WO2021160099A1 - Pusch传输的配置方法、***、电子设备和存储介质 - Google Patents

Pusch传输的配置方法、***、电子设备和存储介质 Download PDF

Info

Publication number
WO2021160099A1
WO2021160099A1 PCT/CN2021/076069 CN2021076069W WO2021160099A1 WO 2021160099 A1 WO2021160099 A1 WO 2021160099A1 CN 2021076069 W CN2021076069 W CN 2021076069W WO 2021160099 A1 WO2021160099 A1 WO 2021160099A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
repeated
configuration
time slot
pusch
Prior art date
Application number
PCT/CN2021/076069
Other languages
English (en)
French (fr)
Inventor
桂鑫
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2021160099A1 publication Critical patent/WO2021160099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the invention relates to the field of wireless communication technology, and in particular to a configuration method, system, electronic device and storage medium for PUSCH (Physical Layer Uplink Shared Channel) transmission.
  • PUSCH Physical Layer Uplink Shared Channel
  • coordinated multi-point transmission technology is supported as an effective method to increase the transmission rate of user data, and is continuously enhanced in subsequent versions of the LTE protocol.
  • NR New Radio
  • multi-TRP transmission receiving node
  • multi-TRP transmission only enhances the downlink transmission of URLLC (High Reliability and Low Delay Communication), and does not enhance the PUSCH uplink transmission of URLLC.
  • the base station configures K (K ⁇ 1) nominal repetition transmissions (nominal repetition transmission), and the initial transmission symbol S and transmission symbol length will be configured for the first nominal repetition L, the following K-1 nominal repetition transmissions will be continuously transmitted in the following uplink time slots, and the transmission symbol length is L.
  • the actual repetition, such as nominal repetition transmission 2 is divided into Rep. 2-1, Rep. 2-2, and Rep. 2-3 by DL and slot boundaries.
  • the existing PUSCH transmission scheme is based on each repetition transmission for TRP switching, which is prone to the following problems:
  • the technical problem to be solved by the present invention is to overcome the disadvantages of poor transmission performance and not meeting actual requirements in the prior art for enhancing PUSCH transmission, and to provide a PUSCH transmission configuration method, system, electronic equipment and storage medium.
  • the present invention provides a configuration method for PUSCH transmission.
  • the configuration method is applied to a user equipment, and the configuration method includes:
  • the configuration unit corresponds to the repeated transmission at least once
  • All the repeated transmissions in the same configuration unit are configured to be transmitted under the same transmission reception point TRP, and the adjacent configuration units are respectively transmitted under different transmission reception points TRP.
  • the configuration information includes K times of the repeated transmissions, the transmission symbol length corresponding to each of the repeated transmissions, and the initial transmission symbol;
  • K times of the repeated transmission are successively transmitted in the uplink time slot, and K ⁇ 1 and takes an integer.
  • the step of acquiring the number of uplink symbols corresponding to each repeated transmission according to the PUSCH transmission of the URLLC system and the configuration information includes:
  • the cumulative number of uplink symbols meets the set condition, it is determined that the repeated transmissions of multiple consecutive transmissions correspond to the same configuration unit, and the calculation is repeated for the multiple repeated transmissions after the current configuration unit.
  • the setting condition includes:
  • the sum of the number of uplink symbols corresponding to the first repeated transmission to the Nth repeated transmission is greater than or equal to the predefined threshold, and the first repeated transmission The sum of the number of uplink symbols corresponding to the repeated transmission for N-1 times is less than the predefined threshold; where N ⁇ 2 and N is an integer.
  • the configuration method further includes:
  • all remaining repeated transmissions are configured to be transmitted under the same transmission receiving point TRP, and the corresponding transmission receiving point TRP corresponds to the previous configuration unit
  • the transmission and reception points TRP are different.
  • the predefined threshold is a fixed value of RRC (Radio Resource Control) semi-static configuration, a system predefined value, or a dynamic calculation based on the total transmission length of PUSCH.
  • RRC Radio Resource Control
  • the method further includes:
  • the adjacent pre-configured repeated transmissions are different transmission receiving points TRPs.
  • the configuration method further includes:
  • the present invention also provides a configuration system for PUSCH transmission.
  • the configuration system is applied to user equipment, and the configuration system includes a configuration information acquisition module, an uplink symbol number acquisition module, a configuration unit acquisition module, and a configuration module;
  • the configuration information obtaining module is used to obtain the configuration information of repeated transmission configured by the base station;
  • the number of uplink symbols obtaining module is configured to obtain the number of uplink symbols corresponding to each repeated transmission according to the PUSCH transmission of the URLLC system and the configuration information;
  • the configuration unit obtaining module is configured to determine different configuration units corresponding to the PUSCH transmission according to the number of uplink symbols and a predefined threshold;
  • the configuration unit corresponds to the repeated transmission at least once
  • the configuration module is configured to configure all the repeated transmissions in the same configuration unit to be transmitted under the same transmission reception point TRP, and the adjacent configuration units are respectively transmitted under different transmission reception points TRP.
  • the configuration information includes K times of the repeated transmissions, the transmission symbol length corresponding to each of the repeated transmissions, and the initial transmission symbol;
  • K times of the repeated transmission are successively transmitted in the uplink time slot, and K ⁇ 1 and takes an integer.
  • the uplink symbol number acquisition module is configured to transmit the corresponding uplink symbol, the initial transmission symbol, the K times of the repeated transmission, and the length of the transmission symbol for each repeated transmission according to the PUSCH transmission of the URLLC system Acquiring the number of uplink symbols of the uplink symbols corresponding to each repeated transmission;
  • the configuration unit acquisition module includes a calculation unit and a determination unit
  • the calculation unit is configured to calculate the sum of the number of uplink symbols corresponding to the repeated transmission of multiple consecutive transmissions to obtain the cumulative number of uplink symbols;
  • the determining unit is configured to determine that the repeated transmissions of multiple consecutive transmissions correspond to the same configuration unit when the cumulative number of uplink symbols meets a set condition, and continue to perform multiple repeated transmissions after the current configuration unit The calculation unit is repeatedly executed until all the configuration units are obtained.
  • the setting condition includes:
  • the sum of the number of uplink symbols corresponding to the first repeated transmission to the Nth repeated transmission is greater than or equal to the predefined threshold, and the first repeated transmission The sum of the number of uplink symbols corresponding to the repeated transmission for N-1 times is less than the predefined threshold; where N ⁇ 2 and N is an integer.
  • the configuration module is configured to configure all the remaining repeated transmissions to be transmitted under the same transmission receiving point TRP when there are remaining unconfigured repeated transmissions, and the corresponding transmission receiving point The TRP is different from the TRP corresponding to the previous configuration unit.
  • the predefined threshold is a fixed value configured by RRC semi-statically, a system predefined value, or dynamically calculated through the total transmission length of the PUSCH.
  • the configuration system includes a time slot acquisition module
  • the time slot acquisition module is used to acquire the time slot for PUSCH transmission
  • the configuration module is configured to, when it is determined that the repeated transmission occurs across the time slot according to the time slot and the configuration information, determine that the repeated transmission is under different transmission receiving points TRP before and after the time slot. transmission;
  • the configuration module is configured to determine that each of the repeated transmissions is transmitted under the pre-configured transmission receiving point TRP when it is determined that the repeated transmission does not occur across the time slot according to the time slot and the configuration information. ;
  • the adjacent pre-configured repeated transmissions are different transmission receiving points TRPs.
  • the configuration module is used for determining that the repeated transmissions correspond to different frequency bands before and after the cross-time slot when it is determined that the repeated transmission occurs across the time slot according to the time slot and the configuration information, and Different frequency bands correspond to different TRPs.
  • the present invention also provides an electronic device including a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the processor implements the above-mentioned PUSCH transmission configuration method when the processor executes the computer program.
  • the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above-mentioned PUSCH transmission configuration method are realized.
  • the PUSCH transmission based on the cumulative uplink symbol number for multi-TRP switching, or the configured repeated transmission and the time slot of PUSCH transmission, when the repeated transmission occurs across the time slot , Configure the repeated transmission to be transmitted under different TRPs before and after the cross-slot, so as to achieve the PUSCH transmission enhancement of the URLLC system and improve the transmission rate of user data; in addition, when the repeated transmission occurs across the time slot It can also be combined with the frequency hopping of R16 inter-slot-repetition (a frequency hopping scheme) for joint configuration, thereby effectively reducing the RRC signaling overhead.
  • R16 inter-slot-repetition a frequency hopping scheme
  • FIG. 1 is a schematic diagram of a first configuration corresponding to PUSCH transmission in the prior art.
  • FIG. 2 is a schematic diagram of a second configuration corresponding to PUSCH transmission in the prior art.
  • FIG. 3 is a schematic diagram of a third configuration corresponding to PUSCH transmission in the prior art.
  • FIG. 4 is a flowchart of a method for configuring PUSCH transmission according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of a method for configuring PUSCH transmission according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a first configuration corresponding to PUSCH transmission according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram of a second configuration corresponding to PUSCH transmission according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic diagram of a third configuration corresponding to PUSCH transmission according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of a fourth configuration corresponding to PUSCH transmission according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of a fifth configuration corresponding to PUSCH transmission according to Embodiment 2 of the present invention.
  • FIG. 11 is a flowchart of a method for configuring PUSCH transmission according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of a first configuration corresponding to PUSCH transmission according to Embodiment 3 of the present invention.
  • FIG. 13 is a schematic diagram of a second configuration corresponding to PUSCH transmission according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic diagram of modules of a configuration system for PUSCH transmission according to Embodiment 4 of the present invention.
