of the charging pile, which can improve the heat dissipation efficiency of the charging pile, and prevent the charging pile from being too high in internal temperature and affecting the charging efficiency.
  • the pile-level fan required by the normal charging pile can be removed to reduce the cost and simplify the internal structure of the charging pile.
  • the embodiment of the present application provides charging posts (10a, 10b).
  • the charging pile (10a, 10b) includes a heat dissipation cavity 12, a monitor 20 and a charging assembly 30.
  • the heat dissipation cavity 12 has a convective air inlet 12a and an air outlet 12b, and is used to place the charging assembly 30. Therefore, the relatively independent heat dissipation cavity can facilitate the heat dissipation of the charging assembly 30, so that the heat dissipation cavity has a relatively suitable working temperature, so as to realize the rapid charging of the electric vehicle.
  • the charging assembly 30 includes two or more charging devices 32, and the charging devices 32 are used to charge the electric vehicle.
  • the charging devices 32 are placed in the area between the air inlet 12a and the air outlet 12b.
  • each charging device 32 is further provided with a heat dissipation fan 34, which is used to blow away the heat generated by the corresponding charging device 32 during operation, and discharge the heat through the air outlet 12b.
  • three charging devices 32 in the first state and one charging device 32 in the second state among the four charging devices 32 are used as examples;
  • the state is a working state
  • the second state is a dormant state.
  • the second state can be regarded as a temporarily non-working state, and accordingly, each charging device can switch between the first state and the second state as needed. For example, a certain charging device 32 is in the second state at the current moment, but at the next moment, the charging device 32 switches to the first state in response to the instruction.
  • the charging pile may also include five charging devices; alternatively, based on the difference in power required, there are two charging devices in the first state and two charging devices in the second state among the four charging devices. There are no restrictions on the charging device.
  • the charging device on the top is the charging device in the second state
  • the three charging devices on the bottom are the charging devices in the first state.
  • the cooling fans 1200 of the three charging devices 1100 will all be activated, so that the three charging devices 1100 will be generated during the working process.
  • the heat is discharged from the air outlet 1000b of the charging pile 1000.
  • four pile-level fans 1300 for cooperating with heat dissipation are also arranged at the position of the air outlet 1000b. These pile-level fans 1300 cooperate with the heat dissipation fan 1200 to blow the hot air to the rear of the charging device 1100. go.
  • the charging device 1100 in the second state in the charging post 1000 and its related structures will not start, plus the operation of the cooling fan 1200 of the charging device 11000 in the first state.
  • the charging device 1100 in the second state actually forms a reflux channel with the charging device 1100 in the first state. Based on this, the hot air blown by the cooling fan 1200 to the tail of the corresponding charging device 1100 easily flows back to the air inlet of the working charging device 1100 through the charging device 1100 in the second state, and circulates intensified through the return channel.
  • the ambient temperature of the air inlet of the charging device 1100 increases abnormally, and the charging efficiency of the charging pile 1000 for the electric vehicle is reduced, and the charging pile 1000 may even shut down abnormally.
  • the charging device 32 in each embodiment is provided with an ambient temperature sensor 36, and the ambient temperature sensor 36 is used to obtain the ambient temperature of the air inlet of the corresponding charging device 32.
  • the ambient temperature of the air inlet correspondingly acquired by the ambient temperature sensor 36 is taken as the first temperature.
  • the ambient temperature of the air inlet correspondingly acquired by the ambient temperature sensor 36 is taken as the second temperature.
  • the first temperature or the second temperature obtained by the ambient temperature sensor 36 is uploaded to the monitor 20.
  • the monitor 20 in a charging pile 10a provided in an embodiment of the present application, the monitor 20 is located outside the charging assembly 30, so that the monitor 20 and the charging assembly are independent of each other.
  • the monitor 20 may be a device configured in the charging assembly 30, that is, the monitor 20 is a part of the charging assembly 30 and is integrated in the charging assembly 30. In the assembly 30, the space occupied by the monitor 20 and the charging assembly 30 is thereby reduced, and more space is made available for heat dissipation or other devices.
  • the charging pile 10 can be equipped with different monitors 20 according to usage requirements.
  • the charging devices 32 of the charging assembly 30 may also communicate with each other through the monitor 20.
  • the ambient temperature sensor 36 in each charging device 32 uploads the acquired first temperature or second temperature to the monitor 20 for analysis by the monitor 20.
  • the monitor 20 determines whether the temperature difference between the second temperature and the first temperature is greater than the first threshold according to the temperature information, so as to determine whether to control the charging device 32 in the second state to perform related heat dissipation operations.
  • the first threshold refers to the upper limit temperature of the temperature difference.
  • the first threshold can be positive, negative, or zero. Based on the different relationship between the temperature difference and the first threshold, corresponding actions are taken.
  • the value of the first threshold can be adjusted according to requirements.
  • the first threshold is -3°C, -2°C, -1°C, 0°C, 1°C, 2°C, or 3°C and so on.
  • the charging piles (10a, 10b) provided by each embodiment can be applied to an underground garage or an open-air parking lot.
  • the first threshold and the second threshold mentioned below may be the same or different, and there is no restriction on this.
  • the monitor 20 in each embodiment is also used to directly start the cooling fan 34 of the charging device 32 in the second state when the acquired second temperature exceeds the third threshold;
  • the third threshold is the upper limit temperature of the second temperature.
  • the monitor 20 directly activates the cooling fan 34 of the charging device 32 in the second state, thereby increasing the temperature of the charging device 32 in the second state.
  • the heat dissipation efficiency of the charging device 32 can reduce the ambient temperature of the air inlet of the charging device 32 in time. For example: when the third threshold is 50°C and the second temperature is 51°C, 50°C ⁇ 51°C.
  • the monitor 20 determines that the air inlet ambient temperature of the charging device 32 in the second state exceeds the third threshold, and then starts the cooling fan 34 of the charging device 32 in the second state.
  • the charging pile 10a will be used as an example for description.
  • an embodiment of the present application provides a charging pile 10a, and the monitor 20 and the charging assembly 30 in the charging pile 10a are independent of each other.
  • the charging device 32 obtains the first temperature or the second temperature through the corresponding ambient temperature sensor 36 and uploads it to the monitor 20.
  • the monitor 20 Based on the acquired temperature information (ie, the first temperature and the second temperature), the monitor 20 calculates the temperature difference between the second temperature and the first temperature.
  • the monitor 20 can determine whether the temperature difference is greater than the first threshold, and when the temperature difference is greater than the first threshold, activate the cooling fan 34 of the charging device 32 in the second state.
  • the monitor 20 in this embodiment functions to monitor each charging device 32 of the charging assembly 30 and control each charging device 32 to perform related operations.
  • the monitor 20 determines the temperature difference between the charging device 32 in the second state and the charging device 32 in the first state.
  • the monitor 20 controls to start the charging in the second state The cooling fan 34 of the device 32.
  • the hot air is discharged from the air outlet 12b of the charging station 10a through the cooling fan 34, thereby removing the heat accumulated on the charging device 32 in the second state, and reducing the ambient temperature of the air inlet of the charging device 32 to ensure the charging station 10a normal operation and charging of electric vehicles.
  • the monitor 20 is also used to maintain the original state of the charging device 32 in the second state when the temperature difference is less than the first threshold. It should be understood that after the monitor 20 compares the temperature difference with the first threshold, if it is determined that the ambient temperature of the air inlet of the charging device 32 in the second state is within the normal range, there is no need to start the battery in the second state.
  • the cooling fan 34 of the charging device 32 is also used to maintain the original state of the charging device 32 in the second state when the temperature difference is less than the first threshold.
  • multiple first temperatures can be obtained correspondingly. It should be understood that the number of the multiple first temperatures is the same as the number of the charging devices 32 in the first state; that is, each charging device 32 in the first state corresponds to a first temperature.
  • the monitor 20 receives and analyzes the first temperatures, and obtains the lowest temperature among the first temperatures. After that, the second temperature is compared with the lowest temperature to obtain the temperature difference.
  • the ambient temperature of the air inlet of the charging device in the second state is T0
  • the ambient temperature of the air inlet of the charging device in the first state is T1
  • the temperature with the lowest value among the first temperatures T1 is T11.
  • a threshold is ⁇ T1.
  • the above-mentioned four charging devices 32 are also taken as an example for illustration. Since there are three charging devices 32 in the first state, three T1s can be obtained correspondingly. For example, if the air inlet ambient temperature T1 of the three charging devices 32 in the first state is 47°C, 48°C, and 49°C, respectively, the lowest temperature T11 obtained by the analysis of the monitor 20 is 47°C.
  • the monitor 20 compares T0 with T11 with the lowest value among the three T1s to obtain the temperature difference value T0-T11. For example, if the acquired second temperature T0 is 49.5°C, the temperature difference T0-T11 between the second temperature T0 and the lowest temperature T11 is 2.5°C.
  • the monitor 20 can learn by comparing the temperature difference T0-T11 with the first threshold ⁇ T1 that (T0-T11)> ⁇ T1. Therefore, the monitor 20 determines that the ambient temperature of the air inlet of the charging device 32 in the second state is too high, and activates the corresponding cooling fan 34 to reduce the ambient temperature of the air inlet of the charging device 32 in the second state.
  • the monitor 20 can know by comparing the temperature difference T0-T11 with the first threshold ⁇ T1, (T0-T11) ⁇ T1 .
  • the monitor 20 determines that the ambient temperature of the air inlet of the charging device 32 in the second state is in the normal range, and for this reason, the cooling fan of the charging device 32 in the second state is not activated.
  • the monitor 20 may also compare the second temperature with an average temperature among the plurality of first temperatures. That is, the monitor 20 receives and analyzes the first temperatures, and obtains the average temperature among the first temperatures. After that, the second temperature is compared with the average temperature to obtain a temperature difference value.
  • the average temperature of the multiple first temperatures T1 is T12, corresponding to the four charging devices 32 described above, for example, the air inlet ambient temperature T1 of the three charging devices 32 in the first state is 47°C, 48°C, and 49°C, respectively.
  • the average temperature T12 obtained by the monitor 20 through analysis is 48°C.
  • the second temperature T0 acquired by the monitor 20 is 49.5°C, and therefore, the temperature difference T0-T12 between the second temperature T0 and the average temperature T12 is 1.5°C.
  • the monitor 20 can know by comparing the temperature difference T0-T12 with the first threshold ⁇ T1 that (T0-T12)> ⁇ T1. Therefore, the monitor 20 determines that the ambient temperature of the air inlet of the charging device 32 in the second state is too high, and activates the corresponding cooling fan 34 to reduce the ambient temperature of the air inlet of the charging device 32 in the second state.
  • the monitor 20 can know by comparing the temperature difference T0-T12 with the first threshold ⁇ T1, (T0-T12) ⁇ T1 . Thus, the monitor 20 determines that the ambient temperature of the air inlet of the charging device 32 in the second state is in the normal range, and for this, the corresponding cooling fan 34 is not activated.
  • the cooling fan 34 of the charging device 32 in the second state is activated; while in other embodiments, The cooling fan of the charging device 32 in the second state is not activated. Based on this, the charging pile 10a can be adaptively configured with corresponding heat dissipation control strategies to meet different usage requirements.
  • the cooling fan 34 of the charging device 32 start the charging device 32 in the second state.
  • the monitor 20 is further configured to turn off the cooling fan 34 of the charging device 32 in the second state when the temperature difference is less than or equal to the second threshold.
  • the second threshold refers to the lower limit temperature of the temperature difference.
  • the second threshold is ⁇ T2, and the second threshold ⁇ T2 is less than or equal to the first threshold ⁇ T1. Therefore, when the ambient temperature of the air inlet of the charging device 32 in the second state drops to a certain level, the monitor 20 can determine that the ambient temperature of the air inlet of the charging device 32 in the second state has been within the normal range. It will affect the charging operation of the charging pile 10a, and thus the cooling fan 34 of the charging device 32 in the second state is turned off.
  • the monitor 20 activates the cooling fan 34 of the charging device 32 in the second state to take away the heat accumulated on the charging device 32 and reduce the ambient temperature of the air inlet; If the value is less than 2.5° C., the monitor 20 determines that the air inlet ambient temperature of the charging device 32 in the second state is within a normal range, and turns off the cooling fan 34 of the charging device 32 in the second state.
  • ⁇ T1 3°C
  • the monitor 20 determines that the air inlet ambient temperature of the charging device 32 in the second state is within the normal range, and turns off the cooling fan 34 of the charging device 32 in the second state. .
  • each charging device 32 in the second state has an air inlet ambient temperature; that is, the monitor 20 can obtain the corresponding multiple charging devices 32 in the second state.
  • a plurality of second temperatures of the charging device 32 in the state refer to at least two second temperatures.
  • the two charging devices 32 in the second state can obtain two second temperatures.
  • the values of the two second temperatures are different, there is a temperature with a relatively high value and a temperature with a relatively low value in the two second temperatures.
  • the two second temperatures are respectively 49°C and 51°C
  • the highest temperature of the two second temperatures is 51°C
  • the lowest temperature is 49°C
  • the average temperature is 50°C.
  • the values of the second temperature are the highest temperature, the lowest temperature and the average temperature at the same time; for example, if the two second temperatures are both 50°C, then the two second temperatures The highest temperature, lowest temperature and average temperature are all 50°C.
  • the monitor 20 can obtain the highest temperature, the lowest temperature or the average temperature among the multiple second temperatures, and use the highest temperature, the lowest temperature or the average temperature as the multiple
  • the overall second temperature of the charging device 32 in the second state is compared with the first temperature to obtain a temperature difference.
  • a heat dissipation strategy can be adaptively configured according to usage requirements, so as to reduce the ambient temperature of the air inlet of the plurality of charging devices 32 in the second state.
  • the monitor 20 may compare the highest temperature among the plurality of second temperatures with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the monitor 20 may compare the highest temperature among the plurality of second temperatures with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the monitor 20 may compare the lowest temperature among the plurality of second temperatures with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the monitor 20 may compare the lowest temperature among the plurality of second temperatures with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the monitor 20 compares the average temperature among the plurality of second temperatures with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the monitor 20 may compare the average temperature among the plurality of second temperatures with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the monitor 20 is configured in the charging assembly 30.
  • the charging devices 32 of the charging pile 10b can communicate with each other through the monitor 20.
  • the number of monitors 20 is one, and they are respectively connected to multiple charging devices 32 to receive the air inlet ambient temperature of the multiple charging devices 32.
  • the number of monitors 20 is not limited by this.
  • the charging pile may be provided with monitors 20 corresponding to the number of charging devices 32.
  • the charging pile is provided with four monitors 20 correspondingly, and the four monitors 20 are respectively arranged in the four charging devices 32.
  • the four monitors 20 can communicate with each other to share the air inlet ambient temperature of the charging device 32 obtained respectively. Therefore, the four monitors 20 can perform the operations in the above embodiments based on the ambient temperature of the air inlets.
  • the charging device 32 of the charging pile (10a, 10b) provided by each embodiment may also be provided with a device temperature sensor 38, and the device temperature sensor 38 is used to obtain the corresponding charging device 32 internal temperature.
