WO2021161764A1 - 熱伝導性材料およびワイヤーハーネス - Google Patents

熱伝導性材料およびワイヤーハーネス Download PDF

Info

Publication number
WO2021161764A1
WO2021161764A1 PCT/JP2021/002414 JP2021002414W WO2021161764A1 WO 2021161764 A1 WO2021161764 A1 WO 2021161764A1 JP 2021002414 W JP2021002414 W JP 2021002414W WO 2021161764 A1 WO2021161764 A1 WO 2021161764A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
conductive material
volume
heat
heat conductive
Prior art date
Application number
PCT/JP2021/002414
Other languages
English (en)
French (fr)
Inventor
尊史 川上
中嶋 一雄
悠作 前田
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to US17/795,379 priority Critical patent/US20230093307A1/en
Priority to CN202180012390.2A priority patent/CN115052950A/zh
Publication of WO2021161764A1 publication Critical patent/WO2021161764A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses

Definitions

  • This disclosure relates to thermally conductive materials and wire harnesses.
  • the power control unit (PCU) and the battery are connected by a high-voltage power line. Since a large current flows through the high-voltage power line, the conductor diameter of the high-voltage line is large. However, if the conductor diameter of the high-voltage power line is large, problems such as an increase in weight, a decrease in bendability, and a space for arrangement will occur. Therefore, there is a demand for reducing the conductor diameter of high-voltage power lines. On the other hand, when the conductor diameter of the high-voltage power line becomes small, the temperature rise due to Joule heat becomes large in the high-voltage line in which a large current flows, so that it is necessary to ensure heat dissipation.
  • Patent Document 1 a wire, a protective cylinder member arranged on the outside of the wire so as to insert the wire, and a metal heat transfer member that directly or indirectly contacts the inner surface of the protection cylinder member.
  • a wire harness with and is disclosed. According to the wire harness of Patent Document 1, the heat generated by the electric wire is transferred to the protective cylinder member by the heat transfer member, and the heat is released from the protective cylinder member to the outside.
  • the heat transfer member is made of metal, and the heat transfer member is arranged so as to wrap the electric wire in the entire extending direction of the electric wire in order to efficiently transfer heat to the protective cylinder member. And the weight increase is inevitable. Therefore, the wire harness of Patent Document 1 is not sufficient in terms of heat dissipation and weight reduction.
  • the problem to be solved in the present disclosure is to provide a heat conductive material and a wire harness that can achieve both heat dissipation and weight reduction.
  • the thermally conductive material according to the present disclosure includes a base resin and a filler, and the filler contains a thermally conductive filler and a hollow filler which is a particle containing an air layer, and the content of the filler is based on the total amount of the material. , 20.0% by volume or more and 90.0% by volume or less, and the content of the hollow filler is 25.0% by volume or more and 70.0% by volume or less based on the total amount of the filler.
  • the wire harness according to the present disclosure includes an insulated wire composed of an insulating coating and a conductor, an exterior material through which the insulated wire is inserted, and a heat radiating material arranged between the insulated wire and the exterior material. , And the heat radiating material is made of the heat conductive material according to the present disclosure.
  • both heat dissipation and weight reduction can be achieved.
  • FIG. 1 is a schematic view of a vehicle in which the wire harness of the present disclosure is arranged.
  • FIG. 2 is a cross-sectional view of the wire harness of the present disclosure in the extending direction.
  • FIG. 3 is a radial cross-sectional view of the wire harness of the present disclosure.
  • FIG. 4 is a three-screen image showing the internal structural state of sample 2.
  • FIG. 5 is a three-screen image showing the internal structural state of the sample 4.
  • the heat conductive material according to the present disclosure contains a base resin and a filler, and the filler contains a heat conductive filler and a hollow filler which is a particle containing an air layer, and the content of the filler is a material. It is 20.0% by volume or more and 90.0% by volume or less based on the total amount, and the content of the hollow filler is 25.0% by volume or more and 70.0% by volume or less based on the total amount of the filler. ..
  • the specific gravity of the heat conductive material can be reduced.
  • the heat conductive filler is concentrated in the base resin between the particles of the hollow filler, so that the heat conductive fillers are easily connected to each other. Therefore, a heat conduction path is easily formed. Therefore, both heat dissipation and weight reduction can be achieved.
  • the thermally conductive filler may contain a fibrous filler. This is because the fibrous fillers are oriented in the base resin between the particles of the hollow filler and easily connected to each other, so that a heat conduction path is more easily formed.
  • the thermally conductive filler may include a fibrous filler and a granular filler. This is because the granular filler connects the fibrous fillers oriented in the base resin to each other, so that a heat conduction path is more easily formed.
  • the fibrous filler is preferably carbon fiber. This is because it is a material with high thermal conductivity and contributes to the improvement of thermal conductivity.
  • the fiber length of the fibrous filler is preferably 50 ⁇ m or more and 300 ⁇ m or less. This is because the heat conduction path is more likely to be formed.
  • the granular filler is preferably alumina particles. This is because it is a material with high thermal conductivity and contributes to the improvement of thermal conductivity.
  • the hollow filler is preferably glass particles containing an air layer. This is because the strength is excellent and the effect of maintaining the air layer in the heat conductive material is excellent.
  • the shape of the hollow filler is preferably spherical. This is because the strength is excellent and the effect of maintaining the air layer in the heat conductive material is excellent.
  • the median diameter d50 of the hollow filler is preferably 15 ⁇ m or more and 90 ⁇ m or less. This is because the heat conductive filler is appropriately dispersed in the base resin between the particles of the hollow filler.
  • the wire harness according to the present disclosure includes an insulated wire composed of an insulating coating and a conductor, an exterior material through which the insulated wire is inserted, and a heat radiating material arranged between the insulated wire and the exterior material.
  • the heat radiating material is made of the heat conductive material according to the present disclosure.
  • the heat radiating material arranged between the insulated wire and the exterior material is composed of the heat conductive material according to the present disclosure, both heat dissipation and weight reduction can be achieved.
  • the wire harness according to the present disclosure may be used as a high-voltage electric wire connecting between the power control unit and the battery. This is because both heat dissipation and weight reduction can be achieved.
  • the high-voltage power line is preferably for an electric vehicle. This is because both heat dissipation and weight reduction can be achieved.
  • the thermally conductive material according to the present disclosure includes a base resin and a filler, and the filler contains a thermally conductive filler and a hollow filler which is a particle containing an air layer, and the content of the filler is based on the total amount of the material. , 20.0% by volume or more and 90.0% by volume or less, and the content of the hollow filler is 25.0% by volume or more and 70.0% by volume or less based on the total amount of the filler.
  • the filler may be conductive (non-insulating) or non-conductive (insulating). Insulation and is electrically insulating means that electrical resistivity is extremely high and (10 6 ⁇ ⁇ m or higher).
  • the base resin is not particularly limited.
  • the base resin may be a thermoplastic resin or a thermosetting resin. Of these, thermosetting resins are more preferable from the viewpoint of being more excellent in heat resistance.
  • the base resin include silicone resin, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester resin, diallyl phthalate resin, and urethane resin. These may be used alone as a base resin, or may be used in combination of two or more. Of these, silicone resins are more preferable from the viewpoints of excellent heat resistance, excellent moldability, excellent dimensional stability, and the like.
  • the heat conductive filler examples include an inorganic filler.
  • the inorganic filler may be conductive (non-insulating) or non-conductive (insulating).
  • the inorganic filler is not particularly limited, but is preferably having a thermal conductivity of 1.00 W / m ⁇ K or more from the viewpoint of improving the thermal conductivity. More preferably, the thermal conductivity is 20.00 W / m ⁇ K or more, and even more preferably 30.00 W / m ⁇ K or more.
  • Inorganic fillers with excellent thermal conductivity include metal particles such as aluminum, gold, and copper, carbon materials such as graphite, graphite, and carbon fibers, aluminum oxide (alumina), aluminum hydroxide, magnesium hydroxide, magnesium oxide, and talc. , Boehmite, boron nitride, aluminum oxide, silicon nitride, silicon carbide and the like. These may be used alone as a heat conductive filler, or may be used in combination of two or more.
