WO2021161662A1 - Power starting/stopping device - Google Patents

Power starting/stopping device Download PDF

Info

Publication number
WO2021161662A1
WO2021161662A1 PCT/JP2020/047826 JP2020047826W WO2021161662A1 WO 2021161662 A1 WO2021161662 A1 WO 2021161662A1 JP 2020047826 W JP2020047826 W JP 2020047826W WO 2021161662 A1 WO2021161662 A1 WO 2021161662A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
battery
circuit
switching element
Prior art date
Application number
PCT/JP2020/047826
Other languages
French (fr)
Japanese (ja)
Inventor
年夫 佐藤
拓也 黛
一成 戸田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021161662A1 publication Critical patent/WO2021161662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a power supply start / stop device that controls power supply and stop to a load.
  • a power supply start / stop device which is an electronic control device that controls power supply and stop to a load circuit such as a control microcomputer mounted on a vehicle, is known.
  • the power supply circuit described in Patent Document 1 includes a first power supply line that is constantly supplied with power from the battery, a second power supply line that is supplied with power from the battery via an ignition switch, a constant voltage circuit unit, and a voltage monitoring circuit. It includes a timer circuit unit and a switching element connected to the first power supply line and the second power supply line to switch whether or not to generate a predetermined constant voltage.
  • the timer circuit unit turns off the switching element a predetermined time after the ignition switch is turned off, and turns off the power supply from the first power supply line a predetermined time after the power supply of the second power supply line is turned off.
  • ECUs Electronic Control Units
  • the power supply start / stop device In order to start and stop in the same voltage range as other ECUs, it is desired that the power supply start / stop device also starts at a specific voltage aV and stops at a specific voltage bV or less, which is smaller than the specific voltage aV.
  • the determination of whether or not the voltage is the starting voltage is monitored by the voltage monitoring circuit, and this voltage monitoring circuit is formed by the integrated circuit.
  • the voltage monitoring circuit formed by the integrated circuit has a very small dark current, but the hysteresis width is as small as several tens of mV, so only one of the starting voltage and the stopping voltage can be set.
  • the present invention has been made in view of the above problems, and an object of the present invention is that it is not easily affected by dark current, the starting voltage and the stopping voltage can be set independently, and the power supply is reliably stopped. It is to realize a power supply start / stop device that can be used.
  • the present invention is configured as follows.
  • the power supply integrated circuit that supplies power to the load circuit, the switching element that starts and stops the voltage supply from the battery to the power supply integrated circuit by the on / off operation, and the voltage supplied from the battery are monitored. Then, when the voltage supplied from the battery becomes equal to or higher than the first threshold value, the voltage monitoring circuit that turns on the switching element and the voltage supplied from the battery are equal to or lower than the second threshold value lower than the first threshold value. It is provided with a power supply stop control circuit that turns off the switching element when becomes.
  • an inverter circuit connected to the high-voltage battery and converting the power of the high-voltage battery into power for driving the electric motor, a gate drive circuit for driving the inverter circuit, and a low-voltage battery.
  • the power supply start / stop device includes a motor control unit which is connected and has a microcomputer for controlling the gate drive circuit and a power supply start / stop device for starting and stopping the power supply to the microcomputer, and the power supply start / stop device supplies power to the load circuit.
  • the power supply integrated circuit to be supplied, the switching element that starts and stops the voltage supply from the battery to the power supply integrated circuit by the on / off operation, and the voltage supplied from the battery are monitored, and the voltage supplied from the battery is the first. When the voltage exceeds one threshold, the voltage monitoring circuit turns on the switching element, and when the voltage supplied from the battery becomes equal to or less than the second threshold lower than the first threshold, the switching element is turned off. It is equipped with a power supply stop control circuit.
  • the present invention it is possible to realize a power supply start / stop device that is not easily affected by dark current, can set the start voltage and the stop voltage independently, and can surely stop the power supply. ..
  • FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a first embodiment of the present invention. It is a graph explaining the relationship between the voltage value of the ignition voltage, the control voltage and the output voltage in Example 1 and time. It is a graph explaining the relationship between the voltage value of an ignition voltage, a control voltage and an output voltage, and time in an example different from this invention.
  • FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a second embodiment of the present invention. It is a schematic block diagram of the power supply start / stop device according to Example 3 of this invention.
  • FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a fourth embodiment of the present invention. It is a schematic block diagram of the power conversion apparatus according to Example 5 of this invention.
  • FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a sixth embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a power supply start / stop device 100 according to a first embodiment of the present invention.
  • the first embodiment is an example of a power supply start / stop device 100 that controls power supply and stop to a load circuit such as a control microcomputer mounted on a vehicle.
  • the battery 1 is connected to the ignition switch 2 and the battery voltage input circuit 3.
  • the ignition switch 2 is connected to a voltage monitoring circuit 5 formed by an integrated circuit via an ignition voltage input circuit 4.
  • the voltage monitoring circuit 5 is connected to the first switching element 8 via the diode 6.
  • the first switching element 8 is connected to the second switching element 10.
  • the ignition voltage input circuit 4 is connected not only to the voltage monitoring circuit 5 but also to the power supply stop control circuit 7 formed by hardware.
  • the power supply stop control circuit 7 is connected to the first switching element 8 via a diode 9.
  • the battery voltage input circuit 3 is connected to the power supply integrated circuit 11 via the second switching element 10.
  • the power supply integrated circuit 11 is connected to a load circuit 12 such as a microcomputer and supplies power to the load circuit 12. Further, the power supply integrated circuit 11 is connected to the power supply stop control circuit 7.
  • the power supply start / stop device 100 of the first embodiment includes a battery voltage input circuit 3, an ignition voltage input circuit 4, a voltage monitoring circuit 5, a power supply stop control circuit 7, a first switching element 8, and a second switching element 10. And the power supply integrated circuit 11.
  • the on / off operation of the first switching element 8 and the second switching element 10 starts and stops the voltage supply from the battery 1 to the power supply integrated circuit 11.
  • FIG. 2 shows the ignition voltage Vi, which is the output of the ignition voltage input circuit 4, the control voltage Vc output from the voltage monitoring circuit 5 and the power supply stop control circuit 7, and the voltage value of the output voltage Vo output from the power supply integrated circuit 11. It is a graph explaining the relationship with time. The vertical axis of FIG. 2 shows the voltage, and the horizontal axis shows the time.
  • the first switching element 8 When the control voltage Vc rises, the first switching element 8 is turned on. As a result, the second switching element 10 is also turned on.
  • the output voltage of the battery voltage input circuit 3 is supplied to the power supply integrated circuit 11 via the second switching element 10, and the output voltage Vo rises.
  • the output voltage Vo is supplied from the power supply integrated circuit 11 to the load circuit 12. Further, the output voltage Vo is supplied from the power supply integrated circuit 11 to the power supply stop control circuit 7, and the power supply stop control circuit 7 is activated.
  • the ignition switch 2 when the ignition switch 2 is turned off, the ignition voltage Vi decreases, and even if the ignition voltage Vi becomes 4 V at the time point t2, the control voltage Vc does not fall, and the first switching element 8 and the second switching element 8 and the second.
  • the switching element 10 keeps on, and the power supply start / stop device 100 does not stop.
  • the power supply stop control circuit 7 is set so that the ignition voltage Vi is stopped at 1V, which is lower than 4V.
  • the operation of the power supply start / stop device 100 is maintained by the power supply stop control circuit 7 maintaining the operation and supplying the control voltage Vc to the first switching element 8.
  • the power supply stop control circuit 7 stops operating, and the control voltage Vc drops to 0V.
  • the first switching element 8 is turned off, the second switching element 10 is also turned off, and the operation of the power supply start / stop device 100 is stopped.
  • the first switching element 8 is turned on and off by the voltage monitoring circuit 5 or the power supply stop control circuit 7.
  • the second switching element 10 is turned on and off by the on / off signal from the first switching element 8, and starts and stops the voltage supply of the battery voltage supplied from the battery voltage input circuit 3 to the voltage integrated circuit 11.
  • FIG. 2 there are two similar waveforms on the left and right, but when the ignition switch 2 is turned off and then turned on, the power supply start / stop device 100 performs the same operation and obtains the same waveform. To mean that, two similar waveforms are shown on the left and right.
  • FIG. 3 is a graph illustrating the relationship between the ignition voltage, control voltage, and output voltage voltage values and time in an example different from the present invention.
  • FIG. 3 shows the ignition voltage, control voltage, and output in the example when the power supply stop acquisition control circuit 7 as in the example shown in FIG. 1 is not provided (other configurations are the same as those in FIG. 1). It is a graph explaining the relationship between the voltage value of voltage and time, and is the graph for comparison with this invention.
  • the ignition switch 2 when the ignition switch 2 is turned off, the ignition voltage Vi decreases, and when it reaches 4 V at the time point t2, the control voltage Vc drops and the first switching element 8 and the second switching element 10 are turned off. Then, the power supply start / stop device 100 is stopped.
  • the power supply start / stop device 100 starts and stops at the same voltage, starts at a specific voltage of 4 V, and stops at a specific voltage of 1 V or less, which is smaller than the specific voltage of 4 V. It is difficult to meet the demand to do so.
  • the power supply start / stop device 100 is an integrated circuit that outputs a control voltage Vc to start the power supply integrated circuit 11 when the ignition voltage becomes a specific voltage of 4 V or more.
  • Hardware that starts with the output voltage of the voltage monitoring circuit 5 and the power supply integrated circuit 1 formed by the above, and stops the output of the control voltage Vc and stops the power supply integrated circuit 11 when the ignition voltage reaches a specific voltage of 1V.
  • the power supply stop control circuit 7 formed by the above is provided.
  • the power supply stop control circuit 7 is formed of hardware instead of software, it is possible to prevent the software from becoming uncontrollable and making it difficult for the power supply start / stop device 100 to stop the power supply. Can be done.
  • the starting voltage of the voltage monitoring circuit 5 is set to 4V or more, and the stopping voltage of the power supply stop control circuit 7 is set to 1V.
  • the starting voltage is not limited to these voltage values, and any starting voltage (first). It can be any stop voltage (second threshold) smaller than the start voltage) and the start voltage.
  • Example 2 Next, Example 2 of the present invention will be described.
  • FIG. 4 is a schematic configuration diagram of the power supply start / stop device 100 according to the second embodiment of the present invention.
  • Example 2 is an example of a specific circuit of the battery voltage input circuit 3, the ignition voltage input circuit 4, the power supply stop control circuit 7, the first switching element 8 and the second switching element 10 in the first embodiment.
  • the battery voltage input circuit 3 includes a diode 3d1, a diode 3d2, a capacitor 3c1 and a capacitor 3c2.
  • the anode of the diode 3d1 is connected to the battery 1, and the cathode of the diode 3d1 is connected to the cathode of the diode 3d2 and one electrode of the capacitor 3c2. Further, the anode of the diode 3d2 and the other electrode of the capacitor 3c2 are grounded. Further, one electrode of the capacitor 3c1 is connected to the anode of the diode 3d1, and the other electrode of the capacitor 3c1 is grounded.
  • one electrode of the cathode of the diode 3d1, the cathode of the diode 3d2, and the capacitor 3c2 is connected to the second switching element 10.
  • the second switching element 10 includes a MOSFET 10m, a resistor 10r1 and a resistor 10r2.