  • the monitor 20 can obtain the internal temperature of the charging devices 32 when the charging devices 32 are all working or not working. Based on the internal temperature and the corresponding first temperature, the monitor 20 controls the cooling fans 34 of the charging devices 32 to operate according to a preset speed regulation mode.
  • the preset speed regulation mode refers to pre-setting the rotation speed of the heat dissipation fan according to the internal temperature and the first temperature.
  • the preset speed control mode is in the form of curve, table, formula or logical expression, and there is no restriction. Therefore, when the cooling fan is actually running, the speed of the cooling fan is controlled according to the preset speed regulation mode, and the heat generated by the working charging device is discharged in a timely manner.
  • the monitor 20 can also monitor information such as the output voltage and output power of the charging assembly 30 to implement functions such as billing or information monitoring.
  • charging posts (10a, 10b) in each embodiment may also be equipped with some necessary or unnecessary devices.
  • the charging post (10a, 10b) further includes a meter, which is connected to the monitor 20 and is used to convert the information of the electrical energy consumed during the charging process into corresponding cost information. Based on the cost information, the supplier or leaser of the charging pile (10a, 10b) can recover the relevant cost from the user.
  • the charging pile (10a, 10b) further includes a pile-level fan, which is arranged at the position of the air outlet 12b and cooperates with the heat dissipation fan 34 to perform heat dissipation operations.
  • the monitor 20 or the charging device 32 corresponding to the first state or the second state can control to increase the rotation speed of the corresponding pile-level fan, so as to improve the heat dissipation efficiency of the charging device 32.
  • the air inlet 12a and the air outlet 12b of the charging pile (10a, 10b) may be provided with a waterproof structure and/or a dust-proof net.
  • the waterproof structure can reduce the possibility of water mist penetrating into the charging pile (10a, 10b), and the dust-proof net can reduce the possibility of dust or small-volume garbage entering the charging pile (10a, 10b), thereby ensuring the charging assembly The normal operation of 30 other structures.
  • an embodiment of the present application also provides a control method of a charging pile.
  • the control method may include but is not limited to the following steps:
  • the charging assembly may include two or more charging devices.
  • a corresponding number of charging devices in the charging pile can be selectively called to output the required power.
  • step 101 and step 102 are not sequential, that is, step 101 can be performed first, and then step 102; alternatively, step 102 can be performed first, and then step 101; or, step 101 and step 102 can be performed at the same time. This is not limited.
  • an ambient temperature sensor can be installed in each charging device.
  • the ambient temperature sensor may be used to obtain the ambient temperature of the air inlet of the charging device; that is, the first temperature or the second temperature may be correspondingly obtained according to the state of the charging device.
  • the ambient temperature of the air inlet of the corresponding charging device is acquired through the ambient temperature sensor, so that the charging pile in each embodiment can monitor the temperature of each charging device in real time or at intervals to reduce the input of the charging pile.
  • the temperature of the tuyere is high and unexpected phenomena may occur.
  • the first temperature and the second temperature are analyzed.
  • the temperature difference between the charging device in the second state and the charging device in the first state can be determined, And perform related operations based on the temperature difference to ensure the normal operation of the charging pile.
  • the first threshold refers to the upper limit temperature of the temperature difference.
  • the first threshold can be positive, negative, or zero. Based on the different relationship between the temperature difference and the first threshold, corresponding actions are taken.
  • the value of the first threshold can be adjusted according to requirements.
  • the first threshold is -3°C, -2°C, -1°C, 0°C, 1°C, 2°C, or 3°C and so on.
  • the cooling fan of the charging device in the second state is started.
  • the heat dissipation fan discharges the hot air from the air outlet of the charging pile, thereby taking away the heat accumulated on the charging device, and reducing the ambient temperature of the air inlet of the charging device in the second state, so as to ensure the normal operation of the charging pile and the Electric vehicles are charged.
  • the rotation speed of the corresponding cooling fan after starting can be adjusted adaptively according to requirements. For example, the speed control of each cooling fan is controlled by PWM, and there is no restriction on this.
  • the charging pile based on this control method can take away the heat of each charging device in time to keep the ambient temperature of the air inlet of each charging device in the first state or the charging device in the second state within the normal range.
  • this control method can prevent the risk of over-temperature shutdown of the charging pile, so as to improve the user's experience of using the charging pile.
  • the charging pile may not be equipped with a pile-level fan, thereby simplifying the structure of the charging pile, reducing the cost of the charging pile, and to a certain extent, reducing the noise generated by the charging pile during the charging process. , In order to provide a relatively comfortable charging environment.
  • the charging assembly of the charging pile includes four charging devices, of which there are three charging devices in the first state and one charging device in the second state. illustrate.
  • the four charging devices are stacked on top of each other.
  • the uppermost charging device is the charging device in the second state, and the lower three charging devices are all the charging devices in the first state.
  • the cooling fans of the three charging devices will all be activated to discharge the heat generated by the three charging devices during the working process from the air outlet of the charging pile.
  • the control method in each embodiment monitors the ambient temperature of the air inlet of the four charging devices, and starts the charging in the second state when the ambient temperature of the air inlet of the charging device in the second state increases abnormally.
  • the cooling fan of the device In this way, the cooling fan blows away the hot air that may be returned by the charging device in the second state, breaking the circulation of the hot air flow between the charging device in the second state and the charging device in the first state, and lowering the charging device. There is a possibility that the temperature will increase and cause an accident.
  • the charging pile control method may also include the following steps after step 104:
  • the cooling fan of the charging device in the second state is not started.
  • step 105 by comparing the temperature difference with the first threshold, it is determined that the ambient temperature of the air inlet of the charging device in the second state is within the normal range. Therefore, the heat dissipation fan of the charging device in the second state is not activated, so as to save energy and prolong the service life of the heat dissipation fan. Please refer to FIG. 4 again. It should be understood that the judgment of the temperature difference in step 104 is still in progress, and when the temperature difference is greater than the first threshold, step 105 is executed.
  • the present application also provides another charging pile control method. Compared with the method in the foregoing embodiments, this method is before step 103, It also includes the following steps:
  • the heat dissipation fan of the charging device in the second state is directly activated. That is, in this embodiment, there is a pre-comparison step before performing step 103 to determine whether the ambient temperature of the air inlet of the charging device in the second state has reached a certain range. If yes, directly start the cooling fan of the charging device in the second state, and reduce the ambient temperature of the air inlet of the charging device in the second state in time; if not, perform the analysis in step 103.
  • the third threshold is 50°C and the obtained second temperature of the charging device in the second state is 51°C, it can be determined that the air inlet ambient temperature of the charging device in the second state exceeds the third threshold, then Start the cooling fan of the charging device in the second state.
  • the embodiment of the present application also provides a method for calculating the temperature difference between the second temperature and the first temperature, including:
  • the lowest temperature among the first temperatures is obtained.
  • first temperatures when there are multiple charging devices in the first state, multiple first temperatures can be obtained correspondingly.
  • the number of the multiple first temperatures is the same as the number of the charging devices 32 in the first state; that is, each charging device 32 in the first state corresponds to a first temperature. Based on the first temperatures, the method in this embodiment obtains the lowest temperature among the first temperatures to compare with the second temperature.
  • the second temperature is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the ambient temperature of the air inlet of the charging device in the second state is T0
  • the ambient temperature of the air inlet of the charging device in the first state is T1
  • the temperature with the lowest value among the multiple first temperatures T1 is T11
  • the first The threshold is ⁇ T1.
  • the above four charging devices are also taken as examples. Since there are three charging devices in the first state, three T1s can be obtained correspondingly.
  • the air inlet ambient temperature T1 of the three charging devices in the first state is 47°C, 48°C, and 49°C, respectively, and the lowest temperature T11 obtained by analysis is 47°C.
  • T0 is compared with the T11 with the lowest value among the three T1s to obtain the temperature difference T0-T11. For example, if the acquired second temperature T0 is 49.5°C, the temperature difference T0-T11 between the second temperature T0 and the lowest temperature T11 is 2.5°C.
  • the set first threshold ⁇ T1 is 1° C.
  • the temperature difference T0-T11 by comparing the temperature difference T0-T11 with the first threshold ⁇ T1, it can be known that (T0-T11)> ⁇ T1. Therefore, it is determined that the ambient temperature of the air inlet of the charging device in the second state is too high, and the corresponding cooling fan is activated to reduce the ambient temperature of the air inlet of the charging device in the second state.
  • the set first threshold ⁇ T1 when the set first threshold ⁇ T1 is 3° C., it can be known by comparing the temperature difference T0-T11 with the first threshold ⁇ T1 that (T0-T11) ⁇ T1. Thus, it is determined that the ambient temperature of the air inlet of the charging device in the second state is in the normal range, and for this, the cooling fan of the charging device in the second state is not activated.
  • the embodiment of the present application also provides another method for calculating the temperature difference between the second temperature and the first temperature. Compared with the above-mentioned embodiment, this embodiment compares the second temperature with the average of the first temperature. For temperature comparison, the method includes:
  • an average temperature among the first temperatures is obtained.
  • the second temperature is compared with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the average temperature of the multiple first temperatures T1 is T12, which corresponds to the four charging devices mentioned above for example.
  • the air inlet ambient temperature T1 of the three charging devices in the first state is 47°C, 48°C, and 49°C, respectively, and the average temperature T12 obtained by analysis is 48°C; and the second temperature T0 obtained is 49.5°C Therefore, the temperature difference T0-T12 between the second temperature T0 and the average temperature T12 is 1.5°C.
  • the set first threshold ⁇ T1 is 1° C.
  • the temperature difference T0-T12 by comparing the temperature difference T0-T12 with the first threshold ⁇ T1, it can be known that (T0-T12)> ⁇ T1. Therefore, it is determined that the ambient temperature of the air inlet of the charging device in the second state is too high, and the corresponding cooling fan is activated to reduce the ambient temperature of the air inlet of the charging device in the second state.
  • the set first threshold ⁇ T1 when the set first threshold ⁇ T1 is 3° C., it can be known by comparing the temperature difference T0-T12 with the first threshold ⁇ T1 that (T0-T12) ⁇ T1. Thus, it is determined that the ambient temperature of the air inlet of the charging device in the second state is in the normal range, and for this, the cooling fan of the charging device in the second state is not activated.
  • the control method of this application provides two types of embodiments, one is to start charging in the second state The cooling fan of the device; the other is the cooling fan of the charging device that is in the second state is not activated.
  • T0-T11 take the obtained temperature difference as T0-T11 as an example.
  • the set first threshold ⁇ T1 is 2.5° C.
  • T0-T11 the first threshold ⁇ T1
  • T0-T11 the ambient temperature of the air inlet of the charging device in the second state is in the normal range, and for this, the cooling fan of the charging device in the second state is not activated.
  • control method of the charging pile further includes: turning off the heat dissipation fan of the charging device in the second state when the temperature difference is less than or equal to a second threshold.
  • the second threshold refers to the lower limit temperature of the temperature difference.
  • the second threshold is ⁇ T2, and the second threshold ⁇ T2 is less than or equal to the first threshold ⁇ T1. Therefore, when the ambient temperature of the air inlet of the charging device in the second state is reduced to a certain extent, it can be determined that the ambient temperature of the air inlet of the charging device in the second state is already within the normal range, and the charging pile will not be affected.
  • the charging operation of the charging device turns off the cooling fan of the charging device in the second state.
  • the cooling fan of the charging device in the second state is activated to take away the heat accumulated on the charging device and reduce the ambient temperature of the air inlet.
  • the temperature difference is less than 2.5°C, it is determined that the ambient temperature of the air inlet of the charging device in the second state is within a normal range, and the heat dissipation fan of the charging device in the second state is turned off.
  • ⁇ T1 3°C
  • the temperature difference decreases to less than 1°C, it is determined that the ambient temperature of the air inlet of the charging device in the second state is within the normal range, and the cooling fan of the charging device in the second state is turned off.
  • each charging device in the second state has an air inlet ambient temperature; that is, the corresponding air inlet ambient temperature can be obtained for multiple charging devices in the second state.
  • Multiple second temperatures Similar to the charging posts (10a, 10b) in the foregoing embodiments, the multiple second temperatures in this embodiment refer to at least two second temperatures. Correspondingly, among the plurality of second temperatures, there are a second temperature with a relatively high value and a second temperature with a relatively low value.
  • the number of charging devices in the second state being two, and two charging devices in the second state can obtain two second temperatures.
  • the values of the two second temperatures are different, there is a temperature with a relatively high value and a temperature with a relatively low value in the two second temperatures.
  • the two second temperatures are respectively 49°C and 51°C, the highest temperature of the two second temperatures is 51°C, the lowest temperature is 49°C, and the average temperature is 50°C.
  • the values of the second temperature are the highest temperature, the lowest temperature and the average temperature at the same time; for example, if the two second temperatures are both 50°C, then the two second temperatures The highest temperature, lowest temperature and average temperature are all 50°C.
  • the highest temperature, the lowest temperature or the average temperature among the multiple second temperatures can be obtained, and the highest temperature, the lowest temperature or the average temperature can be used as multiple
  • the overall second temperature of the charging device in the second state is compared with the first temperature to obtain a temperature difference.
  • a heat dissipation strategy can be adaptively configured according to usage requirements to reduce the ambient temperature of the air inlet of the plurality of charging devices 32 in the second state.
  • the highest temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the highest temperature among the plurality of second temperatures is compared with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the lowest temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the lowest temperature among the plurality of second temperatures is compared with the average temperature among the plurality of first temperatures to obtain the temperature difference.
  • the average temperature among the plurality of second temperatures is compared with the lowest temperature among the plurality of first temperatures to obtain the temperature difference.
  • the average temperature in the plurality of second temperatures is compared with the average temperature in the plurality of first temperatures to obtain the temperature difference.
  • control method of the charging pile further includes: acquiring the internal temperature of the charging devices when the charging devices are all working or not working; and based on the internal temperature and the corresponding first temperature, adjusting the speed according to a preset The way to control the operation of the cooling fan of the working charging device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请公开了一种充电桩及其控制方法,方法包括:获取充电桩中至少一个处于第一状态的充电装置的第一温度;第一状态为工作状态,第一温度为处于第一状态的充电装置的入风口环境温度;其中,充电装置均设有散热风扇;获取充电桩中至少一个处于第二状态的充电装置的第二温度;第二状态为休眠状态,第二温度为处于第二状态的充电装置的入风口环境温度;计算第二温度与第一温度的温度差值;确定温度差值是否大于第一阈值;其中,第一阈值为温度差值的上限温度;在温度差值大于第一阈值时,启动处于第二状态的充电装置的散热风扇。