  • the shape of the thermally conductive filler is not particularly limited.
  • Examples of the shape of the thermally conductive filler include fibrous, granular, needle-like, flat-like, and scaly-like.
  • Granular includes one or more selected from the group consisting of amorphous, spherical and elliptical spheres. As the granularity, those containing only spherical shapes are preferable. Fibrous and needle-shaped are not particularly distinguished, but the short axis length is relatively short, the thinner one is fibrous, and the minor axis length is relatively long, and the thicker one is needle-shaped. do it.
  • the thermally conductive filler should include a fibrous filler. This is because the fibrous fillers are oriented in the base resin between the particles of the hollow filler and are easily connected to each other, so that a heat conduction path is more easily formed. Further, the thermally conductive filler may include a fibrous filler and a granular filler. This is because the granular filler connects the fibrous fillers that are oriented in the base resin, so that the heat conduction path is more easily formed.
  • the fibrous filler is preferably carbon fiber. This is because it is a material with high thermal conductivity and contributes to the improvement of thermal conductivity.
  • the granular filler is preferably alumina particles. This is because the alumina particles are a material having high thermal conductivity and contribute to the improvement of thermal conductivity.
  • the alumina particles are spherical particles.
  • the fiber length (major axis length) of the fibrous filler is not particularly limited, but is preferably 50 ⁇ m or more and 300 ⁇ m or less.
  • a heat conduction path by the fibrous filler is more likely to be formed.
  • the fiber length of the fibrous filler is more preferably 70 ⁇ m or more, still more preferably 100 ⁇ m or more.
  • the fiber length of the fibrous filler is 300 ⁇ m or less, the strength of the fibrous filler can be easily secured.
  • a heat conduction path by the fibrous filler is more likely to be formed per unit volume.
  • the fiber length of the fibrous filler is more preferably 250 ⁇ m or less, still more preferably 200 ⁇ m or less.
  • the fiber length of the fibrous filler can be measured with a microscope, a scanning electron microscope (SEM), a particle size distribution meter, or the like.
  • the fiber length of the fibrous filler may be expressed by an arithmetic mean value of the fiber length of the fibrous filler to be measured.
  • the fiber diameter (minor axis length) of the fibrous filler is not particularly limited, but is preferably 5 ⁇ m or more and 20 ⁇ m or less. When the fiber diameter of the fibrous filler is 5 ⁇ m or more, the strength of the fibrous filler can be easily secured. From this viewpoint, the fiber diameter of the fibrous filler is more preferably 7 ⁇ m or more, still more preferably 10 ⁇ m or more. When the fiber diameter of the fibrous filler is 20 ⁇ m or less, a heat conduction path by the fibrous filler is more likely to be formed per unit volume. From this viewpoint, the fiber diameter of the fibrous filler is more preferably 17 ⁇ m or less, still more preferably 15 ⁇ m or less.
  • the fiber diameter of the fibrous filler can be measured with a microscope, a scanning electron microscope (SEM), a particle size distribution meter, or the like.
  • the fiber diameter of the fibrous filler may be expressed by the arithmetic mean value of the fiber diameter of the fibrous filler to be measured.
  • the aspect ratio (major axis length / minor axis length) of the fibrous filler is not particularly limited, but is preferably 8 or more. More preferably, it is 9 or more and 30 or less. When the aspect ratio of the fibrous filler is less than 8, the effect of forming the heat conduction path by the fibrous filler tends to decrease.
  • Hollow filler is a particle that contains the air layer. Encapsulating the air layer means having the air layer in a closed portion in the hollow filler. Since the porous body has an air layer in an unclosed portion, the porous body is not included in the hollow filler in the present disclosure. It is a structure having an air layer inside a closed outer shell, and examples of the hollow filler include a core shell structure and a microsphere structure.
  • the material constituting the outer shell of the hollow filler examples include glass and resin.
  • the resin examples include thermoplastic resins and thermosetting resins.
  • glass is preferable from the viewpoint of excellent strength and excellent effect of maintaining the air layer in the heat conductive material. That is, the hollow filler may be glass particles containing an air layer.
  • the gas layer of the hollow filler may be composed of air, an inert gas such as nitrogen or argon, or a hydrocarbon gas.
  • the material constituting the outer shell of the hollow filler is a thermoplastic resin and the gas layer of the hollow filler is a hydrocarbon gas, the outer shell expands by heating and is adjusted to a desired expansion ratio. Can be done.
  • the shape of the hollow filler is not particularly limited. Examples of the shape of the hollow filler include a spherical shape and an elliptical spherical shape.
  • the shape of the hollow filler is preferably spherical. This is because it has excellent strength and has an excellent effect of maintaining the air layer in the heat conductive material.
  • the median diameter d50 of the hollow filler is preferably 15 ⁇ m or more and 90 ⁇ m or less. This is because the thermally conductive filler is appropriately dispersed in the particles of the hollow filler and the base resin between the particles.
  • the median diameter d50 of the hollow filler is more preferably 30 ⁇ m or more and 80 ⁇ m or less, and further preferably 50 ⁇ m or more and 80 ⁇ m or less.
  • the filler may be composed of only the heat conductive filler and the hollow filler, or may contain other fillers.
  • the content of the filler is 20.0% by volume or more and 90.0% by volume or less based on the total amount of the material, and the content of the hollow filler is 25.0% by volume or more based on the total amount of the filler. It is 70.0% by volume or less. With such a blending balance, low specific density and high thermal conductivity can be realized in a well-balanced manner.
  • the heat conductive material if the filler content is more than 90.0% by volume based on the total amount of the material, the heat conductive material is brittle and is not suitable as a heat radiating material for automobiles.
  • the content of the filler is more preferably 25.0% by volume or more and 85.0% by volume or less, still more preferably 30.0% by volume or more and 80.0% by volume or less based on the total amount of the material. ..
  • the content of the hollow filler is more preferably 30.0% by volume or more and 65.0% by volume or less, still more preferably 35.0% by volume or more and 60.0% by volume based on the total amount of the filler. It is as follows.
  • the content of the heat conductive filler is preferably 30.0% by volume or more and 75.0% by volume or less, more preferably 35.0% by volume or more and 70.0% by volume based on the total amount of the filler. % Or less, more preferably 40.0% by volume or more and 65.0% by volume or less.
  • the content of the heat conductive filler is preferably 20.0% by volume or more and 60.0% by volume or less based on the total amount of the material. More preferably, it is 25.0% by volume or more and 60.0% by volume or less based on the total amount of material, and more preferably, it is 30.0% by volume or more and 60.0% by volume or less based on the total amount of material.
  • the content of the heat conductive filler is 20.0% by mass or more based on the total amount of the material, the heat conductivity of the heat conductive material is more excellent. Further, when the content of the heat conductive filler is 30.0% by mass or more based on the total amount of the material, the heat conductivity of the heat conductive material is particularly excellent.
  • the content of the heat conductive filler is 60.0% by volume or less based on the total amount of the material, it is easy to secure the strength of the heat conductive material.
  • the content of the hollow filler is preferably 20.0% by volume or more and 60.0% by volume or less based on the total amount of the material.
  • the content of the hollow filler is 20.0% by mass or more based on the total amount of the material, the specific gravity of the heat conductive material can be easily reduced.
  • the content of the hollow filler is 60.0% by mass or less based on the total amount of the material, it is easy to secure the strength of the heat conductive material.
  • the specific gravity of the heat conductive material is preferably less than 1.50. It is more preferably 1.40 or less, still more preferably 1.30 or less. Further, the thermal conductivity of the thermally conductive material is preferably 0.50 W / m ⁇ K or more. It is more preferably 0.80 W / m ⁇ K or more, and further preferably 1.00 W / m ⁇ K or more.
  • the specific gravity of the thermally conductive material can be measured according to JIS K5400. The thermal conductivity of the heat conductive material can be measured by the heat flow meter method in accordance with JIS A1412.
  • the thermally conductive material of the present disclosure may or may not contain an additive added to the base resin in addition to the base resin and the filler.
  • the base resin and the filler are contained, and the filler contains the heat conductive filler and the hollow filler which is a particle containing the air layer, and the content of the filler is increased. Since it is 20.0% by volume or more and 90.0% by volume or less based on the total amount of the material, and the content of the hollow filler is 25.0% by volume or more and 70.0% by volume or less based on the total amount of the filler. , Both heat dissipation and weight reduction can be achieved.