  • the source of the MODESFET 10m and one end of the resistor 10r1 are connected to the output end of the battery voltage input circuit 3. Further, the gate of the MOSFET 10m and the other end of the resistor 10r1 are connected to the first switching element 8 via the resistor 10r2. Then, the drain of the MOSFET 10m is connected to the power supply integrated circuit 11.
  • the ignition voltage input circuit 4 includes a diode 4d and a capacitor 4c.
  • One electrode of the anode of the diode 4d and the capacitor 4c is connected to the ignition switch 2. Further, the other electrode of the capacitor 4c is grounded, and the cathode of the diode 4d is connected to the voltage monitoring circuit 5 and the power supply stop control circuit 7.
  • the first switching element 8 includes a MOSFET 8 m, and the gate of the MOSFET 8 m is connected to the cathode of the diode 6 and the cathode of the diode 9.
  • the source of the MOSFET 8m is grounded, and the drain is connected to the gate of the MOSFET 10m via the resistor 10r2 of the second switching element 10.
  • the power supply stop control circuit 7 includes threshold value setting resistors 7r1, 7r2 and a comparator 7c.
  • the power supply terminal of the comparator 7c is connected to the power supply integrated circuit 11, and the output voltage of the power supply integrated circuit 11 is supplied as the starting voltage of the power supply stop control circuit 7. Further, the threshold value setting resistors 7r1 and 7r2 connected in series to each other are connected to the power supply integrated circuit 11.
  • connection points of the threshold value setting resistors 7r1 and 7r2 are connected to the inverting input terminal of the comparator 7c.
  • the output terminal of the comparator 7c is connected to the first switching element 8 via a diode 9.
  • the non-inverting input terminal of the comparator 7c is connected to the cathode of the diode 4d of the ignition voltage input circuit 4.
  • a specific stop voltage (for example, 1V) is input to the inverting input terminal of the comparator 7c, and when the voltage input to the non-inverting input terminal becomes 1V or less, the control voltage Vc which is the output from the power supply stop control circuit 7 Is set to fall.
  • the ignition voltage Vi, control voltage Vc, and output voltage Vo in the second embodiment change in the same manner as the ignition voltage Vi, control voltage Vc, and output voltage Vo in the first embodiment, and the ignition voltage starts at 4 V or more and is 1 V or less. It is configured to stop at.
  • Example 2 can obtain the same effect as that of Example 1.
  • the starting voltage is set to 4V or more and the stopping voltage is set to 1V as in the first embodiment.
  • the starting voltage is not limited to these voltage values, and any starting voltage (first threshold value) can be used for starting. It can be any stop voltage (second threshold) smaller than the voltage.
  • Example 3 of the present invention will be described.
  • FIG. 5 is a schematic configuration diagram of the power supply start / stop device 100 according to the third embodiment of the present invention.
  • the power supply stop control circuit 7 includes a MOSFET 7m1 (first MOSFET), a MOSFET 7m2 (second MOSFET), and resistors 7r3, 7r4, 7r5, and 7r6.
  • the resistors 7r3 and 7r4 are threshold setting resistors, and the resistors 7r5 and 7r6 are level fixing resistors.
  • One end of the resistor 7r3 is connected to the gate of the MOSFET 7m2, and the other end of the resistor 7r3 is connected to the output end of the ignition voltage input circuit 4. Further, one end of the resistor 7r4 is connected to the gate of the MOSFET 7m2 together with one end of the resistor 7r3, and the other end of the resistor 7r4 is grounded.
  • the drain of the MOSFET 7m2 is connected to the output end of the power supply integrated circuit 11 via a resistor 7r5.
  • the gate of the MOSFET 7m1 is connected to the connection line between the drain of the MOSFET 7m2 and the resistor 7r5, and the drain of the MOSFET 7m1 is connected to the output end of the power supply integrated circuit 11 via the resistor 7r6.
  • connection point between the resistor 7r6 and the MOSFET 7m1 is connected to the gate of the MOSFET 8m via the diode 9.
  • the MOSFET 7m2 when the ignition voltage Vi becomes 4 V or more, the MOSFET 7m2 is turned on and the MOSFET 7m1 is turned off. Then, when the ignition voltage Vi becomes 1 V or less, the MOSFET 7 m2 is turned off and the MOSFET 7 m1 is turned on.
  • the ignition voltage Vi, control voltage Vc, and output voltage Vo in the third embodiment change in the same manner as the ignition voltage Vi, control voltage Vc, and output voltage Vo in the second embodiment, and the ignition voltage starts at 4 V or more and is 1 V or less. It is configured to stop at.
  • Example 3 can obtain the same effect as that of Example 2.
  • the power supply stop control circuit 7 in the third embodiment is not provided with the comparator 7c as in the power supply stop control circuit 7 in the second embodiment, but is provided with the inexpensive MOSFETs 7m1 and MOSFET7m2, the third embodiment is described in the third embodiment. It can be cheaper than 2.
  • the starting voltage is set to 4V or more and the stopping voltage is set to 1V as in the first embodiment.
  • the starting voltage is not limited to these voltage values, and any starting voltage (first threshold value) can be used for starting. It can be any stop voltage (second threshold) smaller than the voltage.
  • Example 4 of the present invention will be described.
  • FIG. 6 is a schematic configuration diagram of the power supply start / stop device 100 according to the fourth embodiment of the present invention.
  • An electric vehicle is provided with an inverter circuit for driving an electric motor for traveling, and a high voltage supplied from a high-voltage HV battery is supplied to the electric motor via the inverter circuit.
  • the power supply start / stop device 100 is used to supply power to a load circuit such as a microcomputer that controls the operation of the inverter circuit.
  • Example 4 is an example applied to the power supply start / stop device 100 used in the device having the high voltage HV battery.
  • Example 4 is an example in which a high voltage battery (HV battery) 13, a redundant power supply 14, and a diode 15 are added to the second embodiment, and other configurations are the same as those of the second embodiment. Therefore, a detailed description of the same components as in the first embodiment will be omitted.
  • the battery 1 of the fourth embodiment is equivalent to the battery 1 of the second embodiment, but has a lower voltage than the high voltage battery 13, so in order to clarify this, the battery 1 is shown in FIG. Is described as an LV battery (low voltage battery).
  • the high-voltage battery 13 is connected to the connection line between the cathode of the diode 3d1 and the cathode of the diode 3d2 of the battery voltage input circuit 3 via the redundant power supply 14 and the diode 15.
  • the power supply start / stop device of the fourth embodiment includes two power supplies, a battery 1 and a redundant power supply 14.
  • a redundant power supply circuit is formed by the high voltage battery 13, the redundant power supply 14, and the diode 15.
  • the same effect as that of the second embodiment can be obtained, and since the redundant power supply circuit (high voltage battery 13, redundant power supply 14 and diode 15) is provided, the battery voltage of the battery 1 is provided. Even if the power supply line to the input circuit 3 is lost for some reason, the low voltage generated by the redundant power supply circuit (voltage equivalent to that of the battery 1) can supply power to the battery voltage input circuit 3. , The power start / stop operation by the power start / stop device 100 can be normally performed. (Example 5) Next, Example 5 of the present invention will be described.
  • the fifth embodiment includes an inverter that converts a direct current from a battery in an electric vehicle or the like into an alternating current and turns it into an electric motor, and supplies a power source to a microcomputer (load circuit 12) that controls the operation of the gate drive circuit of the inverter.
  • the power conversion device 200 includes a power supply start / stop device for stopping the movement of the power converter.
  • the power conversion device 200 includes an inverter circuit 18, a current sensor 19, a gate drive circuit 17, and a motor control unit 150.
  • the motor control unit 150 includes a power supply start / stop device 100, a microcomputer 12, and a backup power supply circuit 16.
  • the power supply start / stop device 100 can be applied to any of the above-described first, second, and third embodiments, or the sixth embodiment described later.
  • the inverter circuit 18 converts the current from the HV battery 13, which is a high-voltage battery, into an alternating current and supplies it to the electric motor 20.
  • the power supply start / stop device 100 is supplied with power from the battery 1 and the backup power supply circuit 16 to control the power start / stop of the microcomputer 12.
  • the microcomputer 12 controls the operation of the gate drive circuit 17 that drives the gate of the inverter circuit 18.
  • the backup power supply circuit 16 is connected to the HV battery 13.
  • the power supply start / stop device 100 can set the start voltage and the stop voltage independently and can surely stop the power supply to the microcomputer 12, the reliability of the power converter 200 can be improved. can.
  • Example 6 of the present invention will be described.
  • the signal is supplied to the power supply stop control circuit 7 of the power supply integrated circuit 11, and the power supply stop control circuit battery 21 is connected to the power supply stop control circuit 7 via the power supply stop control circuit switch 22.
  • the configuration of the first embodiment other configurations are the same as those of the first embodiment.
  • the power supply start / stop device 100 includes a battery 21 for a power stop control circuit and a switch 22 for a power stop control circuit in addition to the configuration of the first embodiment.
  • the power supply start / stop device 100 of the sixth embodiment also has a voltage waveform similar to the voltage waveform shown in FIG.
  • the control voltage Vc from the voltage monitoring circuit 5 rises. This is because the starting voltage of the voltage monitoring circuit 5 is set to 4 V or more in advance.
  • the first switching element 8 When the control voltage Vc rises, the first switching element 8 is turned on. As a result, the second switching element 10 is also turned on.
  • the second switching element 10 When the second switching element 10 is turned on, the output voltage of the battery voltage input circuit 3 is supplied to the power supply integrated circuit 11 via the second switching element 10, and the output voltage Vo rises. At this time, a switch-on signal is supplied from the power supply integrated circuit 11 to the power supply stop control circuit switch 22, and the voltage of the power supply stop control circuit battery 21 is activated by the power supply stop control circuit switch 22 via the power supply stop control circuit switch 22. It is supplied as a voltage, and the power supply stop control circuit 7 is activated.
  • the ignition switch 2 when the ignition switch 2 is turned off, the ignition voltage Vi decreases, and even if the ignition voltage Vi becomes 4 V at the time point t2, the control voltage Vc does not fall, and the first switching element 8 and the second switching element 8 and the second.
  • the switching element 10 keeps on, and the power supply start / stop device 100 does not stop.
  • the power supply stop control circuit 7 stops operating, and the control voltage Vc drops to 0V.
  • the first switching element 8 is turned off, the second switching element 10 is also turned off, and the switch-on signal supplied from the power supply integrated circuit 11 to the power supply stop control circuit switch 22 is turned off, and the power supply is stopped.
  • the control circuit switch 22 is turned off.
  • the power supply start / stop device 100 of the sixth embodiment also has the same effect as that of the first embodiment.
  • Example 6 is applicable not only to Example 1 but also to Examples 2 to 5.
  • the first switching element 8 and the second switching element 10 are collectively referred to as a switching element, and this switching element has the first switching element 8 and the second switching element 10. It can be configured.
  • the power supply start / stop device 100 is configured to include the ignition voltage input circuit 4 and the battery voltage input circuit 3, but the existing ignition voltage input circuit and battery voltage input circuit may be used. Since a connectable configuration is also possible, the power supply start / stop device 100 of the present invention includes an embodiment in which the ignition voltage input circuit 4 and the battery voltage input circuit 3 are omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Achieved is a power starting/stopping device that is less affected by a dark current, can independently set a start voltage and a stop voltage, and can reliably stop the supply of power. The power starting/stopping device 100 comprises: a power supply integrated circuit 11 that supplies power to a load circuit 12; and switching elements 8, 10 that start and stop the supply of a voltage from a battery 1 to the power supply integrated circuit 11 through an on/off operation. Furthermore, the power starting/stopping device 100 comprises: a voltage monitoring circuit 5 that monitors the voltage supplied from the battery 1 and turns on the switching elements 8 and 19 when the voltage supplied from the battery 1 is equal to or greater than a first threshold; and a power stopping control circuit 7 that turns off the switching elements 8 and 10 when the voltage supplied from the battery 1 is equal to or lower than a second threshold lower than the first threshold.