Description

充电桩及其控制方法 技术领域
本申请属于充电桩的技术领域,尤其涉及一种充电桩及其控制方法。
背景技术
随着电动汽车的发展,作为对电动汽车进行充电的一种电气设备,充电桩的需求也日益强烈。为了实现快速充电,充电桩的充电装置在给电动汽车充电的过程中会产生大量的热量。对此,常态的充电桩会在充电装置的两侧分别配置散热风扇和桩级风扇。通过散热风扇和桩级风扇的配合运作来给充电装置降温。但是,散热风扇和桩级风扇同时运作所产生的噪声较大,散热效果也没有达到预期效果,影响到用户的实际使用体验。此外,散热风扇和桩级风扇也相应占据了充电桩较大的空间,不利于对充电桩进行设计和优化。
发明内容
本申请提供了一种充电桩及其控制方法,以解决常态的充电桩的散热效果较差、噪声较大,以及用户的体验效果不佳的技术问题。
为了解决上述的技术问题,本申请提供了一种充电桩的控制方法,包括:
获取充电桩中至少一个处于第一状态的充电装置的第一温度;所述第一状态为工作状态,所述第一温度为所述处于第一状态的充电装置的入风口环境温度。其中,所述充电装置均设有散热风扇。
获取所述充电桩中至少一个处于第二状态的充电装置的第二温度;所述第二状态为休眠状态,所述第二温度为所述处于第二状态的充电装置的入风口环境温度。
计算所述第二温度与所述第一温度的温度差值。
确定所述温度差值是否大于第一阈值;其中,所述第一阈值为所述温度差值的上限温度。
在所述温度差值大于所述第一阈值时,启动所述处于第二状态的充电装置的散热风扇。
通过该方法,充电桩可以及时地将各充电装置的热量带走,以使各处于第一状态的充电装置和处于第二状态的充电装置的入风口环境温度保持在正常范围内。
一些实施例中,所述方法还包括:在所述温度差值小于或等于第二阈值时,关闭所述处于第二状态的充电装置的散热风扇。所述第二阈值为所述温度差值的下限温度,并且所述第二阈值小于或等于所述第一阈值。
由此,当处于第二状态的充电装置的入风口环境温度降低到一定程度后,可以确定该处于第二状态的充电装置的入风口环境温度已经在正常的范围内,不会影响到充电桩的充电作业,由此关闭其散热风扇。
一些实施例中,所述确定所述温度差值是否大于所述第一阈值,之后还包括:
在所述温度差值小于或等于所述第一阈值时,不启动所述处于第二状态的充电装置的散热风扇。
由此,通过比对温度差值与第一阈值,确定该处于第二状态的充电装置的入风口环境 温度在正常的范围内。相应的,不启动该处于第二状态的充电装置的散热风扇,以节约能源并延长该散热风扇的使用寿命。
一些实施例中,所述确定所述温度差值是否大于所述第一阈值,之后还包括:
在所述温度差值等于第一阈值时,启动所述处于第二状态的充电装置的散热风扇。
由此,通过比对温度差值与第一阈值,可以根据散热需求而启动该处于第二状态的充电装置的散热风扇,以预防可能出现的超温关机的意外。
一些实施例中,所述获取充电桩中至少一个处于第一状态的充电装置的第一温度,包括:基于多个处于第一状态的充电装置,获取多个第一温度。其中,所述多个第一温度的数量与所述处于第一状态的充电装置的数量相对应。
一些实施例中,所述计算所述第二温度与所述第一温度的温度差值,包括:
基于所述多个第一温度,得到所述多个第一温度中的最低温度或者平均温度。
比较所述第二温度与所述多个第一温度中的最低温度,以获取所述温度差值。或者,比较所述第二温度与所述多个第一温度中的平均温度,以获取所述温度差值。
应当理解,当处于第一状态的充电装置为多个时,可以得到多个第一温度。通过将多个第一温度中的最低温度来与第二温度比较,而准确地获取处于第二状态的充电装置和处于第一状态的充电装置之间的最小温度差异,由此以确定后续所需要的操作。或者,通过将多个第一温度中的平均温度来与第二温度比较,而获取处于第二状态的充电装置和处于第一状态的充电装置之间的平均温度差异,由此以确定后续所需要的操作。
一些实施例中,当所述第二温度为多个时,
将所述多个第二温度中的最高温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值。
或者,
将所述多个第二温度中的最高温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。
或者,
将所述多个第二温度中的最低温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值。
或者,
将所述多个第二温度中的最低温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。
或者,
将所述多个第二温度中的平均温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值。
或者,
将所述多个第二温度中的平均温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。
基于此,可以根据使用需求而适应性地配置散热策略,以降低多个处于第二状态的充电装置32的入风口环境温度。
一些实施例中,在所述计算所述第二温度与所述第一温度的温度差值之前,所述方法 还包括:
确定所述第二温度是否超过第三阈值;其中,所述第三阈值为所述第二温度的上限温度。
当所述第二温度大于所述第三阈值时,直接启动所述处于第二状态的充电装置的散热风扇。
当所述第二温度小于或等于所述第三阈值时,计算所述第二温度与所述第一温度的温度差值。
由此,如果获取到的处于第二状态的充电装置的入风口环境温度过高,则是直接启动处于第二状态的充电装置的散热风扇,以提高处于第二状态的充电装置的散热效率。
本申请还提供了一种充电桩,所述充电桩包括:监控器和充电组件。
所述充电组件包括两个或者多个充电装置,所述充电装置均设有散热风扇和环境温度传感器。
所述充电装置通过所述环境温度传感器获取对应的第一温度或者第二温度。所述第一温度为处于第一状态的充电装置的入风口环境温度,所述第二温度为处于第二状态的充电装置的入风口环境温度,所述第一状态为工作状态,所述第二状态为休眠状态。
所述监控器用于接收和分析所述第一温度和所述第二温度,并且在所述第二温度与所述第一温度的温度差值大于第一阈值时,启动所述处于第二状态的充电装置的散热风扇。其中,所述第一阈值为所述温度差值的上限温度。
由此,充电桩可以及时地将各充电装置的热量带走,以使各处于第一状态的充电装置和处于第二状态的充电装置的入风口环境温度保持在正常范围内。
一些实施例中,所述监控器还用于在所述温度差值小于或等于第二阈值时,关闭所述处于第二状态的充电装置的散热风扇。其中,所述第二阈值为所述温度差值的下限温度,并且所述第二阈值小于或等于所述第一阈值。
由此,当处于第二状态的充电装置的入风口环境温度降低到一定程度后,可以确定该处于第二状态的充电装置的入风口环境温度已经在正常的范围内,不会影响到充电桩的充电作业,由此关闭其散热风扇。
一些实施例中,所述监控器还用于在所述温度差值小于或者等于所述第一阈值时,不启动所述处于第二状态的充电装置的散热风扇。在其他的一些实施例中,所述监控器还用于在所述温度差值等于所述第一阈值时,启动所述处于第二状态的充电装置的散热风扇。
由此,通过比对温度差值与第一阈值,确定该处于第二状态的充电装置的入风口环境温度在正常的范围内。相应的,不启动该处于第二状态的充电装置的散热风扇,以节约能源并延长该散热风扇的使用寿命。或者,根据散热需求而启动该处于第二状态的充电装置的散热风扇,以预防可能出现的超温关机的意外。
一些实施例中,基于多个所述处于第一状态的充电装置,所述监控器用于接收多个第一温度,并得到所述多个第一温度中的最低温度或者平均温度。其中,所述多个第一温度的数量与所述处于第一状态的充电装置的数量相对应。
基于所述多个第一温度中的最低温度或者平均温度,所述监控器还用于比较所述第二温度与所述多个第一温度中的最低温度,以获取所述温度差值。或者,比较所述第二温度与所述多个第一温度中的平均温度,以获取所述温度差值。
应当理解,当获取的处于第一状态的充电装置为多个时,通过将多个第一温度中的最低温度来与第二温度比较,而准确地获取处于第二状态的充电装置和处于第一状态的充电装置之间的最小温度差异,由此以确定后续所需要的操作。或者,通过将多个第一温度中的平均温度来与第二温度比较,而获取处于第二状态的充电装置和处于第一状态的充电装置之间的平均温度差异,由此以确定后续所需要的操作。
一些实施例中,当所述第二温度为多个时,所述监控器还用于得到所述多个第二温度中的最高温度、最低温度或者平均温度。
所述监控器并用于将所述多个第二温度中的最高温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值。或者,
将所述多个第二温度中的最高温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。或者,
将所述多个第二温度中的最低温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值。或者,
将所述多个第二温度中的最低温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。或者,
将所述多个第二温度中的平均温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值。或者,
将所述多个第二温度中的平均温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。
基于此,可以根据使用需求而适应性地配置散热策略,以降低多个处于第二状态的充电装置32的入风口环境温度。
一些实施例中,所述监控器为配置于所述充电组件中的器件,所述充电组件的充电装置通过所述监控器互相通信。在其他的一些实施例中,所述监控器与所述充电组件相互独立。由此,可以根据使用需求而给充电桩配置不同的监控器。
一些实施例中,所述监控器还用于确定所述第二温度是否大于第三阈值。当所述第二温度大于第三阈值时,直接启动所述处于第二状态的充电装置的散热风扇;其中,所述第三阈值为所述第二温度的上限温度。
由此,如果获取到的处于第二状态的充电装置的入风口环境温度过高,则是直接启动其散热风扇,以提高处于第二状态的充电装置的散热效率。
本申请通过对充电桩的控制方法,可以提高充电桩的散热效率,预防充电桩出现内部温度过高而影响充电效率的可能,以提高用户的体验效果。
通过控制处于第二状态的充电装置及时启动散热风扇以进行散热,可以去掉常态充电桩所需要的桩级风扇、以降低充电桩的成本,并简化充电桩的内部结构。
附图说明
图1是常态的充电桩的示意图。
图2是本申请实施例提供的一种充电桩的示意图。
图3是本申请实施例提供的另一种充电桩的示意图。
图4是本申请实施例提供的一种充电桩的控制方法的流程图。
图5是本申请实施例提供的另一种充电桩的控制方法的流程图。
具体实施方式
为了对本申请的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本申请的具体实施方式。