  • FIG. 15 is a schematic diagram of modules of a configuration system for PUSCH transmission according to Embodiment 5 of the present invention.
  • FIG. 16 is a schematic diagram of modules of a configuration system for PUSCH transmission according to Embodiment 6 of the present invention.
  • FIG. 17 is a schematic structural diagram of an electronic device that implements a configuration method for PUSCH transmission in Embodiment 7 of the present invention.
  • the method for configuring PUSCH transmission in this embodiment is applied to user equipment.
  • the execution subject of the method may be a separate chip, a chip module or a UE, or a chip or a chip module integrated in the UE.
  • the method for configuring PUSCH transmission in this embodiment includes:
  • S101 Acquire repeated transmission configuration information configured by a base station
  • the configuration information includes but is not limited to K repeated transmissions, the transmission symbol length corresponding to each repeated transmission, and the initial transmission symbol;
  • K repeated transmissions are sequentially transmitted in the uplink time slot, K ⁇ 1 and an integer.
  • the configuration information for repeated transmission of the user equipment can be determined according to the network load condition, the wireless channel quality of the user equipment, and the URLLC service performance running in the network.
  • S102 Acquire the number of uplink symbols corresponding to each repeated transmission according to the PUSCH transmission and configuration information of the URLLC system;
  • S103 Determine different configuration units corresponding to PUSCH transmission according to the number of uplink symbols and the predefined threshold;
  • the configuration unit corresponds to at least one repeated transmission
  • the pre-defined threshold includes but is not limited to the fixed value of RRC semi-static configuration, the system pre-defined value or the dynamic calculation based on the total transmission length of PUSCH.
  • M is L*K/2, L*K/4..., where K represents K Repeated transmission once, L represents the length of the transmission symbol, and L*K represents the total transmission length of the PUSCH.
  • the PUSCH transmission based on the accumulated uplink symbol number for multi-TRP switching is implemented, thereby well implementing the PUSCH transmission enhancement of the URLLC system and improving the transmission rate of user data.
  • the PUSCH transmission configuration method of this embodiment is a further improvement of Embodiment 1. Specifically:
  • Step S102 specifically includes:
  • Step S103 specifically includes:
  • the cumulative number of uplink symbols meets the set conditions, it is determined that the repeated transmissions of multiple consecutive transmissions correspond to the same configuration unit, and the repeated calculations for multiple repeated transmissions after the current configuration unit continue to calculate the cumulative uplink corresponding to the repeated transmissions of multiple consecutive transmissions.
  • the sum of the number of symbols obtains the steps of accumulating the number of uplink symbols until all configuration units are obtained.
  • the setting conditions include:
  • the sum of the cumulative uplink symbols corresponding to the first repetitive transmission to the Nth repetitive transmission is greater than or equal to the predefined threshold, and the cumulative uplink symbols corresponding to the first repetitive transmission to the N-1 repetitive transmission
  • the sum of the numbers is less than a predefined threshold; where, N ⁇ 2 and N takes an integer.
  • Step S103 also includes:
  • all remaining repeated transmissions are configured to be transmitted under the same transmission reception point TRP, and the corresponding transmission reception point TRP is different from the transmission reception point TRP corresponding to the previous configuration unit.
  • nominal repetition transmission 1 and nominal repetition transmission 2 correspond to the same configuration unit. Both nominal repetition transmission 1 and nominal repetition transmission 2 are transmitted under TRP1;
  • nominal repetition transmission 3 and nominal repetition transmission 4 correspond to the same configuration unit, and nominal repetition transmission 3 and Nominal repetition transmission 4 is transmitted under TRP2.
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 1 and nominal repetition transmission 2 is 9 (where the symbol "0" corresponds to DL downlink symbols), that is, greater than M, then nominal repetition transmission 1 and nominal repetition transmission 2 correspond to the same configuration Unit, the nominal repetition transmission 1 and nominal repetition transmission 2 under this configuration unit are both transmitted under TRP1;
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 3 and nominal repetition transmission 4 is 7 (where the symbols "1, 2, 3" correspond to downlink symbols), which is less than M, then the remaining nominal repetition transmission 3 and nominal repetition transmission 4 are in TRP2 To transfer.
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 3 and nominal repetition transmission 4 is 4 (wherein the symbols "0, 1" correspond to downlink symbols), which is less than M, so it is necessary to continue to accumulate nominal repetition transmission 5, and nominal repetition transmission 3
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 5 is 7, which is greater than M, then nominal repetition transmission 3, nominal repetition transmission 4, and nominal repetition transmission 5 correspond to the same configuration unit, and nominal repetition transmission 3 and nominal repetition under this configuration unit Transmission 4 and nominal repetition transmission 5 are both transmitted under TRP2;
  • the remaining nominal repetition transmission 6 is transmitted under TRP1, and can also be configured for transmission under other TRPs such as (TRP3) according to the actual situation.
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 3 and nominal repetition transmission 4 is 5 (where the symbol "0" corresponds to the downlink symbol), which is equal to M, then nominal repetition transmission 3 and nominal repetition transmission 4 correspond to the same configuration unit, this configuration unit Both the nominal repetition transmission 3 and the nominal repetition transmission 4 are transmitted under TRP2;
  • the remaining nominal repetition transmission 5 and nominal repetition transmission 6 are transmitted under TRP1, and can also be configured for transmission under other TRPs such as (TRP3) according to the actual situation.
  • nominal repetition transmission 3 and nominal repetition transmission 4 correspond to the same configuration unit, and nominal repetition transmission 3 and Nominal repetition transmission 4 is transmitted under TRP2;
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 5 and nominal repetition transmission 6 is 6, which is equal to M, then nominal repetition transmission 5 and nominal repetition transmission 6 correspond to the same configuration unit, and nominal repetition transmission 5 and nominal repetition transmission under this configuration unit 6 are all transmitted under TRP3.
  • multiple transmission receiving node TRPs are switched to achieve PUSCH transmission enhancement, which improves the transmission rate of user data, can ensure that the distribution of transmission symbols on different TRPs is more balanced, and can obtain reliable spatial diversity. Gain; In addition, it can also ensure that the transmission symbols on each TRP are not too few, ensuring the corresponding TRP transmission code rate and the performance reliability of the base station reception.
  • the PUSCH transmission configuration method of this embodiment is a further improvement of Embodiment 1. Specifically:
  • step S101 it also includes:
  • adjacent pre-configured repeated transmissions are different transmission receiving points TRP.
  • the repeated transmission when it is determined that the repeated transmission occurs across the time slot according to the time slot and configuration information, it is determined that the repeated transmission corresponds to different frequency bands before and after the cross time slot, and the different frequency bands correspond to different transmission receiving points TRP.
  • the corresponding configuration is also configured by default to switch the PUSCH transmission enhancement scheme of the TRP of multiple transmission receiving nodes based on each slot (time slot).
  • both nominal repetition transmission 1 and nominal repetition transmission 2 have cross-slot situations, including slot boundary 1, slot boundary 2, and slot boundary 3. At this time, they are respectively at slot boundary 1, slot boundary TRP switching occurs at 2 and slot boundary 3.
  • the symbols of the time slot part before the time slot boundary 1 are transmitted under TRP1
  • the symbols of the time slot part after the time slot boundary 1 are transmitted under TRP2
  • the symbols of the time slot part before the time slot boundary 2 are transmitted under TRP2
  • the symbols of the time slot part after the time slot boundary 2 are transmitted under TRP1 (it can also be configured for transmission under TRP3 according to the actual situation), that is, based on each slot, multiple transmission receiving nodes TRP are switched to realize PUSCH transmission The purpose of enhancement.
  • nominal repetition transmission 1 and nominal repetition transmission 2 both cross-time slots.
  • Time slot boundary 1, time slot boundary 2 and time slot boundary 3 are at time slot boundary 1, time slot respectively.
  • TRP switching occurs at slot boundary 2 and slot boundary 3.
  • the symbols of the time slot part before the time slot boundary 1 are transmitted in frequency band 1 and TRP1; the symbols of the time slot part after the time slot boundary 1 are transmitted in frequency band 2 and TRP2; the time before the time slot boundary 2
  • the symbols of the slot part are transmitted in frequency band 2 and TRP2, and the symbols of the time slot part after the slot boundary 2 are transmitted in frequency band 1 and TRP1.
  • the frequency hopping pattern is inter-slot-repetition frequency hopping, which effectively reduces RRC signaling overhead.
  • the TRP switching mode at the time slot boundary 3 is similar to the above, so it will not be repeated here.
  • the configuration repeated transmission is transmitted under different TRPs before and after the cross time slot, which is very good.
  • the PUSCH transmission enhancement of URLLC system which improves the transmission rate of user data
  • the base station can know the advantages of the corresponding TRP according to the slot index; the smallest unit of TRP switching is 1 slot, which avoids TRP switching too frequently; in addition, the configuration of the corresponding TRP transmission scheme can be compared with the R16 inter-
  • the joint configuration of slot-repetition frequency hopping scheme can effectively reduce RRC signaling overhead.
  • the configuration system for PUSCH transmission in this embodiment is applied to user equipment.
  • the system can be a separate chip, a chip module or a UE, or a chip or a chip module integrated in the UE.
  • the various modules/units included in the configuration system of PUSCH transmission may be software modules/units, hardware modules/units, or part software modules/units and part hardware modules/units.
  • the various modules/units contained therein can be implemented in the form of hardware such as circuits, or at least part of the modules/units can be implemented in the form of software programs.
