WO2021159198A1 - Método de produção de biomaterial descelularizado, biomaterial descelularizado e uso do mesmo - Google Patents

Método de produção de biomaterial descelularizado, biomaterial descelularizado e uso do mesmo Download PDF

Info

Publication number
WO2021159198A1
WO2021159198A1 PCT/BR2021/050069 BR2021050069W WO2021159198A1 WO 2021159198 A1 WO2021159198 A1 WO 2021159198A1 BR 2021050069 W BR2021050069 W BR 2021050069W WO 2021159198 A1 WO2021159198 A1 WO 2021159198A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomaterial
decellularized
tissue
decellularization
rpm
Prior art date
Application number
PCT/BR2021/050069
Other languages
English (en)
French (fr)
Inventor
Luiz RICARDO GOULART FILHO
Letícia DE SOUZA CASTRO FILICE
Jessica PEIXOTO RODRIGUES
Jéssica REGINA DA COSTA SILVA
Paula BATISTA FERNANDES GASPARI
Natássia CAROLINE RESENDE CORRÊA
Roberta REZENDE ROSA
Cláudia MENDONÇA RODRIGUES
Matheus CARVALHO BARBOSA
Leticia SANTOS PIMENTEL
Ludmilla SOUSA QUIRINO
Original Assignee
Kheiros Pater Inovação S.A
Universidade Federal de Uberlândia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kheiros Pater Inovação S.A, Universidade Federal de Uberlândia filed Critical Kheiros Pater Inovação S.A
Priority to CA3171328A priority Critical patent/CA3171328A1/en
Priority to AU2021220753A priority patent/AU2021220753A1/en
Priority to EP21754359.4A priority patent/EP4104863A4/en
Priority to IL295582A priority patent/IL295582A/en
Priority to BR112022016166A priority patent/BR112022016166A2/pt
Priority to JP2022549335A priority patent/JP2023517179A/ja
Priority to KR1020227031839A priority patent/KR20220161290A/ko
Priority to MX2022009961A priority patent/MX2022009961A/es
Publication of WO2021159198A1 publication Critical patent/WO2021159198A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3687Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by the use of chemical agents in the treatment, e.g. specific enzymes, detergents, capping agents, crosslinkers, anticalcification agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/10Materials or treatment for tissue regeneration for reconstruction of tendons or ligaments

