WO2021159532A1 - 一种配置信息的指示方法及装置 - Google Patents

一种配置信息的指示方法及装置 Download PDF

Info

Publication number
WO2021159532A1
WO2021159532A1 PCT/CN2020/075430 CN2020075430W WO2021159532A1 WO 2021159532 A1 WO2021159532 A1 WO 2021159532A1 CN 2020075430 W CN2020075430 W CN 2020075430W WO 2021159532 A1 WO2021159532 A1 WO 2021159532A1
Authority
WO
WIPO (PCT)
Prior art keywords
tdd
transmission time
period
scs
indicate
Prior art date
Application number
PCT/CN2020/075430
Other languages
English (en)
French (fr)
Inventor
焦春旭
黎超
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/075430 priority Critical patent/WO2021159532A1/zh
Priority to KR1020227031851A priority patent/KR20220140622A/ko
Priority to CN202011635859.1A priority patent/CN113194434B/zh
Priority to JP2022549090A priority patent/JP2023513600A/ja
Priority to CN202080003448.2A priority patent/CN113545150B/zh
Priority to AU2020429220A priority patent/AU2020429220B2/en
Priority to EP20919146.9A priority patent/EP4106442A4/en
Priority to BR112022016046A priority patent/BR112022016046A2/pt
Publication of WO2021159532A1 publication Critical patent/WO2021159532A1/zh
Priority to US17/819,420 priority patent/US20220393846A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for indicating configuration information.
  • the 5G base station (next generation Node B, gNB) sends the uplink and downlink time division duplex (time division duplex) in the Uu interface.
  • TDD time division duplex
  • the UE can receive DL data from the gNB during the DL transmission time, and can send UL data to the gNB during the UL transmission time.
  • the data transmission of the PC5 interface and the Uu interface used for communication between UEs can be performed on the same carrier frequency, but the sidelink (SL) transmission in the PC5 interface cannot occupy DL transmission time.
  • SL sidelink
  • the embodiments of the application provide a method and device for indicating configuration information, which are suitable for the fields of vehicle to everything (V2X), intelligent networked vehicles, assisted driving, and intelligent driving, etc., to solve the problems in the prior art SL transmission causes interference to DL transmission.
  • V2X vehicle to everything
  • intelligent networked vehicles intelligent networked vehicles
  • assisted driving assisted driving
  • intelligent driving etc.
  • an embodiment of the present application provides a method for indicating configuration information, which is applied to a first terminal device, and includes:
  • the instruction information is sent to the second terminal device, the instruction information is carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, and the instruction information is used To indicate the period information included in the uplink and downlink TDD configuration.
  • the first terminal device instructs the uplink and downlink TDD configuration to the second type of terminal device through the PSBCH of the S-SSB, so that the second terminal device performs SL transmission according to the instruction to avoid interference with DL transmission, and configures the uplink and downlink TDD configuration Simplified instructions can effectively save signaling overhead.
  • the period information includes: the number of TDD patterns and/or the period of the TDD pattern.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern.
  • the UL transmission time is indicated to the second terminal device, so that the second terminal device can perform SL transmission within the UL transmission time, thereby further avoiding interference to DL transmission.
  • the indication information includes a first bit sequence, and the first bit sequence is used to indicate the period of the TDD pattern.
  • the indication information includes a first bit sequence, the first part of bits in the first bit sequence is used to indicate the number of the TDD patterns, and the second bit sequence in the first bit sequence is Some bits are used to indicate the period of the TDD pattern.
  • the indication information includes a second bit sequence
  • the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern
  • the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; wherein, N is greater than An integer of 1.
  • the indication information includes a second bit sequence
  • the first part of the bits in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns
  • the second bit sequence in the The second part of bits is used to indicate the UL transmission time in the period of the first TDD pattern.
  • the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern, and the second TDD pattern is in the N TDD patterns Any TDD pattern other than the first TDD pattern.
  • the limited bits of the first bit sequence and/or the second bit sequence are used to represent the indication information, which is convenient for analysis and can save the signaling overhead of communication between terminal devices.
  • the method further includes:
  • the first UL transmission time is any TDD of the N TDD patterns UL transmission time in the period of the pattern.
  • the first UL transmission time is determined according to the SCS of the S-SSB and the reference SCS in the uplink and downlink TDD configuration that are exchanged between the terminal devices, instead of directly using the reference data in the uplink and downlink TDD configuration, for example, the reference SCS , Sending to the second terminal device with reference to the UL transmission time, etc., can be more flexibly applicable to actual communication, instructing the second terminal device to perform SL transmission within the corresponding UL transmission time, so as to avoid interference with DL transmission.
  • the method further includes:
  • the SCS threshold is related to the number of bits used to indicate the first UL transmission time, and the first UL transmission time is in the N TDD patterns UL transmission time in any cycle of TDD pattern;
  • the first UL transmission time is determined according to the result of the comparison.
  • the consideration of the number of bits used to indicate the UL transmission time is added to determine the SCS threshold, and then the UL transmission time is determined according to the SCS of the S-SSB interacting between terminal devices and the SCS threshold. It is flexibly suitable for actual communication while reasonably applying limited bits to realize the indication of UL transmission time, so that the second terminal device can perform SL transmission within the corresponding UL transmission time and avoid interference with DL transmission.
  • the determining the first UL transmission time according to the comparison result includes:
  • the first UL transmission time is determined according to the ratio of the SCS of the S-SSB to the reference SCS included in the uplink and downlink TDD configuration; or,
  • the first UL transmission time is determined according to the ratio of the SCS threshold to the reference SCS included in the uplink and downlink TDD configuration information.
  • the determining the first UL transmission time according to the comparison result includes:
  • the first UL transmission time is determined according to the time threshold, or,
  • the time threshold is the maximum UL transmission time that can be indicated by the bit used to indicate the first UL transmission time.
  • the determining the first UL transmission time according to the comparison result includes:
  • the first UL transmission time is determined according to the reduced second UL transmission time.
  • an embodiment of the present application provides a method for indicating configuration information, which is applied to a second terminal device, and includes:
  • the indication information being carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, the indication information being used to indicate the first terminal Period information contained in the uplink and downlink time division duplex TDD configuration received by the device.
  • the second terminal device receives the instruction information from the first terminal device, and the instruction information is related to the upper and lower TDD configuration received by the first terminal device, and the second terminal device can communicate with other terminal devices according to the instruction information.
  • SL transmission so as to avoid the SL transmission between the terminal equipment from causing interference to the DL transmission between the network equipment and the terminal equipment.
  • the period information includes: the number of TDD patterns and/or the period of the TDD pattern.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern.
  • the second terminal device may perform SL transmission according to the UL transmission time indicated by the indication information, thereby further avoiding interference to DL transmission.
  • the indication information includes a first bit sequence, and the first bit sequence is used to indicate the period of the TDD pattern.
  • the indication information includes a first bit sequence, the first part of bits in the first bit sequence is used to indicate the number of the TDD patterns, and the second bit sequence in the first bit sequence is Some bits are used to indicate the period of the TDD pattern.
  • the indication information includes a second bit sequence
  • the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern
  • the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; wherein, N is greater than An integer of 1.
  • the indication information includes a second bit sequence
  • the first part of the bits in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns
  • the second bit sequence in the The second part of bits is used to indicate the UL transmission time in the period of the first TDD pattern.
  • the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern, and the second TDD pattern is in the N TDD patterns Any TDD pattern other than the first TDD pattern.
  • the limited bits of the first bit sequence and/or the second bit sequence are used to represent the indication information, which is convenient for analysis and can save the signaling overhead of communication between terminal devices.
  • the UL transmission time in the period of any one of the N TDD patterns is included according to the subcarrier interval SCS of the S-SSB and the uplink and downlink TDD configuration Determined with reference to the ratio of SCS.
  • the first UL transmission time is determined according to the SCS of the S-SSB and the reference SCS in the uplink and downlink TDD configuration that are exchanged between the terminal devices, instead of directly using the reference data in the uplink and downlink TDD configuration, for example, the reference SCS , Sending to the second terminal device with reference to the UL transmission time, etc., can be more flexibly applicable to actual communication, instructing the second terminal device to perform SL transmission within the corresponding UL transmission time, so as to avoid interference with DL transmission.
  • the UL transmission time in the period of any one of the N TDD patterns is determined according to the comparison result between the S-SSB subcarrier spacing SCS and the SCS threshold. It is determined that the SCS threshold is related to a first number of bits, and the first number of bits is the number of bits used to indicate the UL transmission time in the period of any one of the TDD patterns.
  • the consideration of the number of bits used to indicate the UL transmission time is added to determine the SCS threshold, and then the UL transmission time is determined according to the SCS of the S-SSB interacting between terminal devices and the SCS threshold. It is flexibly suitable for actual communication while reasonably applying limited bits to realize the indication of UL transmission time, so that the second terminal device can perform SL transmission within the corresponding UL transmission time and avoid interference with DL transmission.
  • an embodiment of the present application provides a configuration information indicating device, including:
  • the receiving module is used to receive the uplink and downlink time division duplex TDD configuration from the network equipment;
  • the sending module is configured to send indication information to the second terminal device according to the uplink and downlink TDD configuration, and the indication information is carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, The indication information is used to indicate period information included in the uplink and downlink TDD configuration.
  • the first terminal device instructs the uplink and downlink TDD configuration to the second type of terminal device through the PSBCH of the S-SSB, so that the second terminal device performs SL transmission according to the instruction to avoid interference with DL transmission, and configures the uplink and downlink TDD configuration Simplified instructions can effectively save signaling overhead.
  • the period information includes: the number of TDD patterns and/or the period of the TDD pattern.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern.
  • the UL transmission time is indicated to the second terminal device, so that the second terminal device can perform SL transmission within the UL transmission time, thereby further avoiding interference to DL transmission.
  • the indication information includes a first bit sequence, and the first bit sequence is used to indicate the period of the TDD pattern.
  • the indication information includes a first bit sequence, the first part of bits in the first bit sequence is used to indicate the number of the TDD patterns, and the second bit sequence in the first bit sequence is Some bits are used to indicate the period of the TDD pattern.
  • the indication information includes a second bit sequence
  • the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern
  • the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; wherein, N is greater than An integer of 1.
  • the indication information includes a second bit sequence
  • the first part of the bits in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns
  • the second bit sequence in the The second part of bits is used to indicate the UL transmission time in the period of the first TDD pattern.
  • the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern, and the second TDD pattern is in the N TDD patterns Any TDD pattern other than the first TDD pattern.
  • the limited bits of the first bit sequence and/or the second bit sequence are used to represent the indication information, which is convenient for analysis and can save the signaling overhead of communication between terminal devices.
  • the device further includes:
  • a processing module configured to determine a first UL transmission time according to the ratio of the subcarrier spacing SCS of the S-SSB to the reference SCS included in the uplink and downlink TDD configuration, where the first UL transmission time is the N TDDs The UL transmission time in the period of any TDD pattern in the pattern.
  • the first UL transmission time is determined according to the SCS of the S-SSB and the reference SCS in the uplink and downlink TDD configuration that are exchanged between the terminal devices, instead of directly using the reference data in the uplink and downlink TDD configuration, for example, the reference SCS , Sending to the second terminal device with reference to the UL transmission time, etc., can be more flexibly applicable to actual communication, instructing the second terminal device to perform SL transmission within the corresponding UL transmission time, so as to avoid interference with DL transmission.
  • the device further includes:
  • the processing module is configured to compare the subcarrier interval SCS of the S-SSB with the SCS threshold; wherein, the SCS threshold is related to the number of bits used to indicate the first UL transmission time, and the first UL transmission time is the The UL transmission time in the period of any one of the N TDD patterns; the first UL transmission time is determined according to the comparison result.
  • the consideration of the number of bits used to indicate the UL transmission time is added to determine the SCS threshold, and then the UL transmission time is determined according to the SCS of the S-SSB interacting between terminal devices and the SCS threshold. It is flexibly suitable for actual communication while reasonably applying limited bits to realize the indication of UL transmission time, so that the second terminal device can perform SL transmission within the corresponding UL transmission time and avoid interference with DL transmission.
  • processing module is further used for:
  • the first UL transmission time is determined according to the ratio of the SCS of the S-SSB to the reference SCS included in the uplink and downlink TDD configuration; or,
  • the first UL transmission time is determined according to the ratio of the SCS threshold to the reference SCS included in the uplink and downlink TDD configuration information.
  • processing module is further used for:
  • the first UL transmission time is determined according to the time threshold, or,
  • the time threshold is the maximum UL transmission time that can be indicated by the bit used to indicate the first UL transmission time.
  • processing module is further used for:
  • the first UL transmission time is determined according to the reduced second UL transmission time.
  • an embodiment of the present application provides a device for indicating configuration information, including:
  • the receiving module is configured to receive indication information from the first terminal device, the indication information being carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, and the indication information is used to indicate Period information included in the uplink and downlink time division duplex TDD configuration received by the first terminal device.
  • the second terminal device receives the instruction information from the first terminal device, and the instruction information is related to the upper and lower TDD configuration received by the first terminal device, and the second terminal device can communicate with other terminal devices according to the instruction information.
  • SL transmission so as to avoid the SL transmission between the terminal equipment from causing interference to the DL transmission between the network equipment and the terminal equipment.
  • the period information includes: the number of TDD patterns and/or the period of the TDD pattern.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern.
  • the second terminal device may perform SL transmission according to the UL transmission time indicated by the indication information, thereby avoiding interference to DL transmission.
  • the indication information includes a first bit sequence, and the first bit sequence is used to indicate the period of the TDD pattern.
  • the indication information includes a first bit sequence, the first part of bits in the first bit sequence is used to indicate the number of the TDD patterns, and the second bit sequence in the first bit sequence is Some bits are used to indicate the period of the TDD pattern.
  • the indication information includes a second bit sequence
  • the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern
  • the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; wherein, N is greater than An integer of 1.
  • the indication information includes a second bit sequence
  • the first part of the bits in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns
  • the second bit sequence in the The second part of bits is used to indicate the UL transmission time in the period of the first TDD pattern.
  • the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern, and the second TDD pattern is in the N TDD patterns Any TDD pattern other than the first TDD pattern.
  • the limited bits of the first bit sequence and/or the second bit sequence are used to represent the indication information, which is convenient for analysis and can save the signaling overhead of communication between terminal devices.
  • the UL transmission time in the period of any TDD pattern among the N TDD patterns is included according to the subcarrier interval SCS of the S-SSB and the uplink and downlink TDD configuration. Determined with reference to the ratio of SCS.
  • the first UL transmission time is determined according to the SCS of the S-SSB and the reference SCS in the uplink and downlink TDD configuration that are exchanged between the terminal devices, instead of directly using the reference data in the uplink and downlink TDD configuration, for example, the reference SCS , Sending to the second terminal device with reference to the UL transmission time, etc., can be more flexibly applicable to actual communication, instructing the second terminal device to perform SL transmission within the corresponding UL transmission time, so as to avoid interference with DL transmission.
  • the UL transmission time in the period of any one of the N TDD patterns is determined according to the comparison result between the S-SSB subcarrier spacing SCS and the SCS threshold. It is determined that the SCS threshold is related to a first number of bits, and the first number of bits is the number of bits used to indicate the UL transmission time in the period of any one of the TDD patterns.
  • the consideration of the number of bits used to indicate the UL transmission time is added to determine the SCS threshold, and then the UL transmission time is determined according to the SCS of the S-SSB interacting between terminal devices and the SCS threshold. It is flexibly suitable for actual communication while reasonably applying limited bits to realize the indication of UL transmission time, so that the second terminal device can perform SL transmission within the corresponding UL transmission time and avoid interference with DL transmission.
  • an embodiment of the present application provides a communication device, including: a processor and a memory;
  • the memory is used to store a computer program
  • the processor is configured to execute the computer program stored in the memory, so that the communication device executes the method in any possible implementation manner of the first aspect, or executes the method in any possible implementation manner of the second aspect method.
  • an embodiment of the present application provides a communication device, including: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method in any possible implementation manner of the first aspect, or execute the method in any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a readable storage medium that stores an instruction, and when the instruction is executed, the method in any possible implementation manner of the first aspect is implemented, Or enable the method in any possible implementation manner of the second aspect to be implemented.
  • an embodiment of the present application provides a computer program product, the computer program product comprising: computer program code, when the computer program code is executed by the processor of the communication device, the communication device can execute any one of the possibilities of the first aspect. Or any possible implementation of the second aspect described above.
  • an embodiment of the present application provides a communication system, including the configuration information indicating device of the third aspect described above and the configuration information indicating device of the fourth aspect described above.
  • FIG. 1 is a schematic diagram of time allocation according to an embodiment of the application
  • Figure 2 is a schematic diagram of an uplink and downlink TDD configuration provided by an embodiment of this application;
  • FIG. 3 is a schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of an application scenario provided by an embodiment of the application.
  • FIG. 5 is a hardware module diagram of a sending end UE provided by an embodiment of this application.
  • FIG. 6 is a hardware module diagram of a receiving end UE provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a method for indicating configuration information according to an embodiment of this application.
  • FIG. 8 is a schematic diagram of the first UL transmission time indication provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a second type of UL transmission time indication provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of a third type of UL transmission time indication provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a fourth type of UL transmission time indication provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of a fifth UL transmission time indication provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of comparison of the number of UL time slots provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of another comparison of the number of UL time slots provided by an embodiment of this application.
  • 15 is a schematic flowchart of another method for indicating configuration information according to an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of a device for indicating configuration information according to an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of another device for indicating configuration information provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the embodiments of the present application provide a method and device for indicating configuration information to solve the problem of interference caused by SL transmission to DL transmission in the prior art. Since the principles of the method and the device to solve the problem are the same, the embodiments of the method part and the device part can be referred to each other, and the repetition will not be repeated.
  • the network device may be a base station or an access node (access node, AN), which provides wireless access services for the terminal.
  • the network equipment can specifically be a base transceiver station (BTS) in a global system for mobile communication (GSM) system or a code division multiple access (CDMA) system, or it can be a broadband code division multiple access system.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • Terminal equipment also known as terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • voice and/or data connectivity Devices such as handheld devices with wireless connectivity, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment.
  • station International: station, abbreviation: STA
  • mobile station mobile station
  • MS subscriber unit
  • personal computer English: personal computer, abbreviation: PC
  • laptop Laptop computer LC
  • tablet computer English: tablet computer, abbreviation: TC
  • netbook netbook
  • terminal terminal
  • PDA personal digital assistant
  • mobile WiFi hotspot device smart watches, smart glasses, etc.
  • the above-mentioned terminal equipment may be distributed in the entire network. For the convenience of description, in this application, it is referred to as terminal equipment or UE for short.
  • Time division duplex is a duplex mode widely used in wireless communication.
  • the communication interface used for communication between network equipment and terminal equipment is the downlink in the Uu interface (Uu interface)
  • Downlink (DL) and uplink (UL) transmissions can be performed on the same carrier frequency in a time-division manner.
  • 5G base stations In order to achieve low-latency transmission, especially to adapt to the ultra-reliable low-latency communication (URLLC) business ultra-low delay requirements, 5G base stations (next generation Node B, gNB) send Uu interface
  • the uplink and downlink TDD configuration indicates to the UE the time allocation method of DL and UL within a certain time range. As shown in Figure 1, the UE can perform frequent uplink and downlink switching according to the uplink and downlink TDD configuration.
  • DL data from gNB can be received during time, and UL data can be sent to gNB during UL time.
  • the uplink and downlink TDD configuration is divided into cell-level uplink and downlink TDD configuration and UE-level uplink and downlink TDD configuration.
  • the cell-level uplink and downlink TDD configuration is applicable to all UEs within the coverage of gNB. It indicates the number of DL and UL time slots from the time slot granularity, as well as in orthogonal frequency division multiplexing (orthogonal frequency division multiplexing).
  • OFDM symbol granularity indicates the number of DL symbols and UL symbols;
  • UE-level uplink and downlink TDD configuration is applicable to a certain UE within the gNB coverage area, and it further introduces configurable time based on the cell level Slot, that is, in addition to the DL time slot represented by D and the UL time slot represented by U, a configurable time slot represented by F is also introduced.