  • Runs on the integrated processor inside the chip, and the remaining part of the modules/units can be implemented by hardware methods such as circuits; for each device and product applied to or integrated in the chip module, each of the modules/units contained in it can use circuits, etc. It is realized by hardware, different modules/units can be located in the same component (such as chip, circuit module, etc.) or different components of the chip module, or at least part of the modules/units can be realized in the form of a software program, and the software program runs For the processor integrated inside the chip module, the remaining part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the UE, each module/unit contained in it can be implemented by hardware such as circuits Different modules/units can be located in the same component (for example, chip, circuit module, etc.) or different components in the terminal, or at least some of the modules/units can be implemented in the form of a software program, and the software program runs on the UE The internal integrated processor, and the remaining
  • the configuration system for PUSCH transmission in this embodiment includes a configuration information acquisition module 1, an uplink symbol number acquisition module 2, a configuration unit acquisition module 3, and a configuration module 4.
  • the configuration information acquisition module 1 is used to acquire the repeated transmission configuration information configured by the base station;
  • the configuration information includes but is not limited to K repeated transmissions, the transmission symbol length corresponding to each repeated transmission, and the initial transmission symbol;
  • K repeated transmissions are successively transmitted in the uplink time slot, K ⁇ 1 and an integer.
  • the configuration information for repeated transmission of the user equipment can be determined according to the network load condition, the wireless channel quality of the user equipment, and the URLLC service performance running in the network.
  • the number of uplink symbols obtaining module 2 is configured to obtain the number of uplink symbols corresponding to each repeated transmission according to the PUSCH transmission and configuration information of the URLLC system;
  • the configuration unit obtaining module 3 is configured to determine different configuration units corresponding to PUSCH transmission according to the number of uplink symbols and a predefined threshold;
  • the configuration unit corresponds to at least one repeated transmission
  • the pre-defined threshold includes but is not limited to the fixed value of RRC semi-static configuration, the system pre-defined value or the dynamic calculation based on the total transmission length of PUSCH.
  • M is L*K/2, L*K/4..., where K represents K Repeated transmission once, L represents the length of the transmission symbol, and L*K represents the total transmission length of the PUSCH. .
  • the configuration module 4 is configured to configure all repeated transmissions in the same configuration unit to be transmitted under the same transmission reception point TRP, and adjacent configuration units are respectively transmitted under different transmission reception points TRP.
  • the PUSCH transmission based on the accumulated uplink symbol number for multi-TRP switching is implemented, thereby well implementing the PUSCH transmission enhancement of the URLLC system and improving the transmission rate of user data.
  • the configuration system for PUSCH transmission in this embodiment is a further improvement of Embodiment 4. Specifically:
  • the uplink symbol number obtaining module 2 is used to obtain the uplink symbol number of the uplink symbol corresponding to each repeated transmission according to the uplink symbol corresponding to the PUSCH transmission of the URLLC system, the initial transmission symbol, K repeated transmissions, and the transmission symbol length of each repeated transmission. ;
  • the configuration unit acquisition module 3 includes a calculation unit 5 and a determination unit 6.
  • the calculation unit 5 is configured to calculate the sum of the accumulated uplink symbol numbers corresponding to repeated transmissions of multiple consecutive transmissions to obtain the accumulated uplink symbol numbers;
  • the determining unit 6 is used to determine that repeated transmissions of multiple consecutive transmissions correspond to the same configuration unit when the cumulative number of uplink symbols meets the set conditions, and continue to repeat the calculation unit 5 for multiple repeated transmissions after the current configuration unit, until all The configuration unit.
  • the setting conditions include:
  • the sum of the cumulative uplink symbols corresponding to the first repetitive transmission to the Nth repetitive transmission is greater than or equal to the predefined threshold, and the cumulative uplink symbols corresponding to the first repetitive transmission to the N-1 repetitive transmission
  • the sum of the numbers is less than a predefined threshold; where, N ⁇ 2 and N takes an integer.
  • the configuration module 4 is used to configure all remaining repeated transmissions to be transmitted under the same transmission receiving point TRP when there are remaining unconfigured repeated transmissions, and the corresponding transmission receiving point TRP is different from the transmission receiving point TRP corresponding to the previous configuration unit .
  • nominal repetition transmission 1 and nominal repetition transmission 2 correspond to the same configuration unit. Both nominal repetition transmission 1 and nominal repetition transmission 2 are transmitted under TRP1;
  • nominal repetition transmission 3 and nominal repetition transmission 4 correspond to the same configuration unit, and nominal repetition transmission 3 and Nominal repetition transmission 4 is transmitted under TRP2.
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 1 and nominal repetition transmission 2 is 9 (where the symbol "0" corresponds to DL downlink symbols), that is, greater than M, then nominal repetition transmission 1 and nominal repetition transmission 2 correspond to the same configuration Unit, the nominal repetition transmission 1 and nominal repetition transmission 2 under this configuration unit are both transmitted under TRP1;
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 3 and nominal repetition transmission 4 is 7 (where the symbols "1, 2, 3" correspond to downlink symbols), which is less than M, then the remaining nominal repetition transmission 3 and nominal repetition transmission 4 are in TRP2 To transfer.
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 3 and nominal repetition transmission 4 is 4 (wherein the symbols "0, 1" correspond to downlink symbols), which is less than M, so it is necessary to continue to accumulate nominal repetition transmission 5, and nominal repetition transmission 3
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 5 is 7, which is greater than M, then nominal repetition transmission 3, nominal repetition transmission 4, and nominal repetition transmission 5 correspond to the same configuration unit, and nominal repetition transmission 3 and nominal repetition under this configuration unit Transmission 4 and nominal repetition transmission 5 are both transmitted under TRP2;
  • the remaining nominal repetition transmission 6 is transmitted under TRP1, and can also be configured for transmission under other TRPs such as (TRP3) according to the actual situation.
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 3 and nominal repetition transmission 4 is 5 (where the symbol "0" corresponds to the downlink symbol), which is equal to M, then nominal repetition transmission 3 and nominal repetition transmission 4 correspond to the same configuration unit, this configuration unit Both the nominal repetition transmission 3 and the nominal repetition transmission 4 are transmitted under TRP2;
  • the remaining nominal repetition transmission 5 and nominal repetition transmission 6 are transmitted under TRP1, and can also be configured for transmission under other TRPs such as (TRP3) according to the actual situation.
  • nominal repetition transmission 3 and nominal repetition transmission 4 correspond to the same configuration unit, and nominal repetition transmission 3 and Nominal repetition transmission 4 is transmitted under TRP2;
  • the cumulative number of uplink symbols corresponding to nominal repetition transmission 5 and nominal repetition transmission 6 is 6, which is equal to M, then nominal repetition transmission 5 and nominal repetition transmission 6 correspond to the same configuration unit, and nominal repetition transmission 5 and nominal repetition transmission under this configuration unit 6 are all transmitted under TRP3.
  • multiple transmission receiving node TRPs are switched to achieve PUSCH transmission enhancement, which improves the transmission rate of user data, can ensure that the distribution of transmission symbols on different TRPs is more balanced, and can obtain reliable spatial diversity. Gain; In addition, it can also ensure that the transmission symbols on each TRP are not too few, ensuring the corresponding TRP transmission code rate and the performance reliability of the base station reception.
  • the configuration system for PUSCH transmission in this embodiment is a further improvement of Embodiment 4. Specifically:
  • the configuration system includes a time slot acquisition module 7, and the time slot acquisition module 7 is used to acquire a time slot for PUSCH transmission;
  • the configuration module 4 is configured to determine that the repeated transmission occurs across the time slot according to the time slot and configuration information, and then determine that the repeated transmission is transmitted under different transmission receiving points TRP before and after the time slot;
  • the configuration module 4 is configured to determine that each repeated transmission is transmitted under the pre-configured transmission receiving point TRP when it is determined that the repeated transmission does not cross the time slot according to the time slot and configuration information;
  • adjacent pre-configured repeated transmissions are different transmission receiving points TRP.
  • the configuration module 4 is used to determine that the repeated transmission occurs across the time slot according to the time slot and configuration information, and then determine that the repeated transmission corresponds to different frequency bands before and after the cross time slot, and the different frequency bands correspond to different transmission receiving points TRP.
  • the corresponding configuration is also defaulted to switch the PUSCH transmission of multiple transmission receiving nodes TRP based on each slot (time slot).
  • Enhanced program if the RRC signaling is configured with inter-slot-repetition frequency hopping with a frequency hopping pattern of R16 (a frequency modulation scheme), the corresponding configuration is also defaulted to switch the PUSCH transmission of multiple transmission receiving nodes TRP based on each slot (time slot). Enhanced program.
  • both nominal repetition transmission 1 and nominal repetition transmission 2 have cross-slot situations, including slot boundary 1, slot boundary 2, and slot boundary 3. At this time, they are respectively at slot boundary 1, slot boundary TRP switching occurs at 2 and slot boundary 3.
  • the symbols of the time slot part before the time slot boundary 1 are transmitted under TRP1
  • the symbols of the time slot part after the time slot boundary 1 are transmitted under TRP2
  • the symbols of the time slot part before the time slot boundary 2 are transmitted under TRP2
  • the symbols of the time slot part after the time slot boundary 2 are transmitted under TRP1 (it can also be configured for transmission under TRP3 according to the actual situation), that is, based on each slot, multiple transmission receiving nodes TRP are switched to realize PUSCH transmission The purpose of enhancement.
  • nominal repetition transmission 1 and nominal repetition transmission 2 both cross-time slots.
  • Time slot boundary 1, time slot boundary 2 and time slot boundary 3 are at time slot boundary 1, time slot respectively.