  • the thermally conductive material of the present disclosure can be used for various members that are required to have heat dissipation.
  • the thermally conductive material of the present disclosure can be used, for example, as an insulating member that is required to have heat dissipation.
  • Insulating members that require heat dissipation include insulating coatings for insulated wires, insulating tapes used when arranging wire harnesses, and protective tubes used when arranging insulated wires and wire harnesses. Examples include exterior materials, heat-dissipating materials arranged between insulated wires and wire harnesses and exterior materials, adhesives used for bonding and water blocking between members, and connector housings.
  • the thermally conductive material of the present disclosure can be particularly preferably used as a heat radiating material arranged between the insulated wire and the exterior material.
  • the wire harness of the present disclosure includes an insulated wire composed of an insulating coating and a conductor, an exterior material through which the insulated wire is inserted, and a heat radiating material arranged between the insulated wire and the exterior material. ..
  • the heat radiating material is composed of the heat conductive material of the present disclosure.
  • the wire harness of the present disclosure is not particularly limited, but is suitable as a high-voltage electric wire for connecting between a power control unit (PCU) and a battery, which is arranged in an electric vehicle or a hybrid vehicle.
  • PCU power control unit
  • FIG. 1 is a schematic view of a vehicle in which the wire harness of the present disclosure is arranged.
  • 2 and 3 show a wire harness according to an embodiment of the present disclosure,
  • FIG. 2 is a cross-sectional view in the extending direction of the wire harness, and
  • FIG. 3 is a radial cross section of the wire harness. It is a figure.
  • FIG. 1 shows an electric vehicle as a vehicle.
  • the electric vehicle 1 is a vehicle driven by a motor (not shown) as a power source. Electric power is supplied to the motor from the battery 3 via the power control unit 2.
  • the power control unit 2 is mounted on the front side inside the vehicle where the motor is arranged.
  • the battery 3 is mounted on the rear side inside the vehicle.
  • the arrangement of the power control unit 2 and the battery 3 is an example, and the arrangement is not limited to this.
  • the power control unit 2 and the battery 3 are connected by a wire harness 4.
  • the wire harness 4 includes an insulated wire 5, an exterior material 6 through which the insulated wire 5 is inserted, and a heat radiating material 7.
  • the insulated wire 5 includes a conductor 8 and an insulating coating 9 that covers the outer periphery of the conductor 8.
  • the conductor 8 has a circular cross section.
  • a metal shield member 10 is arranged around the insulated wire 5.
  • the shield member 10 is composed of a braid in which fine metal wires are woven into a mesh shape, a metal foil, or the like. The shield member 10 suppresses electromagnetic interference of the insulated wire 5 with the external environment.
  • the conductor 8 is made of a metal having excellent conductivity such as copper, a copper alloy, aluminum, and an aluminum alloy.
  • the conductor 8 may be a single wire or may be composed of a bundle of a plurality of metal strands.
  • the cross-sectional area of the conductor is not particularly limited, but is preferably 90 mm 2 or less from the viewpoint of weight reduction and the like.
  • Examples of the material of the insulating coating 9 include rubber, polyolefin, PVC, and thermoplastic elastomer. These may be used alone or in combination of two or more.
  • Various additives may be appropriately added to the material of the insulating coating 9. Examples of the additive include a flame retardant, a filler, a colorant and the like.
  • the exterior material 6 is a cylindrical member, and by covering the insulated wire 5 continuously or discontinuously along the length direction, the contact between the insulated wire 5 and the external environment is suppressed and protected.
  • a cylindrical pipe having a cylindrical shape or a square tubular shape, a corrugated tube, and the like.
  • the corrugated tube is a tube (bellows-shaped tube) having an uneven waveform along the length direction, has rigidity based on the material, and also has flexibility based on the shape, and is easy to bend and arrange.
  • the exterior material 6 is formed of a resin material or a rubber material.
  • the exterior material 6 is preferably formed of a resin material from the viewpoints of excellent rigidity and an excellent function of protecting the insulated wire 5 from contact with the external environment.
  • the resin material include polyolefin resins such as polypropylene and polyethylene, copolymers thereof, polyamides, polyesters, and fluororesins.
  • polypropylene is more preferable from the viewpoints of excellent heat resistance, excellent rigidity, large elongation, easy injection molding, and the like.
  • the rubber material include ethylene-propylene-diene rubber (EPDM), butadiene rubber, isoprene rubber, and natural rubber.
  • the heat radiating material 7 is made of the heat conductive material of the present disclosure, and is arranged between the insulated wire 5 and the exterior material 6 through which the insulated wire 5 is inserted.
  • the heat radiating material 7 is formed into a cylindrical shape, the inner peripheral surface of the heat radiating material 7 is in contact with the outer peripheral surface of the insulated wire 5 over the entire circumference, and the outer peripheral surface of the heat radiating material 7 is inside the exterior material 6. It is in contact with the peripheral surface over the entire circumference.
  • a plurality of heat radiating materials 7 are provided at predetermined intervals in the extending direction of the insulated wire 5.
  • the heat radiating material 7 may be formed in a sheet shape or a tube shape.
  • the sheet shape is a shape having an end portion in the length direction
  • the tube shape is a shape having no end portion in the length direction and is a tubular shape.
  • the heat radiating material 7 can be arranged, for example, by winding a sheet-like material around the outer peripheral surface of the insulated wire 5 so as to have a predetermined thickness. Further, it can be arranged by inserting the insulating electric wire 5 inside the tubular object.
  • a plurality of heat radiating materials 7 are provided at predetermined intervals in the extending direction of the insulated wire 5, but the heat radiating material 7 is continuously provided over the entire length in the extending direction of the insulated wire 5.
  • the conductor 8 has a circular cross section, but the shape of the conductor 8 is not limited to the circular cross section, and may have various shapes such as an oval cross section and a quadrangular cross section.
  • the cylindrical exterior material 6 is used, but the shape of the exterior material 6 is not limited to the cylindrical shape, and may be various shapes such as a square cylinder.
  • the heat radiating material 7 has a cylindrical shape, but the shape of the heat radiating material 7 is not limited to the cylindrical shape, and may be various shapes such as a square cylinder shape.
  • the insulated wire 5 is covered with the shield member 10, but it may be a general electric wire not covered with the shield member 10.
  • the number of insulated wires 5 inserted through the exterior material 6 is one, but the number of insulated wires inserted through the exterior material 6 may be two or more.
  • sample preparation Each sample was prepared by blending each component with the blending composition (volume%) shown in the table.
  • thermally conductive material was prepared by curing the prepared sample.
  • the materials used to prepare the thermally conductive material are as follows.
  • Thermal conductivity Measured at room temperature according to JIS A1412.
  • the sample used was a disk shape ( ⁇ 50 mm, thickness 2 mm ⁇ 0.2 mm).
  • FIG. 4 is a reconstructed cross-sectional image (three views) of the internal structural state of the heat conductive material of Sample 2 (Comparative Example 2).
  • Sample 2 Inparative Example 2, carbon fibers can be confirmed inside the silicone of the base resin (the portion indicated by a triangle in the figure).
  • FIG. 5 is a reconstructed cross-sectional image (three views) of the internal structural state of the heat conductive material of Sample 4 (Example 2).
  • FIG. 5 in Sample 4 (Example 2), carbon fibers and hollow particles can be confirmed inside the silicone of the base resin (the portion indicated by a triangle in the figure).
  • Example 4 According to Table 4, from the comparison of Example 3, Example 5, and Example 1, when the alumina particles were used as the heat conductive filler under the same conditions of the volume ratio of the heat conductive filler and the volume ratio of the hollow filler. It can be seen that the combined use of alumina particles and carbon fibers has a smaller specific gravity and is superior in thermal conductivity. Further, it can be seen that the specific gravity is smaller and the thermal conductivity is superior when the carbon fiber is used than when the alumina particle and the carbon fiber are used in combination. The same can be said for the comparison between Example 4, Example 6, and Example 2.
  • the heat conductivity is superior. Further, when the volume ratio of the heat conductive filler is 30.0% by volume or more, the heat conductivity exceeds 1.00 W / m ⁇ K, and the heat conductivity is particularly excellent. Then, when the volume ratio of the hollow filler is 20.0% by volume or more based on the total amount of the heat conductive material, the specific gravity can be made lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