Definitions

  • the present patent application refers to the field of tissue engineering.
  • a method of producing decellularized biomaterial from biological tissue as well as the decellularized biomaterial produced by said method comprising extracellular matrix of biological origin.
  • biological tissue is derived from ocular connective tissue of animal or human origin. More particularly it refers to a method of producing decellularized biomaterial from animal sclera for the production of biological scaffold, prostheses, and/or as carriers of active substances for systemic or localized release, as well as the decellularized biomaterial itself and its use .
  • a biomaterial In tissue engineering, the development of new biomaterials is essential to increasingly improve the characteristics needed to increase the effectiveness of these materials when used as scaffolds or for the production of prostheses, reducing the possibility of rejection of these biomaterials in biological systems. Therefore, a biomaterial can be defined as a material intended for to interface with biological systems, in order to assess, treat, augment or replace an organ, tissue or function of the organism.
  • the scaffolds can be of synthetic or biological origin.
  • the use of synthetic scaffolds is advantageous, as their chemical and physical properties can be easily manipulated according to the proposed objective and according to the cell type to be used.
  • biological scaffolds unlike synthetic scaffolds, are composed of natural extracellular matrix derived from tissues such as tendons, ligaments, small intestine submucosa, bladder and liver (BADYLAK, 2008; MENG et al., 2014).
  • biological scaffolds as they have a natural extracellular matrix, can maintain growth factors and structural elements, such as elastin, fibronectin and collagen, providing a favorable environment for cell adhesion, differentiation and proliferation (PARENTEAU-
  • the scaffolds offer structural, biochemical and biomechanical properties capable of directing and regulating cell behavior and tissue development (GILPIN & YANG, 2017).
  • the cells that are used in tissue engineering can come from the patient himself (autologous), from another individual (allogeneic), or even from individuals of different species (xenogenic) (ABBAS; LICHTMAN; PILLAI, 2012).
  • decellularization is a widely used technique, as it eliminates the presence of possible antigenic particles (BADYLAK et al., 2002).
  • Decellularization can be carried out using chemical and enzymatic, physical and combinative procedures. This strategy seeks to remove the cells from the tissue in question, as well as to eliminate the genetic material present there, in order to prevent a possible immunological reaction, as well as to maintain the elements of the extracellular matrix while preserving the mechanical properties necessary to maintain the scaffold's functionality (GILPIN & YANG, 2017).
  • decellularization is a process used, there are different methods to carry it out.
  • Patent CN107007886 describes the decontamination of intestinal submucosa, bovine or porcine, using peracetic acid and ethanol and, after viral inactivation, use of trypsin, PBS, EDTA and ultrasonication of the submucosa for decellularization.
  • This patent does not use detergents, does not use nuclease and uses expensive equipment, which is the ultrasonicator and does not mention any eye tissue.
  • Patent CN105944142 describes three methods of tendon or ligament decellularization, using a protection solution (cell culture medium, chondroitin, dextran, antibiotic and hyaluronic acid, under pressure) before and after treatment with detergent and enzymes. It has a nuclease incubation temperature of 25 or 30°C. However, it does not use a chelator (EDTA), or use a hypotonic buffer, nor does it use RNase for the decellularization process, it does not use the standard DNase temperature which is 37°C and does not mention the possibility of use in a tissue eye.
  • EDTA chelator
  • RNase RNase
  • Patent CN105833353 presents a skin decellularization process of porcine origin, which uses a protective solution (chondroitin sulfate, hyaluronic acid, glycerol and neomycin), it also adds a high static pressure condition, followed by incubation with nucleases that can be carried out simultaneously or separate from the detergent incubation. Does not cite use of chelator (EDTA) or use of hypotonic tampon and does not mention any eye tissue.
  • EDTA chelator
  • Patent CN101947144 describes a decellularized corneal scaffold. For the decellularization process, freeze and thaw cycles are performed, followed by incubation in hypotonic solution, digestion with nuclease, electrophoresis followed by scaffold rehydration. The patent does not use sclera, and provides for its use only to replace other corneas (transplants).
  • the patent EP3412322 describes methods of preparation and use of membranes made of collagen, subjected to dehydration and decellularization, arising from human placenta (amniotic and chorionic membranes).
  • the decellularization process is based on the use of detergents such as Triton X-100 or SDS, washing preferably in a vacuum and using treatment with cell adhesion factors and human/fetal bovine serum that facilitate cell culture in the biomaterial. It does not mention the use of nucleases or the use of EDTA and does not mention any ocular tissue.
  • Patent RU2016135703 presents a decellularization process for obtaining kidney matrix of rats and rabbits. Decellularization is detergent-enzymatic using a high-performance perfusion system and bioreactor, as well as administration of solutions (hypotonic, containing EDTA, for osmotic shock and detergents - SDS,
  • Patent application CN106730005 proposes a method to prepare a corneal stroma for decellularization so that the collagen structure does not suffer damage.
  • the invention has as product the obtainment of a corneal stroma which comprises a cornea and a sclera connected to the periphery of the cornea, the scleral tissue being only 2-3 mm wide. Decellularization itself and the use of sclera is not a focus of the invention.
  • Patent application US2018256784 presents several methods of bovine intervertebral disc decellularization, which uses ultrasonication with decellularization solutions (non-ionic surfactant and protease inhibitor), washes with water and 70% alcohol solution and nuclease digestion for 48 hours. It also demonstrates methods of evaluating the efficiency of decellularization such as quantifying residual DNA and glycosaminoglycans. Reports longer incubation with nucleases, requires an ultrasonicator and does not mention tissues of ocular origin.
  • Patent application KR20180133172 presents a method of producing an injectable adhesive to fix bone grafts, from a decellularized extracellular matrix.
  • the example tissue was the tibia, incubated for previous demineralization, followed by trypsin decellularization, and degassed by agitation. It does not present details of the solutions and does not mention any tissue of ocular origin.
  • Patent application KR20180003879 describes a decellularization process by degassing using a bioreactor. Although the title refers to its use in several organs, the results presented refer only to kidneys. The method described in said application differs from the method proposed by the present patent application.
  • Triton X-100 sometimes in combination with nuclease buffer.
  • the study by Liu et al. (2009) aims to fabricate a three-dimensional porous bladder submucosa scaffold and subsequent scaffold recellularization.
  • the swine bladders were washed and, for decellularization, they were oxidized by immersion in paraacetic acid (in different concentrations) for 4 hours. Then they were treated with Triton X-100 for 2 days and then washed in distilled water for another 2 days.
  • the decellularization process does not mention the use of detergents or nucleases and is done with the entire organ, without mentioning eye tissues.
  • the study by Dahl et al. (2003) describes three porcine carotid artery decellularization methods for use as scaffolds.
  • the first method uses buffer with 1% Triton X-100, 0.02% EDTA and 0.2 mg/ml DNase for 24 hours.
  • the second method describes 11-hour incubation with hypotonic buffer with TRIS HCl, EDTA, PMSF (phenylmethyl sulfonyl fluoride) and BHA (butylated hydroxyanisole) followed by 11-hour incubation of hypertonic buffer with TRIS HCl, NaCl, EDTA, PMSF and BHA .
  • the third treatment was incubation for 11 hours with a zwitterionic detergent solution (CHAPS) with NaCl, EDTA in PBS and followed by incubation with an anionic detergent solution (SDS) with NaCl and EDTA in PBS. All treatments were under 10% CO2 and 37°C under constant agitation and washed in PBS for 5 minutes after decellularization. The lawsuits do not mention the use of nucleases and do not mention ocular tissues.
  • CHAPS zwitterionic detergent solution
  • SDS anionic detergent solution
  • the study by Tedder et al. (2009) reports on moderate cross-linked collagen scaffolds for heart valve engineering.
  • the scaffolds were prepared from decellularized pericardium, treated with PGG (penta-galloyl glucose), a collagen-binding polyphenol.
  • PGG penta-galloyl glucose
  • the pericardium was washed in sterile saline solution, stored overnight in 4°C water. It was then treated with SDC and Triton X-100, EDTA and NaN3 in TRIS HCl buffer (pH 7.8) with moderate agitation for 6 days at 22°C and changing the solution after 3 days. After washing with water and 70% ethanol (to remove detergent residues), was incubated in DNase and RNase at 37°C for 24 hours. After washing, it was incubated with elastase for 6 days and then washed again until no soluble protein levels were detected in the BCA assay. The decularization process takes longer, does not use SDS and does not mention
  • tissues were subjected to solutions of trypsin, ethanol, hydrogen peroxide, TRIS-EDTA/Triton X-100 and peracetic acid for approximately 46 hours.
  • the decellularization process is longer than that proposed by the present application, in addition to not using nucleases and SDS and not using ocular tissues.
  • Triton X-100 sodium deoxycholate in 5 different methods, with different mixtures of these reagents.
  • the decellularization does not mention tissues of ocular origin.
  • Triton X-100 for 48 and 72 hours of incubation. Then, physical methods (freezing and thawing, ultrasound, perfusion, hydrostatic washing) combined with the optimal concentration of chemical reagents identified in the first study were tested and the chemical treatment time was limited to 48 h. Finally the samples were washed, digested with DNase and stored at -20°C. This study established as an optimal protocol a combination of two chemical detergents (0.5% SDS and 1% Triton X-100) with a physical method (washing under hydrostatic pressure of 200 mmHg) to decellularize the Achilles tendons. The process does not mention the use of EDTA, requires special equipment and does not mention eye tissue.
  • pancreatic tissue was initially decellularized using two 48-hour incubations with 2.5 mM sodium deoxycholate/PBS exchange. After this incubation, the tissue was rinsed with water and washed in PBS IX supplemented with antibiotics for 72 hours, with rinsing in water every 24 hours and replacement of fresh antibiotics performed every day. The resulting decellularized pancreatic matrix was lyophilized and stored at -80°C for future use. Decellularization does not mention the use of SDS or EDTA and there is no mention of ocular tissues.
  • the known methods for obtaining biomaterials for use as biological scaffolds comprise treatments that consume a lot of time, do not present adequate degree of decellularization and/or do not show reproducibility when applied on a large scale. Therefore, the tissue engineering area seeks the development of improved biomaterials for use as scaffolds or prostheses, as well as the development of a method for the production of these materials that can ensure greater efficiency and less variability in the final product.
  • the present patent application aimed to develop a method of production of decellularized biomaterial comprising extracellular matrix of biological origin, in which said method is capable of producing said matrix extracellular decellularized on a larger scale, shorter time and with a lower degree of variability and greater reproducibility of the final product.
  • Another objective of the present application is to provide a biomaterial comprising the decellularized extracellular matrix of biological origin with improved properties to be used as scaffolds, in the production of prostheses or as carriers of active substances.
  • Another objective of the present application is to provide a biomaterial comprising in addition to the decellularized extracellular matrix of biological origin with improved properties, at least one additional substance for systemic or localized release.
  • Another objective of this application is to provide the use of this biomaterial in the production of a product such as a scaffold, in the production of prostheses or a carrier of active substances for systemic or localized release in an individual who needs it, preferably in which is for use in tissue repair and/or regeneration processes, such as bone tissue, tissue cartilage, joints, tendon, skin, for prosthetic purposes in implant dentistry and/or maxillofacial traumatology, for filling and/or anatomical correction surgical procedures, among others.
  • tissue repair and/or regeneration processes such as bone tissue, tissue cartilage, joints, tendon, skin
  • Another objective of the present application is to provide the use of this biomaterial in the production of a product carrying water or alcohol soluble substances, nutrients, metabolites, growth factors, signaling molecules, regulatory molecules, hormones and drugs or pharmaceutical compounds assets, among others, in an individual or animal in need thereof.
  • the present patent application describes a method of production of decellularized biomaterial comprising decellularized extracellular matrix of biological origin, particularly in which the biological tissue is derived from ocular connective tissue, more particularly sclera of porcine, bovine, rabbit or human origin .
  • This method presents a better cost-benefit ratio, allowing to reduce the processing time, with efficiency in the decellularization process, reducing the variability between the final products and a greater reproducibility of the method proposed here.
  • biomaterials comprising extracellular matrix decellularized of biological origin with improved properties, as produced by the proposed method, to be used as scaffold, in the production of prostheses or as carriers of substances for systemic or localized release.
  • biomaterials such as produced by the proposed method, comprising in addition to the decellularized extracellular matrix of biological origin with improved properties, at least one additional active substance for systemic or localized release.
  • Said substance can be selected from the group consisting of: soluble substances in water or alcohol, nutrients, metabolites, growth factors, signaling molecules, regulatory molecules, hormones and drugs or pharmaceutically active compounds.
  • Another modality of this application is the use of this biomaterial in the production of a scaffold, in the production of prostheses and/or in the production of a carrier of active substances for systemic or localized release in an individual who needs it, preferably where is for use in tissue repair and/or regeneration processes, such as bone tissue, cartilage tissue, joints, tendon, skin, for prophetic purposes in implantology and/or oral-maxillofacial traumatology, for procedures surgical filling and/or correction anatomical, among others.
  • tissue repair and/or regeneration processes such as bone tissue, cartilage tissue, joints, tendon, skin
  • FIGURE 1A shows an image of the porcine eye in natura, as received, still with the tissues naturally belonging to this.
  • FIGURE 1B shows a representative image of the tissue cut, in order to clean the material leaving only the scleral tissue.
  • FIGURE 2A shows a representative image of the clean sclera, just before the decellularization process - External view.
  • FIGURE 2B shows a representative image of the clean sclera, just before the decellularization process - Internal view.
  • FIGURE 3 shows a representative image of a bioreactor used in the F protocol of decellularization.
  • FIGURE 4 shows the histological analysis of control porcine sclera (in natura) and the biomaterial produced after the decellularization protocols from A to F. (Arrows signal nuclei or nuclei residues).
  • FIGURE 5 shows a representative test plate demonstrating the color obtained through the hydroxyproline quantification procedure.
  • FIGURE 6A shows the layout used for deposition of the analyzed solutions on the nitrocellulose membrane for analysis of the content of collagen type I, collagen type II and elastin by dot blot.
  • FIGURES 6B, 6C and 6D show the dot blot performed for collagen type I, collagen type III and elastin, respectively.
  • FIGURES 7A and 7B show scanning electron microscopy images of in natura sclera samples. Arrow indicates cell presence.
  • FIGURES 8A and 8B show scanning electron microscopy images of dehydrated sclera samples. Arrow indicates cell presence.
  • FIGURES 9A and 9B show scanning electron microscopy images of dehydrated and rehydrated sclera samples. Arrow indicates cell presence.
  • FIGURES 10A and 10B show scanning electron microscopy images of samples of the produced decellularized biomaterial.
  • FIGURE 11A shows a Scatter dot plot of the Young's modulus of elasticity (GPa) for in natura sclera samples, decellularized biomaterial samples, decellularized and dehydrated biomaterial samples, and dehydrated and rehydrated decellularized biomaterial samples.
  • FIGURE 11B shows a Scatter dot plot of Maximum Stress (MPa) for in natura sclera samples, decellularized biomaterial samples, decellularized and dehydrated biomaterial samples, and dehydrated and rehydrated decellularized biomaterial samples.
  • MPa Maximum Stress
  • FIGURES 12 A-D show the steps of the implantation procedure, in the subcutaneous tissue of an animal, of the decellularized biomaterial.
  • FIGURES 13-17 show representative images of histological sections of the implants of the biomaterial in an animal.
  • FIGURES 18 A-D show statistical analysis of the evaluated parameters. A) acute inflammation; B) presence of fibroblasts; C) presence of vessels and D) presence of giant cells.
  • FIGURES 19 A and B show images representative of histological sections of implants of decellularized biomaterial in tendon injury with 49 and 114 days respectively.
  • FIGURE 20 A shows a representative image of the histological section of the region of the implant of decellularized biomaterial in tendon injury.
  • FIGURE 20 B shows a representative image of a histological section of tissue adjacent to the injured native tendon.
  • FIGURES 20 C and D show representative images of histological sections of healthy native tendon that was removed for replacement by implant with decellularized biomaterial.
  • FIGURE 21 shows a representative image of the histological section of the implant region of the decellularized biomaterial in tendon injury showing the presence of blood vessels and hyperemia in the region of interaction with the implant in the first experimental time (49 days).
  • FIGURE 22 shows representative image of histological section showing the loose connective tissue that covers the injured tendon region.
  • FIGURES 23 A and B show representative images of the histological section of the implant of decellularized biomaterial interacting with the native tendon in the second experimental time (114 days).
  • FIGURES 24 A and B show representative histological cut images showing the profile of predominant cells of native tendon that infiltrate the biomaterial implant in the first experimental time (49 days) (A) and in the second experimental time (114 days) (B).
  • FIGURES 25 AD show representative images of histological sections showing the implant in bone tissue of a product available on the market (bone graft granules marketed as Bio-Oss®)), after 49 days - control group.
  • FIGURES 26 A-D show representative images of histological sections showing the implant in bone tissue of a product available on the market (bone graft granules marketed as Bio-Oss®), after 130 days - control group.
  • FIGURES 27 A and B show representative images of histological section showing the interaction of the implant of decellularized biomaterial with native bone tissue, after 49 days.
  • FIGURES 28 A-D show representative images of histological section showing the implantation of decellularized biomaterial in bone tissue showing the integration of the biomaterial with the native bone tissue, after 130 days.
  • FIGURE 29 shows representative images of histological section showing the implantation of decellularized biomaterial associated with simvastatin in bone tissue, after 49 days.
  • FIGURES 30 A and B show representative images of histological section showing the integration of the implant of decellularized biomaterial associated with simvastatin in bone tissue after 49 days.
  • FIGURE 31 A and B show representative histological cut images showing the infiltration in the implantation of decellularized biomaterial associated with simvastatin in bone tissue after 130 days.
  • FIGURE 32 shows representative image of histological section showing the cartilage lesion that received the implant, after 30 days.
  • FIGURES 33 A-C show representative images of histological section showing good integration between the biomaterial implant, the articular cartilage and the newly formed connective tissue.
  • FIGURES 34 A-F show images of surgical correction of filling and anatomical correction of eyelid retention using biometral.
  • the present application describes a method of producing a decellularized biomaterial from biological tissue, comprising the steps of:
  • Said method further comprises a dehydration step that can preferably occur after a decontamination step and before the sterilization step, and a rehydration step of the decellularized biomaterial.
  • the biological tissue used in said method is derived from ocular connective tissue, even more particularly sclera of porcine, bovine, rabbit or human origin.
  • the present application also describes the decellularized biomaterial produced by said production method.
  • Said biomaterial comprising decellularized extracellular matrix of biological origin with improved properties, wherein said matrix comprises collagen type I, III and elastin fibers.
  • this application describes the use of said decellularized biomaterial produced as a scaffold, prosthesis or carrier of active substances in an individual in need of it.
  • Example 1- Collection and processing of samples of animal origin.
  • the animal eyeball samples were collected in slaughterhouses. In the example shown here, they were porcine eyeball samples collected in slaughterhouses that process swine exclusively (FIGURE IA). Immediately after collection, the samples were immersed in saline solution (0.9% NaCl) and kept refrigerated in a thermal container, until receipt by the laboratory. The transport time to the laboratory should be as short as possible, always shorter to 1Oh.
  • Decellularization is a strategy that seeks to reduce or nullify the chances of adverse immunogenic reaction against the use of biological scaffolds. This technique acts in the removal of cells from the tissue in question, as well as in the elimination of the genetic material present there, but seeking to maintain the elements of the extracellular matrix and preserve the mechanical properties necessary to maintain the functionality of the scaffold.
  • the sclera were initially washed 1-5 times in TBS solution for 1 to 20 minutes, at a temperature between 0 to 25 °C, under agitation between 80 to 200 rpm. After washing, incubation was performed using hypotonic buffer (5 to 20 mM TRIS, of 0.05 to 1% m/v of EDTA, pH between 6 to 8) for 1 to 18h, under agitation between 80 to 200 rpm, at a temperature between 4 to 37 °C.
  • hypotonic buffer 5 to 20 mM TRIS, of 0.05 to 1% m/v of EDTA, pH between 6 to 8
  • the samples were treated with detergent buffer (5 to 20 mM TRIS, 0.05 to 1% m/v of EDTA and 0.05 to 2% SDS) under agitation at 80 to 200 rpm for 5 to 24 hours , at a temperature between 4 to 37 °C. Then, the samples were washed in deionized water, for 30 minutes to 4 hours, at a temperature of between 4 to 37 °C under agitation of between 80 to 200 rpm and the washings were carried out with isotonic buffer (TBS solution) for 5 to 15 minutes, at a temperature between 4 to 37 °C, under agitation between 80 to 200 rpm.
  • detergent buffer 5 to 20 mM TRIS, 0.05 to 1% m/v of EDTA and 0.05 to 2% SDS
  • the protocol was followed with incubation of biological samples with nuclease buffer (10-50 mM TRIS, 2-10 mM MgC12, 1 to 80 U/ml of DNAse and 0.05 to 80 U/ml of RNAse), between 30 minutes at 3h, under agitation between 100-200 rpm, and at a temperature between 30 to 40 °C. After this step, the samples were subjected to final washes in phosphate-buffered saline (PBS) comprising from 0.05 to 1% m/v of EDTA, for up to 5 minutes at a temperature between 25 to 37 °C, under stirring between 80 at 200 rpm.
  • PBS phosphate-buffered saline
  • Table 1 Description of the initial decellularization protocol and test protocols with the necessary modifications performed.
  • protocol A faithfully followed what was described by the study by Kasbekar et al. (2018).
  • the proposed protocol B shows as a difference the concentration of benzonase used in the nuclease buffer, being increased from 1 U/mL to 5 U/mL.
  • Protocol C raises this concentration to 10 U/mL.
  • Protocol D replaces benzonase with DNase and RNase (80 U/mL), while protocol E uses 8 U/ml of DNase and RNase, as well as reducing all rotations during the process, preferably from between 80 rpm to 200 rpm, more preferably from between 90 to 180 rpm, even more preferably 100 rpm and add one step of washing with deionized water after incubation with detergent buffer, preferably for 4 hours, at a temperature of 25°C and rotation of 100 rpm, with two changes in this interval.
  • the decellularization efficiency criteria covers an amount of less than 50 ng of DNA/mg of extracellular matrix (dry weight), as well as the absence of intact DNA and visible nuclear material in the histological analysis.
  • protocols A, B and C did not reach the DNA/mg tissue limit required for an efficient decellularization. These protocols used benzonase (nuclease from Serratia marcescens), a promiscuous endonuclease that attacks and degrades all forms of DNA and RNA (Nestle and
  • the decellularized biomaterial was decontaminated by performing an initial wash in sterile PBS and then soaked in sterile lx PBS (approximately 30 mL) containing concentrated antibiotic and/or antimycotic solution.
  • the concentrated antibiotic and/or antimycotic solution comprises at least one compound with antibiotic action and at least one compound with antimycotic action, but particularly in which it comprises: penicillin, streptomycin and amphotericin B.
  • the samples were stored in this solution for about 36h to 60h, preferably about 48h, at a temperature of about 2°C to 8°C, preferably 4°C.
  • Example 3b Protocol for sterilization of decellularized biomaterial.
  • the sterilization step took place using ethylene oxide.
  • the biomaterial samples were then cut into specific dimensions to carry out the tests, and dried at room temperature for about 30 minutes to 1 hour. After drying, they were packaged and sealed in surgical grade paper, ensuring identification and sealing to verify the sterilization by ethylene oxide later.
  • the quantification of hydroxyproline aims at the indirect determination of the collagen content of the biomaterial produced.
  • HP amino acid dilution curve
  • Figure 5 shows on the left side, in triplicate, the standard curve of hydroxyproline as a control, with decreasing dilutions of this substance vertically. The darker, the greater the concentration of hydroxyproline, which is one of the main components of collagen. On the right side, three samples of the individual decellularized biomaterial had the hydroxyproline quantification performed in 3 vertically decreasing dilutions.
  • the reaction was prepared in 96-well plates in which 5-50 pL of samples were added to the wells, as well as 5-50 pL of each solution of the hydroxyproline dilution curve, and the assay was performed in triplicate. Plates were dried to remove hydrochloric acid. After drying, 50-500 ⁇ l of Chloramine T reagent (Citrate-Acetate Buffer, 50% n-propanol and Chloramine T, pH 6.5) was added. Plates were incubated at room temperature 2 to 10 minutes.
  • the mean concentration was 103.76 pg of hydroxyproline per milligram of biomaterial, which corresponds approximately to 769 pg of collagen per milligram of biomaterial.
  • the collagen content of the decellularized biomaterial produced corresponds to 76.9% of its weight.
  • the result shows that the decellularized biomaterial has a high concentration of hydroxyproline and, therefore, a large amount of collagen.
  • Example 5- Test of dehydration and rehydration of the decellularized biomaterial.
  • This experiment aimed to know and measure the reabsorption capacity of aqueous or alcoholic solutions from the dehydrated biomaterial.
  • fragments of different sizes of the decellularized biomaterial for example: 0.6 x 0.6cm; 1.0 x1.0cm; 1.5 x1.5cm
  • concentrations 45 %, 55%, 65%, 75%, 85%, 95% and 100% volume/volume
  • the fragments were again weighed and subjected to rehydration and incubated for about 20 minutes to 40 minutes, with at least one substance selected from the group consisting of: water, alcohol, water-soluble substances or alcohol , nutrients, metabolites, growth factors, signaling molecules, regulatory molecules, hormone, drugs and/or pharmaceutically active compounds.
  • the biomaterial was subjected to rehydration by adding fixed volumes of water and incubated for up to 30 minutes at room temperature (with quantification of the volume absorbed every 15 minutes). After rehydration, the fragments were weighed again and the reabsorbed volume was measured (Tables 3 and 4).
  • the dehydration step occurs after the steps of decellularization and decontamination of the biometal.
  • the decontamination process being carried out with a solution that comprises at least one antibiotic and/or antimycotic.
  • the step of Dehydration can be performed after the decellularization of the biomaterial, regardless of whether there is an initial decontamination step or not, but before submitting it to the sterilization step.
  • the sterilization process being carried out with ethylene oxide or by any other method known to a person skilled in the art, such as using gamma radiation.
  • the product then obtained by the said process comprises a decellularized, dehydrated and decontaminated and/or sterilized biomaterial, which can be stored, and may then go through a rehydration step and/or association with at least one active compound only when used .
  • the objective was to qualitatively identify the presence of type I collagen, type III collagen and elastin in the decellularized biomaterial produced. Briefly, three nitrocellulose membranes were sensitized with tiny fragments of in natura sclera, dehydrated and rehydrated sclera and the decellularized biomaterial produced. Primary antibodies against each protein were used as positive controls for the reactions. The free protein binding sites present on the nitrocellulose membrane were blocked by the addition of PBS-milk 1-3% buffer, until the membranes are completely covered, under agitation, at 20-40°C, for 1-5h.
  • the membranes were washed 1-7 times with 1x PBS buffer and each membrane was incubated with specific primary antibody, diluted in 1x PBS, under shaking at 20-40°C, for 1-5h. After washing 1-7 times with PBS 1x-Tween buffer (PBS-T) 0.05%-1%, it was incubated with the respective IgG-specific secondary antibodies, labeled with peroxidase, diluted in PBS, with shaking at 20-40°C, for 1-5h. Finally, the membranes were again washed 1-7 times with PBS-T 0.05% buffer and the reaction was developed with a DAB solution (3,3'-Diaminobenzidine).
  • PBS-T PBS 1x-Tween buffer
  • Figure 6 shows the dot blot of the evaluated proteins, revealing the presence of each type of protein
  • Figure 6A shows the layout of the experiment
  • Figures 6B, 6C, and 6D are representative dot blot images for collagen type I, collagen type III, and elastin, respectively.
  • Example 7 Morphological analysis of the biomaterial under a scanning electron microscope.
  • Figures 7A and 7B show scanning electron microscopy of in natura sclera samples, with magnification of 833 times and 2900 times, respectively. The presence of cells can be clearly visualized as indicated by the arrow in Figure 7B.
  • Figures 8A and 8B show scanning electron microscopy of dehydrated sclera samples, at 833-fold and 7100-fold magnification, respectively. The presence of cells can be clearly seen as indicated by the arrow in figure 7B.
  • Figures 9A and 9B show scanning electron microscopy of dehydrated and rehydrated sclera samples, with magnification of 1250 times and 2640 times, respectively. The presence of cells can be clearly visualized as indicated by the arrows in Figure 7B.
  • Figures 10A and 10B show the scanning electron microscopy of samples of the decellularized biomaterial produced, with an increase of 923 times and 5520 times, respectively. The presence of cells was not identified, as well as collagen and elastin fibers remain without apparent or relevant alteration.
  • a biomechanical test was carried out to evaluate the resistance of sclera and biomaterials produced under different conditions, in order to assess the physical properties of this biomaterial, enabling to indicate possible applications in the scope of regenerative medicine.
  • approximately 12 fragments of sclera samples were used under the following conditions: in natura sclera, produced decellularized biomaterial, dehydrated decellularized biomaterial (in increasing concentrations of ethanol) and dehydrated and rehydrated decellularized biomaterial (dehydrated in increasing concentrations of ethanol and rehydrated in water for 30-50 min). All fragments were obtained from the central region of each sclera in natura, with approximate measurements of 5 x 20 x 1 mm (width x length x thickness).
  • the specimens were subjected to tensile testing using a Universal Testing Machine model WDW 38/56 - 1000E from TIME Group Inc. To obtain the forces exerted, a load cell with a maximum capacity of 50 was used kgf and the deformations were captured by the machine's internal displacement sensors. The specimen was attached to two claws 5 mm apart. THE force application speed was 2 mm/min.
  • FIGURE 11A shows a Scatter dot plot of the Young's modulus of elasticity (GPa) for in natura sclera samples (In natura), decellularized biomaterial samples (Decellularized), dehydrated decellularized biomaterial samples (Dehydrated) and samples of the decellularized biomaterial dehydrated and rehydrated (Rehydrated).
  • Young's modulus of elasticity used in this study describes the ratio between stress and strain in the direction of the applied load, being the maximum stress that a material supports without suffering permanent deformation.
  • E the elasticity parameter
  • the samples of dehydrated decellularized biomaterial and decellularized biomaterial showed significantly greater rigidity when compared to the in natura sclera sample.
  • the decellularized decellularized biomaterial sample also exhibited significantly greater rigidity compared to the dehydrated and rehydrated decellularized biomaterial sample.
  • FIGURE 11B shows a Scatter dot plot of Maximum Stress (MPa) for in natura sclera samples (In natura), decellularized biomaterial samples (Decellularized), dehydrated decellularized biomaterial samples
  • Example 9 Subcutaneous implantation of decellularized biomaterial to check for local inflammation.
  • the animals were anesthetized with isoflurane, trichotomy and antisepsis of the region were performed and, soon after, longitudinal incisions were made with a scalpel blade.
  • the subcutaneous region was divulged with the aid of blunt-tipped scissors and then a 0.5 cm x 0.5 cm x 0.2 cm fragment of decellularized biomaterial was introduced in one of the incisions and, in another incision, was only tissue dissemination was performed without introducing any biomaterial, to be used as a control.
  • the incisions were sutured and the animals were kept under observation until the end of anesthesia.
  • the animals were euthanized after 5 and 15 days (acute and chronic inflammation, respectively) after the implantation of the biomaterial.
  • FIG. 12 AD illustrate the implantation procedure, in the subcutaneous tissue of rats, of the decellularized biomaterial.
  • Figure 12A shows the animals under anesthesia with an isoflurane mask.
  • Figure 12B shows the implantation of the biomaterial.
  • Figure 12C shows the suture of the incisions.
  • Figure 12D shows the removal of the implant region after 5 or 15 days of surgery.
  • Figure 13 shows a representative image of an HE-stained histological section of the control group, showing acute inflammation after 5 days.
  • Figure 14 shows representative images of the histological section of the subcutaneous implant of bimaterial after 5 days of implantation.
  • the insert shows a determined field, showing the contact area of the inflammatory infiltrate with the biomaterial.
  • Figure 15 shows a representative image of the histological field of the subcutaneous implant of biomaterial after 5 days of implantation. Arrows indicate fibroblasts infiltrating the biomaterial (material shown on the right) and the dotted circle is an example of a blood vessel.
  • Figure 16 shows representative images of the histological section of the subcutaneous implant of biomaterial after 15 days of implantation.
  • the insert shows a determined field, showing the contact area of the inflammatory infiltrate with the implanted biomaterial.
  • Figure 17 shows representative image of the histological field of the subcutaneous implant of biomaterial after 15 days of implantation. Arrows indicate fibroblasts infiltrating the biomaterial (material highlighted on the left side). Dotted circles indicate blood vessels.
  • Dotted rectangles indicate giant cells multinucleated .
  • Vascularization in turn, showed a significant increase in the 5-day post-implant group when compared to its respective control ( Figure 18C), while the presence of giant cells showed a significant increase in the 15-day post-implant group compared to the group control 5 days ( Figure 18D).
  • Figure 18C the presence of vessels
  • Figure 18D the presence of giant cells
  • the 15-day post-implant group compared to the group control 5 days
  • FIG 18D the presence of vessels, it was visually possible to perceive neovascularization within the biomaterial, 15 days after implantation; suggesting integration by the organism.
  • the presence of a greater number of migrating fibroblasts to the interior of the biomaterial within 15 days of implantation suggests that there is tissue remodeling and/or tissue degradation in the region peripheral to the biomaterial.
  • the animals were randomly divided into two groups with five animals each, to be euthanized in the first experimental time of 49 days (D49) and second experimental time of 114 days (D114) postoperatively. On the days of euthanasia, the animals were clinically evaluated with normal mucosa, vital signs and behavior. [0164] After the incision, in the same region as the previous surgery, the surgical piece was collected and stored in a solution containing 10% formalin and sent for histological slides stained with hematoxylin and eosin. [0165] The assessment of lameness and histological analysis was performed at both experimental times (D49 and D114).
  • Figure 19 (A) shows the inflammatory infiltrate diffuse and the implanted decellularized biomaterial in experimental group D49 and Figure 19 (B) shows the less diffuse and more defined inflammatory infiltrate (indicated by ⁇ ⁇ ) around the implanted decellularized biomaterial (indicated by *) in the second experimental group D114.
  • Figure 20 (A) shows the region of the implanted biomaterial (indicated by *); injured native tendon (indicated by bb) and intermediate region to the native tendon and the implant (highlighted.
  • Figure 20 (B) shows the tissue adjacent to the injured native tendon, with disorganized and hypercellularized fibers.
  • Figure (C) shows the healthy native tendon that has been removed for implant replacement
  • Figure (D) shows in greater magnification of a region of healthy native tendon.
  • FIG 21 shows the presence of blood vessels and hyperemia in the region of interaction of native tissue with the biomaterial implant in the first experimental time D49 (indicated by the arrows).
  • Figure 22 shows a microscopic image of loose connective tissue (indicated by ]), which overlies the injured tendon region (indicated by #).
  • FIGs 23 (A) and (B) show the implant of decellularized biomaterial in interaction with the native tendon in the second experimental time.
  • the implant (indicated by *) is seen to be infiltrated by host cells; with a predominance of those with fibroblast characteristics (indicated by the thick arrows).
  • the fibers in the region of implant-tendon interaction (indicated by the black arrows) tend to organize with increased compaction and parallel arrangement between them; becoming, in this region of the implant, with a histological aspect of tissue organization similar to that of the native tendon (indicated by #).
  • Figures 24 (A) and (B) show the profile of predominant cells that infiltrated the implant: first experimental time D49 (A) and second experimental time
  • Example 11 Implantation of the biomaterial in bone.
  • Fragments from the surgical site were removed after 49 (D49) and 130 (D130) days.
  • the samples were fixed in a solution containing 10% formalin, dehydrated in increasing concentrations of ethanol, cleared in xylene, infiltrated, embedded in paraffin and stained with hematoxylin and eosin for further histological analysis under a light microscope.
  • Figures 25 show lamina intestinal of the oral mucosa with the presence of the implanted commercial bone graft granules (indicated by *).
  • A it is possible to observe the dense connective tissue where the graft is implanted (indicated by #) and loose connective tissue at the top (started by a square bracket).
  • B the commercial graft granule (indicated by *) is highlighted with the formation of the adjacent bone blastema, this process being expanded and detailed in (C) and (D), from the control group D49.
  • Figures 26 show the D130 control group.
  • BIOMATERIAL D49 group it was possible to observe the intimate contact of the decellularized biomaterial with the alveolar bone of the animal, with a high number of cells intermingling the region of the sclera and angiogenesis within the biomaterial, these characteristics are remarkable at this experimental time. Areas with significant inflammatory infiltrate were not seen (Figure 27).
  • Figures 27 show the BIOMATERIAL D49 group.
  • BIOMATERIAL D130 group is notorious the presence of numerous blood vessels, proposing moderate angiogenesis within the implant of deceluarized biomaterial and intimate contact of that implant with a region that suggests mild bone formation. Bone formation presented a disorganized or slightly organized pattern, not differing from the initial time, D49. In the biomaterial, cells were also observed intermingled in its interior and in the region adjacent to the bone of the experimental animal (Figure 28).
  • FIG. 28 show the BIOMATERIAL D130 group.
  • A there are areas of intimate integration between the biomaterial implant and the animal's bone (indicated by [) and implant and loose connective tissue (indicated by ⁇ ).
  • the implant of decellularized biomaterial (indicated by #) now presents possible osteoprogenitor cells in its interior and the presence of a small cellular infiltrate intermingling with its fibers.
  • B the presence of possible adipocytes is highlighted, probably originating from the bone marrow (indicated by arrows).
  • C and (D) note the deposition of the newly formed bone (indicated by *) on the implanted biomaterial.
  • BIOMATERIAL WITH ACTIVE COMPOUND group which evaluated the ability of the biomaterial to be used in combination with active substances, also serving as a carrier, in this case using simvastatin, the histological evaluation showed the presence of greater bone volume compared to other groups ( Figure 29), where it is possible to observe the alveolar bone and adjacent areas of bone neoformation.
  • Figure 29 shows the group BIOMATERIAL WITH ACTIVE COMPOUND D49 .
  • the image is a photomicrograph demonstrating the presence of the gingival mucosa epithelium (indicated by arrow), lamina basement (indicated by [) of the mucosa and the region where the biomaterial with simvastatin was positioned (indicated by ⁇ ) adjacent to the alveolar bone of the animal (indicated by*).
  • the region of bone neoformation (#) is highlighted in the rectangle.
  • FIG. 30 show the group BIOMATERIAL WITH ACTIVE COMPOUND D49. Interaction region between biomaterial with simvastatin and alveolar bone (A) and connective tissue (started by [).
  • the newly formed bone has disorganized collagen fibers as shown in image (B) and growth lines (indicated by arrows on A and B) that distinguish it from alveolar bone.
  • Figures 31 show the BIOMATERIAL WITH group
  • the decellularized biomaterial produced by the method described in this patent application apparently presented an osteoconductive and osteoinductive role, in addition to favoring cell migration. Furthermore, it demonstrated the possibility of being used in combination with active compounds, for example carrying compounds directly to the implant site.
  • Simvastatin is a drug used in the treatment of hyperlipidemia and has osteogenic and anti-resorptive pleiotropic effects already studied in vitro (showing changes in cell dynamics resulting from the effects of simvastatin on bone tissue, which are associated with increased expression of morphogenetic bone protein- 2 (BMP-2), stimulating the proliferation and differentiation of osteoblasts) .
  • BMP-2 morphogenetic bone protein- 2
  • Example 12- Implantation of the biomaterial in a cartilage lesion.
  • the animals were sent to the pens, monitored daily with clinical examinations and immobilized with a bandage for 5 days.
  • the animals were euthanized by pre-anesthetic medication and the surgical site was removed.
  • the surgical piece was fixed in 4% formalin and demineralized with formic acid solution. The procedures for performing the histological slides, stained with Hematoxylin and Eosin, were followed.
  • Figure 32 shows a histological section of the group that suffered the cartilage lesion and received the implant, in an experimental time of 30 days post-surgery.
  • the dashed line indicates the approximate delimitation of the implant at the lesion site.
  • the bracket (]) indicates the region of native articular cartilage and the arrows illustrate the interaction with the bone tissue (subchondral region).
  • Figures 33 show a histological section of the group that suffered the cartilage lesion and received the implant, in an experimental time of 30 days post-surgery. The figure
  • FIG. 1 is a representative image of the histological section with the demarcated regions that were enlarged for a better analysis in (B) and (C).
  • the arrows indicate the region of integration between the articular cartilage and the newly formed connective tissue, indicating important integration with the implant. Circles indicate chondrocyte mitosis figures.
  • Figure (C) shows the region of the biomaterial implant with fibroblast infiltration, deposition of new extracellular matrix, which leads to the loss of border delimitation, due to good tissue integration (lower left).
  • the biomaterial implant was then prepared in the appropriate size to be surgically implanted in the desired eyelid ( Figure 34 B-D).
  • Figure 34 (E) shows the result of surgery right after the procedure.
  • Figure 34 (F) shows the result of the filling and anatomical correction surgery using the decellularized biomaterial of the present patent application, approximately 10 months after the aforementioned surgical procedure. The patient did not present rejection of the implanted biomaterial, and the filling and anatomic correction was a success, aesthetically recovering the symmetry of the patient's eyes.
  • this application describes a method of production of decellularized biomaterial that comprises the steps of:
  • biological tissue preferably in which the biological tissue is derived from ocular connective tissue, preferably scleras of porcine, bovine, rabbit or human origin;
  • Said isotonic buffer of steps (a) and (e) is a TRIS buffered saline (TBS) solution comprising from 10 - 100 mM TRIS and 100 - 200 mM NaCl.
  • the hypotonic buffer of step (b) comprises 5 to 20mM TRIS; from 0.05 to 1% m/v EDTA and pH from 6 to 8.
  • the detergent buffer of step (c) comprises from 5 to 20mM of TRIS; from 0.05 to 1% m/v EDTA; and from 0.05 to 2% m/v SDS.
  • the nuclease buffer of step (f) comprises from 10 to 50 mM TRIS; 2 to 10 mM MgCl2; from 1 to 80 U/ml DNAse; and/or from 0.05 to 80 U/ml RNAse.
  • Step (d) comprises at least one wash water change in half the total time. Said method can be carried out in a semi-automated way for large-scale production, preferably steps (a) to (g) can be carried out in a bioreactor.
  • the step of decontamination of decellularized biomaterial comprises the use of at least one antibiotic and/or antimycotic.
  • the step of decontaminating the decellularized biomaterial using antibiotic and/or antimycotic comprises: i- washing the decellularized biomaterial at least once with sterile phosphate-buffered saline (PBS); ii- soak the decellularized biomaterial in sterile phosphate-buffered saline (PBS) containing concentrated antibiotic and/or antimycotic solution; iii- keep the decellularized biomaterial soaked in said solution for about 36 to 60 hours, at a temperature of 2 to 8°C; and iv- wash the decellularized and sterilized biomaterial at least once with sterile phosphate-buffered saline (PBS).
  • PBS sterile phosphate-buffered saline
  • PBS sterile phosphate-buffered saline
  • the concentrated solution of antibiotic and/or antimycotic comprises at least one compound with antibiotic action and at least one compound with antimycotic action.
  • the concentrated antibiotic and/or antimycotic solution comprises: penicillin, streptomycin and amphotericin B.
  • the sterilization step of the decellularized biomaterial comprises the use of ethylene oxide or any other method known to a person skilled in the art, such as the use of gamma radiation
  • Said method of production of decellularized biomaterial further comprises a dehydration step that can preferably occur after a possible decontamination step and before the sterilization step.
  • the dehydration step comprises submitting the decellularized biomaterial or the decellularized biomaterial and decontaminated to a dehydration process in which said biomaterial is incubated with increasing concentrations of an alcohol, preferably in which the alcohol concentration increases from 45%, 55%, 65%, 75%, 85%, 95% to 100% volume/volume, and in which said biomaterial is incubated for at least 3 hours in each of said concentrations of alcohol.
  • the method may further comprise a step of rehydration of the dehydrated biomaterial, which may preferably occur after the sterilization step, which comprises the incubation of said dehydrated biomaterial, for about 20 to 40 minutes, with at least one selected substance from the group consisting of: water, alcohol, water or alcohol soluble substances, nutrients, metabolites, growth factors, signaling molecules, regulatory molecules, hormone, drugs and/or pharmaceutically active compounds (eg simvastatin) .
  • a step of rehydration of the dehydrated biomaterial which may preferably occur after the sterilization step, which comprises the incubation of said dehydrated biomaterial, for about 20 to 40 minutes, with at least one selected substance from the group consisting of: water, alcohol, water or alcohol soluble substances, nutrients, metabolites, growth factors, signaling molecules, regulatory molecules, hormone, drugs and/or pharmaceutically active compounds (eg simvastatin) .
  • the application also describes the decellularized biomaterial produced by said method, which comprises a decellularized extracellular matrix of biological origin, wherein said matrix predominantly comprises collagen type I, III and elastin fibers.
  • the biomaterial can be used in combination with at least one active substance or it may comprise at least one active substance selected from the group consisting of: water or alcohol soluble substances, nutrients, metabolites, growth factors, signaling molecules, regulatory molecules, hormone, drugs and/or pharmaceutically active compounds (eg simvastatin ).
  • the biomaterial being for use in the production of a scaffold product, prosthesis and/or carrier of active substances for systemic or localized release in an individual in need thereof.
  • tissue repair and/or regeneration processes preferably bone tissue, cartilage tissue, joints, tendons, skin, for prophetic purposes in implantology and/or oral and maxillofacial traumatology -facial, for surgical procedures for filling and/or anatomic correction, or in the production of prostheses.
  • Extracellular matrix hydrogels from decellularized tissues Structure and function. Acta Biomaterialia, 49, 1-15. https://doi.Org/10.1016/j.actbio.2016.ll.068 [0248] Sawkins, M.J., Bowen, W., Dhadda, P., Markides,
  • Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomaterialia, 9(8), 7865-7873. https://doi.Org/10.1016/j.actbio.2013.04.029 [0249] Seif-naraghi, SB, Horn, D., Schup-magoffin, P.
  • the present patent application relates to the field of tissue engineering.
  • a method of producing decellularized biomaterial from biological tissue as well as the decellularized biomaterial produced by said method comprising extracellular matrix of biological origin.
  • biological tissue is derived from ocular connective tissue of animal or human origin. More particularly it refers to a method of production of decellularized biomaterial from animal sclera for the production of biological scaffold, prosthesis and/or carrier of active substances (or combined with active substances), as well as the biomaterial itself and its uses as scaffolds, prostheses or substance carriers for systemic or localized release.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Botany (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Dispersion Chemistry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Inorganic Chemistry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)