  • TRP switching occurs at slot boundary 2 and slot boundary 3.
  • the symbols of the time slot part before the time slot boundary 1 are transmitted in frequency band 1 and TRP1; the symbols of the time slot part after the time slot boundary 1 are transmitted in frequency band 2 and TRP2; the time before the time slot boundary 2
  • the symbols of the slot part are transmitted in frequency band 2 and TRP2, and the symbols of the time slot part after the time slot boundary 2 are transmitted in frequency band 1 and TRP1.
  • the frequency hopping pattern is inter-slot-repetition frequency hopping, which effectively reduces RRC signaling overhead.
  • the TRP switching mode at the time slot boundary 3 is similar to the above, so it will not be repeated here.
  • the configuration repeated transmission is transmitted under different TRPs before and after the cross time slot, which is very good.
  • the PUSCH transmission enhancement of URLLC system which improves the transmission rate of user data
  • the base station can know the advantages of the corresponding TRP according to the slot index; the smallest unit of TRP switching is 1 slot, which avoids TRP switching too frequently; in addition, the configuration of the corresponding TRP transmission scheme can be compared with the R16 inter-
  • the joint configuration of slot-repetition frequency hopping scheme can effectively reduce RRC signaling overhead.
  • FIG. 17 is a schematic structural diagram of an electronic device according to Embodiment 7 of the present invention.
  • the electronic device includes a memory, a processor, and a computer program that is stored on the memory and can run on the processor.
  • the processor implements the PUSCH transmission configuration method corresponding to any one of Embodiments 1 to 3 when the processor executes the program.
  • the electronic device 30 shown in FIG. 17 is only an example, and should not bring any limitation to the function and application scope of the embodiment of the present invention.
  • the electronic device 30 may be in the form of a general-purpose computing device, for example, it may be a server device.
  • the components of the electronic device 30 may include, but are not limited to: the above-mentioned at least one processor 31, the above-mentioned at least one memory 32, and a bus 33 connecting different system components (including the memory 32 and the processor 31).
  • the bus 33 includes a data bus, an address bus, and a control bus.
  • the memory 32 may include a volatile memory, such as a random access memory (RAM) 321 and/or a cache memory 322, and may further include a read-only memory (ROM) 323.
  • RAM random access memory
  • ROM read-only memory
  • the memory 32 may also include a program/utility tool 325 having a set of (at least one) program module 324.
  • program module 324 includes but is not limited to: an operating system, one or more application programs, other program modules, and program data. Each or a certain combination of the examples may include the realization of the network environment.
  • the processor 31 executes various functional applications and data processing by running a computer program corresponding to the memory 32, such as the PUSCH transmission configuration method corresponding to any one of Embodiments 1 to 3 of the present invention.
  • the electronic device 30 may also communicate with one or more external devices 34 (such as keyboards, pointing devices, etc.). This communication can be performed through an input/output (I/O) interface 35.
  • the model-generated device 30 may also communicate with one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 36. As shown in FIG. 17, the network adapter 36 communicates with other modules of the device 30 generated by the model through the bus 33.
  • networks for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps corresponding to the PUSCH transmission configuration method corresponding to any one of Embodiments 1 to 3 are implemented.
  • the readable storage medium may include, but is not limited to, portable disks, hard disks, random access memories, read-only memories, erasable programmable read-only memories, optical storage devices, magnetic storage devices, or any of the foregoing. The right combination.
  • the present invention can also be implemented in the form of a program product, which includes program code.
  • the program product runs on the user equipment, the program code is used to make the user equipment execute the implementations in the first to third embodiments. Steps corresponding to the PUSCH transmission configuration method corresponding to any one of the embodiments.
  • the program code for executing the present invention can be written in any combination of one or more programming languages.
  • the program code can be completely executed on the user equipment, partly executed on the user equipment, and used as an independent software.
  • the package is executed, partly on the user's device, partly on the remote device, or entirely on the remote device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种PUSCH传输的配置方法、***、电子设备和存储介质,所述配置方法包括:获取基站配置的重复传输的配置信息;根据URLLC***的PUSCH传输和所述配置信息获取每次所述重复传输对应的上行符号数;根据所述上行符号数和预定义阈值确定所述PUSCH传输对应的不同的配置单元;配置同一所述配置单元中的所有所述重复传输在同一传输接收点TRP下传输,且相邻的所述配置单元分别在不同的所述传输接收点TRP下传输。本发明中有效地实现了多TRP下URLLC***的PUSCH传输增强,提高了用户数据的传输速率;另外,还有效地减少了RRC信令开销。

Description

PUSCH传输的配置方法、***、电子设备和存储介质
本申请要求申请日为2020/2/14的中国专利申请202010093365.9的优先权。本申请引用上述中国专利申请的全文。
技术领域
发明涉及无线通信技术领域,特别涉及一种PUSCH(物理层上行共享信道)传输的配置方法、***、电子设备和存储介质。
背景技术
在LTE(长期演进)***中,多点协作传输技术作为一项提升用户数据传输速率的有效方法得到支持,并在LTE协议的后续版本中不断增强。在NR(新无线电)标准化过程中,类似的多点协作传输技术被称为多TRP(传输接收节点)传输。