  • the uplink and downlink TDD configuration in the configurable time slot is based on the OFDM symbol as the granularity, that is, different symbols in the same time slot can be in different uplink and downlink states. All OFDM symbols in the configurable slot can be all configured as UL symbols or DL symbols.
  • the gNB sends the corresponding uplink and downlink TDD configuration to the UE through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the gNB uses the TDD-UL-DL-ConfigCommon cell in the RRC signaling to be within the coverage of the gNB or
  • the UE in the small area gives an indication.
  • the TDD-UL-DL-ConfigCommon cell further contains two cells, or three cells, which are explained as follows:
  • 1referenceSubcarrierSpacing gives the reference subcarrier spacing (SCS): The value can be one of the following: 15kHz, 30kHz, 60kHz, 120kHz, 240kHz.
  • the uplink and downlink TDD configuration will use the reference SCS to determine the time limit of DL and UL transmission.
  • the reference SCS may be different from the actual SCS used for data transmission in the Uu interface.
  • the reference SCS cannot be larger than any data transmission location configured in the Uu interface.
  • Pattern1 A TDD pattern (pattern) for the uplink and downlink TDD configuration is given. Pattern1 continues to point to the TDD-UL-DL-Pattern cell, and the TDD-UL-DL-Pattern cell gives the specific parameters of the pattern1.
  • 3pattern2 Optional cell.
  • TDD-UL-DL-ConfigCommon cell does not contain this cell, it means that there is only one TDD pattern in the uplink and downlink TDD configuration, namely pattern1; when TDD-UL-DL-ConfigCommon cell
  • the cell pattern2 when the cell pattern2 is included, it means that the uplink and downlink TDD configuration is determined by the two TDD patterns of pattern1 and pattern2, and pattern2 continues to point to the TDD-UL-DL-Pattern cell, which is given by the TDD-UL-DL-Pattern cell The specific parameters of the pattern2.
  • the above pattern1 and pattern2 both continue to point to the TDD-UL-DL-Pattern cell, such as the indication content of the TDD-UL-DL-Pattern cell in the 3GPP 38.331 V15.7.0 standard:
  • the TDD-UL-DL-Pattern cell further contains five cells, or six cells, which are explained as follows:
  • 1dl-UL-TransmissionPeriodicity expressed as P ms, used to indicate the period of a pattern in the uplink and downlink TDD configuration, the value can be one of the following: 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 5ms , 10ms. But if the dl-UL-TransmissionPeriodicity-v1530 cell is additionally configured in the TDD-UL-DL-Pattern cell, the UE will ignore the indication content in the dl-UL-TransmissionPeriodicity cell;
  • 2nrofDownlinkSlots expressed as d slots , used to indicate the number of DL slots in a pattern in the uplink and downlink TDD configuration, the value range can be an integer between 0 and 320;
  • 3nrofDownlinkSymbols expressed as d sym , used to indicate the number of DL symbols in a TDD pattern in the uplink and downlink TDD configuration, the value range can be an integer between 0 and 13;
  • 4nrofUplinkSlots expressed as u slots , used to indicate the number of UL slots in a TDD pattern in the uplink and downlink TDD configuration, the value range can be an integer between 0 and 320;
  • nrofUplinkSymbols expressed as u sym , used to indicate the number of UL symbols in a TDD pattern in the uplink and downlink TDD configuration, the value range can be an integer between 0 and 13;
  • 6dl-UL-TransmissionPeriodicity-v1530 Optional cell, the value range can be one of the following: 3ms, 4ms.
  • the UE uses the dl-UL-TransmissionPeriodicity cell to determine the period of a pattern in the uplink and downlink TDD configuration; when the TDD-UL-DL- When the Pattern cell includes the dl-UL-TransmissionPeriodicity-v1530 cell, the UE will ignore the content of the dl-UL-TransmissionPeriodicity cell.
  • the dl-UL-TransmissionPeriodicity-v1530 cell determines the period of a TDD pattern in the uplink and downlink TDD configuration. .
  • the above parameters P, d slots , d sym , u slots and u sym are used as follows:
  • a TDD included in the uplink and downlink TDD configuration In the drawing, based on the reference SCS (i.e., ), the time slot configuration period P ms includes Reference time slots.
  • the first d slots are DL time slots
  • the last u slots are UL time slots.
  • the d sym symbols after the first d slots are DL symbols
  • the u sym symbols before the next u slots are UL symbols
  • the remaining The symbols are configurable symbols.
  • FIG. 2 an embodiment of the present application provides a schematic diagram of an uplink and downlink TDD configuration.
  • FIG. 2 specifically illustrates the period of the TDD pattern in the uplink and downlink TDD configuration and the time allocation mode in the period.
  • the total period of uplink and downlink TDD configuration will be the sum of the two periods, namely (P+P 2 )ms, where P 2 Represents the period indicated by the TDD-UL-DL-Pattern cell corresponding to pattern2.
  • P 2 represents the period indicated by the TDD-UL-DL-Pattern cell corresponding to pattern2.
  • the first P ms uses the uplink and downlink TDD configuration corresponding to pattern1
  • the last P 2 ms uses the uplink and downlink TDD configuration corresponding to pattern2.
  • the configuration of the number of uplink and downlink time slots and the number of uplink and downlink symbols in a single cycle is consistent with the foregoing, and will not be repeated here.
  • the time slot is the unit of time used to transmit DL data, UL data, or SL data.
  • the time slot includes 14 or 12 OFDM symbols.
  • SCS subcarrier spacing
  • the number of time slots included in a frame (frame) is also different. Assuming that a frame is specified as 10ms and NCP is used, then:
  • Figure 3 illustrates a communication system architecture, the communication system includes a first terminal device and a second terminal device;
  • the first terminal device is configured to receive the uplink and downlink TDD configuration from the network device (such as the aforementioned gNB), and indicate the uplink and downlink TDD configuration to the second terminal device;
  • the network device such as the aforementioned gNB
  • the second terminal device is configured to determine the available time for sidelink (SL) transmission according to the instruction of the first terminal device.
  • the first terminal device instructs the received uplink and downlink TDD configuration to the second terminal device, which can avoid the interference of SL transmission between the terminal devices on the DL transmission between the network device and the terminal device.
  • network equipment is also shown in Figure 3.
  • indicating the UL transmission time can also be understood as indicating the SL transmission time, which is not limited herein.
  • the second terminal device may also send the instruction of the first terminal device to other terminal devices.
  • the first terminal device may send a wireless signal to the second terminal device to directly indicate the uplink and downlink TDD configuration to the second terminal device; in another optional implementation manner, The first terminal device can indirectly indicate the uplink and downlink TDD configuration to the second terminal device through the intermediate device, that is, first send a wireless signal to the intermediate device to instruct the uplink and downlink TDD configuration to the intermediate device, and then forward the uplink and downlink TDD configuration via the intermediate device The relevant indication information is given to the second terminal device.
  • the first terminal device may be an edge device within the coverage area of the network device, and the second terminal device may be able to directly or indirectly wirelessly communicate with the first terminal device and be in the coverage area of the network device.
  • Out-of-range devices thereby avoiding SL transmissions between edge devices and out-of-range devices from interfering with DL transmissions within the range.
  • the first terminal device may send a sidelink synchronization signal block (S-SSB) that carries relevant indication information of the uplink and downlink TDD configuration to the first terminal device through the PC5 interface.
  • S-SSB sidelink synchronization signal block
  • the embodiments of the present application can be applied to the sending and receiving scenarios of S-SSB in the SL scenario; among them, the SL scenario includes the vehicle to everything (V2X) scenario and the device to device communication (device to device, D2D) Communication scene, etc.
  • the S-SSB may also be referred to as a side link synchronization signal/physical layer side link broadcast channel block (S-SS/PSBCH block).
  • V2V vehicle-to-vehicle
  • Figure 4 This scenario includes the sender The UE (that is, the aforementioned first terminal device) and the receiving end UE (that is, the aforementioned second terminal device).
  • both the transmitting end UE and the receiving end UE take a vehicle UE as an example.
  • the sending end UE and the receiving end UE in the actual application scenario may be terminal devices of any form, which is not limited here.
  • the sending end UE is the sending entity of the S-SSB in the SL scenario.
  • the sending end UE can synchronize other terminal devices with itself by sending the S-SSB, thereby realizing the SL communication function.
  • the sending end UE also transmits the relevant indication information of the uplink and downlink TDD configuration by sending the S-SSB.
  • the receiving end UE is the receiving entity of the S-SSB in the SL scenario.
  • the receiving end UE can realize time synchronization with other terminal devices by receiving the S-SSB, thereby realizing the SL communication function.
  • the receiving end UE can parse the relevant indication information of the uplink and downlink TDD configuration transmitted in the S-SSB. When the receiving end UE performs SL transmission, it can avoid interference to DL transmission according to the relevant indication information of the uplink and downlink TDD configuration.
  • the aforementioned sending-end UE includes a processing module and a communication module.
  • the processing module is used to process the algorithms, software, programs, storage, etc. involved in the communication process.
  • the communication module includes a sending module and a receiving module.
  • the sending module is used to send wireless signals, such as S-SSB, SL data, and UL data
  • the receiving module is used to receive wireless signals, such as S-SSB, SL data, and DL data; see Figure 6
  • a hardware module diagram of a receiving end UE is shown, and the receiving end UE includes a processing module and a communication module.
  • the processing module is used to process the algorithms, software, programs, storage, etc. involved in the communication process.
  • the communication module includes a sending module and a receiving module.
  • the sending module is used to send wireless signals, such as S-SSB and SL data
  • the receiving module is used to receive wireless signals, such as S-SSB and SL data.
  • the network device indicates the uplink and downlink TDD configuration to the first terminal device through RRC signaling
  • the signaling overhead used by the TDD-UL-DL-ConfigCommon cell is very large.
  • the first terminal device directly configures the uplink and downlink TDD configuration Sending to other UEs, such as the second terminal device, will also generate relatively large signaling overhead.
  • a brief configuration may be indicated to other UEs according to the uplink and downlink TDD configuration, so as to ensure that other UEs perform SL transmission according to the indication and avoid interference with DL transmission. The detailed description is as follows:
  • an embodiment of the present application provides a method for indicating configuration information.
  • the method is applied to a first terminal device and includes:
  • Step S701 Receive an uplink and downlink time division duplex TDD configuration from a network device.
  • Step S702 Send indication information to the second terminal device according to the uplink and downlink TDD configuration.
  • the indication information is carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, and the indication information is used to indicate the uplink and downlink.
  • the first terminal device completes the uplink and downlink TDD configuration indication through the PSBCH of the S-SSB, and at the same time gives a simplified indication of the uplink and downlink TDD configuration, that is, indicates the cycle information included in the uplink and downlink TDD configuration, which is compared with Sending uplink and downlink TDD configuration directly can reduce signaling overhead.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern, so as to indicate to the second terminal device to perform SL transmission within the UL transmission time, so as to prevent SL transmission from occupying DL transmission Time, causing interference; wherein, the UL transmission time includes the number of UL time slots and/or the number of UL symbols.
  • the indication information may be specifically carried in the PSBCH payload of the side link synchronization signal block S-SSB.
  • part of the bits of the PSBCH payload can be used to carry the indication information, such as using the W bits of the PSBCH payload to carry the indication information, in the W bits, a bit sequence of X bits is used to indicate the aforementioned period information, and in the W bits, Y bits are used.
  • the bit sequence of indicates the foregoing UL transmission time, where W is an integer greater than or equal to 0, X is an integer greater than or equal to 0 and less than or equal to W, and Y is an integer greater than or equal to 0 and less than or equal to W.
  • the aforementioned period information includes: the number of TDD patterns and/or the period of TDD patterns; wherein, the number of TDD patterns is one or more, and the period of TDD patterns includes one or more TDD patterns The period of each TDD pattern in.
  • the indication information includes a first bit sequence, and the first bit sequence corresponds to the aforementioned period information.
  • the specific indication manner can be performed with reference to the following two implementation manners:
  • the first implementation is a first implementation:
  • the first part of the bits in the first bit sequence is used to indicate the number of TDD patterns
  • the second part of the bits in the first bit sequence is used to indicate the period of the TDD pattern; among them, the period of the TDD pattern is related to the number of TDD patterns, such as according to 3GPP 38.331
  • the indication content of the TDD-UL-DL-ConfigCommon cell in the V15.7.0 standard the uplink and downlink TDD configuration only includes pattern1, which means that the number of TDD patterns is 1, and the period of the TDD pattern only includes the period of pattern1; in the uplink and downlink TDD configuration Including pattern1 and pattern2, it means that the number of TDD patterns is 2, and the period of the TDD pattern includes the period of pattern1 and the period of pattern2. That is, when the value range of the number of TDD patterns is 1 or 2, it can be determined whether pattern2 is included in the uplink and downlink TDD configuration according to the indication of the first part of the bit.
  • the period index table can be configured in the first terminal device and the second terminal device, and the second part of the bits in the first bit sequence can be assigned according to the index corresponding to the period of the TDD pattern, so as to realize the periodicity of the TDD pattern. instruct.
  • the period contained in the TDD-UL-DL-Pattern cell in the 3GPP 38.331 V15.7.0 standard is taken as an example for description as follows:
  • the first part of the bit in the aforementioned first bit sequence contains 1 bit, and the value of this 1 bit is 0, which means that the number of TDD patterns included in the upper and lower TDD configuration is 1, that is, only pattern1 is included in the uplink and downlink TDD configuration.
  • a value of 1 indicates that the number of TDD patterns included in the upper and lower TDD configurations is 2, that is, the uplink and downlink TDD configurations include pattern1 and pattern2; or, the value of this 1-bit is 1, which indicates that the number of TDD patterns included in the upper and lower TDD configurations is 1.
  • the uplink and downlink TDD configuration includes pattern1 and pattern2.
  • the remaining bits of the aforementioned first bit sequence except 1 bit are used as the second partial bits, which are used to indicate the period of pattern1, or the period of pattern1 and the period of pattern2.
  • the aforementioned first bit sequence is the X-bit bit sequence of the aforementioned PSBCH payload
  • 1 bit of the X bits is used to indicate the number of TDD patterns
  • X-1 bit is used to indicate one of the uplink and downlink TDD configurations, or , Two cycles.
  • the X-1 bit indicates a period in the uplink and downlink TDD configuration, that is, the period of pattern1; when the number of TDD patterns is 2, the X-1 bit indicates the period in the uplink and downlink TDD configuration. Two cycles, namely the cycle of pattern1 and the cycle of pattern2.
  • the X-1 bit can be used to indicate the period range ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 3ms, 4ms, 5ms, 10ms ⁇
  • the X-1 bit can be used to indicate the cycle range ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 5ms, 10ms ⁇
  • the tables shown in Table 1 and Table 2 can be used to indicate one cycle.
  • the cycle range shown in Table 1 is ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 3ms, 4ms, 5ms, 10ms ⁇ , and a number is indicated by the X-1 bit (that is, the aforementioned Index) indicates a cycle, as follows:
  • the period range shown in Table 2 is ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 5ms, 10ms ⁇ , and a number (that is, the aforementioned index) is indicated by the X-1 bit.
  • the period is as follows:
  • the corresponding relationship between the numbers and periods in Table 1 and Table 2 is not limited.
  • the actual period used can be a certain row, a few rows, all of the rows in the table, or all of the ratios shown in the table.
  • the table shows more rows.
  • the value of X mentioned above is 5.
  • the X-1 bit may be used to indicate the combination of two periods.
  • the number of TDD patterns in the uplink and downlink TDD configuration is 2, and the periods of the two TDD patterns are P ms and P 2 ms respectively, then (P+P 2 ) must be divisible by 20ms, or , 20ms/(P+P 2 ) is an integer.
  • the tables shown in Table 3 and Table 4 can be used to indicate one cycle.
  • the first cycle and the second cycle respectively correspond to the cycle of pattern1 and the cycle of pattern2 in the uplink and downlink TDD configuration, and the range of values for the first cycle and the second cycle It is ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 3ms, 4ms, 5ms, 10ms ⁇ , so there are 16 cycle combinations, and a number (that is, the aforementioned index) is indicated by the X-1 bit.
  • a cycle combination is indicated, as follows:
  • the first period and the second period correspond to the period of pattern1 and the period of pattern2 in the uplink and downlink TDD configuration, respectively.
  • the value range of the first period and the second period is ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 5ms, 10ms ⁇ , so there are 10 cycle combinations.
  • the X-1 bit indicates a number (that is, the aforementioned index) that indicates a cycle combination. As follows:
  • the corresponding relationship between the number and the cycle combination in Table 3 and Table 4 is not limited.
  • the cycle combination actually used can be one of the rows, certain rows, or all of the table shown in the table. , More rows than shown in the table.
  • the value of X mentioned above is 5.
  • the first bit sequence is used to indicate the period of the TDD pattern.
  • the period of the TDD pattern is related to the number of TDD patterns. For example, according to the indication content of the TDD-UL-DL-ConfigCommon cell in the 3GPP 38.331 V15.7.0 standard, in the uplink and downlink TDD configuration Contains only pattern1, which means that the number of TDD patterns is 1, and the period of TDD patterns only includes the period of pattern1; if the uplink and downlink TDD configurations include pattern1 and pattern2, it means that the number of TDD patterns is 2, and the period of TDD patterns includes the period of pattern1 and The period of pattern2.
  • a period index table can be configured in the first terminal device and the second terminal device, and the first bit sequence can be assigned according to the index corresponding to the period of the TDD pattern, so as to realize the indication of the period of the TDD pattern.
  • the X-bit bit sequence of the aforementioned PSBCH payload may be used to indicate one of the uplink and downlink TDD configurations, or two cycles.
  • the X bit indicates one cycle in the uplink and downlink TDD configuration, that is, the cycle of pattern1; when the number of TDD patterns is 2, the X bit indicates two cycles in the uplink and downlink TDD configuration, The period of pattern1 and the period of pattern2.
  • the X bit can be used to indicate one cycle or two cycles in the cycle range ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 3ms, 4ms, 5ms, 10ms ⁇ ;
  • the X bit can be used to indicate one cycle in the cycle range ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 5ms, 10ms ⁇ , or two Cycles.
  • the value range of the above first cycle and second cycle is ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 3ms, 4ms, 5ms, 10ms ⁇ , considering the number of TDD patterns is 1, or 2, In both cases, there are a total of 26 cycle combinations, and a number (that is, the aforementioned index) indicated by X bits indicates a cycle combination, as shown below:
  • the two optional periods of 3ms and 4ms are not considered in Table 6.
  • the total period in the table represents the period of pattern1
  • the first period represents the period of pattern1
  • the second period can be marked as " N/A", used to indicate that there is no cycle of pattern2 under this condition
  • the total cycle in the table represents the sum of the cycle of pattern1 and the cycle of pattern2
  • the first cycle represents the cycle of pattern1
  • the first cycle represents the cycle of pattern1.
  • Two cycles represent the cycle of pattern2.
  • the value range of the above first cycle and second cycle is ⁇ 0.5ms, 0.625ms, 1ms, 1.25ms, 2ms, 2.5ms, 5ms, 10ms ⁇ .
  • the X bit indicates a number (that is, the aforementioned index) to indicate a cycle combination, as shown below:
  • the cycle combination actually used can be one of the rows, certain rows, or all of the table shown in the table. , More rows than shown in the table.
  • the value of X mentioned above is 5.
  • the foregoing indication information includes a second bit sequence, and the second bit sequence corresponds to the foregoing UL transmission time.
  • the specific indication manner can be performed with reference to the following four implementation manners:
  • the first implementation is a first implementation:
  • the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern.
  • the second bit sequence is a binary representation of the number corresponding to the UL transmission time.
  • the UL transmission time includes the number of UL time slots
  • the foregoing second bit sequence is the Y bit sequence of the foregoing PSBCH payload, specifically the number of UL time slots
  • a part of the bits of the second bit sequence is a binary representation of the number corresponding to the UL transmission time.
  • the UL transmission time includes the number of UL time slots
  • the foregoing second bit sequence is the Y bit sequence of the foregoing PSBCH payload
  • the Y-1 bit in the foregoing second bit sequence is the number of UL time slots.
  • the number of UL time slots in the period needs to be indicated as
  • the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; where N is an integer greater than 1.
  • the UL transmission time includes the number of UL time slots
  • the foregoing second bit sequence is the Y bit sequence of the foregoing PSBCH payload as an example.
  • the foregoing second bit sequence can be used to indicate what the uplink and downlink TDD configuration includes
  • the numbers of the two UL time slots corresponding to the two TDD patterns are expressed as and
  • the y 1 bit in the Y bit is used to indicate the number of UL time slots corresponding to one TDD pattern included in the uplink and downlink TDD configuration
  • use the y 2 bit to indicate the number of UL time slots corresponding to another TDD pattern included in the uplink and downlink TDD configuration.
  • using y 1 bit or y 2 bits to indicate the number of UL time slots corresponding to a single TDD pattern can be the same as when the number of TDD patterns in the uplink and downlink TDD configuration is 1, using Y bit to indicate that a single TDD pattern corresponds The number of UL time slots is the same, and will not be repeated here.
  • Y is 7, y 1 is 3, and y 2 is 4.
  • Fig. 9 illustrates the use of 3 bits and 4 bits to indicate the two UL corresponding to the two TDD patterns in the uplink and downlink TDD configuration.
  • the third implementation mode is the third implementation mode.
  • the second bit sequence is used to indicate the UL transmission time in the period of the preset designated TDD pattern among the N TDD patterns, where N is an integer greater than 1.
  • the UL transmission time includes the number of UL time slots
  • the foregoing second bit sequence is the Y bit sequence of the foregoing PSBCH payload as an example.
  • the foregoing second bit sequence can be used to indicate what the uplink and downlink TDD configuration includes The number of UL time slots corresponding to the first TDD pattern in the two TDD patterns Or, the number of two UL time slots corresponding to the second TDD pattern That is, for example, the Y bit is or The binary representation of, or other ways.
  • the way of using Y bits to indicate the number of UL timeslots corresponding to a certain TDD pattern can be the same as the way of using Y bits to indicate the UL timeslots corresponding to a single TDD pattern when the number of TDD patterns in the uplink and downlink TDD configuration is 1. It's the same, so I won't repeat it here.
  • Y is 7, and the Y bit is used to indicate the number of UL timeslots corresponding to the second TDD pattern in the uplink and downlink TDD configuration
  • the number of UL time slots corresponding to the second TDD pattern that needs to be indicated in the PSBCH payload is Then the 7 bits in the PSBCH payload can be expressed as 0000101.
  • the first part of the bit in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns, and the second part of the bit in the second bit sequence is used for Indicates the UL transmission time in the period of the first TDD pattern; where N is an integer greater than 1.
  • the first TDD pattern may be any TDD pattern among the N TDD patterns.
  • the first TDD pattern is the TDD pattern with the largest UL transmission time in the corresponding period among the N TDD patterns, that is, the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern
  • the second TDD pattern is any one of the N TDD patterns except the first TDD pattern.
  • the foregoing second bit sequence is the Y bit sequence of the foregoing PSBCH payload as an example, and 1 bit in the foregoing second bit sequence can be used to indicate uplink and downlink.
  • the first TDD pattern of the two TDD patterns included in the TDD configuration the first TDD pattern may be the first TDD pattern or the second TDD pattern of the two TDD patterns, using Y-1 in the aforementioned second bit sequence
  • the bit indicates the number of UL time slots corresponding to the aforementioned first TDD pattern.
  • the value of the aforementioned 1 bit can be set to 0, then the first TDD pattern indicated by it is the first TDD pattern, and the value of 1 bit is 1, then the first TDD pattern indicated by it is the second TDD pattern. pattern.
  • using Y-1 bit to indicate the number of UL timeslots corresponding to a certain TDD pattern can be the same as when the number of TDD patterns in the uplink and downlink TDD configuration is 1, using Y bits to indicate the UL timeslot corresponding to a single TDD pattern The method is the same, for example, the Y-1 bit is a binary representation of the number of UL time slots corresponding to the first TDD pattern, or other methods, which will not be repeated here.
  • Y is 7, the PSBCH payload is used to indicate the number of UL time slots corresponding to the first pattern of the two TDD patterns in the uplink and downlink TDD configurations, and the value of 1 of the Y bits is 0.