Description

電源起動停止装置Power start / stop device
 本発明は、負荷への電源供給及び停止を制御する電源起動停止装置に関する。 The present invention relates to a power supply start / stop device that controls power supply and stop to a load.
 車両に搭載された制御用マイコン等の負荷回路への電源供給及び停止を制御する電子制御装置である電源起動停止装置が知られている。 A power supply start / stop device, which is an electronic control device that controls power supply and stop to a load circuit such as a control microcomputer mounted on a vehicle, is known.
 電源起動停止装置の一例として、特許文献1に記載された電源回路がある。 As an example of the power supply start / stop device, there is a power supply circuit described in Patent Document 1.
 特許文献1に記載された電源回路は、バッテリから常時給電される第1電源ラインと、イグニッションスイッチを介してバッテリから給電される第2電源ラインと、定電圧回路部と、電圧監視回路を有するタイマ回路部と、第1電源ライン及び第2電源ラインに接続され、所定の定電圧を発生するか否かを切り替えるスイッチング素子とを備えている。 The power supply circuit described in Patent Document 1 includes a first power supply line that is constantly supplied with power from the battery, a second power supply line that is supplied with power from the battery via an ignition switch, a constant voltage circuit unit, and a voltage monitoring circuit. It includes a timer circuit unit and a switching element connected to the first power supply line and the second power supply line to switch whether or not to generate a predetermined constant voltage.
 タイマ回路部は、イグニッションスイッチがオフとなってから所定時間後にスイッチング素子をオフとし、第2電源ラインの給電がオフとなってから所定時間後に第1電源ラインからの給電がオフとされる。 The timer circuit unit turns off the switching element a predetermined time after the ignition switch is turned off, and turns off the power supply from the first power supply line a predetermined time after the power supply of the second power supply line is turned off.
 これにより、構成の簡素化、電源スイッチの切り替えによる出力電圧の落ち込みが防止されている。 This simplifies the configuration and prevents the output voltage from dropping due to switching of the power switch.
特開2003-47150号公報Japanese Unexamined Patent Publication No. 2003-47150
 昨今、様々なECU(Electronic Cpntrol Unit)が車両に搭載されており、これらECUは、特定電圧aV以上で起動し、特定電圧aVより小さい特定電圧bV以下で確実に停止するように構成されている。 Recently, various ECUs (Electronic Control Units) are mounted on vehicles, and these ECUs are configured to start at a specific voltage aV or higher and reliably stop at a specific voltage bV or lower, which is smaller than the specific voltage aV. ..
 他のECUと同一の電圧範囲で起動停止させるため、電源起動停止装置についても、特定電圧aVで起動し、特定電圧aVより小さい特定電圧bV以下で停止することが望まれている。 In order to start and stop in the same voltage range as other ECUs, it is desired that the power supply start / stop device also starts at a specific voltage aV and stops at a specific voltage bV or less, which is smaller than the specific voltage aV.
 ここで、電圧が起動電圧となっているか否かの判断は、電圧監視回路により監視されているが、この電圧監視回路は集積回路により形成されている。 Here, the determination of whether or not the voltage is the starting voltage is monitored by the voltage monitoring circuit, and this voltage monitoring circuit is formed by the integrated circuit.
 集積回路により形成された電圧監視回路は、暗電流は非常に小さいが、ヒステリシス幅が、数十mVと小さいため、起動電圧又は停止電圧のいずれか一つの電圧値しか設定することができない。 The voltage monitoring circuit formed by the integrated circuit has a very small dark current, but the hysteresis width is as small as several tens of mV, so only one of the starting voltage and the stopping voltage can be set.
 このため、特定電圧aVで起動し、特定電圧aVより小さい特定電圧bV以下で停止するという要求を満足することが困難であった。 Therefore, it is difficult to satisfy the requirement of starting at a specific voltage aV and stopping at a specific voltage bV or less, which is smaller than the specific voltage aV.
 また、起動及び停止ロジックをソフトウェア制御で実現させることが考えられる。 Also, it is conceivable to realize the start and stop logic by software control.
 しかし、ソフトウェアが制御不能状態となることも考えられ、そのような場合には、電源起動停止装置により、電源を停止することが困難となる可能性がある。 However, it is possible that the software will be out of control, and in such a case, it may be difficult to stop the power supply by the power supply start / stop device.
 本発明は上記問題点に鑑みてなされたもので、その目的とするところは、暗電流の影響を受けにくく、かつ、起動電圧と停止電圧とを独立して設定でき、確実に電源供給を停止することが可能な電源起動停止装置を実現することである。 The present invention has been made in view of the above problems, and an object of the present invention is that it is not easily affected by dark current, the starting voltage and the stopping voltage can be set independently, and the power supply is reliably stopped. It is to realize a power supply start / stop device that can be used.
 上記目的を達成するために、本発明は次のように構成される。 In order to achieve the above object, the present invention is configured as follows.
 電源起動停止装置において、負荷回路に電源を供給する電源集積回路と、前記電源集積回路にバッテリからの電圧供給の開始及び停止をオンオフ動作により行うスイッチング素子と、前記バッテリから供給される電圧を監視し、前記バッテリから供給される電圧が第1閾値以上となったとき、前記スイッチング素子をオンとする電圧監視回路と、前記バッテリから供給される電圧が、前記第1閾値より低い第2閾値以下となったときに前記スイッチング素子をオフとする電源停止制御回路とを備える。 In the power supply start / stop device, the power supply integrated circuit that supplies power to the load circuit, the switching element that starts and stops the voltage supply from the battery to the power supply integrated circuit by the on / off operation, and the voltage supplied from the battery are monitored. Then, when the voltage supplied from the battery becomes equal to or higher than the first threshold value, the voltage monitoring circuit that turns on the switching element and the voltage supplied from the battery are equal to or lower than the second threshold value lower than the first threshold value. It is provided with a power supply stop control circuit that turns off the switching element when becomes.
 また、電力変換装置において、高電圧バッテリに接続され、前記高電圧バッテリの電力を、電動モータを駆動する電力に変換するインバータ回路と、前記インバータ回路を駆動するゲートドライブ回路と、低電圧バッテリに接続され、前記ゲートドライブ回路を制御するマイコンと、前記マイコンへの電源の起動及び停止を行う電源起動停止装置とを有するモータ制御部とを備え、前記電源起動停止装置は、負荷回路に電源を供給する電源集積回路と、前記電源集積回路にバッテリからの電圧供給の開始及び停止をオンオフ動作により行うスイッチング素子と、前記バッテリから供給される電圧を監視し、前記バッテリから供給される電圧が第1閾値以上となったとき、前記スイッチング素子をオンとする電圧監視回路と、前記バッテリから供給される電圧が、前記第1閾値より低い第2閾値以下となったときに前記スイッチング素子をオフとする電源停止制御回路とを備える。 Further, in the power conversion device, an inverter circuit connected to the high-voltage battery and converting the power of the high-voltage battery into power for driving the electric motor, a gate drive circuit for driving the inverter circuit, and a low-voltage battery. The power supply start / stop device includes a motor control unit which is connected and has a microcomputer for controlling the gate drive circuit and a power supply start / stop device for starting and stopping the power supply to the microcomputer, and the power supply start / stop device supplies power to the load circuit. The power supply integrated circuit to be supplied, the switching element that starts and stops the voltage supply from the battery to the power supply integrated circuit by the on / off operation, and the voltage supplied from the battery are monitored, and the voltage supplied from the battery is the first. When the voltage exceeds one threshold, the voltage monitoring circuit turns on the switching element, and when the voltage supplied from the battery becomes equal to or less than the second threshold lower than the first threshold, the switching element is turned off. It is equipped with a power supply stop control circuit.
 本発明によれば、暗電流の影響を受けにくく、かつ、起動電圧と停止電圧とを独立して設定でき、確実に電源供給を停止することが可能な電源起動停止装置を実現することができる。 According to the present invention, it is possible to realize a power supply start / stop device that is not easily affected by dark current, can set the start voltage and the stop voltage independently, and can surely stop the power supply. ..
本発明の実施例1による電源起動停止装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a first embodiment of the present invention. 実施例1におけるイグニッション電圧、制御電圧及び出力電圧の電圧値と時間との関係を説明するグラフである。It is a graph explaining the relationship between the voltage value of the ignition voltage, the control voltage and the output voltage in Example 1 and time. 本発明とは異なる例におけるイグニッション電圧、制御電圧及び出力電圧の電圧値と時間との関係を説明するグラフである。It is a graph explaining the relationship between the voltage value of an ignition voltage, a control voltage and an output voltage, and time in an example different from this invention. 本発明の実施例2による電源起動停止装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a second embodiment of the present invention. 本発明の実施例3による電源起動停止装置の概略構成図である。It is a schematic block diagram of the power supply start / stop device according to Example 3 of this invention. 本発明の実施例4による電源起動停止装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a fourth embodiment of the present invention. 本発明の実施例5による電力変換装置の概略構成図である。It is a schematic block diagram of the power conversion apparatus according to Example 5 of this invention. 本発明の実施例6による電源起動停止装置の概略構成図である。FIG. 5 is a schematic configuration diagram of a power supply start / stop device according to a sixth embodiment of the present invention.