放熱性と軽量化を両立できる熱伝導性材料およびワイヤーハーネスを提供する。 ベース樹脂およびフィラーを含み、前記フィラーが、熱伝導性フィラーおよび気層を内包する粒子である中空フィラーを含み、前記フィラーの含有量が、材料全量基準で、20.0体積%以上90.0体積%以下であり、前記中空フィラーの含有量が、前記フィラー全量基準で、25.0体積%以上70.0体積%以下である、熱伝導性材料とする。ワイヤーハーネス4は、絶縁被覆9および導体8によって構成される絶縁電線5と、絶縁電線5が挿通される外装材6と、絶縁電線5と外装材6との間に配置される放熱材7と、を備え、放熱材7が、前記熱伝導性材料で構成される。

Description

熱伝導性材料およびワイヤーハーネス
 本開示は、熱伝導性材料およびワイヤーハーネスに関する。
 電気自動車において、パワーコントロールユニット(PCU)とバッテリーとの間は、高圧電線によって接続されている。高圧電線には大電流が流れるため、高圧電線は導体径が太くなっている。しかし、高圧電線の導体径が太いと、重量増、曲げ性の低下、配策スペースなどの問題が生じる。このため、高圧電線の導体径を細くしたい要望がある。一方で、高圧電線の導体径が細くなると、大電流が流れる高圧電線では、ジュール熱による温度上昇が大きくなるため、放熱性を確保する必要がある。
 例えば特許文献1には、電線と該電線を挿通するようにこの外側に配設される保護用筒部材と、該保護用筒部材の内面に直接又は間接的に接触する金属製の伝熱部材とを備えるワイヤーハーネスが開示されている。特許文献1のワイヤーハーネスによれば、電線で発生した熱が伝熱部材により保護用筒部材に伝えられ、保護用筒部材から外部に熱が放出されるとされている。
特開2011-165354号公報
 しかしながら、特許文献1のワイヤーハーネスでは、伝熱部材が金属で構成され、効率よく保護用筒部材に伝熱するために電線の延びる方向全体にわたり電線を包み込むように伝熱部材が配設されると、重量増は避けられない。このため、特許文献1のワイヤーハーネスは、放熱性と軽量化の面で十分ではなかった。
 本開示の解決しようとする課題は、放熱性と軽量化を両立できる熱伝導性材料およびワイヤーハーネスを提供することにある。
 本開示に係る熱伝導性材料は、ベース樹脂およびフィラーを含み、前記フィラーが、熱伝導性フィラーおよび気層を内包する粒子である中空フィラーを含み、前記フィラーの含有量が、材料全量基準で、20.0体積%以上90.0体積%以下であり、前記中空フィラーの含有量が、前記フィラー全量基準で、25.0体積%以上70.0体積%以下であるものである。
 そして、本開示に係るワイヤーハーネスは、絶縁被覆および導体によって構成される絶縁電線と、前記絶縁電線が挿通される外装材と、前記絶縁電線と前記外装材との間に配置される放熱材と、を備え、前記放熱材が、本開示に係る熱伝導性材料で構成されるものである。
 本開示に係る熱伝導性材料によれば、放熱性と軽量化を両立できる。
図1は、本開示のワイヤーハーネスを配策した車両の模式図である。 図2は、本開示のワイヤーハーネスの延びる方向の断面図である。 図3は、本開示のワイヤーハーネスの径方向の断面図である。 図4は、試料2の内部構造状態を示した3画面画像である。 図5は、試料4の内部構造状態を示した3画面画像である。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
 (1)本開示に係る熱伝導性材料は、ベース樹脂およびフィラーを含み、前記フィラーが、熱伝導性フィラーおよび気層を内包する粒子である中空フィラーを含み、前記フィラーの含有量が、材料全量基準で、20.0体積%以上90.0体積%以下であり、前記中空フィラーの含有量が、前記フィラー全量基準で、25.0体積%以上70.0体積%以下であるものである。本開示の熱伝導性材料は、前記中空フィラーを含むことによって、前記熱伝導性材料中に気層が形成されるので、前記熱伝導性材料の比重を小さくすることができる。また、前記熱伝導性材料中に前記中空フィラーを含むことによって、前記中空フィラーの粒子と粒子の間のベース樹脂中に前記熱伝導性フィラーが集中するので、前記熱伝導性フィラーが互いにつながりやすくなり、熱伝導パスが形成されやすくなる。このため、放熱性と軽量化を両立できる。
 (2)前記熱伝導性フィラーは、繊維状フィラーを含むとよい。前記中空フィラーの粒子と粒子の間の前記ベース樹脂中に前記繊維状フィラーが配向して互いにつながりやすくなり、熱伝導パスがより形成されやすくなるからである。
 (3)前記熱伝導性フィラーは、繊維状フィラーおよび粒状フィラーを含むとよい。前記ベース樹脂中において配向する前記繊維状フィラーどうしを前記粒状フィラーがつなぐことで、熱伝導パスがより形成されやすくなるからである。
 (4)前記繊維状フィラーは、炭素繊維であるとよい。熱伝導率の高い材料であり、熱伝導性の向上に貢献するからである。
 (5)前記繊維状フィラーの繊維長は、50μm以上300μm以下であるとよい。熱伝導パスがより形成されやすくなるからである。
 (6) 前記粒状フィラーは、アルミナ粒子であるとよい。熱伝導率の高い材料であり、熱伝導性の向上に貢献するからである。
 (7)前記中空フィラーは、気層を内包するガラス粒子であるとよい。強度に優れ、前記熱伝導性材料中において気層を維持する効果に優れるからである。
 (8)前記中空フィラーの形状は、球状であるとよい。強度に優れ、前記熱伝導性材料中において気層を維持する効果に優れるからである。
 (9)前記中空フィラーのメジアン径d50は、15μm以上90μm以下であるとよい。前記中空フィラーの粒子と粒子の間のベース樹脂中に、前記熱伝導性フィラーが適度に分散されるからである。
 (10)本開示に係るワイヤーハーネスは、絶縁被覆および導体によって構成される絶縁電線と、前記絶縁電線が挿通される外装材と、前記絶縁電線と前記外装材との間に配置される放熱材と、を備え、前記放熱材が、本開示に係る熱伝導性材料で構成されるものである。本開示のワイヤーハーネスは、前記絶縁電線と前記外装材との間に配置される放熱材が、本開示に係る熱伝導性材料で構成されることから、放熱性と軽量化を両立できる。
 (11)本開示に係るワイヤーハーネスは、パワーコントロールユニットとバッテリーとの間を接続する高圧電線として用いられるとよい。放熱性と軽量化を両立できることからである。
 (12)前記高圧電線は、電気自動車用であるとよい。放熱性と軽量化を両立できることからである。
[本開示の実施形態の詳細]
 本開示の熱伝導性材料および本開示のワイヤーハーネスの具体例を、以下に図面を参照しつつ説明する。なお、本開示はこれらの例示に限定されるものではない。
 本開示に係る熱伝導性材料は、ベース樹脂およびフィラーを含み、前記フィラーが、熱伝導性フィラーおよび気層を内包する粒子である中空フィラーを含み、 前記フィラーの含有量が、材料全量基準で、20.0体積%以上90.0体積%以下であり、前記中空フィラーの含有量が、前記フィラー全量基準で、25.0体積%以上70.0体積%以下である。フィラーは、導電性(非絶縁性)であってもよいし、非導電性(絶縁性)であってもよい。絶縁性とは、電気絶縁性であり、電気抵抗率が極めて高いこと(10Ω・m以上)をいう。