Abstract

O presente pedido de patente refere-se ao campo da engenharia de tecidos. Em particular a um método de produção de biomaterial descelularizado a partir de tecido biológico, bem como o biomaterial descelularizado produzido pelo referido método compreendendo matriz extracelular de origem biológica. Particularmente o referido tecido biológico deriva de tecido conjuntivo ocular de origem animal ou humana. Mais particularmente refere-se a um método de produção de biomaterial descelularizado a partir de esclera animal para produção de scaffold biológico, prótese e/ou carreador de substâncias ativas (ou combinado com substâncias ativas), bem como o biomaterial em si e seus usos como scaffolds, próteses ou carreadores de substâncias para liberação sistêmica ou localizada.

Description

Relatório Descritivo da Patente de Invenção: "MÉTODO DE PRODUÇÃO DE BIOMATERIAL DESCELULARIZADO, BIOMATERIAL DESCELULARIZADO E USO DO MESMO".
Campo da Invenção
[001] O presente pedido de patente refere-se ao campo da engenharia de tecidos. Em particular a um método de produção de biomaterial descelularizado a partir de tecido biológico, bem como o biomaterial descelularizado produzido pelo referido método compreendendo matriz extracelular de origem biológica. Particularmente o referido tecido biológico deriva de tecido conjuntivo ocular de origem animal ou humana. Mais particularmente refere-se a um método de produção de biomaterial descelularizado a partir de esclera animal para produção de scaffold biológico, próteses, e/ou como carreadores de substâncias ativas para liberação sistémica ou localizada, bem como o biomaterial descelularizado em si e seu uso.
Fundamentos da Invenção
[002] Na engenharia de tecidos, o desenvolvimento de novos biomateriais é fundamental para melhorar cada vez mais as caracteristicas necessárias para aumentar a efetividade desses materiais quando usados como scaffold ou para produção de próteses, reduzindo a possibilidade de rejeição desses biomateriais em sistemas biológicos. Sendo assim, um biomaterial pode ser definido como um material destinado a fazer a interface com os sistemas biológicos, com intuito de avaliar, tratar, aumentar ou substituir um órgão, tecido ou função do organismo.
[003] O desenvolvimento da medicina regenerativa é baseado no uso de uma matriz ou scaffold que funcionará como um arcabouço de sustentação para células de interesse, a fim de auxiliar na regeneração ou construção de um novo tecido, bem como permite o transporte de nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, outras moléculas regulatórias, medicamentos, dentre outros.
[004] Os scaffolds podem ser de origem sintética ou biológica. O uso de scaffolds sintéticos é vantajoso, pois suas propriedades químicas e físicas podem ser facilmente manipuladas de acordo com o objetivo que se propõe e de acordo com o tipo celular a ser utilizado. No entanto, os scaffolds biológicos, diferentemente dos sintéticos, são compostos de matriz extracelular natural derivados de tecidos, como tendões, ligamentos, submucosa do intestino delgado, bexiga e fígado (BADYLAK, 2008; MENG et al., 2014). Sendo assim, os scaffolds biológicos, por apresentarem matriz extracelular natural, podem manter fatores de crescimento e elementos estruturais, como elastina, fibronectina e colágeno, fornecendo ambiente propício para adesão, diferenciação e proliferação celular (PARENTEAU-
BAREIL et al 2010). [005] Os scaffolds oferecem propriedades estruturais, bioquímicas e biomecânicas capazes de direcionar e regular o comportamento celular e o desenvolvimento tecidual (GILPIN & YANG, 2017). As células que são utilizadas na engenharia de tecidos podem provir do próprio paciente (autólogas), de outro indivíduo (alogênicas), ou ainda de indivíduos de espécies diferentes (xenogênicas) (ABBAS; LICHTMAN; PILLAI, 2012).
[006] Para reduzir as chances de reação imunogênica e rejeição de scaffolds biológicos, a descelularização é uma técnica muito utilizada, pois elimina a presença de possíveis partículas antigênicas (BADYLAK et ai., 2002). A descelularização pode ser realizada a partir de procedimentos químicos e enzimáticos, físicos e combinativos . Essa estratégia busca fazer a remoção das células do tecido em questão, bem como eliminar o material genético ali presente, com o propósito de prevenir possível reação imunológica, assim como manter os elementos da matriz extracelular preservando as propriedades mecânicas necessárias à manutenção da funcionalidade do scaffold (GILPIN & YANG, 2017). Embora a descelularização seja um processo utilizado, existem métodos distintos para realizá- la. Cada método guardando as suas particularidades, vantagens e desvantagens, bem como sendo aplicados em materiais biológicos distintos e de origens distintas. [007] A patente CN107007886 descreve a descontaminação de submucosa intestinal, bovina ou suina, utilizando ácido periacético e etanol e, após inativação virai, uso de tripsina, PBS, EDTA e ultrasonicação da submucosa para descelularização . Essa patente não utiliza detergentes, não utiliza nuclease e utiliza um equipamento oneroso, que é o ultrasonicador e não cita nenhum tecido ocular.
[008] A patente CN105944142 descreve três métodos de descelularização de tendão ou ligamento, utilizando uma solução de proteção (meio de cultura de células, condroitina, dextrano, antibiótico e ácido hialurônico, sob pressão) antes e após o tratamento com detergente e enzimas. Apresenta temperatura de incubação de nuclease de 25 ou 30°C. No entanto, não apresenta uso de quelante (EDTA), ou uso de tampão hipotônico, nem utiliza RNase para o processo de descelularização, não utiliza a temperatura padrão da DNase que é de 37°C e não cita a possibilidade de uso em um tecido ocular.
[009] A patente CN105833353 apresenta processo de descelularização da pele de origem suina, que utiliza solução protetora (condroitin sulfato, ácido hialurônico, glicerol e neomicina), adiciona ainda condição de alta pressão estática, seguido de incubação com nucleases que pode ser realizada simultaneamente ou separada da incubação com detergente. Não cita utilização de quelante (EDTA) ou uso de tampão hipotônico e não cita nenhum tecido ocular.
[010] A patente CN101947144 descreve um scaffold de córnea descelularizado. Para o processo de descelularização realiza ciclos de congelamento e descongelamento, seguidos de incubação em solução hipotônica, digestão com nuclease, eletroforese seguida de reidratação do scaffold. A patente não utiliza esclera, e prevê o uso apenas para substituição de outras córneas (transplantes).
[011] A patente EP3412322 descreve métodos de preparo e uso de membranas constituídas de colágeno, submetidas à desidratação e descelularização, advindas de placenta humana (membranas amniótica e coriônica). O processo de descelularização é baseado no uso de detergentes como Triton X-100 ou SDS, lavagens de preferência a vácuo e utiliza tratamento com fatores de adesão celular e soro humano/fetal bovino que facilitam o cultivo celular no biomaterial. Não cita o uso de nucleases ou uso de EDTA e não cita nenhum tecido ocular.
[012] A patente RU2016135703 apresenta processo de descelularização para obtenção de matriz de rim de ratos e coelhos. A descelularização é detergente-enzimática utilizando um sistema de perfusão de alto desempenho e biorreator, bem como administração de soluções (hipotônica, contendo EDTA, para choque osmótico e detergentes - SDS,
SDC, Triton X-100). O processo envolve a descelularização do órgão inteiro e não cita nenhum tecido ocular.
[013] O pedido de patente CN106730005 propõe um método para preparar um estroma de córnea para descelularização de forma que a estrutura de colágeno não sofra danos. Apesar do referido documento citar sobre esclera, a invenção tem como produto a obtenção de estroma da córnea que compreende uma córnea e uma esclerótica ligadas à periferia da córnea, sendo o tecido escleral com uma largura de apenas 2-3 mm. A descelularização em si e o uso da esclera não estão em foco na invenção.
[014] O pedido de patente US2018256784 apresenta vários métodos de descelularização de disco intervertebral de bovino, que utiliza ultrasonicação com soluções de descelularização (surfactante não-iônico e inibidor de protease), lavagens com água e soluição de álcool 70% e digestão por nucleases por 48 horas. Demonstra também os métodos de avaliar a eficiência da descelularização como quantificação de DNA residual e de glicosaminoglicanos. Relata incubação com nucleases por tempo mais prolongado, necessita de ultrasonicador e não apresenta menção a tecidos de origem ocular.
[015] O pedido de patente KR20180133172 apresenta um método de produção de um adesivo injetável para fixar enxertos ósseos, a partir de uma matriz extracelular descelularizada . O tecido de exemplo foi a tibia, incubada para desmineralização prévia, seguida de descelularização com tripsina, e desgaseifiçado por agitação. Não apresenta detalhes das soluções e não cita nenhum tecido de origem ocular.
[016] O pedido de patente US201816121969 descreve a descelularização e deslipidação de tecido adiposo e vários outros tipos de tecidos moles. O documento sugere vários formatos que o tecido descelularizado pode assumir, vários tipos de preparo e pré-processamento do material, etapas de deslipidação, descelularização e desinfecção. Porém, não cita especificamente escleras e muito menos o uso de endonucleases .
[017] O pedido de patente KR20180003879 descreve processo de descelularização por desgaseificação com uso de biorreator. Apesar do titulo referenciar o uso em diversos órgãos, os resultados apresentados referem-se apenas a rins. O método descrito no referido pedido difere do método proposto pelo presente pedido de patente.
[018] O estudo de Saldin et ai. (2017) faz uma revisão sobre 31 tipos de tecidos de diferentes origens, comparando o protocolo de descelularização dos tecidos. Apresenta o processamento de vários tecidos de origem suina, incluindo a córnea, porém não cita o uso de escleras. O processo de descelularização que utiliza EDTA e SDS é citado apenas para tendão humano e não utiliza nucleases. Os demais protocolos geralmente utilizam tripsina, SDC (sodium deoxycholate),
Triton X-100, algumas vezes em combinação com tampão de nuclease.
[019] O estudo de Singelyn et al. (2011) cita que a descelularização de tecido miocárdico foi realizada com SDS 1%, até a matriz se tornar branca. O estudo não cita uso de nuclease ou de EDTA para descelularização e não cita tecidos oculares.
[020] O estudo de Seif-Naraghi et al. (2012) relata descelularização de pericárdio suíno realizada com SDS, detergente iônico e lavagens com água. Após a descelularização o pericárdio foi liofilizado e moldo em pó. O estudo não detalha o processo de descelularização e não cita tecidos oculares.
[021] O estudo de Liu et al. (2009) tem como objetivo fabricar um scaffold poroso tridimensional de submucosa de bexiga e posterior recelularização do scaffold. As bexigas suínas eram lavadas e para descelularização eram oxidadas por imersão em ácido paracético (em diferentes concentrações) por 4 horas. Depois foram tratadas com Triton X-100 por 2 dias e depois lavadas em água destilada por outros 2 dias. O processo de descelularização não cita o uso de detergentes ou nucleases e é feito com o órgão inteiro, sem menção a tecidos oculares.
[022] O estudo de Dahl et al. (2003) descreve três métodos de descelularização de artéria carótida suina para uso como scaffolds. O primeiro método utiliza tampão com 1% de Triton X-100, 0,02% EDTA e 0,2 mg/mL de DNase por 24 horas. O segundo método descreve incubação de 11 horas com tampão hipotônico com TRIS HC1, EDTA, PMSF (fluoreto de fenilmetil sulfonil) e BHA (Hidroxianisole butilado) seguida de incubação de 11 horas de tampão hipertônico com TRIS HC1, NaCl, EDTA, PMSF e BHA. O terceiro tratamento era incubação por 11 horas com solução de detergente zwitterionico (CHAPS) com NaCl, EDTA em PBS e seguia por incubação com solução de detergente aniônico (SDS) com NaCl e EDTA em PBS. Todos os tratamentos ficaram sob 10% de C02 e 37°C em constante agitação e lavados em PBS por 5 minutos após a descelularização. Os processos não menciona o uso de nucleases e não cita tecidos oculares.
[023] O estudo de Tedder et ai. (2009) relata sobre scaffolds de colágeno com cross-link (reticulado) moderado para engenharia de válvulas cardíacas. Os scaffolds eram preparados a partir de pericárdio descelularizados, tratados com PGG (penta-galloyl glucose), um polifenol de ligação ao colágeno. Para descelularização o pericárdio era lavado em solução salina estéril, armazenados em água 4°C overnight. Depois era tratado com SDC e Triton X-100, EDTA e NaN3 em tampão de TRIS HC1 (pH 7,8) com agitação moderada por 6 dias a 22°C e trocando a solução após 3 dias. Após lavar com água e etanol 70% (para remover resíduos de detergentes), era incubado em DNase e RNase 37°C por 24 horas. Após lavagens era incubado com elastase por 6 dias e depois novamente lavados até não detectar níveis de proteínas solúveis no ensaio BCA. O processo de descularização é mais demorado, não utiliza SDS e não cita tecidos oculares.
[024] O estudo de Visser et al. (2015) relata que o processo de descelularização de cartilagem, menisco e tecido de tendão foi realizado com Tris 1% por 24 horas, sonicação por 2 horas e digestão com nuclease (DNase e RNase) por 72 horas a 37°C. Deste modo, o processo descrito apresenta-se mais longo que o proposto pelo nosso trabalho, além de não utilizar SDS e necessitar de ultrasonicação, o estudo não cita tecidos oculares.
[025] O estudo de Paduano et al. (2016) descreve que a descelularização de matrix extracelular de osso foi realizada com tripsina e EDTA por 24 horas e posterior incubação com estreptomicina e penicilina por 24 horas para remoção de material celular residual. Deste modo, o processo de descelularização em questão não dispõe do uso de nucleases e SDS e não envolve tecidos oculares.
[026] O estudo de Wang et al. (2010), objetiva utilizar miocárdio suíno descelularizado como scaffold para engenharia tecidual cardíaca. Para descelularização, o trabalho utilizou biorreator, SDS, tripsina, inibidores de protease, nucleases e sonicação. O protocolo apresenta duração de duas semanas e meia, sendo bastante longo quando comparado ao proposto neste trabalho e não cita tecidos oculares.
[027] O estudo de Wang et ai. (2015), avalia o uso de fígado e rim descelularizados para obtenção de matriz com características estáveis e aplicáveis clinicamente. Os órgãos foram submetidos a perfusão para retirada de sangue e também para realizar a descelularização com soluções contendo água destilada (1 a 3h), SDS, Triton X-100, PAA (ácido peracético) e Na-DOC (desoxicolato de sódio) (2- 18 a 24h). O protocolo não utilizou nucleases e, diferente do proposto, requer equipamento para realização da perfusão, pois é feita com órgão inteiro. O estudo não cita tecidos oculares.
[028] O estudo de Sawkins et al. (2013), buscou utilizar matriz de osso desmineralizada e descelularizada e comparar com as caracteristicas de diferentes matrizes extracelulares . Para desmineralização, utilizaram agitação com solução de HC1, por 24h. Posteriormente, as amostras foram liofilizadas. O processo de descelularização baseou- se no uso de tripsina e EDTA, 24 horas e incubação com estreptomicina e penicilina por 24h. Esta descelularização não apresenta uso de nucleases, SDS e inclui o uso de tripsina. Não cita nenhum tecido de origem ocular. [029] O estudo de Wolf et ai. (2012) apresenta a descelularização de matriz extracelular de derme e bexiga de suínos. Para descelularização, os tecidos foram submetidos a soluções de tripsina, etanol, peróxido de hidrogénio, TRIS- EDTA/Triton X-100 e ácido peracético por aproximadamente 46 horas. O processo de descelularização é mais longo que o proposto pelo presente pedido, além de não utilizar nucleases e SDS e não utiliza tecidos oculares.
[030] O estudo de Wu et ai. (2015) apresenta descelularização de menisco suíno com SDS 1%/PBS (72 horas, trocas a cada 24 horas), EDTA 0,1%/PBS (24h), água deionizada (overnight), liofilização. O processo de descelularização não utiliza nucleases e o estudo não menciona tecidos de origem ocular.
[031] O estudo de Ungerleider et ai. (2015) descreve descelularização de matriz extracelular de músculo cardíaco e esquelético com SDS 1% e estreptomicina/penicilina durante 5 dias. O processo de descelularização não cita o uso de EDTA ou de nucleases. O estudo não menciona nenhum tecido ocular.
[032] O estudo de Fu et ai. (2016), descreve uma matriz extracelular de músculo esquelético de suínos. A descelularização foi realizada com SDS, pepsina, EDTA,
Triton X-100, desoxicolato de sódio em 5 diferentes métodos, com distintas misturas desses reagentes. A descelularização não cita tecidos de origem ocular.
[033] O estudo de Martinello et ai. (2012) apresenta scaffold rescelularizado de tecido cadavérico em lesões no tendão. O protocolo de descelularização utiliza TRIS-EDTA e inibidores de protease durante 2 horas, seguida de 0,1% SDS por 5 horas e incubação com DNase por 2 horas. Não menciona o uso de tecido ocular.
[034] O estudo de Mohammadie et ai. (2018) descreve um protocolo de descelularização de cartilagem articular bovina. O protocolo baseia-se no uso de processos físicos (congelamento em nitrogénio líquido e descongelamento) e processos químicos (tratamento com SDS a 2,5%, lavagens com tampão fosfato). Para eliminar o SDS residual os autores colocam as amostras em filtro estéril de Buchner e realizam a lavagens com etanol 75%, água destilada e tampão fosfato. Os scaffolds descelularizados foram então funcionalizados com nanotubos de carbono de parede simples carboxilados para aplicação em engenharia de cartilagem. Não utiliza EDTA e necessita de um aparato específico para as lavagens. O estudo não menciona tecidos de origem ocular.
[035] O estudo de Xu et ai. (2017) descreve a padronização de um protocolo de descelularização para tendão de Aquiles suíno. Nos métodos químicos avaliados os autores testam diferentes combinações de concentrações de SDS e
Triton X-100 por 48 e 72 horas de incubação. Em seguida, foram testados os métodos físicos (congelamento e descongelamento, ultrassom, perfusão, lavagem hidrostática) combinados com a concentração ideal de reagentes químicos identificados no primeiro estudo e o tempo de tratamento químico foi limitado a 48 h. Por fim as amostras foram lavadas, digeridas com DNase e armazenadas a -20°C. Este estudo estabeleceu como protocolo ótimo uma combinação de dois detergentes químicos (0,5% SDS e 1% Triton X-100) com um método físico (lavagem sob pressão hidrostática de 200 mmHg) para descelularizar os tendões de Aquiles. O processo não cita o uso de EDTA, necessita de equipamentos especiais e não menciona tecidos oculares.
[036] No estudo de Sackett et ai. (2018) tecido pancreático foi inicialmente descelularizado utilizando duas incubações de 48 horas com troca de desoxicolato de sódio/PBS 2,5 mM. Após essa incubação, o tecido foi enxaguado com água e lavado em PBS IX suplementado com antibióticos por 72 horas, com enxagúe em água a cada 24 horas e reposição dos antibióticos frescos realizada a cada dia. A matriz pancreática descelularizada resultante foi liofilizada e armazenada a -80 ° C para uso futuro. A descelularização não menciona o uso de SDS ou EDTA e não há menção aos tecidos oculares.
[037] Muito embora se conheçam as vantagens que um biomaterial como uma matriz extracelular descelularizada possa trazer em comparação com outros biomateriais ou materiais sintéticos na medicina, particularmente na medicina regenerativa, ainda existe uma preocupação grande com o uso desse tipo de material. O potencial antigênico, a possibilidade de carregar agentes infecciosos, a variabilidade em relação ao material preparado e a falta de capacidade de especificar e/ou caracterizar componentes bioativos indesejáveis nos ditos materiais são questões importantes que necessitam cada vez mais de soluções técnicas efetivas. São conhecidos atualmente vários métodos de tratamento de tecidos, alguns desses métodos incluem a descelularização destes tecidos e estão descritos nos documentos mencionados no presente pedido, uma vez que definem o estado geral da técnica.
[038] Os métodos conhecidos para obtenção de biomateriais para uso como scaffolds biológicos compreendem tratamentos que consomem muito tempo, não apresentam grau de descelularização adequado e/ou não apresentam reprodutibilidade quando aplicados em larga escala. Portanto, a área de engenharia de tecidos busca o desenvolvimento de biomateriais melhorados para uso como scaffold ou próteses bem como o desenvolvimento de um método para produção destes materiais que possa garantir uma maior eficiência e menor variabilidade do produto final.
Objetivo da invenção [039] Tendo em vista os problemas que apresentam o estado da técnica, o presente pedido de patente teve como objetivo desenvolver um método de produção de biomaterial descelularizado compreendendo matriz extracelular de origem biológica, em que o referido método é capaz de produzir a referida matriz extracelular descelularizada em maior escala, menor tempo e com menor grau de variabilidade e maior reprodutibilidade do produto final.
[040] Um outro objetivo do presente pedido é prover um biomaterial compreendendo a matriz extracelular descelularizada de origem biológica com propriedades melhoradas para ser usado como scaffold, na produção de próteses ou como carreadores de substâncias ativas.
[041] Um outro objetivo do presente pedido é prover um biomaterial compreendendo além da matriz extracelular descelularizada de origem biológica com propriedades melhoradas, ao menos uma substância adicional para liberação sistémica ou localizada.
[042] Um outro objetivo do presente pedido é prover o uso deste biomaterial na produção de um produto como um scaffold, na produção de próteses ou de um carreador de substâncias ativas para liberação sistémica ou localizada em um indivíduo que necessite do mesmo, preferencialmente em que é para uso em processos de reparação e/ou regeneração tecidual, como por exemplo de tecido ósseo, de tecido cartilaginoso, de articulações, de tendão, de pele, para fins protéticos em implantodontia e/ou traumatologia buco- maxilo-facial, para procedimentos cirúrgicos de preenchimento e/ou correção anatômica, dentre outros.
[043] Um outro objetivo do presente pedido é prover o uso deste biomaterial na produção de um produto carreador de substâncias solúveis em água ou álcool, nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, moléculas regulatórias, hormônios e medicamentos ou compostos farmaceuticamente ativos, dentre outros, em um indivíduo ou animal em necessidade do mesmo.
Breve descrição da invenção
[044] O presente pedido de patente descreve um método de produção de biomaterial descelularizado compreendendo matriz extracelular descelularizada de origem biológica, particularmente em que o tecido biológico é derivado de tecido conjuntivo ocular, mais particularmente escleras de origem suína, bovina, de coelhos ou humana. O referido método apresenta uma melhor relação de custo-benefício, permitindo reduzir o tempo de processamento, com eficiência no processo de descelularização, redução da variabilidade entre os produtos finais e uma maior reprodutibilidade do método aqui proposto.
[045] Outra modalidade do presente pedido são os biomateriais compreendendo matriz extracelular descelularizada de origem biológica com propriedades melhoradas, tal como produzido pelo método proposto, para ser usado como scaffold, na produção de próteses ou como carreadores de substâncias para liberação sistémica ou localizada .
[046] Outra modalidade do presente pedido são os biomateriais tais como produzido pelo método proposto, compreendendo além da matriz extracelular descelularizada de origem biológica com propriedades melhoradas, ao menos uma substância ativa adicional para liberação sistémica ou localizada. A referida substância podendo ser selecionada dentre o grupo que consiste de: substâncias solúveis em água ou álcool, nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, moléculas regulatórias, hormônios e medicamentos ou compostos farmaceuticamente ativos.
[047] Outra modalidade do presente pedido é o uso deste biomaterial na produção de um scaffold, na produção de próteses e/ou na produção de um carreador de substâncias ativas para liberação sistémica ou localizada em um indivíduo que necessite do mesmo, preferencialmente em que é para uso em processos de reparação e/ou regeneração tecidual, como por exemplo de tecido ósseo, de tecido cartilaginoso, de articulações, de tendão, de pele, para fins proféticos em implantodontia e/ou traumatologia buco-maxilo-facial, para procedimentos cirúrgicos de preenchimento e/ou correção anatômica, dentre outros.
Breve descrição das figuras
[048] A presente invenção será melhor compreendida com base na descrição, a seguir, tomada em conjunto com as figuras anexas, nas quais:
[049] A FIGURA IA mostra uma imagem do olho suino in natura, conforme recebido, ainda com os tecidos naturalmente pertencentes a este.
[050] A FIGURA 1B mostra uma imagem representativa do corte dos tecidos, com a finalidade de limpar o material deixando somente o tecido escleral.
[051] A FIGURA 2A mostra uma imagem representativa da esclera limpa, logo antes do processo de descelularização - Vista externa.
[052] A FIGURA 2B mostra uma imagem representativa da esclera limpa, logo antes do processo de descelularização - Vista interna.
[053] A FIGURA 3 mostra uma imagem representativa de um biorreator utilizado no protocolo F de descelularização. [054] A FIGURA 4 mostra a análise histológica de esclera suina controle (in natura) e do biomaterial produzido após os protocolos de descelularização de A a F. (Setas sinalizam núcleos ou resíduos de núcleos).
[055] A FIGURA 5 mostra uma placa de ensaio representativa demonstrando a coloração obtida através do procedimento de quantificação de hidroxiprolina.