请参考图1,在常态的用于电动汽车的充电桩1000中,其通过充电装置1100来为电动汽车充电,以支持电动汽车的正常行驶。而为了支持电动汽车的大功率充电或者快速充电,充电装置1100在充电过程中同样会产生大量的热量。如果不及时进行散热,则会使得充电桩1000的温度过高并使其充电效率下降、或进而导致充电桩1000超温关机,散热不及时的情况同时也存在较大的安全隐患。由此,常态的充电桩1000将充电装置1100设置在入风口1000a和出风口1000b之间,在充电装置1100上设置散热风扇1200,同时在出风口1200b上设置对应充电装置1100的大功率的桩级风扇1300,通过散热风扇1200和桩级风扇1300的配合运作,以带走充电装置1100工作时所产生的热量。
而为了确保散热效率,大功率的桩级风扇1300对应各个充电装置1100设置,以对各个充电装置1100进行散热。相应的,桩级风扇1300的体积较大、能耗较高并且在工作时会产生较大的噪声,由此使得用户的体验效果不佳,也导致了该些充电桩1000的产品竞争力较弱。
此外,当常态的充电桩1000中只有部分充电装置1100在工作时,由工作的充电装置1100会产生带有大量热量的热风。而基于工作的散热风扇1200的吸风作用,该些热风容易通过不工作的充电装置1100而回流到工作的充电装置1100的入风口,即如图1的虚线所示。由此,常态的充电桩1000会由于不工作的充电装置1100的入风口温度异常升高,而影响正常工作。当桩级风扇1300出现故障而降低转速或者停止转动时,对充电桩1000的影响会更加严重。
为了解决以上的问题,本申请的实施例提供了充电桩以及充电桩的控制方法,可以提高充电桩的散热效率,预防充电桩出现内部温度过高而影响充电效率的可能。此外,还可以去掉常态充电桩所需要的桩级风扇、以降低成本和简化充电桩的内部结构。
请同时参考图2和图3,本申请的实施例提供了充电桩(10a,10b)。
充电桩(10a,10b)包括:散热腔12、监控器20和充电组件30。散热腔12具有对流的入风口12a和出风口12b,并且用于放置该充电组件30。由此,通过相对独立的散热腔,可以便于充电组件30进行散热,以使该散热腔具有相对合适的工作温度,而实现对电动汽车的快速充电。
充电组件30包括两个或者多个充电装置32,该些充电装置32用于实现对电动汽车的充电作业。而为了及时排出充电装置32工作时产生的热量,将该些充电装置32置于入风口12a和出风口12b之间的区域。相应的,每一充电装置32还设有散热风扇34,该散热风扇34用于吹走对应的充电装置32工作时所产生的热量,并通过出风口12b排出该些热量。
为简化分析以便于理解本申请的技术方案,各实施例中是以四个充电装置32中有三个处于第一状态的充电装置32和一个处于第二状态的充电装置32来举例说明;第一状态 为工作状态,第二状态为休眠状态。应当理解,第二状态可认为是暂时不工作的状态,相应的,各充电装置可以根据需要而在第一状态和第二状态之间切换。比如:某一充电装置32在当前时刻是处于第二状态,但在下一时刻,该充电装置32响应指令而切换为第一状态。
在其他的一些实施例中,充电桩也可以包括五个充电装置;或者,基于所需功率的不同,四个充电装置中有两个处于第一状态的充电装置和两个处于第二状态的充电装置,对此不做限制。
各实施例中,记最上边的充电装置为处于第二状态的充电装置,下边三个充电装置为处于第一状态的充电装置。
请参考图1,在常态的充电桩1000中,下边的三个充电装置1100正常工作时,该三个充电装置1100的散热风扇1200均会启动,以将三个充电装置1100在工作过程中产生的热量从充电桩1000的出风口1000b排出。但是,常态的充电桩1000,还会在出风口1000b的位置设置用于配合散热的四个桩级风扇1300,该些桩级风扇1300配合散热风扇1200而将吹至充电装置1100尾部的热风带走。
但是,由于充电桩1000中处于第二状态的充电装置1100及其相关结构并不会启动,再加上处于第一状态的充电装置11000的散热风扇1200的运作。在温度差和气压差等的作用下,导致该处于第二状态的充电装置1100实际上与处于第一状态的充电装置1100形成回流通道。基于此,被散热风扇1200吹至对应充电装置1100尾部的热风,容易通过处于第二状态的充电装置1100而回流到工作的充电装置1100的入风口,并通过回流通道循环加剧。由此,充电装置1100的入风口环境温度异常升高,充电桩1000对电动汽车的充电效率下降,甚至会导致充电桩1000异常关机。
针对上面的问题,各实施例中的充电装置32设有环境温度传感器36,该环境温度传感器36用于获取对应的充电装置32的入风口环境温度。当充电装置32处于第一状态而输出功率时,将环境温度传感器36对应获取到的入风口环境温度作为第一温度。当充电装置32处于第二状态而不输出功率时,则将环境温度传感器36对应获取到的入风口环境温度作为第二温度。
一些实施例中,通过环境温度传感器36获取的第一温度或者第二温度,上传给监控器20。请参考图2,在本申请实施例提供的一种充电桩10a中,监控器20是位于充电组件30外,而使得监控器20与充电组件相互独立。请参考图3,在本申请实施例提供的另一种充电桩10b中,监控器20可以是配置在充电组件30中的器件,即,监控器20作为充电组件30的一部分,而集成在充电组件30中,以此减小监控器20和充电组件30所占据的空间,并腾出更多空间来实现散热或者容纳其他器件。
基于此,可以根据使用需求给充电桩10配置不同的监控器20。此外,充电组件30的各充电装置32之间也可以通过监控器20互相进行通信。
一些实施例中,各充电装置32中的环境温度传感器36将获取到的第一温度或者第二温度上传给监控器20,以供监控器20分析。相应的,监控器20根据该些温度信息,判断第二温度和第一温度的温度差值是否大于第一阈值,以确定是否控制处于第二状态的充电装置32进行相关的散热操作。
应当理解,该第一阈值是指温度差值的上限温度。第一阈值可以为正数、负数或者零。 基于温度差值与第一阈值的不同关系,以采取相应的操作。
由此,第一阈值的数值可以根据需求而有所调整。比如:该第一阈值为-3℃、-2℃、-1℃、0℃、1℃、2℃或者3℃等等。相应的,各实施例提供的充电桩(10a,10b)可以应用在地下车库或者露天停车场等场合。基于不同的场合,第一阈值以及在下面会提到的第二阈值均可以相同或者不同,对此不进行限制。
此外,请同步参考图2至图4,各实施例中的监控器20还用于在获取到的第二温度超过第三阈值时,直接启动处于第二状态的充电装置32的散热风扇34;第三阈值为第二温度的上限温度。
应当理解,如果处于第二状态的充电装置32的入风口环境温度在一段时间内持续大于第三阈值,则会降低充电桩的充电效率并缩短充电桩的使用寿命。因此,当获取到的处于第二状态的充电装置32的入风口环境温度过高,监控器20是直接启动该处于第二状态的充电装置32的散热风扇34,以此提高处于第二状态的充电装置32的散热效率,并及时降低该充电装置32的入风口环境温度。比如:第三阈值为50℃,而第二温度为51℃时,50℃<51℃。监控器20确定处于第二状态的充电装置32的入风口环境温度超过了第三阈值,则启动该处于第二状态的充电装置32的散热风扇34。
以下将以充电桩10a进行举例说明。
请参考图2,本申请实施例提供的一种充电桩10a,充电桩10a中的监控器20与充电组件30相互独立。充电装置32通过对应的环境温度传感器36获取第一温度或者第二温度,并上传给监控器20。基于获取到的该些温度信息(即第一温度和第二温度),监控器20计算第二温度和第一温度的温度差值。由此,该监控器20可以确定温度差值是否大于第一阈值,并且在温度差值大于第一阈值时,启动处于第二状态的充电装置32的散热风扇34。
应当理解,此实施例中的监控器20是起到监控充电组件30的各个充电装置32的作用,并控制各个充电装置32进行相关操作。监控器20确定处于第二状态下的充电装置32相对处于第一状态下的充电装置32的温度差值。当处于第二状态的充电装置32的入风口环境温度出现异常,而导致第二温度与第一温度之间的温度差值大于第一阈值时,监控器20控制启动该处于第二状态的充电装置32的散热风扇34。通过散热风扇34将热风从充电桩10a的出风口12b排出,以此带走积累在处于第二状态的充电装置32上的热量,并降低该充电装置32的入风口环境温度,以确保充电桩10a正常运作以及对电动汽车进行充电作业。
在其他的一些实施例中,监控器20还用于在该温度差值小于第一阈值时,使处于第二状态的充电装置32维持原来的状态。应当理解,当监控器20比对温度差值和第一阈值后,如果确定该处于第二状态的充电装置32的入风口环境温度在正常的范围内,则不需要启动该处于第二状态的充电装置32的散热风扇34。
一些实施例中,当处于第一状态的充电装置32为多个时,对应可以获取到多个第一温度。应当理解,多个第一温度的数量与处于第一状态的充电装置32的数量相同;即,每一个处于第一状态的充电装置32对应有一个第一温度。监控器20接收和分析该些第一温度,并得到该些第一温度中的最低温度。之后,将第二温度与该最低温度进行比较以获 取温度差值。
为了便于理解,记处于第二状态的充电装置的入风口环境温度为T0,处于第一状态的充电装置的入风口环境温度为T1,多个第一温度T1中数值最低的温度为T11,第一阈值为△T1。
同样以上述的四个充电装置32来举例说明。由于处于第一状态的充电装置32有三个,对应可以得到三个T1。比如:三个处于第一状态的充电装置32的入风口环境温度T1分别为47℃、48℃和49℃,则经监控器20分析所得到的最低温度T11为47℃。
基于该三个T1,监控器20比较T0与三个T1中数值最低的T11,以获取到温度差值T0-T11。比如:获取到的第二温度T0为49.5℃,则该第二温度T0与最低温度T11之间的温度差值T0-T11为2.5℃。
一些实施例中,当设定的第一阈值△T1为1℃时,监控器20通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)>△T1。由此,监控器20确定处于第二状态的充电装置32的入风口环境温度过高,并启动相应的散热风扇34,以降低该处于第二状态的充电装置32的入风口环境温度。
在其他的一些实施例中,当设定的第一阈值△T1为3℃时,监控器20通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)<△T1。由此,监控器20确定处于第二状态的充电装置32的入风口环境温度处于正常范围,对此,不启动该处于第二状态的充电装置32的散热风扇。
一些实施例中,监控器20还可以将第二温度与多个第一温度中的平均温度进行比较。即,监控器20接收和分析该些第一温度,并得到该些第一温度中的平均温度。之后,将第二温度与该平均温度进行比较以获取温度差值。