目前,多TRP传输仅对URLLC(高可靠低时延通信)的下行传输进行增强,并未对URLLC的PUSCH上行传输进行增强。其中,对于Rel-16的URLLC的PUSCH传输,是由基站配置K(K≥1)次名义repetition传输(名义重复传输),且会为第一次名义repetition配置起始传输符号S和传输符号长度L,后面的K-1次名义repetition传输会在后面的上行时隙进行连续传输,并且传输符号长度均为L。如图1所示,分别配置S=3,K=3,L=6,每个名义repetition传输过程中碰到半静态配置的DL(下行符号)或者时隙边界时会分割成一个或多个的实际repetition,如名义repetition传输2被DL以及时隙边界分割成Rep.2-1,Rep.2-2、Rep.2-3。
其中,现有的PUSCH传输方案中是基于每次repetition传输进行TRP切换,容易存在如下问题:
(1)若某个TRP上传输的PUSCH的repetition传输过程中与下行符号冲突个数过多,则会导致该TRP上接收的实际上行符号数过少甚于没有数据接收的情况。
(2)基于问题(1),若1个TRP上接收上行符号数较多,另外1个TRP上接收上行符号数较少,则会导致不同TRP上接收符号数不均衡,无法获得可靠的空间分集增益,甚至性能会差于单TRP传输。如图2所示,TRP1上有6个上行符号传输,TRP2上由于DL符号的存在,仅有2个UL上行符号传输,因此会造成性能损失。尤其是在TRP1对应的信道条件较差,TRP2对应的信道条件较好,性能损失会更大。
(3)如果配置每次repetition传输长度较小,如图3所示,对应K=4,L=2,则基于 repetition进行切换会导致TRP切换过于频繁,对UE(用户设备)的基带处理模块和射频的工作造成压力。
发明内容
本发明要解决的技术问题是为了克服现有技术中增强PUSCH传输的方式存在传输性能较差、不满足实际要求的缺陷,提供一种PUSCH传输的配置方法、***、电子设备和存储介质。
本发明是通过下述技术方案来解决上述技术问题:
本发明提供一种PUSCH传输的配置方法,所述配置方法应用在用户设备中,所述配置方法包括:
获取基站配置的重复传输的配置信息;
根据URLLC***的PUSCH传输和所述配置信息获取每次所述重复传输对应的上行符号数;
根据所述上行符号数和预定义阈值确定所述PUSCH传输对应的不同的配置单元;
其中,所述配置单元对应至少一次所述重复传输;
配置同一所述配置单元中的所有所述重复传输在同一传输接收点TRP下传输,且相邻的所述配置单元分别在不同的所述传输接收点TRP下传输。
较佳地,所述配置信息包括K次所述重复传输、每次所述重复传输对应的传输符号长度以及起始传输符号;
其中,K次所述重复传输依次在上行时隙进行连续传输,K≥1且取整数。
较佳地,所述根据URLLC***的PUSCH传输和所述配置信息获取每次所述重复传输对应的上行符号数的步骤包括:
根据URLLC***的PUSCH传输对应的上行符号、所述起始传输符号、K次所述重复传输和每次所述重复传输的所述传输符号长度获取每次所述重复传输对应的上行符号的上行符号数;
所述根据所述上行符号数和预定义阈值确定所述PUSCH传输对应的不同的配置单元的步骤包括:
计算多次连续传输的所述重复传输对应的所述上行符号数之和得到累计上行符号数;
在所述累计上行符号数满足设定条件时,则确定多次连续传输的所述重复传输对应同一所述配置单元,继续对当前配置单元之后的多次所述重复传输重复执行所述计算多次连续传输的所述重复传输对应的所述上行符号数之和得到累计上行符号数的步骤,直 至得到所有的所述配置单元。
较佳地,当所述配置单元对应N次所述重复传输时,所述设定条件包括:
对于所述N次所述重复传输,第1次所述重复传输至第N次所述重复传输对应的所述上行符号数之和大于或者等于所述预定义阈值,且第1次所述重复传输至N-1次所述重复传输对应的所述上行符号数之和小于所述预定义阈值;其中,N≥2且N取整数。
较佳地,所述配置方法还包括:
在存在剩余未配置的所述重复传输时,则配置剩余的所有所述重复传输在同一所述传输接收点TRP下传输,且对应的所述传输接收点TRP与前一个所述配置单元对应的所述传输接收点TRP不同。
较佳地,所述预定义阈值为RRC(无线资源控制)半静态配置的固定值、***预定义值或通过PUSCH总传输长度动态计算得到。
较佳地,所述获取基站配置的重复传输的配置信息的步骤之后还包括:
获取所述PUSCH传输的时隙;
在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别在不同的所述传输接收点TRP下传输;
在根据所述时隙和所述配置信息确定所述重复传输未发生跨时隙时,则确定每个所述重复传输分别在预先配置的所述传输接收点TRP下传输;
其中,相邻的预先配置的所述重复传输为不同的所述传输接收点TRP。
较佳地,所述配置方法还包括:
在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别对应不同的频段,且不同的频段对应不同的所述传输接收点TRP。
本发明还提供一种PUSCH传输的配置***,所述配置***应用在用户设备中,所述配置***包括配置信息获取模块、上行符号数获取模块、配置单元获取模块和配置模块;
所述配置信息获取模块用于获取基站配置的重复传输的配置信息;
所述上行符号数获取模块用于根据URLLC***的PUSCH传输和所述配置信息获取每次所述重复传输对应的上行符号数;
所述配置单元获取模块用于根据所述上行符号数和预定义阈值确定所述PUSCH传输对应的不同的配置单元;
其中,所述配置单元对应至少一次所述重复传输;
所述配置模块用于配置同一所述配置单元中的所有所述重复传输在同一传输接收点TRP下传输,且相邻的所述配置单元分别在不同的所述传输接收点TRP下传输。
较佳地,所述配置信息包括K次所述重复传输、每次所述重复传输对应的传输符号长度以及起始传输符号;
其中,K次所述重复传输依次在上行时隙进行连续传输,K≥1且取整数。
较佳地,所述上行符号数获取模块用于根据URLLC***的PUSCH传输对应的上行符号、所述起始传输符号、K次所述重复传输和每次所述重复传输的所述传输符号长度获取每次所述重复传输对应的上行符号的上行符号数;
所述配置单元获取模块包括计算单元和确定单元;
所述计算单元用于计算多次连续传输的所述重复传输对应的所述上行符号数之和得到累计上行符号数;
所述确定单元用于在所述累计上行符号数满足设定条件时,则确定多次连续传输的所述重复传输对应同一所述配置单元,继续对当前配置单元之后的多次所述重复传输重复执行所述计算单元,直至得到所有的所述配置单元。
较佳地,当所述配置单元对应N次所述重复传输时,所述设定条件包括:
对于所述N次所述重复传输,第1次所述重复传输至第N次所述重复传输对应的所述上行符号数之和大于或者等于所述预定义阈值,且第1次所述重复传输至N-1次所述重复传输对应的所述上行符号数之和小于所述预定义阈值;其中,N≥2且N取整数。
较佳地,所述配置模块用于在存在剩余未配置的所述重复传输时,则配置剩余的所有所述重复传输在同一所述传输接收点TRP下传输,且对应的所述传输接收点TRP与前一个所述配置单元对应的所述传输接收点TRP不同。
较佳地,所述预定义阈值为RRC半静态配置的固定值、***预定义值或通过PUSCH总传输长度动态计算得到。
较佳地,所述配置***包括时隙获取模块;
所述时隙获取模块用于获取所述PUSCH传输的时隙;
所述配置模块用于在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别在不同的所述传输接收点TRP下传输;
所述配置模块用于在根据所述时隙和所述配置信息确定所述重复传输未发生跨时隙时,则确定每个所述重复传输分别在预先配置的所述传输接收点TRP下传输;
其中,相邻的预先配置的所述重复传输为不同的所述传输接收点TRP。
较佳地,所述配置模块用于在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别对应不同的频段,且不同的频段对应不同的所述传输接收点TRP。
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行计算机程序时实现上述的PUSCH传输的配置方法。
本发明还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的PUSCH传输的配置方法的步骤。
本发明的积极进步效果在于:
本发明中,根据配置的重复传输以及预定义阈值实现基于累计上行符号数进行多TRP切换的PUSCH传输,或基于配置的重复传输以及PUSCH传输的时隙,在重复传输发生跨时隙的情况时,则配置重复传输在跨时隙前后分别在不同的TRP下进行传输,从而很好地实现URLLC***的PUSCH传输增强,提高了用户数据的传输速率;另外,在重复传输发生跨时隙的情况时还可以结合R16的inter-slot-repetition(一种跳频方案)的跳频进行联合配置,从而有效地减少了RRC信令开销。
附图说明
图1为现有技术中PUSCH传输对应的第一配置示意图。
图2为现有技术中PUSCH传输对应的第二配置示意图。
图3为现有技术中PUSCH传输对应的第三配置示意图。
图4为本发明实施例1的PUSCH传输的配置方法的流程图。
图5为本发明实施例2的PUSCH传输的配置方法的流程图。
图6为本发明实施例2的PUSCH传输对应的第一配置示意图。
图7为本发明实施例2的PUSCH传输对应的第二配置示意图。
图8为本发明实施例2的PUSCH传输对应的第三配置示意图。
图9为本发明实施例2的PUSCH传输对应的第四配置示意图。
图10为本发明实施例2的PUSCH传输对应的第五配置示意图。
图11为本发明实施例3的PUSCH传输的配置方法的流程图。
图12为本发明实施例3的PUSCH传输对应的第一配置示意图。
图13为本发明实施例3的PUSCH传输对应的第二配置示意图。
图14为本发明实施例4的PUSCH传输的配置***的模块示意图。
图15为本发明实施例5的PUSCH传输的配置***的模块示意图。
图16为本发明实施例6的PUSCH传输的配置***的模块示意图。
图17为本发明实施例7中实现PUSCH传输的配置方法的电子设备的结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例的PUSCH传输的配置方法应用在用户设备中。方法的执行主体可以为单独的芯片、芯片模组或者UE,也可以是集成于UE内的芯片或者芯片模组。
如图4所示,本实施例的PUSCH传输的配置方法包括:
S101、获取基站配置的重复传输的配置信息;
其中,配置信息包括但不限于K次重复传输、每次重复传输对应的传输符号长度以及起始传输符号;
K次重复传输依次在上行时隙进行连续传输,K≥1且取整数。
具体地,可以根据网络的负载状况、用户设备的无线信道质量、以及网络中正在运行的URLLC业务性能等情况确定用户设备的重复传输的配置信息。
S102、根据URLLC***的PUSCH传输和配置信息获取每次重复传输对应的上行符号数;
S103、根据上行符号数和预定义阈值确定PUSCH传输对应的不同的配置单元;
其中,配置单元对应至少一次重复传输;
预定义阈值包括但不限于RRC半静态配置的固定值、***预定义值或通过PUSCH总传输长度动态计算得到,例如,M为L*K/2,L*K/4…,其中K表示K次重复传输、L表示传输符号长度,L*K表示PUSCH总传输长度。
S104、配置同一配置单元中的所有重复传输在同一传输接收点TRP下传输,且相邻的配置单元分别在不同的传输接收点TRP下传输。
本实施例中,根据配置的重复传输以及预定义阈值实现基于累计上行符号数进行多TRP切换的PUSCH传输,从而很好地实现URLLC***的PUSCH传输增强,提高了用户数据的传输速率。
实施例2
如图5所示,本实施例的PUSCH传输的配置方法是对实施例1的进一步改进,具体地:
步骤S102具体包括:
S1021、根据URLLC***的PUSCH传输对应的上行符号、起始传输符号、K次重 复传输和每次重复传输的传输符号长度获取每次重复传输对应的上行符号的上行符号数。
步骤S103具体包括:
计算多次连续传输的重复传输对应的累计上行符号数之和得到累计上行符号数;
在累计上行符号数满足设定条件时,则确定多次连续传输的重复传输对应同一配置单元,继续对当前配置单元之后的多次重复传输重复执行计算多次连续传输的重复传输对应的累计上行符号数之和得到累计上行符号数的步骤,直至得到所有的配置单元。
具体地,当配置单元对应N次重复传输时,该设定条件包括:
对于N次重复传输,第1次重复传输至第N次重复传输对应的累计上行符号数之和大于或者等于预定义阈值,且第1次重复传输至N-1次重复传输对应的累计上行符号数之和小于预定义阈值;其中,N≥2且N取整数。
步骤S103还包括:
在存在剩余未配置的重复传输时,则配置剩余的所有重复传输在同一传输接收点TRP下传输,且对应的传输接收点TRP与前一个配置单元对应的传输接收点TRP不同。
下面结合实例具体说明:
(1)在PUSCH传输时,如图6所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=4,L=4,同时配置预定义阈值M=8。