 以下、本発明を実施するための形態について、図面を参照して説明する。なお、実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、重複する説明は、適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, in all the drawings for explaining the embodiment, in principle, the same members are designated by the same reference numerals, and duplicate description will be omitted as appropriate.
 (実施例1)
 図1は、本発明の実施例1電源起動停止装置100の概略構成図である。実施例1は、車両に搭載された制御用マイコン等の負荷回路への電源供給及び停止を制御する電源起動停止装置100の例である。
(Example 1)
FIG. 1 is a schematic configuration diagram of a power supply start / stop device 100 according to a first embodiment of the present invention. The first embodiment is an example of a power supply start / stop device 100 that controls power supply and stop to a load circuit such as a control microcomputer mounted on a vehicle.
 図1において、バッテリ1は、イグニッションスイッチ2及びバッテリ電圧入力回路3に接続されている。イグニションスイッチ2は、イグニッション電圧入力回路4を介して集積回路で形成された電圧監視回路5に接続されている。そして、電圧監視回路5は、ダイオード6を介して第1スイッチング素子8に接続されている。第1スイッチング素子8は、第2スイッチング素子10に接続されている。 In FIG. 1, the battery 1 is connected to the ignition switch 2 and the battery voltage input circuit 3. The ignition switch 2 is connected to a voltage monitoring circuit 5 formed by an integrated circuit via an ignition voltage input circuit 4. The voltage monitoring circuit 5 is connected to the first switching element 8 via the diode 6. The first switching element 8 is connected to the second switching element 10.
 イグニッション電圧入力回路4は、電圧監視回路5のみならず、ハードウェアで形成された電源停止制御回路7にも接続されている。この電源停止制御回路7は、ダイオード9を介して、第1スイッチング素子8に接続されている。 The ignition voltage input circuit 4 is connected not only to the voltage monitoring circuit 5 but also to the power supply stop control circuit 7 formed by hardware. The power supply stop control circuit 7 is connected to the first switching element 8 via a diode 9.
 また、バッテリ電圧入力回路3は、第2スイッチング素子10を介して電源集積回路11に接続されている。電源集積回路11は、マイコン等の負荷回路12に接続され、負荷回路12に電源を供給する。また、電源集積回路11は、電源停止制御回路7に接続されている。 Further, the battery voltage input circuit 3 is connected to the power supply integrated circuit 11 via the second switching element 10. The power supply integrated circuit 11 is connected to a load circuit 12 such as a microcomputer and supplies power to the load circuit 12. Further, the power supply integrated circuit 11 is connected to the power supply stop control circuit 7.
 実施例1の電源起動停止装置100は、バッテリ電圧入力回路3と、イグニッション電圧入力回路4と、電圧監視回路5と、電源停止制御回路7と、第1スイッチング素子8と、第2スイッチング素子10と、電源集積回路11とから形成されている。第1スイッチング素子8及び第2スイッチング素子10のオンオフ動作により、電源集積回路11にバッテリ1からの電圧供給の開始及び停止が行われる。 The power supply start / stop device 100 of the first embodiment includes a battery voltage input circuit 3, an ignition voltage input circuit 4, a voltage monitoring circuit 5, a power supply stop control circuit 7, a first switching element 8, and a second switching element 10. And the power supply integrated circuit 11. The on / off operation of the first switching element 8 and the second switching element 10 starts and stops the voltage supply from the battery 1 to the power supply integrated circuit 11.
 図2は、イグニッション電圧入力回路4の出力であるイグニッション電圧Vi、電圧監視回路5及び電源停止制御回路7から出力される制御電圧Vc及び電源集積回路11から出力される出力電圧Voの電圧値と時間との関係を説明するグラフである。図2の縦軸は、電圧を示し、横軸は時間を示す。 FIG. 2 shows the ignition voltage Vi, which is the output of the ignition voltage input circuit 4, the control voltage Vc output from the voltage monitoring circuit 5 and the power supply stop control circuit 7, and the voltage value of the output voltage Vo output from the power supply integrated circuit 11. It is a graph explaining the relationship with time. The vertical axis of FIG. 2 shows the voltage, and the horizontal axis shows the time.
 図1及び図2において、イグニッションスイッチ2がオンとなると、イグニッション電圧Viが上昇し、時点t1にて電圧値が4V以上となると、電圧監視回路5からの制御電圧Vcが立ち上がる。電圧監視回路5の起動電圧が4V以上に予め設定してあるからである。 In FIGS. 1 and 2, when the ignition switch 2 is turned on, the ignition voltage Vi rises, and when the voltage value becomes 4 V or more at the time point t1, the control voltage Vc from the voltage monitoring circuit 5 rises. This is because the starting voltage of the voltage monitoring circuit 5 is set to 4 V or more in advance.
 制御電圧Vcが立ち上がると、第1スイッチング素子8がオンとなる。これにより、第2スイッチング素子10もオンとなる。 When the control voltage Vc rises, the first switching element 8 is turned on. As a result, the second switching element 10 is also turned on.
 第2スイッチング素子10がオンとなると、バッテリ電圧入力回路3の出力電圧が第2スイッチング素子10を介して電源集積回路11に供給され、出力電圧Voが立ち上がる。出力電圧Voは、電源集積回路11から負荷回路12に供給される。また、出力電圧Voは、電源集積回路11から電源停止制御回路7に供給され、電源停止制御回路7が起動される。 When the second switching element 10 is turned on, the output voltage of the battery voltage input circuit 3 is supplied to the power supply integrated circuit 11 via the second switching element 10, and the output voltage Vo rises. The output voltage Vo is supplied from the power supply integrated circuit 11 to the load circuit 12. Further, the output voltage Vo is supplied from the power supply integrated circuit 11 to the power supply stop control circuit 7, and the power supply stop control circuit 7 is activated.
 次に、イグニッションスイッチ2がオフとされると、イグニッション電圧Viは、減少していき、時点t2で4Vとなっても、制御電圧Vcは立ち下がることはなく、第1スイッチング素子8及び第2スイッチング素子10はオンの状態を維持し、電源起動停止装置100は停止することは無い。 Next, when the ignition switch 2 is turned off, the ignition voltage Vi decreases, and even if the ignition voltage Vi becomes 4 V at the time point t2, the control voltage Vc does not fall, and the first switching element 8 and the second switching element 8 and the second. The switching element 10 keeps on, and the power supply start / stop device 100 does not stop.
 これは、電源停止制御回路7は、イグニッション電圧Viが4Vより低い1Vで停止するように設定されているからである。電源停止制御回路7が動作を維持し、制御電圧Vcを第1スイッチング素子8に供給することにより、電源起動停止装置100の動作が維持される。 This is because the power supply stop control circuit 7 is set so that the ignition voltage Vi is stopped at 1V, which is lower than 4V. The operation of the power supply start / stop device 100 is maintained by the power supply stop control circuit 7 maintaining the operation and supplying the control voltage Vc to the first switching element 8.
 そして、時点t3にて、イグニション電圧V1が1Vとなると、電源停止制御回路7は、動作を停止し、制御電圧Vcが立ち下がり0Vとなる。これによって、第1スイッチング素子8がオフとなり、これに伴って第2スイッチング素子10もオフとなり、電源起動停止装置100の動作が停止される。 Then, at the time point t3, when the ignition voltage V1 becomes 1V, the power supply stop control circuit 7 stops operating, and the control voltage Vc drops to 0V. As a result, the first switching element 8 is turned off, the second switching element 10 is also turned off, and the operation of the power supply start / stop device 100 is stopped.
 つまり、第1スイッチング素子8は、電圧監視回路5または電源停止制御回路7によりオンオフ動作される。そして、第2スイッチング素子10は、第1スイッチング素子8からのオンオフ信号によりオンオフされ、バッテリ電圧入力回路3から供給されるバッテリ電圧の電圧集積回路11への電圧供給の開始及び停止動作を行う。 That is, the first switching element 8 is turned on and off by the voltage monitoring circuit 5 or the power supply stop control circuit 7. Then, the second switching element 10 is turned on and off by the on / off signal from the first switching element 8, and starts and stops the voltage supply of the battery voltage supplied from the battery voltage input circuit 3 to the voltage integrated circuit 11.
 なお、図2において、同様な波形が左右2つあるが、イグニッションスイッチ2がオフとなった後、次にオンとなると、電源起動停止装置100は同様な動作を行い、同様な波形が得られることを意味するため、同様な波形が左右2つ示されている。 In FIG. 2, there are two similar waveforms on the left and right, but when the ignition switch 2 is turned off and then turned on, the power supply start / stop device 100 performs the same operation and obtains the same waveform. To mean that, two similar waveforms are shown on the left and right.
 図3は、本発明とは異なる例におけるイグニッション電圧、制御電圧及び出力電圧の電圧値と時間との関係を説明するグラフである。 FIG. 3 is a graph illustrating the relationship between the ignition voltage, control voltage, and output voltage voltage values and time in an example different from the present invention.
 つまり、図3は、図1に示した例のような電源停止得制御回路7を備えていない場合の例(他の構成は図1の例と同様とする)におけるイグニッション電圧、制御電圧及び出力電圧の電圧値と時間との関係を説明するグラフであり、本発明との比較のためのグラフである。 That is, FIG. 3 shows the ignition voltage, control voltage, and output in the example when the power supply stop acquisition control circuit 7 as in the example shown in FIG. 1 is not provided (other configurations are the same as those in FIG. 1). It is a graph explaining the relationship between the voltage value of voltage and time, and is the graph for comparison with this invention.
 図3において、イグニッションスイッチ2がオンとなると、イグニッション電圧Viが上昇し、時点t1にて電圧値が4V以上となると、電圧監視回路5からの制御電圧Vcが立ち上がる。 In FIG. 3, when the ignition switch 2 is turned on, the ignition voltage Vi rises, and when the voltage value becomes 4 V or more at the time point t1, the control voltage Vc from the voltage monitoring circuit 5 rises.