 ベース樹脂は、特に限定されるものではない。ベース樹脂は、熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよい。これらのうちでは、耐熱性により優れるなどの観点から、熱硬化性樹脂がより好ましい。ベース樹脂としては、シリコーン樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ウレタン樹脂などが挙げられる。これらは、ベース樹脂として1種単独で用いてもよいし、2種以上を併用してもよい。これらのうちでは、耐熱性に優れる、成形性に優れる、寸法安定性に優れるなどの観点から、シリコーン樹脂がより好ましい。
 熱伝導性フィラーとしては、無機フィラーが挙げられる。無機フィラーは、導電性(非絶縁性)であってもよいし、非導電性(絶縁性)であってもよい。無機フィラーは、特に限定されるものではないが、熱伝導性を向上させるなどの観点から、熱伝導率1.00W/m・K以上であることが好ましい。より好ましくは熱伝導率20.00W/m・K以上であり、更に好ましくは30.00W/m・K以上である。熱伝導性に優れる無機フィラーとしては、アルミニウム、金、銅等の金属粒子や、黒鉛、グラファイト、炭素繊維等の炭素材料、酸化アルミニウム(アルミナ)、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム、タルク、ベーマイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素などが挙げられる。これらは、熱伝導性フィラーとして1種単独で用いてもよいし、2種以上を併用してもよい。
 熱伝導性フィラーの形状は、特に限定されるものではない。熱伝導性フィラーの形状としては、繊維状、粒状、針状、扁平状、鱗片状などが挙げられる。粒状とは、不定形状、球状および楕円球状からなる群より選択される1種または2種以上を含む。粒状としては、球状のみを含むものが好ましい。繊維状および針状は、特に区別されるものではないが、短軸の長さが比較的短く、より細いものを繊維状、短軸の長さが比較的長く、より太いものを針状とすればよい。
 熱伝導性フィラーは、繊維状フィラーを含むとよい。中空フィラーの粒子と粒子の間のベース樹脂中に繊維状フィラーが配向して互いにつながりやすくなり、熱伝導パスがより形成されやすくなるからである。また、熱伝導性フィラーは、繊維状フィラーおよび粒状フィラーを含むとよい。ベース樹脂中において配向する繊維状フィラーどうしを粒状フィラーがつなぐことで、熱伝導パスがより形成されやすくなるからである。繊維状フィラーは、炭素繊維であるとよい。熱伝導率の高い材料であり、熱伝導性の向上に貢献するからである。粒状フィラーは、アルミナ粒子であるとよい。アルミナ粒子は、熱伝導率の高い材料であり、熱伝導性の向上に貢献するからである。また、アルミナ粒子は、球状粒子である。
 繊維状フィラーの繊維長(長軸長さ)は、特に限定されるものではないが、50μm以上300μm以下であるとよい。繊維状フィラーの繊維長が50μm以上であると、繊維状フィラーによる熱伝導パスがより形成されやすい。また、この観点から、繊維状フィラーの繊維長は、より好ましくは70μm以上、さらに好ましくは100μm以上である。そして、繊維状フィラーの繊維長が300μm以下であると、繊維状フィラーの強度が確保されやすい。また、単位体積当たりで繊維状フィラーによる熱伝導パスがより形成されやすい。また、この観点から、繊維状フィラーの繊維長は、より好ましくは250μm以下、さらに好ましくは200μm以下である。繊維状フィラーの繊維長は、マイクロスコープ、走査型電子顕微鏡(SEM)、粒度分布計などにより測定することができる。繊維状フィラーの繊維長は、測定対象の繊維状フィラーの繊維長の算術平均値で表せばよい。
 繊維状フィラーの繊維径(短軸長さ)は、特に限定されるものではないが、5μm以上20μm以下であるとよい。繊維状フィラーの繊維径が5μm以上であると、繊維状フィラーの強度が確保されやすい。また、この観点から、繊維状フィラーの繊維径は、より好ましくは7μm以上、さらに好ましくは10μm以上である。そして、繊維状フィラーの繊維径が20μm以下であると、単位体積当たりで繊維状フィラーによる熱伝導パスがより形成されやすい。また、この観点から、繊維状フィラーの繊維径は、より好ましくは17μm以下、さらに好ましくは15μm以下である。繊維状フィラーの繊維径は、マイクロスコープ、走査型電子顕微鏡(SEM)、粒度分布計などにより測定することができる。繊維状フィラーの繊維径は、測定対象の繊維状フィラーの繊維径の算術平均値で表せばよい。
 繊維状フィラーのアスペクト比(長軸長さ/短軸長さ)は、特に限定されるものではないが、8以上が好ましい。より好ましくは9以上30以下である。繊維状フィラーのアスペクト比が8未満であると、繊維状フィラーによる熱伝導パスの形成効果が低下しやすい。
 中空フィラーは、気層を内包する粒子である。気層を内包するとは、中空フィラー内の閉鎖された部分に気層を有することをいう。多孔質体は、閉鎖されていない部分に気層を有することから、多孔質体は本開示における中空フィラーには含まれない。閉鎖された外殻の内側に気層を有する構造体であり、中空フィラーとしては、コアシェル構造体やマイクロスフェア構造体などが挙げられる。
 中空フィラーの外殻を構成する材料としては、ガラス、樹脂などが挙げられる。樹脂としては、熱可塑性樹脂、熱硬化性樹脂が挙げられる。中空フィラーの外殻を構成する材料としては、強度に優れ、前記熱伝導性材料中において気層を維持する効果に優れるなどの観点から、ガラスがよい。すなわち、中空フィラーは、気層を内包するガラス粒子であるとよい。中空フィラーの気層は、空気、窒素やアルゴンなどの不活性ガス、炭化水素ガスなどで構成されていればよい。例えば、中空フィラーの外殻を構成する材料が熱可塑性樹脂であり、中空フィラーの気層が炭化水素ガスであると、加熱されることにより外殻が膨張し、所望の発泡倍率に調整することができる。
 中空フィラーの形状は、特に限定されるものではない。中空フィラーの形状としては、球状、楕円球状などが挙げられる。中空フィラーの形状は、球状であるとよい。強度に優れ、熱伝導性材料中において気層を維持する効果に優れるからである。
 中空フィラーのメジアン径d50は、15μm以上90μm以下であるとよい。中空フィラーの粒子と粒子の間のベース樹脂中に、熱伝導性フィラーが適度に分散されるからである。また、中空フィラーのメジアン径d50は、より好ましくは30μm以上80μm以下、さらに好ましくは50μm以上80μm以下である。
 熱伝導性材料において、フィラーは、熱伝導性フィラーおよび中空フィラーのみで構成されていてもよいし、他のフィラーを含んでいてもよい。
 熱伝導性材料において、フィラーの含有量は、材料全量基準で、20.0体積%以上90.0体積%以下であり、中空フィラーの含有量は、フィラー全量基準で、25.0体積%以上70.0体積%以下である。このような配合バランスによって、低比重と高熱伝導率とをバランスよく実現できる。 熱伝導性材料において、フィラーの含有量が、材料全量基準で、90.0体積%超であると、熱伝導性材料が脆く、自動車用放熱材として適さない。