可以得知,名义repetition传输1(重复传输)和名义repetition传输2对应的累计上行符号数为8,即等于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
同理,名义repetition传输3和名义repetition传输4对应的累计上行符号数为8,即等于M,则名义repetition传输3和名义repetition传输4对应同一配置单元,该配置单元下的名义repetition传输3和名义repetition传输4均在TRP2下进行传输。
(2)在PUSCH传输时,如图7所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=5,K=4,L=5,同时配置预定义阈值M=8。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为9(其中符号“0”对应DL下行符号),即大于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
名义repetition传输3和名义repetition传输4对应的累计上行符号数为7(其中符号“1、2、3”对应下行符号),即小于M,则剩余的名义repetition传输3和名义repetition传 输4在TRP2下进行传输。
(3)在PUSCH传输时,如图8所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=6,L=3,同时配置预定义阈值M=5。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为6,即大于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
名义repetition传输3和名义repetition传输4对应的累计上行符号数为4(其中符号“0、1”均对应下行符号),即小于M,因此需要继续累计名义repetition传输5,此时名义repetition传输3至名义repetition传输5对应的累计上行符号数为7,即大于M,则名义repetition传输3、名义repetition传输4和名义repetition传输5对应同一配置单元,该配置单元下的名义repetition传输3、名义repetition传输4和名义repetition传输5均在TRP2下进行传输;
剩余的名义repetition传输6在TRP1下进行传输,也可以根据实际情况配置在其他TRP如(TRP3)下进行传输。
(5)在PUSCH传输时,如图9所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=6,L=3,同时配置预定义阈值M=5。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为6,即大于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
名义repetition传输3和名义repetition传输4对应的累计上行符号数为5(其中符号“0”对应下行符号),即等于M,则名义repetition传输3和名义repetition传输4对应同一配置单元,该配置单元下的名义repetition传输3和名义repetition传输4均在TRP2下进行传输;
剩余的名义repetition传输5和名义repetition传输6在TRP1下进行传输,也可以根据实际情况配置在其他TRP如(TRP3)下进行传输。
(3)在PUSCH传输时,如图10所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=6,L=3,同时配置预定义阈值M=6。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为6,即等于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
同理,名义repetition传输3和名义repetition传输4对应的累计上行符号数为6,即 等于M,则名义repetition传输3和名义repetition传输4对应同一配置单元,该配置单元下的名义repetition传输3和名义repetition传输4均在TRP2下进行传输;
名义repetition传输5和名义repetition传输6对应的累计上行符号数为6,即等于M,则名义repetition传输5和名义repetition传输6对应同一配置单元,该配置单元下的名义repetition传输5和名义repetition传输6均在TRP3下进行传输。
本实施例的基于累计上行符号数切换多个传输接收节点TRP以实现PUSCH传输增强的方式,提高了用户数据的传输速率,能够保证不同TRP上的传输符号分布较均衡,可以获得可靠的空间分集增益;另外,也能够保证每个TRP上的传输符号不至于太少,保证了对应的TRP的传输码率和基站接收的性能可靠性。
实施例3
如图11所示,本实施例的PUSCH传输的配置方法是对实施例1的进一步改进,具体地:
步骤S101之后还包括:
S105、获取PUSCH传输的时隙;
S106、在根据时隙和配置信息确定重复传输发生跨时隙时,则确定重复传输在跨时隙前后分别在不同的传输接收点TRP下传输;
在根据时隙和配置信息确定重复传输未发生跨时隙时,则确定每个重复传输分别在预先配置的传输接收点TRP下传输;
其中,相邻的预先配置的重复传输为不同的传输接收点TRP。
另外,优选地,在根据时隙和配置信息确定重复传输发生跨时隙时,则确定重复传输在跨时隙前后分别对应不同的频段,且不同的频段对应不同的传输接收点TRP。
其中,若RRC信令配置跳频图案为R16的inter-slot-repetition跳频,则也默认对应配置基于每个slot(时隙)切换多个传输接收节点TRP的PUSCH传输增强的方案。
下面结合实例具体说明:
在PUSCH传输时,如图12所示,配置起始传输符号、K次重复传输、每次重复传输对应的传输符号长度,具体地K=3。
可以得知,名义repetition传输1和名义repetition传输2均发生跨时隙的情况,其中包括时隙边界1、时隙边界2和时隙边界3,此时分别在时隙边界1、时隙边界2和时隙边界3处发生TRP切换。
具体地,时隙边界1前的时隙部分的符号在TRP1下进行传输,时隙边界1后的时隙部分的符号在TRP2下进行传输;时隙边界2前的时隙部分的符号在TRP2下进行传 输,时隙边界2后的时隙部分的符号在TRP1下进行传输(也可以根据实际情况配置在TRP3下进行传输),即基于每个slot切换多个传输接收节点TRP以实现PUSCH传输增强的目的。
另外,如图13所示,名义repetition传输1和名义repetition传输2均发生跨时隙的情况,时隙边界1、时隙边界2和时隙边界3,此时分别在时隙边界1、时隙边界2和时隙边界3处发生TRP切换。具体地,时隙边界1前的时隙部分的符号在频段1且TRP1下进行传输,时隙边界1后的时隙部分的符号在频段2且TRP2下进行传输;时隙边界2前的时隙部分的符号在频段2且TRP2下进行传输,时隙边界2后的时隙部分的符号在频段1且TRP1下进行传输,其中跳频图案为inter-slot-repetition跳频,有效地减少了RRC信令开销。
其中,时隙边界3处的TRP切换方式与上述类似,因此此处就不再赘述。
本实施例中,基于配置的重复传输以及PUSCH传输的时隙,并在重复传输发生跨时隙的情况时,则配置重复传输在跨时隙前后分别在不同的TRP下进行传输,从而很好地实现URLLC***的PUSCH传输增强,提高了用户数据的传输速率;另外,在重复传输发生跨时隙的情况时还可以结合R16的inter-slot-repetition的跳频方案进行联合配置,具有实现操作简单,基站根据slot索引便可知道对应接收的TRP的优点;TRP切换的最小单位为1个slot,避免了TRP切换过于频繁的情况;另外,对应的TRP传输方案的配置可以与R16的inter-slot-repetition的跳频方案联合配置,能够有效地减少RRC信令开销。
实施例4
本实施例的PUSCH传输的配置***应用在用户设备中。***具体可以是单独的芯片、芯片模组或者UE,也可以是集成于UE内的芯片或者芯片模组。PUSCH传输的配置***包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于UE的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的 模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于UE内部集成的处理器,剩余的部分模块/单元可以采用电路等硬件方式实现。
如图14所示,本实施例的PUSCH传输的配置***包括配置信息获取模块1、上行符号数获取模块2、配置单元获取模块3和配置模块4。
配置信息获取模块1用于获取基站配置的重复传输的配置信息;
其中,配置信息包括但不限于K次重复传输、每次重复传输对应的传输符号长度以及起始传输符号;
其中,K次重复传输依次在上行时隙进行连续传输,K≥1且取整数。
具体地,可以根据网络的负载状况、用户设备的无线信道质量、以及网络中正在运行的URLLC业务性能等情况确定用户设备的重复传输的配置信息。上行符号数获取模块2用于根据URLLC***的PUSCH传输和配置信息获取每次重复传输对应的上行符号数;
配置单元获取模块3用于根据上行符号数和预定义阈值确定PUSCH传输对应的不同的配置单元;
其中,配置单元对应至少一次重复传输;
预定义阈值包括但不限于RRC半静态配置的固定值、***预定义值或通过PUSCH总传输长度动态计算得到,例如,M为L*K/2,L*K/4…,其中K表示K次重复传输、L表示传输符号长度,L*K表示PUSCH总传输长度。。
配置模块4用于配置同一配置单元中的所有重复传输在同一传输接收点TRP下传输,且相邻的配置单元分别在不同的传输接收点TRP下传输。
本实施例中,根据配置的重复传输以及预定义阈值实现基于累计上行符号数进行多TRP切换的PUSCH传输,从而很好地实现URLLC***的PUSCH传输增强,提高了用户数据的传输速率。
实施例5
如图15所示,本实施例的PUSCH传输的配置***是对实施例4的进一步改进,具体地:
上行符号数获取模块2用于根据URLLC***的PUSCH传输对应的上行符号、起始传输符号、K次重复传输和每次重复传输的传输符号长度获取每次重复传输对应的上行符号的上行符号数;
配置单元获取模块3包括计算单元5和确定单元6。
计算单元5用于计算多次连续传输的重复传输对应的累计上行符号数之和得到累计上行符号数;
确定单元6用于在累计上行符号数满足设定条件时,则确定多次连续传输的重复传输对应同一配置单元,继续对当前配置单元之后的多次重复传输重复执行计算单元5,直至得到所有的配置单元。
其中,当配置单元对应N次重复传输时,设定条件包括:
对于N次重复传输,第1次重复传输至第N次重复传输对应的累计上行符号数之和大于或者等于预定义阈值,且第1次重复传输至N-1次重复传输对应的累计上行符号数之和小于预定义阈值;其中,N≥2且N取整数。
配置模块4用于在存在剩余未配置的重复传输时,则配置剩余的所有重复传输在同一传输接收点TRP下传输,且对应的传输接收点TRP与前一个配置单元对应的传输接收点TRP不同。
下面结合实例具体说明:
(1)在PUSCH传输时,如图6所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=4,L=4,同时配置预定义阈值M=8。
可以得知,名义repetition传输1(重复传输)和名义repetition传输2对应的累计上行符号数为8,即等于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
同理,名义repetition传输3和名义repetition传输4对应的累计上行符号数为8,即等于M,则名义repetition传输3和名义repetition传输4对应同一配置单元,该配置单元下的名义repetition传输3和名义repetition传输4均在TRP2下进行传输。
(2)在PUSCH传输时,如图7所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=5,K=4,L=5,同时配置预定义阈值M=8。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为9(其中符号“0”对应DL下行符号),即大于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
名义repetition传输3和名义repetition传输4对应的累计上行符号数为7(其中符号“1、2、3”对应下行符号),即小于M,则剩余的名义repetition传输3和名义repetition传输4在TRP2下进行传输。
(3)在PUSCH传输时,如图8所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=6,L=3,同时配置预定义阈值M=5。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为6,即大于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