 制御電圧Vcが立ち上がると、第1スイッチング素子8がオンとなる。これにより、第2スイッチング素子10もオンとなり、出力電圧Voが立ち上がる。 When the control voltage Vc rises, the first switching element 8 is turned on. As a result, the second switching element 10 is also turned on, and the output voltage Vo rises.
 次に、イグニッションスイッチ2がオフとされると、イグニッション電圧Viは、減少していき、時点t2で4Vとなると、制御電圧Vcは立ち下がり、第1スイッチング素子8及び第2スイッチング素子10はオフとなり、電源起動停止装置100は停止される。 Next, when the ignition switch 2 is turned off, the ignition voltage Vi decreases, and when it reaches 4 V at the time point t2, the control voltage Vc drops and the first switching element 8 and the second switching element 10 are turned off. Then, the power supply start / stop device 100 is stopped.
 このように、電源停止制御回路7を備えていない場合は、電源起動停止装置100の起動及び停止は、同一の電圧となり、特定電圧4Vで起動し、特定電圧4Vより小さい特定電圧1V以下で停止するという要求を満足することが困難である。 As described above, when the power supply stop control circuit 7 is not provided, the power supply start / stop device 100 starts and stops at the same voltage, starts at a specific voltage of 4 V, and stops at a specific voltage of 1 V or less, which is smaller than the specific voltage of 4 V. It is difficult to meet the demand to do so.
 以上のように、本発明の実施例1によれば、電源起動停止装置100は、イグニッション電圧が特定の電圧4V以上となると、制御電圧Vcを出力して、電源集積回路11を起動する集積回路で形成された電圧監視回路5と、電源集積回路1の出力電圧により起動し、イグニッション電圧が特定の電圧1Vとなると、制御電圧Vcの出力を停止して、電源集積回路11を停止させるハードウェアで形成される電源停止制御回路7を備える。 As described above, according to the first embodiment of the present invention, the power supply start / stop device 100 is an integrated circuit that outputs a control voltage Vc to start the power supply integrated circuit 11 when the ignition voltage becomes a specific voltage of 4 V or more. Hardware that starts with the output voltage of the voltage monitoring circuit 5 and the power supply integrated circuit 1 formed by the above, and stops the output of the control voltage Vc and stops the power supply integrated circuit 11 when the ignition voltage reaches a specific voltage of 1V. The power supply stop control circuit 7 formed by the above is provided.
 よって、暗電流の影響を受けにくく、かつ、起動電圧と停止電圧とを独立して設定でき、確実に電源供給を停止することが可能な電源起動停止装置100を実現することができる。 Therefore, it is possible to realize a power supply start / stop device 100 that is not easily affected by dark current, can set the start voltage and the stop voltage independently, and can surely stop the power supply.
 さらに、電源停止制御回路7は、ソフトウェアではなく、ハードウェアで形成されているので、ソフトウェアが制御不能状態となり、電源起動停止装置100により、電源を停止することが困難となることを回避することができる。 Further, since the power supply stop control circuit 7 is formed of hardware instead of software, it is possible to prevent the software from becoming uncontrollable and making it difficult for the power supply start / stop device 100 to stop the power supply. Can be done.
 なお、上述した例においては、電圧監視回路5の起動電圧を4V以上とし、電源停止制御回路7の停止電圧を1Vと設定したが、これらの電圧値に限らず、任意の起動電圧(第1閾値)、起動電圧より小さい任意の停止電圧(第2閾値)とすることができる。 In the above example, the starting voltage of the voltage monitoring circuit 5 is set to 4V or more, and the stopping voltage of the power supply stop control circuit 7 is set to 1V. However, the starting voltage is not limited to these voltage values, and any starting voltage (first). It can be any stop voltage (second threshold) smaller than the start voltage) and the start voltage.
 (実施例2)
 次に、本発明の実施例2について説明する。
(Example 2)
Next, Example 2 of the present invention will be described.
 図4は、本発明の実施例2による電源起動停止装置100の概略構成図である。 FIG. 4 is a schematic configuration diagram of the power supply start / stop device 100 according to the second embodiment of the present invention.
 実施例2は、実施例1におけるバッテリ電圧入力回路3、イグニッション電圧入力回路4、電源停止制御回路7、第1スイッチング素子8及び第2スイッチング素子10の具体的回路の一例である。 Example 2 is an example of a specific circuit of the battery voltage input circuit 3, the ignition voltage input circuit 4, the power supply stop control circuit 7, the first switching element 8 and the second switching element 10 in the first embodiment.
 図4において、バッテリ電圧入力回路3は、ダイオード3d1、ダイオード3d2、コンデンサ3c1及びコンデンサ3c2を備えている。 In FIG. 4, the battery voltage input circuit 3 includes a diode 3d1, a diode 3d2, a capacitor 3c1 and a capacitor 3c2.
 ダイオード3d1のアノードは、バッテリ1に接続され、ダイオード3d1のカソードは、ダイオード3d2のカソード及びコンデンサ3c2の一方の電極に接続されている。
また、ダイオード3d2のアノード及びコンデンサ3c2の他方の電極は接地されている。また、コンデンサ3c1の一方の電極は、ダイオード3d1のアノードに接続され、コンデンサ3c1の他方の電極は接地されている。
The anode of the diode 3d1 is connected to the battery 1, and the cathode of the diode 3d1 is connected to the cathode of the diode 3d2 and one electrode of the capacitor 3c2.
Further, the anode of the diode 3d2 and the other electrode of the capacitor 3c2 are grounded. Further, one electrode of the capacitor 3c1 is connected to the anode of the diode 3d1, and the other electrode of the capacitor 3c1 is grounded.
 そして、ダイオード3d1のカソード、ダイオード3d2のカソード及びコンデンサ3c2の一方の電極が、第2スイッチング素子10に接続されている。 Then, one electrode of the cathode of the diode 3d1, the cathode of the diode 3d2, and the capacitor 3c2 is connected to the second switching element 10.
 第2スイッチング素子10は、MOSFET10m、抵抗10r1及び抵抗10r2を備えている。 The second switching element 10 includes a MOSFET 10m, a resistor 10r1 and a resistor 10r2.
 MODSFET10mのソース及び抵抗10r1の一方端がバッテリ電圧入力回路3の出力端に接続されている。また、MOSFET10mのゲート及び抵抗10r1の他方端は抵抗10r2を介して第1スイッチング素子8に接続されている。そして、MOSFET10mのドレインが電源集積回路11に接続されている。 The source of the MODESFET 10m and one end of the resistor 10r1 are connected to the output end of the battery voltage input circuit 3. Further, the gate of the MOSFET 10m and the other end of the resistor 10r1 are connected to the first switching element 8 via the resistor 10r2. Then, the drain of the MOSFET 10m is connected to the power supply integrated circuit 11.
 イグニッション電圧入力回路4は、ダイオード4d及びコンデンサ4cを備えている。 The ignition voltage input circuit 4 includes a diode 4d and a capacitor 4c.
 ダイオード4dのアノード及びコンデンサ4cの一方の電極はイグニッションスイッチ2に接続されている。また、コンデンサ4cの他方の電極は、接地され、ダイオード4dのカソードは、電圧監視回路5及び電源停止制御回路7に接続される。 One electrode of the anode of the diode 4d and the capacitor 4c is connected to the ignition switch 2. Further, the other electrode of the capacitor 4c is grounded, and the cathode of the diode 4d is connected to the voltage monitoring circuit 5 and the power supply stop control circuit 7.
 また、第1スイッチング素子8は、MOSFET8mを備え、MOSFET8mのゲートは、ダイオード6のカソード及びダイオード9のカソードに接続されている。そして、MOSFET8mのソースは接地され、ドレインは第2スイッチング素子10の抵抗10r2を介してMOSFET10mのゲートに接続されている。 Further, the first switching element 8 includes a MOSFET 8 m, and the gate of the MOSFET 8 m is connected to the cathode of the diode 6 and the cathode of the diode 9. The source of the MOSFET 8m is grounded, and the drain is connected to the gate of the MOSFET 10m via the resistor 10r2 of the second switching element 10.
 また、電源停止制御回路7は、閾値設定用抵抗7r1、7r2及びコンパレータ7cを備えている。 Further, the power supply stop control circuit 7 includes threshold value setting resistors 7r1, 7r2 and a comparator 7c.
 コンパレータ7cの電源端子は、電源集積回路11に接続され、電源集積回路11の出力電圧が電源停止制御回路7の起動電圧として供給される。また、互いに直列接続された閾値設定用抵抗7r1、7r2が電源集積回路11に接続されている。 The power supply terminal of the comparator 7c is connected to the power supply integrated circuit 11, and the output voltage of the power supply integrated circuit 11 is supplied as the starting voltage of the power supply stop control circuit 7. Further, the threshold value setting resistors 7r1 and 7r2 connected in series to each other are connected to the power supply integrated circuit 11.
 閾値設定用抵抗7r1と7r2との互いの接続点がコンパレータ7cの反転入力端子に接続されている。コンパレータ7cの出力端子は、ダイオード9を介して、第1スイッチング素子8に接続されている。 The connection points of the threshold value setting resistors 7r1 and 7r2 are connected to the inverting input terminal of the comparator 7c. The output terminal of the comparator 7c is connected to the first switching element 8 via a diode 9.
 コンパレータ7cの非反転入力端子は、イグニッション電圧入力回路4のダイオード4dのカソードに接続されている。 The non-inverting input terminal of the comparator 7c is connected to the cathode of the diode 4d of the ignition voltage input circuit 4.
 コンパレータ7cの反転入力端子には、特定の停止電圧(例えば、1V)が入力され、非反転入力端子に入力された電圧が1V以下となると、電源停止制御回路7からの出力である制御電圧Vcが立ち下がるように設定されている。 A specific stop voltage (for example, 1V) is input to the inverting input terminal of the comparator 7c, and when the voltage input to the non-inverting input terminal becomes 1V or less, the control voltage Vc which is the output from the power supply stop control circuit 7 Is set to fall.
 実施例2におけるイグニッション電圧Vi、制御電圧Vc及び出力電圧Voは、実施例1のイグニッション電圧Vi、制御電圧Vc及び出力電圧Voと同様に変化し、イニグニッション電圧が4V以上で起動して、1V以下で停止するように構成されている。 The ignition voltage Vi, control voltage Vc, and output voltage Vo in the second embodiment change in the same manner as the ignition voltage Vi, control voltage Vc, and output voltage Vo in the first embodiment, and the ignition voltage starts at 4 V or more and is 1 V or less. It is configured to stop at.