记多个第一温度T1的平均温度为T12,对应上述的四个充电装置32来举例说明,三个处于第一状态的充电装置32的入风口环境温度T1分别为47℃、48℃和49℃,则监控器20经分析所得到的平均温度T12为48℃。而监控器20获取到的第二温度T0为49.5℃,由此,该第二温度T0与平均温度T12之间的温度差值T0-T12为1.5℃。
一些实施例中,当设定的第一阈值△T1为1℃时,监控器20通过比较温度差值T0-T12与第一阈值△T1可以获知,(T0-T12)>△T1。由此,监控器20确定处于第二状态的充电装置32的入风口环境温度过高,并启动相应的散热风扇34,以降低该处于第二状态的充电装置32的入风口环境温度。
在其他的一些实施例中,当设定的第一阈值△T1为3℃时,监控器20通过比较温度差值T0-T12与第一阈值△T1可以获知,(T0-T12)<△T1。由此,监控器20确定处于第二状态的充电装置32的入风口环境温度处于正常范围,对此,不启动相应的散热风扇34。
针对温度差值(T0-T11,T0-T12)与第一阈值△T1相同的情形,一些实施例中是启动第二状态的充电装置32的散热风扇34;而在其他的一些实施例中则是不启动处于第二状态的充电装置32的散热风扇。基于此,可以适应性地为充电桩10a配置相应的散热控制策略,来满足不同的使用需求。
对应的,以获取的温度差值为T0-T11来举例。当设定的第一阈值△T1为2.5℃时,监控器20通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)=△T1。由此,监控器20确定处于第二状态的充电装置32的入风口环境温度处于正常范围,对此,不启动 处于第二状态的充电装置32的散热风扇。
在其他的一些实施例中,当设定的第一阈值△T1为2.5℃时,监控器20通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)=△T1。由此,监控器20确定处于第二状态的充电装置32的入风口环境温度相对较高,需要进行降温处理,以提前预防可能出现的超温关机的意外,对此,启动处于第二状态的充电装置32的散热风扇34。
一些实施例中,监控器20还用于在该温度差值小于或者等于第二阈值时,关闭该第二状态的充电装置32的散热风扇34。
应当理解,该第二阈值是指温度差值的下限温度。记第二阈值为△T2,第二阈值△T2小于或者等于第一阈值△T1。由此,当处于第二状态的充电装置32的入风口环境温度降低到一定程度后,监控器20可以确定该处于第二状态的充电装置32的入风口环境温度已经在正常的范围内,不会影响到充电桩10a的充电作业,由此关闭该处于第二状态的充电装置32的散热风扇34。
比如:△T1=△T2=2.5℃。当温度差值大于2.5℃,监控器20就启动处于第二状态的充电装置32的散热风扇34,以带走积累在该充电装置32上的热量,并降低其入风口环境温度;当温度差值小于2.5℃,监控器20确定该处于第二状态的充电装置32的入风口环境温度在正常的范围内,就关闭该处于第二状态的充电装置32的散热风扇34。
又比如:△T1=3℃,△T2=1℃。当温度差值大于3℃,监控器20就启动处于第二状态的充电装置32的散热风扇34,以带走积累在该充电装置32上的热量,并降低其入风口环境温度。而当温度差值降低到小于1℃,监控器20确定该处于第二状态的充电装置32的入风口环境温度在正常的范围内,就关闭该处于第二状态的充电装置32的散热风扇34。
一些实施例中,当处于第二状态的充电装置32为多个时,每一个处于第二状态的充电装置32均有一个入风口环境温度;即,监控器20可以得到对应多个处于第二状态的充电装置32的多个第二温度。应当理解,本实施例中的多个第二温度是指至少两个的第二温度。相应的,多个第二温度中有数值相对较高的第二温度、以及数值相对较低的第二温度。
为便于理解,以充电组件30中有两个处于第二状态的充电装置32来进行简要说明,两个处于第二状态的充电装置32可以得到两个第二温度。当两个第二温度的数值不同时,两个第二温度中就有一个数值相对较高的温度,以及一个数值相对较低的温度。比如:两个第二温度分别为49℃和51℃,则该两个第二温度中的最高温度为51℃,最低温度为49℃,平均温度为50℃。而当两个第二温度的数值相同时,该第二温度的数值即同时为最高温度、最低温度和平均温度;比如:两个第二温度均为50℃,则该两个第二温度中的最高温度、最低温度和平均温度均为50℃。
针对此类情况,在本申请实施例提供的充电桩10a中,监控器20可以得到多个第二温度中的最高温度、最低温度或者平均温度,并将最高温度、最低温度或者平均温度作为多个处于第二状态的充电装置32在整体上的第二温度,以与第一温度进行比较而获取温度差值。由此,可以根据使用需求而适应性地配置散热策略,以降低多个处于第二状态的充电装置32的入风口环境温度。
基于此,一些实施例中,监控器20可以将多个第二温度中的最高温度来与多个第一温度中的最低温度进行比较,以获取温度差值。或者,监控器20可以将多个第二温度中 的最高温度来与多个第一温度中的平均温度进行比较,以获取温度差值。
在其他的一些实施例中,监控器20可以将多个第二温度中的最低温度来与多个第一温度中的最低温度进行比较,以获取温度差值。或者,监控器20可以将多个第二温度中的最低温度来与多个第一温度中的平均温度进行比较,以获取温度差值。
在其他的一些实施例中,监控器20则是将多个第二温度中的平均温度来与多个第一温度中的最低温度进行比较,以获取温度差值。或者,监控器20可以将多个第二温度中的平均温度来与多个第一温度中的平均温度进行比较,以获取温度差值。
请参考图3,本申请实施例提供的另一种充电桩10b,与上述各实施例中的充电桩10a相比,监控器20是配置在充电组件30中。相应的,该充电桩10b的充电装置32彼此之间可以通过监控器20而实现互相通信。
应当理解,在图3例示的充电桩10b中,监控器20的数量为一个,并分别与多个充电装置32连接,以接收多个充电装置32的入风口环境温度。但,不以此限制监控器20的数量,在其他的一些实施例中,充电桩可以设有对应充电装置32数量的监控器20。比如:充电装置32的数量为四个,则充电桩对应设有四个监控器20,该四个监控器20分别设置在四个充电装置32内。相应的,四个监控器20之间可以互相通信,以分享各自得到的充电装置32的入风口环境温度。由此,该四个监控器20可以基于该些入风口环境温度,以进行如上各实施例中的操作。
请同时参考图2和图3,应当理解,各实施例提供的充电桩(10a,10b),其充电装置32还可以设有器件温度传感器38,该器件温度传感器38用于获取对应的充电装置32的内部温度。监控器20可以在充电装置32全部工作或者全部不工作时,获取该些充电装置32的内部温度。基于该内部温度和对应的第一温度,监控器20按照预设调速方式控制该些充电装置32的散热风扇34运行。
该预设调速方式是指根据内部温度和第一温度,而预先设置好散热风扇所具有的转速。比如:该预设调速方式为曲线形式、表格形式、公式形式或者逻辑表达式形式,不加限制。由此,当散热风扇实际运行时,则根据这个预设调速方式来控制散热风扇的转速,以及时将工作的充电装置所产生的热量排出。
应当理解,在上述各实施例的充电桩(10a,10b)中,监控器20还可以监控充电组件30的输出电压和输出功率等信息,以实现计费或者信息监控等功能。
此外,各实施例中的充电桩(10a,10b)还可以配置有一些必要的或者非必要的器件。
一些实施例中,充电桩(10a,10b)还包括计费器,该计费器连接监控器20,并用于根据充电过程消耗的电能信息,而转换成相应的费用信息。基于该费用信息,充电桩(10a,10b)的供应商或者出租商可以向用户回收相关费用。
一些实施例中,充电桩(10a,10b)还包括桩级风扇,该桩级风扇设置在出风口12b的位置上,并配合散热风扇34进行散热作业。在散热风扇34出现问题时,监控器20或者对应第一状态或者第二状态的充电装置32可以控制提高对应的桩级风扇的转速,以提高该充电装置32的散热效率。
一些实施例中,充电桩(10a,10b)的入风口12a和出风口12b可以设置防水结构和/ 或防尘网。该防水结构可以降低水雾渗入到充电桩(10a,10b)的内部的可能,该防尘网可以降低灰尘或者小体积垃圾进入充电桩(10a,10b)的内部的可能,以此确保充电组件30等结构的正常运作。
请参考图4,本申请实施例还提供的一种充电桩的控制方法,该控制方法可以包括但不限于以下步骤:
101:获取充电组件中至少一个处于第一状态的充电装置的第一温度,该第一温度为该处于第一状态的充电装置相对充电桩的入风口环境温度。
对应上述各实施例中的充电桩(10a,10b),充电组件可以包括两个或者多个充电装置。由此,根据电动汽车所需的功率,可以选择性地调用充电桩中对应数量的充电装置来输出所需的功率。一些实施例中,在对电动汽车进行充电的过程中,充电桩内部会有处于第一状态的充电装置和处于第二状态的充电装置。
102:获取充电组件中至少一个处于第二状态的充电装置的第二温度,该第二温度为该处于第二状态的充电装置相对充电桩的入风口环境温度。
应当理解,步骤101和步骤102并没有先后之分,即可以先进行步骤101,再进行步骤102;或者,可以先进行步骤102,再进行步骤101;或者,同时进行步骤101和步骤102,对此不做限制。
基于该步骤102,可以在每一个充电装置内设置环境温度传感器。该环境温度传感器可以用于获取该充电装置的入风口环境温度;即,根据充电装置的状态对应获取第一温度或者第二温度。各实施例中,通过环境温度传感器获取对应的充电装置的入风口环境温度,而使得各实施例中的充电桩可以实时或者间隔时间对各充电装置的温度情况进行监控,以降低充电桩的入风口温度较高而出现意外现象的可能。
103:计算第二温度与第一温度的温度差值。
基于以上获取的第一温度和第二温度,对该第一温度和第二温度进行分析。通过分析处于第一状态下的充电装置与处于第二状态下的充电装置各自所处的温度环境,可以确定处于第二状态下的充电装置相对处于第一状态下的充电装置的温度差值,并基于该温度差值进行相关操作,以确保充电桩的正常运作。
104:确定温度差值是否大于第一阈值。
应当理解,该第一阈值是指温度差值的上限温度。第一阈值可以为正数、负数或者零。基于温度差值与第一阈值的不同关系,以采取相应的操作。
由此,第一阈值的数值可以根据需求而有所调整。比如:该第一阈值为-3℃、-2℃、-1℃、0℃、1℃、2℃或者3℃等等。
105:在温度差值大于第一阈值时,启动处于第二状态的充电装置的散热风扇。
基于该步骤,当处于第二状态的充电装置的入风口环境温度出现异常,而导致其温度差值大于第一阈值时,启动该处于第二状态的充电装置的散热风扇。通过该散热风扇将热风从充电桩的出风口排出,以此带走积累在该充电装置上的热量,并降低处于第二状态的充电装置的入风口环境温度,以确保充电桩正常运作以及对电动汽车进行充电作业。应当理解,在每一充电装置中,其对应的散热风扇在启动后的转速可以根据需求而适应性调整。比如:各散热风扇通过PWM的方式进行调速控制,对此不加限制。