名义repetition传输3和名义repetition传输4对应的累计上行符号数为4(其中符号“0、1”均对应下行符号),即小于M,因此需要继续累计名义repetition传输5,此时名义repetition传输3至名义repetition传输5对应的累计上行符号数为7,即大于M,则名义repetition传输3、名义repetition传输4和名义repetition传输5对应同一配置单元,该配置单元下的名义repetition传输3、名义repetition传输4和名义repetition传输5均在TRP2下进行传输;
剩余的名义repetition传输6在TRP1下进行传输,也可以根据实际情况配置在其他TRP如(TRP3)下进行传输。
(5)在PUSCH传输时,如图9所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=6,L=3,同时配置预定义阈值M=5。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为6,即大于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
名义repetition传输3和名义repetition传输4对应的累计上行符号数为5(其中符号“0”对应下行符号),即等于M,则名义repetition传输3和名义repetition传输4对应同一配置单元,该配置单元下的名义repetition传输3和名义repetition传输4均在TRP2下进行传输;
剩余的名义repetition传输5和名义repetition传输6在TRP1下进行传输,也可以根据实际情况配置在其他TRP如(TRP3)下进行传输。
(3)在PUSCH传输时,如图10所示,配置起始传输符号S、K次重复传输、每次重复传输对应的传输符号长度L分别为:S=3,K=6,L=3,同时配置预定义阈值M=6。
可以得知,名义repetition传输1和名义repetition传输2对应的累计上行符号数为6,即等于M,则名义repetition传输1和名义repetition传输2对应同一配置单元,该配置单元下的名义repetition传输1和名义repetition传输2均在TRP1下进行传输;
同理,名义repetition传输3和名义repetition传输4对应的累计上行符号数为6,即等于M,则名义repetition传输3和名义repetition传输4对应同一配置单元,该配置单 元下的名义repetition传输3和名义repetition传输4均在TRP2下进行传输;
名义repetition传输5和名义repetition传输6对应的累计上行符号数为6,即等于M,则名义repetition传输5和名义repetition传输6对应同一配置单元,该配置单元下的名义repetition传输5和名义repetition传输6均在TRP3下进行传输。
本实施例的基于累计上行符号数切换多个传输接收节点TRP以实现PUSCH传输增强的方式,提高了用户数据的传输速率,能够保证不同TRP上的传输符号分布较均衡,可以获得可靠的空间分集增益;另外,也能够保证每个TRP上的传输符号不至于太少,保证了对应的TRP的传输码率和基站接收的性能可靠性。
实施例6
如图16所示,本实施例的PUSCH传输的配置***是对实施例4的进一步改进,具体地:
配置***包括时隙获取模块7,时隙获取模块7用于获取PUSCH传输的时隙;
配置模块4用于在根据时隙和配置信息确定重复传输发生跨时隙时,则确定重复传输在跨时隙前后分别在不同的传输接收点TRP下传输;
配置模块4用于在根据时隙和配置信息确定重复传输未发生跨时隙时,则确定每个重复传输分别在预先配置的传输接收点TRP下传输;
其中,相邻的预先配置的重复传输为不同的传输接收点TRP。
另外,配置模块4用于在根据时隙和配置信息确定重复传输发生跨时隙时,则确定重复传输在跨时隙前后分别对应不同的频段,且不同的频段对应不同的传输接收点TRP。
其中,若RRC信令配置跳频图案为R16的inter-slot-repetition跳频(一种调频方案),则也默认对应配置基于每个slot(时隙)切换多个传输接收节点TRP的PUSCH传输增强的方案。
下面结合实例具体说明:
在PUSCH传输时,如图12所示,配置起始传输符号、K次重复传输、每次重复传输对应的传输符号长度,具体地K=3。
可以得知,名义repetition传输1和名义repetition传输2均发生跨时隙的情况,其中包括时隙边界1、时隙边界2和时隙边界3,此时分别在时隙边界1、时隙边界2和时隙边界3处发生TRP切换。
具体地,时隙边界1前的时隙部分的符号在TRP1下进行传输,时隙边界1后的时隙部分的符号在TRP2下进行传输;时隙边界2前的时隙部分的符号在TRP2下进行传输,时隙边界2后的时隙部分的符号在TRP1下进行传输(也可以根据实际情况配置在 TRP3下进行传输),即基于每个slot切换多个传输接收节点TRP以实现PUSCH传输增强的目的。
另外,如图13所示,名义repetition传输1和名义repetition传输2均发生跨时隙的情况,时隙边界1、时隙边界2和时隙边界3,此时分别在时隙边界1、时隙边界2和时隙边界3处发生TRP切换。具体地,时隙边界1前的时隙部分的符号在频段1且TRP1下进行传输,时隙边界1后的时隙部分的符号在频段2且TRP2下进行传输;时隙边界2前的时隙部分的符号在频段2且TRP2下进行传输,时隙边界2后的时隙部分的符号在频段1且TRP1下进行传输,其中跳频图案为inter-slot-repetition跳频,有效地减少了RRC信令开销。
其中,时隙边界3处的TRP切换方式与上述类似,因此此处就不再赘述。
本实施例中,基于配置的重复传输以及PUSCH传输的时隙,并在重复传输发生跨时隙的情况时,则配置重复传输在跨时隙前后分别在不同的TRP下进行传输,从而很好地实现URLLC***的PUSCH传输增强,提高了用户数据的传输速率;另外,在重复传输发生跨时隙的情况时还可以结合R16的inter-slot-repetition的跳频方案进行联合配置,具有实现操作简单,基站根据slot索引便可知道对应接收的TRP的优点;TRP切换的最小单位为1个slot,避免了TRP切换过于频繁的情况;另外,对应的TRP传输方案的配置可以与R16的inter-slot-repetition的跳频方案联合配置,能够有效地减少RRC信令开销。
实施例7
图17为本发明实施例7提供的一种电子设备的结构示意图。电子设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现实施例1至3中任意一个实施例对应的PUSCH传输的配置方法。图17显示的电子设备30仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图17所示,电子设备30可以以通用计算设备的形式表现,例如其可以为服务器设备。电子设备30的组件可以包括但不限于:上述至少一个处理器31、上述至少一个存储器32、连接不同***组件(包括存储器32和处理器31)的总线33。
总线33包括数据总线、地址总线和控制总线。
存储器32可以包括易失性存储器,例如随机存取存储器(RAM)321和/或高速缓存存储器322,还可以进一步包括只读存储器(ROM)323。
存储器32还可以包括具有一组(至少一个)程序模块324的程序/实用工具325,这样的程序模块324包括但不限于:操作***、一个或者多个应用程序、其它程序模块以及程序数据,这些示例对应的每一个或某种组合中可能包括网络环境的实现。
处理器31通过运行存储在存储器32对应的计算机程序,从而执行各种功能应用以及数据处理,例如本发明实施例1至3中任意一个实施例对应的PUSCH传输的配置方法。
电子设备30也可以与一个或多个外部设备34(例如键盘、指向设备等)通信。这种通信可以通过输入/输出(I/O)接口35进行。并且,模型生成的设备30还可以通过网络适配器36与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。如图17所示,网络适配器36通过总线33与模型生成的设备30的其它模块通信。应当明白,尽管图中未示出,可以结合模型生成的设备30使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理器、外部磁盘驱动阵列、RAID(磁盘阵列)***、磁带驱动器以及数据备份存储***等。
应当注意,尽管在上文详细描述中提及了电子设备的若干单元/模块或子单元/模块,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元/模块的特征和功能可以在一个单元/模块中具体化。反之,上文描述的一个单元/模块的特征和功能可以进一步划分为由多个单元/模块来具体化。
实施例8
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,程序被处理器执行时实现实施例1至3中任意一个实施例对应的PUSCH传输的配置方法对应的步骤。
其中,可读存储介质可以根据的更具体可以包括但不限于:便携式盘、硬盘、随机存取存储器、只读存储器、可擦拭可编程只读存储器、光存储器件、磁存储器件或上述的任意合适的组合。
在可能的实施方式中,本发明还可以实现为一种程序产品的形式,其包括程序代码,当程序产品在用户设备上运行时,程序代码用于使用户设备执行实现实施例1至3中任意一个实施例对应的PUSCH传输的配置方法对应的步骤。
其中,可以以一种或多种程序设计语言的任意组合来编写用于执行本发明的程序代码,程序代码可以完全地在用户设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户设备上部分在远程设备上执行或完全在远程设备上执行。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (18)

  1. 一种PUSCH传输的配置方法,其特征在于,所述配置方法应用在用户设备中,所述配置方法包括:
    获取基站配置的重复传输的配置信息;
    根据URLLC***的PUSCH传输和所述配置信息获取每次所述重复传输对应的上行符号数;
    根据所述上行符号数和预定义阈值确定所述PUSCH传输对应的不同的配置单元;
    其中,所述配置单元对应至少一次所述重复传输;
    配置同一所述配置单元中的所有所述重复传输在同一传输接收点TRP下传输,且相邻的所述配置单元分别在不同的所述传输接收点TRP下传输。
  2. 如权利要求1所述的PUSCH传输的配置方法,其特征在于,所述配置信息包括K次所述重复传输、每次所述重复传输对应的传输符号长度以及起始传输符号;
    其中,K次所述重复传输依次在上行时隙进行连续传输,K≥1且取整数。
  3. 如权利要求2所述的PUSCH传输的配置方法,其特征在于,所述根据URLLC***的PUSCH传输和所述配置信息获取每次所述重复传输对应的上行符号数的步骤包括:
    根据URLLC***的PUSCH传输对应的上行符号、所述起始传输符号、K次所述重复传输和每次所述重复传输的所述传输符号长度获取每次所述重复传输对应的上行符号的上行符号数;
    所述根据所述上行符号数和预定义阈值确定所述PUSCH传输对应的不同的配置单元的步骤包括:
    计算多次连续传输的所述重复传输对应的所述上行符号数之和得到累计上行符号数;
    在所述累计上行符号数满足设定条件时,则确定多次连续传输的所述重复传输对应同一所述配置单元,继续对当前配置单元之后的多次所述重复传输重复执行所述计算多次连续传输的所述重复传输对应的所述上行符号数之和得到累计上行符号数的步骤,直至得到所有的所述配置单元。
  4. 如权利要求3所述的PUSCH传输的配置方法,其特征在于,当所述配置单元对应N次所述重复传输时,所述设定条件包括:
    对于所述N次所述重复传输,第1次所述重复传输至第N次所述重复传输对应的所述上行符号数之和大于或者等于所述预定义阈值,且第1次所述重复传输至N-1次所述重复传输对应的所述上行符号数之和小于所述预定义阈值;其中,N≥2且N取整数。
  5. 如权利要求3和4中至少一项所述的PUSCH传输的配置方法,其特征在于,所述配置方法还包括:
    在存在剩余未配置的所述重复传输时,则配置剩余的所有所述重复传输在同一所述传输接收点TRP下传输,且对应的所述传输接收点TRP与前一个所述配置单元对应的所述传输接收点TRP不同。
  6. 如权利要求1至5中至少一项所述的PUSCH传输的配置方法,其特征在于,所述预定义阈值为RRC半静态配置的固定值、***预定义值或通过PUSCH总传输长度动态计算得到。
  7. 如权利要求1至6中至少一项所述的PUSCH传输的配置方法,其特征在于,所述获取基站配置的重复传输的配置信息的步骤之后还包括:
    获取所述PUSCH传输的时隙;
    在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别在不同的所述传输接收点TRP下传输;