 よって、実施例2は、実施例1と同様な効果を得ることができる。 Therefore, Example 2 can obtain the same effect as that of Example 1.
 なお、実施例2においても、実施例1と同様に、起動電圧を4V以上とし、停止電圧を1Vと設定したが、これらの電圧値に限らず、任意の起動電圧(第1閾値)、起動電圧より小さい任意の停止電圧(第2閾値)とすることができる。 In the second embodiment as well, the starting voltage is set to 4V or more and the stopping voltage is set to 1V as in the first embodiment. However, the starting voltage is not limited to these voltage values, and any starting voltage (first threshold value) can be used for starting. It can be any stop voltage (second threshold) smaller than the voltage.
 (実施例3)
 次に、本発明の実施例3について説明する。
(Example 3)
Next, Example 3 of the present invention will be described.
 図5は、本発明の実施例3による電源起動停止装置100の概略構成図である。 FIG. 5 is a schematic configuration diagram of the power supply start / stop device 100 according to the third embodiment of the present invention.
 実施例3と実施例2との相違点は、電源停止制御回路7の内部構成のみであるため、実施例3における電源停止制御回路7に関する事項を説明し、他の構成部分については、詳細な説明は省略する。 Since the difference between the third embodiment and the second embodiment is only the internal configuration of the power supply stop control circuit 7, the matters relating to the power supply stop control circuit 7 in the third embodiment will be described, and the other components will be described in detail. The description is omitted.
 図5において、電源停止制御回路7は、MOSFET7m1(第1のMOSFET)、MOSFET7m2(第2のMOSFET)、抵抗7r3、7r4、7r5及び7r6を備えている。 In FIG. 5, the power supply stop control circuit 7 includes a MOSFET 7m1 (first MOSFET), a MOSFET 7m2 (second MOSFET), and resistors 7r3, 7r4, 7r5, and 7r6.
 抵抗7r3及び7r4は、閾値設定用抵抗であり、抵抗7r5、7r6は、レベル固定用抵抗である。 The resistors 7r3 and 7r4 are threshold setting resistors, and the resistors 7r5 and 7r6 are level fixing resistors.
 抵抗7r3の一方端は、MOSFET7m2のゲートに接続され、抵抗7r3の他方端は、イグニッション電圧入力回路4の出力端に接続されている。また、抵抗7r4の一方端は、抵抗7r3の一方端と共にMOSFET7m2のゲートに接続され、抵抗7r4の他方端は接地されている。 One end of the resistor 7r3 is connected to the gate of the MOSFET 7m2, and the other end of the resistor 7r3 is connected to the output end of the ignition voltage input circuit 4. Further, one end of the resistor 7r4 is connected to the gate of the MOSFET 7m2 together with one end of the resistor 7r3, and the other end of the resistor 7r4 is grounded.
 また、MOSFET7m2のドレインは、抵抗7r5を介して電源集積回路11の出力端に接続されている。 Further, the drain of the MOSFET 7m2 is connected to the output end of the power supply integrated circuit 11 via a resistor 7r5.
 また、MOSFET7m1のゲートはMOSFET7m2のドレインと抵抗7r5との接続線に接続され、MOSFET7m1のドレインは、抵抗7r6を介して電源集積回路11の出力端に接続されている。 Further, the gate of the MOSFET 7m1 is connected to the connection line between the drain of the MOSFET 7m2 and the resistor 7r5, and the drain of the MOSFET 7m1 is connected to the output end of the power supply integrated circuit 11 via the resistor 7r6.
 そして、MOSFET7m1のソースとMOSFET7m2のソースとは接地されている。 Then, the source of MOSFET 7m1 and the source of MOSFET 7m2 are grounded.
 抵抗7r6とMOSFET7m1との接続点がダイオード9を介してMOSFET8mのゲートに接続されている。 The connection point between the resistor 7r6 and the MOSFET 7m1 is connected to the gate of the MOSFET 8m via the diode 9.
 実施例3における電源停止制御回路7においては、イグニッション電圧Viが4V以上となると、MOSFET7m2がオンとなり、MOSFET7m1がオフとなる。そして、イグニッション電圧Viが1V以下なると、MOSFET7m2がオフとなり、MOSFET7m1がオンとなる。 In the power supply stop control circuit 7 in the third embodiment, when the ignition voltage Vi becomes 4 V or more, the MOSFET 7m2 is turned on and the MOSFET 7m1 is turned off. Then, when the ignition voltage Vi becomes 1 V or less, the MOSFET 7 m2 is turned off and the MOSFET 7 m1 is turned on.
 実施例3におけるイグニッション電圧Vi、制御電圧Vc及び出力電圧Voは、実施例2のイグニッション電圧Vi、制御電圧Vc及び出力電圧Voと同様に変化し、イニグニッション電圧が4V以上で起動して、1V以下で停止するように構成されている。 The ignition voltage Vi, control voltage Vc, and output voltage Vo in the third embodiment change in the same manner as the ignition voltage Vi, control voltage Vc, and output voltage Vo in the second embodiment, and the ignition voltage starts at 4 V or more and is 1 V or less. It is configured to stop at.
 よって、実施例3は、実施例2と同様な効果を得ることができる。 Therefore, Example 3 can obtain the same effect as that of Example 2.
 実施例3における電源停止制御回路7は、実施例2における電源停止制御回路7のようにコンパレータ7cを備えるのではなく、安価なMOSFET7m1及びMOSFET7m2を備える構成としたので、実施例3は、実施例2より安価とすることができる。 Since the power supply stop control circuit 7 in the third embodiment is not provided with the comparator 7c as in the power supply stop control circuit 7 in the second embodiment, but is provided with the inexpensive MOSFETs 7m1 and MOSFET7m2, the third embodiment is described in the third embodiment. It can be cheaper than 2.
 ただし、閾値の設定が、実施例2に比較して実施例3の例は困難である。 However, it is more difficult to set the threshold value in Example 3 than in Example 2.
 なお、実施例3においても、実施例1と同様に、起動電圧を4V以上とし、停止電圧を1Vと設定したが、これらの電圧値に限らず、任意の起動電圧(第1閾値)、起動電圧より小さい任意の停止電圧(第2閾値)とすることができる。 In the third embodiment as well, the starting voltage is set to 4V or more and the stopping voltage is set to 1V as in the first embodiment. However, the starting voltage is not limited to these voltage values, and any starting voltage (first threshold value) can be used for starting. It can be any stop voltage (second threshold) smaller than the voltage.
 (実施例4)
 次に、本発明の実施例4について説明する。
(Example 4)
Next, Example 4 of the present invention will be described.
 図6は、本発明の実施例4による電源起動停止装置100の概略構成図である。 FIG. 6 is a schematic configuration diagram of the power supply start / stop device 100 according to the fourth embodiment of the present invention.
 電気自動車においては、走行用の電動モータを駆動するためのインバータ回路が備えられ、高電圧のHVバッテリから供給された高電圧がインバータ回路を介して電動モータに供給される。 An electric vehicle is provided with an inverter circuit for driving an electric motor for traveling, and a high voltage supplied from a high-voltage HV battery is supplied to the electric motor via the inverter circuit.
 そして、インバータ回路の動作を制御するマイコン等の負荷回路に電源を供給するために電源起動停止装置100が用いられる。 Then, the power supply start / stop device 100 is used to supply power to a load circuit such as a microcomputer that controls the operation of the inverter circuit.
 実施例4は、上記高電圧のHVバッテリを有する装置に用いられる電源起動停止装置100に適用した例である。 Example 4 is an example applied to the power supply start / stop device 100 used in the device having the high voltage HV battery.
 実施例4は、実施例2に高電圧バッテリ(HVバッテリ)13、冗長化電源14及びダイオード15が追加されている例であり、他の構成は実施例2と同様となっている。よって、実施例1と同様な構成部分の詳細な説明は省略する。なお、実施例4のバッテリ1は、実施例2のバッテリ1と同等であるが、高電圧バッテリ13と比較して低電圧であるので、それを明確化するため、図6においては、バッテリ1をLVバッテリ(低電圧バッテリ)と記している。 Example 4 is an example in which a high voltage battery (HV battery) 13, a redundant power supply 14, and a diode 15 are added to the second embodiment, and other configurations are the same as those of the second embodiment. Therefore, a detailed description of the same components as in the first embodiment will be omitted. The battery 1 of the fourth embodiment is equivalent to the battery 1 of the second embodiment, but has a lower voltage than the high voltage battery 13, so in order to clarify this, the battery 1 is shown in FIG. Is described as an LV battery (low voltage battery).
 図6において、高電圧バッテリ13は、冗長化電源14及びダイオード15を介してバッテリ電圧入力回路3のダイオード3d1のカソードとダイオード3d2のカソードとの接続線に接続されている。この構成により、実施例4の電源起動停止装置は、バッテリ1及び冗長化電源14の2つの電源を備える。 In FIG. 6, the high-voltage battery 13 is connected to the connection line between the cathode of the diode 3d1 and the cathode of the diode 3d2 of the battery voltage input circuit 3 via the redundant power supply 14 and the diode 15. With this configuration, the power supply start / stop device of the fourth embodiment includes two power supplies, a battery 1 and a redundant power supply 14.
 高電圧バッテリ13、冗長化電源14及びダイオード15により、冗長化電源回路が形成されている。 A redundant power supply circuit is formed by the high voltage battery 13, the redundant power supply 14, and the diode 15.
 実施例4によれば、実施例2と同様な効果を得ることができる他、冗長化電源回路(高電圧バッテリ13、冗長化電源14及びダイオード15)を備えているため、バテッリ1のバッテリ電圧入力回路3への給電ラインが何らかの原因で喪失したとしても、冗長化電源回路により生成された低電圧(バッテリ1と同等の電圧)により、バッテリ電圧入力回路3に電源を供給することができるので、電源起動停止装置100による電源起動停止動作を正常に行うことができる。 
 (実施例5)
 次に、本発明の実施例5について説明する。
According to the fourth embodiment, the same effect as that of the second embodiment can be obtained, and since the redundant power supply circuit (high voltage battery 13, redundant power supply 14 and diode 15) is provided, the battery voltage of the battery 1 is provided. Even if the power supply line to the input circuit 3 is lost for some reason, the low voltage generated by the redundant power supply circuit (voltage equivalent to that of the battery 1) can supply power to the battery voltage input circuit 3. , The power start / stop operation by the power start / stop device 100 can be normally performed.