基于此控制方法的充电桩可以及时地将各充电装置的热量带走,以使各处于第一状态的充电装置或者处于第二状态的充电装置的入风口环境温度保持在正常范围内。在一些实施方式中,通过该控制方法可以防止充电桩出现超温关机的风险,以提高用户对充电桩的使用体验。在一些实施方式中,基于该控制方法,充电桩可以不设置桩级风扇,以此简化充电桩的结构,降低充电桩的成本并且在一定程度上可以降低充电桩在充电过程中所产生的噪声,以提供相对舒适的充电环境。
为简化分析以便于理解本申请的技术方案,各实施例中是以充电桩的充电组件包括四个充电装置,其中有三个处于第一状态的充电装置和一个处于第二状态的充电装置来举例说明。
四个充电装置上下层叠设置,记最上边的充电装置为处于第二状态的充电装置,下边三个充电装置均为处于第一状态的充电装置。当下边的三个充电装置正常工作时,该三个充电装置的散热风扇均会启动,以将三个充电装置在工作过程中产生的热量从充电桩的出风口排出。而在常态的充电桩中,容易在工作的充电装置和非工作的充电装置之间形成热风回流的通道,以此使得充电装置的入风口环境温度异常升高,充电桩对电动汽车的充电效率下降。
基于此,各实施例中的控制方法通过监控四个充电装置的入风口环境温度,在处于第二状态的充电装置的入风口环境温度出现异常升高时,就启动该处于第二状态的充电装置的散热风扇。以此,该散热风扇将可能通过处于第二状态的充电装置实现回流的热风吹走,打***于第二状态的充电装置与处于第一状态的充电装置之间的热风流动循环,并降低充电装置出现温度升高而导致意外的可能。
本申请实施例提供的充电桩的控制方法除了包括以上101至105的步骤外,在步骤104之后,还可以包括以下的步骤:
在该温度差值小于第一阈值时,不启动处于第二状态的充电装置的散热风扇。
在此步骤中,通过比对温度差值与第一阈值,确定处于第二状态的充电装置的入风口环境温度在正常的范围内。由此,不启动该处于第二状态的充电装置的散热风扇,以节约能源并延长该散热风扇的使用寿命。请再参考图4,应当理解,步骤104中对温度差值的判断依旧在进行,并且当温度差值大于第一阈值时,则执行步骤105。
请参考图5,为了提高处于第二状态的充电装置的散热效率,本申请还提供了另一种充电桩的控制方法,与上述各实施例中的方法相比,该方法在步骤103之前,还包括以下步骤:
106:确定第二温度是否超过第三阈值。
在此步骤中,如果获取到的处于第二状态的充电装置的入风口环境温度过高,则是直接启动该处于第二状态的充电装置的散热风扇。即此实施例中,在进行步骤103之前会有一个预先比对的步骤,来确定处于第二状态的充电装置的入风口环境温度是否已经高到一定的范围。如果是,就直接启动处于第二状态的充电装置的散热风扇,以及时降低该处于第二状态的充电装置的入风口环境温度;如果不是,则进行步骤103的分析。比如:第三阈值为50℃,而得到的处于第二状态的充电装置的第二温度为51℃时,可以确定该处于第二状态的充电装置的入风口环境温度超过了第三阈值,则启动该处于第二状态的充电装置的散热风扇。
本申请实施例还提供了一种计算第二温度和第一温度的温度差值的方法,包括:
基于获取的多个第一温度,得到该些第一温度中的最低温度。
应当理解,当处于第一状态的充电装置为多个时,对应可以获取到多个第一温度。多个第一温度的数量与处于第一状态的充电装置32的数量相同;即,每一个处于第一状态的充电装置32对应有一个第一温度。基于该些第一温度,本实施例中的方法是通过得到该些第一温度中的最低温度,以与第二温度进行比较。
比较第二温度与多个第一温度中的最低温度,以获取温度差值。
类似的,记处于第二状态的充电装置的入风口环境温度为T0,处于第一状态的充电装置的入风口环境温度为T1,多个第一温度T1中数值最低的温度为T11,第一阈值为△T1。
同样以上述的四个充电装置来举例说明。由于处于第一状态的充电装置有三个,对应可以得到三个T1。比如:三个处于第一状态的充电装置的入风口环境温度T1分别为47℃、48℃和49℃,则经分析所得到的最低温度T11为47℃。
基于该三个T1,T0与三个T1中数值最低的T11进行比较,以获取到温度差值T0-T11。比如:获取到的第二温度T0为49.5℃,则该第二温度T0与最低温度T11之间的温度差值T0-T11为2.5℃。
一些实施例中,当设定的第一阈值△T1为1℃时,通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)>△T1。由此,确定处于第二状态的充电装置的入风口环境温度过高,并启动相应的散热风扇,以降低该处于第二状态的充电装置的入风口环境温度。
在其他的一些实施例中,当设定的第一阈值△T1为3℃时,通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)<△T1。由此,确定处于第二状态的充电装置的入风口环境温度处于正常范围,对此,不启动处于第二状态的充电装置的散热风扇。
本申请实施例还提供了另一种计算第二温度和第一温度的温度差值的方法,与上述的实施例相比,该实施例是将第二温度与多个第一温度中的平均温度进行比较,该方法包括:
基于获取的多个第一温度,得到该些第一温度中的平均温度。比较第二温度与多个第一温度中的平均温度,以获取温度差值。
记多个第一温度T1的平均温度为T12,对应上述的四个充电装置来举例说明。三个处于第一状态的充电装置的入风口环境温度T1分别为47℃、48℃和49℃,则经分析所得到的平均温度T12为48℃;而获取到的第二温度T0为49.5℃;由此,该第二温度T0与平均温度T12之间的温度差值T0-T12为1.5℃。
一些实施例中,当设定的第一阈值△T1为1℃时,通过比较温度差值T0-T12与第一阈值△T1可以获知,(T0-T12)>△T1。由此,确定处于第二状态的充电装置的入风口环境温度过高,并启动相应的散热风扇,以降低该处于第二状态的充电装置的入风口环境温度。
在其他的一些实施例中,当设定的第一阈值△T1为3℃时,通过比较温度差值T0-T12与第一阈值△T1可以获知,(T0-T12)<△T1。由此,确定处于第二状态的充电装置的入风口环境温度处于正常范围,对此,不启动处于第二状态的充电装置的散热风扇。
而针对温度差值(T0-T11,T0-T12)与第一阈值△T1相同的情形,对应的,本申请的控制方法提供了两类型的实施例,一类是启动处于第二状态的充电装置的散热风扇;另一类则是不启动处于第二状态的充电装置的散热风扇。
对应的,以获取的温度差值为T0-T11来举例。当设定的第一阈值△T1为2.5℃时,通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)=△T1。由此,确定处于第二状态的充电装置的入风口环境温度处于正常范围,对此,不启动处于第二状态的充电装置的散热风扇。
在其他的一些实施例中,当设定的第一阈值△T1为2.5℃时,通过比较温度差值T0-T11与第一阈值△T1可以获知,(T0-T11)=△T1。由此,确定处于第二状态的充电装置的入风口环境温度相对较高,需要进行降温处理,以提前预防可能出现的超温关机的意外,对此,启动处于第二状态的充电装置的散热风扇。
一些实施例中,该充电桩的控制方法还包括:在该温度差值小于或者等于第二阈值时,关闭该处于第二状态的充电装置的散热风扇。
应当理解,该第二阈值是指温度差值的下限温度。记第二阈值为△T2,该第二阈值△T2小于或者等于第一阈值△T1。由此,当处于第二状态的充电装置的入风口环境温度降低到一定程度后,可以确定该处于第二状态的充电装置的入风口环境温度已经在正常的范围内,不会影响到充电桩的充电作业,由此关闭该处于第二状态的充电装置的散热风扇。
比如:△T1=△T2=2.5℃。当温度差值大于2.5℃,就启动处于第二状态的充电装置的散热风扇,以带走积累在该充电装置上的热量,并降低其入风口环境温度。当温度差值小于2.5℃,确定该处于第二状态的充电装置的入风口环境温度在正常的范围内,就关闭该处于第二状态的充电装置的散热风扇。
又比如:△T1=3℃,△T2=1℃。当温度差值大于3℃,就启动处于第二状态的充电装置的散热风扇,以带走积累在该充电装置上的热量,并降低其入风口环境温度。而当温度差值降低到小于1℃,确定该处于第二状态的充电装置的入风口环境温度在正常的范围内,就关闭该处于第二状态的充电装置的散热风扇。
一些实施例中,当处于第二状态的充电装置为多个时,每一个处于第二状态的充电装置均有一个入风口环境温度;即,可以得到对应多个处于第二状态的充电装置的多个第二温度。与上述各实施例中的充电桩(10a,10b)类似,本实施例中的多个第二温度是指至少两个的第二温度。相应的,多个第二温度中有数值相对较高的第二温度、以及数值相对较低的第二温度。
为便于理解,以处于第二状态的充电装置的数量为两个来进行简要说明,两个处于第二状态的充电装置可以得到两个第二温度。当两个第二温度的数值不同时,两个第二温度中就有一个数值相对较高的温度,以及一个数值相对较低的温度。比如:两个第二温度分别为49℃和51℃,则该两个第二温度中的最高温度为51℃,最低温度为49℃,平均温度为50℃。而当两个第二温度的数值相同时,该第二温度的数值即同时为最高温度、最低温度和平均温度;比如:两个第二温度均为50℃,则该两个第二温度中的最高温度、最低温度和平均温度均为50℃。
针对此类情况,在本申请实施例提供的充电桩的控制方法中,可以得到多个第二温度中的最高温度、最低温度或者平均温度,并将最高温度、最低温度或者平均温度作为多个处于第二状态的充电装置在整体上的第二温度,以与第一温度进行比较而获取温度差值。基于此,可以根据使用需求而适应性地配置散热策略,以降低多个处于第二状态的充电装置32的入风口环境温度。
基于此,一些实施例中,将多个第二温度中的最高温度来与多个第一温度中的最低温度进行比较,以获取温度差值。或者,将多个第二温度中的最高温度来与多个第一温度中的平均温度进行比较,以获取温度差值。
在其他的一些实施例中,将多个第二温度中的最低温度来与多个第一温度中的最低温度进行比较,以获取温度差值。或者,将多个第二温度中的最低温度来与多个第一温度中的平均温度进行比较,以获取温度差值。
在其他的一些实施例中,将多个第二温度中的平均温度来与多个第一温度中的最低温度进行比较,以获取温度差值。或者,将多个第二温度中的平均温度来与多个第一温度中的平均温度进行比较,以获取温度差值。
一些实施例中,该充电桩的控制方法还包括:在充电装置全部工作或者全部不工作时,获取该些充电装置的内部温度;基于该内部温度和对应的第一温度,按照预设调速方式控制工作的充电装置的散热风扇运行。
以上公开的仅为本申请具体的实施例,但是本申请并非局限于此,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。显然这些改动和变型均应属于本申请要求的保护范围保护内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本申请构成任何特殊限制。