 熱伝導性材料において、フィラーの含有量は、材料全量基準で、より好ましくは25.0体積%以上85.0体積%以下、さらに好ましくは30.0体積%以上80.0体積%以下である。また、熱伝導性材料において、中空フィラーの含有量は、フィラー全量基準で、より好ましくは30.0体積%以上65.0体積%以下、さらに好ましくは35.0体積%以上60.0体積%以下である。また、熱伝導性材料において、熱伝導性フィラーの含有量は、フィラー全量基準で、好ましくは30.0体積%以上75.0体積%以下、より好ましくは35.0体積%以上70.0体積%以下、さらに好ましくは40.0体積%以上65.0体積%以下である。
 熱伝導性材料において、熱伝導性フィラーの含有量は、材料全量基準で、20.0体積%以上60.0体積%以下であることが好ましい。より好ましくは、材料全量基準で、25.0体積%以上60.0体積%以下、さらに好ましくは、材料全量基準で、30.0体積%以上60.0体積%以下である。熱伝導性フィラーの含有量が材料全量基準で20.0質量%以上であると、熱伝導性材料の熱伝導率がより優れる。また、熱伝導性フィラーの含有量が材料全量基準で30.0質量%以上であると、熱伝導性材料の熱伝導率が特に優れる。熱伝導性フィラーの含有量が材料全量基準で60.0体積%以下であると、熱伝導性材料の強度を確保しやすい。
 熱伝導性材料において、中空フィラーの含有量は、材料全量基準で、20.0体積%以上60.0体積%以下であることが好ましい。中空フィラーの含有量が材料全量基準で20.0質量%以上であると、熱伝導性材料の比重を小さくしやすい。中空フィラーの含有量が材料全量基準で60.0質量%以下であると、熱伝導性材料の強度を確保しやすい。
 熱伝導性材料の比重は、1.50未満であることが好ましい。より好ましくは1.40以下、さらに好ましくは1.30以下である。また、熱伝導性材料の熱伝導率は、0.50W/m・K以上であることが好ましい。より好ましくは0.80W/m・K以上、さらに好ましくは1.00W/m・K以上である。熱伝導性材料の比重は、JIS  K5400に準拠して測定することができる。熱伝導性材料の熱伝導率は、JIS  A1412に準拠して熱流計法により測定することができる。
 本開示の熱伝導性材料は、ベース樹脂およびフィラーに加え、ベース樹脂に添加される添加剤などを含んでもよいし、含んでいなくてもよい。
 以上に示す本開示の熱伝導性材料によれば、ベース樹脂およびフィラーを含み、前記フィラーが、熱伝導性フィラーおよび気層を内包する粒子である中空フィラーを含み、前記フィラーの含有量が、材料全量基準で、20.0体積%以上90.0体積%以下であり、前記中空フィラーの含有量が、前記フィラー全量基準で、25.0体積%以上70.0体積%以下であることから、放熱性と軽量化を両立できる。
 本開示の熱伝導性材料は、放熱性が求められる種々の部材に用いることができる。本開示の熱伝導性材料は、例えば、放熱性が求められる絶縁性の部材として用いることができる。放熱性が求められる絶縁性の部材としては、絶縁電線の絶縁被覆、ワイヤーハーネスを配策等する際に用いられる絶縁テープ、絶縁電線やワイヤーハーネスを配策等する際に用いられる保護管等の外装材、絶縁電線やワイヤーハーネスと外装材の間に配置される放熱材、部材間の接着や止水に用いられる接着剤、コネクタハウジングなどを挙げることができる。
 本開示の熱伝導性材料は、絶縁電線と外装材の間に配置される放熱材として特に好適に用いることができる。
 次に、本開示のワイヤーハーネスの一例について説明する。本開示のワイヤーハーネスは、絶縁被覆および導体によって構成される絶縁電線と、前記絶縁電線が挿通される外装材と、前記絶縁電線と前記外装材との間に配置される放熱材と、を備える。前記放熱材は、本開示の熱伝導性材料で構成される。
 本開示のワイヤーハーネスは、特に限定されるものではないが、電気自動車やハイブリッド自動車に配策される、パワーコントロールユニット(PCU)とバッテリーとの間を接続する高圧電線として好適である。
 図1は、本開示のワイヤーハーネスを配策した車両の模式図である。図2、図3は、本開示の一実施形態に係るワイヤーハーネスを示したものであり、図2は、ワイヤーハーネスの延びる方向の断面図であり、図3は、ワイヤーハーネスの径方向の断面図である。
 図1には、車両として電気自動車を示している。電気自動車1は、図示しないモータを動力として駆動する車両である。モータには、パワーコントロールユニット2を介してバッテリー3から電力が供給されるようになっている。パワーコントロールユニット2は、モータが配置される車両内部前側に搭載されている。バッテリー3は、車両内部後側に搭載されている。なお、パワーコントロールユニット2およびバッテリー3の配置は一例であって、これに限定されるものではない。パワーコントロールユニット2とバッテリー3との間は、ワイヤーハーネス4によって接続されている。
 本開示の一実施形態に係るワイヤーハーネス4は、絶縁電線5と、絶縁電線5が挿通される外装材6と、放熱材7と、を備える。絶縁電線5は、導体8と、導体8の外周を被覆する絶縁被覆9と、を備える。導体8は、断面が円形状である。絶縁電線5の周囲には、金属製のシールド部材10が配置されている。シールド部材10は、金属細線をメッシュ状に編み込んだ編組や金属箔などで構成される。シールド部材10により、絶縁電線5は、外部環境との電磁的干渉が抑えられる。
 導体8は、銅、銅合金、アルミニウム、アルミニウム合金などの導電性に優れる金属で構成される。導体8は、単線であってもよいし、複数本の金属素線の束で構成されていてもよい。導体断面積は、特に限定されるものではないが、軽量化などの観点から、90mm以下であることが好ましい。
 絶縁被覆9の材料としては、例えば、ゴム、ポリオレフィン、PVC、熱可塑性エラストマーなどを挙げることができる。これらは単独で用いても良いし、2種以上混合して用いても良い。絶縁被覆9の材料中には、適宜、各種添加剤が添加されていても良い。添加剤としては、難燃剤、充填剤、着色剤等を挙げることができる。
 外装材6は、円筒状の部材であり、絶縁電線5を長さ方向に沿って連続的あるいは非連続的に覆うことで絶縁電線5と外部環境の接触を抑えて保護するものである。このような部材としては、円筒状や角筒状などの筒状パイプ、コルゲートチューブなどが挙げられる。コルゲートチューブは、長さ方向に沿って凸凹状の波形を持たせたチューブ(蛇腹状チューブ)であり、材質に基づく剛性を有するとともに、形状に基づく柔軟性も備え、曲げやすく配策しやすい。
  外装材6は、樹脂材料またはゴム材料によって形成される。外装材6は、剛性に優れ、絶縁電線5を外部環境との接触から保護する機能に優れるなどの観点から、樹脂材料によって形成されることが好ましい。樹脂材料としては、ポリプロピレン、ポリエチレンなどのポリオレフィン系樹脂やその共重合体、ポリアミド、ポリエステル、フッ素樹脂などが挙げられる。これらの内では、耐熱性に優れる、剛性に優れる、伸びが大きい、射出成型がしやすいなどの観点から、ポリプロピレンがより好ましい。ゴム材料としては、エチレン-プロピレン-ジエンゴム(EPDM)、ブタジエンゴム、イソプレンゴム、天然ゴムなどが挙げられる。