    在根据所述时隙和所述配置信息确定所述重复传输未发生跨时隙时,则确定每个所述重复传输分别在预先配置的所述传输接收点TRP下传输;
    其中,相邻的预先配置的所述重复传输为不同的所述传输接收点TRP。
  8. 如权利要求7所述的PUSCH传输的配置方法,其特征在于,所述配置方法还包括:
    在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别对应不同的频段,且不同的频段对应不同的所述传输接收点TRP。
  9. 一种PUSCH传输的配置***,其特征在于,所述配置***应用在用户设备中,所述配置***包括配置信息获取模块、上行符号数获取模块、配置单元获取模块和配置模 块;
    所述配置信息获取模块用于获取基站配置的重复传输的配置信息;
    所述上行符号数获取模块用于根据URLLC***的PUSCH传输和所述配置信息获取每次所述重复传输对应的上行符号数;
    所述配置单元获取模块用于根据所述上行符号数和预定义阈值确定所述PUSCH传输对应的不同的配置单元;
    其中,所述配置单元对应至少一次所述重复传输;
    所述配置模块用于配置同一所述配置单元中的所有所述重复传输在同一传输接收点TRP下传输,且相邻的所述配置单元分别在不同的所述传输接收点TRP下传输。
  10. 如权利要求9所述的PUSCH传输的配置***,其特征在于,所述配置信息包括K次所述重复传输、每次所述重复传输对应的传输符号长度以及起始传输符号;
    其中,K次所述重复传输依次在上行时隙进行连续传输,K≥1且取整数。
  11. 如权利要求10所述的PUSCH传输的配置***,其特征在于,所述上行符号数获取模块用于根据URLLC***的PUSCH传输对应的上行符号、所述起始传输符号、K次所述重复传输和每次所述重复传输的所述传输符号长度获取每次所述重复传输对应的上行符号的上行符号数;
    所述配置单元获取模块包括计算单元和确定单元;
    所述计算单元用于计算多次连续传输的所述重复传输对应的所述上行符号数之和得到累计上行符号数;
    所述确定单元用于在所述累计上行符号数满足设定条件时,则确定多次连续传输的所述重复传输对应同一所述配置单元,继续对当前配置单元之后的多次所述重复传输重复执行所述计算单元,直至得到所有的所述配置单元。
  12. 如权利要求11所述的PUSCH传输的配置***,其特征在于,当所述配置单元对应N次所述重复传输时,所述设定条件包括:
    对于所述N次所述重复传输,第1次所述重复传输至第N次所述重复传输对应的所述上行符号数之和大于或者等于所述预定义阈值,且第1次所述重复传输至N-1次所述 重复传输对应的所述上行符号数之和小于所述预定义阈值;其中,N≥2且N取整数。
  13. 如权利要求11和12中至少一项所述的PUSCH传输的配置***,其特征在于,所述配置模块用于在存在剩余未配置的所述重复传输时,则配置剩余的所有所述重复传输在同一所述传输接收点TRP下传输,且对应的所述传输接收点TRP与前一个所述配置单元对应的所述传输接收点TRP不同。
  14. 如权利要求9至13中至少一项所述的PUSCH传输的配置***,其特征在于,所述预定义阈值为RRC半静态配置的固定值、***预定义值或通过PUSCH总传输长度动态计算得到。
  15. 如权利要求9至14中至少一项所述的PUSCH传输的配置***,其特征在于,所述配置***包括时隙获取模块;
    所述时隙获取模块用于获取所述PUSCH传输的时隙;
    所述配置模块用于在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别在不同的所述传输接收点TRP下传输;
    所述配置模块用于在根据所述时隙和所述配置信息确定所述重复传输未发生跨时隙时,则确定每个所述重复传输分别在预先配置的所述传输接收点TRP下传输;
    其中,相邻的预先配置的所述重复传输为不同的所述传输接收点TRP。
  16. 如权利要求15所述的PUSCH传输的配置***,其特征在于,所述配置模块用于在根据所述时隙和所述配置信息确定所述重复传输发生跨时隙时,则确定所述重复传输在跨时隙前后分别对应不同的频段,且不同的频段对应不同的所述传输接收点TRP。
  17. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行计算机程序时实现权利要求1-8中至少一项所述的PUSCH传输的配置方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-8中至少一项所述的PUSCH传输的配置方法的步骤。
PCT/CN2021/076069 2020-02-14 2021-02-08 Pusch传输的配置方法、***、电子设备和存储介质 WO2021160099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010093365.9A CN113271680B (zh) 2020-02-14 2020-02-14 Pusch传输的配置方法、***、电子设备和存储介质
CN202010093365.9 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021160099A1 true WO2021160099A1 (zh) 2021-08-19

Family

ID=77227220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076069 WO2021160099A1 (zh) 2020-02-14 2021-02-08 Pusch传输的配置方法、***、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN113271680B (zh)
WO (1) WO2021160099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116591A1 (zh) * 2021-12-22 2023-06-29 维沃移动通信有限公司 传输确定方法、装置、终端、网络侧设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019209084A1 (ko) * 2018-04-27 2019-10-31 엘지전자 주식회사 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
CN110536450A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置、传输接收节点、终端及介质
CN110535590A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、***及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626009B1 (en) * 2017-06-15 2024-01-10 Huawei Technologies Co., Ltd. Method and devices for multiple transmit receive point cooperation for reliable communication
CN110351027A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种反馈信息的传输方法和装置
CN110611958A (zh) * 2019-08-16 2019-12-24 中兴通讯股份有限公司 传输资源配置方法、装置和计算机存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019209084A1 (ko) * 2018-04-27 2019-10-31 엘지전자 주식회사 하향링크 데이터를 송수신하는 방법 및 이를 위한 장치
CN110535590A (zh) * 2018-09-27 2019-12-03 中兴通讯股份有限公司 数据发送、接收方法、装置、通信设备、***及存储介质
CN110536450A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 一种数据传输方法、装置、传输接收节点、终端及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC: "Enhancements on Multi-TRP/Panel Transmission", 3GPP DRAFT; R1-1906224, vol. RAN WG1, 3 May 2019 (2019-05-03), Reno, USA, pages 1 - 32, XP051708263 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023116591A1 (zh) * 2021-12-22 2023-06-29 维沃移动通信有限公司 传输确定方法、装置、终端、网络侧设备和存储介质

Also Published As

Publication number Publication date
CN113271680B (zh) 2022-10-21
CN113271680A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
RU2731766C1 (ru) Способ беспроводной связи и устройство
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
RU2735383C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
CN110800358A (zh) 传输配置方法及相关产品
WO2020011122A1 (zh) 跨载波调度物理下行共享信道的方法和设备
CN109152009B (zh) 通信方法、终端设备和网络设备
WO2021213364A1 (zh) 指示方法、上行传输方法、装置、服务节点、终端及介质
JP2021513757A (ja) アップリンクデータの伝送のための方法および端末機器
US10419161B2 (en) Method and communications device for transmitting information
CN112134662B (zh) 准共站址信息指示方法、设备和***
RU2725174C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
JP7047055B2 (ja) データを伝送する方法及び端末装置
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
CN110741612A (zh) 一种调度请求的配置方法、网络设备及终端设备
WO2021160099A1 (zh) Pusch传输的配置方法、***、电子设备和存储介质
US20220022191A1 (en) Method and apparatus for transmitting information
US20220141819A1 (en) Parameter determining method, information configuration method, and device
US11990962B2 (en) Channel transmission method and communication device
EP4009724B1 (en) Terminal capability processing method, apparatus, and device
US20220045729A1 (en) Physical uplink control channel resource determination method and communication device
WO2018201983A1 (zh) 极化码信道编码方法、设备以及通信***
JP2023523440A (ja) ビーム報告の方法及び装置
KR102677395B1 (ko) 전송 방법, 수신 방법, 단말 및 네트워크 기기
US11297545B2 (en) Switching method and access network device
US20230292337A1 (en) Information transmission method, terminal and network side device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753148

Country of ref document: EP

Kind code of ref document: A1