Claims (16)

  1. 一种充电桩的控制方法,其特征在于,包括:
    获取充电桩中至少一个处于第一状态的充电装置的第一温度;所述第一状态为工作状态,所述第一温度为所述处于第一状态的充电装置的入风口环境温度;其中,所述充电装置均设有散热风扇;
    获取所述充电桩中至少一个处于第二状态的充电装置的第二温度;所述第二状态为休眠状态,所述第二温度为所述处于第二状态的充电装置的入风口环境温度;
    计算所述第二温度与所述第一温度的温度差值;
    确定所述温度差值是否大于第一阈值;其中,所述第一阈值为所述温度差值的上限温度;
    在所述温度差值大于所述第一阈值时,启动所述处于第二状态的充电装置的散热风扇。
  2. 如权利要求1所述的充电桩的控制方法,其特征在于,所述方法还包括:
    在所述温度差值小于或等于第二阈值时,关闭所述处于第二状态的充电装置的散热风扇;所述第二阈值为所述温度差值的下限温度,并且所述第二阈值小于或等于所述第一阈值。
  3. 如权利要求1或2所述的充电桩的控制方法,其特征在于,所述确定所述温度差值是否大于所述第一阈值,之后还包括:
    在所述温度差值小于或等于所述第一阈值时,不启动所述处于第二状态的充电装置的散热风扇。
  4. 如权利要求1或2所述的充电桩的控制方法,其特征在于,所述确定所述温度差值是否大于所述第一阈值,之后还包括:
    在所述温度差值等于第一阈值时,启动所述处于第二状态的充电装置的散热风扇。
  5. 如权利要求1或2所述的充电桩的控制方法,其特征在于,所述获取充电桩中至少一个处于第一状态的充电装置的第一温度,包括:基于多个处于第一状态的充电装置,获取多个第一温度;其中,所述多个第一温度的数量与所述处于第一状态的充电装置的数量相对应。
  6. 如权利要求5所述的充电桩的控制方法,其特征在于,所述计算所述第二温度与所述第一温度的温度差值,包括:
    基于所述多个第一温度,得到所述多个第一温度中的最低温度或者平均温度;
    比较所述第二温度与所述多个第一温度中的最低温度,以获取所述温度差值;或者,比较所述第二温度与所述多个第一温度中的平均温度,以获取所述温度差值。
  7. 如权利要求6所述的充电桩的控制方法,其特征在于,当所述第二温度为多个时,
    将所述多个第二温度中的最高温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值;
    或者,
    将所述多个第二温度中的最高温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值;
    或者,
    将所述多个第二温度中的最低温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值;
    或者,
    将所述多个第二温度中的最低温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值;
    或者,
    将所述多个第二温度中的平均温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值;
    或者,
    将所述多个第二温度中的平均温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。
  8. 如权利要求1或2所述的充电桩的控制方法,其特征在于,在所述计算所述第二温度与所述第一温度的温度差值之前,所述方法还包括:
    确定所述第二温度是否超过第三阈值;其中,所述第三阈值为所述第二温度的上限温度;
    当所述第二温度大于所述第三阈值时,直接启动所述处于第二状态的充电装置的散热风扇;
    当所述第二温度小于或等于所述第三阈值时,计算所述第二温度与所述第一温度的温度差值。
  9. 一种充电桩,用于为电动汽车充电,其特征在于,所述充电桩包括:监控器和充电组件;
    所述充电组件包括两个或者多个充电装置,所述充电装置均设有散热风扇和环境温度传感器;
    所述充电装置通过所述环境温度传感器获取对应的第一温度或者第二温度;所述第一温度为处于第一状态的充电装置的入风口环境温度,所述第二温度为处于第二状态的充电装置的入风口环境温度,所述第一状态为工作状态,所述第二状态为休眠状态;
    所述监控器用于接收和分析所述第一温度和所述第二温度,并且在所述第二温度与所述第一温度的温度差值大于第一阈值时,启动所述处于第二状态的充电装置的散热风扇;其中,所述第一阈值为所述温度差值的上限温度。
  10. 如权利要求9所述的充电桩,其特征在于,所述监控器还用于在所述温度差值小于或等于第二阈值时,关闭所述处于第二状态的充电装置的散热风扇;其中,所述第二阈值为所述温度差值的下限温度,并且所述第二阈值小于或等于所述第一阈值。
  11. 如权利要求9或10所述的充电桩,其特征在于,所述监控器还用于在所述温度差值小于或者等于所述第一阈值时,不启动所述处于第二状态的充电装置的散热风扇。
  12. 如权利要求9或10所述的充电桩,其特征在于,所述监控器还用于在所述温度差值等于所述第一阈值时,启动所述处于第二状态的充电装置的散热风扇。
  13. 如权利要求9或10所述的充电桩,其特征在于,基于多个所述处于第一状态的充电装置,所述监控器用于接收多个第一温度,并得到所述多个第一温度中的最低温度或 者平均温度;其中,所述多个第一温度的数量与所述处于第一状态的充电装置的数量相对应;
    基于所述多个第一温度中的最低温度或者平均温度,所述监控器还用于比较所述第二温度与所述多个第一温度中的最低温度,以获取所述温度差值;或者,比较所述第二温度与所述多个第一温度中的平均温度,以获取所述温度差值。
  14. 如权利要求13所述的充电桩,其特征在于,当所述第二温度为多个时,所述监控器还用于得到所述多个第二温度中的最高温度、最低温度或者平均温度;
    所述监控器并用于将所述多个第二温度中的最高温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值;或者,
    将所述多个第二温度中的最高温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值;或者,
    将所述多个第二温度中的最低温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值;或者,
    将所述多个第二温度中的最低温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值;或者,
    将所述多个第二温度中的平均温度与所述多个第一温度中的最低温度进行比较,以获取所述温度差值;或者,
    将所述多个第二温度中的平均温度与所述多个第一温度中的平均温度进行比较,以获取所述温度差值。
  15. 如权利要求9或10所述的充电桩,其特征在于,所述监控器为配置于所述充电组件中的器件,所述充电组件的充电装置通过所述监控器互相通信;或者,所述监控器与所述充电组件相互独立。
  16. 如权利要求9至15任一项所述的充电桩,其特征在于,所述监控器还用于确定所述第二温度是否大于第三阈值;当所述第二温度大于第三阈值时,直接启动所述处于第二状态的充电装置的散热风扇;其中,所述第三阈值为所述第二温度的上限温度。
PCT/CN2020/076276 2020-02-21 2020-02-21 充电桩及其控制方法 WO2021164029A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/076276 WO2021164029A1 (zh) 2020-02-21 2020-02-21 充电桩及其控制方法
CN202080002351.XA CN113544930B (zh) 2020-02-21 2020-02-21 充电桩及其控制方法
CN202310861519.8A CN116901751A (zh) 2020-02-21 2020-02-21 充电桩及其控制方法
EP20916234.6A EP3907848B1 (en) 2020-02-21 2020-02-21 Charging pile and control method therefor
US17/382,168 US11801765B2 (en) 2020-02-21 2021-07-21 Charging pile and charging pile control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076276 WO2021164029A1 (zh) 2020-02-21 2020-02-21 充电桩及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/382,168 Continuation US11801765B2 (en) 2020-02-21 2021-07-21 Charging pile and charging pile control method