 放熱材7は、本開示の熱伝導性材料で構成されており、絶縁電線5と、絶縁電線5が挿通される外装材6と、の間に配置されている。放熱材7は、円筒状に成形されており、放熱材7の内周面は、絶縁電線5の外周面に全周にわたって接触しており、放熱材7の外周面は、外装材6の内周面に全周にわたって接触している。絶縁電線5の延びる方向には、所定の間隔をあけて放熱材7が複数設けられている。放熱材7が配置される部分において、絶縁電線5と外装材6の間に空気層が極力形成されないため、絶縁電線5において発生した熱は、放熱材7を介して外装材6に効率よく伝えられ、放熱効果に優れる。
 放熱材7は、シート状やチューブ状に成形されていればよい。シート状とは、長さ方向に端部を有する形状であり、チューブ状とは、長さ方向に端部を有していない形状で筒状である。放熱材7は、例えばシート状のものを絶縁電線5の外周面に所定の厚みとなるように巻き付けることにより配置することができる。また、チューブ状のものの内側に絶縁電線5を挿通することにより配置することができる。
 以上、本開示の実施の形態について詳細に説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の改変が可能である。
 例えば、上記実施形態では、放熱材7は、絶縁電線5の延びる方向には、所定の間隔をあけて複数設けられているが、絶縁電線5の延びる方向に全長にわたって連続的に放熱材7が設けられていてもよい。また、上記実施形態では、断面円形状の導体8としているが、導体8の形状は、断面円形状に限られず、断面長円形状、断面四角形状など種々の形状であってもよい。また、上記実施形態では、円筒状の外装材6としているが、外装材6の形状は、円筒状に限られず、角筒状など種々の形状であってもよい。また、上記実施形態では、円筒状の放熱材7としているが、放熱材7の形状は、円筒状に限られず、角筒状など種々の形状であってもよい。また、上記実施形態では、絶縁電線5はシールド部材10で覆われているものとなっているが、シールド部材10で覆われていない一般電線であってもよい。また、上記実施形態では、外装材6に挿通される絶縁電線5は一つとしているが、外装材6に挿通される絶縁電線は、二つ以上であってもよい。
 以下、実施例により本開示を説明するが、本開示は、実施例により限定されるものではない。
(試料の調製)
 表に記載の配合組成(体積%)で各成分を配合することにより、各試料を調製した。
(熱伝導性材料の作製)
 調製した試料を硬化することにより、熱伝導性材料を作製した。
 熱伝導性材料の作製に用いた材料は、以下の通りである。
(ベース樹脂)
・シリコーン(ポリジメチルシロキサン):  信越シリコーン製「KE-1886」
(熱伝導性フィラー)
・炭素繊維(カーボンファイバー):  日本グラファイトファイバー製「XN-100-15M」繊維径(平均繊維径)13μm、繊維長(平均繊維長)150μm
・グラファイトカーボン:デンカ製「デンカブラック(粒状品)」粒径(メジアン径)35nm
・アルミナ<1>(球状):エア・ブラウン製「BAK-90」粒径(メジアン径)90μm
・アルミナ<2>(球状):エア・ブラウン製「BAK-120」粒径(メジアン径)120μm
・アルミナ<3>(球状):昭和電工製「AS-50」粒径(メジアン径)9μm
・アルミナ<4>(球状):昭和電工製「CB-A100S」粒径(メジアン径)100μm
(中空フィラー)
・ガラス中空球:3M製「K1」粒径(メジアン径)65μm
(比重)
 JIS  K5400に準拠し、室温で測定した。
(熱伝導率)
JIS  A1412に準拠し、室温で測定した。サンプルは円盤状(Φ50mm、厚み2mm±0.2mm)を使用した。
 試料2(比較例2)、試料4(実施例2)について、X線CT装置を用い、熱伝導性材料の内部構造状態を観察した。その結果を図4および図5に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 図4は、試料2(比較例2)の熱伝導性材料の内部構造状態の再構成断面像(3面図)である。図4に示すように、試料2(比較例2)では、ベース樹脂のシリコーン内部に炭素繊維が確認できる(図中、三角で示した部分)。図5は、試料4(実施例2)の熱伝導性材料の内部構造状態の再構成断面像(3面図)である。図5に示すように、試料4(実施例2)では、ベース樹脂のシリコーン内部に炭素繊維と中空粒子が確認できる(図中、三角で示した部分)。
 表1から、ベース樹脂に対し、中空フィラーを配合しないで熱伝導性フィラー(炭素繊維)を配合すると(比較例2)、ベース樹脂(比較例1)に対し、材料の熱伝導性は上がるが、材料の比重も上がる。一方、ベース樹脂に対し、熱伝導性フィラーとともに中空フィラーを所定の配合比で配合すると(実施例1、実施例2)、材料の熱伝導性を上げつつ、材料の比重の上昇が抑えられる。同様に、表2から、ベース樹脂に対し、中空フィラーを配合しないで熱伝導性フィラー(アルミナ)を配合すると(比較例3)、ベース樹脂(比較例1)に対し、材料の熱伝導性は上がるが、材料の比重も上がる。一方、ベース樹脂に対し、熱伝導性フィラーとともに中空フィラーを所定の配合比で配合すると(実施例3、実施例4)、材料の熱伝導性を上げつつ、材料の比重の上昇が抑えられる。同様に、表3から、ベース樹脂に対し、中空フィラーを配合しないで熱伝導性フィラー(炭素繊維およびアルミナ)を配合すると(比較例4)、ベース樹脂(比較例1)に対し、材料の熱伝導性は上がるが、材料の比重も上がる。一方、ベース樹脂に対し、熱伝導性フィラーとともに中空フィラーを所定の配合比で配合すると(実施例5、実施例6)、材料の熱伝導性を上げつつ、材料の比重の上昇が抑えられる。したがって、本開示の熱伝導性材料によれば、放熱性と軽量化を両立できる。
 表4によれば、実施例3、実施例5、実施例1の比較から、熱伝導性フィラーの体積割合および中空フィラーの体積割合が同じ条件において、熱伝導性フィラーとしてアルミナ粒子を用いたときよりもアルミナ粒子と炭素繊維を併用したときのほうが、比重が小さく、かつ、熱伝導率に優れることがわかる。また、アルミナ粒子と炭素繊維を併用したときよりも炭素繊維を用いたときのほうが、比重が小さく、かつ、熱伝導率に優れることがわかる。実施例4、実施例6、実施例2の比較においても、同様のことがいえる。
 表5によれば、熱伝導性材料全量基準で、熱伝導性フィラーの体積割合が20.0体積%以上であると、熱伝導率により優れる。また、熱伝導性フィラーの体積割合が30.0体積%以上であると、熱伝導率が1.00W/m・Kを超え、熱伝導率に特に優れる。そして、熱伝導性材料全量基準で、中空フィラーの体積割合が20.0体積%以上であると、より低比重にできる。
 以上、本開示の実施の形態について詳細に説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の改変が可能である。
1 電気自動車
2 パワーコントロールユニット
3 バッテリー
4 ワイヤーハーネス
5 絶縁電線
6 外装材
7 放熱材
8 導体
9 絶縁被覆
10 シールド部材