(Example 5)
Next, Example 5 of the present invention will be described.
 実施例5は、電気自動車等におけるバッテリからの直流電流を交流電流に変換し、電動モータにするインバータを備え、このインバータのゲートイドライブ回路の動作を制御するマイコン(負荷回路12)への電源の移動停止を行う電源起動停止装置を備える電力変換装置200である。 The fifth embodiment includes an inverter that converts a direct current from a battery in an electric vehicle or the like into an alternating current and turns it into an electric motor, and supplies a power source to a microcomputer (load circuit 12) that controls the operation of the gate drive circuit of the inverter. The power conversion device 200 includes a power supply start / stop device for stopping the movement of the power converter.
 図7において、電力変換装置200は、インバータ回路18と、電流センサ19と、ゲートドライブ回路17と、モータ制御部150とを備えている。 In FIG. 7, the power conversion device 200 includes an inverter circuit 18, a current sensor 19, a gate drive circuit 17, and a motor control unit 150.
 モータ制御部150は、電源起動停止装置100と、マイコン12と、バックアップ電源回路16とを備える。電源起動停止装置100は、上述した実施例1、2、3又は後述する実施例6のうちのいずれでも適用可能である。 The motor control unit 150 includes a power supply start / stop device 100, a microcomputer 12, and a backup power supply circuit 16. The power supply start / stop device 100 can be applied to any of the above-described first, second, and third embodiments, or the sixth embodiment described later.
 インバータ回路18は、高電圧バッテリであるHVバッテリ13からの電流を交流電流に変換し、電動モータ20に供給する。 The inverter circuit 18 converts the current from the HV battery 13, which is a high-voltage battery, into an alternating current and supplies it to the electric motor 20.
 また、電源起動停止装置100は、バッテリ1及びバックアップ電源回路16から電力が供給され、マイコン12の電源起動停止を制御する。マイコン12は、インバータ回路18のゲートを駆動するゲートドライブ回路17の動作を制御する。 Further, the power supply start / stop device 100 is supplied with power from the battery 1 and the backup power supply circuit 16 to control the power start / stop of the microcomputer 12. The microcomputer 12 controls the operation of the gate drive circuit 17 that drives the gate of the inverter circuit 18.
 バックアップ電源回路16は、HVバッテリ13に接続されている。 The backup power supply circuit 16 is connected to the HV battery 13.
 電源起動停止装置100は、起動電圧と停止電圧とを独立して設定でき、確実にマイコン12への電源供給を停止することが可能であるので、電力変換装置200の信頼性を向上することができる。 Since the power supply start / stop device 100 can set the start voltage and the stop voltage independently and can surely stop the power supply to the microcomputer 12, the reliability of the power converter 200 can be improved. can.
 (実施例6)
 次に、本発明の実施例6について説明する。
(Example 6)
Next, Example 6 of the present invention will be described.
 本発明の実施例6による電源起動停止装置100の概略構成図である。 It is a schematic block diagram of the power supply start / stop device 100 according to the sixth embodiment of the present invention.
 実施例6は、電源集積回路11の電源停止制御回路7への信号供給と、電源停止制御回路7に電源停止制御回路用スイッチ22を介して電源停止制御回路用バッテリ21が接続されていることが、実施例1の構成と異なり、他の構成は、実施例1と同様となっている。 In the sixth embodiment, the signal is supplied to the power supply stop control circuit 7 of the power supply integrated circuit 11, and the power supply stop control circuit battery 21 is connected to the power supply stop control circuit 7 via the power supply stop control circuit switch 22. However, unlike the configuration of the first embodiment, other configurations are the same as those of the first embodiment.
 図8において、実施例6における電源起動停止装置100は、実施例1の構成の他に、電源停止制御回路用バッテリ21及び電源停止制御回路用スイッチ22を備えている。 In FIG. 8, the power supply start / stop device 100 according to the sixth embodiment includes a battery 21 for a power stop control circuit and a switch 22 for a power stop control circuit in addition to the configuration of the first embodiment.
 実施例6の電源起動停止装置100も、図2に示した電圧波形と同様な電圧波形となる。 The power supply start / stop device 100 of the sixth embodiment also has a voltage waveform similar to the voltage waveform shown in FIG.
 つまり、イグニッションスイッチ2がオンとなると、イグニッション電圧Viが上昇し、時点t1にて電圧値が4V以上となると、電圧監視回路5からの制御電圧Vcが立ち上がる。電圧監視回路5の起動電圧が4V以上に予め設定してあるからである。 That is, when the ignition switch 2 is turned on, the ignition voltage Vi rises, and when the voltage value becomes 4 V or more at the time point t1, the control voltage Vc from the voltage monitoring circuit 5 rises. This is because the starting voltage of the voltage monitoring circuit 5 is set to 4 V or more in advance.
 制御電圧Vcが立ち上がると、第1スイッチング素子8がオンとなる。これにより、第2スイッチング素子10もオンとなる。 When the control voltage Vc rises, the first switching element 8 is turned on. As a result, the second switching element 10 is also turned on.
 第2スイッチング素子10がオンとなると、バッテリ電圧入力回路3の出力電圧が第2スイッチング素子10を介して電源集積回路11に供給され、出力電圧Voが立ち上がる。このとき、電源集積回路11から電源停止制御回路用スイッチ22にスイッチオン信号が供給され、電源停止制御回路用バッテリ21の電圧が電源停止制御回路用スイッチ22を介して電源停止制御回路7に起動電圧として供給され、電源停止制御回路7が起動される。 When the second switching element 10 is turned on, the output voltage of the battery voltage input circuit 3 is supplied to the power supply integrated circuit 11 via the second switching element 10, and the output voltage Vo rises. At this time, a switch-on signal is supplied from the power supply integrated circuit 11 to the power supply stop control circuit switch 22, and the voltage of the power supply stop control circuit battery 21 is activated by the power supply stop control circuit switch 22 via the power supply stop control circuit switch 22. It is supplied as a voltage, and the power supply stop control circuit 7 is activated.
 次に、イグニッションスイッチ2がオフとされると、イグニッション電圧Viは、減少していき、時点t2で4Vとなっても、制御電圧Vcは立ち下がることはなく、第1スイッチング素子8及び第2スイッチング素子10はオンの状態を維持し、電源起動停止装置100は停止することは無い。 Next, when the ignition switch 2 is turned off, the ignition voltage Vi decreases, and even if the ignition voltage Vi becomes 4 V at the time point t2, the control voltage Vc does not fall, and the first switching element 8 and the second switching element 8 and the second. The switching element 10 keeps on, and the power supply start / stop device 100 does not stop.
 時点t3にて、イグニション電圧V1が1Vとなると、電源停止制御回路7は、動作を停止し、制御電圧Vcが立ち下がり0Vとなる。これによって、第1スイッチング素子8がオフとなり、これに伴って第2スイッチング素子10もオフとなり、電源集積回路11から電源停止制御回路用スイッチ22に供給されたスイッチオン信号がオフとなり、電源停止制御回路用スイッチ22がオフとなる。 At the time point t3, when the ignition voltage V1 becomes 1V, the power supply stop control circuit 7 stops operating, and the control voltage Vc drops to 0V. As a result, the first switching element 8 is turned off, the second switching element 10 is also turned off, and the switch-on signal supplied from the power supply integrated circuit 11 to the power supply stop control circuit switch 22 is turned off, and the power supply is stopped. The control circuit switch 22 is turned off.
 このようにして、電源起動停止装置100の動作が停止される。 In this way, the operation of the power start / stop device 100 is stopped.
 実施例6の電源起動停止装置100も、実施例1と同様の効果を有する。 The power supply start / stop device 100 of the sixth embodiment also has the same effect as that of the first embodiment.
 なお、実施例6は、実施例1のみならず、実施例2~5にも適用可能である。 Note that Example 6 is applicable not only to Example 1 but also to Examples 2 to 5.
 また、上述した実施例1~6において、第1スイッチング素子8及び第2スイッチング素子10の2つを纏めてスイッチング素子とし、このスイッチング素子が、第1スイッチング素子8及び第2スイッチング素子10を有する構成とすることが可能である。 Further, in the above-described Examples 1 to 6, the first switching element 8 and the second switching element 10 are collectively referred to as a switching element, and this switching element has the first switching element 8 and the second switching element 10. It can be configured.
 また、上述した実施例1~6において、電源起動停止装置100は、イグニッション電圧入力回路4及びバッテリ電圧入力回路3を備える構成となっているが、既存のイグニッション電圧入力回路及びバッテリ電圧入力回路に接続可能な構成も可能であることから、本発明の電源起動停止装置100は、イグニッション電圧入力回路4及びバッテリ電圧入力回路3を省略する態様も含まれる。 Further, in the above-described first to sixth embodiments, the power supply start / stop device 100 is configured to include the ignition voltage input circuit 4 and the battery voltage input circuit 3, but the existing ignition voltage input circuit and battery voltage input circuit may be used. Since a connectable configuration is also possible, the power supply start / stop device 100 of the present invention includes an embodiment in which the ignition voltage input circuit 4 and the battery voltage input circuit 3 are omitted.
 1・・・バッテリ、2・・・イグニッションスイッチ、3・・・バッテリ電圧入力回路、3c1、3c2、4c・・・コンデンサ、4・・・イグニッション電圧入力回路、5・・・電圧監視回路、6、3d1、3d2、4d、9、15・・・ダイオード、7・・・電源停止制御回路、7c・・・コンパレータ、7r1、7r2、7r3、7r4、7r5、7r610r1、10r2・・・抵抗、7m1、7m2、8m、10m・・・MOSFET、8・・・第1スイッチング素子、10・・・第2スイッチング素子、11・・・電源集積回路、12・・・負荷回路(マイコン)、13・・・高電圧バッテリ、14・・・冗長化電源、16・・・バクアップ電源回路、17・・・ゲートドライブ回路、18・・・インバータ回路、19・・・電流センサ、20・・・電動モータ、21・・・電源停止制御回路用バッテリ、22・・・電源停止制御回路用スイッチ、100・・・電源起動停止装置、150・・・モータ制御部、Vc・・・制御電圧、Vi・・・イグニッション電圧、Vc・・・制御電圧、Vo・・・出力電圧
  