Publications (1)

Publication Number Publication Date
WO2021164029A1 true WO2021164029A1 (zh) 2021-08-26

Family

ID=77391430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076276 WO2021164029A1 (zh) 2020-02-21 2020-02-21 充电桩及其控制方法

Country Status (4)

Country Link
US (1) US11801765B2 (zh)
EP (1) EP3907848B1 (zh)
CN (2) CN113544930B (zh)
WO (1) WO2021164029A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132204A (zh) * 2021-11-26 2022-03-04 国网北京市电力公司 充电桩维护方法、装置、非易失性存储介质及处理器
CN114995544A (zh) * 2022-06-17 2022-09-02 国网智慧能源交通技术创新中心(苏州)有限公司 设备温度控制方法及充电桩

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114148197B (zh) * 2021-12-03 2023-09-19 北京智充科技有限公司 一种对充电桩过温保护的方法、装置、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066002A (ja) * 2004-02-20 2011-03-31 Autonetworks Technologies Ltd バッテリ温度検出装置及び車載電源分配装置
CN108430191A (zh) * 2017-02-13 2018-08-21 思源电气股份有限公司 一种用于充电桩的智能控制风扇散热***及方法
CN108495522A (zh) * 2018-04-09 2018-09-04 南京能瑞电力科技有限公司 非车载充电机及其散热***主动适应和自诊断方法
CN109885111A (zh) * 2019-04-24 2019-06-14 宁波三星智能电气有限公司 一种散热控制方法、装置及充电桩

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3240973B2 (ja) * 1997-03-05 2001-12-25 トヨタ自動車株式会社 車両用電池冷却システム
JP3415740B2 (ja) * 1997-04-14 2003-06-09 本田技研工業株式会社 バッテリ充電装置
JP3536581B2 (ja) * 1997-04-16 2004-06-14 日産自動車株式会社 ハイブリッド電気自動車の発電制御装置
JP2001078302A (ja) * 1999-09-07 2001-03-23 Tokyo R & D Co Ltd 電動車両
JP3945630B2 (ja) * 2002-01-10 2007-07-18 パナソニック・イーブイ・エナジー株式会社 電池電源装置のリレー接点溶着検査方法
US6902319B2 (en) * 2003-10-02 2005-06-07 Daimlerchrysler Corporation Vehicular battery temperature estimation
US7660694B2 (en) * 2005-07-11 2010-02-09 Chrysler Group Llc Arrangement for determining an initial internal battery temperature
WO2008095313A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery thermal management system
US20080202741A1 (en) * 2007-02-23 2008-08-28 Daewoong Lee Battery cooling device for vehicles and control method thereof
US8511237B2 (en) * 2007-07-19 2013-08-20 Mitsubishi Heavy Industries, Ltd. Guideway electric vehicle mounted with batteries
US9960461B2 (en) * 2008-10-15 2018-05-01 General Electric Company System and method for temperature control of multi-battery systems
US9162585B2 (en) * 2014-01-21 2015-10-20 GM Global Technology Operations LLC Rechargeable energy storage system management for vehicles
JP6179541B2 (ja) * 2015-03-17 2017-08-16 トヨタ自動車株式会社 二次電池冷却システム
CN205566953U (zh) 2016-04-08 2016-09-07 深圳麦格米特电气股份有限公司 一种户外风冷式充电桩
CN207078015U (zh) * 2017-02-07 2018-03-09 薛建仁 带制冷背板的充电桩
CN206442655U (zh) 2017-02-13 2017-08-25 思源电气股份有限公司 一种用于充电桩的智能控制风扇散热***
CN110015022B (zh) * 2017-09-14 2020-11-17 天津市诚瑞丰科技有限公司 一种充电桩
CN109599626B (zh) * 2017-09-30 2021-01-19 比亚迪股份有限公司 车辆的温度调节方法和温度调节***
CN209257908U (zh) * 2018-12-03 2019-08-16 上海上汽安悦充电科技有限公司 一种充电桩的散热结构
CN110602922B (zh) * 2019-08-30 2020-12-08 宁波三星智能电气有限公司 一种基于pwm风扇控制的充电桩内温度控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066002A (ja) * 2004-02-20 2011-03-31 Autonetworks Technologies Ltd バッテリ温度検出装置及び車載電源分配装置
CN108430191A (zh) * 2017-02-13 2018-08-21 思源电气股份有限公司 一种用于充电桩的智能控制风扇散热***及方法
CN108495522A (zh) * 2018-04-09 2018-09-04 南京能瑞电力科技有限公司 非车载充电机及其散热***主动适应和自诊断方法
CN109885111A (zh) * 2019-04-24 2019-06-14 宁波三星智能电气有限公司 一种散热控制方法、装置及充电桩

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132204A (zh) * 2021-11-26 2022-03-04 国网北京市电力公司 充电桩维护方法、装置、非易失性存储介质及处理器
CN114132204B (zh) * 2021-11-26 2023-11-03 国网北京市电力公司 充电桩维护方法、装置、非易失性存储介质及处理器
CN114995544A (zh) * 2022-06-17 2022-09-02 国网智慧能源交通技术创新中心(苏州)有限公司 设备温度控制方法及充电桩

Also Published As

Publication number Publication date
CN113544930A (zh) 2021-10-22
CN113544930B (zh) 2023-07-14
US11801765B2 (en) 2023-10-31
EP3907848A4 (en) 2022-03-16
EP3907848B1 (en) 2022-09-28
US20210347272A1 (en) 2021-11-11
EP3907848A1 (en) 2021-11-10
CN116901751A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2021164029A1 (zh) 充电桩及其控制方法
CN108963379B (zh) 一种新能源汽车动力电池温度一致性控制***及控制方法
EP4009419B1 (en) Energy storage system and thermal management method for the same
CN110722966B (zh) 车辆散热控制方法及***
CN1332398A (zh) 计算机***及冷却扇的转速控制方法
EP3916886B1 (en) Method and apparatus for controlling temperature of battery pack, and battery management system and storage medium
CN112503734A (zh) 空调的温度控制方法、装置、空调、存储介质及处理器
CN111969280A (zh) 温度控制方法、装置和电子设备
CN113410537A (zh) 一种动力电池充电热管理控制方法及***
CN111313801A (zh) 一种电机反电势能量回馈及泄放的***
CN210092296U (zh) 一种新能源汽车电池热管理***
KR101294064B1 (ko) 친환경 차량의 파워모듈 냉각장치 및 방법
CN115411411A (zh) 一种电池热管理控制方法以及一种电池
TWM449728U (zh) 電池電源管理系統
CN111384466B (zh) 一种动力电池热管理***中水泵故障处理方法与***
CN211293860U (zh) 一种设有制冷制热功能的通信设备机箱
JP2012209109A5 (zh)
JP2021090266A (ja) ソーラー充電システム
JP3414278B2 (ja) バッテリ駆動電動車両
KR20040017664A (ko) 전기 차량의 냉각 팬 제어장치 및 방법
JP2005158271A (ja) 電池冷却系異常検出システム
JPH09126618A (ja) 冷蔵庫
KR20150072478A (ko) 연료 전지 냉각 불량 진단 장치 및 방법
JP2014147193A (ja) 電動車両用冷却装置
CN207083012U (zh) 一种利用自启停风扇散热的降压硅链

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020916234

Country of ref document: EP

Effective date: 20210803

NENP Non-entry into the national phase

Ref country code: DE