  • the remaining 6 bits in the bits indicate the number of UL time slots corresponding to the first TDD pattern of the two TDD patterns in the uplink and downlink TDD configuration
  • the number of UL time slots that need to be indicated in the PSBCH payload is Then the 7 bits in the PSBCH payload can be expressed as 0000101.
  • Y is 7, the PSBCH payload is used to indicate the number of UL time slots corresponding to the second TDD pattern of the two TDD patterns in the uplink and downlink TDD configurations, and the value of 1 bit in the Y bits is 1.
  • the remaining 6 bits in the bits indicate the number of UL time slots corresponding to the second TDD pattern of the two TDD patterns in the uplink and downlink TDD configuration
  • the number of UL time slots that need to be indicated in the PSBCH payload is Then the 7 bits in the PSBCH payload can be expressed as 1000101.
  • the UL transmission time indicated by the above indication information may be the reference UL transmission time included in the uplink and downlink TDD configuration, or may be determined by adjusting the reference UL transmission time according to actual communication parameters.
  • the reference UL transmission time includes the uplink and downlink. The number of UL slots and/or the number of UL symbols in the TDD configuration.
  • the communication parameter used to determine the UL transmission time includes the subcarrier interval SCS of the S-SSB used to carry the indication information and/or the number of bits used to indicate the UL transmission time in the indication information.
  • the UL transmission time indicated by the indication information can be determined with reference to the following optional implementation manners:
  • the first UL transmission time may be determined according to the ratio of the S-SSB subcarrier spacing SCS to the reference SCS included in the uplink and downlink TDD configuration, and the first UL transmission time is 1 or N above. UL transmission time in the period of any TDD pattern in the two TDD patterns.
  • the subcarrier spacing SCS of the S-SSB is an SCS configured on a bandwidth part (BWP) of the SL.
  • BWP bandwidth part
  • the embodiment of the present application takes the first UL transmission time including the number of UL time slots as an example to provide a method for determining the first UL transmission time, as follows:
  • an embodiment of the present application provides a schematic diagram of the comparison of the number of UL time slots, specifically showing the number of reference UL time slots in the uplink and downlink TDD configuration and the indication information in the PSBCH Correspondence between the number of UL time slots.
  • the embodiment of the present application provides another comparison diagram of the number of UL time slots, which specifically illustrates the number of reference UL time slots in the uplink and downlink TDD configuration and the indication information in the PSBCH The corresponding relationship between the number of UL time slots.
  • the subcarrier spacing SCS of the S-SSB may be compared with the SCS threshold, and then the first UL transmission time may be determined according to the result of the comparison.
  • the SCS threshold is related to the number of bits used to indicate the first UL transmission time
  • the first UL transmission time is the UL transmission time in the period of any TDD pattern of 1 or N TDD patterns.
  • the SCS threshold can be determined according to the following methods:
  • the number of TDD patterns included in the above downlink TDD configuration is 1, and the Y 2 bit in the PSBCH payload is used as an example to indicate the first UL transmission time, which can be based on the function related to the Y 2 bit
  • Y 2 is 7, then Since the SCS of S-SSB is expressed as The value may be an integer of 0, 1 or 3 or the like, the SCS value of S-SSB may be 15kHz, 30kHz, 60kHz, 120kHz or 240kHz, etc., it can be Y 2 is 192kHz 7 when the threshold value is determined SCS That is, 120kHz, the SCS of S-SSB is less than or equal to the SCS threshold, which is equivalent to the SCS of S-SSB is less than the function related to Y 2 bits
  • Y 2 is 6, then Since the SCS of S-SSB is expressed as The value may be an integer 0, 1 or 3 or the like, the SCS value of S-SSB may be 15kHz, 30kHz, 60kHz, 120kHz or 240kHz, etc., Y 2 is 6 it may be determined according to the threshold SCS 96kHz That is 60kHz, the SCS of S-SSB is less than or equal to the SCS threshold, which is equivalent to the SCS of S-SSB is less than the function related to Y 2 bits
  • the foregoing determination of the first UL transmission time according to the comparison result can be specifically implemented in any one of the following implementation manners:
  • the first implementation is a first implementation:
  • the first UL transmission time is determined according to the ratio of the S-SSB's SCS to the reference SCS included in the uplink and downlink TDD configuration.
  • the embodiment of the present application takes the first UL transmission time including the number of UL time slots as an example to provide a method for determining the first UL transmission time, as follows:
  • the Y 2 bit in the PSBCH payload is used to indicate the number of UL time slots, and Y 2 is 7, at this time
  • the Y 2 bit in the PSBCH payload is used to indicate the number of UL time slots, and Y 2 is 6, at this time
  • the first UL transmission time is determined according to the ratio of the SCS threshold to the reference SCS included in the uplink and downlink TDD configuration information.
  • the embodiment of this application takes the first UL transmission time including the number of UL time slots, and uses the Y 2 bit in the PSBCH payload to indicate the number of UL time slots as an example.
  • the SCS of the S-SSB greater than the SCS threshold is equivalent to indicating the S-SSB SCS more than the Under this condition, it can be based on the ratio of the SCS threshold to the reference SCS, that is
  • the determination of the number of UL time slots can be specifically implemented with reference to the foregoing method of determining the number of UL time slots based on the ratio of the S-SSB of the S-SSB to the reference SCS, which will not be repeated here.
  • Y 2 is 7, at this time If the SCS of S-SSB is Greater than 120kHz, the number of UL time slots is It can be based on the SCS threshold of 120kHz.
  • Y 2 is 6. at this time If the SCS of S-SSB is Greater than 60kHz, the number of UL time slots is It can be based on the SCS threshold 60kHz.
  • the second UL transmission time is determined according to the ratio of the S-SSB's SCS to the reference SCS contained in the uplink and downlink TDD configuration information; when the second UL transmission time is greater than the time threshold, according to the time The threshold determines the first UL transmission time, or, when the second UL transmission time is less than or equal to the time threshold, the first UL transmission time is determined according to the second UL transmission time.
  • the time threshold is the maximum UL transmission time that can be indicated by the bit used to indicate the first UL transmission time.
  • the first UL transmission time includes the number of UL time slots
  • the Y 2 bit in the PSBCH payload is used to indicate the number of UL time slots as an example.
  • the SCS of the S-SSB is greater than the SCS threshold, which is equivalent to the SCS of the S-SSB. more than the Under this condition, if the number of UL time slots is determined according to the SCS of the S-SSB, that is Use Y 2 bits to indicate the number of the aforementioned UL time slots It may not be enough.
  • the number of UL time slots indicated by the Y 2 bit in the PSBCH payload is Represents the maximum number of UL time slots that can be indicated by Y 2 bits.
  • Y 2 is 7. at this time
  • the above process can be further described as: if the SCS of the S-SSB is Greater than 120kHz, It can still be determined based on the SCS of the S-SSB, but under this condition, if Then the number of UL time slots indicated in the PSBCH payload is if Then the number of UL time slots indicated in the PSBCH payload is
  • Y 2 is 4. at this time
  • the above process can be further described as: if the SCS of the S-SSB is Greater than 15kHz, It can still be determined based on the SCS of the S-SSB. But under this condition, if Then the number of UL time slots indicated in the PSBCH payload is if Then the number of UL time slots indicated in the PSBCH payload is
  • Y 2 is 3. at this time
  • the above process can be further described as: if the SCS of the S-SSB greater or equal to It can still be determined based on the SCS of the S-SSB. Under this condition, if Then the number of UL time slots indicated in the PSBCH payload is if Then the number of UL time slots indicated in the PSBCH payload is
  • the third implementation mode is the third implementation mode.
  • the second UL transmission time is obtained according to the ratio of the S-SSB SCS to the reference SCS contained in the uplink and downlink TDD configuration; the second UL transmission time is reduced according to the preset step; After the second UL transmission time, the first UL transmission time is determined.
  • the first UL transmission time includes the number of UL time slots
  • the Y 2 bit in the PSBCH payload is used to indicate the number of UL time slots as an example.
  • the SCS of the S-SSB is greater than the SCS threshold, which is equivalent to the SCS of the S-SSB. more than the Under this condition, if the number of UL time slots is determined according to the SCS of the S-SSB, that is Use Y 2 bits to indicate the number of the aforementioned UL time slots It may not be enough.
  • the number of UL time slots indicated by the Y 2 bit in the PSBCH payload is in, Represents rounding down, Z represents the aforementioned preset step size, Z is a positive integer greater than or equal to 1, and Z is used to represent that the single UL time slot indicated in the PSBCH payload actually represents Z UL time slots.
  • Z can be a standard predefined value, or a value determined according to the SCS of the S-SSB.
  • Y 2 is 6. at this time
  • the W bit of the PSBCH payload is used to indicate the period information and the number of UL time slots.
  • the X bit in the W bit is used to indicate the period information
  • the Y bit in the W bit is used to indicate UL.
  • the number of slots optionally, W is 12, X is 5, and Y is 7, which simplifies the number of bits required to indicate the uplink and downlink TDD configuration.
  • the limited bits in the PSBCH payload reflect the uplink and downlink TDD configuration of the Uu interface, which avoids the problem of terminal equipment using DL time slots when performing SL transmission, which will interfere with the Uu interface DL transmission.
  • the TDD configuration greatly saves the signaling overhead between terminal devices.
  • the minimum signaling overhead required to directly send the uplink and downlink TDD configuration is 28 bits.
  • 3 bits indicate the reference SCS
  • 3 bits indicate the period
  • 7 bits indicate the number of downlink time slots.
  • 4 bits indicate the number of downlink symbols
  • 7 bits indicate the number of uplink time slots
  • 4 bits indicate uplink symbols
  • the minimum signaling overhead required to directly send the uplink and downlink TDD configuration is 53 bits Among them, 3 bits indicate the reference SCS, 6 bits indicate the period, 14 bits indicate the number of downlink time slots, 8 bits indicate the number of downlink symbols, 14 bits indicate the number of uplink time slots, and 8 bits indicate the number of uplink symbols.
  • the above-mentioned indication method provided in the embodiments of this application is not limited to use in PSBCH payload.
  • the sending UE needs to indicate the more detailed uplink and downlink TDD configuration in the Uu interface to the receiving UE through PC5RRC signaling, it is also A similar indication method can be used in PC5RRC signaling.
  • an embodiment of the present application provides another method for indicating configuration information.
  • the method is applied to a second terminal device and includes:
  • Step S1501 Receive indication information from the first terminal device, the indication information is carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, and the indication information is used to indicate that the first terminal device has received The cycle information contained in the uplink and downlink time division duplex TDD configuration.
  • the second terminal device receives the instruction information from the first terminal device, and the instruction information is related to the upper and lower TDD configuration received by the first terminal device, and the second terminal device can communicate with other terminal devices according to the instruction information.
  • SL transmission so as to avoid the SL transmission between the terminal equipment from causing interference to the DL transmission between the network equipment and the terminal equipment.
  • the second terminal device may directly receive the instruction information sent by the first terminal device, or indirectly obtain the instruction information sent by the first terminal device through the forwarding mechanism of the intermediate device; in addition, the second terminal device may also It can be used as an intermediate device to forward the received instruction information to other terminal devices.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern; when the second terminal device determines the aforementioned UL transmission time by parsing the indication information, SL is performed within the UL transmission time. Transmission, so as to avoid the SL transmission occupying DL transmission time and causing interference; wherein, the UL transmission time includes the number of UL time slots and/or the number of UL symbols.
  • the indication information may be specifically carried in the PSBCH payload of the side link synchronization signal block S-SSB.
  • part of the bits of the PSBCH payload can be used to carry the indication information, such as the W bit of the PSBCH payload to carry the indication information, the X bit in the W bit is used to indicate the foregoing period information, and the Y bit in the W bit is used to indicate the foregoing UL Transmission time, where W is an integer greater than or equal to 0, X is an integer greater than or equal to 0 and less than or equal to W, and Y is an integer greater than or equal to 0 and less than or equal to W.
  • the period information includes: the number of TDD patterns and/or the period of TDD patterns; wherein, the number of TDD patterns is one or more, and the period of TDD patterns includes one or more TDD patterns. The period of each TDD pattern.
  • the foregoing indication information includes a first bit sequence, and the first bit sequence corresponds to the foregoing period information. Specifically, the following two implementation manners can be used to indicate:
  • the first bit sequence is used to indicate the period of the TDD pattern; in another optional implementation manner, the first part of the bits in the first bit sequence is used to indicate the number of TDD patterns. The second part of the bits in a bit sequence is used to indicate the period of the TDD pattern.
  • the foregoing indication information includes a second bit sequence, and the second bit sequence corresponds to the foregoing UL transmission time.
  • the indication includes a second bit sequence, and the second bit sequence corresponds to the foregoing UL transmission time.
  • any one of the following four implementation manners may be used for the indication:
  • the first implementation manner when the number of TDD patterns included in the uplink and downlink TDD configuration is 1, the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern.
  • the second implementation mode when the number of TDD patterns included in the uplink and downlink TDD configuration is N, the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; where N is greater than An integer of 1.
  • the third implementation manner when the number of TDD patterns included in the uplink and downlink TDD configuration is N, the second bit sequence is used to indicate the UL transmission time in the period of the preset designated TDD pattern among the N TDD patterns, where N is An integer greater than 1.
  • the fourth implementation manner when the number of TDD patterns included in the uplink and downlink TDD configuration is N, the first part of the bits in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns, and the second bit sequence is The second part of the bits is used to indicate the UL transmission time in the period of the first TDD pattern; optionally, the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern, and the second The TDD pattern is any one of the N TDD patterns except the first TDD pattern.
  • the UL transmission time in the period of any TDD pattern among the N TDD patterns is determined according to the ratio of the subcarrier spacing SCS of the S-SSB to the reference SCS included in the uplink and downlink TDD configuration. of.
  • the UL transmission time in the period of any TDD pattern among the N TDD patterns is determined according to the comparison result between the subcarrier spacing SCS of the S-SSB and the SCS threshold.
  • SCS The threshold is related to the first number of bits, and the first number of bits is the number of bits used to indicate the UL transmission time in any cycle of the TDD pattern.
  • an embodiment of the present application provides an apparatus 1600 for indicating configuration information, including:
  • the receiving module 1601 is configured to receive the uplink and downlink time division duplex TDD configuration from the network device;
  • the sending module 1602 is configured to send indication information to the second terminal device according to the uplink and downlink TDD configuration.
  • the indication information is carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, and the indication information is used for To indicate the cycle information included in the uplink and downlink TDD configuration.
  • the first terminal device completes the uplink and downlink TDD configuration indication through the PSBCH of the S-SSB, and at the same time gives a simplified indication of the uplink and downlink TDD configuration, that is, indicates the cycle information included in the uplink and downlink TDD configuration, which is compared with Sending uplink and downlink TDD configuration directly can reduce signaling overhead.
  • the period information includes: the number of TDD patterns and/or the period of the TDD pattern.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern.
  • the indication information includes a first bit sequence, and the first bit sequence is used to indicate the period of the TDD pattern.
  • the indication information includes a first bit sequence, the first part of bits in the first bit sequence is used to indicate the number of TDD patterns, and the second part of bits in the first bit sequence is used to indicate the number of TDD patterns. cycle.
  • the indication information includes the second bit sequence
  • the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern
  • the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; where N is an integer greater than 1.
  • the indication information includes the second bit sequence
  • the first part of the bit in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns, and the second part of the bit in the second bit sequence is used for Indicates the UL transmission time in the period of the first TDD pattern.
  • the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern
  • the second TDD pattern is one of the N TDD patterns except for the first TDD pattern Any of the TDD patterns.
  • the device 1600 for indicating configuration information further includes:
  • the processing module 1603 is configured to determine the first UL transmission time according to the ratio of the S-SSB subcarrier spacing SCS to the reference SCS included in the uplink and downlink TDD configuration, and the first UL transmission time is the value of any one of the N TDD patterns UL transmission time in the cycle.
  • the device 1600 for indicating configuration information further includes:
  • the processing module 1603 is used to compare the S-SSB subcarrier spacing SCS with the SCS threshold; where the SCS threshold is related to the number of bits used to indicate the first UL transmission time, and the first UL transmission time is any one of the N TDD patterns UL transmission time in the period of the TDD pattern; the first UL transmission time is determined according to the result of the comparison.
  • processing module 1603 is further configured to:
  • the first UL transmission time is determined according to the ratio of the S-SSB of the S-SSB to the reference SCS included in the uplink and downlink TDD configuration; or,
  • the first UL transmission time is determined according to the ratio of the SCS threshold to the reference SCS included in the uplink and downlink TDD configuration information.
  • processing module 1603 is further configured to:
  • the first UL transmission time is determined according to the time threshold, or,
  • the time threshold is the maximum UL transmission time that can be indicated by the bit used to indicate the first UL transmission time.
  • processing module 1603 is further configured to:
  • the second UL transmission time is determined according to the ratio of the S-SSB of the S-SSB to the reference SCS included in the uplink and downlink TDD configuration;
  • the first UL transmission time is determined.
  • an embodiment of the present application also provides an apparatus 1700 for indicating configuration information, and the apparatus 1700 includes:
  • the receiving module 1701 is configured to receive indication information from the first terminal device, the indication information is carried in the physical layer side link broadcast channel PSBCH of the side link synchronization signal block S-SSB, and the indication information is used to indicate the first terminal Period information contained in the uplink and downlink time division duplex TDD configuration received by the device.
  • the period information includes: the number of TDD patterns and/or the period of the TDD pattern.
  • the indication information is also used to indicate the UL transmission time in the period of the TDD pattern.
  • the indication information includes a first bit sequence, and the first bit sequence is used to indicate the period of the TDD pattern.
  • the indication information includes a first bit sequence, the first part of bits in the first bit sequence is used to indicate the number of TDD patterns, and the second part of bits in the first bit sequence is used to indicate the number of TDD patterns. cycle.
  • the indication information includes the second bit sequence
  • the second bit sequence is used to indicate the UL transmission time in the period of the TDD pattern
  • the second bit sequence is used to indicate the UL transmission time in the period of each TDD pattern in the N TDD patterns; where N is an integer greater than 1.
  • the indication information includes the second bit sequence
  • the first part of the bit in the second bit sequence is used to indicate the first TDD pattern in the N TDD patterns, and the second part of the bit in the second bit sequence is used for Indicates the UL transmission time in the period of the first TDD pattern.
  • the UL transmission time in the period of the first TDD pattern is greater than the UL transmission time in the period of the second TDD pattern
  • the second TDD pattern is one of the N TDD patterns except for the first TDD pattern Any of the TDD patterns.
  • the UL transmission time in the period of any TDD pattern among the N TDD patterns is determined according to the ratio of the subcarrier spacing SCS of the S-SSB to the reference SCS included in the uplink and downlink TDD configuration. of.
  • the UL transmission time in the period of any TDD pattern among the N TDD patterns is determined according to the comparison result between the subcarrier spacing SCS of the S-SSB and the SCS threshold.
  • SCS The threshold is related to the first number of bits, and the first number of bits is the number of bits used to indicate the UL transmission time in any cycle of the TDD pattern.
  • a communication device 1800 is provided for this application.
  • the communication device 1800 may be a chip or a chip system.
  • the chip system in the embodiments of the present application may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1800 may include at least one processor 1810, and the device 1800 may also include at least one memory 1820 for storing computer programs, program instructions, and/or data.
  • the memory 1820 and the processor 1810 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1810 may operate in cooperation with the memory 1820.
  • the processor 1810 may execute a computer program stored in the memory 1820.
  • at least one of the at least one memory 1820 may be included in the processor 1810.
  • the communication device 1800 may further include a transceiver 1830, and the communication device 1800 may exchange information with other devices through the transceiver 1830.
  • the transceiver 1830 may be a circuit, a bus, a transceiver, or any other device that can be used for information exchange.
  • the communication apparatus 1800 may be applied to the first terminal device.
  • the communication apparatus 1800 may be the first terminal device, or may be capable of supporting the first terminal device to implement any of the above-mentioned embodiments.
  • the memory 1820 stores necessary computer programs, program instructions, and/or data to realize the functions of the first terminal device in any of the foregoing embodiments.
  • the processor 1810 can execute the computer program stored in the memory 1820 to complete the method executed by the first terminal device in any of the foregoing embodiments.
  • the communication apparatus 1800 may be applied to a second terminal device.
  • the communication apparatus 1800 may be a second terminal device, or may be capable of supporting the second terminal device, so as to implement any of the above-mentioned embodiments.
  • the memory 1820 stores necessary computer programs, program instructions, and/or data to realize the functions of the second terminal device in any of the foregoing embodiments.
  • the processor 1810 can execute the computer program stored in the memory 1820 to complete the method executed by the second terminal device in any of the foregoing embodiments.
  • the communication device 1800 may be applied to a network device.
  • the specific communication device 1800 may be a network device, or may be a device capable of supporting the network device to implement the function of the network device in any of the foregoing embodiments.
  • the memory 1820 stores necessary computer programs, program instructions, and/or data to realize the functions of the network device in any of the foregoing embodiments.
  • the processor 1810 can execute the computer program stored in the memory 1820 to complete the method executed by the network device in any of the foregoing embodiments.
  • the embodiment of the present application does not limit the specific connection medium between the transceiver 1830, the processor 1810, and the memory 1820.
  • the memory 1820, the processor 1810, and the transceiver 1030 are connected by a bus.
  • the bus is represented by a thick line in FIG. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one thick line is used in FIG. 18 to represent it, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory may also be any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing computer programs, program instructions and/or data.
  • an embodiment of the present application also provides another communication device 1900, including: an interface circuit 1910 and a processor 1920;
  • the interface circuit 1910 is used to receive code instructions and transmit them to the processor
  • the processor 1920 is configured to run the code instructions to execute the method executed by the first terminal device in any of the foregoing embodiments or the method executed by the second terminal device in any of the foregoing embodiments.
  • the embodiments of the present application also provide a readable storage medium that stores instructions.
  • the readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本申请提供一种配置信息的指示方法及装置,适用于车联网V2X、智能网联车、辅助驾驶以及智能驾驶等领域,用以解决现有技术中存在的SL传输对于DL传输造成干扰的问题,并能够有效的节省信令开销。该方法应用于第一终端设备,包括:接收网络设备发送的上下行时分双工TDD配置;根据上下行TDD配置,向第二终端设备发送指示信息,指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,指示信息用于指示上下行TDD配置包含的周期信息。

Description

一种配置信息的指示方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种配置信息的指示方法及装置。
背景技术
在第五代(5th generation,5G)移动通信网络新无线电(new radio,NR)***中,5G基站(next generation Node B,gNB)通过发送Uu接口中的上下行时分双工(time division duplex,TDD)配置,向UE指示某一时间范围内下行链路(downlink,DL)与上行链路(uplink,UL)的时间分配方式。UE在DL传输时间中可以接收来自gNB的DL数据,在UL传输时间中可以向gNB发送UL数据。
UE之间通信所用的PC5接口与Uu接口的数据传输可以在同一载波频率上进行,但PC5接口中的侧行链路(sidelink,SL)传输不能占用DL传输时间。在现有的技术中,UE之间缺乏对于各自上下行TDD配置的指示,导致UE之间在进行SL传输时未考虑上下行TDD配置,而占用DL传输时间,对DL传输造成干扰。
发明内容
本申请实施例提供了一种配置信息的指示方法及装置,适用于车联网(vehicle to everything,V2X)、智能网联车、辅助驾驶以及智能驾驶等领域,用以解决现有技术中存在的SL传输对于DL传输造成干扰的问题。
第一方面,本申请实施例提供一种配置信息的指示方法,应用于第一终端设备,包括:
接收来自网络设备的上下行时分双工TDD配置;
根据所述上下行TDD配置,向第二终端设备发送指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述上下行TDD配置包含的周期信息。
本申请实施例中,第一终端设备通过S-SSB的PSBCH将上下行TDD配置指示给第二种终端设备,使得第二终端设备根据指示进行SL传输避免干扰DL传输,且对上下行TDD配置进行简化指示,能够有效的节省信令开销。
在一种可选的实现方式中,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
在一种可选的实现方式中,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
本申请实施例中,向第二终端设备指示UL传输时间,使得第二终端设备能够在UL传输时间内进行SL传输,从而进一步避免对DL传输造成干扰。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
在一种可选的实现方式中,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
本申请实施例中,使用第一比特序列和/或第二比特序列有限的比特表示指示信息,方便解析,能够节约终端设备之间通信的信令开销。
在一种可选的实现方式中,所述方法还包括:
根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间。
本申请实施例中,根据终端设备之间交互的S-SSB的SCS和上下行TDD配置中的参考SCS确定第一UL传输时间,而非直接将上下行TDD配置中的参考数据,例如参考SCS、参考UL传输时间等发送给第二终端设备,能够更加灵活的适用于实际通信,指示第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
在一种可选的实现方式中,所述方法还包括:
比较所述S-SSB的子载波间隔SCS与SCS阈值;其中,所述SCS阈值与用于指示第一UL传输时间的比特数有关,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间;
根据比较的结果确定所述第一UL传输时间。
本申请实施例中,加入对用于指示UL传输时间的比特数的考虑,确定出SCS阈值,进而根据终端设备之间交互的S-SSB的SCS结合SCS阈值,来确定UL传输时间,能够在灵活的适用于实际通信的同时合理应用有限的比特,实现对于UL传输时间的指示,以使第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
在一种可选的实现方式中,所述根据比较的结果确定所述第一UL传输时间,包括:
当所述S-SSB的SCS小于或者等于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定所述第一UL传输时间;或者,
当所述S-SSB的SCS大于所述SCS阈值时,根据所述SCS阈值与所述上下行TDD配置信息包含的参考SCS的比值,确定所述第一UL传输时间。
在一种可选的实现方式中,所述根据比较的结果确定所述第一UL传输时间,包括:
当所述S-SSB的SCS大于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置信息包含的参考SCS的比值,确定第二UL传输时间;
当所述第二UL传输时间大于时间阈值时,根据所述时间阈值确定所述第一UL传输时间,或者,
当所述第二UL传输时间小于或者等于所述时间阈值时,根据所述第二UL传输时间确定所述第一UL传输时间;
其中,所述时间阈值为所述用于指示所述第一UL传输时间的比特能够指示的最大UL传输时间。
在一种可选的实现方式中,所述根据比较的结果确定所述第一UL传输时间,包括:
当所述S-SSB的SCS大于所述SCS阈值时,按照所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定第二UL传输时间;
按照预设步长缩小所述第二UL传输时间;
根据缩小后的第二UL传输时间,确定所述第一UL传输时间。
第二方面,本申请实施例提供一种配置信息的指示方法,应用于第二终端设备,包括:
接收来自第一终端设备的指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述第一终端设备接收到的上下行时分双工TDD配置包含的周期信息。
在本申请实施例中,第二终端设备接收来自第一终端设备的指示信息,该指示信息与第一终端设备接收的上下TDD配置有关,则第二终端设备可根据指示信息与其他终端设备进行SL传输,从而避免终端设备之间进行的SL传输对网络设备和终端设备之间进行的DL传输造成干扰。
在一种可选的实现方式中,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
在一种可选的实现方式中,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
本申请实施例中,第二终端设备可以根据指示信息所指示的UL传输时间进行SL传输,从而进一步避免对DL传输造成干扰。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
在一种可选的实现方式中,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
本申请实施例中,使用第一比特序列和/或第二比特序列有限的比特表示指示信息,方便解析,能够节约终端设备之间通信的信令开销。
在一种可选的实现方式中,所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值所确定的。
本申请实施例中,根据终端设备之间交互的S-SSB的SCS和上下行TDD配置中的参考SCS确定第一UL传输时间,而非直接将上下行TDD配置中的参考数据,例如参考SCS、参考UL传输时间等发送给第二终端设备,能够更加灵活的适用于实际通信,指示第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
在一种可选的实现方式中,所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据所述S-SSB的子载波间隔SCS与SCS阈值之间的比较结果所确定的,所述SCS阈值与第一比特数有关,所述第一比特数为用于指示所述任意一个TDD图样的周期中的UL传输时间的比特数。
本申请实施例中,加入对用于指示UL传输时间的比特数的考虑,确定出SCS阈值,进而根据终端设备之间交互的S-SSB的SCS结合SCS阈值,来确定UL传输时间,能够在灵活的适用于实际通信的同时合理应用有限的比特,实现对于UL传输时间的指示,以使第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
第三方面,本申请实施例提供一种配置信息的指示装置,包括:
接收模块,用于接收来自网络设备的上下行时分双工TDD配置;
发送模块,用于根据所述上下行TDD配置,向第二终端设备发送指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述上下行TDD配置包含的周期信息。
本申请实施例中,第一终端设备通过S-SSB的PSBCH将上下行TDD配置指示给第二种终端设备,使得第二终端设备根据指示进行SL传输避免干扰DL传输,且对上下行TDD配置进行简化指示,能够有效的节省信令开销。
在一种可选的实现方式中,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
在一种可选的实现方式中,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
本申请实施例中,向第二终端设备指示UL传输时间,使得第二终端设备能够在UL传输时间内进行SL传输,从而进一步避免对DL传输造成干扰。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示 N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
在一种可选的实现方式中,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
本申请实施例中,使用第一比特序列和/或第二比特序列有限的比特表示指示信息,方便解析,能够节约终端设备之间通信的信令开销。
在一种可选的实现方式中,所述装置还包括:
处理模块,用于根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间。
本申请实施例中,根据终端设备之间交互的S-SSB的SCS和上下行TDD配置中的参考SCS确定第一UL传输时间,而非直接将上下行TDD配置中的参考数据,例如参考SCS、参考UL传输时间等发送给第二终端设备,能够更加灵活的适用于实际通信,指示第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
在一种可选的实现方式中,所述装置还包括:
处理模块,用于比较所述S-SSB的子载波间隔SCS与SCS阈值;其中,所述SCS阈值与用于指示第一UL传输时间的比特数有关,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间;根据比较的结果确定所述第一UL传输时间。
本申请实施例中,加入对用于指示UL传输时间的比特数的考虑,确定出SCS阈值,进而根据终端设备之间交互的S-SSB的SCS结合SCS阈值,来确定UL传输时间,能够在灵活的适用于实际通信的同时合理应用有限的比特,实现对于UL传输时间的指示,以使第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
在一种可选的实现方式中,所述处理模块,还用于:
当所述S-SSB的SCS小于或者等于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定所述第一UL传输时间;或者,
当所述S-SSB的SCS大于所述SCS阈值时,根据所述SCS阈值与所述上下行TDD配置信息包含的参考SCS的比值,确定所述第一UL传输时间。
在一种可选的实现方式中,所述处理模块,还用于:
当所述S-SSB的SCS大于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置信息包含的参考SCS的比值,确定第二UL传输时间;
当所述第二UL传输时间大于时间阈值时,根据所述时间阈值确定所述第一UL传输时间,或者,
当所述第二UL传输时间小于或者等于所述时间阈值时,根据所述第二UL传输时间确定所述第一UL传输时间;
其中,所述时间阈值为所述用于指示所述第一UL传输时间的比特能够指示的最大UL 传输时间。
在一种可选的实现方式中,所述处理模块,还用于:
当所述S-SSB的SCS大于所述SCS阈值时,按照所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定第二UL传输时间;
按照预设步长缩小所述第二UL传输时间;
根据缩小后的第二UL传输时间,确定所述第一UL传输时间。
第四方面,本申请实施例提供一种配置信息的指示装置,包括:
接收模块,用于接收来自第一终端设备的指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述第一终端设备接收到的上下行时分双工TDD配置包含的周期信息。
在本申请实施例中,第二终端设备接收来自第一终端设备的指示信息,该指示信息与第一终端设备接收的上下TDD配置有关,则第二终端设备可根据指示信息与其他终端设备进行SL传输,从而避免终端设备之间进行的SL传输对网络设备和终端设备之间进行的DL传输造成干扰。
在一种可选的实现方式中,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
在一种可选的实现方式中,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
本申请实施例中,第二终端设备可以根据指示信息所指示的UL传输时间进行SL传输,从而避免对DL传输造成干扰。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
在一种可选的实现方式中,所述指示信息中包括第二比特序列;
当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
在一种可选的实现方式中,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
本申请实施例中,使用第一比特序列和/或第二比特序列有限的比特表示指示信息,方便解析,能够节约终端设备之间通信的信令开销。
在一种可选的实现方式中,所述N个TDD图样中任意一个TDD图样的周期中的UL 传输时间,是根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值所确定的。
本申请实施例中,根据终端设备之间交互的S-SSB的SCS和上下行TDD配置中的参考SCS确定第一UL传输时间,而非直接将上下行TDD配置中的参考数据,例如参考SCS、参考UL传输时间等发送给第二终端设备,能够更加灵活的适用于实际通信,指示第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
在一种可选的实现方式中,所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据所述S-SSB的子载波间隔SCS与SCS阈值之间的比较结果所确定的,所述SCS阈值与第一比特数有关,所述第一比特数为用于指示所述任意一个TDD图样的周期中的UL传输时间的比特数。
本申请实施例中,加入对用于指示UL传输时间的比特数的考虑,确定出SCS阈值,进而根据终端设备之间交互的S-SSB的SCS结合SCS阈值,来确定UL传输时间,能够在灵活的适用于实际通信的同时合理应用有限的比特,实现对于UL传输时间的指示,以使第二终端设备在相应的UL传输时间内进行SL传输,避免干扰DL传输。
第五方面,本申请实施例提供一种通信装置,包括:处理器和存储器;
所述存储器,用于存储计算机程序;
所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行第一方面任一可能的实现方式中的方法,或执行第二方面任一可能的实现方式中的方法。
第六方面,本申请实施例提供一种通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器用于运行所述代码指令以执行第一方面任一可能的实现方式中的方法,或执行第二方面任一可能的实现方式中的方法。
第七方面,本申请实施例提供一种可读存储介质,所述可读存储介质存储有指令,当所述指令被执行时,使第一方面任一可能的实现方式中的方法被实现,或使第二方面任一可能的实现方式中的方法被实现。
第八方面,本申请实施例提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当计算机程序代码被通信装置的处理器运行时,使得通信装置执行上述第一方面任一可能的实现方式中的方法,或上述第二方面任一可能的实现方式中的方法。
第九方面,本申请实施例提供了一种通信***,包括上述第三方面的配置信息的指示装置和上述第四方面的配置信息的指示装置。
附图说明
图1为本申请实施例提供的一种时间分配示意图;
图2为本申请实施例提供的一种上下行TDD配置的示意图;
图3为本申请实施例提供的一种通信***架构示意图;
图4为本申请实施例提供的一种应用场景示意图;
图5为本申请实施例提供的一种发送端UE的硬件模块图;
图6为本申请实施例提供的一种接收端UE的硬件模块图;
图7为本申请实施例提供的一种配置信息的指示方法的流程示意图;
图8为本申请实施例提供的第一种UL传输时间指示的示意图;
图9为本申请实施例提供的第二种UL传输时间指示的示意图;
图10为本申请实施例提供的第三种UL传输时间指示的示意图;
图11为本申请实施例提供的第四种UL传输时间指示的示意图;
图12为本申请实施例提供的第五种UL传输时间指示的示意图;
图13为本申请实施例提供的一种UL时隙数目的对照示意图;
图14为本申请实施例提供的另一种UL时隙数目的对照示意图;
图15为本申请实施例提供的另一种配置信息的指示方法的流程示意图;
图16为本申请实施例提供的一种配置信息的指示装置的结构示意图;
图17为本申请实施例提供的另一种配置信息的指示装置的结构示意图;
图18为本申请实施例提供的一种通信装置的结构示意图;
图19为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供了一种配置信息的指示方法及装置,用以解决现有技术中存在的SL传输对于DL传输造成干扰的问题。由于方法及装置解决问题的原理相同,因此方法部分与装置部分实施例可以相互参见,重复之处不再赘述。
以下,对本申请中提供的部分用语进行解释说明,以方便本领域技术人员理解:
(1)网络设备
网络设备可以是基站或者接入节点(access node,AN),为终端提供无线接入服务。网络设备具体可以是全球移动通信(global system for mobile communication,GSM)***或码分多址(code division multiple access,CDMA)***中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)***中的基站(NodeB),或者是5G网络中的基站设备(gNB)、小基站设备、无线访问节点(WiFi AP)、无线互通微波接入基站(worldwide interoperability for microwave access base station,WiMAX BS)等,本申请对此并不限定。
(2)终端设备
终端设备,又称之为终端、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备。包括但不限于:站台(英文:station,简称:STA)、移动台(mobile station,MS)、用户单元(subscriber unit,SU)、个人电脑(英文:personal computer,简称:PC)、膝上型电脑(laptop computer,LC)、平板电脑(英文:tablet computer,简称:TC)、上网本(netbook)、终端(terminal)、个人数字助理(英文:personal digital assistant,简称:PDA)、移动WiFi热点设备(mifi devices)、智能手表、智能眼镜等。上述终端设备可以分布于整个网络中,为方便描述,本申请中,简称为终端设备或UE。
(3)时分双工以及上下行时分双工配置
时分双工(time division duplex,TDD)是无线通信中广泛使用的一种双工模式,基于此,网络设备与终端设备之间通信所用的通信接口,即Uu接口(Uu interface)中的下行链路(downlink,DL)与上行链路(uplink,UL)传输可以在同一载波频率上通过时分的方式进行。
为了实现低时延传输,特别是对高可靠低时延(ultra-reliable low-latency communication,URLLC)业务超低时延要求的适应,5G基站(next generation Node B,gNB)通过发送Uu接口中的上下行TDD配置,向UE指示某一时间范围内DL与UL的时间分配方式,如图1所示的一种时间分配示意图,UE可以根据上下行TDD配置进行频繁的上下行切换,在DL时间中可以接收来自gNB的DL数据,在UL时间中可以向gNB发送UL数据。
上下行TDD配置分为小区级别的上下行TDD配置和UE级别的上下行TDD配置。小区级别的上下行TDD配置适用于gNB覆盖范围内的所有UE,它从时隙(slot)粒度上指示出了DL时隙以及UL时隙的数目,以及在正交频分复用(orthogonal frequency division multiplexing,OFDM)符号粒度上指示出了DL符号以及UL符号的数目;UE级别的上下行TDD配置适用于gNB覆盖范围内的某一个UE,它在小区级别的基础上进一步引入了可配置时隙,即除了D代表的DL时隙,U代表的UL时隙之外,还引入了F代表的可配置时隙。可配置时隙中的上下行TDD配置是以OFDM符号为粒度的,即同一个时隙内不同符号可以处于不同的上下行状态。可配置时隙中的所有OFDM符号可以全部配置为UL符号或DL符号。
gNB通过无线资源控制(radio resource control,RRC)信令向UE发送对应的上下行TDD配置,具体的,gNB通过RRC信令中的TDD-UL-DL-ConfigCommon信元为gNB覆盖范围内或是小区内的UE进行指示。如3GPP 38.331 V15.7.0标准中TDD-UL-DL-ConfigCommon信元的指示内容:
Figure PCTCN2020075430-appb-000001
该TDD-UL-DL-ConfigCommon信元中进一步包含了两个信元,或者,三个信元,解释如下:
①referenceSubcarrierSpacing:给出了参考子载波间隔(subcarrier spacing,SCS):
Figure PCTCN2020075430-appb-000002
取值可以为以下中的一个:15kHz,30kHz,60kHz,120kHz,240kHz。上下行TDD配置将使用该参考SCS确定DL和UL传输的时间界限,该参考SCS可以与Uu接口中数据传输所使用的实际SCS不同,该参考SCS不能大于Uu接口中配置的任一数据传输所使用的实际SCS。
②pattern1:给出上下行TDD配置的一个TDD图样(pattern),pattern1继续指向TDD-UL-DL-Pattern信元,由该TDD-UL-DL-Pattern信元给出该pattern1的具体参数。
③pattern2:可选的信元,当TDD-UL-DL-ConfigCommon信元不包含该信元时,说明上下行TDD配置中仅有一个TDD图样,即pattern1;当TDD-UL-DL-ConfigCommon信元 包含pattern2这一信元时,说明上下行TDD配置由pattern1和pattern2两个TDD图样共同确定,pattern2继续指向TDD-UL-DL-Pattern信元,由该TDD-UL-DL-Pattern信元给出该pattern2的具体参数。
上述pattern1和pattern2均继续指向TDD-UL-DL-Pattern信元,如3GPP 38.331 V15.7.0标准中TDD-UL-DL-Pattern信元的指示内容:
Figure PCTCN2020075430-appb-000003
该TDD-UL-DL-Pattern信元中进一步包含了五个信元,或者,六个信元,解释如下:
①dl-UL-TransmissionPeriodicity:表示为P ms,用于指示上下行TDD配置中一个图样的周期,取值可以为以下中的一个:0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,5ms,10ms。但是如果TDD-UL-DL-Pattern信元中额外配置了dl-UL-TransmissionPeriodicity-v1530信元,那么UE将忽略该dl-UL-TransmissionPeriodicity信元中的指示内容;
②nrofDownlinkSlots:表示为d slots,用于指示上下行TDD配置中一个图样中DL时隙的数目,取值范围可以为0到320之间的整数;
③nrofDownlinkSymbols:表示为d sym,用于指示上下行TDD配置中一个TDD图样中DL符号的数目,取值范围可以为0到13之间的整数;
④nrofUplinkSlots:表示为u slots,用于指示上下行TDD配置中一个TDD图样中UL时隙的数目,取值范围可以为0到320之间的整数;
⑤nrofUplinkSymbols:表示为u sym,用于指示上下行TDD配置中一个TDD图样中UL符号的数目,取值范围可以为0到13之间的整数;
⑥dl-UL-TransmissionPeriodicity-v1530:可选的信元,取值范围可以为以下中的一个:3ms,4ms。当TDD-UL-DL-Pattern信元不包括dl-UL-TransmissionPeriodicity-v1530信元时,UE通过dl-UL-TransmissionPeriodicity信元确定上下行TDD配置中一个pattern的周期;当TDD-UL-DL-Pattern信元包括dl-UL-TransmissionPeriodicity-v1530信元时,UE将忽略dl-UL-TransmissionPeriodicity信元的内容,通过该dl-UL-TransmissionPeriodicity-v1530信元确定上下行TDD配置中一个TDD图样的周期。
根据3GPP 38.213 V16.0.0标准中给出的时隙配置周期(slot configuration period)规定,上述参数P,d slots,d sym,u slots和u sym的用法如下:在上下行TDD配置包含的一个TDD图样中,基于参考SCS(即,
Figure PCTCN2020075430-appb-000004
),时隙配置周期P ms内包括
Figure PCTCN2020075430-appb-000005
个 参考时隙。在S个参考时隙中,前d slots个时隙为DL时隙,后u slots个时隙为UL时隙。前d slots个时隙之后的d sym个符号为DL符号,后u slots个时隙之前的u sym个符号为UL符号,剩余的
Figure PCTCN2020075430-appb-000006
个符号为可配置符号。其中,
Figure PCTCN2020075430-appb-000007
表示一个时隙中的OFDM符号数目,当使用常规循环前缀(normal cyclic prefix,NCP)时,
Figure PCTCN2020075430-appb-000008
当使用拓展循环前缀(extended cyclic prefix,ECP)时,
Figure PCTCN2020075430-appb-000009
为便于理解,参见图2,本申请实施例提供了一种上下行TDD配置的示意图,在图2中具体示意出了该上下行TDD配置中TDD图样的周期,以及周期中的时间分配方式,如下:TDD-UL-DL-ConfigCommon信元中指示的参考SCS为30kHz,只包含pattern1信元;该pattern1对应的TDD-UL-DL-Pattern信元中的参数取值为:P=5ms,d slots=5,d sym=4,u slots=2,u sym=8。
另外需要说明的是,当TDD-UL-DL-ConfigCommon信元同时包含pattern1和pattern2时,上下行TDD配置的总周期将为两个周期的和,即(P+P 2)ms,其中P 2表示pattern2对应的TDD-UL-DL-Pattern信元所指示的周期。在总周期内,前P ms使用pattern1对应的上下行TDD配置,后P 2ms使用pattern2对应的上下行TDD配置。其中,单个周期中上下行时隙数目,上下行符号数目的配置方式与前述一致,在此不再进行赘述。