Claims (12)

  1.  ベース樹脂およびフィラーを含み、
     前記フィラーが、熱伝導性フィラーおよび気層を内包する粒子である中空フィラーを含み、
     前記フィラーの含有量が、材料全量基準で、20.0体積%以上90.0体積%以下であり、
     前記中空フィラーの含有量が、前記フィラー全量基準で、25.0体積%以上70.0体積%以下である、熱伝導性材料。
  2.  前記熱伝導性フィラーが、繊維状フィラーを含む、請求項1に記載の熱伝導性材料。
  3.  前記熱伝導性フィラーが、繊維状フィラーおよび粒状フィラーを含む、請求項1に記載の熱伝導性材料。
  4.  前記繊維状フィラーが、炭素繊維である、請求項2または請求項3に記載の熱伝導性材料。
  5.  前記繊維状フィラーの繊維長が、50μm以上300μm以下である、請求項2から請求項4のいずれか1項に記載の熱伝導性材料。
  6.  前記粒状フィラーが、アルミナ粒子である、請求項3に記載の熱伝導性材料。
  7.  前記中空フィラーが、気層を内包するガラス粒子である、請求項1から請求項6のいずれか1項に記載の熱伝導性材料。
  8.  前記中空フィラーの形状が、球状である、請求項1から請求項7のいずれか1項に記載の熱伝導性材料。
  9.  前記中空フィラーのメジアン径d50が、15μm以上90μm以下である、請求項1から請求項8のいずれか1項に記載の熱伝導性材料。
  10.  絶縁被覆および導体によって構成される絶縁電線と、前記絶縁電線が挿通される外装材と、前記絶縁電線と前記外装材との間に配置される放熱材と、を備え、前記放熱材が、請求項1から請求項9のいずれか1項に記載の熱伝導性材料で構成される、ワイヤーハーネス。
  11.  パワーコントロールユニットとバッテリーとの間を接続する高圧電線として用いられる、請求項10に記載のワイヤーハーネス。
  12.  前記高圧電線は、電気自動車用である、請求項11に記載のワイヤーハーネス。
     
PCT/JP2021/002414 2020-02-10 2021-01-25 熱伝導性材料およびワイヤーハーネス WO2021161764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/795,379 US20230093307A1 (en) 2020-02-10 2021-01-25 Thermally conductive material and wiring harness
CN202180012390.2A CN115052950A (zh) 2020-02-10 2021-01-25 导热性材料及线束

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-020506 2020-02-10
JP2020020506A JP7298498B2 (ja) 2020-02-10 2020-02-10 ワイヤーハーネス

Publications (1)

Publication Number Publication Date
WO2021161764A1 true WO2021161764A1 (ja) 2021-08-19

Family

ID=77292339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002414 WO2021161764A1 (ja) 2020-02-10 2021-01-25 熱伝導性材料およびワイヤーハーネス

Country Status (4)

Country Link
US (1) US20230093307A1 (ja)
JP (1) JP7298498B2 (ja)
CN (1) CN115052950A (ja)
WO (1) WO2021161764A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252572A (ja) * 1993-02-23 1994-09-09 Toshiba Corp 放熱体
JP2004315761A (ja) * 2003-04-21 2004-11-11 Hitachi Metals Ltd 放熱体
JP2007112843A (ja) * 2005-10-18 2007-05-10 Sanyo Chem Ind Ltd 熱伝導性フィラー及びその製造方法
WO2018135140A1 (ja) * 2017-01-19 2018-07-26 ソニー株式会社 複合材料、電子機器および電子機器の製造方法
CN109181134A (zh) * 2018-09-05 2019-01-11 南京工业大学 一种聚合物基导热复合材料及其制备方法
CN109206849A (zh) * 2017-07-06 2019-01-15 江南大学 一种高导热绝缘环氧树脂组合物及制备方法
US20190367791A1 (en) * 2018-06-01 2019-12-05 Hyundai Motor Company Lightweight polymer composition having excellent thermal conductivity, method of preparing the same and product using the same
JP2020009974A (ja) * 2018-07-11 2020-01-16 北川工業株式会社 熱伝導組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718225A (ja) * 1993-06-30 1995-01-20 Toyo Chem Co Ltd 電線結束用テープ
JPH09157440A (ja) * 1995-12-13 1997-06-17 Mitsubishi Electric Corp 樹脂組成物およびその樹脂組成物により封止された樹脂モールドモータ、樹脂封止型半導体装置、並びに、その樹脂組成物の硬化方法
JP5491224B2 (ja) * 2010-02-05 2014-05-14 矢崎総業株式会社 ワイヤハーネス
JP6317102B2 (ja) * 2013-12-20 2018-04-25 日東電工株式会社 熱拡散性フィルムおよび電子機器
US20180065392A1 (en) * 2015-02-20 2018-03-08 Sabic Global Technologies B.V. Light colored thermally conductive polymer compositions with laser marking function
CN107614620B (zh) * 2015-05-25 2020-09-22 日立化成株式会社 树脂组合物、树脂片、预浸渍体、绝缘物、树脂片固化物和散热构件
JP7055279B2 (ja) * 2016-08-09 2022-04-18 三菱瓦斯化学株式会社 表面粗化六方晶窒化ホウ素粒子及びその製造方法、並びに、組成物、樹脂シート、プリプレグ、金属箔張積層板、プリント配線板
JP2019137581A (ja) * 2018-02-09 2019-08-22 三菱瓦斯化学株式会社 表面粗化六方晶窒化ホウ素粒子、組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252572A (ja) * 1993-02-23 1994-09-09 Toshiba Corp 放熱体
JP2004315761A (ja) * 2003-04-21 2004-11-11 Hitachi Metals Ltd 放熱体
JP2007112843A (ja) * 2005-10-18 2007-05-10 Sanyo Chem Ind Ltd 熱伝導性フィラー及びその製造方法
WO2018135140A1 (ja) * 2017-01-19 2018-07-26 ソニー株式会社 複合材料、電子機器および電子機器の製造方法
CN109206849A (zh) * 2017-07-06 2019-01-15 江南大学 一种高导热绝缘环氧树脂组合物及制备方法
US20190367791A1 (en) * 2018-06-01 2019-12-05 Hyundai Motor Company Lightweight polymer composition having excellent thermal conductivity, method of preparing the same and product using the same
JP2020009974A (ja) * 2018-07-11 2020-01-16 北川工業株式会社 熱伝導組成物
CN109181134A (zh) * 2018-09-05 2019-01-11 南京工业大学 一种聚合物基导热复合材料及其制备方法

Also Published As

Publication number Publication date
JP2021123703A (ja) 2021-08-30
JP7298498B2 (ja) 2023-06-27
US20230093307A1 (en) 2023-03-23
CN115052950A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
US9050934B2 (en) Wire harness
US9412491B2 (en) Wire harness
WO2011078234A1 (ja) ワイヤーハーネス
US10134505B2 (en) Silicone multilayer insulation for electric cable
JP6830297B2 (ja) ケーブル
JP2010287537A (ja) ワイヤーハーネス
WO2021161765A1 (ja) 熱伝導性材料およびワイヤーハーネス、電気中継部品
WO2021161764A1 (ja) 熱伝導性材料およびワイヤーハーネス
JP7047649B2 (ja) ワイヤハーネス
US20210257127A1 (en) Wire harness
CN111541092A (zh) Ev快速充电线和插座
JP7042936B2 (ja) ケーブル
CN114843023A (zh) 充电线缆和充电桩
JP2019175817A (ja) ワイヤハーネス
JP7254708B2 (ja) カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス
CN211294722U (zh) 一种易散热的汽车高压线束
CN218585689U (zh) 充电线缆和充电桩
CN218214770U (zh) 一种高可靠性电力电缆
JP2022066222A (ja) ワイヤハーネス
JP7272407B2 (ja) ワイヤハーネス、及び外装部材
CN212047221U (zh) 一种适用于汽车箱体内的隐藏式线束
CN217690598U (zh) 液冷线缆和充电桩
CN218568499U (zh) 电缆和充电桩
CN209822356U (zh) 一种透气电缆
JP2022044525A (ja) 押出成形で製造されたフラットな形状の電線ケーブル及び給電線(アンテナケーブル)及びスピーカーケーブル。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753978

Country of ref document: EP

Kind code of ref document: A1