[056] A FIGURA 6A mostra o layout utilizado para deposição das soluções analisadas na membrana de nitrocelulose para análise do conteúdo de colágeno do tipo I, colágeno do tipo II e elastina por dot blot.
[057] As FIGURAS 6B, 6C e 6D mostram o dot blot realizado para o colágeno do tipo I, colágeno do tipo III e elastina, respectivamente .
[058] As FIGURAS 7A e 7B mostram imagens de microscopia eletrónica de varredura de amostras de esclera in natura. A seta indica presença de célula.
[059] As FIGURAS 8A e 8B mostram imagens de microscopia eletrónica de varredura de amostras de esclera desidratada. A seta indica presença de célula.
[060] As FIGURAS 9A e 9B mostram imagens de microscopia eletrónica de varredura de amostras de esclera desidratada e reidratada. A seta indica presença de célula.
[061] As FIGURAS 10A e 10B mostram imagens de microscopia eletrónica de varredura de amostras do biomaterial descelularizado produzido.
[062] A FIGURA 11A mostra um Scatter dot plot do módulo de elasticidade de Young (GPa) para amostras de esclera in natura, amostras do biomaterial descelularizado, amostras do biomaterial descelularizado e desidratado e amostras do biomaterial descelularizado desidratado e reidratado. [063] A FIGURA 11B mostra um Scatter dot plot de Tensão máxima (MPa) para amostras de esclera in natura, amostras do biomaterial descelularizado, amostras do biomaterial descelularizado e desidratado e amostras do biomaterial descelularizado desidratado e reidratado.
[064] As FIGURAS 12 A-D mostram as etapas do procedimento de implantação, no tecido subcutâneo de um animal, do biomaterial descelularizado.
[065] As FIGURAS 13-17 apresentam imagens representativas de cortes histológicos dos implantes do biomaterial em um animal.
[066] As FIGURAS 18 A-D mostram análises estatísticas dos parâmetros avaliados. A) inflamação aguda; B) presença de fibroblastos; C) presença de vasos e D) presença de células gigantes.
[067] As FIGURAS 19 A e B apresentam imagens representativas de cortes histológicos dos implantes do biomaterial descelularizado em lesão de tendão com 49 e 114 dias respectivamente.
[068] A FIGURA 20 A apresenta imagem representativa de corte histológico da região do implante do biomaterial descelularizado em lesão de tendão.
[069] A FIGURA 20 B apresenta imagem representativa de corte histológico de tecido adjacente ao tendão nativo lesionado. [070] As FIGURAS 20 C e D apresentam imagems representativas de cortes histológicos de tendão nativo saudável que foi retirado para substituição pelo implante com o biomaterial descelularizado.
[071] A FIGURA 21 apresenta imagem representativa de corte histológico da região do implante do biomaterial descelularizado em lesão de tendão mostrando a presença de vasos sanguíneos e hiperemia em região de interação com implante no primeiro tempo experimental (49 dias).
[072] A FIGURA 22 apresenta imagem representativa de corte histológico mostrando o tecido conjuntivo frouxo que recobre a região de tendão lesionado.
[073] As FIGURAS 23 A e B apresentam imagens representativas de corte histológico do implante do biomaterial descelularizado em interação com o tendão nativo no segundo tempo experimental (114 dias).
[074] As FIGURAS 24 A e B apresentam imagens representativas de corte histológico mostrando o perfil de células predominantes de tendão nativo que infiltram o implante de biomaterial no primeiro tempo experimental (49 dias) (A) e no segundo tempo experimental (114 dias) (B). [075] As FIGURAS 25 A-D apresentam imagens representativas de cortes histológicos mostrando o implante em tecido ósseo de um produto disponível no mercado (grânulos de enxerto ósseo comercializado como Bio-Oss®)), após 49 dias - grupo controle.
[076] As FIGURAS 26 A-D apresentam imagens representativas de cortes histológicos mostrando o implante em tecido ósseo de um produto disponível no mercado (grânulos de enxerto ósseo comercializado como Bio-Oss®), após 130 dias - grupo controle.
[077] As FIGURAS 27 A e B apresentam imagens representativas de corte histológico mostrando a interação do implante de biomaterial descelularizado com tecido ósseo nativo, após 49 dias.
[078] As FIGURAS 28 A-D apresentam imagens representativas de corte histológico mostrando o implante do biomaterial descelularizado em tecido ósseo mostrando a integração do biomaterial com o tecido ósseo nativo, após 130 dias.
[079] A FIGURA 29 apresenta imagens representativas de corte histológico mostrando o implante do biomaterial descelularizado associado à sinvastatina em tecido ósseo, após 49 dias.
[080] As FIGURAS 30 A e B apresentam imagens representativas de corte histológico mostrando a integração do implante do biomaterial descelularizado associado à sinvastatina em tecido ósseo após 49 dias.
[081] AS FIGURA 31 A e B apresentam imagens representativas de corte histológico mostrando a infiltração celular no implante de biomaterial descelularizado associado à sinvastatina em tecido ósseo, após 130 dias.
[082] A FIGURA 32 apresenta imagem representativa de corte histológico mostrando a lesão em cartilagem que recebeu o implante, após 30 dias.
[083] As FIGURAS 33 A-C apresentam imagens representativas de corte histológico mostrando boa integração entre o implante de biomaterial, a cartilagem articular e o tecido conjuntivo neoformado.
[084] AS FIGURAS 34 A-F apresentam imagens de correção cirúrgica de preenchimento e correção anatômica de retenção de pálpebra com uso do biometarial.
Descrição detalhada da invenção [085] O presente pedido descreve um método de produção de um biomaterial descelularizado a partir de tecido biológico, em que compreende as etapas de:
[086] - coletar, processar e higienizar o tecido biológico;
[087] - submeter o tecido biológico a um processo de descelularização; e
[088] - submeter o tecido biológico descelularizado a um processo de descontaminação e/ou esterilização.
[089] O referido método compreende ainda uma etapa de desidratação que pode ocorrer preferencialmente após uma etapa de descontaminação e antes da etapa esterilização, e uma etapa de reidratação do biomaterial descelularizado. [090] O tecido biológico utilizado no referido método é derivado de tecido conjuntivo ocular, ainda mais particularmente escleras de origem suina, bovina, de coelho ou humana.
[091] O presente pedido também descreve o biomaterial descelularizado produzido pelo dito método de produção. O dito biomaterial compreendendo matriz extracelular descelularizada de origem biológica com propriedades melhoradas, em que a dita matriz compreende fibras de colágeno tipo I, III e elastina.
[092] Ademais, o presente pedido descreve o uso do dito biomaterial descelularizado produzido como scaffold, prótese ou carreador de substâncias ativas em um indivíduo que necessite do mesmo.
Exemplo 1- Coleta e processamento das amostras de origem animal .
[093] As amostras de globo ocular animal foram coletadas em frigoríficos. No exemplo aqui demonstrado, foram amostras de globo ocular suínas coletadas em frigoríficos que processam exclusivamente suínos (FIGURA IA). Imediatamente após a coleta, as amostras foram imersas em solução salina (NaCl a 0,9%) e mantidas refrigeradas em recipiente térmico, até o recebimento pelo laboratório.O tempo de transporte até o laboratório deve ser o mais breve possível, sempre inferior a 1Oh.
[094] As amostras foram imediatamente processadas a fim de retirar os componentes oculares que não correspondiam à esclera, com auxilio de instrumentos cirúrgicos (pinças, bisturi, etc.) (FIGURA 1B).
[095] As escleras extraídas foram intensamente higienizadas em solução de TBS (solução salina TRIS tamponada) e água corrente (FIGURA 2A e 2B), para posterior submissão ao protocolo de descelularização
Exemplo 2- Protocolo de descelularização do material biológico .
[096] A descelularização é uma estratégia que busca reduzir ou anular as chances de reação imunogênica adversa frente à utilização de scaffolds biológicos. Esta técnica atua na remoção das células do tecido em questão, bem como na eliminação do material genético ali presente, porém buscando manter os elementos da matriz extracelular e preservar as propriedades mecânicas necessárias à manutenção da funcionalidade do scaffold.
[097] Sendo assim, após a etapa de processamento das amostras e obtenção das escleras higienizadas, as escleras foram inicialmente lavadas de 1-5 vezes em solução de TBS entre 1 a 20 minutos, à temperatura entre 0 a 25 °C, sob agitação entre 80 a 200 rpm. Após a lavagem, foi realizada incubação utilizando tampão hipotônico (5 a 20 mM TRIS, de 0,05 a 1% m/v de EDTA, pH entre 6 a 8) por 1 a 18h, sob agitação entre 80 a 200 rpm, à temperatura entre 4 a 37 °C. Após essa etapa, as amostras foram tratadas com tampão detergente (5 a 20 mM TRIS, de 0,05 a 1% m/v de EDTA e 0,05 a 2% SDS) sob agitação entre 80 a 200 rpm por 5 a 24h, à temperatura entre 4 a 37 °C. Em seguida, lavou-se as amostras em água deionizada, por 30 minutos a 4 horas, à temperatura de entre 4 a 37 °C sob agitação de entre 80 a 200 rpm e realizou-se as lavagens com tampão isotônico (solução TBS) por 5 a 15 minutos, à temperatura entre 4 a 37 °C, sob agitação entre 80 a 200 rpm. Seguiu-se o protocolo com incubação das amostras biológicas com tampão de nucleases (10-50 mM TRIS, 2-10 mM MgC12, 1 a 80 U/mL de DNAse e 0,05 a 80 U/mL de RNAse), entre 30 minutos a 3h, sob agitação entre 100-200 rpm, e à temperatura entre 30 a 40 °C. Após esta etapa, as amostras foram submetidas a lavagens finais em tampão salino-fosfato (PBS) compreendendo de 0,05 a 1% m/v de EDTA, por até 5 minutos à temperatura entre 25 a 37 °C, sob agitação entre 80 a 200 rpm.
[098] O protocolo padronizado e descrito acima baseou- se em estudos prévios de descelularização, com modificações que visavam atender o material em questão, bem como assegurar a reprodutibilidade do método, redução do tempo e melhora do custo-beneficio . O trabalho de Kasbekar e colaboradores
(2018) indica um processo de descelularização quimico- enzimático para tecidos envolvendo uso de detergente hipotônico e tampão com nucleases, que foi utilizado como protocolo inicial para padronização da descelularização das escleras (Tabela 1).
[099] Tabela 1: Descrição do protocolo de descelularização inicial e protocolos testes com as devidas modificações realizadas.
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
[0100] Conforme a Tabela 1, o protocolo A seguiu fielmente o que foi descrito pelo estudo de Kasbekar e colaboradores (2018). O protocolo B proposto apresenta como diferença a concentração de benzonase utilizada no tampão de nuclease, sendo elevada de 1 U/mL para 5 U/mL. Já o protocolo C, eleva esta concentração para 10 U/mL. O protocolo D, por sua vez, substitui a benzonase por DNase e RNase (80 U/mL), enquanto o protocolo E utiliza 8 U/mL de DNase e RNase, bem como reduz todas as rotações durante o processo, preferencialmente de entre 80 rpm a 200 rpm, mais preferenciamente de entre 90 a 180 rpm, ainda mais preferencialmente 100 rpm e adiciona-se uma etapa de lavagens com água deionizada após incubação com tampão detergente, preferencialmente por 4 horas, à temperatura de 25°C e rotação de 100 rpm, com duas trocas neste intervalo. Por fim, para o protocolo F foram realizados ajustes nas rotações, preferencialmente entre 80 rpm a 200 rpm, mais preferenciamente de entre 90 a 190 rpm, ainda mais preferencialmente 180 rpm, temperaturas, tempos de incubações e concentrações das nucleases de modo a se adequar ao volume e às condições possíveis para se realizar de modo semi-automático no biorreator Biostat B (B. Braun, Biotech International) (Figura 3).
[0101] Segundo Crapo e colaboradores (2011) os critérios de eficiência da descelularização abrange quantidade inferior a 50 ng de DNA/mg de matriz extracelular (peso seco), bem como ausência de DNA íntegro e material nuclear visível na análise histológica.
[0102] De acordo com os resultados obtidos e descritos na Tabela 2, os protocolos A, B e C não alcançaram o limite de DNA/mg de tecido exigido para uma descelularização eficiente. Estes protocolos utilizaram a benzonase (nuclease de Serratia marcescens), uma endonuclease promíscua que ataca e degrada todas as formas de DNA e RNA (Nestle and
Roberts, 1969). A partir de então, foi proposto o uso de nucleases (DNase/RNase) em combinação e em alta concentração substituindo a benzonase (Protocolo D). Este protocolo foi o primeiro a atender os critérios de eficiência da descelularização . Sendo assim, após o resultado satisfatório do protocolo D, com apenas uma esclera, e frente à necessidade da reprodutibilidade do ensaio, foi testado um novo protocolo (E) utilizando escleras inteiras e em maior quantidade (20 escleras). Para isso foi ajustada a concentração ideal de DNase/RNase para uma maior economia no processo, bem como redução da rotação para melhorar a exposição do material às soluções de incubação e adição de lavagens com água deionizada para retirada de SDS residual. Este protocolo também atendeu os critérios de quantidade de DNA reduzida. A partir de então, para mimetizar um processo em larga escala, semi-automatizado e de menor tempo e custo- benefício, foram realizados novos ajustes para a aplicação da descelularização em 100 escleras utilizando um biorreator (Protocolo F). Este protocolo também se mostrou eficiente (Tabela 2)
[0103] Tabela 2. Quantificação de DNA genômico (ng/pL), e concentração de DNA por miligrama de escleras, das amostras controle (in natura) e descelularizadas pelos protocolos testes A-F.
Figure imgf000035_0001
Figure imgf000036_0001
[0104] Por meio da análise histológica (coloração de HE) evidenciou-se que as amostras controles (in natura) possuem núcleos intactos (pontos roxos - as setas sinalizam os núcleos) . Na avaliação das imagens referentes aos protocolos A, B e C nota-se resquícios de núcleos em determinados pontos, demonstrando que estes protocolos não foram eficientes. Por outro lado, na aplicação dos protocolos D, E e F não foi possível observar a presença de núcleos, demonstrando a eficiência na descelularização do material a partir destes ensaios (Figura 4).
[0105] Segundo Gilbert et al. (2006), a eficácia dos protocolos de descelularização não depende somente de métodos químicos, enzimáticos e físicos competentes, mas também da origem do tecido e sua composição. O protocolo de descelularização descrito por Kasbekar (2018) foi padronizado para tecido conjuntivo bulbar humano, enquanto o aqui proposto se trata de tecido escleral animal ou humano, o que em parte pode justificar a descelularização ineficiente utilizando o protocolo A. Além disso, o processo descrito por Kasbekar (2018) atinge um n amostrai de 20 olhos, o presente estudo, por meio das modificações realizadas, alcançou uma descelularização eficiente de 100 escleras, demonstrando adaptação, redução de tempo e economia de recursos para produção em larga escala. Ainda, de acordo com os protocolos de verificação, nota-se a reprodutibilidade da técnica, visto que respeita os limites estipulados de detecção de DNA e ausência de núcleos nas análises histológicas.
[0106] Deste modo, o processo de descelularização final padronizado neste estudo (Protocolo F) foi mais eficiente (100 escleras), com melhor relação custo-beneficio (concentração de DNase e RNase), permitindo reduzir o tempo de processamento por número de escleras (semi-automatizado em biorreator), atendendo aos critérios de avaliação e reprodutibilidade .
Exemplo 3a- Protocolo de descontaminação do biomaterial descelularizado .
[0107] Para a realização de ensaios ín vitro/in vivo o biomaterial descelularizado foi descontaminado realizando uma lavagem inicial em PBS estéril e em seguida embebidos em PBS lx estéril (aproximadamente 30 mL) contendo solução concentrada de antibiótico e/ou antimicótico. Preferencialmente a solução concentrada de antibiótico e/ou antimicótico compreende ao menos um composto com ação antibiótica e ao menos um composto com ação antimicótica,mas particularmente em que compreende: penicilina, estreptomicina e anfotericina B. As amostras foram armazenadas nesta solução por cerca de 36h a 60h, preferencialmente cerca de 48h, a uma temperatura de cerca de 2°C a 8°C, preferencialmente 4°C. Após o período de armazenamento, retirou-se fragmentos de cada amostra do biomaterial, e realizou-se rápida lavagem em PBS lx estéril. Estes fragmentos foram submetidos ao teste de descontaminação a partir da sua inoculação em meio de cultura de microorganismos Luria Bertani (LB), sem antibióticos e antifúngico. Estas amostras foram incubadas à 37°C sob agitação por 72h. Para a avaliação da presença de algum tipo de contaminação por microorganismos, após as 72h foi realizada a leitura da densidade óptica (OD) (por espectrofotometria, comprimento de onda de 600nm) do meio de cultura onde esteve embebido os fragmentos em questão e demais controles (PBS lx da lavagem, meio LB estéril sem nenhum tipo de inoculo) . Abaixo seguem detalhes do experimento realizado:
[0108] Materiais embebidos em meio LB para teste de descontaminação :
A) Fragmento de biomaterial descelularizado
B) Fragmento de esclera in natura
C) Fragmento de esclera desidratada
D) PBS lx da lavagem prévia E) Meio LB apenas
[0109] Os resultados do teste de descontaminação (leitura da OD) demonstraram:
A) -0,022
B) -0,018
C) -0,021
D) -0,025
E) 0
[0110] As leituras demonstram ausência de crescimento de microorganismos e consequentemente que o protocolo utilizado foi capaz de descontaminar os biomateriais descelularizados. [0111] O referido método se mostrou eficaz tanto para ser usado como uma etapa inicial e preliminar de descontaminação do biomaterial descelularizado, podendo o mesmo passar posteriormente por uma etapa adicional de esterilização (usando óxido de etileno ou qualquer outro método conhecido por um técnico no assunto, como por exemplo, usando radiação gama).
Exemplo 3b - Protocolo de esterilização do biomaterial descelularizado .
[0112] Em outra modalidade do presente pedido, a etapa de esterilização se deu usando óxido de etileno. Após as etapas de descelularização e desidratação como descritas no presente pedido, as amostras do biomaterial foram então cortadas em dimensões especificas para realização dos testes, e secas a temperatura ambiente por cerca de 30 minutos a 1 hora. Após a secagem foram embaladas e seladas em papel grau cirúrgico, garantindo a identificação e vedação para verificar a esterilização por óxido de etileno posteriormente .
[0113] As amostras foram então submetidas a um processo de esterilização por óxido de etileno e aeradas por 1 dia. Depois disso foram feitas análises para investigar o crescimento microbiológico durante 14 dias em meio de cultura caldo tioglicolato (30 °C à 35 °C) e caldo triptico de soja - TSB (20 °C à 25 °C).
[0114] Não houve nenhuma alteração macroscópica nas amostras do biomaterial quando comparada à antes do processo de esterilização. Foi verificada a esterilidade do material após esterilização, em meio de cultura após 14 dias. Tanto para o caldo tioglicolato, quanto para o caldo TSB não houve o crescimento microbiológico, apresentando resultado negativo, sendo considerada a amostra satisfatória quanto a sua esterilidade.
[0115] O referido método se mostrou eficaz para ser usado como um método de esterilização do biomaterial.
[0116]
Exemplo 4- Quantificação de colágeno.
[0117] A quantificação de hidroxiprolina (HP) visa à determinação indireta do conteúdo de colágeno do biomaterial produzido. Desta forma, de 5 a 50 mg das amostras foram homogeneizadas em 100 a 400 pL de água deionizada. Posteriormente, conforme protocolo, foi realizada uma curva de diluição do aminoácido (HP).
[0118] Na Figura 5, mostra no lado esquerdo, em triplicata, a curva padrão de hidroxiprolina como controle, com diluições decrescentes dessa substância na vertical. Quanto mais escuro, maior concentração de hidroxiprolina, que é um dos principais componentes do colágeno. No lado direito, três amostras do biomaterial descelularizado individuais tiveram a quantificação de hidroxiprolina realizada em 3 diluições decrescentes na vertical.
[0119] A cada 100 a 400 pL da amostra homogeneizada adicionava-se o valor correspondente (1:1) de HC1 puro. Após esta etapa a solução foi incubada por 3 a 8 horas a 100 a 120 °C. Em seguida, a amostra foi vortexada e centrifugada de 2 a 7 min para remover o precipitado.
[0120] A reação foi preparada em placas de 96 poços em que 5-50 pL das amostras foram adicionados aos poços, assim como 5-50 pL de cada solução da curva de diluição da hidroxiprolina, sendo que o ensaio foi realizado em triplicata. As placas foram secas para remoção do ácido clorídrico. Após a secagem foi adicionado 50-500 pL do reagente Cloramina T (Tampão citrato-acetato, n-propanol 50% e Cloramina T, pH 6,5). As placas foram incubadas a temperatura ambiente de 2 a 10 minutos.
[0121] Por fim, foram adicionados 100 a 500 pL de Reagente de Ehrlich (ácido perclórico, n-propanol e p- Dimetilaminobenzaldeído - DMAB), que interage com a hidroxiprolina da amostra e, consequentemente, causa uma reação colorimétrica em que a intensidade da coloração é proporcional a quantidade do aminoácido (HP) no material. Quanto mais a coloração for escura, maior quantidade de hidroxiprolina na amostra. Desta forma, a amostra foi incubada a 50 a 80 °C por 60 a 120 minutos e realizada a leitura da absorbância a 560 nm. Na Figura 5 é possível visualizar a reação ao final do protocolo, antes da leitura por espectrofotometria.
[0122] De acordo com a quantificação em fragmentos de três amostras do biomaterial descelularizado distintas, a concentração média foi 103,76 pg de hidroxiprolina por miligrama de biomaterial, o que corresponde aproximadamente a 769 pg de colágeno por miligrama de biomaterial.
Considerando que uma esclera liofilizada apresenta em média 370 mg de peso, o conteúdo de colágeno do biomaterial descelularizado produzido corresponde a 76,9% do seu peso. [0123] O resultado mostra que o biomaterial descelularizado apresenta uma alta concentração de hidroxiprolina e, portanto, grande quantidade de colágeno.
Exemplo 5- Teste de desidratação e reidratação do biomaterial descelularizado.
[0124] Este experimento teve como objetivo conhecer e mensurar a capacidade de reabsorção de soluções aquosas ou alcóolicas a partir do biomaterial desidratado. Para isso, fragmentos de diferentes tamanhos do biomaterial descelularizado (por exemplo: 0,6 x 0,6cm; 1,0 x l,0cm; 1,5 x l,5cm) foram inicialmente pesados e em seguida desidratados em etanol em concentrações crescentes (45%, 55%, 65%, 75%, 85%, 95% e 100% volume/volume), incubando-os por no mínimo 3 horas em cada concentração. Em seguida, após a desidratação total, os fragmentos foram novamente pesados e submetidos à reidratação e incubados por cerca de 20 minutos a 40 minutos, com ao menos uma substância selecionada do grupo que consite de: água, álcool, substâncias solúveis em água ou álcool, nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, moléculas regulatórias, hormônio, medicamentos e/ou compostos farmaceuticamente ativos.
[0125] No exemplo aqui descrito, o biomaterial foi submetido à reidratação adicionando volumes fixos de água e incubados por até 30 minutos à temperatura ambiente (com quantificação do volume absorvido a cada 15 minutos). Após a reidratação, os fragmentos foram novamente pesados e o volume reabsorvido foi mensurado (Tabelas 3 e 4).
[0126] Tabela 3: Volume absorvido pelo biomaterial descelularizado :
Figure imgf000044_0001
[0127] Tabela 4: Mensuração do peso após reabsorção:
Figure imgf000044_0002
[0128] De acordo com os resultados o biomaterial descelularizado desidratado e reidratado reabsorve cerca de 1/4 do volume aplicado ou aproximadamente 65,4 pL/cm2.
[0129] Em uma modalidade da invenção, a etapa de desidratação ocorre após as etapas de descelularização e descontaminação do biometarial. Sendo o processo de descontaminação realizado com uma solução que compreende ao menos um antibiótico e/ou antimicótico.
[0130] Em outra modalidade da invenção, a etapa de desidratação pode ser realizada após a descelularização do biomaterial, pondedo ocorrer uma etapa inicial de descontaminação ou não, mas antes de submetê-lo à etapa de esterilização. Sendo o processo de esterilização realizado com óxido de etileno ou por qualquer outro método conhecido por um técnico no assunto, como por exemplo, utilizando radiação gama.
[0131] O produto então obtido pelo referido processo compreende um biomaterial descelularizado, desidratado e descontaminado e/ou esterilizado, que pode ser armazenado, podendo passar então por uma etapa de reidratação e/ou associação com ao menos um composto ativo somente quando for usado.
Exemplo 6- Análise do conteúdo de Colágeno tipo I, Colágeno tipo III e Elastina.
[0132] O objetivo foi identificar qualitativamente a presença de colágeno do tipo I, colágeno do tipo III e elastina no biomaterial descelularizado produzido. De forma resumida, três membranas de nitrocelulose foram sensibilizadas com diminutos fragmentos de escleras in natura, escleras desidratadas e reidratadas e do biomaterial descelularizado produzido. Anticorpos primários contra cada proteína foram utilizadas como controles positivos das reações. Os sítios livres de ligação de proteínas presentes na membrana de nitrocelulose foram bloqueados pela adição do tampão PBS-leite 1-3%, até cobrir as membranas por inteiro, sob agitação, a 20-40°C, por l-5h. Em seguida, as membranas foram lavadas de 1-7 vezes com tampão PBS lx e incubou-se cada membrana com anticorpo primário especifico, diluído em PBS lx, sob agitação a 20-40 °C, por l-5h. Após lavar de 1- 7 vezes com tampão PBS lx-Tween (PBS-T) a 0,05%-l%, incubou- se com os respectivos anticorpos secundários IgG- específicos, marcados com peroxidase, diluídos em PBS, sob agitação a 20-40 °C, por l-5h. Por fim as membranas foram novamente lavadas de 1-7 vezes com tampão PBS-T 0,05% e a reação foi revelada com solução de DAB (3,3'- Diaminobenzidine ).
[0133] A Figura 6 mostra o dot blot das proteínas avaliadas, revelando a presença de cada tipo de proteína, sendo que a Figura 6A mostra o layout do experimento. As Figuras 6B, 6C e 6D são as imagens representativas do dot blot para colágeno do tipo I, colágeno do tipo III e elastina, respectivamente.
[0134] De acordo com os resultados de dot blot a esclera in natura, a esclera desidratada e reidratada e o biomaterial descelularizado produzido, apresentam as três proteínas testadas: colágeno I, colágeno III e elastina.
Exemplo 7- Análise morfológica do biomaterial ao microscópio eletrónico de varredura.
[0135] A análise morfológica do biomaterial descelularizado produzido teve como objetivo avaliar sua estrutura tridimensional, a presença e qualidade das fibras colágenas e a verificação de presença/ausência de células nos diferentes materiais avaliados.
[0136] Amostras da esclera in natura, da esclera desidratada, da esclera desidratada e reidratada e do biomaterial descelularizado produzido foram lavadas em tampão e fixadas em solução fixadora própria para a microscopia eletrónica. Em seguida, o fixador foi removido e as amostras foram submetidas à desidratação progressiva em soluções com concentrações crescentes de álcool etílico. Após a desidratação, as amostras foram secas e armazenadas. As amostras receberam 3 ciclos de cobertura de ouro-paládio no metalizador e visualizadas no microscópio Zeiss EVO MAIO. Todas as análises foram realizadas em triplicata, em várias magnificações, utilizando exposições de 5 a 15kV.
[0137] As Figuras 7A e 7B mostram a microscopia eletrónica de varredura de amostras de esclera in natura, com aumento de 833 vezes e 2900 vezes, respectivamente. A presença de células pode ser claramente visualizada como indicado pela seta na figura 7B.
[0138] As Figuras 8A e 8B mostram a microscopia eletrónica de varredura de amostras de esclera desidratada, nos aumentos de 833 vezes e 7100 vezes, respectivamente. A presença de células pode ser claramente visualizada como indicado pela seta na figura 7B.
[0139] As Figuras 9A e 9B mostram a microscopia eletrónica de varredura de amostras de esclera desidratada e reidratadas, com aumento de 1250 vezes e 2640 vezes, respectivamente . A presença de células pode ser claramente visualizada como indicado pelas setas na figura 7B.
[0140] As Figuras 10A e 10B mostram a microscopia eletrónica de varredura de amostras do biomaterial descelularizado produzido, com aumento de 923 vezes e 5520 vezes, respectivamente. Não foi identificada a presença de células, bem como as fibras de colágeno e elastina permanecem sem alteração aparente ou relevante.
[0141] As análises por microscopia eletrónica demonstraram que o método de descelularização empregado levou a remoção das células do biomaterial, enquanto nos outros grupos em que o materal biológico não passou por processo de descelularização, se observa claramente a presença de células. Além disso, as fibras foram mantidas higidas no biomaterial descelularizado, mostrando que o biomaterial compreende uma matriz fibrosa descelularizada que manteve as caracteristicas de uma matriz biológica sem que a remoção das células apresentasse alterações relevantes quanto a formação e qualidade da matriz fibrosa, quando comparada a esclera in natura, desidratada ou desidratada/reidratadoa . Exemplo 8- Ensaio de biomecânica (módulo de elasticidade e tensão máxima).
[0142] Um ensaio de biomecânica foi realizado para avaliar a resistência das escleras e dos biomateriais produzidos em diferentes condições, de modo a avaliar as propriedades físicas deste biomaterial, possibilitando indicar possíveis aplicações no âmbito da medicina regenerativa. Para este ensaio foram utilizados aproximadamente 12 fragmentos de amostras de escleras (advindas de 12 indivíduos diferentes) nas seguintes condições: esclera in natura, biomaterial descelularizado produzido, biomaterial descelularizado desidratado (em concentrações crescentes de etanol) e biomaterial descelularizado desidratado e reidratado (desidratadas em concentrações crescentes de etanol e reidratadas em água por 30-50 min). Todos os fragmentos foram obtidos da região central de cada esclera in natura, com medidas aproximadas de 5 x 20 x 1 mm (largura x comprimento x espessura). Os corpos de prova (fragmentos) foram submetidos ao ensaio de tração utilizando uma Máquina Universal de Ensaios modelo WDW 38/56 - 1000E da marca TIME Group Inc. Para a obtenção das forças exercidas, foi utilizada uma célula de carga com capacidade máxima de 50 kgf e as deformações foram captadas pelos sensores internos de deslocamento da máquina. O corpo de prova foi fixado em duas garras distanciadas de 5 mm. A velocidade de aplicação da força foi de 2 mm/min.
[0143] A FIGURA 11A mostra um Scatter dot plot do módulo de elasticidade de Young (GPa) para amostras de esclera in natura (In natura), amostras do biomaterial descelularizado (Descelularizado), amostras do biomaterial descelularizado desidratado (Desidratado) e amostras do biomaterial descelularizado desidratado e reidratado (Reidratado). O módulo elasticidade de Young utilizado neste estudo descreve a razão entre a tensão e a deformação na direção da carga aplicada, sendo a máxima tensão que um material suporta sem sofrer deformação permanente. Deste modo, foi possível perceber por meio do parâmetro de elasticidade (E) que as amostras do biomaterial descelularizado desidratado e do biomaterial descelularizado apresentaram significativamente maior rigidez quando comparadas à amostra da esclera in natura. Além disso, a amostra do biomaterial descelularizado desidratado também apresentou rigidez significativamente maior em comparação à amostra do biomaterial descelularizado desidratado e reidratado.
[0144] A FIGURA 11B mostra um Scatter dot plot de Tensão máxima (MPa) para amostras de esclera in natura (In natura), amostras do biomaterial descelularizado (Descelularizado), amostras do biomaterial descelularizado desidratado
(Desidratado) e amostras do biomaterial descelularizado desidratado e reidratado (Reidratado). De modo esperado, o mesmo comportamento foi observado para o parâmetro de tensão máxima (MPa), a qual descreve a tensão máxima que o material suporta ainda no regime elástico de deformação. Sendo assim, as amostras do biomaterial descelularizado desidratado e do biomaterial descelularizado, devido à sua maior rigidez, suportaram um tensão significativamente maior quando comparadas à esclera in natura. O biomaterial descelularizado desidratado, por sua vez, ainda suportou uma tensão significativamente maior em comparação ao biomaterial descelularizado desidratado e reidratado.
[0145] É importante ressaltar que as amostras do biomaterial produzido, independente do tipo de tratamento analisado (Descelularizado, Desidratado ou Reidratado), apresentaram maior resistência (Mpa maior) em relação às amostras in natura. Apesar de suportarem uma maior força aplicada em sua área, também apresentaram uma pequena deformação relativa, que foi próxima ao valor apresentado pela amostra in natura. Tais caracteristicas confirmam o potencial de aplicações variadas para o biomaterial produzido como por exemplo: em processos de reparação e/ou regeneração tecidual, preferencialmente de tecido ósseo, de tecido cartilaginoso, de articulações, de tendão, de pele, para fins proféticos em implantodontia e/ou traumatologia buco-maxilo-facial, para procedimentos cirúrgicos de preenchimento e/ou correção anatômica, ou na produção de próteses.
Exemplo 9- Implante subcutâneo do biomaterial descelularizado para verificação de inflamação local.
[0146] Para avaliação da resposta inflamatória da presença do biomaterial em animal experimental, implantou- se o biomaterial de forma subcutânea na região dorsal de ratos.
[0147] Os animais foram anestesiados com isofluorano, foi realizada tricotomia e antissepsia da região e, logo após, foram realizadas incisões longitudinais com lâmina de bisturi. A região subcutânea foi divulsionada com auxilio de uma tesoura de ponta romba e, em seguida, introduzido um fragmento do biomaterial descelularizado de 0,5 cm x 0,5 cm x 0,2 cm em uma das incisões e, em outra incisão, foi feita somente a divulsão dos tecidos sem introdução de nenhum biomaterial, para ser utilizada como controle. As incisões foram suturadas e os animais foram mantidos em observação até o fim da anestesia. A eutanásia dos animais foi realizada após 5 e 15 dias (inflamação aguda e crónica, respectivamente) da implantação do biomaterial. A região do implante foi retirada, fixada em formol a 10% para análise histológica e coloração em HE (imagens representativas desse procedimento na Figura 12). O exame histológico teve por finalidade avaliar a intensidade de reação inflamatória do tecido circunvizinho, presença de vasos, fibroblastos, células gigantes multinucleadas e integração do tecido. [0148] As Figuras 12 A-D ilustram o procedimento de implantação, no tecido subcutâneo de ratos, do biomaterial descelularizado .A Figura 12A mostra os animais sob anestesia com máscara com isofluorano. A Figura 12B mostra a implantação do biomaterial. A Figura 12C mostra a sutura das incisões. A Figura 12D mostra a retirada da região dos implantes após 5 ou 15 dias de cirurgia.
[0149] Para a análise das imagens seis campos dos cortes histológicos foram selecionados e classificados com scores de acordo com a presença e intensidade de inflamação aguda e/ou crónica, fibroblastos, vasos e células gigantes multinucleadas, conforma tabela abaixo.
[0150] Tabela 5: Score dos parâmetros de análise
Figure imgf000053_0001
[0151] As análises foram feitas por 4 avaliadores independentes, em todos os campos selecionados. Foi calculada a média dos scores de cada animal, atribuído por cada avaliador e feita comparação entre os resultados de 5 e 15 dias.
[0152] A Figura 13 mostra uma imagem representativa de um corte histológico corado por HE do grupo controle, mostrando inflamação aguda após 5 dias. Já a Figura 14 mostra imagens representativas do corte histológico do implante subcutâneo de bimaterial após 5 dias de implantado. O inserto evidencia um campo determinado, mostrando a área de contato do infiltrado inflamatório com o biomaterial.
[0153] A Figura 15 mostra uma imagem representativa do campo histológico do implante subcutâneo de biomaterial após 5 dias de implantado. As setas indicam fibroblastos infiltrados no biomaterial (material evidenciado ao lado direito) e o circulo pontilhado é um exemplo de vaso sanguíneo.
[0154] A Figura 16 mostra imagens representativas do corte histológico do implante subcutâneo de biomaterial após 15 dias de implantado. O inserto evidencia um campo determinado, mostrando a área de contato do infiltrado inflamatório com o biomaterial implantado.
[0155] A Figura 17 mostra imagem representativa do campo histológico do implante subcutâneo de biomaterial após 15 dias de implantado. As setas indicam fibroblastos infiltrados no biomaterial (material evidenciado ao lado esquerdo). Círculos pontilhados indicam vasos sanguíneos.
Retângulos pontilhados indicam células gigantes multinucleadas .
[0156] Utilizando o score visual pré-determinado pelo grupo de pesquisa, a análise histológica sugere interação do biomaterial descelularizado implantado com o tecido adjacente, sem apresentar sinais de rejeição grave. As Figuras 18 A-D mostram uma análise estatística dos parâmetros avaliados (***: p = 0,0006; **: p = 0,0015; *: p = 0,038). [0157] Verifica-se diferença significativa na comparação da intensidade de inflamação aguda, sendo maior no grupo de 5 dias pós-implante, quando comparado ao respectivo controle (Figura 18A). Já em relação a presença de fibroblastos, nota- se aumento significativo na quantidade destas células no grupo de 15 dias pós-implante, tanto comparado com o grupo 5 dias pós-implante quanto ao grupo controle 5 dias (Figura 18B). A vascularização, por sua vez, apresentou aumento significativo no grupo de 5 dias pós-implante quando comparado ao seu respectivo controle (Figura 18C), enquanto a presença de células gigantes apresentou aumento significativo no grupo de 15 dias pós-implante em relação ao grupo controle 5 dias (Figura 18D). Apesar de não haver diferença estatística na análise referente à presença de vasos, visualmente foi possível perceber uma neovascularização no interior do biomaterial, após 15 dias do implante; sugerindo integração pelo organismo. Além disso, a presença de maior número de fibroblastos migrando para o interior do biomaterial com 15 dias de implantação sugere que há remodelamento e ou degradação tecidual na região periférica ao biomaterial.
[0158] De acordo com os resultados referentes ao implante subcutâneo de biomaterial não observou-se indução de resposta inflamatória exacerbada, sendo que o processo inflamatório detectado faz-se importante para o remodelamento tecidual gradual, visto que a presença de fibroblastos aumenta quando comparados os grupos de 15 e 5 dias, possibilitando migração mais profunda e possivelmente caracterizando a integração do implante de biomaterial ao tecido local. No tempo de execução do experimento não foram detectados sinais de rejeição grave de acordo com as análises histológicas e macroscópicas ao retirar o material após o tempo experimental, sugerindo que o biomaterial apresenta caracteristicas promissoras para aplicações em engenharia de tecidos e medicina regenerativa.
Exemplo 10- Implante do biomaterial em lesão de tendão [0159] Para demonstrar o potencial de uso do biomaterial descelularizado no reparo e/ou regeneração de tecidos, foram realizados experimentos de implantação do referido biomaterial ín vivo.
[0160] O experimento buscou analisar o efeito da implantação do biomaterial descelularizado desidratado na lesão do tendão de carneiros. [0161] Para o estudo foram utilizados carneiros machos, de idade entre 2 e 4 anos. Todos os animais foram submetidos à anestesia geral e foram usados todos os cuidados de assepsia, éticos e técnicas requeridas para um procedimento cirúrgico. Após retirada de um fragmento do tendão foi realizada a colocação do implante feito do biomaterial produzido pelo método descrito no presente pedido e fixado ao osso com um parafuso de titânio e sutura na extremidade do tendão.
[0162] O pós operatório foi acompanhado e os animais receberam antibióticos, anti-inflamatórios e analgésicos. Durante o acompanhamento, foram realizados vídeos para a avaliação de claudicação (avaliação do comprometimento da marcha), 48 horas após a cirurgia e periodicamente até o momento da eutanásia.
[0163] Os animais foram divididos aleatoriamente em dois grupos com cinco animais cada, para serem eutanasiados no primeiro tempo experimental de 49 dias (D49) e segundo tempo experimental de 114 dias (D114) de pós-operatório. Nos dias das eutanásias, os animais foram avaliados clinicamente apresentando mucosa, sinais vitais e comportamento normais. [0164] Após a incisão, na mesma região da cirurgia anterior, a peça cirúrgica foi coletada e armazenada em solução contendo formol a 10% e encaminhada para realização de lâminas histológicas coradas com hematoxilina e eosina. [0165] Foi realizada a avaliação da claudicação e análise histológica em ambos os tempos experimentais (D49 E D114). Baseada nas avaliações de todos os animais, apenas um animal do grupo de 49 dias apresentou piora na claudicação, os demais apresentaram desempenho favorável e positivo na caminhada. Além disso, foi feita a análise histológica do tecido e implante de ambos os tempos experimentais, que mostrou uma interação das células do hospedeiro com a região periférica do implante.
AVALIAÇÃO DA CLAUDICAÇÃO DOS ANIMAIS .
[0166] Para avaliação da claudicação foram considerados os seguintes parâmetros: ausente, quando o animal trota sem claudicação; leve, quando o animal caminha com leve desequilíbrio; moderado, quando a claudicação é intercalada com caminhada; severo, quando o animal não consegue firmar a pata durante a caminhada.
[0167] Considerando os animais de ambos tempos experimentais (D49 e D114) foi realizada a primeira avaliação de claudicação logo após 48 horas do procedimento cirúrgico. Nessa análise, apenas um animal não apresentou claudicação severa. Após 15 dias do procedimento cirúrgico, todos os animais apresentaram boa evolução da marcha. Na avaliação após 30 dias, dois animais apresentaram piora na claudicação, apresentando tropeços, sendo um do D49 e outro do D114. Os demais tiveram claudicação leve ou mantiveram o padrão anterior. Após 45 dias, todos os animais apresentaram melhora relativa comparada a última análise, exceto um animal do grupo D114 que voltou a ter dificuldade em firmar a pata. [0168] No dia da eutanásia do primeiro grupo (D49), apenas um animal teve evolução com piora da claudicação. Os demais animais conseguiam caminhar sem claudicação ou trotar sem desequilíbrio severo. As avaliações prosseguiram com os animais do segundo tempo experimental e até o dia da eutanásia (D114), mantiveram o parâmetro de claudicação leve/ausente ao trotar.
[0169] Com base nas avaliações realizadas nos dois tempos experimentais, ao comparar a evolução integral das análises (dia da cirurgia até o dia da eutanásia), observou- se piora da marcha em apenas um animal do grupo D49. Todos os demais animais tiveram um bom desfecho final com a função de marcha recuperada.
AVALIAÇÃO HISTOIÓGICA
[0170] Após a avaliação histológica qualitativa do grupo D49, foi possível observar a presença de processo inflamatório intenso e difuso ao redor do implante. Houve, aparentemente, uma interação entre o implante do biomaterial descelularizado e as células do hospedeiro, que migravam entre as fibras colágenas, na periferia do tecido implantado
(Fig. 19A).
[0171] A Figura 19 (A) mostra o infiltrado inflamatório difuso e o biomaterial descelularizado implantado no grupo experimental D49 e a Figura 19 (B) mostra o infiltrado inflamatório (indicado por { }) menos difuso e mais definido ao redor do biomaterial descelularizado implantado (indicado por *) no segundo grupo experimental D114.
[0172] A região entre o tendão lesionado e o implante apresentou-se com fibras desorganizadas, hipercelularizadas, diferente do que é observado em um tendão nativo saudável (Fig. 20).
[0173] A Figura 20 (A) mostra a região do biomaterial implantado (indicado por *); tendão nativo lesionado (indicado por bb) e região intermediária ao tendão nativo e ao implante (em destaque. A Figura 20 (B) mostra o tecido adjacente ao tendão nativo lesionado, com fibras desorganizadas e hipercelularizadas. Já a Figura (C) mostra o tendão nativo saudável que foi retirado para substituição pelo implante. A Figura (D) mostra em maior aumento de uma região do tendão nativo saudável.
[0174] Foi possível perceber na maioria das análises a presença de neovascularização e também o aumento da quantidade de células no interior dos vasos sanguíneos, em regiões próximas ao tecido implantado (Fig. 21). Visualizou- se ainda algumas regiões de tecido neoformado, com características semelhantes a um tecido conjuntivo frouxo, próximo ao defeito do tendão. [0175] A Figura 21 mostra a presença de vasos sanguíneos e hiperemia na região de interação do tecido nativo com o implante de biomaterial no primeiro tempo experimental D49 (indicado peloas setas).
[0176] Em algumas amostras, na região externa ao implante e ao tendão lesionado, também foi possível observar macroscopicamente um tecido neoformado, recobrindo toda a extensão da lesão, e microscopicamente este tecido apresentou características de um tecido conjuntivo frouxo (Fig. 22).
[0177] A Figura 22 mostra uma imagem microscópica do tecido conjuntivo frouxo (indicado por ]), que recobre a região de tendão lesionado (indicado por #).
[0178] No segundo tempo experimental D114, foi possível observar a presença do infiltrado inflamatório, porém menos difuso e mais definido ao redor do implante, com menor quantidade de células (Fig. 19B). Além disso, em algumas lâminas encontrou-se a presença de algumas regiões de tecido neoformado e/ou remodelado juntamente ao implante, mostrando uma aparente deposição de matriz extracelular e um aumento do número de fibras, mais compactas e paralelas na região do defeito em continuidade tanto com o implante, quanto com o tecido nativo, o que sugere uma remodelação tecidual gradativa com discreta intenção de organização de suas fibras na mesma direção das fibras do tendão nativo (Fig. 23 A e B).
[0179] As Figuras 23 (A) e (B) mostram o implante de biomaterial descelularizado em interação com o tendão nativo no segundo tempo experimental. Observa-se o implante (indicado por *) sendo infiltrado pelas células do hospedeiro; com predomínio daquelas com características de fibroblastos (indicado pelas setas grossas). As fibras na região de interação implante-tendão (indicado pelas setas pretas) apresentam tendência de se organizarem com o aumento da compactação e do arranjo paralelo entre elas; tornando- se, nesta região do implante, com aspecto histológico de organização tecidual semelhante ao do tendão nativo (indicado por #).
[0180] De modo geral, neste segundo tempo experimental foi possível observar o predomínio de células semelhantes à fibroblastos infiltrando o tecido do implante, diferente das células que foram observadas no primeiro tempo experimental (Fig. 24 A e B). Sugere-se a ocorrência de inflamação aguda intensa no tempo inicial, com redução da inflamação no segundo tempo, mostrando diminuição e alteração dos tipos celulares e tendência de reparo da lesão.
[0181] As Figuras 24 (A) e (B) mostram o perfil de células predominantes que infiltraram o implante: primeiro tempo experimental D49 (A) e segundo tempo experimental
Dl14 (B). [0182] Com base nos achados histológicos e avaliação comparativa entre os dois tempos experimentais, pode-se inferir que o implante do biomaterial descelularizado produzido pelo método descrito no presente pedido atuou de forma eficiente para permitir a infiltração celular e ainda propiciou um ambiente favorável para que estas células utilizassem este scaffold na tentativa de indução de reparo e/ou remodelamento da lesão, embora o tempo experimental não tenha sido suficiente para visualização da completa integração do implante ou reparo completo da lesão. Além disso, os aspectos clínicos, macroscópicos e histológicos não apresentaram sinais de infecção e/ou rejeição do biomaterial, sugerindo boa interação deste implante durante os tempos experimentais avaliados.
[0183] O implante do biomaterial descelularizado mostrou potencial de remodelação tecidual, possibilitando a rescelularização principalmente em sua periferia e permitiu a vascularização da região e favoreceu a deposição de matriz extracelular, que são fatores essenciais para a remodelação do tecido lesionado.
Exemplo 11- Implante do biomaterial em osso.
[0184] Para verificar o potencial do uso do biomaterial como um enxerto em um processo de reparação e regeneração tecidual e também como um carreador de substâncias ativas foi realizado um experimento de implante ósseo in vivo, mais especificamente, um implante na face vestibular do osso alveolar da maxila de cães.
[0185] Foram utilizados cães machos e fêmeas, de idade entre 2 a 8 anos. Todos os animais foram submetidos à anestesia geral e foram usados todos os cuidados de assepsia, éticos e técnicas requeridas por um procedimento cirúrgico. [0186] O ensaio foi composto por três grupos experimentais. No grupo primeiro grupo chamado CONTROLE, foi utilizado o material comercializado padrão para regeneração óssea, o Geistlich Bio-Oss® de 0.25 g; no segundo grupo foi utilizada o biomaterial descelularizado desidratado, chamado grupo BIOMATERIAL; e no terceiro, o biomaterial descelularizado desidratado, carreando sinvastatina a 2,5%, chamado de grupo BIOMATERIAL COM COMPOSTO ATIVO.
[0187] Foram realizadas incisões longitudinais com lâmina de bisturi n° 15 na gengiva inserida e posteriormente o periósteo foi incisado e descolado ao longo da área óssea a ser exposta, permitindo, assim, acesso direto ao osso alveolar. Com broca cirúrgica Carbide n° 701, tronco-cónica foram feitas ranhuras na superfície óssea receptora com tamanho médio de 0,5 x 0,75 cm, sempre com irrigação externa com soro fisiológico concomitante e ininterrupta para prevenção do superaquecimento da porção óssea. Após o posicionamento do biomaterial sobre as ranhuras, o periósteo e a gengiva foram reposicionados para a síntese cirúrgica, por meio de pontos isolados, com fio monofilamentar de nylon
(4-0), montado em agulha atraumática semicircular de 1,5 cm de comprimento. Após o procedimento cirúrgico, os animais receberam doses de antibiótico, anti-inflamatório e analgésico durante três dias consecutivos.
[0188] Fragmentos do local da cirurgia foram removidos após 49 (D49) e 130 (D130) dias. As amostras foram fixadas em solução contendo formol a 10%, desidratadas em concentrações crescentes de etanol, diafanizadas em xilol, infiltradas, incluídas em parafina e coradas com hematoxilina e eosina para posterior análise histológica ao microscópio de luz.
AVALIAÇÃO HISTOLÓGICA
[0189] De acordo com a avaliação histológica qualitativa, nas lâminas representativas do grupo CONTROLE D49 foram observadas formação de blasfemas ósseos na lâmina própria da gengiva inserida, circundantes aos fragmentos do biomaterial. A área do blasfema é compatível com o início do processo de formação do tecido ósseo, com presença de células típicas, como osteócitos, osteoblastos e osteoclastos. É possível constatar a prematuridade do processo, a partir da análise da distribuição desorganizada das fibras de colágeno e presença de osteócitos e osteoblastos e vasos sanguíneos inseridos na matriz, achados comuns ao tecido ósseo imaturo
(Figura 25). [0190] As Figuras 25 mostram lâmina própria da mucosa oral com presença dos grânulos do enxerto ósseo comercial implantado (indicado por *). Em (A) é possível observar o tecido conjuntivo denso onde o enxerto está implantado (indicado por #) e tecido conjuntivo frouxo na parte superior (inciado por colchete). Em (B), observa-se em destaque o grânulo do enxerto comercial (indicado por *) com a formação do blastema ósseo adjacente, sendo este processo ampliado e detalhado em (C) e (D), do grupo controle D49.
[0191] Notou-se, também, aumento discreto na quantidade de vasos sanguíneos próximo aos grânulos do enxerto ósseo comercial e hiperemia leve, condição que poderia favorecer a nutrição tecidual e, consequentemente, contribuir para o desenvolvimento do tecido em questão. Deste modo, infere-se que a presença dos grânulos induziu a formação óssea, com matriz extracelular irregular, típico de osso imaturo.
[0192] No tempo experimental D130 do grupo CONTROLE observou-se resposta semelhante ao primeiro tempo experimental, com osso primário contendo grande quantidade de osteócitos no interior da matriz neoformada e regiões mais organizadas, com arranjo lembrando a formação de Sistemas de Havers próximas aos grânulos do enxerto comercial (Figura 26).
[0193] As Figuras 26 mostram o grupo controle D130. Em
(A) observa-se a presença dos grânulos de enxerto ósseo comercial (indicado por *) na lâmina própria, externas ao periósteo do osso alveolar (indicado por [), além da presença do grânulo em destaque incluída no osso neoformado (indicado por #). A área destacada em (B) foi ampliada em (C) para análise, onde visualizam-se linhas de crescimento (indicado por setas) próximas a região do biomaterial e de formação de Sistemas de Havers (indicado por **). Em maior aumento, percebe-se deposição de fibras colágenas mais organizadas e orientadas ao redor das partículas, assim como células osteogênicas ao redor do biomaterial (D).
[0194] No grupo BIOMATERIAL D49 foi possível observar o contato íntimo do biomaterial descelularizado com o osso alveolar do animal, com um número elevado de células entremeando a região da esclera e angiogênese dentro do biomaterial, características essas marcantes neste tempo experimental. Não foram visualizadas áreas com infiltrado inflamatório significativo (Figura 27).
[0195] As Figuras 27 mostram o grupo BIOMATERIAL D49. Em
(A), nota-se a região da lâmina própria da gengiva inserida e tecido ósseo do animal experimental (indicado por [), implante de biomaterial descelularizado (indicado por *) adjacente ao osso alveolar do animal (indicado por [). Em
(B) observa-se por ampliação de (A), detalhes do implante e do tecido ósseo em formação (indicado por #), onde é possível verificar a interação do biomaterial com o osso e prováveis células osteoprogenitoras invadindo o biomaterial e presença de células no biomaterial descelularizado assim como vasos sanguíneos (indicado por setas).
[0196] No grupo BIOMATERIAL D130 é notória a presença de numerosos vasos sanguíneos, propondo moderada angiogênese no interior do implante de biomaterial desceliuarizado e contato íntimo do referido implante com uma região que sugere discreta formação óssea. A formação óssea apresentou um padrão desorganizado ou ligeiramente organizado, não diferindo do tempo inicial, D49. No biomaterial também foram observadas células entremeadas no seu interior e na região adjacente ao osso do animal experimental (Figura 28).
[0197] As Figuras 28 mostram o grupo BIOMATERIAL D130. Em (A) observam-se áreas de íntima integração entre o implante de biomaterial e o osso do animal (indicado por [) e implante e tecido conjuntivo frouxo (indicado por {). O implante de biomaterial descelularizado (indicado por #) apresenta agora possíveis células osteoprogenitoras em seu interior e presença de pequeno infiltrado celular entremeando suas fibras. Em (B), destaca-se a presença de possíveis adipócitos, com provável origem a partir da medula óssea (indicado por setas). Em (C) e (D) nota-se a deposição do osso recém formado (indicado por *) sobre o biomaterial implantado.
[0198] Sabendo-se que a angiogênese e a migração celular são importantes no processo de reparo do tecido ósseo e que biomateriais osteocondutores são utilizados para direcionar as células de forma mais rápida e apropriada no reparo do osso, sugere-se um papel osteocondutor do biomaterial descelularizado como produzido pelo método descrito pelo presente pedido de patente.
[0199] No grupo BIOMATERIAL COM COMPOSTO ATIVO, onde se avaliou a capacidade do biomaterial ser usado em combinação com substâncias ativas, servindo também como um carreado, nesse caso usando a sinvastatina, a avaliação histológica demonstrou a presença de maior volume ósseo em comparação aos demais grupos (Figura 29), onde é possível observar o osso alveolar e áreas de neoformação óssea adjacentes.
[0200] A Figura 29 mostra o grupo BIOMATERIAL COM COMPOSTO ATIVO D49 . Onde o A imagem é uma fotomicrografia demonstrando a presença do epitélio da mucosa gengival (indicado por seta), lâmina própria (indicado por [) da mucosa e a região onde foi posicionada o biomaterial com sinvastatina (indicado por {) adjacente ao osso alveolar do animal (indicado por*). Observa-se destacada no retângulo região de neoformação óssea (#).
[0201] A área de formação óssea no grupo BIOMATERIAL COM COMPOSTO ATIVO D49 apresentou as trabéculas ósseas integradas, caracteristicas do processo de maturação do osso. Além disso, nota-se em região de osso imaturo, com grande quantidade de osteócitos e a presença de pequenas cavidades medulares contendo vasos sanguíneos (Figura 30). [0202] As Figuras 30 mostram o grupo BIOMATERIAL COM COMPOSTO ATIVO D49. Região de interação entre o biomaterial com sinvastatina e osso alveolar (A) e tecido conjuntivo (inciado por [). Observa-se um maior volume ósseo neoformado (indicado por *) adjacente e integrado ao osso alveolar (indicado por #), infiltrado celular e vasos sanguíneos no interior das trabéculas ósseas recém formadas (indicado por *). O osso recém formado possui fibras de colágeno desorganizadas conforme apresentado na imagem (B) e linhas de crescimento (indicado por setas em A e B) que o distingue do osso alveolar.
[0203] No segundo tempo experimental do grupo BIOMATERIAL COM COMPOSTO ATIVO (D130) foi observado um comportamento similar em relação ao tempo D49, e presença de um maior volume ósseo neoproduzido, adjacente e delimitado pela linha de crescimento do osso alveolar (Figura 31). Além disso, observa-se também a presença de mastócitos na região próxima ao biomaterial, comprovadamente relacionados com o processo de remodelação tecidual, assim como a maior presença de vasos sanguíneos e de células interagindo com o implante de biomaterial.
[0204] As Figuras 31 mostram o grupo BIOMATERIAL COM
COMPOSTO ATIVO D130. Em (A) e (B) nota-se a presença de mastócitos (indicado por e outros tipos celulares no interior do biomaterial com sinvastatina. Linhas de crescimento (indicado por setas) separam o osso alveolar maduro (indicado por [) do recém formado (indicado por *). Tecido conjuntivo do próprio animal (indicado por {).
[0205] O biomaterial descelularizado produzido pelo método descrito no presente pedido de patente aparentemente apresentou um papel osteocondutor e osteoindutor, além de favorecer a migração celular. Além disso demonstrou a possibilidade de ser usado em combinação com compostos ativos, carreando por exemplo compostos diretamente ao local do implante. A sinvastatina é um fármaco utilizado no tratamento da hiperlipidemia e possui efeitos pleiotrópicos osteogênicos e antirreabsortivos já estudados ín vitro (mostrando alteração na dinâmica celular resultante dos efeitos da sinvastatina no tecido ósseo, que estão associados com o aumento da expressão de proteína óssea morfogenética- 2 (BMP-2), estimulando a proliferação e diferenciação dos osteoblastos) . Deste modo, o implante do biomaterial descelularizado favoreceu a formação óssea e quando associado a sinvastatina apresentou melhor desempenho comparado aos outros grupos experimentais.
Exemplo 12- Implante do biomaterial em lesão de cartilagem.
[0206] Para verificar o potencial do uso do biomaterial como um enxerto, scaffold biológico, em um processo de reparação e regeneração tecidual, foi realizado um implante do biomaterial descelularizado produzido pelo método descrito pelo presente pedido de patente em lesão causada em tecido cartilaginaoso ín vivo, mais especificamente um implante do biomaterial em lesão causada em joelhos de ovinos.
[0207] Foram utilizados carneiros machos com idade aproximada de 18 meses e peso corpóreo entre 48-56kg. Os animais foram submetidos ao protocolo anestésico, todos os cuidados de assepsia, éticos e técnicas requeridas por um procedimento cirúrgico, bem como ao protocolo de artrotomia femurotibiopatelar medial, com a patela rebatida lateralmente e articulação femurotibial flexionada. Foi utilizada fresa óssea para o desgaste articular de 6mm de diâmetro e aproximadamente 3 mm de profundidade, até a exposição do osso subcondral. Um fragmento da membrana de 7mm de diâmetro foi adaptada e inserida no local da lesão. Após a ráfia e recuperação pós-anestésica, os animais foram encaminhados para as baias, acompanhados diariamente com exames clínicos e imobilizados com bandagem por 5 dias. [0208] Após 30 dias da realização do procedimento cirúrgico, os animais foram eutanasiados por medicação pré- anestésica e o local da cirurgia foi removido. A peça cirúrgica foi fixada em formol a 4% e desmineralizada com solução de ácido fórmico. Seguiu-se os procedimentos para realização das lâminas histológicas, coradas por Hematoxilina e Eosina.
[0209] Na análise histológica foi possível observar (Figura 32) boa interação do biomaterial implantado, mais particularmente das fibras colágenas do implante de biomaterial com o tecido ósseo nativo.
[0210] A Figura 32 mostra um corte histológico do grupo que sofreu a lesão em cartilagem e recebeu o implante, em um tempo experimental de 30 dias pós-cirurgia.A linha tracejada indica a delimitação aproximada do implante no local da lesão. O colchete (]) indica a região de cartilagem articular nativa e as setas ilustram a interação com o tecido ósseo (região subcondral).
[0211] Nas extremidades do implante de biomaterial observou-se intensa infiltração de fibroblastos do animal, acompanhada de deposição de nova matriz extracelular, o que conduziu a ausência de delimitação exata das bordas, demonstrando importante integração do implante de biomaterial aos tecidos adjacentes (Figura 33C).
[0212] As Figuras 33 mostram um corte histológico do grupo que sofreu a lesão em cartilagem e recebeu o implante, em um tempo experimental de 30 dias pós-cirurgia. A figura
(A) é uma imagem representativa do corte histológico com as regiões demarcadas que foram ampliadas para uma melhor análise em (B) e (C). Na figura (B), as setas indicam a região de integração entre a cartilagem articular e o tecido conjuntivo neoformado, indicando impostante integração com o implante. Os círculos indicam as figuras de mitose dos condrócitos. A figura (C) mostra a região do implante de biomaterial com infiltrado de fibroblastos, deposição de nova matriz extracelular, que conduz para a perda da delimitação das bordas, devido a boa integração entre os tecidos (inferior esquerdo).
[0213] Nas adjacências do implante de biomaterial foram encontradas também células inflamatórias, com predomínio de mononucleares, como linfócitos, macrófagos e plasmócitos, que corresponde a uma etapa do processo de reparação. Não houve sinais de rejeição do biomaterial, como a presença de células gigantes multinucleadas (células gigantes de Langerhans) ou processo de encapsulamento, em nenhum dos animais analisados.
[0214] Na superfície superior do implante foi observado um tecido conjuntivo neoformado, com importante integração com o tecido cartilaginoso. Nesta região percebeu-se a presença de figuras de mitose de condrócitos na borda da lesão, evidenciando proliferação cartilaginosa, o que demonstra o potencial de reparo tecidual do implante de biomaterial produzido pelo método descrito pelo presente pedido de patente (Figura 33B). Exemplo 13- Implante do biomaterial para preenchimento e correção anatômica.
[0215] Para verificar o potencial do uso do biomaterial em um processo de preenchimento e correção anatômica, foi realizado um implante do biomaterial em um ser humano que apresentava retenção da pálpebra em um dos olhos (indicado por seta na Figura 34 A).
[0216] 0 implante de biomaterial foi então preparado no tamanho adequado para ser impantado cirurgicamente na pálpebra desejada (Figura 34 B-D).
[0217] A Figura 34 (E) mostra o resultado da cirugia logo após a realização do procedimento. Já a Figura 34 (F) mostra o resultado da cirurgia de preenchimento e correção anatômica usando o biomaterial descelularizado do presente pedido de patente, após cerca de 10 meses do referido procedimento cirúrgico. O paciente não apresentou rejeição ao biomaterial implantado, bem como o preenchimento e correção anatômica foi um sucesso, recuperando esteticamente a simetria dos olhos do paciente.
[0218] Desta forma o presente pedido descreve um método de produção de biomaterial descelularizado que compreende as etapas de:
- coletar, processar e higienizar o tecido biológico, preferencialmente em que o tecido biológico é derivado de tecido conjuntivo ocular, preferencialmente escleras de origem suína, bovina, de coelho ou humana;
- submeter o biomaterial descelularizado obtido a um processo de descelularização compreendendo: a- lavar o tecido biológico de 1 a 5 vezes utilizando tampão isotônico entre 1 a 20 minutos, à temperatura de entre 0 a 25 °C, sob agitação de entre 80 a 200rpm; b- incubar o tecido biológico utilizando tampão hipotônico, por 1 a 18 horas, à temperatura de entre 4 a 37 °C sob agitação de entre 80 a 200 rpm; c- tratar o tecido biológico com tampão detergente, por 5 a 24 horas, à temperatura de entre 4 a 37 °C sob agitação entre de 80 a 200 rpm; d- lavar o tecido biológico com água deionizada por 30 minutos a 4 horas, à temperatura de entre 4 a 37 °C sob agitação de entre 80 a 200 rpm; e- lavar o tecido biológico de 1 a 5 vezes com tampão isotônico, por 5 a 15 minutos, à temperatura de entre 4 a 37 °C sob agitação de entre 80 a 200 rpm; f- incubar o tecido biológico com tampão de Nucleases, entre 30 minutos e 3 horas, à temperatura de 30 a 40 °C, sob agitação de entre 80 a 200 rpm; e g- lavar o tecido biológico com tampão salino- fosfato (PBS) compreendendo de 0,05 a 1% m/v de EDTA, de 1 a 2 vezes, por até 5 minutos, à temperatura de 25 a 37°C, sob agitação de entre 80 a 200 rpm; e
- submeter o biomaterial descelularizado obtido a um processo de descontaminação e/ou esterilização.
[0219] Ademais, a agitação nas etapas (a) a (g) varia de entre 90 a 190 rpm. O referido tampão isotônico das etapas (a) e (e) é uma solução salina TRIS tamponada (TBS) compreendendo de 10 - 100 mM TRIS e 100 - 200 mM NaCl. O tampão hipotônico da etapa (b)compreende de 5 a 20mM de TRIS; de 0,05 a 1% m/v de EDTA e pH de entre 6 a 8. O tampão detergente da etapa (c) compreende de 5 a 20mM de TRIS; de 0,05 a 1% m/v de EDTA; e de 0,05 a 2% m/v de SDS. O tampão de nucleases da etapa (f) compreende de 10 a 50 mM de TRIS; de 2 a 10 mM de MgC12; de 1 a 80 U/mL de DNAse; e/ou de 0,05 a 80 U/mL de RNAse. A etapa (d) compreende ao menos uma troca da água de lavagem na metade do tempo total. O referido método pode ser realizado de forma semi-automatizada para produção em larga escala, preferencialmente as etapas (a) a (g) podem ser realizadas em biorreator.
[0220] A etapa de descontaminação do biomaterial descelularizado compreende o uso de ao menos um antibiótico e/ou antimicótico.
[0221] A etapa de descontaminação do biomaterial descelularizado usando antibiótico e/ou antimicótico compreende : i- lavar o biomaterial descelularizado ao menos uma vez com tampão salino-fosfato (PBS) estéril; ii- embeber o biomaterial descelularizado em tampão salino-fosfato (PBS) estéril contendo solução concentrada de antibiótico e/ou antimicótico; iii- manter o biomaterial descelularizado embebido na referida solução por cerca de 36 a 60 horas, a uma temperatura de 2 a 8°C; e iv- lavar o biomaterial descelularizado e esterilizado ao menos uma vez com tampão salino-fosfato (PBS) estéril.
[0222] A solução concentrada de antibiótico e/ou antimicótico compreende ao menos um composto com ação antibiótica e ao menos um composto com ação antimicótica. [0223] Preferencialmente a solução concentrada de antibiótico e/ou antimicótico compreende: penicilina, estreptomicina e anfotericina B.
[0224] A etapa de esterilização do biomaterial descelularizado compreende o uso de óxido de etileno ou de qualquer outro método conhecido por um técnico no assunto, como por exemplo o uso de radiação gama
[0225] O referido método de produção do biomaterial descelularizado compreende ainda uma etapa de desidratação que pode ocorrer preferencialmente após uma possível etapa de descontaminação e antes da etapa esterilização.
[0226] A etapa de desidratação compreende submeter o biomaterial descelularizado ou o biomaterial descelularizado e descontaminado a um processo de desidratação em que o referido biomaterial é incubado com concentrações crescentes de um álcool, preferencialmente em que a concentração álcool cresce de 45%, 55%, 65%, 75%, 85%, 95% até 100% volume/volume, e em que o referido biomaterial é incubado por ao menos 3 horas em cada uma das ditas concentrações de álcool.
[0227] O método ainda pode compreender uma etapa de reidratação do biomaterial desidratado, que pode ocorrer preferencialmente após a etapa de esterilização, em que compreende a incubação do referido biomaterial desidratado, por cerca de 20 a 40 minutos, com ao menos uma substância selecionada do grupo que consite de: água, álcool, substâncias solúveis em água ou álcool, nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, moléculas regulatórias, hormônio, medicamentos e/ou compostos farmaceuticamente ativos (por exemplo sinvastatina) .
[0228] O pedido também descreve o biomaterial descelularizado produzido pelo referido método, em que compreende uma matriz extracelular descelularizada de origem biológica, em que a dita matriz compreende predominantemente fibras de colágeno tipo I, III e elastina. O biomaterial pode ser usado em combinação com ao menos uma sustância ativa ou pode compreender ao menos uma substância ativa selecionada do grupo que consiste de: substâncias solúveis em água ou álcool, nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, moléculas regulatórias, hormônio, medicamentos e/ou compostos farmaceuticamente ativos (por exemplo sinvastatina).
[0229] O biomaterial sendo para uso na produção de um produto scaffold, prótese e/ou carreador de substâncias ativas para liberação sistémica ou localizada em um indivíduo que necessite do mesmo. Por exemplo, mas não limitado há, para uso em processos de reparação e/ou regeneração tecidual, preferencialmente de tecido ósseo, de tecido cartilaginoso, de articulações, de tendão, de pele, para fins proféticos em implantodontia e/ou traumatologia buco-maxilo-facial, para procedimentos cirúrgicos de preenchimento e/ou correção anatômica, ou na produção de próteses.
[0230] Embora o presente pedido de patente tenha descrito a matéria objeto da presente invenção com um certo grau de detalhamento a titulo de ilustração e exemplificação para fins de clareza e compreensão, será evidente que certas alterações e modificações podem ser praticadas no escopo das reivindicações em anexo.
[0231] Os exemplos descritos neste relatório não são limitativos, permitindo que um técnico no assunto altere alguns aspectos ou componentes da presente invenção, sem se distanciar do escopo da presente invenção.
[0232] Referências
[0233] Abbas, A. K., Lichtman, A. H., & Pillai, S. (2007). Cellular and molecular immunology (6th ed.).
[0234] Badylak, S. F. (2002). The extracellular matrix as a scaffold for tissue reconstruction. Seminars in Cell & Developmental Biology, 13(5), 377-383. Retrieved from http://www.ncbi.nlm.nih .gov/pubmed/12324220
[0235] Badylak, S. F., & Gilbert, T. W. (2008). Immune response to biologic scaffold materiais. Seminars in Immunology, 20(2), 109-116. https://doi.Org/10.1016/j.smim .
2007.11.003
[0236] Barbanti, S. H., Zavaglia, C. A. C., & Duek, E. A. R. (2005). Polímeros bioreabsorvíveis na engenharia de tecidos. Polímeros, 15(1), 13-21. https://doi.org/10.1590 /S0104- 14282005000100006
[0237] Dahl, S. L. M., Koh, J., Prabhakar, V., & Niklason, L. E. (2003). Decellularized Native and Engineered Arterial Scaffolds for Transplantation, 12(919), 659-666.
[0238] Fu, Y., Fan, X., Tian, C., Luo, J., Zhang, Y., Deng, L., ... Lv, Q. (2016). Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study. Journal of Cellular and Molecular Medicine, 20(4), 740-749. https://doi.Org/10.llll/jcmm.1277 6 [0239] Gilpin, A., & Yang, Y. (2017). Decellularization
Strategies for Regenerative Medicine: From Processing
Techniques to Applications. BioMed Research International, 2017, 1-13. https://doi.org/10.1155/2017/9831534 [0240] Liu, Y., Bharadwaj, S., Lee, S. J., Atala, A., &
Zhang, Y. (2009). Biomaterials Optimization of a natural collagen scaffold to aid cell - matrix penetration for urologic tissue engineering. Biomaterials, 30(23-24), 3865- 3873. https://doi.Org/10.1016/j.biomaterials.2009.04.008 [0241] Martinello, T., Bronzini, I., Volpin, A., Vindigni, V., Maccatrozzo, L., Caporale, G., ... Patruno, M. (2014). Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel. Journal of Tissue Engineering and Regenerative Medicine, 8(8), 612-619. https://doi.org/10.1002/term.1557 [0242] Meng, F., Modo, M., & Badylak, S. F. (2014).
Biologic scaffold for CNS repair. Regenerative Medicine, 9(3), 367-383. https://doi.Org/10.2217/rme.14.9 [0243] Mohammadie, Z. M., Parivar, K., Shahri, N. M., Fereidoni, M., & Hayati-Roodbari, N. (2018). Decellularized
Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application. Brazilian Archives of Biology and Technology, 60. https://doi .org/10.1590/1678-4324-2017160083
[0244] Paduano, F., Marrelli , M., White, L. J·, Shakesheff, K. M., & Tatullo, M. (2016). Odontogenic
Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I. PLOS ONE, 11(2), e0148225. https://doi.Org/10.1371/journal .pone.0148225 [0245] Parenteau-Bareil, R., Gauvin, R., & Berthod, F.
(2010). Collagen-Based Biomaterials for Tissue Engineering Applications. Materials, 3(3), 1863-1887. https://doi.org/10.3390/ma 3031863
[0246] Sackett, S. D., Tremmel, D. M., Ma, F., Feeney, A. K., Maguire, R. M., Brown, M. E., ... Odorico, J. S. (2018). Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas. Scientific Reports, 8(1), 10452. https://doi.org/10.1038/s41598-018-
28857-
[0247] Saldin, L. T., Cramer, M. C., Velankar, S. S.,
White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 49, 1-15. https://doi.Org/10.1016/j.actbio.2016.ll.068 [0248] Sawkins, M. J., Bowen, W., Dhadda, P., Markides,
H., Sidney, L. E., Taylor, A. J., ... White, L. J. (2013).
Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomaterialia, 9(8), 7865-7873. https://doi.Org/10.1016/j.actbio.2013.04.029 [0249] Seif-naraghi, S. B., Horn, D., Schup-magoffin, P.
J., & Christman, K. L. (2012). Acta Biomaterialia Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomaterialia, 8(10), 3695-3703. https://doi.Org/10.1016/j.actbio.2012.06.030 [0250] Singelyn, J. M., & Christman, K. L. (n.d.).
Modulation of Material Properties of a Decellularized Myocardial Matrix Scaffold, 731-738. https://doi.org/10.1002/ mabi.201000423
[0251] Tedder, M. E., Liao, J., Ph, D., Weed, B., Stabler, C., Zhang, H., ...Ph, D. (2009). Stabilized Collagen Scaffolds for Heart Valve Tissue Engineering, 15(6).
[0252] Ungerleider, J. L., Johnson, T. D., Rao, N., &
Christman, K. L. (2015). Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle. Methods, 84, 53-59. https://doi.Org/10.1016/j .ymeth.2015.03.024
[0253] Visser, J. (n.d.). Crosslinkable Hydrogels derived from Cartilage , Meniscus and Tendon Tissue, 1-34.
[0254] Wang, B., Borazjani, A., Tahai, M., de Jongh Curry, A. L., Simionescu, D. T., Guan, J., ... Liao, J. (2010).
Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells.
Journal of Biomedical Materials Research Part A, 9999A, NA- NA. https://doi.org/10.1002/jbm.a.32781
[0255] Wang, Y., Bao, J., Wu, Q., Zhou, Y., Li, Y., Wu, X., ...Bu, H. (2015). Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts.
Xenotransplantation, 22(1), 48-61. https://doi.org/10.1111
/xen.12141
[0256] Wolf, M. T., Daly, K. A., Brennan-Pierce, E. P.,
Johnson, S. A., Carruthers, C. A., D'Amore, A., ... Badylak, S. F. (2012). A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials, 33(29), 7028-7038. https://doi.Org/10.1016/j .biomaterials.2012.06.051 [0257] Wu, J., Ding, Q., Dutta, A., Wang, Y., Huang, Y., Weng, H., ... Hong, Y. (2015). An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration . Acta Biomaterialia, 16, 49-59. https://doi.Org/10.1016/j.actbio.2015.01.027 [0258] Xu, K., Kuntz, L. A., Foehr, P., Kuempel, K.,
Wagner, A., Tuebel, J., ...Burgkart, R. H. (2017). Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics. PLOS ONE,
12 (2), e0171577 . https://doi.org/10. 1371/journal. pone.0171577 Resumo da Patente de Invenção: "MÉTODO DE PRODUÇÃO DE BIOMATERIAL DESCELULARIZADO , BIOMATERIAL DESCELULARIZADO E USO DO MESMO" .
O presente pedido de patente refere-se ao campo da engenharia de tecidos. Em particular a um método de produção de biomaterial descelularizado a partir de tecido biológico, bem como o biomaterial descelularizado produzido pelo referido método compreendendo matriz extracelular de origem biológica. Particularmente o referido tecido biológico deriva de tecido conjuntivo ocular de origem animal ou humana. Mais particularmente refere-se a um método de produção de biomaterial descelularizado a partir de esclera animal para produção de scaffold biológico, prótese e/ou carreador de substâncias ativas (ou combinado com substâncias ativas), bem como o biomaterial em si e seus usos como scaffolds, próteses ou carreadores de substâncias para liberação sistémica ou localizada.

Claims

REIVINDICAÇÕES
1- Método de produção de biomaterial descelularizado, caracterizado pelo fato de que compreende as etapas de:
- coletar, processar e higienizar o tecido biológico; submeter o tecido biológico a um processo de descelularização compreendendo: a- lavar o tecido biológico de 1 a 5 vezes utilizando tampão isotônico entre 1 a 20 minutos, à temperatura de entre 0 a 25 °C, sob agitação de entre 80 a 200rpm; b- incubar o tecido biológico utilizando tampão hipotônico, por 1 a 18 horas, à temperatura de entre 4 a 37 °C sob agitação de entre 80 a 200 rpm; c- tratar o tecido biológico com tampão detergente, por 5 a 24 horas, à temperatura de entre 4 a 37 °C sob agitação entre de 80 a 200 rpm; d- lavar o tecido biológico com água deionizada por 30 minutos a 4 horas, à temperatura de entre 4 a 37 °C sob agitação de entre 80 a 200 rpm; e- lavar o tecido biológico de 1 a 5 vezes com tampão isotônico, por 5 a 15 minutos, à temperatura de entre 4 a 37 °C sob agitação de entre 80 a 200 rpm; f- incubar o tecido biológico com tampão de Nucleases, entre 30 minutos e 3 horas, à temperatura de 30 a 40 °C, sob agitação de entre 80 a 200 rpm; e g- lavar o tecido biológico com tampão salino- fosfato (PBS) com agente quelante, de 1 a 2 vezes, por até 5 minutos, à temperatura de 25 a 37°C, sob agitação de entre 80 a 200 rpm; e
- submeter o biomaterial descelularizado obtido a um processo de descontaminação e/ou esterilização.
2- Método de acordo com a reivindicação 1, caracterizado pelo fato de que o dito tecido biológico é derivado de tecido conjuntivo ocular, preferencialmente escleras de origem suina, bovina, de coelho ou humana.
3- Método de acordo com a reivindicação 1, caracterizado pelo fato de que a agitação nas etapas (a) a (g) varia de entre 90 a 190 rpm.
4- Método de acordo com a reivindicação 1, caracterizado pelo fato de que o referido tampão isotônico das etapas (a) e (e) é uma solução salina TRIS tamponada (TBS) compreendendo de 10 - 100 mM TRIS e 100 - 200 mM NaCl.
5- Método de acordo com a reivindicação 1, caracterizado pelo fato de que o tampão hipotônico da etapa
(b)compreende de 5 a 20mM de TRIS; de 0,05 a 1% m/v de EDTA e pH de entre 6 a 8.
6- Método de acordo com a reivindicação 1, caracterizado pelo fato de que o tampão detergente da etapa
(c) compreende de 5 a 20mM de TRIS; de 0,05 a 1% m/v de EDTA; e de 0,05 a 2% m/v de SDS
7- Método de acordo com a reivindicação 1, caracterizado pelo fato de que o tampão de Nucleases da etapa
(f) compreende de 10 a 50 mM de TRIS; de 2 a 10 mM de MgCl2; de 1 a 80 U/mL de DNAse; e/ou de 0,05 a 80 U/mL de RNAse.
8- Método de acordo com a reivindicação 1, caracterizado pelo fato de que a etapa (d) compreende ao menos uma troca da água de lavagem na metade do tempo total.
9- Método de acordo com qualquer uma das reivindicações 1 a 8, caracterizado pelo fato de que o referido método pode ser realizado de forma semi- automatizada para produção em larga escala, preferencialmente as etapas (a) a (g) podem ser realizadas em biorreator.
10- Método de acordo com qualquer uma das reivindicações 1 a 9, caracterizado pelo fato de que a etapa de descontaminação do biomaterial descelularizado compreende o uso de ao menos um antibiótico e/ou antimicótico.
11- Método de acordo com a reivindicação 10 caracterizado pelo fato de que a etapa de descontaminação do biomaterial descelularizado usando antibiótico e/ou antimicótico compreende: i- lavar o biomaterial descelularizado ao menos uma vez com tampão salino-fosfato (PBS) estéril; ii- embeber o biomaterial descelularizado em tampão salino-fosfato (PBS) estéril contendo solução concentrada de antibiótico e/ou antimicótico; iii- manter o biomaterial descelularizado embebido na referida solução por cerca de 36 a 60 horas, a uma temperatura de 2 a 8°C; e iv- lavar o biomaterial descelularizado e esterilizado ao menos uma vez com tampão salino-fosfato (PBS) estéril.
12- Método de acordo com a reivindicação 10 ou 11, caracterizado pelo fato de que a solução concentrada de antibiótico e/ou antimicótico compreende ao menos um composto com ação antibiótica e ao menos um composto com ação antimicótica.
13- Método de acordo com qualquer uma das reivindicações 1 a 12, caracterizado pelo fato de que a etapa de esterilização do biomaterial descelularizado compreende o uso de óxido de etileno ou de radiação gama.
14- Método de acordo com qualquer uma das reivindicações 1 a 13, caracterizado pelo fato de que o referido método compreende ainda uma etapa de desidratação que pode ocorrer preferencialmente após uma etapa de descontaminação e antes da etapa esterilização.
15- Método de acordo com a reivindicação 14, caracterizado pelo fato de que a etapa de desidratação compreende submeter o biomaterial descelularizado ou o biomaterial descelularizado e descontaminado a um processo de desidratação em que o referido biomaterial é incubado com concentrações crescentes de um álcool, preferencialmente em que a concentração do álcool cresce de 45%, 55%, 65%, 75%, 85%, 95% até 100% volume/volume, e em que o referido biomaterial é incubado por ao menos 3 horas em cada uma das ditas concentrações de álcool.
16- Método de acordo com qualquer uma das reivindicações 14 ou 15, caracterizado pelo fato de que o método ainda pode compreender uma etapa de reidratação do biomaterial desidratado, que pode ocorrer preferencialmente após a etapa de esterilização, em que compreende a incubação do referido biomaterial desidratado, por cerca de 20 a 40 minutos, com ao menos uma substância selecionada do grupo que consiste de: água, álcool, substâncias solúveis em água ou álcool, nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, moléculas regulatórias, hormônio, medicamentos e/ou compostos farmaceuticamente ativos.
17- Biomaterial descelularizado caracterizado pelo fato de que é produzido pelo método tal como definido em qualquer uma das reivindações 1 a 16 em que compreende uma matriz extracelular descelularizada de origem biológica, em que a dita matriz compreende predominantemente fibras de colágeno tipo I, III e elastina.
18- Biomaterial de acordo com a reivindicação 17 caracterizado pelo fato de que compreender ainda substâncias ativas selecionadas do grupo que consiste de: substâncias solúveis em água ou álcool, nutrientes, metabólitos, fatores de crescimento, moléculas de sinalização, moléculas regulatórias, hormônio, medicamentos e/ou compostos farmaceuticamente ativos.
19- Biomaterial de acordo com qualquer uma das reivindicações 17 ou 18, caracterizado pelo fato de que é para uso como scaffold, prótese ou carreador de substâncias ativas em um indivíduo que necessite do mesmo.
20- Biomaterial para uso de acordo com a reivindicação 19, caracterizado pelo fato que é para uso em processos de reparação e/ou regeneração tecidual, preferencialmente de tecido ósseo, de tecido cartilaginoso, de articulações, de tendão, de pele, para fins proféticos em implantodontia e/ou traumatologia buco-maxilo-facial, para procedimentos cirúrgicos de preenchimento e/ou correção anatômica, ou na produção de próteses.
21- Uso do biomaterial descelularizado tal como produzido pelo método definido em qualquer uma das reivindições 1 a 16, caracterizado pelo fato de que é na produção de um scaffold, na produção de próteses e/ou na produção de um carreador de substâncias para liberação sistémica ou localizada em um indivíduo que necessite do mesmo.
22- Uso de acordo com a reivindicação 21, caracterizado pelo fato de que é para uso em processos de reparação e/ou regeneração tecidual, preferencialmente de tecido ósseo, de tecido cartilaginoso, de articulações, de tendão, de pele, para fins proféticos em implantodontia e/ou traumatologia buco-maxilo-facial, para procedimentos cirúrgicos de preenchimento e/ou correção anatômica, ou na produção de próteses.
PCT/BR2021/050069 2020-02-14 2021-02-12 Método de produção de biomaterial descelularizado, biomaterial descelularizado e uso do mesmo WO2021159198A1 (pt)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA3171328A CA3171328A1 (en) 2020-02-14 2021-02-12 Method for producing decellularized biomaterial, decellularized biomaterial and use thereof
AU2021220753A AU2021220753A1 (en) 2020-02-14 2021-02-12 Method for producing decellularized biomaterial, decellularized biomaterial and use thereof
EP21754359.4A EP4104863A4 (en) 2020-02-14 2021-02-12 METHOD FOR PRODUCING DECELLULARIZED BIOMATERIAL, DECELLULARIZED BIOMATERIAL AND USE THEREOF
IL295582A IL295582A (en) 2020-02-14 2021-02-12 Method for the production of cell-free biological material, cell-free biological material and its uses
BR112022016166A BR112022016166A2 (pt) 2020-02-14 2021-02-12 Método de produção de biomaterial descelularizado, biomaterial descelularizado e uso do mesmo
JP2022549335A JP2023517179A (ja) 2020-02-14 2021-02-12 脱細胞化生体材料を製造する方法、脱細胞化生体材料、及びその使用
KR1020227031839A KR20220161290A (ko) 2020-02-14 2021-02-12 탈세포화된 생체물질을 생산하는 방법, 탈세포화된 생체물질 및 이의 용도
MX2022009961A MX2022009961A (es) 2020-02-14 2021-02-12 Método para producir biomaterial descelularizado, material descelularizado y usos de este.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062976956P 2020-02-14 2020-02-14
US62/976,956 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021159198A1 true WO2021159198A1 (pt) 2021-08-19

Family

ID=77291950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050069 WO2021159198A1 (pt) 2020-02-14 2021-02-12 Método de produção de biomaterial descelularizado, biomaterial descelularizado e uso do mesmo

Country Status (9)

Country Link
EP (1) EP4104863A4 (pt)
JP (1) JP2023517179A (pt)
KR (1) KR20220161290A (pt)
AU (1) AU2021220753A1 (pt)
BR (1) BR112022016166A2 (pt)
CA (1) CA3171328A1 (pt)
IL (1) IL295582A (pt)
MX (1) MX2022009961A (pt)
WO (1) WO2021159198A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114796615A (zh) * 2022-04-20 2022-07-29 诺一迈尔(苏州)医学科技有限公司 一种软骨脱细胞基质及其制备方法
WO2024036879A1 (zh) * 2022-08-19 2024-02-22 山东第一医科大学附属眼科研究所(山东省眼科研究所、山东第一医科大学附属青岛眼科医院) 一种基于透明化巩膜的角膜修复材料及其制备方法和应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947144A (zh) 2010-09-29 2011-01-19 厦门大学 一种板层组织工程角膜支架及其制作方法与应用
US20110212524A1 (en) * 2006-12-04 2011-09-01 Body Organ Biomedical Corporation Biomaterial and preparation method thereof
BR102014003817A2 (pt) * 2014-02-19 2015-12-01 Fundação Universidade Fed De São Carlos processo de recobrimento descontínuo utilizando um biomaterial bioabsorvível e bioativo aplicado sobre substratos sólidos, recobrimento descontínuo e seu uso
CN105833353A (zh) 2016-05-09 2016-08-10 拜欧迪赛尔(北京)生物科技有限公司 一种生物工程脱细胞真皮基质的制备及用途
CN105944142A (zh) 2016-05-09 2016-09-21 拜欧迪赛尔(北京)生物科技有限公司 一种新型的脱细胞肌腱或韧带支架的制备方法
CN106362212A (zh) * 2016-10-21 2017-02-01 华中科技大学同济医学院附属协和医院 一种用于去除组织细胞的亲脂性去细胞溶液、试剂盒和方法
CN106614519A (zh) * 2016-11-24 2017-05-10 山东省眼科研究所 一种脱细胞角膜缘保护液及脱细胞角膜缘的制备方法
CN106730005A (zh) 2016-12-22 2017-05-31 深圳艾尼尔角膜工程有限公司 一种角膜基质及其制备方法
CN106729999A (zh) * 2016-11-24 2017-05-31 山东省眼科研究所 一种构建组织工程角膜缘的方法
CN107007886A (zh) 2017-03-03 2017-08-04 北京博辉瑞进生物科技有限公司 一种生物组织基质材料、制备方法及其用途
KR20180003879A (ko) 2016-07-01 2018-01-10 순천향대학교 산학협력단 탈세포화용 생물반응기 시스템과, 이를 이용한 기관의 탈세포화 방법
RU2016135703A (ru) 2016-09-02 2018-03-05 Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации - Федеральный медицинский биофизический центр имени А.И. Бурназяна Федерального медико-биологического агентства" (ФГБУ "ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России") Способ получения децеллюляризированных матриксов паренхиматозных органов лабораторных животных
US20180256784A1 (en) 2015-09-08 2018-09-13 Clemson University Decellularized Biomaterial and Method for Formation
CN108888804A (zh) * 2018-07-27 2018-11-27 山东省眼科研究所 一种软组织修复材料及其制备方法
EP3412322A1 (en) 2002-03-26 2018-12-12 Celularity, Inc. Collagen biofabric and methods of preparation and use therefor
KR20180133172A (ko) 2017-06-05 2018-12-13 주식회사 티앤알바이오팹 골 이식재 고정용 주사형 접착제 조성물의 제조방법 및 이를 통해 제조된 골 이식재 고정용 주사형 접착제 조성물
BRPI0909121A2 (pt) * 2008-03-24 2019-04-16 Euclid Systems Corporation equipamentos de concentração localizada de fluidos em ambientes oculares

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001255741B2 (en) * 2000-04-28 2005-08-04 Baylor College Of Medicine Decellularized vascular prostheses
EP3545980A1 (en) * 2010-02-26 2019-10-02 DeCell Technologies Inc. Methods for tissue decellularization

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3412322A1 (en) 2002-03-26 2018-12-12 Celularity, Inc. Collagen biofabric and methods of preparation and use therefor
US20110212524A1 (en) * 2006-12-04 2011-09-01 Body Organ Biomedical Corporation Biomaterial and preparation method thereof
BRPI0909121A2 (pt) * 2008-03-24 2019-04-16 Euclid Systems Corporation equipamentos de concentração localizada de fluidos em ambientes oculares
CN101947144A (zh) 2010-09-29 2011-01-19 厦门大学 一种板层组织工程角膜支架及其制作方法与应用
BR102014003817A2 (pt) * 2014-02-19 2015-12-01 Fundação Universidade Fed De São Carlos processo de recobrimento descontínuo utilizando um biomaterial bioabsorvível e bioativo aplicado sobre substratos sólidos, recobrimento descontínuo e seu uso
US20180256784A1 (en) 2015-09-08 2018-09-13 Clemson University Decellularized Biomaterial and Method for Formation
CN105944142A (zh) 2016-05-09 2016-09-21 拜欧迪赛尔(北京)生物科技有限公司 一种新型的脱细胞肌腱或韧带支架的制备方法
CN105833353A (zh) 2016-05-09 2016-08-10 拜欧迪赛尔(北京)生物科技有限公司 一种生物工程脱细胞真皮基质的制备及用途
KR20180003879A (ko) 2016-07-01 2018-01-10 순천향대학교 산학협력단 탈세포화용 생물반응기 시스템과, 이를 이용한 기관의 탈세포화 방법
RU2016135703A (ru) 2016-09-02 2018-03-05 Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации - Федеральный медицинский биофизический центр имени А.И. Бурназяна Федерального медико-биологического агентства" (ФГБУ "ГНЦ ФМБЦ им. А.И. Бурназяна ФМБА России") Способ получения децеллюляризированных матриксов паренхиматозных органов лабораторных животных
CN106362212A (zh) * 2016-10-21 2017-02-01 华中科技大学同济医学院附属协和医院 一种用于去除组织细胞的亲脂性去细胞溶液、试剂盒和方法
CN106729999A (zh) * 2016-11-24 2017-05-31 山东省眼科研究所 一种构建组织工程角膜缘的方法
CN106614519A (zh) * 2016-11-24 2017-05-10 山东省眼科研究所 一种脱细胞角膜缘保护液及脱细胞角膜缘的制备方法
CN106730005A (zh) 2016-12-22 2017-05-31 深圳艾尼尔角膜工程有限公司 一种角膜基质及其制备方法
CN107007886A (zh) 2017-03-03 2017-08-04 北京博辉瑞进生物科技有限公司 一种生物组织基质材料、制备方法及其用途
KR20180133172A (ko) 2017-06-05 2018-12-13 주식회사 티앤알바이오팹 골 이식재 고정용 주사형 접착제 조성물의 제조방법 및 이를 통해 제조된 골 이식재 고정용 주사형 접착제 조성물
CN108888804A (zh) * 2018-07-27 2018-11-27 山东省眼科研究所 一种软组织修复材料及其制备方法

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
ABBAS, A. K., LICHTMAN, A. H., & PILLAI, S.: "Cellular and molecular immunology", 2007
BADYLAK, S. F.GILBERT, T. W.: "Immune response to biologic scaffold materials", SEMINARS IN IMMUNOLOGY, vol. 20, no. 2, 2008, pages 109 - 116, XP022520627, Retrieved from the Internet <URL:https://doi.org/10.1016/j.smim.2007.11.003>
BADYLAK, S. F: "The extracellular matrix as a scaffold for tissue reconstruction", SEMINARS IN CELL DEVELOPMENTAL BIOLOGY, vol. 13, no. 5, 2002, pages 377 - 383, XP002385100, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/12324220>
BARBANTI, S. H., ZAVAGLIA, C. A. C., & DUEK, E. A. R.: "Polimeros bioreabsorviveis na engenharia de tecidos", POLIMEROS, vol. 15, no. 1, 2005, pages 13 - 21, Retrieved from the Internet <URL:https://doi.org/10.1590/S0104-14282005000100006>
DAHL, S. L. M., KOH, J., PRABHAKAR, V., & NIKLASON, L. E., DECELLULARIZED NATIVE AND ENGINEERED ARTERIAL SCAFFOLDS FOR TRANSPLANTATION, vol. 12, no. 919, 2003, pages 659 - 666
FU, Y.FAN, X.TIAN, C.LUO, J.ZHANG, Y.DENG, L.LV, Q.: "Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study", JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, vol. 20, no. 4, 2016, pages 740 - 749, XP055840326, Retrieved from the Internet <URL:https://doi.org/10.1111/jcmm.12776> DOI: 10.1111/jcmm.12776
GILPIN, A.YANG, Y.: "Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications", BIOMED RESEARCH INTERNATIONAL, vol. 2017, 2017, pages 1 - 13, XP055639219, Retrieved from the Internet <URL:https://doi.org/10.1155/2017/9831534> DOI: 10.1155/2017/9831534
HANCOX, ZOE ET AL.: "The progress in corneal translational medicine", BIOMATER. SCI., vol. 8, 2020, pages 6 469 - 6504, XP055847558 *
LIU, Y.BHARADWAJ, S.LEE, S. J.ATALA, A.ZHANG, Y.: "Biomaterials Optimization of a natural collagen scaffold to aid cell - matrix penetration for urologic tissue engineering", BIOMATERIALS, vol. 30, no. 23-24, 2009, pages 3865 - 3873, XP026149152, Retrieved from the Internet <URL:https://doi.org/10.1016/j.biomaterials.2009.04.008> DOI: 10.1016/j.biomaterials.2009.04.008
LO, SAMANTHA ET AL.: "Current Update of Collagen Nanomaterials-Fabrication, Characterisation and Its Applications: A Review", PHARMACEUTICS, vol. 13, no. 316, 2021, XP055847555 *
MARTINELLO, T.BRONZINI, I.VOLPIN, A.VINDIGNI, V.MACCATROZZO, L.CAPORALE, G.PATRUNO, M.: "Successful recellularization of human tendon scaffolds using adipose-derived mesenchymal stem cells and collagen gel", JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, vol. 8, no. 8, 2014, pages 612 - 619, Retrieved from the Internet <URL:https://doi.org/10.1002/term.1557>
MENG, F.MODO, M.BADYLAK, S. F.: "Biologic scaffold for CNS repair", REGENERATIVE MEDICINE, vol. 9, no. 3, 2014, pages 367 - 383, Retrieved from the Internet <URL:https://doi.org/10.2217/rme.14.9>
MOHAMMADIE, Z. M.PARIVAR, K.SHAHRI, N. M.FEREIDONI, M.HAYATI-ROODBARI, N: "Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application", BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, vol. 60, 2018, Retrieved from the Internet <URL:https://doi.org/10.1590/1678-4324-2017160083>
PADUANO, F., MARRELLI, M., WHITE, L. J., SHAKESHEFF, K. M., & TATULLO, M.: "Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydrogel Scaffolds Derived from Decellularized Bone Extracellular Matrix and Collagen Type I", PLOS ONE, vol. 11, no. 2, 2016, pages e0148225, Retrieved from the Internet <URL:https://doi.org/10.1371/journal.pone.0148225>
PARENTEAU-BAREIL, R.GAUVIN, R.BERTHOD, F.: "Collagen-Based Biomaterials for Tissue Engineering Applications", MATERIALS, vol. 3, no. 3, 2010, pages 1863 - 1887, XP055146090, Retrieved from the Internet <URL:https://doi.org/10.3390/ma3031863> DOI: 10.3390/ma3031863
SACKETT, S. D.TREMMEL, D. M.MA, FFEENEY, A. K.MAGUIRE, R. MBROWN, M. E.ODORICO, J. S.: "Extracellular matrix scaffold and hydrogel derived from decellularized and delipidized human pancreas", SCIENTIFIC REPORTS, vol. 8, no. 1, 2018, pages 10452, XP055703361, Retrieved from the Internet <URL:https://doi.org/10.1038/s41598-018-28857> DOI: 10.1038/s41598-018-28857-1
SALDIN, L. T.CRAMER, M. C.VELANKAR, S. S.WHITE, L. J.BADYLAK, S. F.: "Extracellular matrix hydrogels from decellularized tissues: Structure and function", ACTA BIOMATERIALIA, vol. 49, 2017, pages 1 - 15, XP029885847, Retrieved from the Internet <URL:https://doi.org/10.1016/j.actbio.2016.11.068> DOI: 10.1016/j.actbio.2016.11.068
SAWKINS, M. J.BOWEN, W.DHADDA, P.MARKIDES, H.SIDNEY, L. E.TAYLOR, A. J.WHITE, L. J.: "Hydrogels derived from demineralized and decellularized bone extracellular matrix", ACTA BIOMATERIALIA, vol. 9, no. 8, 2013, pages 7865 - 7873, XP002730649, Retrieved from the Internet <URL:https://doi.org/10.1016/j.actbio.2013.04.029> DOI: 10.1016/j.actbio.2013.04.029
See also references of EP4104863A4
SEIF-NARAGHI, S. B.HORN, D.SCHUP-MAGOFFIN, P. J.CHRISTMAN, K. L.: "Acta Biomaterialia Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor", ACTA BIOMATERIALIA, vol. 8, no. 10, 2012, pages 3695 - 3703, Retrieved from the Internet <URL:https://doi.org/10.1016/j.actbio.2012.06.030>
SINGELYN, J. M.CHRISTMAN, K. L. (N.D.)., MODULATION OF MATERIAL PROPERTIES OF A DECELLULARIZED MYOCARDIAL MATRIX SCAFFOLD, pages 731 - 738, Retrieved from the Internet <URL:https://doi.org/10.1002/mabi.201000423>
TEDDER, M. E.LIAO, J.PH, D.WEED, B.STABLER, C.ZHANG, H.PH, D., STABILIZED COLLAGEN SCAFFOLDS FOR HEART VALVE TISSUE ENGINEERING, vol. 15, no. 6, 2009
UNGERLEIDER, J. L.JOHNSON, T. D.RAO, N.CHRISTMAN, K. L.: "Fabrication and characterization of injectable hydrogels derived from decellularized skeletal and cardiac muscle", METHODS, vol. 84, 2015, pages 53 - 59, Retrieved from the Internet <URL:https://doi.org/10.1016/j.ymeth.2015.03.024>
VISSER, J. (N.D.).: "Crosslinkable Hydrogels derived from Cartilage", MENISCUS AND TENDON TISSUE, pages 1 - 34
WANG, B., BORAZJANI, A., TAHAI, M., DE JONGH CURRY, A.L., SIMIONESCU, D. T., GUAN, J., ... LIAO, J.: "Fabrication of cardiac patch with decellularized porcine myocardial scaffold and bone marrow mononuclear cells", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 9999A, 2010, Retrieved from the Internet <URL:https://doi.org/10.1002/jbm.a.32781>
WANG, Y.BAO, J.WU, Q.ZHOU, YLI, YWU, X.BU, H.: "Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts", XENOTRANSPLANTATION, vol. 22, no. 1, 2015, pages 48 - 61, Retrieved from the Internet <URL:https://doi.org/10.1111/xen.12141>
WOLF, M. T.DALY, K. A.BRENNAN-PIERCE, E. P.JOHNSON, S. A.CARRUTHERS, C. A.D'AMORE, A.BADYLAK, S. F.: "A hydrogel derived from decellularized dermal extracellular matrix", BIOMATERIALS, vol. 33, no. 29, 2012, pages 7028 - 7038, XP028932396, Retrieved from the Internet <URL:https://doi.org/10.1016/j.biomaterials.2012.06.051> DOI: 10.1016/j.biomaterials.2012.06.051
WU, J.DING, QDUTTA, A.WANG, YHUANG, Y.WENG, H.HONG, Y.: "An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration", ACTA BIOMATERIALIA, vol. 16, 2015, pages 49 - 59, Retrieved from the Internet <URL:https://doi.org/10.1016/j.actbio.2015.01.027>
XU, K.KUNTZ, L. A.FOEHR, P.KUEMPEL, K.WAGNER, A.TUEBEL, J.BURGKART, R. H.: "Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics", PLOS ONE, vol. 12, no. 2, 2017, pages e0171577, XP055657945, Retrieved from the Internet <URL:https://doi.org/10.1371/journal.pone.0171577> DOI: 10.1371/journal.pone.0171577
ZHANG, JU ET AL.: "Acellular porcine corneal matrix as a carrier scaffold for cultivating human corneal epithelial cells and fibroblasts in vitro", INT.J.OPHTHALMOL., vol. 9, no. 1, 18 January 2016 (2016-01-18), XP055662794, DOI: 10.18240/ijo.2016.01.01 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114796615A (zh) * 2022-04-20 2022-07-29 诺一迈尔(苏州)医学科技有限公司 一种软骨脱细胞基质及其制备方法
CN114796615B (zh) * 2022-04-20 2023-08-25 诺一迈尔(苏州)医学科技有限公司 一种软骨脱细胞基质及其制备方法
WO2024036879A1 (zh) * 2022-08-19 2024-02-22 山东第一医科大学附属眼科研究所(山东省眼科研究所、山东第一医科大学附属青岛眼科医院) 一种基于透明化巩膜的角膜修复材料及其制备方法和应用

Also Published As

Publication number Publication date
AU2021220753A1 (en) 2022-10-06
MX2022009961A (es) 2022-11-14
CA3171328A1 (en) 2021-08-19
EP4104863A1 (en) 2022-12-21
BR112022016166A2 (pt) 2022-10-04
KR20220161290A (ko) 2022-12-06
IL295582A (en) 2022-10-01
EP4104863A4 (en) 2024-02-21
JP2023517179A (ja) 2023-04-24

Similar Documents

Publication Publication Date Title
Beck et al. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel
CN107281550B (zh) 一种促进软骨损伤修复的共交联双网络水凝胶支架的制备方法
JP5675595B2 (ja) 組織マトリックスのエラスターゼ処理
CN106456837B (zh) 最终消毒的来自细胞外基质的水凝胶的制备方法
Schwarz et al. Decellularized cartilage matrix as a novel biomatrix for cartilage tissue-engineering applications
Parmaksiz et al. Decellularization of bovine small intestinal submucosa and its use for the healing of a critical‐sized full‐thickness skin defect, alone and in combination with stem cells, in a small rodent model
Li et al. Robotic in situ 3D bio-printing technology for repairing large segmental bone defects
JP6456829B2 (ja) 組織傷害および疾患を処置および予防するための組成物および方法
CN107007883B (zh) 一种软骨修复支架及其制备方法
KR20210104178A (ko) 바르톤 젤리로 이루어진 라미네이트된 조직 이식편 및 그것의 제조 및 사용 방법
US20230079113A1 (en) Biomaterial for Articular Cartilage Maintenance and Treatment of Arthritis
Giraldo-Gomez et al. Fast cyclical-decellularized trachea as a natural 3D scaffold for organ engineering
Cengiz et al. Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation
Wang et al. Decellularized porcine cornea-derived hydrogels for the regeneration of epithelium and stroma in focal corneal defects
Yan et al. A collagen‐coated sponge silk scaffold for functional meniscus regeneration
WO2021159198A1 (pt) Método de produção de biomaterial descelularizado, biomaterial descelularizado e uso do mesmo
US11938245B2 (en) Cartilage-derived implants and methods of making and using same
Zhong et al. A comparative study of the effects of different decellularization methods and genipin-cross-linking on the properties of tracheal matrices
O’Shea et al. An injectable and 3D printable pro-chondrogenic hyaluronic acid and collagen type II composite hydrogel for the repair of articular cartilage defects
Elomaa et al. Rise of tissue-and species-specific 3D bioprinting based on decellularized extracellular matrix-derived bioinks and bioresins
Meimandi-Parizi et al. Novel application of a tissue-engineered collagen-based three-dimensional bio-implant in a large tendon defect model: A broad-based study with high value in translational medicine
Noh et al. Selective Extracellular Matrix Guided Mesenchymal Stem Cell Self‐Aggregate Engineering for Replication of Meniscal Zonal Tissue Gradient in a Porcine Meniscectomy Model
Li et al. Structure and properties of the acellular porcine cornea irradiated with 60Co‐γ and electron beam and its histocompatibility
Yang et al. WJSC
CN114931670A (zh) 活性物质及其自愈合水凝胶在修复软骨中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022549335

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3171328

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022016166

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021754359

Country of ref document: EP

Effective date: 20220914

ENP Entry into the national phase

Ref document number: 112022016166

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220815

ENP Entry into the national phase

Ref document number: 2021220753

Country of ref document: AU

Date of ref document: 20210212

Kind code of ref document: A