(4)时隙以及子载波间隔
时隙是传输DL数据,UL数据,或是SL数据所使用的时间单位。可选的,时隙包括14个或者12个OFDM符号。在5GNR***中,对于不同的子载波间隔(subcarrier spacing,SCS),一个帧(frame)中包含的时隙数目也不同。假设一个帧规定为10ms,且使用NCP,则:
当SCS为15kHz时,10ms的帧内包含10个时隙,单个时隙对应1ms;
当SCS为30kHz时,10ms的帧内包含20个时隙,单个时隙对应0.5ms;
当SCS为60kHz时,10ms的帧内包含40个时隙,单个时隙对应0.25ms;
当SCS为120kHz时,10ms的帧内包含80个时隙,单个时隙对应0.125ms。
但是如果使用ECP,则仅支持SCS为60kHz,10ms的帧内包含40个时隙,单个时隙对应0.25ms。
(5)本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况;符号“/”,一般表示前后关联对象是一种“或”的关系。多个是指两个或两个以上;另外,需要理解的是,在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面将结合附图对本申请实施例作进一步地详细描述。
首先,图3示例一种通信***架构,通信***中包括第一终端设备和第二终端设备;
第一终端设备,用于接收来自网络设备(如前述gNB)的上下行TDD配置,并将上下行TDD配置指示给第二终端设备;
第二终端设备,用于按照第一终端设备的指示,确定侧行链路(sidelink,SL)传输能够使用的时间。
在本申请实施例中,第一终端设备将其接收到的上下行TDD配置指示给第二终端设备,能够避免终端设备之间进行SL传输对于网络设备和终端设备之间进行DL传输的干扰。此外,在图3中还示意出了网络设备。
在本申请实施例中,指示UL传输时间,也可以理解为指示SL传输时间,在此并不进行限定。
在一种可选的实施方式中,第二终端设备还可以将第一终端设备的指示发送给其他终端设备。
在一种可选的实施方式中,第一终端设备可通过向第二终端设备发送无线信号,以将上下行TDD配置直接指示给第二终端设备;在另一种可选的实施方式中,第一终端设备可通过中间设备将上下行TDD配置间接指示给第二终端设备,即先向中间设备发送无线信号以将上下行TDD配置指示给中间设备,再经由中间设备转发上下行TDD配置的相关指示信息给第二终端设备。
在一种可选的实施方式中,第一终端设备可以为网络设备覆盖范围内的边缘设备,第二终端设备可以是能够与第一终端设备直接或者间接进行无线通信,且处于网络设备覆盖范围之外的设备,从而避免边缘设备和范围之外的设备之间的SL传输干扰范围内的DL传输。
在一种可选的实施方式中,第一终端设备可以通过PC5接口,发送承载有上下行TDD配置的相关指示信息的侧行链路同步信号块(sidelink synchronization signal block,S-SSB)给第二终端设备。基于此,本申请实施例可应用于SL场景中S-SSB的发送与接收场景;其中,SL场景包括车联网通信(vehicle to everything,V2X)场景、设备到设备通信(device to device,D2D)通信场景等。需要说明的是,该S-SSB还可以称为侧行链路同步信号/物理层侧行链路广播信道块(S-SS/PSBCH block)。
为便于理解,本申请实施例具体以车联网通信中的车到车通信(vehicle to vehicle,V2V)场景为例,提供了一种应用场景示意图,如图4所示:该场景中包括发送端UE(也即,前述第一终端设备)和接收端UE(也即,前述第二终端设备)。图4中发送端UE和接收端UE均以车辆UE为例。但需要说明的是,实际应用场景中的发送端UE和接收端UE可以是任意形态的终端设备,在此并不进行限定。
其中,发送端UE为SL场景中S-SSB的发送实体。发送端UE通过发送S-SSB可以使其他终端设备与自身实现时间同步,进而实现SL通信功能。另外,发送端UE还通过发送S-SSB来传输上下行TDD配置的相关指示信息。
接收端UE为SL场景中S-SSB的接收实体。接收端UE通过接收S-SSB可以与其他终端设备间实现时间同步,进而实现SL通信功能。另外,接收端UE可以解析S-SSB中传输的上下行TDD配置的相关指示信息。接收端UE在进行SL传输时,可以根据该上下行TDD配置的相关指示信息避免对DL传输产生干扰。
具体的,参见图5所示的一种发送端UE的硬件模块图,前述发送端UE包括处理模块和通信模块。处理模块用于处理通信过程中涉及到的算法、软件、程序、存储等。通信模块包括发送模块和接收模块,发送模块用于发送无线信号,诸如S-SSB、SL数据、UL数据,接收模块用于接收无线信号,诸如S-SSB、SL数据、DL数据;参见图6所示的一种接收端UE的硬件模块图,接收端UE包括处理模块和通信模块。处理模块用于处理通信过程中涉及到的算法、软件、程序、存储等。通信模块包括发送模块和接收模块,发送模块用于发送无线信号,诸如S-SSB、SL数据,接收模块用于接收无线信号,诸如S-SSB、SL数据。
进一步,考虑到网络设备通过RRC信令向第一终端设备指示上下行TDD配置, TDD-UL-DL-ConfigCommon信元所使用的信令开销很大,若第一终端设备直接将上下行TDD配置发送给其他的UE,如第二终端设备,也会产生较大的信令开销。可选的,本申请实施例中可根据上下行TDD配置向其他UE指示简要的配置,保证其他UE根据指示进行SL传输而避免干扰DL传输。详细说明如下:
参见图7,本申请实施例提供了一种配置信息的指示方法,该方法应用于第一终端设备,包括:
步骤S701,接收来自网络设备的上下行时分双工TDD配置。
步骤S702,根据上下行TDD配置,向第二终端设备发送指示信息,指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,指示信息用于指示上下行TDD配置包含的周期信息。
本申请实施例中,第一终端设备通过S-SSB的PSBCH完成对于上下行TDD配置指示的同时,对上下行TDD配置进行简化指示,即指示出上下行TDD配置包含的周期信息,相较于直接发送上下行TDD配置,可以降低信令开销。
在一种可选的实施方式中,指示信息还用于指示TDD图样的周期中的UL传输时间,以便于向第二终端设备指示在UL传输时间内进行SL传输,从而避免SL传输占用DL传输时间,而造成干扰;其中,UL传输时间包括UL时隙数目和/或UL符号数目。
在一种可选的实施方式中,指示信息可具体承载在侧行链路同步信号块S-SSB的PSBCH的载荷(payload)中。具体实施时,可采用PSBCH payload的部分比特来承载指示信息,诸如采用PSBCH payload的W比特来承载指示信息,在W比特中使用X比特的比特序列指示前述周期信息,在W比特中使用Y比特的比特序列指示前述UL传输时间,其中,W为大于等于0的整数,X为大于等于0且小于等于W的整数,Y为大于等于0且小于等于W的整数。
在一种可选的实施方式中,前述周期信息包括:TDD图样的数目和/或TDD图样的周期;其中,TDD图样的数目为一个或多个,TDD图样的周期包括一个或多个TDD图样中每个TDD图样的周期。
在一种可选的实施方式中,指示信息中包括第一比特序列,第一比特序列对应前述周期信息,具体的指示方式可参照以下两种实施方式执行:
第一种实施方式:
第一比特序列中第一部分比特用于指示TDD图样的数目,第一比特序列中第二部分比特用于指示TDD图样的周期;其中,TDD图样的周期与TDD图样的数目有关,如根据3GPP 38.331 V15.7.0标准中TDD-UL-DL-ConfigCommon信元的指示内容,上下行TDD配置中仅包含pattern1,表示TDD图样的数目为1,TDD图样的周期仅包含pattern1的周期;上下行TDD配置中包含pattern1和pattern2,则表示TDD图样的数目为2,TDD图样的周期包含pattern1的周期以及pattern2的周期。也即,当TDD图样的数目的取值范围为1或2时,可通过前述第一部分比特的指示确定上下行TDD配置中是否包含pattern2。
具体实施时,可在第一终端设备及第二终端设备中配置周期索引表,根据TDD图样的周期对应的索引对第一比特序列中第二部分比特进行赋值,从而实现对于TDD图样的周期的指示。
为便于理解,以3GPP 38.331 V15.7.0标准中TDD-UL-DL-Pattern信元包含的周期为例进行说明如下:
可选的,前述第一比特序列中第一部分比特包含1比特,该1比特取值为0表示上下TDD配置包含的TDD图样的数目为1,即上下行TDD配置中仅包含pattern1,该1比特取值为1表示上下TDD配置包含的TDD图样的数目为2,即上下行TDD配置中包含pattern1和pattern2;或者,该1比特取值为1表示上下TDD配置包含的TDD图样的数目为1,即上下行TDD配置中仅包含pattern1,该1比特取值为0表示上下TDD配置包含的TDD图样的数目为2,即上下行TDD配置中包含pattern1和pattern2。
可选的,前述第一比特序列除1比特之外的其余比特作为第二部分比特,用于指示pattern1的周期,或者,pattern1的周期以及pattern2的周期。
示例性的,若前述第一比特序列即是前述PSBCH payload的X比特的比特序列,则使用X比特中1比特指示TDD图样的数目,使用X-1比特指示上下行TDD配置中的一个,或者,两个周期。当TDD图样的数目为1时,该X-1比特指示上下行TDD配置中的一个周期,即pattern1的周期;当TDD图样的数目为2时,该X-1比特指示上下行TDD配置中的两个周期,即pattern1的周期以及pattern2的周期。
示例性的,当TDD图样的数目为1时,该X-1比特可以用于指示周期范围{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,3ms,4ms,5ms,10ms}中的一个周期,或者,当不考虑3ms和4ms两个可选周期时,该X-1比特可以用于指示周期范围{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,5ms,10ms}中的一个周期。具体地,可以使用如表1和表2所示的表格进行一个周期的指示。
其中,表1中示出的周期范围为{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,3ms,4ms,5ms,10ms},通过X-1比特指示一个编号(也即,前述索引)即指示一个周期,如下:
表1
编号 周期P(ms)
0 0.5
1 0.625
2 1
3 1.25
4 2
5 2.5
6 3
7 4
8 5
9 10
10~15 保留
表2中示出的周期范围为{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,5ms,10ms},通过X-1比特指示一个编号(也即,前述索引)即指示了一个周期,如下:
表2
编号 周期P(ms)
0 0.5
1 0.625
2 1
3 1.25
4 2
5 2.5
6 5
7 10
8~15 保留
需要说明的是,上述表1和表2中的编号与周期的对应关系不做限定,另外,实际使用的周期,可以是表格示出的其中某一行、某几行、表格中的全部或者比表格示出的更多的行。可选的,上述X的取值为5。
示例性的,当TDD图样的数目为2时,该X-1比特可以用于指示两个周期的组合。在NR Uu接口中规定,如果上下行TDD配置中TDD图样的数目为2,且两个TDD图样的周期分别是P ms和P 2ms,则(P+P 2)必须可以整除20ms,或者说,20ms/(P+P 2)为整数。在此条件下,当考虑3ms和4ms两个可选周期时,则存在16种两个周期的组合,当不考虑3ms和4ms两个可选周期时,则存在10种两个周期的组合。具体地,可以使用如表3和表4所示的表格进行一个周期的指示。
其中,表3中考虑了3ms和4ms两个可选周期,第一周期和第二周期分别对应于上下行TDD配置中pattern1的周期和pattern2的周期,第一周期和第二周期的取值范围为{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,3ms,4ms,5ms,10ms},因此存在16种周期组合,通过X-1比特指示一个编号(也即,前述索引)即指示了一个周期组合,如下:
表3
编号 总周期P+P 2(ms) 第一周期P(ms) 第二周期P 2(ms)
0 1 0.5 0.5
1 1.25 0.625 0.625
2 2 1 1
3 2.5 0.5 2
4 2.5 1.25 1.25
5 2.5 2 0.5
6 4 1 3
7 4 2 2
8 4 3 1
9 5 1 4
10 5 2 3
11 5 2.5 2.5
12 5 3 2
13 5 4 1
14 10 5 5
15 20 10 10
表4中未考虑3ms和4ms两个可选周期,第一周期和第二周期分别对应于上下行TDD配置中pattern1的周期和pattern2的周期,第一周期和第二周期的取值范围为{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,5ms,10ms},因此存在10种周期组合,通过X-1比特指示一个编号(也即,前述索引)即指示了一个周期组合,如下所示:
表4
Figure PCTCN2020075430-appb-000010
需要说明的是,该表3和表4中的编号与周期组合的对应关系不做限定,另外,实际使用的周期组合,可以是表格示出的其中某一行、某几行、表格中的全部、比表格示出的更多的行。可选的,上述X的取值为5。
第二种实施方式:
第一比特序列用于指示TDD图样的周期,TDD图样的周期与TDD图样的数目有关,如根据3GPP 38.331 V15.7.0标准中TDD-UL-DL-ConfigCommon信元的指示内容,上下行TDD配置中仅包含pattern1,表示TDD图样的数目为1,TDD图样的周期仅包含pattern1的周期;上下行TDD配置中包含pattern1和pattern2,则表示TDD图样的数目为2,TDD图样的周期包含pattern1的周期以及pattern2的周期。
具体实施时,可在第一终端设备及第二终端设备中配置周期索引表,根据TDD图样的周期对应的索引对第一比特序列进行赋值,从而实现对于TDD图样的周期的指示。
为便于理解,以3GPP 38.331 V15.7.0标准中TDD-UL-DL-Pattern信元包含的周期为例 进行说明如下:
示例性的,可使用前述PSBCH payload的X比特的比特序列指示上下行TDD配置中的一个,或者,两个周期。当TDD图样的数目为1时,该X比特指示上下行TDD配置中的一个周期,即pattern1的周期;当TDD图样的数目为2时,该X比特指示上下行TDD配置中的两个周期,pattern1的周期以及pattern2的周期。
示例性的,该X比特可以用于指示周期范围{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,3ms,4ms,5ms,10ms}中的一个周期,或者,两个周期;当不考虑3ms和4ms两个可选周期时,该X比特可以用于指示周期范围{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,5ms,10ms}中的一个周期,或者,两个周期。
例如,表5中考虑了3ms和4ms两个可选周期,当TDD图样的数目为1时,表格中总周期表示pattern1的周期,第一周期表示pattern1的周期,第二周期标记为“N/A”,用于表示此条件下不存在pattern2的周期;当TDD图样的数目为2时,表格中总周期表示pattern1的周期与pattern2的周期的和,第一周期表示pattern1的周期,第二周期表示pattern2的周期。以上第一周期和第二周期的取值范围为{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,3ms,4ms,5ms,10ms},考虑TDD图样的数目为1,或者,2两种情况,共存在26种周期组合,通过X比特指示一个编号(也即,前述索引)即指示了一个周期组合,如下所示:
表5
Figure PCTCN2020075430-appb-000011
Figure PCTCN2020075430-appb-000012
又例如,表6中未考虑3ms和4ms两个可选周期,当TDD图样的数目为1时,表格中总周期表示pattern1的周期,第一周期表示pattern1的周期,第二周期可以标记为“N/A”,用于表示此条件下不存在pattern2的周期;当TDD图样的数目为2时,表格中总周期表示pattern1的周期与pattern2的周期的和,第一周期表示pattern1的周期,第二周期表示pattern2的周期。以上第一周期和第二周期的取值范围为{0.5ms,0.625ms,1ms,1.25ms,2ms,2.5ms,5ms,10ms}。考虑TDD图样的数目为1,或者,2两种情况,共存在18种周期组合,通过X比特指示一个编号(也即,前述索引)即指示了一个周期组合,如下所示:
表6
Figure PCTCN2020075430-appb-000013
Figure PCTCN2020075430-appb-000014
需要说明的是,上述表5和表6中的编号与周期组合的对应关系不做限定,另外,实际使用的周期组合,可以是表格示出的其中某一行、某几行、表格中的全部、比表格示出的更多的行。可选的,上述X的取值为5。
在一种可选的实施方式中,上述指示信息中包括第二比特序列,第二比特序列对应前述UL传输时间,具体的指示方式可参照如下四种实施方式执行:
第一种实施方式:
当上下行TDD配置包含的TDD图样的数目为1时,第二比特序列用于指示TDD图样的周期中的UL传输时间。
可选的,第二比特序列是UL传输时间对应的数目的二进制表示。
为便于理解,以UL传输时间包括UL时隙数目,前述第二比特序列是前述PSBCH payload的Y比特的比特序列,具体为UL时隙数目
Figure PCTCN2020075430-appb-000015
的二进制表示为例。参见图8,本申请实施例提供了第一种UL传输时间指示的示意图。其中,图8示意出了PSBCH payload中使用Y=7比特指示
Figure PCTCN2020075430-appb-000016
周期P=10ms,需要指示周期中的UL时隙数目为
Figure PCTCN2020075430-appb-000017
则PSBCH payload中的Y=7个比特可以是数值7的二进制形式,表示为0000111。
可选的,第二比特序列的其中一部分比特是UL传输时间对应的数目的二进制表示。
为便于理解,以UL传输时间包括UL时隙数目,前述第二比特序列是前述PSBCH payload的Y比特的比特序列,前述第二比特序列中的Y-1比特是UL时隙数目
Figure PCTCN2020075430-appb-000018
的二进制表示为例。示例性的,PSBCH payload中使用Y=7比特指示
Figure PCTCN2020075430-appb-000019
周期P=10ms,需要指示周期中的UL时隙数目为
Figure PCTCN2020075430-appb-000020
则PSBCH payload中的Y-1=6个比特可以是数值7的二进制形式,表示为000111。
第二种实施方式:
当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,N为大于1的整数。
为便于理解,以N为2,UL传输时间包括UL时隙数目,前述第二比特序列是前述PSBCH payload的Y比特的比特序列为例,可使用前述第二比特序列指示上下行TDD配置包含的两个TDD图样所对应的两个UL时隙数目,分别表示为
Figure PCTCN2020075430-appb-000021
Figure PCTCN2020075430-appb-000022
可选的,使用Y比特中的y 1比特指示上下行TDD配置包含的一个TDD图样对应的UL时隙数目,使用y 2比特指示上下行TDD配置包含的另一个TDD图样对应的UL时隙数目,诸如,y 1比特是
Figure PCTCN2020075430-appb-000023
的二进制表示,y 2比特是
Figure PCTCN2020075430-appb-000024
的二进制表示,或者其他方式;其中,y 1为大于等于0且小于等于Y的整数,y 2为大于等于0且小于等于Y的整数,Y=y 1+y 2。进一步可选的,使用y 1比特,或者,y 2比特指示单个TDD图样对应的UL时隙数目的方式,可以与上下行TDD配置中TDD图样数目为1时,使用Y比特指示单个TDD图样对应的UL时隙数目的方式相同,此处不再赘述。
示例性的,Y为7,y 1为3,y 2为4。参见图9,本申请实施例提供了第二种UL传输时间指示的示意图,图9中示意出了使用3比特和4比特分别指示上下行TDD配置中的两个TDD 图样对应的两个UL时隙数目
Figure PCTCN2020075430-appb-000025
Figure PCTCN2020075430-appb-000026
上下行TDD配置中两个TDD图样的周期分别为P=5ms和P 2=5ms,PSBCH payload中需要指示的两个UL时隙数目分别为
Figure PCTCN2020075430-appb-000027
Figure PCTCN2020075430-appb-000028
则PSBCH payload中7个比特可以分为3个比特表示为100,4个比特表示为0101;对应的,PSBCH payload中的7比特可以表示为1000101。
第三种实施方式:
当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列用于指示N个TDD图样中预设指定TDD图样的周期中的UL传输时间,其中,N为大于1的整数。
为便于理解,以N为2,UL传输时间包括UL时隙数目,前述第二比特序列是前述PSBCH payload的Y比特的比特序列为例,可使用前述第二比特序列指示上下行TDD配置包含的两个TDD图样中第一个TDD图样对应的UL时隙数目
Figure PCTCN2020075430-appb-000029
或者,第二个TDD图样对应的两个UL时隙数目
Figure PCTCN2020075430-appb-000030
即诸如,Y比特是
Figure PCTCN2020075430-appb-000031
或者
Figure PCTCN2020075430-appb-000032
的二进制表示,或者其他方式。进一步可选的,使用Y比特指示某个TDD图样对应的UL时隙数目的方式,可以与上下行TDD配置中TDD图样数目为1时,使用Y比特指示单个TDD图样对应的UL时隙的方式相同,此处不再赘述。
示例性的,Y为7,使用Y比特指示上下行TDD配置中第二个TDD图样对应的UL时隙数目
Figure PCTCN2020075430-appb-000033
参见图10,本申请实施例提供了第三种UL传输时间指示的示意图,上下行TDD配置中两个TDD图样的周期分别为P=5ms和P 2=5ms,图10中具体示意出了使用7比特指示第二个TDD图样对应的UL时隙数目
Figure PCTCN2020075430-appb-000034
PSBCH payload中需要指示的第二个TDD图样对应的UL时隙数目为
Figure PCTCN2020075430-appb-000035
则PSBCH payload中的7个比特可以表示为0000101。
第四种实施方式:
当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,第二比特序列中的第二部分比特用于指示第一TDD图样的周期中的UL传输时间;其中,N为大于1的整数。
第一TDD图样可以为N个TDD图样中的任意一个TDD图样。可选的,第一TDD图样为N个TDD图样中对应周期中UL传输时间最大的TDD图样,也即第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,第二TDD图样为N个TDD图样中除第一TDD图样以外的任意一个TDD图样。
为便于理解,以N为2,UL传输时间包括UL时隙数目,前述第二比特序列是前述PSBCH payload的Y比特的比特序列为例,可使用前述第二比特序列中的1比特指示上下行TDD配置包含的两个TDD图样中的第一TDD图样,该第一TDD图样可以是两个TDD图样中第一个TDD图样或者第二个TDD图样,使用前述第二比特序列中的Y-1比特指示前述第一TDD图样对应的UL时隙数目。
具体的,可以设定前述1比特取值为0,则其指示的第一TDD图样为第一个TDD图样,前述1比特取值为1,则其指示的第一TDD图样为第二个TDD图样。进一步可选的,使用Y-1比特指示某个TDD图样对应的UL时隙数目的方式,可以与上下行TDD配置中TDD图样数目为1时,使用Y比特指示单个TDD图样对应的UL时隙的方式相同,诸如,Y-1比特是第一TDD图样对应的UL时隙数目的二进制表示,或者其他方式,此处不再赘述。
示例性的,Y为7,PSBCH payload是用于指示上下行TDD配置两个TDD图样中第一个图样对应的UL时隙数目,Y比特中的1比特值为0。参见图11,本申请实施例提供了第四种UL传输时间指示的示意图,图11示意出了上下行TDD配置中两个TDD图样对应的周期分别 为P=5ms和P 2=5ms,使用7比特中的其余6比特指示上下行TDD配置中的两个TDD图样中第一个TDD图样对应的UL时隙数目
Figure PCTCN2020075430-appb-000036
PSBCH payload中需要指示的UL时隙数目为
Figure PCTCN2020075430-appb-000037
则PSBCH payload中的7个比特可以表示为0000101。
示例性的,Y为7,PSBCH payload是用于指示上下行TDD配置两个TDD图样中第二个TDD图样对应的UL时隙数目,Y比特中的1比特值为1。参见图12,本申请实施例提供了第五种UL传输时间指示的示意图,图12示意出了上下行TDD配置中两个TDD图样对应的周期分别为P=5ms和P 2=5ms,使用7比特中的其余6比特指示上下行TDD配置中的两个TDD图样中第二个TDD图样对应的UL时隙数目
Figure PCTCN2020075430-appb-000038
PSBCH payload中需要指示的UL时隙数目为
Figure PCTCN2020075430-appb-000039
则PSBCH payload中的7个比特可以表示为1000101。
进一步,上述指示信息所指示的UL传输时间可以是上下行TDD配置包含的参考UL传输时间,也可以是根据实际的通信参数对参考UL传输时间进行调整所确定的,参考UL传输时间包括上下行TDD配置中的UL时隙数目和/或UL符号数目。
其中,用于确定UL传输时间的通信参数包括用于承载指示信息的S-SSB的子载波间隔SCS和/或指示信息中用于指示UL传输时间的比特数。具体的,可参照以下可选的实施方式确定指示信息所指示的UL传输时间:
在一种可选的实施方式中,可根据S-SSB的子载波间隔SCS与上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间,第一UL传输时间为上述1个或者N个TDD图样中任意一个TDD图样的周期中的UL传输时间。
可选的,该S-SSB的子载波间隔SCS为配置在SL部分带宽(bandwidth part,BWP)上的SCS。
为便于实施,本申请实施例以第一UL传输时间包括UL时隙数目为例,提供一种确定第一UL传输时间的方式,如下:
Figure PCTCN2020075430-appb-000040
其中,
Figure PCTCN2020075430-appb-000041
表示第一UL传输时间包括的UL时隙数目;
Figure PCTCN2020075430-appb-000042
表示向下取整;u slots表示上下行TDD配置中包括的参考UL时隙数目,参考UL时隙数目所属的周期与前述第一UL传输时间包括的UL时隙数目所属的周期一致;以
Figure PCTCN2020075430-appb-000043
表示S-SSB的SCS,以
Figure PCTCN2020075430-appb-000044
表示上下行TDD配置包含的参考SCS,
Figure PCTCN2020075430-appb-000045
表示S-SSB的SCS与参考SCS的比值。
示例性的,假设RRC信令中指示的参考SCS为
Figure PCTCN2020075430-appb-000046
u slots=2,周期P=10ms,S-SSB的SCS为
Figure PCTCN2020075430-appb-000047
Figure PCTCN2020075430-appb-000048
基于以上参数设置,如图13所示,本申请实施例提供了一种UL时隙数目的对照示意图,具体示意出了上下行TDD配置中的参考UL时隙数目与PSBCH中指示信息所指示的UL时隙数目之间对应关系。
示例性的,假设RRC信令中的参考SCS为
Figure PCTCN2020075430-appb-000049
u slots=13,周期P=2.5ms,S-SSB的SCS为
Figure PCTCN2020075430-appb-000050
Figure PCTCN2020075430-appb-000051
基于以上参数设置,如图14所示,本申请实施例提供了另一种UL时隙数目的对照示意图,具体示意出了上下行TDD配置中的参考UL时隙数目与PSBCH中指示信息所指示的UL时隙数目之间对应关系。
在另一种可选的实施方式中,可通过比较S-SSB的子载波间隔SCS与SCS阈值,进而根据比较的结果确定第一UL传输时间。其中,SCS阈值与用于指示第一UL传输时间 的比特数有关,第一UL传输时间为1个或者N个TDD图样中任意一个TDD图样的周期中的UL传输时间。
具体实施时,SCS阈值可以根据如下方式确定:
以上下行TDD配置包含的TDD图样的数目为1,采用PSBCH payload中的Y 2比特指示第一UL传输时间为例,可根据与Y 2比特有关的函数
Figure PCTCN2020075430-appb-000052
的值确定SCS阈值;其中,“10”为单个TDD图样的周期的最大取值,Y 2为小于等于前述Y的正整数。
示例性的,Y 2为7,则
Figure PCTCN2020075430-appb-000053
由于S-SSB的SCS表示为
Figure PCTCN2020075430-appb-000054
Figure PCTCN2020075430-appb-000055
的取值可以是0、1、2或者3等整数,S-SSB的SCS的取值可以为15kHz、30kHz、60kHz、120kHz或者240kHz等,故Y 2为7时可根据192kHz确定SCS阈值为
Figure PCTCN2020075430-appb-000056
即120kHz,则S-SSB的SCS小于或者等于SCS阈值,即等同于S-SSB的SCS小于与Y 2比特有关的函数
Figure PCTCN2020075430-appb-000057
示例性的,Y 2为6,则
Figure PCTCN2020075430-appb-000058
由于S-SSB的SCS表示为
Figure PCTCN2020075430-appb-000059
Figure PCTCN2020075430-appb-000060
的取值可以是0、1、2或者3等整数,S-SSB的SCS的取值可以为15kHz、30kHz、60kHz、120kHz或者240kHz等,故Y 2为6时可根据96kHz确定SCS阈值为
Figure PCTCN2020075430-appb-000061
即60kHz,则S-SSB的SCS小于或者等于SCS阈值,即等同于S-SSB的SCS小于与Y 2比特有关的函数
Figure PCTCN2020075430-appb-000062
进一步,上述根据比较的结果确定所述第一UL传输时间具体可通过如下实施方式中的任意一种方式实现:
第一种实施方式:
(1)当S-SSB的SCS小于或者等于SCS阈值时,根据S-SSB的SCS与上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间。
为便于实施,本申请实施例以第一UL传输时间包括UL时隙数目为例,提供一种确定第一UL传输时间的方式,如下:
Figure PCTCN2020075430-appb-000063
其中,
Figure PCTCN2020075430-appb-000064
表示第一UL传输时间包括的UL时隙数目;
Figure PCTCN2020075430-appb-000065
表示向下取整;u slots表示上下行TDD配置中包括的参考UL时隙数目,参考UL时隙数目所属的周期与前述第一UL传输时间包括的UL时隙数目所属的周期一致;以
Figure PCTCN2020075430-appb-000066
表示S-SSB的SCS,以
Figure PCTCN2020075430-appb-000067
表示上下行TDD配置包含的参考SCS,
Figure PCTCN2020075430-appb-000068
表示S-SSB的SCS与参考SCS的比值。
示例性的,采用PSBCH payload中的Y 2比特指示UL时隙数目,Y 2为7,此时
Figure PCTCN2020075430-appb-000069
SCS阈值为120kHz,假设RRC信令中指示的参考SCS为
Figure PCTCN2020075430-appb-000070
u slots=2,周期P=10ms,S-SSB的SCS为
Figure PCTCN2020075430-appb-000071
Figure PCTCN2020075430-appb-000072
满足小于或者等于SCS阈值的条件,则根据S-SSB的SCS与上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间为
Figure PCTCN2020075430-appb-000073
示例性的,采用PSBCH payload中的Y 2比特指示UL时隙数目,Y 2为6,此时
Figure PCTCN2020075430-appb-000074
SCS阈值为60kHz,假设RRC信令中指示的参考SCS为
Figure PCTCN2020075430-appb-000075
u slots=2,周期P=10ms,S-SSB的SCS为
Figure PCTCN2020075430-appb-000076
Figure PCTCN2020075430-appb-000077
满足小于或者等于SCS阈值的条件,则根据S-SSB的SCS与上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间为
Figure PCTCN2020075430-appb-000078
(2)当S-SSB的SCS大于SCS阈值时,根据SCS阈值与上下行TDD配置信息包含 的参考SCS的比值,确定第一UL传输时间。
为便于实施,本申请实施例以第一UL传输时间包括UL时隙数目,采用PSBCH payload中的Y 2比特指示UL时隙数目为例,S-SSB的SCS大于SCS阈值等同于表示S-SSB的SCS的
Figure PCTCN2020075430-appb-000079
大于
Figure PCTCN2020075430-appb-000080
在此条件下,可根据SCS阈值与参考SCS的比值,也即
Figure PCTCN2020075430-appb-000081
确定UL时隙数目,具体可参照上述根据S-SSB的SCS与参考SCS的比值确定UL时隙数目的方式实施,在此不进行赘述。
示例性的,Y 2为7,此时
Figure PCTCN2020075430-appb-000082
如果S-SSB的SCS即
Figure PCTCN2020075430-appb-000083
大于120kHz,则UL时隙数目即
Figure PCTCN2020075430-appb-000084
可以是根据SCS阈值120kHz得到的。
示例性的,Y 2为6。此时
Figure PCTCN2020075430-appb-000085
如果S-SSB的SCS即
Figure PCTCN2020075430-appb-000086
大于60kHz,则UL时隙数目即
Figure PCTCN2020075430-appb-000087
可以是根据SCS阈值60kHz得到的。
第二种实施方式:
当S-SSB的SCS大于SCS阈值时,根据S-SSB的SCS与上下行TDD配置信息包含的参考SCS的比值,确定第二UL传输时间;当第二UL传输时间大于时间阈值时,根据时间阈值确定第一UL传输时间,或者,当第二UL传输时间小于或者等于时间阈值时,根据第二UL传输时间确定第一UL传输时间。其中,时间阈值为用于指示第一UL传输时间的比特能够指示的最大UL传输时间。
具体实施时,以第一UL传输时间包括UL时隙数目,采用PSBCH payload中的Y 2比特指示UL时隙数目为例,S-SSB的SCS大于SCS阈值等同于表示S-SSB的SCS的
Figure PCTCN2020075430-appb-000088
大于
Figure PCTCN2020075430-appb-000089
在此条件下,若根据S-SSB的SCS确定UL时隙数目即
Figure PCTCN2020075430-appb-000090
使用Y 2比特指示前述UL时隙数目
Figure PCTCN2020075430-appb-000091
可能不足够,则可选的,使用PSBCH payload中Y 2比特指示的UL时隙数目为
Figure PCTCN2020075430-appb-000092
Figure PCTCN2020075430-appb-000093
表示Y 2比特所能够指示的最大UL时隙数目。
示例性的,Y 2为7。此时
Figure PCTCN2020075430-appb-000094
上述流程可以进一步描述为:如果S-SSB的SCS即
Figure PCTCN2020075430-appb-000095
大于120kHz,
Figure PCTCN2020075430-appb-000096
仍可以是根据S-SSB的SCS确定,但在此条件下,如果
Figure PCTCN2020075430-appb-000097
则PSBCH payload中指示的UL时隙数目为
Figure PCTCN2020075430-appb-000098
如果
Figure PCTCN2020075430-appb-000099
则PSBCH payload中指示的UL时隙数目为
Figure PCTCN2020075430-appb-000100
示例性的,Y 2为4。此时
Figure PCTCN2020075430-appb-000101
上述流程可以进一步描述为:如果S-SSB的SCS即
Figure PCTCN2020075430-appb-000102
大于15kHz,
Figure PCTCN2020075430-appb-000103
仍可以是根据S-SSB的SCS确定的。但在此条件下,如果
Figure PCTCN2020075430-appb-000104
则PSBCH payload中指示的UL时隙数目为
Figure PCTCN2020075430-appb-000105
如果
Figure PCTCN2020075430-appb-000106
则PSBCH payload中指示的UL时隙数目为
Figure PCTCN2020075430-appb-000107
示例性的,Y 2为3。此时
Figure PCTCN2020075430-appb-000108
上述流程可以进一步描述为:如果S-SSB的SCS
Figure PCTCN2020075430-appb-000109
大于等于
Figure PCTCN2020075430-appb-000110
仍可以是根据S-SSB的SCS确定的。在此条件下,如果
Figure PCTCN2020075430-appb-000111
则PSBCH payload中指示的UL时隙数目为
Figure PCTCN2020075430-appb-000112
如果
Figure PCTCN2020075430-appb-000113
则PSBCH payload中指示的UL时隙数目为
Figure PCTCN2020075430-appb-000114
第三种实施方式:
当S-SSB的SCS大于SCS阈值时,按照S-SSB的SCS与上下行TDD配置包含的参考SCS的比值,得到第二UL传输时间;按照预设步长缩小第二UL传输时间;根据缩小 后的第二UL传输时间,确定第一UL传输时间。
具体实施时,以第一UL传输时间包括UL时隙数目,采用PSBCH payload中的Y 2比特指示UL时隙数目为例,S-SSB的SCS大于SCS阈值等同于表示S-SSB的SCS的
Figure PCTCN2020075430-appb-000115
大于
Figure PCTCN2020075430-appb-000116
在此条件下,若根据S-SSB的SCS确定UL时隙数目即
Figure PCTCN2020075430-appb-000117
使用Y 2比特指示前述UL时隙数目
Figure PCTCN2020075430-appb-000118
可能不足够,则可选的,使用PSBCH payload中Y 2比特指示的UL时隙数目为
Figure PCTCN2020075430-appb-000119
其中,
Figure PCTCN2020075430-appb-000120
表示向下取整,Z表示前述预设步长,Z为大于等于1的正整数,Z用于表示PSBCH payload中指示的单个UL时隙实际上是代表了Z个UL时隙。Z可以是标准预定义的值,也可以是根据S-SSB的SCS所确定的值。
示例性的,Y 2为6。此时
Figure PCTCN2020075430-appb-000121
上述流程可以进一步描述为:如果S-SSB的SCS即
Figure PCTCN2020075430-appb-000122
大于60kHz,
Figure PCTCN2020075430-appb-000123
仍可以是根据S-SSB的SCS确定的。若标准预定义Z=2,则表示PSBCH payload中指示的单个UL时隙实际上代表了2个UL时隙。在此条件下,PSBCH payload中指示的UL时隙数目为
Figure PCTCN2020075430-appb-000124
例如,
Figure PCTCN2020075430-appb-000125
时,PSBCH payload中指示的UL时隙数目为37。
在本申请实施例提供的上述示例中,采用PSBCH payload的W比特指示周期信息和UL时隙数目,具体的,使用W比特中的X比特指示周期信息,使用W比特中的Y比特指示UL时隙数目,可选的,W为12,X为5,Y为7,简化了指示上下行TDD配置所需要的比特数目。通过PSBCH payload中有限的比特反映出Uu接口的上下行TDD配置,避免了终端设备在进行SL传输时使用DL时隙从而对Uu接口DL传输产生干扰这一问题,同时相较于直接发送上下行TDD配置极大的节省了终端设备之间的信令开销。例如,当上下行TDD配置包含一个TDD图样时,直接发送上下行TDD配置总共需要的信令开销最小是28比特,其中,3比特指示参考SCS,3比特指示周期,7比特指示下行时隙数目,4比特指示下行符号数目,7比特指示上行时隙数目,4比特指示上行符号;当上下行TDD配置包括两个TDD图样时,直接发送上下行TDD配置总共需要的信令开销最小是53比特,其中,3比特指示参考SCS,6比特指示周期,14比特指示下行时隙数目,8比特指示下行符号数目,14比特指示上行时隙数目,8比特指示上行符号数目。
此外,本申请实施例所提供上述的指示方法并不限制在PSBCH payload中使用,当发送端UE需要将Uu接口中更细化的上下行TDD配置通过PC5RRC信令指示给接收端UE时,也可在PC5RRC信令中使用类似的指示方法。
进一步,参见图15,本申请实施例提供了另一种配置信息的指示方法,该方法应用于第二终端设备,包括:
步骤S1501,接收来自第一终端设备的指示信息,指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,指示信息用于指示第一终端设备接收到的上下行时分双工TDD配置包含的周期信息。
在本申请实施例中,第二终端设备接收来自第一终端设备的指示信息,该指示信息与第一终端设备接收的上下TDD配置有关,则第二终端设备可根据指示信息与其他终端设备进行SL传输,从而避免终端设备之间进行的SL传输对网络设备和终端设备之间进行的DL传输造成干扰。
具体实施时,第二终端设备可以是直接接收到第一终端设备发送的指示信息,也可以是通过中间设备的转发机制间接获取到第一终端设备发送的指示信息;此外,第二终端设备还可以作为中间设备,将接收到的指示信息转发给其他终端设备。
在一种可选的实施方式中,指示信息还用于指示TDD图样的周期中的UL传输时间;第二终端设备则通过解析指示信息确定出前述UL传输时间时,在UL传输时间内进行SL传输,从而避免SL传输占用DL传输时间,而造成干扰;其中,UL传输时间包括UL时隙数目和/或UL符号数目。
在一种可选的实施方式中,指示信息可具体承载在侧行链路同步信号块S-SSB的PSBCH的载荷(payload)中。具体实施时,可采用PSBCH payload的部分比特来承载指示信息,诸如采用PSBCH payload的W比特来承载指示信息,在W比特中使用X比特指示前述周期信息,在W比特中使用Y比特指示前述UL传输时间,其中,W为大于等于0的整数,X为大于等于0且小于等于W的整数,Y为大于等于0且小于等于W的整数。
在一种可选的实施方式中,周期信息包括:TDD图样的数目和/或TDD图样的周期;其中,TDD图样的数目为一个或多个,TDD图样的周期包括一个或多个TDD图样中每个TDD图样的周期。
上述指示信息中包括第一比特序列,第一比特序列对应前述周期信息,具体可采用如下两种实施方式进行指示:
在一种可选的实施方式中,第一比特序列用于指示TDD图样的周期;在另一种可选的实施方式中,第一比特序列中第一部分比特用于指示TDD图样的数目,第一比特序列中第二部分比特用于指示TDD图样的周期。具体的指示方法可参照前述第一终端设备侧执行的实施方式,在此不再进行赘述。
上述指示信息中包括第二比特序列,第二比特序列对应前述UL传输时间,具体可采用如下四种实施方式中的任一项进行指示:
第一种实施方式:当上下行TDD配置包含的TDD图样的数目为1时,第二比特序列用于指示TDD图样的周期中的UL传输时间。
第二种实施方式:当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,N为大于1的整数。
第三种实施方式:当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列用于指示N个TDD图样中预设指定TDD图样的周期中的UL传输时间,其中,N为大于1的整数。
第四种实施方式:当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,第二比特序列中的第二部分比特用于指示第一TDD图样的周期中的UL传输时间;可选的,其中第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,第二TDD图样为N个TDD图样中除第一TDD图样以外的任意一个TDD图样。
以上四种实施方式的具体指示方法可参照前述第一终端设备侧执行的实施方式,在此不再进行赘述。
在一种可选的实施方式中,N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据S-SSB的子载波间隔SCS与上下行TDD配置包含的参考SCS的比值所确定的。
在一种可选的实施方式中,N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据S-SSB的子载波间隔SCS与SCS阈值之间的比较结果所确定的,SCS阈值 与第一比特数有关,第一比特数为用于指示任意一个TDD图样的周期中的UL传输时间的比特数。
进一步,参见图16,本申请实施例提供了一种配置信息的指示装置1600,包括:
接收模块1601,用于接收来自网络设备的上下行时分双工TDD配置;
发送模块1602,用于根据上下行TDD配置,向第二终端设备发送指示信息,指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,指示信息用于指示上下行TDD配置包含的周期信息。
本申请实施例中,第一终端设备通过S-SSB的PSBCH完成对于上下行TDD配置指示的同时,对上下行TDD配置进行简化指示,即指示出上下行TDD配置包含的周期信息,相较于直接发送上下行TDD配置,可以降低信令开销。
在一种可选的实施方式中,周期信息包括:TDD图样的数目和/或TDD图样的周期。
在一种可选的实施方式中,指示信息还用于指示TDD图样的周期中的UL传输时间。
在一种可选的实施方式中,指示信息中包括第一比特序列,第一比特序列用于指示TDD图样的周期。
在一种可选的实施方式中,指示信息中包括第一比特序列,第一比特序列中第一部分比特用于指示TDD图样的数目,第一比特序列中第二部分比特用于指示TDD图样的周期。
在一种可选的实施方式中,指示信息中包括第二比特序列;
当上下行TDD配置包含的TDD图样的数目为1时,第二比特序列用于指示TDD图样的周期中的UL传输时间;或者,
当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,N为大于1的整数。
在一种可选的实施方式中,指示信息中包括第二比特序列;
当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,第二比特序列中的第二部分比特用于指示第一TDD图样的周期中的UL传输时间。
在一种可选的实施方式中,第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,第二TDD图样为N个TDD图样中除第一TDD图样以外的任意一个TDD图样。
在一种可选的实施方式中,一种配置信息的指示装置1600还包括:
处理模块1603,用于根据S-SSB的子载波间隔SCS与上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间,第一UL传输时间为N个TDD图样中任意一个TDD图样的周期中的UL传输时间。
在另一种可选的实施方式中,一种配置信息的指示装置1600还包括:
处理模块1603,用于比较S-SSB的子载波间隔SCS与SCS阈值;其中,SCS阈值与用于指示第一UL传输时间的比特数有关,第一UL传输时间为N个TDD图样中任意一个TDD图样的周期中的UL传输时间;根据比较的结果确定第一UL传输时间。
在一种可选的实施方式中,处理模块1603,还用于:
当S-SSB的SCS小于或者等于SCS阈值时,根据S-SSB的SCS与上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间;或者,
当S-SSB的SCS大于SCS阈值时,根据SCS阈值与上下行TDD配置信息包含的参 考SCS的比值,确定第一UL传输时间。
在一种可选的实施方式中,处理模块1603,还用于:
当S-SSB的SCS大于所述SCS阈值时,根据S-SSB的SCS与上下行TDD配置信息包含的参考SCS的比值,确定第二UL传输时间;
当第二UL传输时间大于时间阈值时,根据时间阈值确定第一UL传输时间,或者,
当第二UL传输时间小于或者等于时间阈值时,根据第二UL传输时间确定第一UL传输时间;
其中,时间阈值为用于指示第一UL传输时间的比特能够指示的最大UL传输时间。
在一种可选的实施方式中,处理模块1603,还用于:
当S-SSB的SCS大于所述SCS阈值时,按照S-SSB的SCS与上下行TDD配置包含的参考SCS的比值,确定第二UL传输时间;
按照预设步长缩小第二UL传输时间;
根据缩小后的第二UL传输时间,确定第一UL传输时间。
进一步,参见图17,本申请实施例还提供一种配置信息的指示装置1700,该装置1700包括:
接收模块1701,用于接收来自第一终端设备的指示信息,指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,指示信息用于指示第一终端设备接收到的上下行时分双工TDD配置包含的周期信息。
在一种可选的实施方式中,周期信息包括:TDD图样的数目和/或TDD图样的周期。
在一种可选的实施方式中,指示信息还用于指示TDD图样的周期中的UL传输时间。
在一种可选的实施方式中,指示信息中包括第一比特序列,第一比特序列用于指示TDD图样的周期。
在一种可选的实施方式中,指示信息中包括第一比特序列,第一比特序列中第一部分比特用于指示TDD图样的数目,第一比特序列中第二部分比特用于指示TDD图样的周期。
在一种可选的实施方式中,指示信息中包括第二比特序列;
当上下行TDD配置包含的TDD图样的数目为1时,第二比特序列用于指示TDD图样的周期中的UL传输时间;或者,
当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,N为大于1的整数。
在一种可选的实施方式中,指示信息中包括第二比特序列;
当上下行TDD配置包含的TDD图样的数目为N时,第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,第二比特序列中的第二部分比特用于指示第一TDD图样的周期中的UL传输时间。
在一种可选的实施方式中,第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,第二TDD图样为N个TDD图样中除第一TDD图样以外的任意一个TDD图样。
在一种可选的实施方式中,N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据S-SSB的子载波间隔SCS与上下行TDD配置包含的参考SCS的比值所确定的。
在一种可选的实施方式中,N个TDD图样中任意一个TDD图样的周期中的UL传输 时间,是根据S-SSB的子载波间隔SCS与SCS阈值之间的比较结果所确定的,SCS阈值与第一比特数有关,第一比特数为用于指示任意一个TDD图样的周期中的UL传输时间的比特数。
基于相同的构思,如图18所示,为本申请提供的一种通信装置1800。示例性地,通信装置1800可以是芯片或芯片***。可选的,在本申请实施例中芯片***可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1800可以包括至少一个处理器1810,装置1800还可以包括至少一个存储器1820,用于存储计算机程序、程序指令和/或数据。存储器1820和处理器1810耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1810可能和存储器1820协同操作。处理器1810可能执行存储器1820中存储的计算机程序。可选的,所述至少一个存储器1820中的至少一个可以包括于处理器1810中。
通信装置1800中还可以包括收发器1830,通信装置1800可以通过收发器1830和其它设备进行信息交互。收发器1830可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置。
在一种可能的实施方式中,该通信装置1800可以应用于第一终端设备,具体通信装置1800可以是第一终端设备,也可以是能够支持第一终端设备,实现上述涉及的任一实施例中第一终端设备的功能的装置。存储器1820保存实现上述任一实施例中的第一终端设备的功能的必要计算机程序、程序指令和/或数据。所述处理器1810可执行所述存储器1820存储的计算机程序,完成上述任一实施例中第一终端设备执行的方法。
在一种可能的实施方式中,该通信装置1800可以应用于第二终端设备,具体通信装置1800可以是第二终端设备,也可以是能够支持第二终端设备,实现上述涉及的任一实施例中第二终端设备的功能的装置。存储器1820保存实现上述任一实施例中的第二终端设备的功能的必要计算机程序、程序指令和/或数据。所述处理器1810可执行所述存储器1820存储的计算机程序,完成上述任一实施例中第二终端设备执行的方法。
在一种可能的实施方式中,该通信装置1800可以应用于网络设备,具体通信装置1800可以是网络设备,也可以是能够支持网络设备实现上述任一实施例中网络设备的功能的装置。存储器1820保存实现上述任一实施例中的网络设备的功能的必要计算机程序、程序指令和/或数据。所述处理器1810可执行所述存储器1820存储的计算机程序,完成上述任一实施例中网络设备执行的方法。
本申请实施例中不限定上述收发器1830、处理器1810以及存储器1820之间的具体连接介质。本申请实施例在图18中以存储器1820、处理器1810以及收发器1030之间通过总线连接,总线在图18中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储计算机程序、程序指令和/或数据。
基于以上实施例,参见图19,本申请实施例还提供另一种通信装置1900,包括:接口电路1910和处理器1920;
接口电路1910,用于接收代码指令并传输至所述处理器;
处理器1920,用于运行所述代码指令以执行上述任一实施例中第一终端设备执行的方法或上述任一实施例中第二终端设备执行的方法。
基于以上实施例,本申请实施例还提供一种可读存储介质,该可读存储介质存储有指令,当所述指令被执行时,使上述任一实施例中第一终端设备执行的方法被实现,或使上述任一实施例中第二终端设备执行的方法被实现。该可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (49)

  1. 一种配置信息的指示方法,其特征在于,应用于第一终端设备,包括:
    接收来自网络设备的上下行时分双工TDD配置;
    根据所述上下行TDD配置,向第二终端设备发送指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述上下行TDD配置包含的周期信息。
  2. 如权利要求1所述的方法,其特征在于,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
  3. 如权利要求2所述的方法,其特征在于,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
  4. 如权利要求2或3所述的方法,其特征在于,所述指示信息中包括第一比特序列,所述第一比特序列用于指示所述TDD图样的周期。
  5. 如权利要求2或3所述的方法,其特征在于,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
  7. 如权利要求1~5任一项所述的方法,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
  8. 如权利要求7所述的方法,其特征在于,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
  9. 如权利要求6~8任一项所述的方法,其特征在于,所述方法还包括:
    根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间。
  10. 如权利要求6~8任一项所述的方法,其特征在于,所述方法还包括:
    比较所述S-SSB的子载波间隔SCS与SCS阈值;其中,所述SCS阈值与用于指示第一UL传输时间的比特数有关,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间;
    根据比较的结果确定所述第一UL传输时间。
  11. 如权利要求10所述的方法,其特征在于,所述根据比较的结果确定所述第一UL 传输时间,包括:
    当所述S-SSB的SCS小于或者等于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定所述第一UL传输时间;或者,
    当所述S-SSB的SCS大于所述SCS阈值时,根据所述SCS阈值与所述上下行TDD配置信息包含的参考SCS的比值,确定所述第一UL传输时间。
  12. 如权利要求10所述的方法,其特征在于,所述根据比较的结果确定所述第一UL传输时间,包括:
    当所述S-SSB的SCS大于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置信息包含的参考SCS的比值,确定第二UL传输时间;
    当所述第二UL传输时间大于时间阈值时,根据所述时间阈值确定所述第一UL传输时间,或者,
    当所述第二UL传输时间小于或者等于所述时间阈值时,根据所述第二UL传输时间确定所述第一UL传输时间;
    其中,所述时间阈值为所述用于指示所述第一UL传输时间的比特能够指示的最大UL传输时间。
  13. 如权利要求10所述的方法,其特征在于,所述根据比较的结果确定所述第一UL传输时间,包括:
    当所述S-SSB的SCS大于所述SCS阈值时,按照所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定第二UL传输时间;
    按照预设步长缩小所述第二UL传输时间;
    根据缩小后的第二UL传输时间,确定所述第一UL传输时间。
  14. 一种配置信息的指示方法,其特征在于,应用于第二终端设备,包括:
    接收来自第一终端设备的指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述第一终端设备接收到的上下行时分双工TDD配置包含的周期信息。
  15. 如权利要求14所述的方法,其特征在于,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
  16. 如权利要求15所述的方法,其特征在于,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
  17. 如权利要求15或16所述的方法,其特征在于,所述指示信息中包括第一比特序列,所述第一比特序列用于指示所述TDD图样的周期。
  18. 如权利要求15或16所述的方法,其特征在于,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
  19. 如权利要求14~18任一项所述的方法,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
  20. 如权利要求14~18任一项所述的方法,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
  21. 如权利要求20所述的方法,其特征在于,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
  22. 如权利要求19~21任一项所述的方法,其特征在于,所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值所确定的。
  23. 如权利要求19~21任一项所述的方法,其特征在于,所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据所述S-SSB的子载波间隔SCS与SCS阈值之间的比较结果所确定的,所述SCS阈值与第一比特数有关,所述第一比特数为用于指示所述任意一个TDD图样的周期中的UL传输时间的比特数。
  24. 一种配置信息的指示装置,其特征在于,包括:
    接收模块,用于接收来自网络设备的上下行时分双工TDD配置;
    发送模块,用于根据所述上下行TDD配置,向第二终端设备发送指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述上下行TDD配置包含的周期信息。
  25. 如权利要求24所述的装置,其特征在于,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
  26. 如权利要求25所述的装置,其特征在于,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
  27. 如权利要求24或25所述的装置,其特征在于,所述指示信息中包括第一比特序列,所述第一比特序列用于指示所述TDD图样的周期。
  28. 如权利要求24或25所述的装置,其特征在于,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
  29. 如权利要求24~28任一项所述的装置,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
  30. 如权利要求24~28任一项所述的装置,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
  31. 如权利要求30所述的装置,其特征在于,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
  32. 如权利要求29~31任一项所述的装置,其特征在于,所述装置还包括:
    处理模块,用于根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值,确定第一UL传输时间,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间。
  33. 如权利要求29~31任一项所述的装置,其特征在于,所述装置还包括:
    处理模块,用于比较所述S-SSB的子载波间隔SCS与SCS阈值;其中,所述SCS阈值与用于指示第一UL传输时间的比特数有关,所述第一UL传输时间为所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间;根据比较的结果确定所述第一UL传输时间。
  34. 如权利要求33所述的装置,其特征在于,所述处理模块,还用于:
    当所述S-SSB的SCS小于或者等于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定所述第一UL传输时间;或者,
    当所述S-SSB的SCS大于所述SCS阈值时,根据所述SCS阈值与所述上下行TDD配置信息包含的参考SCS的比值,确定所述第一UL传输时间。
  35. 如权利要求33所述的装置,其特征在于,所述处理模块,还用于:
    当所述S-SSB的SCS大于所述SCS阈值时,根据所述S-SSB的SCS与所述上下行TDD配置信息包含的参考SCS的比值,确定第二UL传输时间;
    当所述第二UL传输时间大于时间阈值时,根据所述时间阈值确定所述第一UL传输时间,或者,
    当所述第二UL传输时间小于或者等于所述时间阈值时,根据所述第二UL传输时间确定所述第一UL传输时间;
    其中,所述时间阈值为所述用于指示所述第一UL传输时间的比特能够指示的最大UL传输时间。
  36. 如权利要求33所述的装置,其特征在于,所述处理模块,还用于:
    当所述S-SSB的SCS大于所述SCS阈值时,按照所述S-SSB的SCS与所述上下行TDD配置包含的参考SCS的比值,确定第二UL传输时间;
    按照预设步长缩小所述第二UL传输时间;
    根据缩小后的第二UL传输时间,确定所述第一UL传输时间。
  37. 一种配置信息的指示装置,其特征在于,包括:
    接收模块,用于接收来自第一终端设备的指示信息,所述指示信息承载在侧行链路同步信号块S-SSB的物理层侧行链路广播信道PSBCH中,所述指示信息用于指示所述第一终端设备接收到的上下行时分双工TDD配置包含的周期信息。
  38. 如权利要求37所述的装置,其特征在于,所述周期信息包括:TDD图样的数目和/或TDD图样的周期。
  39. 如权利要求38所述的装置,其特征在于,所述指示信息还用于指示所述TDD图样的周期中的UL传输时间。
  40. 如权利要求38或39所述的装置,其特征在于,所述指示信息中包括第一比特序 列,所述第一比特序列用于指示所述TDD图样的周期。
  41. 如权利要求38或39所述的装置,其特征在于,所述指示信息中包括第一比特序列,所述第一比特序列中第一部分比特用于指示所述TDD图样的数目,所述第一比特序列中第二部分比特用于指示所述TDD图样的周期。
  42. 如权利要求37~41任一项所述的装置,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为1时,所述第二比特序列用于指示所述TDD图样的周期中的UL传输时间;或者,
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列用于指示N个TDD图样中每个TDD图样的周期中的UL传输时间;其中,所述N为大于1的整数。
  43. 如权利要求37~41任一项所述的装置,其特征在于,所述指示信息中包括第二比特序列;
    当所述上下行TDD配置包含的TDD图样的数目为N时,所述第二比特序列中的第一部分比特用于指示N个TDD图样中的第一TDD图样,所述第二比特序列中的第二部分比特用于指示所述第一TDD图样的周期中的UL传输时间。
  44. 如权利要求43所述的装置,其特征在于,所述第一TDD图样的周期中的UL传输时间大于第二TDD图样的周期中的UL传输时间,所述第二TDD图样为所述N个TDD图样中除所述第一TDD图样以外的任意一个TDD图样。
  45. 如权利要求42~44任一项所述的装置,其特征在于,所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据所述S-SSB的子载波间隔SCS与所述上下行TDD配置包含的参考SCS的比值所确定的。
  46. 如权利要求42~44任一项所述的装置,其特征在于,所述N个TDD图样中任意一个TDD图样的周期中的UL传输时间,是根据所述S-SSB的子载波间隔SCS与SCS阈值之间的比较结果所确定的,所述SCS阈值与第一比特数有关,所述第一比特数为用于指示所述任意一个TDD图样的周期中的UL传输时间的比特数。
  47. 一种通信装置,其特征在于,包括:处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至13中任一项所述的方法,或执行如权利要求14至23中任一项所述的方法。
  48. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器用于运行所述代码指令以执行如权利要求1至13中任一项所述的方法,或执行如权利要求14至23中任一项所述的方法。
  49. 一种可读存储介质,其特征在于,所述可读存储介质存储有指令,当所述指令被执行时,使如权利要求1至13中任一项所述的方法被实现,或使如权利要求14至23中任一项所述的方法被实现。
PCT/CN2020/075430 2020-02-14 2020-02-14 一种配置信息的指示方法及装置 WO2021159532A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/CN2020/075430 WO2021159532A1 (zh) 2020-02-14 2020-02-14 一种配置信息的指示方法及装置
KR1020227031851A KR20220140622A (ko) 2020-02-14 2020-02-14 구성 정보 지시 방법 및 장치
CN202011635859.1A CN113194434B (zh) 2020-02-14 2020-02-14 一种配置信息的指示方法及装置
JP2022549090A JP2023513600A (ja) 2020-02-14 2020-02-14 構成情報指示方法及び装置
CN202080003448.2A CN113545150B (zh) 2020-02-14 2020-02-14 一种配置信息的指示方法及装置
AU2020429220A AU2020429220B2 (en) 2020-02-14 2020-02-14 Configuration information indication method and apparatus
EP20919146.9A EP4106442A4 (en) 2020-02-14 2020-02-14 CONFIGURATION INFORMATION INDICATING METHOD AND APPARATUS
BR112022016046A BR112022016046A2 (pt) 2020-02-14 2020-02-14 Método e aparelho de indicação de informações de configuração
US17/819,420 US20220393846A1 (en) 2020-02-14 2022-08-12 Configuration Information Indication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075430 WO2021159532A1 (zh) 2020-02-14 2020-02-14 一种配置信息的指示方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/819,420 Continuation US20220393846A1 (en) 2020-02-14 2022-08-12 Configuration Information Indication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021159532A1 true WO2021159532A1 (zh) 2021-08-19

Family

ID=77292972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075430 WO2021159532A1 (zh) 2020-02-14 2020-02-14 一种配置信息的指示方法及装置

Country Status (8)

Country Link
US (1) US20220393846A1 (zh)
EP (1) EP4106442A4 (zh)
JP (1) JP2023513600A (zh)
KR (1) KR20220140622A (zh)
CN (1) CN113545150B (zh)
AU (1) AU2020429220B2 (zh)
BR (1) BR112022016046A2 (zh)
WO (1) WO2021159532A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11659552B2 (en) * 2019-09-27 2023-05-23 Qualcomm Incorporated Time division duplex (TDD) slot format configuration indication for sidelink communications

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486809B1 (ko) * 2018-11-15 2023-01-10 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 동기화 신호 블록의 구성 정보의 방송, 수신 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478967A (zh) * 2016-08-08 2019-03-15 英特尔Ip公司 用于移动通信***的信道状态信息配置
EP3522430A1 (en) * 2016-11-04 2019-08-07 Samsung Electronics Co., Ltd. Adaptive retransmission method and device for delay reduction in wireless cellular communication system
CN110771235A (zh) * 2017-03-24 2020-02-07 英特尔Ip公司 在更进一步增强式mtc中用于pusch的子prb资源分配

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170303144A1 (en) * 2016-04-18 2017-10-19 Samsung Electronics Co., Ltd Method and apparatus for dynamic tdd
CN110278610B (zh) * 2019-05-28 2022-07-22 华为技术有限公司 一种资源配置方法及通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478967A (zh) * 2016-08-08 2019-03-15 英特尔Ip公司 用于移动通信***的信道状态信息配置
EP3522430A1 (en) * 2016-11-04 2019-08-07 Samsung Electronics Co., Ltd. Adaptive retransmission method and device for delay reduction in wireless cellular communication system
CN110771235A (zh) * 2017-03-24 2020-02-07 英特尔Ip公司 在更进一步增强式mtc中用于pusch的子prb资源分配

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP 38.213
3GPP 38.331
CATT: "Sidelink synchronization mechanism in NR V2X", 3GPP DRAFT; R1-1912156, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051823237 *
SPREADTRUM COMMUNICATIONS: "Discussion on synchronization mechanism for NR V2X", 3GPP DRAFT; R1-1910008 V2X SYNC_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 1 October 2019 (2019-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 10, XP051788815 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11659552B2 (en) * 2019-09-27 2023-05-23 Qualcomm Incorporated Time division duplex (TDD) slot format configuration indication for sidelink communications

Also Published As

Publication number Publication date
CN113545150B (zh) 2024-06-11
EP4106442A4 (en) 2023-04-19
AU2020429220A1 (en) 2022-09-15
JP2023513600A (ja) 2023-03-31
EP4106442A1 (en) 2022-12-21
CN113545150A (zh) 2021-10-22
AU2020429220B2 (en) 2023-11-16
KR20220140622A (ko) 2022-10-18
US20220393846A1 (en) 2022-12-08
BR112022016046A2 (pt) 2022-10-04

Similar Documents

Publication Publication Date Title
US11109392B2 (en) Communication method, network device, and relay device
WO2019096082A1 (zh) 下行控制信息确定方法和通信装置
WO2021204194A1 (zh) 一种配置信息的指示方法及装置
EP2742634B1 (en) Discontinuous reception for carrier aggregation
WO2020221021A1 (zh) 通信方法和通信装置
EP4017177B1 (en) Resource multiplexing method and apparatus
EP3780836A1 (en) Data transmission method, terminal device and network device
WO2022028361A1 (zh) 一种无线接入的方法以及装置
US20240030964A1 (en) Communication method and apparatus
WO2021159532A1 (zh) 一种配置信息的指示方法及装置
WO2022194151A1 (zh) 一种通信方法及装置
WO2021056587A1 (zh) 一种通信方法及装置
CN113194434B (zh) 一种配置信息的指示方法及装置
WO2019184884A1 (zh) 通信方法、装置、设备及存储介质
CN102724749B (zh) 用于同步上下行帧的方法、终端和基站
US20220086804A1 (en) Data Transmission Method And Communication Apparatus
WO2022036523A1 (zh) 数据传输的方法及设备
WO2017036236A9 (zh) 一种基于tdd的m2m***的通信方法、装置与***
WO2020088455A1 (zh) 通信方法和通信装置
WO2022077404A1 (zh) 一种通信方法及装置
EP4383900A1 (en) Resource indication method and communication apparatus
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2024000594A1 (en) Method, device, and system for determining timing in wireless networks
WO2023006067A1 (zh) 一种通信方法及装置
WO2020199897A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549090

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020429220

Country of ref document: AU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016046

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227031851

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020429220

Country of ref document: AU

Date of ref document: 20200214

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020919146

Country of ref document: EP

Effective date: 20220913

ENP Entry into the national phase

Ref document number: 112022016046

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220812