1 ... Battery, 2 ... Ignition switch, 3 ... Battery voltage input circuit, 3c1, 3c2, 4c ... Condenser, 4 ... Ignition voltage input circuit, 5 ... Voltage monitoring circuit, 6 , 3d1, 3d2, 4d, 9, 15 ... diode, 7 ... power supply stop control circuit, 7c ... comparator, 7r1, 7r2, 7r3, 7r4, 7r5, 7r610r1, 10r2 ... resistance, 7m1, 7m2, 8m, 10m ... MOSFET, 8 ... 1st switching element, 10 ... 2nd switching element, 11 ... Power supply integrated circuit, 12 ... Load circuit (microcomputer), 13 ... High voltage battery, 14 ... redundant power supply, 16 ... backup power supply circuit, 17 ... gate drive circuit, 18 ... inverter circuit, 19 ... current sensor, 20 ... electric motor, 21 ... Battery for power stop control circuit, 22 ... Switch for power stop control circuit, 100 ... Power start / stop device, 150 ... Motor control unit, Vc ... Control voltage, Vi ... Ignition Voltage, Vc ・ ・ ・ Control voltage, Vo ・ ・ ・ Output voltage

Claims (10)

  1.  負荷回路に電源を供給する電源集積回路と、
     前記電源集積回路にバッテリからの電圧供給の開始及び停止をオンオフ動作により行うスイッチング素子と、
     前記バッテリから供給される電圧を監視し、前記バッテリから供給される電圧が第1閾値以上となったとき、前記スイッチング素子をオンとする電圧監視回路と、
     前記バッテリから供給される電圧が、前記第1閾値より低い第2閾値以下となったときに前記スイッチング素子をオフとする電源停止制御回路と、
     を備えることを特徴とする電源起動停止装置。
    A power supply integrated circuit that supplies power to the load circuit and
    A switching element that starts and stops the voltage supply from the battery to the power supply integrated circuit by on / off operation.
    A voltage monitoring circuit that monitors the voltage supplied from the battery and turns on the switching element when the voltage supplied from the battery exceeds the first threshold value.
    A power supply stop control circuit that turns off the switching element when the voltage supplied from the battery becomes equal to or lower than the second threshold value lower than the first threshold value.
    A power start / stop device characterized by being provided with.
  2.  請求項1に記載の電源起動停止装置において、
     前記電源停止制御回路は、前記スイッチング素子がオンとなり、前記電源集積回路から供給される電圧により起動されることを特徴とする電源起動停止装置。
    In the power supply start / stop device according to claim 1,
    The power supply stop control circuit is a power supply start / stop device, characterized in that the switching element is turned on and the power supply stop control circuit is started by a voltage supplied from the power supply integrated circuit.
  3.  請求項2に記載の電源起動停止装置において、
     前記バッテリの電圧が 入力されるバッテリ電圧入力回路と、
     前記バッテリの電圧がイグニッションスイッチを介して入力され、前記電圧監視回路及び前記電源停止制御回路に電圧を供給するイグニッション電圧入力回路と、
     を備え、前記スイッチング素子は、前記電圧監視回路または前記電源停止制御回路により、オンオフ動作される第1スイッチング素子と、前記第1スイッチング素子からのオンオフ信号によりオンオフされ、前記バッテリ電圧入力回路から供給される電圧の前記電源集積回路への電圧供給の開始及び停止動作を行う第2スイッチング素子とを有することを特徴とする電源起動停止装置。
    In the power supply start / stop device according to claim 2.
    The battery voltage input circuit into which the battery voltage is input and the battery voltage input circuit
    An ignition voltage input circuit in which the voltage of the battery is input via an ignition switch and supplies a voltage to the voltage monitoring circuit and the power supply stop control circuit.
    The switching element is turned on and off by a first switching element that is turned on and off by the voltage monitoring circuit or the power supply stop control circuit, and an on / off signal from the first switching element, and is supplied from the battery voltage input circuit. A power supply start / stop device including a second switching element that starts and stops supplying a voltage to the power supply integrated circuit.
  4.  請求項3に記載の電源起動停止装置において、
     前記電源停止制御回路は、前記イグニッション電圧入力回路からのイグニッション電圧と前記第2閾値とを比較するコンパレータを有し、前記イグニッション電圧が前記第2閾値以下となったときに前記第1スイッチング素子をオフとすることを特徴とする電源起動停止装置。
    In the power supply start / stop device according to claim 3,
    The power supply stop control circuit has a comparator that compares the ignition voltage from the ignition voltage input circuit with the second threshold value, and when the ignition voltage becomes equal to or lower than the second threshold value, the first switching element is used. A power start / stop device characterized by being turned off.
  5.  請求項3に記載の電源起動停止装置において、
     前記電源停止制御回路は、閾値設定用抵抗と、前記イグニッション電圧入力回路からのイグニッション電圧が前記第1閾値以上となるとオフとなり、前記イグニッション電圧が前記第2閾値以下となるとオンとなる第1のMOSFETと、前記イグニッション電圧が前記第1閾値以上となるとオンとなり、前記イグニッション電圧が前記第2閾値以下となるとオフとなる第2のMOSFETと有し、前記イグニッション電圧が前記第2閾値以下となったときに前記第1スイッチング素子をオフとすることを特徴とする電源起動停止装置。
    In the power supply start / stop device according to claim 3,
    The power supply stop control circuit is turned off when the threshold value setting resistor and the ignition voltage from the ignition voltage input circuit are equal to or higher than the first threshold value, and turned on when the ignition voltage is equal to or lower than the second threshold value. It has a MOSFET and a second MOSFET that turns on when the ignition voltage becomes the first threshold value or more and turns off when the ignition voltage becomes the second threshold value or less, and the ignition voltage becomes the second threshold value or less. A power supply start / stop device, characterized in that the first switching element is turned off when the first switching element is turned off.
  6.  請求項4に記載の電源起動停止装置において、
     前記バッテリより高電圧の高電圧バッテリと、前記高電圧バッテリから電圧が供給され、前記バッテリ電圧入力回路に電圧を供給する冗長化電源とを備えることを特徴とする電源起動停止装置。
    In the power supply start / stop device according to claim 4,
    A power supply start / stop device including a high-voltage battery having a voltage higher than that of the battery and a redundant power supply to which a voltage is supplied from the high-voltage battery and supplies a voltage to the battery voltage input circuit.
  7.  請求項2に記載の電源起動停止装置において、
     電源停止制御回路用バッテリと、前記電源停止制御回路用バッテリと前記電源停止制御回路との間に接続され、前記電源集積回路からのスイッチオン信号によりオンとなり、前記電源停止制御回路に起動電圧を供給する電源停止制御回路用スイッチとを備えることを特徴とする電源起動停止装置。
    In the power supply start / stop device according to claim 2.
    It is connected between the battery for the power supply stop control circuit, the battery for the power supply stop control circuit, and the power supply stop control circuit, and is turned on by a switch-on signal from the power supply integrated circuit, and a starting voltage is applied to the power supply stop control circuit. A power start / stop device including a switch for a power stop control circuit to be supplied.
  8.  高電圧バッテリに接続され、前記高電圧バッテリの電力を、電動モータを駆動する電力に変換するインバータ回路と、
     前記インバータ回路を駆動するゲートドライブ回路と、
     低電圧バッテリに接続され、前記ゲートドライブ回路を制御するマイコンと、前記マイコンへの電源の起動及び停止を行う電源起動停止装置とを有するモータ制御部と、
     を備え、
     前記電源起動停止装置は、
     負荷回路に電源を供給する電源集積回路と、
     前記電源集積回路にバッテリからの電圧供給の開始及び停止をオンオフ動作により行うスイッチング素子と、
     前記バッテリから供給される電圧を監視し、前記バッテリから供給される電圧が第1閾値以上となったとき、前記スイッチング素子をオンとする電圧監視回路と、
     前記バッテリから供給される電圧が、前記第1閾値より低い第2閾値以下となったときに前記スイッチング素子をオフとする電源停止制御回路と、
     を備えることを特徴とする電力変換装置。
    An inverter circuit that is connected to a high-voltage battery and converts the power of the high-voltage battery into power that drives an electric motor.
    The gate drive circuit that drives the inverter circuit and
    A motor control unit that is connected to a low-voltage battery and has a microcomputer that controls the gate drive circuit and a power supply start / stop device that starts and stops the power supply to the microcomputer.
    With
    The power supply start / stop device is
    A power supply integrated circuit that supplies power to the load circuit and
    A switching element that starts and stops the voltage supply from the battery to the power supply integrated circuit by on / off operation.
    A voltage monitoring circuit that monitors the voltage supplied from the battery and turns on the switching element when the voltage supplied from the battery exceeds the first threshold value.
    A power supply stop control circuit that turns off the switching element when the voltage supplied from the battery becomes equal to or lower than the second threshold value lower than the first threshold value.
    A power conversion device characterized by comprising.
  9.  請求項8に記載の電力変換装置において、
     前記電源停止制御回路は、前記スイッチング素子がオンとなり、前記電源集積回路から供給される電圧により起動されることを特徴とする電力変換装置。
    In the power conversion device according to claim 8,
    The power supply stop control circuit is a power conversion device characterized in that the switching element is turned on and activated by a voltage supplied from the power supply integrated circuit.
  10.  請求項9に記載の電力変換装置において、
     前記電源起動停止装置は、
     前記バッテリの電圧が 入力されるバッテリ電圧入力回路と、
     前記バッテリの電圧がイグニッションスイッチを介して入力され、前記電圧監視回路及び前記電源停止制御回路に電圧を供給するイグニッション電圧入力回路と、
     を備え、前記スイッチング素子は、前記電圧監視回路または前記電源停止制御回路により、オンオフ動作される第1スイッチング素子と、前記第1スイッチング素子からのオンオフ信号によりオンオフされ、前記バッテリ電圧入力回路から供給される電圧の前記電源集積回路への電圧供給の開始及び停止動作を行う第2スイッチング素子とを有することを特徴とする電力変換装置。
    In the power conversion device according to claim 9,
    The power supply start / stop device is
    The battery voltage input circuit into which the battery voltage is input and the battery voltage input circuit
    An ignition voltage input circuit in which the voltage of the battery is input via an ignition switch and supplies a voltage to the voltage monitoring circuit and the power supply stop control circuit.
    The switching element is turned on and off by a first switching element that is turned on and off by the voltage monitoring circuit or the power supply stop control circuit, and an on / off signal from the first switching element, and is supplied from the battery voltage input circuit. A power conversion device including a second switching element that starts and stops supplying a voltage to the power supply integrated circuit.
PCT/JP2020/047826 2020-02-14 2020-12-22 Power starting/stopping device WO2021161662A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023329 2020-02-14
JP2020023329A JP2023040312A (en) 2020-02-14 2020-02-14 Power start/stop device

Publications (1)

Publication Number Publication Date
WO2021161662A1 true WO2021161662A1 (en) 2021-08-19

Family

ID=77291534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047826 WO2021161662A1 (en) 2020-02-14 2020-12-22 Power starting/stopping device

Country Status (2)

Country Link
JP (1) JP2023040312A (en)
WO (1) WO2021161662A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105488A (en) * 2008-10-29 2010-05-13 Autonetworks Technologies Ltd Electric load control device
WO2019130424A1 (en) * 2017-12-26 2019-07-04 本田技研工業株式会社 Battery device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010105488A (en) * 2008-10-29 2010-05-13 Autonetworks Technologies Ltd Electric load control device
WO2019130424A1 (en) * 2017-12-26 2019-07-04 本田技研工業株式会社 Battery device

Also Published As

Publication number Publication date
JP2023040312A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
US8482940B2 (en) Illumination lighting device, discharge lamp lighting device, and vehicle headlamp lighting device using same
US10916933B2 (en) Power control device
US9350238B2 (en) Power supply device for vehicle including a boosting converter circuit
US8148934B2 (en) Voltage step-up/down converter
US7330015B2 (en) Power generation controller
US11196356B2 (en) Power conversion device
CN111630763B (en) Boost type switching power supply circuit
WO2021161662A1 (en) Power starting/stopping device
JP2017153316A (en) Electric vehicle
JP5049817B2 (en) Power converter control device
JP5645679B2 (en) Voltage converter
KR20200001696A (en) Battery charging control system and method for vehicle
JP2020162222A (en) Backup power supply control device and backup power supply apparatus
JP7340977B2 (en) Vehicle DC/DC converter system, operation instruction circuit, and control method for vehicle DC/DC converter system
JP7186688B2 (en) switching power supply
JP7186683B2 (en) switching power supply
US11722063B2 (en) Semiconductor device and isolated switching power supply
WO2021246481A1 (en) Drive device
WO2023218598A1 (en) Voltage monitoring circuit and voltage monitoring method
WO2024122248A1 (en) Motor drive device, motor system, and vehicle
WO2020021821A1 (en) Switching power supply device
JP4656155B2 (en) DC-DC converter
CN116998106A (en) Motor control device
CN115133643A (en) Power supply switching device
JP2008145127A (en) Load drive circuit, and failure diagnostic method for load drive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918910

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP