WO2021157527A1 - 撮像レンズ系及び撮像装置 - Google Patents

撮像レンズ系及び撮像装置 Download PDF

Info

Publication number
WO2021157527A1
WO2021157527A1 PCT/JP2021/003547 JP2021003547W WO2021157527A1 WO 2021157527 A1 WO2021157527 A1 WO 2021157527A1 JP 2021003547 W JP2021003547 W JP 2021003547W WO 2021157527 A1 WO2021157527 A1 WO 2021157527A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens system
image pickup
imaging
lenses
Prior art date
Application number
PCT/JP2021/003547
Other languages
English (en)
French (fr)
Inventor
由多可 牧野
隆 杉山
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020015971A external-priority patent/JP7498569B2/ja
Priority claimed from JP2021001775A external-priority patent/JP2022107088A/ja
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2021157527A1 publication Critical patent/WO2021157527A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an image pickup lens system and an image pickup apparatus, for example, an image pickup lens system and an image pickup apparatus for in-vehicle use or surveillance.
  • Patent Document 1 describes an imaging lens system having a wide angle of view using a plastic lens. Specifically, Patent Document 1 describes, in order from the object side to the image side, a first lens L1 which is a glass lens, a second lens L2 which is a plastic lens, a third lens L3 which is a glass lens, and a plastic lens. An imaging lens system including the fourth lens L4 is described.
  • glass lenses for all the lenses used in the imaging lens system, it is possible to suppress out-of-focus due to temperature changes.
  • glass lenses are generally more expensive than plastic lenses, which increases the cost.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide an image pickup lens system and an image pickup apparatus capable of suppressing a change in a focal position due to a temperature change.
  • the focal length of the i-th lens (i is a positive integer) arranged in order from the object side to the image side is set to fi, and the focal length of the entire optical system is set to fi.
  • F is set, at least 5 power lenses satisfying
  • the code of the value of the Pdi is an object.
  • the power lenses are arranged so as to switch alternately from the side to the image side.
  • an image pickup lens system and an image pickup apparatus capable of suppressing a change in the focal position due to a temperature change.
  • FIG. It is sectional drawing which shows the structure of the image pickup lens system which concerns on Example 3.
  • FIG. It is a spherical aberration diagram (longitudinal aberration diagram) in the image pickup lens system of Example 3. It is a curvature of field view in the image pickup lens system of Example 3.
  • FIG. It is a distortion aberration diagram in the image pickup lens system of Example 3.
  • FIG. It is sectional drawing which shows the structure of the image pickup lens system which concerns on Example 4.
  • FIG. It is a spherical aberration diagram (longitudinal aberration diagram) in the image pickup lens system of Example 4. It is a curvature of field view in the image pickup lens system of Example 4. It is a distortion aberration diagram in the image pickup lens system of Example 4.
  • FIG. It is a spherical aberration diagram (longitudinal aberration diagram) in the image pickup lens system of Example 5. It is a curvature of field view in the image pickup lens system of Example 5. It is a distortion aberration diagram in the image pickup lens system of Example 5. It is sectional drawing which shows the structure of the image pickup lens system which concerns on Example 6. It is a spherical aberration diagram (longitudinal aberration diagram) in the image pickup lens system of Example 6. It is a curvature of field view in the image pickup lens system of Example 6. It is a distortion aberration diagram in the image pickup lens system of Example 6.
  • FIG. 7 It is a spherical aberration diagram (longitudinal aberration diagram) in the image pickup lens system of Example 7. It is a curvature of field view in the image pickup lens system of Example 7. It is a distortion aberration diagram in the image pickup lens system of Example 7. It is sectional drawing which shows the structure of the image pickup lens system which concerns on Example 8. It is a spherical aberration diagram (longitudinal aberration diagram) in the image pickup lens system of Example 8. It is a curvature of field view in the image pickup lens system of Example 8. It is a distortion aberration diagram in the image pickup lens system of Example 8.
  • FIG. 9 It is sectional drawing which shows the structure of the image pickup lens system which concerns on Example 9.
  • FIG. It is a spherical aberration diagram (longitudinal aberration diagram) in the image pickup lens system of Example 9. It is a curvature of field view in the image pickup lens system of Example 9. It is a distortion aberration diagram in the image pickup lens system of Example 9. It is sectional drawing of the image pickup apparatus which concerns on Embodiment 2.
  • the focal length of the i-th lens (i is a positive integer) arranged in order from the object side to the image side is fi
  • the focal length of the entire optical system is fi.
  • F is, at least five power lenses satisfying
  • the power lens means a lens having a relatively large power and satisfying
  • the power lens is arranged so that the positive and negative signs of the Pdi value are alternately switched from the object side to the image side in order.
  • the d-line is a light ray having a wavelength of 588 nm.
  • the present inventors have determined that the amount of change in the focal position due to a temperature change in the image pickup lens system is the value of Pdi of the power lens constituting the image pickup lens system, that is, the power lens constituting the image pickup lens system. It was noted that it mainly depends on the value obtained by multiplying the rate of change (dNd / dt) i of the refractive index due to the temperature change of the lens by the power (1 / f). More specifically, when the value of (dNd / dt) i is positive in a power lens having positive power, Pdi is positive, and the focal position of the power lens is higher than the focal position at room temperature at high temperature. Displace to the object side.
  • the temperature of the entire imaging lens system as a whole. It is possible to suppress the displacement of the focal length due to the change.
  • the fluctuation due to the temperature change of the position of the light beam in each lens becomes large, which increases the aberration and lowers the resolution.
  • the displacement of the position of the light beam becomes cumulatively large when the temperature changes, and a specific angle of view emitted from the image-side surface of the lens group having a positive Pdi value.
  • the power lenses arranged from the object side to the image side are arranged so that the positive and negative signs of the Pdi value are alternately switched.
  • a lens having a predetermined power required to finally obtain a desired all-system focal length F at the same time as performing various corrections and a power for the purpose of correction only are relatively large. It consists of a weak lens. Since a lens with relatively weak power does not contribute to the fluctuation of the focal position when the temperature changes, it is not necessary to consider the sign of Pdi. Therefore, in the image pickup lens system according to the first embodiment, only the power lens having a relatively strong power satisfying
  • the half angle of view of the image pickup lens system according to the first embodiment is 50 ° or more
  • the image pickup lens system according to the first embodiment is a wide angle of view image pickup lens system.
  • the semi-angle of view of the optical system means an angle formed by a light ray passing through the center of the pupil and reaching a position (diagonal point) of the diagonal length of the sensor with the optical axis on the object side.
  • the power lens satisfies
  • the absolute value of Pdi of a certain power lens becomes larger than the upper limit value, the fluctuation of the focal position due to the temperature change of the power lens becomes too large, and the temperature change of the power lens is caused by another power lens adjacent to the power lens. It becomes difficult to correct the fluctuation of the focal position. Therefore, the absolute value of Pdi of each power lens is preferably smaller than 1.5 ⁇ 10-5.
  • the value of (dNd / dt) i at 25 ° C. is larger than 0 (1 / K) and 9 ⁇ 10 -6 (9 ⁇ 10 -6) in order from the object side to the image side.
  • the image pickup lens system of the first embodiment it is possible to provide an image pickup lens system capable of reducing aberrations and suppressing changes in the focal position due to temperature changes at a level required for image recognition in automatic driving. can.
  • the image pickup lens described in Patent Document 1 since the first lens is glass, the second lens is plastic, the third lens is glass, and the fourth lens is plastic, it is necessary for image recognition in automatic operation. It is difficult to achieve aberration correction at the level.
  • the image pickup lens system of the first embodiment a plurality of lenses in the first lens group have the same temperature characteristics as each other, and a plurality of lenses in the second lens group have the same temperature characteristics as each other. Therefore, it is possible to realize an imaging lens system capable of reducing aberrations and suppressing changes in the focal position due to temperature changes.
  • the present inventor has focused on the fact that the sum of the powers (1 / f) ⁇ (dNd / dt) i of each lens is dominant in the amount of change in the focal position due to the temperature change. Then, in the image pickup lens system of the first embodiment, the first lens group having a positive value of the temperature change rate (dNd / dt) i of the refractive index and less than 9.0 ⁇ 10-6 (1 / K) and (dNd). / Dt) The second lens group has a negative i value and is divided into a second lens group of ⁇ 8.0 ⁇ 10 -5 (1 / K) or less, and the absolute value of the (dNd / dt) i value is large.
  • the combined focal length of specifically, 3.2 times or more the focal length of the entire optical system
  • the amount of change in the focal position due to the temperature change in the entire imaging lens system can be reduced.
  • the focal length shifts due to the temperature change. Can cancel each other out and be made smaller (specifically, the amount of change in the focal length due to a temperature change from ⁇ 40 ° C. to 105 ° C. is ⁇ 0.02 mm).
  • the first lens group having a positive value of the temperature change rate (dNd / dt) i of the refractive index and the second lens group having a negative value are not mixed, it is possible to collect lenses having a close dNd / Dt in the group. , The fluctuation of light rays at the time of temperature change is reduced, and the spherical aberration at the time of temperature change is improved.
  • the image pickup lens system of the first embodiment may satisfy the following equation (2). fr / F ⁇ 4.1 ⁇ ⁇ ⁇ (2)
  • the value of the temperature change rate (dNd / dt) i of the refractive index of all the materials constituting the two lenses of the first lens group is 3.0 ⁇ 10 ⁇ .
  • the temperature change rate of the refractive index of all the materials constituting the four lenses of the second lens group which is 6 (1 / K) or more and 8.2 ⁇ 10-6 (1 / K) or less.
  • the value of dNd / dt) i may be -12 ⁇ 10 -5 (1 / K) or more and ⁇ 8.5 ⁇ 10 -5 (1 / K) or less.
  • the image pickup lens system has a first lens having a negative power and a concave surface on the image side in order from the object side toward the image side, and has a positive power on the object side.
  • the first lens and the second lens are composed of a second lens having a convex surface, a third lens having a positive power, a fourth lens having a negative power, a fifth lens having a positive power, and a sixth lens.
  • the first lens to the fifth lens are power lenses having a relatively large power satisfying
  • the sixth lens is mainly for the purpose of aberration correction,
  • the image pickup lens system used for sensing of automatic operation which is required to have a wide angle of view and high resolution, has a concave surface on the image side to realize a wide angle of view in order from the object side to the image side.
  • the imaging lens system requires at least five or more power lenses.
  • the image pickup lens system according to the first embodiment is preferably composed of the five power lenses of the first to fifth lenses described above and one sixth lens for aberration correction.
  • the first lens and the second lens are made of a glass material having a d-line refractive index Nd of 1.7 or more, and the third to sixth lenses are d. It is preferable that the line is made of a glass material having a refractive index Nd of less than 1.7.
  • the first lens group has a first lens having a concave shape and negative power on the image side and a convex shape and positive power on the object side in order from the object side to the image side.
  • Consists of a second lens with The second lens group consists of a third lens having a positive power, a fourth lens having a negative power, a fifth lens having a positive power, and a sixth lens in order from the object side to the image side.
  • a diaphragm arranged at any one of the first lens and the second lens, between the second lens and the third lens, and between the third lens and the fourth lens is provided. You may.
  • the second lens group includes a third lens, a fourth lens, a fifth lens, and a sixth lens
  • fr f (3 to 6).
  • the third lens to the sixth lens are made of a glass material having a refractive index Nd of less than 1.7, for example, plastic, the rate of change (dNd / dt) i of the refractive index due to a temperature change is large.
  • the combined focal length f (3 to 6) of the third lens to the sixth lens is relatively large. Therefore, by satisfying the above equation (3), it is possible to suppress the fluctuation of the focal position due to the temperature change in the third lens to the sixth lens while forming the third lens to the sixth lens with a relatively inexpensive glass material. can.
  • the thickness of the second lens on the optical axis is d2. 0.63 ⁇ d2 / F ⁇ 0.9 ... (4) Spherical aberration can be suitably corrected when the thickness of the second lens on the optical axis satisfies the above equation (4), that is, is relatively thick.
  • the fourth lens and the fifth lens may be joined to each other.
  • chromatic aberration can be suitably corrected.
  • the total thickness (center thickness) on the optical axis of the lenses constituting the first lens group is ⁇ A
  • the sum of the thicknesses (center thickness) on the optical axis of the lenses constituting the second lens group is ⁇ A.
  • FIG. 1 is a cross-sectional view showing the configuration of the image pickup lens system 11 of the first embodiment.
  • the first lens L1, the second lens L2, the third lens L3, the aperture stop (STOP), and the fourth lens are arranged in this order from the object side to the image side. It is composed of L4, a fifth lens L5, and a sixth lens L6.
  • the image plane of the image pickup lens system 11 is indicated by IMG.
  • the first lens L1 is a spherical glass lens having a negative power.
  • the object-side lens surface S1 of the first lens L1 has a concave surface facing the object side.
  • the image-side lens surface S2 of the first lens L1 has a concave curved surface portion.
  • the second lens L2 is a spherical glass lens having positive power.
  • the object-side lens surface S3 of the second lens L2 has a convex surface facing the object side.
  • the image-side lens surface S4 of the second lens L2 has a convex surface facing the image side.
  • the third lens L3 is an aspherical plastic lens having positive power.
  • the object-side lens surface S5 of the third lens L3 has a convex surface facing the object side.
  • the image side lens surface S6 of the third lens L3 has a convex surface facing the image surface side.
  • Aperture STOP is an aperture that determines the F value (Fno) of the lens system.
  • the aperture STOP is arranged between the third lens L3 and the fourth lens L4.
  • the fourth lens L4 is an aspherical plastic lens having negative power.
  • the object-side lens surface S9 of the fourth lens L4 has a concave surface facing the object side.
  • the image side lens surface S10 of the fourth lens L4 has a concave surface facing the image surface side.
  • the fifth lens L5 is an aspherical plastic lens having positive power.
  • the object-side lens surface S11 of the fifth lens L5 has a convex curved surface portion.
  • the image side lens surface S12 of the fifth lens L5 has a convex surface facing the image surface side.
  • the fourth lens L4 and the fifth lens L5 form a junction lens. That is, the image-side lens surface S10 of the fourth lens L4 and the object-side lens surface S11 of the fifth lens L5 are in contact with each other.
  • the fourth lens L4 and the fifth lens L5 are joined by an adhesive layer having an axial thickness of 0.02 mm.
  • the sixth lens L6 is an aspherical plastic lens having positive power.
  • the object-side lens surface S13 of the sixth lens L6 has a convex curved surface portion. Further, the image side lens surface S14 of the sixth lens L6 has a concave curved surface portion.
  • the IR cut filter 12 is a filter for cutting light in the infrared region.
  • the IR cut filter 12 is treated integrally with the image pickup lens system 11 at the time of designing the image pickup lens system 11.
  • the IR cut filter 12 is not an essential component of the image pickup lens system 11.
  • Table 1 shows the lens data of each lens surface in the image pickup lens system 11 of Example 1.
  • Table 1 shows the lens data of each lens surface in the image pickup lens system 11 of Example 1.
  • Table 1 shows lens data of each lens surface in the image pickup lens system 11 of Example 1.
  • Table 1 shows lens data of each lens surface in the image pickup lens system 11 of Example 1.
  • Table 1 shows lens data, the radius of curvature (mm) of each surface, the surface spacing (mm) on the central optical axis, the refractive index Nd with respect to the d line, the Abbe number Vd with respect to the d line, and the refraction at a wavelength of 588 nm at 25 ° C.
  • the rate of temperature change dNd / dt (1 / K) is presented.
  • the refractive index on the d-line and the Abbe number on the d-line shown in Table 1 are values when the environmental temperature t (° C.), which is the ambient temperature of the image pickup lens system 11, is 25 (° C.).
  • the aspherical shape adopted for the lens surface is 3rd, 4th, 5th, 6th, where z is the sag amount, c is the inverse of the radius of curvature, k is the conical coefficient, and r is the ray height from the optical axis Z.
  • 7th, 8th, 9th, 10th, 12th, 14th, and 16th aspherical coefficients are A3, A4, A5, A6, A7, A8, A9, A10, A12, A14, A16, respectively. Then, it is expressed by the following equation.
  • Table 2 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the first embodiment.
  • FIGS. 2A, 2B, and 2C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of the first embodiment, respectively.
  • the half angle of view is 52.0 ° and the F number is 2.0.
  • the horizontal axis indicates the position where the light ray intersects the optical axis Z
  • the vertical axis indicates the height at the pupil diameter.
  • FIG. 2A shows the simulation results with light rays of 455 nm, 502 nm, 546 nm, 614 nm, and 661 nm.
  • the horizontal axis indicates the distance in the optical axis Z direction
  • the vertical axis indicates the image height (angle of view).
  • Sag shows the curvature of field on the sagittal plane
  • Tan shows the curvature of field on the tangent plane.
  • FIG. 2B shows a simulation result using a light beam having a wavelength of 546 nm.
  • FIG. 2C shows a simulation result using a light beam having a wavelength of 546 nm.
  • 2A, 2B, and 2C show a spherical aberration diagram (longitudinal aberration diagram), an image curvature diagram, and a distortion aberration diagram when the environmental temperature t (° C.) is 25 (° C.).
  • FIG. 3 is a cross-sectional view showing the image pickup lens system 11 according to the second embodiment. Since the configuration of the image pickup lens system 11 according to the second embodiment is the same as that of the first embodiment, the description thereof will be omitted. Hereinafter, the characteristic data of the image pickup lens system 11 according to the second embodiment will be described.
  • Table 3 shows the lens data of each lens surface of the imaging lens system 11 according to the second embodiment. Since the items shown in Table 3 are the same as those in Table 1, the description thereof will be omitted.
  • Table 4 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the second embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • FIGS. 4A, 4B, and 4C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of the second embodiment. Since the description of each aberration diagram shown in FIGS. 4A, 4B, and 4C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • FIG. 5 is a cross-sectional view showing the image pickup lens system 11 according to the third embodiment.
  • the configuration of the image pickup lens system 11 according to the third embodiment is the same as that of the first embodiment except that the aperture STOP is also arranged between the first lens L1 and the second lens L2. Omit.
  • the characteristic data of the image pickup lens system 11 according to the third embodiment will be described.
  • Table 5 shows the lens data of each lens surface of the image pickup lens system 11 according to the third embodiment. Since the items shown in Table 5 are the same as those in Table 1, the description thereof will be omitted.
  • Table 6 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the third embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • FIGS. 6A, 6B, and 6C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of the third embodiment. Since the description of each aberration diagram shown in FIGS. 6A, 6B, and 6C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • FIG. 7 is a cross-sectional view showing the image pickup lens system 11 according to the fourth embodiment. Since the configuration of the image pickup lens system 11 according to the fourth embodiment is the same as that of the first embodiment, the description thereof will be omitted. Hereinafter, the characteristic data of the image pickup lens system 11 according to the fourth embodiment will be described.
  • Table 7 shows the lens data of each lens surface of the image pickup lens system 11 according to the fourth embodiment. Since the items shown in Table 7 are the same as those in Table 1, the description thereof will be omitted.
  • Table 8 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the fourth embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • FIGS. 8A, 8B, and 8C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of the fourth embodiment. Since the description of each aberration diagram shown in FIGS. 8A, 8B, and 8C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • FIG. 9 is a cross-sectional view showing the image pickup lens system 11 according to the fifth embodiment. Since the configuration of the image pickup lens system 11 according to the fifth embodiment is the same as that of the first embodiment, the description thereof will be omitted. Hereinafter, the characteristic data of the image pickup lens system 11 according to the fifth embodiment will be described.
  • Table 9 shows the lens data of each lens surface of the image pickup lens system 11 according to the fifth embodiment. Since the items shown in Table 9 are the same as those in Table 1, the description thereof will be omitted.
  • Table 10 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the fifth embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • FIGS. 10A, 10B, and 10C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of Example 5. Since the description of each aberration diagram shown in FIGS. 10A, 10B, and 10C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • FIG. 11 is a cross-sectional view showing the image pickup lens system 11 according to the sixth embodiment. Since the configuration of the image pickup lens system 11 according to the sixth embodiment is the same as that of the first embodiment, the description thereof will be omitted. Hereinafter, the characteristic data of the image pickup lens system 11 according to the sixth embodiment will be described.
  • Table 11 shows the lens data of each lens surface of the imaging lens system 11 according to the sixth embodiment. Since the items shown in Table 11 are the same as those in Table 1, the description thereof will be omitted.
  • Table 12 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the sixth embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • FIGS. 12A, 12B, and 12C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of the sixth embodiment. Since the description of each aberration diagram shown in FIGS. 12A, 12B, and 12C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • FIG. 13 is a cross-sectional view showing the image pickup lens system 11 according to the seventh embodiment. Since the configuration of the image pickup lens system 11 according to the seventh embodiment is the same as that of the third embodiment, the description thereof will be omitted. Hereinafter, the characteristic data of the image pickup lens system 11 according to the seventh embodiment will be described.
  • Table 13 shows the lens data of each lens surface of the image pickup lens system 11 according to the seventh embodiment. Since the items shown in Table 13 are the same as those in Table 1, the description thereof will be omitted.
  • Table 14 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the seventh embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • FIGS. 14A, 14B, and 14C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of Example 7. Since the description of each aberration diagram shown in FIGS. 14A, 14B, and 14C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • FIG. 15 is a cross-sectional view showing the image pickup lens system 11 according to the eighth embodiment. Since the configuration of the image pickup lens system 11 according to the eighth embodiment is the same as that of the third embodiment, the description thereof will be omitted. Hereinafter, the characteristic data of the image pickup lens system 11 according to the eighth embodiment will be described.
  • Table 15 shows the lens data of each lens surface of the image pickup lens system 11 according to the eighth embodiment. Since the items shown in Table 15 are the same as those in Table 1, the description thereof will be omitted.
  • Table 16 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the eighth embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • 16A, 16B, and 16C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of Example 8. Since the description of each aberration diagram shown in FIGS. 16A, 16B, and 16C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • FIG. 17 is a cross-sectional view showing the image pickup lens system 11 according to the ninth embodiment. Since the configuration of the image pickup lens system 11 according to the ninth embodiment is the same as that of the first embodiment, the description thereof will be omitted. Hereinafter, the characteristic data of the image pickup lens system 11 according to the ninth embodiment will be described.
  • Table 17 shows the lens data of each lens surface of the image pickup lens system 11 according to the ninth embodiment. Since the items shown in Table 17 are the same as those in Table 1, the description thereof will be omitted.
  • Table 18 shows the aspherical coefficient for defining the aspherical shape of the lens surface which is the aspherical surface in the image pickup lens system 11 of the ninth embodiment.
  • the aspherical shape adopted for the lens surface is represented by the same formula as in Example 1.
  • FIGS. 18A, 18B, and 18C show a spherical aberration diagram (longitudinal aberration diagram), an image plane curvature diagram, and a distortion aberration diagram in the image pickup lens system 11 of the ninth embodiment. Since the description of each aberration diagram shown in FIGS. 18A, 18B, and 18C is the same as that of FIGS. 2A, 2B, and 2C, the description thereof will be omitted.
  • the wavelengths are 455 nm, 502 nm, 546 nm, and 614 nm. , 661 nm longitudinal aberration is well corrected. Therefore, the image pickup lens system 11 has a high resolution.
  • the curvature of field of FIGS. 2B, 4B, 6B, 8B, 10B, 12B, 14B, 16B, and 18B is good according to the image plane curvatures 11 of Examples 1 to 9. It has been corrected to. Therefore, the image pickup lens system 11 has a high resolution.
  • the distortion aberration is satisfactorily corrected. Has been done. Therefore, the image pickup lens system 11 has a high resolution.
  • the focal length f 1 of the first lens L1 the focal length f 2 of the second lens L2, the focal length f 3 of the third lens L3, the focal length f 4 of the fourth lens L4, the focus of the fifth lens L5 Distance f 5 , focal distance f 6 of the sixth lens L6, synthetic focal distance f (1-2) of the first lens L1 to the second lens L1, synthetic focal distance f (3) of the third lens L3 to the sixth lens L6.
  • f6 The value of / F
  • the total ⁇ Pdi shows the focal position of the imaging lens system 11 at ⁇ 40 ° C. and the focal position of 105 ° C. when the focal position of the imaging lens system 11 at 25 ° C. is used as a reference (0 mm).
  • the unit of the focal length and the thickness of the first lens L1 to the sixth lens L6 on the optical axis is mm.
  • the unit of the temperature change rate of the refractive index is 1 / K.
  • the unit of (dNd / dt) 1 to (dNd / dt) 6 is 1 / K
  • the unit of Pd1 to Pd6 is 1 / K ⁇ mm.
  • the various focal lengths and focal positions in Table 19 were calculated using light rays having a wavelength of 546 nm.
  • the first lens L1 to the fifth lens L5 which are power lenses satisfying
  • the lenses are arranged so as to switch alternately from negative to positive, negative, and so on toward the image side.
  • the change in the focal position due to the temperature change of the power lenses arranged adjacent to each other can be canceled out from each other, and the change in the focal position due to the temperature change in the focal length F of the entire optical system of the imaging lens system 11 can be suppressed. ..
  • the change in the focal position due to the temperature change in the focal length F of the entire optical system of the imaging lens system 11 is suppressed within 20 ⁇ m.
  • the half angle of view of the image pickup lens system 11 is 50 ° or more, and the image pickup lens system 11 having a wide angle of view can be realized.
  • the first lens L1 to the fifth lens L5 which are power lenses satisfying
  • the image pickup lens system 11 is composed of five power lenses of the first lens L1 to the fifth lens L5 and one sixth lens L6 for aberration correction.
  • the image pickup lens system 11 is composed of five power lenses of the first lens L1 to the fifth lens L5 and one sixth lens L6 for aberration correction.
  • the first lens L1 and the second lens L2 are made of a glass material having a d-line refractive index Nd of 1.7 or more, and the third lens L3 to the sixth lens L6 are d.
  • the line is made of a glass material having a refractive index Nd of less than 1.7.
  • Examples 1 to 9 the value of d2 / F satisfies the above formula (4). Since the thickness d2 on the optical axis of the second lens L2 is relatively thick, spherical aberration can be suitably corrected. In fact, in Examples 1-9, spherical aberrations at wavelengths of 455 nm, 502 nm, 546 nm, 614 nm, and 661 nm are satisfactorily corrected, as shown in FIGS. 2A, 4A, 6A, 8A, 10A, 12A, 14A, 16A, and 18A. , A high-resolution image pickup lens system 11 can be realized.
  • the fourth lens L4 and the fifth lens L5 are joined to each other. As a result, chromatic aberration can be suitably corrected.
  • the image pickup device 21 includes an image pickup lens system 11 and an image pickup element 22.
  • the image pickup lens system 11 and the image pickup element 22 are housed in a housing (not shown).
  • the image pickup lens system 11 is the image pickup lens system 11 described in the first embodiment described above.
  • the image sensor 22 is an element that converts the received light into an electric signal, and for example, a CCD image sensor or a CMOS image sensor is used.
  • the image pickup device 22 is arranged at the imaging position of the image pickup lens system 11.
  • the image pickup device of the second embodiment it is possible to provide an image pickup device capable of reducing aberrations and suppressing changes in the focal position due to temperature changes at a level required for image recognition in automatic driving.
  • Example 2 may be applied to Examples 1 to 9.
  • the application of the image pickup lens system of the present invention is not limited to an in-vehicle camera or a surveillance camera, and can be used for other applications such as mounting on a small electronic device such as a mobile phone.
  • Imaging lens system 12 IR cut filter 21 Imaging device 22 Imaging element L1 1st lens L2 2nd lens L3 3rd lens L4 4th lens L5 5th lens L6 6th lens STOP Aperture IMG imaging surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

温度変化による焦点位置の変化を抑制できる撮像レンズ系及び撮像装置を提供すること。 撮像レンズ系(11)は、物体側から像側に向かって順に、第i番目(iは正の整数)に配置された第iレンズの焦点距離をfiとし、光学系全体の焦点距離をFとした場合に、|fi/F|<20.0を満たすパワーレンズ(L1)~(L5)を少なくとも有し、温度変化による第iレンズのd線の屈折率Ndの変化率を(dNd/dt)iとし、Pdi=(dNd/dt)i/fiとした場合に、当該Pdiの値の符号が、物体側から像側に向かって順に交互に切り替わるように、パワーレンズ(L1)~(L5)が配置されており、半画角が50°以上である。

Description

撮像レンズ系及び撮像装置
 本発明は撮像レンズ系及び撮像装置に関し、例えば車載用あるいは監視用の撮像レンズ系及び撮像装置に関する。
 車両に搭載されるカメラには、広い撮像範囲が得られるように、広画角を有する撮像光学系が求められている。例えば、特許文献1には、プラスチックレンズを用いた広画角である撮像レンズ系が記載されている。具体的には、特許文献1には、物体側から像側に向かって順に、ガラスレンズである第1レンズL1、プラスチックレンズである第2レンズL2、ガラスレンズである第3レンズL3、プラスチックレンズである第4レンズL4からなる撮像レンズ系が記載されている。
特開2007-101920号公報
 一方、車載用のカメラには、過酷な使用環境下に置かれるため、温度変化によるピントズレ(焦点位置の変化)が抑制された撮像光学系が求められる。しかし、特許文献1に記載されたレンズ系では、プラスチックレンズを用いているため、温度変化により焦点位置が変化しやすいという問題がある。
 特に、自動運転におけるセンシングに用いられる撮像レンズ系において、温度変化によるピントズレが生じると、当該センシングの精度に問題が生じてしまう。例えば、車載用の光学系では、自動運転のおける画像認識の誤りを抑制するために、-40℃~105℃の温度範囲でピントずれを±20μm以内とする必要がある。しかしながら特許文献1に記載されたレンズ系では、センシングに用いられる光学系の要求を満たしていない。
 一方、撮像レンズ系に用いられるレンズをすべてガラスレンズとすることにより、温度変化によるピントズレを抑制することができる。しかし、ガラスレンズは、一般的に、プラスチックレンズよりも高価であるため、コストが高くなってしまう。
 本発明は、このような問題点に鑑みてなされたものであり、温度変化による焦点位置の変化を抑制できる撮像レンズ系及び撮像装置を提供することを目的とする。
 一実施形態の撮像レンズ系は、物体側から像側に向かって順に、第i番目(iは正の整数)に配置された第iレンズの焦点距離をfiとし、光学系全体の焦点距離をFとした場合に、|fi/F|<20.0を満たすパワーレンズを少なくとも5枚有し、
 温度変化による前記第iレンズのd線の屈折率Ndの変化率を(dNd/dt)iとし、Pdi=(dNd/dt)i/fiとした場合に、当該Pdiの値の符号が、物体側から像側に向かって順に交互に切り替わるように、前記パワーレンズが配置されている。
 本発明によれば、温度変化による焦点位置の変化を抑制できる撮像レンズ系及び撮像装置を提供することができる。
実施例1に係る撮像レンズ系の構成を示す断面図である。 実施例1の撮像レンズ系における球面収差図(縦収差図)である。 実施例1の撮像レンズ系における像面湾曲図である。 実施例1の撮像レンズ系における歪曲収差図である。 実施例2に係る撮像レンズ系の構成を示す断面図である。 実施例2の撮像レンズ系における球面収差図(縦収差図)である。 実施例2の撮像レンズ系における像面湾曲図である。 実施例2の撮像レンズ系における歪曲収差図である。 実施例3に係る撮像レンズ系の構成を示す断面図である。 実施例3の撮像レンズ系における球面収差図(縦収差図)である。 実施例3の撮像レンズ系における像面湾曲図である。 実施例3の撮像レンズ系における歪曲収差図である。 実施例4に係る撮像レンズ系の構成を示す断面図である。 実施例4の撮像レンズ系における球面収差図(縦収差図)である。 実施例4の撮像レンズ系における像面湾曲図である。 実施例4の撮像レンズ系における歪曲収差図である。 実施例5に係る撮像レンズ系の構成を示す断面図である。 実施例5の撮像レンズ系における球面収差図(縦収差図)である。 実施例5の撮像レンズ系における像面湾曲図である。 実施例5の撮像レンズ系における歪曲収差図である。 実施例6に係る撮像レンズ系の構成を示す断面図である。 実施例6の撮像レンズ系における球面収差図(縦収差図)である。 実施例6の撮像レンズ系における像面湾曲図である。 実施例6の撮像レンズ系における歪曲収差図である。 実施例7に係る撮像レンズ系の構成を示す断面図である。 実施例7の撮像レンズ系における球面収差図(縦収差図)である。 実施例7の撮像レンズ系における像面湾曲図である。 実施例7の撮像レンズ系における歪曲収差図である。 実施例8に係る撮像レンズ系の構成を示す断面図である。 実施例8の撮像レンズ系における球面収差図(縦収差図)である。 実施例8の撮像レンズ系における像面湾曲図である。 実施例8の撮像レンズ系における歪曲収差図である。 実施例9に係る撮像レンズ系の構成を示す断面図である。 実施例9の撮像レンズ系における球面収差図(縦収差図)である。 実施例9の撮像レンズ系における像面湾曲図である。 実施例9の撮像レンズ系における歪曲収差図である。 実施の形態2に係る撮像装置の断面図である。
 以下、本実施の形態に係る光学レンズ及び撮像装置を説明する。
 (実施の形態1:撮像レンズ系)
 実施の形態1の撮像レンズ系は、物体側から像側に向かって順に、第i番目(iは正の整数)に配置された第iレンズの焦点距離をfiとし、光学系全体の焦点距離をFとした場合に、|fi/F|<20.0を満たすパワーレンズを少なくとも5枚有する。ここで、パワーレンズとは、比較的大きなパワーを有するレンズであり、|fi/F|<20.0を満たすレンズを意味する。
 また、実施の形態1の撮像レンズ系では、温度変化による前記第iレンズのd線の屈折率Ndの変化率を(dNd/dt)iとし、Pdi=(dNd/dt)i/fiとした場合に、当該Pdiの値の正負の符号が、物体側から像側に向かって順に交互に切り替わるように、前記パワーレンズが配置されている。ここで、d線とは波長588nmの光線である。
 これにより、隣り合って配置されたパワーレンズの温度変化による焦点位置の変化を互いに相殺することができる。
 具体的には、本発明者らは、撮像レンズ系の温度変化による焦点位置の変化量が、当該撮像レンズ系を構成するパワーレンズのPdiの値、すなわち、当該撮像レンズ系を構成するパワーレンズの温度変化による屈折率の変化率(dNd/dt)iに、パワー(1/f)を乗じた値に主に依存することに着目した。
 より具体的には、正のパワーを有するパワーレンズにおいて(dNd/dt)iの値が正である場合、Pdiは正となり、当該パワーレンズの焦点位置は、高温において、常温における焦点位置よりも物体側に変位する。一方、正のパワーを有するパワーレンズにおいて(dNd/dt)iの値が負である場合、Pdiは負となり、当該パワーレンズの焦点位置は、高温において、常温における焦点位置よりも像側に変位する。
 また、負のパワーを有するパワーレンズにおいて(dNd/dt)iの値が正である場合、Pdiは負となり、当該パワーレンズの焦点位置は、高温において、常温における焦点位置よりも像側に変位する。一方、負のパワーを有するパワーレンズにおいて(dNd/dt)iの値が負である場合、Pdiは正となり、当該パワーレンズの焦点位置は、高温において、常温における焦点位置よりも物体側に変位する。
 そのため、物体側から像側に向かって配置されたパワーレンズの当該Pdiの値の正負の符号が交互に切り替わることにより、隣り合って配置されたパワーレンズの温度変化による焦点位置の変化を互いに相殺することができる。
 例えば、物体側から像側に向かって、Pdiの値が正であるレンズが何枚か続いた後、Pdiの値が負であるレンズが何枚か続いた場合でも、撮像レンズ系全体の温度変化による焦点距離の変位を抑制可能ではある。しかし、Pdiの符号が同じレンズが続くと、それぞれのレンズにおける光線の位置の温度変化による変動が大きくなり、これにより、収差が増大してしまい、解像度が低下してしまう。例えば、Pdiの値が正であるレンズが続くと、温度変化時に光線の位置のずれが累積的に大きくなり、Pdiの値が正であるレンズ群の像側の面から出射した特定の画角の光線が、隣接するレンズの物体側の面に入射する位置の変動が大きくなるため、当該隣接するレンズにおいて行われるべき収差補正が十分に行われなくなってしまう。従って、物体側から像側に向かって配置されたパワーレンズは、当該Pdiの値の正負の符号が交互に切り替わるように配置されているのが好ましい。
 また、撮像レンズ系には、一般に、各種補正を行うと同時に最終的に所望の全系焦点距離Fを得るために必要な所定のパワーを有するレンズと、補正のみを目的としたパワーが比較的弱いレンズとから構成される。パワーが比較的弱いレンズは温度変化時の焦点位置の変動に寄与しないため、Pdiの符号を考慮する必要はない。よって、本実施の形態1に係る撮像レンズ系では、|fi/F|<20.0を満たす、比較的パワーが強いパワーレンズのみ、Pdiの値の符号が、物体側から像側に向かって順に、負、正、負、・・・、あるいは正、負、正、・・・と交互に切り替わるように、配置される。
 また、実施の形態1に係る撮像レンズ系の半画角が50°以上であり、実施の形態1に係る撮像レンズ系は広画角な撮像レンズ系となっている。ここで、光学系の半画角とは、瞳中心を通ってセンサの対角長の位置(対角点)に到達する光線が物体側で光軸となす角度をいう。
 また、実施の形態1に係る撮像レンズ系では、パワーレンズが、|Pdi|<1.5×10-5を満たすことが好ましい。
 あるパワーレンズのPdiの絶対値が上限値より大きくなると、当該パワーレンズの温度変化による焦点位置の変動が大きくなりすぎ、当該パワーレンズと隣り合う他のパワーレンズによって、当該パワーレンズの温度変化による焦点位置の変動を補正することが難しくなってしまう。そのため、それぞれのパワーレンズのPdiの絶対値は1.5×10-5より小さいことが好ましい。
 また、実施の形態1の撮像レンズ系は、物体側から像側に向かって順に、25℃における(dNd/dt)iの値が0(1/K)より大きく、且つ9×10-6(1/K)未満の材料のみで構成された2枚のレンズが隣接して配列された第1レンズ群と、前記第1レンズ群の像側に、25℃における(dNd/dt)iの値が-8×10-5(1/K)以下の材料のみで構成された4枚のレンズが隣接して配列された第2レンズ群からなり、
 前記第2レンズ群の合成焦点距離をfr、レンズ系全体の焦点距離をFと定義したときに、以下の式(1)を満足するようにした。
     fr/F>3.5   ・・・(1)
 このように、実施の形態1の撮像レンズ系によれば、自動運転における画像認識に必要なレベルで、収差を小さくし、温度変化による焦点位置の変化を抑制できる撮像レンズ系を提供することができる。
 上述の効果についてより詳細に説明する。一般に、複数のレンズの合成焦点距離は、隣接するレンズ以外の組み合わせで計算することが困難である。更に温度特性を含めると現実に計算することができない。
 例えば、特許文献1に記載された撮像レンズでは、第1レンズがガラス、第2レンズがプラスチック、第3レンズがガラス、第4レンズがプラスチックとなっているので、自動運転における画像認識に必要なレベルで収差補正を実現することが難しい。一方、実施の形態1の撮像レンズ系は、第1レンズ群内の複数のレンズが互いに同様の温度特性を有し、第2レンズ群内の複数のレンズが互いに同様の温度特性を有する構成としているので収差を小さくし、温度変化による焦点位置の変化を抑制できる撮像レンズ系を実現できる。
 本発明者は、温度変化による焦点位置の変化量は、各々のレンズのパワー(1/f)×(dNd/dt)iの総和が支配的であることに着目した。そして、実施の形態1の撮像レンズ系は、屈折率の温度変化率(dNd/dt)iの値が正で9.0×10-6(1/K)未満の第1レンズ群と(dNd/dt)iの値が負で-8.0×10-5(1/K)以下の第2レンズ群に分かれており、(dNd/dt)iの値の絶対値が大きな第2レンズ群の合成焦点距離を大きくする(具体的には光学系全体の焦点距離に対して3.2倍以上とする)ことで、撮像レンズ系全体での温度変化による焦点位置の変化量を小さくできる。
 具体的には、屈折率の温度変化率の絶対値が大きい第2レンズ群の合成焦点距離を第1レンズ群より1.8倍から3.8倍大きくすることで温度変化による焦点位置のズレを互いに打ち消しあいさらに小さくできる(具体的には-40℃から105℃までの温度変化による焦点位置の変化量が±0.02mm)。
 また、屈折率の温度変化率(dNd/dt)iの値が正の第1レンズ群と負の第2レンズ群を混在させていないので、dNd/Dtの近いレンズを郡内に集めることで、温度変化時の光線変動が少なくなり温度変化時の球面収差が良くなる。
 上記実施の形態1の撮像レンズ系は、以下の式(2)を満たすようにしてもよい。
     fr/F≧4.1   ・・・(2)
 上記実施の形態1の撮像レンズ系は、前記第1レンズ群の2枚のレンズを構成する全ての材料の屈折率の温度変化率(dNd/dt)iの値が、3.0×10-6(1/K)以上で、且つ8.2×10-6(1/K)以下であり、前記第2レンズ群の4枚のレンズを構成する全ての材料の屈折率の温度変化率(dNd/dt)iの値が、-12×10-5(1/K)以上でかつ、-8.5×10-5(1/K)以下であるようにしてもよい。
 また、実施の形態1に係る撮像レンズ系は、物体側から像側に向かって順に、負のパワーを有し、像側に凹面を有する第1レンズ、正のパワーを有し、物体側に凸面を有する第2レンズ、正のパワーを有する第3レンズ、負のパワーを有する第4レンズ、正のパワーを有する第5レンズ、第6レンズからなり、前記第1レンズと前記第2レンズの間、前記第2レンズと前記第3レンズの間、前記第3レンズと前記第4レンズの間の何れか1か所に配置された絞りを備えることが好ましい。
 ここで、第1レンズ~第5レンズは|fi/F|<20.0を満たす比較的大きなパワーを有するパワーレンズであり、第6レンズは主に収差補正を目的とする、|fi/F|<20.0を満たさない比較的弱いパワーを有するレンズである。
 通常、広画角で高解像度であることが要求される自動運転のセンシングに用いられる撮像レンズ系は、物体側から像側に向かって順に、広画角を実現するための像側に凹面を有するレンズ1~2枚、集光レンズ1~2枚、色収差を補正する凹レンズと凸レンズ、必要に応じて主に収差補正を目的とする比較的小さなパワーを有する収差補正レンズから構成される。換言すれば、当該撮像レンズ系は、少なくとも5枚以上のパワーレンズを必要とする。しかし、撮像レンズ系を構成するパワーレンズの枚数が多くなると、その分、温度変化による焦点位置の変動の累積値が増大する。そのため、実施の形態1に係る撮像レンズ系は、上述の第1レンズ~第5レンズの5枚のパワーレンズと、1枚の収差補正用の第6レンズから構成されることが好ましい。
 また、実施の形態1に係る撮像レンズ系において、第1レンズ及び第2レンズは、d線の屈折率Ndが1.7以上の硝材で形成されており、第3レンズ~第6レンズはd線の屈折率Ndが1.7未満の硝材で形成されていることが好ましい。第3レンズ~第6レンズをd線の屈折率Ndが1.7未満である比較的安価な硝材で形成することにより、撮像レンズ系のコストを低減することができる。
 上記実施の形態1の撮像レンズ系は、前記第1レンズ群は、物体側から像側に向かって順に、像側が凹形状で負のパワーを有する第1レンズ、物体側が凸形状で正のパワーを有する第2レンズからなり、
 前記第2レンズ群は、物体側から像側に向かって順、正のパワーを有する第3レンズ、負のパワーを有する第4レンズ、正のパワーを有する第5レンズ、および第6レンズからなり、
 前記第1レンズと前記第2レンズの間、前記第2レンズと前記第3レンズの間、前記第3レンズと前記第4レンズの間の何れか1か所に配置された絞りを備えるようにしてもよい。
 また、実施の形態1に係る撮像レンズ系において、第3レンズ、第4レンズ、第5レンズ、第6レンズの合成焦点距離をf(3~6)とした場合に、以下の式(3)を満たすことが好ましい。なお、第2レンズ群は、第3レンズ、第4レンズ、第5レンズ、第6レンズからなるため、fr=f(3~6)である。
     f(3~6)/F>3.5   ・・・(3)
 第3レンズ~第6レンズは、屈折率Ndが1.7未満の硝材、例えば、プラスチックで形成されているため、温度変化による屈折率の変化率(dNd/dt)iが大きい。そのため、Pdiの値に対する(dNd/dt)iの影響を低減するため、第3レンズ~第6レンズの合成焦点距離f(3~6)は比較的大きい方がよい。よって、上記式(3)を満たすことにより、第3レンズ~第6レンズを比較的安価な硝材で形成しつつ、第3レンズ~第6レンズにおける温度変化による焦点位置の変動を抑制することができる。
 また、実施の形態1に係る撮像レンズ系において、第2レンズの光軸上の厚さをd2とした場合に、以下の式(4)を満たすことが好ましい。
     0.63<d2/F<0.9   ・・・(4)
 第2レンズの光軸上の厚さが、上記の式(4)を満たす、すなわち比較的厚いことにより、球面収差を好適に補正することができる。
 また、実施の形態1に係る撮像レンズ系において、第4レンズ及び第5レンズが、相互に接合されているようにしてもよい。
 第4レンズ及び第5レンズが接合レンズを構成することにより、色収差を好適に補正することができる。
 上記実施の形態1の撮像レンズ系は、前記第1レンズ群を構成するレンズの光軸上の厚さ(中心厚み)の総和をΣA、前記第2レンズ群を構成するレンズの光軸上の厚さの総和ΣBと定義したとき、以下の式(5)を満たすようにしてもよい。
     0.9≦ΣB/ΣA≦1.8   ・・・(5)
 次に、実施の形態1の撮像レンズ系に対応する実施例について、図面を参照して説明する。
 (実施例1)
 図1は、実施例1の撮像レンズ系11の構成を示す断面図である。具体的には、実施例1に係る撮像レンズ系11は、物体側から像側に向かって順に、第1レンズL1、第2レンズL2、第3レンズL3、開口絞り(STOP)、第4レンズL4、第5レンズL5、第6レンズL6からなる。撮像レンズ系11の結像面はIMGで示されている。
 第1レンズL1は、負のパワーを有する球面のガラスレンズである。第1レンズL1の物体側レンズ面S1は、物体側に凹面を向けている。第1レンズL1の像側レンズ面S2は凹形状の曲面部分を有している。
 第2レンズL2は、正のパワーを有する球面のガラスレンズである。第2レンズL2の物体側レンズ面S3は、物体側に凸面を向けている。また、第2レンズL2の像側レンズ面S4は、像側に凸面を向けている。
 第3レンズL3は、正のパワーを有する非球面のプラスチックレンズである。第3レンズL3の物体側レンズ面S5は、物体側に凸面を向けている。また、第3レンズL3の像側レンズ面S6は、像面側に凸面を向けている。
 絞りSTOPは、レンズ系のF値(Fno)を決める絞りである。絞りSTOPは、第3レンズL3と第4レンズL4との間に配置される。
 第4レンズL4は、負のパワーを有する非球面のプラスチックレンズである。第4レンズL4の物体側レンズ面S9は、物体側に凹面を向けている。また、第4レンズL4の像側レンズ面S10は、像面側に凹面を向けている。
 第5レンズL5は、正のパワーを有する非球面のプラスチックレンズである。第5レンズL5の物体側レンズ面S11は、凸形状の曲面部分を有している。また、第5レンズL5の像側レンズ面S12は、像面側に凸面を向けている。
 第4レンズL4と第5レンズL5は、接合レンズを形成している。すなわち、第4レンズL4の像側レンズ面S10と第5レンズL5の物体側レンズ面S11で接している。例えば、第4レンズL4と第5レンズL5は、軸上厚み0.02mmの接着層で接合するのが好適である。
 第6レンズL6は、正のパワーを有する非球面のプラスチックレンズである。第6レンズL6の物体側レンズ面S13は、凸形状の曲面部分を有している。また、第6レンズL6の像側レンズ面S14は、凹形状の曲面部分を有している。
 IRカットフィルタ12は、赤外領域の光をカットするためのフィルタである。IRカットフィルタ12は、撮像レンズ系11の設計時には、撮像レンズ系11と一体として扱われる。しかし、IRカットフィルタ12は、撮像レンズ系11の必須の構成要素ではない。
 表1に、実施例1の撮像レンズ系11における、各レンズ面のレンズデータを示す。表1では、レンズデータとして、各面の曲率半径(mm)、中心光軸における面間隔(mm)、d線に対する屈折率Nd、d線に対するアッベ数Vd、及び25℃での波長588nmにおける屈折率の温度変化率dNd/dt(1/K)を提示している。また、表1に示す、d線における屈折率及びd線におけるアッベ数は、撮像レンズ系11の周囲の温度である環境温度t(℃)が25(℃)のときの値である。また、表1において、「*印」がついた面は、非球面であることを示している。また、表1において、例えば「-4.9E-06」は、「-4.9×10-6」を意味する。以下の表についても数値の表現は同様である。
Figure JPOXMLDOC01-appb-T000001
 レンズ面に採用される非球面形状は、zをサグ量、cを曲率半径の逆数、kを円錐係数、rを光軸Zからの光線高さとして、3次、4次、5次、6次、7次、8次、9次、10次、12次、14次、16次の非球面係数をそれぞれA3、A4、A5、A6、A7、A8、A9、A10、A12、A14、A16としたときに、次式により表わされる。
Figure JPOXMLDOC01-appb-M000002
 表2に、実施例1の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。
Figure JPOXMLDOC01-appb-T000003
 次に、収差について図面を用いて説明する。図2A、図2B、図2Cは、それぞれ、実施例1の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図2A、図2B、図2Cに示すように、実施例1の撮像レンズ系11では、半画角が52.0°、Fナンバが2.0である。
 また、図2Aの縦収差図では、横軸は光線が光軸Zと交わる位置を示し、縦軸は瞳径での高さを示す。また、図2Aは、455nm、502nm、546nm、614nm、661nmの光線によるシミュレーション結果を示している。
 また、図2Bの像面湾曲図では、横軸は光軸Z方向の距離を示し、縦軸は像高(画角)を示す。また、図2Bの像面湾曲図において、Sagはサジタル面における像面湾曲を示し、Tanはタンジェンシャル面における像面湾曲を示す。また、図2Bは、波長546nmの光線によるシミュレーション結果を示している。
 また、図2Cの歪曲収差図において、横軸は像の歪み量(%)を示し、縦軸は像高(画角)を示す。また、図2Cは、波長546nmの光線によるシミュレーション結果を示している。
 なお、図2A、図2B、図2Cは、環境温度t(℃)が25(℃)のときの球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示している。
 (実施例2)
 図3は、実施例2に係る撮像レンズ系11を示す断面図である。実施例2に係る撮像レンズ系11の構成は、実施例1と同様であるため、その説明を省略する。以下、実施例2に係る撮像レンズ系11の特性データについて説明する。
 表3に、実施例2に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表3に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000004
 表4に、実施例2の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表4において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000005
 図4A、図4B、図4Cに、実施例2の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図4A、図4B、図4Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 (実施例3)
 図5は、実施例3に係る撮像レンズ系11を示す断面図である。実施例3に係る撮像レンズ系11の構成は、第1レンズL1と第2レンズL2との間にも絞りSTOPが配置される点を除いて、実施例1と同様であるため、その説明を省略する。以下、実施例3に係る撮像レンズ系11の特性データについて説明する。
 表5に、実施例3に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表5に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000006
 表6に、実施例3の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表6において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000007
 図6A、図6B、図6Cに、実施例3の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図6A、図6B、図6Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 (実施例4)
 図7は、実施例4に係る撮像レンズ系11を示す断面図である。実施例4に係る撮像レンズ系11の構成は、実施例1と同様であるため、その説明を省略する。以下、実施例4に係る撮像レンズ系11の特性データについて説明する。
 表7に、実施例4に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表7に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000008
 表8に、実施例4の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表8において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000009
 図8A、図8B、図8Cに、実施例4の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図8A、図8B、図8Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 (実施例5)
 図9は、実施例5に係る撮像レンズ系11を示す断面図である。実施例5に係る撮像レンズ系11の構成は、実施例1と同様であるため、その説明を省略する。以下、実施例5に係る撮像レンズ系11の特性データについて説明する。
 表9に、実施例5に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表9に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000010
 表10に、実施例5の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表10において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000011
 図10A、図10B、図10Cに、実施例5の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図10A、図10B、図10Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 (実施例6)
 図11は、実施例6に係る撮像レンズ系11を示す断面図である。実施例6に係る撮像レンズ系11の構成は、実施例1と同様であるため、その説明を省略する。以下、実施例6に係る撮像レンズ系11の特性データについて説明する。
 表11に、実施例6に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表11に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000012
 表12に、実施例6の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表12において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000013
 図12A、図12B、図12Cに、実施例6の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図12A、図12B、図12Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 (実施例7)
 図13は、実施例7に係る撮像レンズ系11を示す断面図である。実施例7に係る撮像レンズ系11の構成は、実施例3と同様であるため、その説明を省略する。以下、実施例7に係る撮像レンズ系11の特性データについて説明する。
 表13に、実施例7に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表13に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000014
 表14に、実施例7の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表14において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000015
 図14A、図14B、図14Cに、実施例7の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図14A、図14B、図14Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 (実施例8)
 図15は、実施例8に係る撮像レンズ系11を示す断面図である。実施例8に係る撮像レンズ系11の構成は、実施例3と同様であるため、その説明を省略する。以下、実施例8に係る撮像レンズ系11の特性データについて説明する。
 表15に、実施例8に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表15に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000016
 表16に、実施例8の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表16において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000017
 図16A、図16B、図16Cに、実施例8の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図16A、図16B、図16Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 (実施例9)
 図17は、実施例9に係る撮像レンズ系11を示す断面図である。実施例9に係る撮像レンズ系11の構成は、実施例1と同様であるため、その説明を省略する。以下、実施例9に係る撮像レンズ系11の特性データについて説明する。
 表17に、実施例9に係る撮像レンズ系11の各レンズ面のレンズデータを示す。表17に示す項目は、表1と同様であるため、その説明を省略する。
Figure JPOXMLDOC01-appb-T000018
 表18に、実施例9の撮像レンズ系11において、非球面とされたレンズ面の非球面形状を規定するための非球面係数を示す。表18において、レンズ面に採用される非球面形状は、実施例1と同様の式にて表される。
Figure JPOXMLDOC01-appb-T000019
 図18A、図18B、図18Cに、実施例9の撮像レンズ系11における球面収差図(縦収差図)、像面湾曲図、歪曲収差図を示す。図18A、図18B、図18Cに示す各収差図についての説明は図2A、図2B、図2Cと同様であるため、その説明を省略する。
 図2A、4A、6A、8A、10A、12A、14A、16A、18Aの縦収差図に示すように、本実施例1~9の撮像レンズ系11によれば、波長455nm、502nm、546nm、614nm、661nmの縦収差が良好に補正されている。従って、撮像レンズ系11が高解像度となる。
 また、図2B、4B、6B、8B、10B、12B、14B、16B、18Bの像面湾曲図に示すように、本実施例1~9の撮像レンズ系11によれば、像面湾曲が良好に補正されている。従って、撮像レンズ系11が高解像度となる。
 また、図2C、4C、6C、8C、10C、12C、14C、16C、18Cの歪曲収差図に示すように、本実施例1~9の撮像レンズ系11によれば、歪曲収差が良好に補正されている。従って、撮像レンズ系11が高解像度となる。
 表19に、第1レンズL1の焦点距離f、第2レンズL2の焦点距離f、第3レンズL3の焦点距離f、第4レンズL4の焦点距離f、第5レンズL5の焦点距離f、第6レンズL6の焦点距離f、第1レンズL1~第2レンズL1の合成焦点距離f(1~2)、第3レンズL3~第6レンズL6の合成焦点距離f(3~6)、F2/F1(F2/F1=f(3~6)/f(1~2))の値、撮像レンズ系11の光学系全体の焦点距離F、|f1/F|~|f6/F|の値、f(3~6)/Fの値、第1レンズL1~第6レンズL6の光軸上の厚さd1~d6、d2/Fの値、第1レンズ群を構成するレンズの光軸上の厚さの総和ΣA、第2レンズ群を構成するレンズの光軸上の厚さの総和ΣB、ΣB/ΣAの値、第1レンズL1の屈折率の温度変化率(dNd/dt)1、第2レンズL2の屈折率の温度変化率(dNd/dt)2、第3レンズL3の屈折率の温度変化率(dNd/dt)3、第4レンズL4の屈折率の温度変化率(dNd/dt)4、第5レンズL5の屈折率の温度変化率(dNd/dt)5、第6レンズL6の屈折率の温度変化率(dNd/dt)6、第1レンズL1のPd1、第2レンズL2のPd2、第3レンズL3のPd3、第4レンズL4のPd4、第5レンズL5のPd5、第6レンズL6のPd6、第1レンズL1~第6レンズL6までのPdiの総和ΣPdi、撮像レンズ系11の25℃における焦点位置を基準(0mm)とした場合の、撮像レンズ系11の-40℃の焦点位置及び105℃の焦点位置を示している。表19において、焦点距離及び第1レンズL1~第6レンズL6の光軸上の厚さの単位はいずれもmmである。屈折率の温度変化率の単位はいずれも1/Kである。また、(dNd/dt)1~(dNd/dt)6の単位は1/Kであり、Pd1~Pd6の単位は1/K・mmである。また、表19の各種の焦点距離及び焦点位置は、546nmの波長の光線を用いて計算した。なお、実施例1~9において、第2レンズ群は、第3レンズL3、第4レンズL4、第5レンズL5、第6レンズL6からなるため、fr=f(3~6)である。
Figure JPOXMLDOC01-appb-T000020
 表19に示すように、実施例1~9において、|fi/F|<20.0を満たすパワーレンズである、第1レンズL1~第5レンズL5が、Pdiの値の符号が、物体側から像側に向かって順に、負、正、負、・・・と交互に切り替わるように、配置されている。これにより、隣り合って配置されたパワーレンズの温度変化による焦点位置の変化を互いに相殺することができ、撮像レンズ系11の光学系全体の焦点距離Fの温度変化による焦点位置の変化を抑制できる。実際、表19に示すように、実施例1~9において、撮像レンズ系11の光学系全体の焦点距離Fの温度変化による焦点位置の変化は、20μm以内に抑制されている。
 また、実施例1~9において、撮像レンズ系11の半画角が50°以上であり、広画角な撮像レンズ系11を実現できている。
 また、表19に示すように、実施例1~9において、|fi/F|<20.0を満たすパワーレンズである、第1レンズL1~第5レンズL5が、|Pdi|<1.5×10-5を満たしている。これにより、より確実に、当該パワーレンズL1~L5の温度変化による焦点位置の変動を補正することができる。
 また、実施例1~9において、撮像レンズ系11は、第1レンズL1~第5レンズL5の5枚のパワーレンズと、1枚の収差補正用の第6レンズL6から構成されている。これにより、広画角でありながら高い解像度を実現しつつ、撮像レンズ系11を構成するレンズ枚数を抑えて温度変化による焦点位置の変動の累積値を抑制することができる。実際、実施例1~9において、図2、4、6、8、10、12、14、16、18に示すように、各種収差が好適に低減されて高解像度を実現できるとともに、表19に示すように、撮像レンズ系11の温度変化による焦点位置の変動を抑制できている。
 また、実施例1~9において、第1レンズL1及び第2レンズL2は、d線の屈折率Ndが1.7以上の硝材で形成されており、第3レンズL3~第6レンズL6はd線の屈折率Ndが1.7未満の硝材で形成されている。これにより、第3レンズ~第6レンズを比較的安価な硝材で形成することにより、撮像レンズ系11のコストを低減することができる。
 また、表19に示すように、実施例1~9において、f(3~6)/Fの値は、上記の式(1)~(3)を満たしている。これにより、第3レンズL3~第6レンズL6を比較的安価な硝材で形成しつつ、第3レンズL3~第6レンズL6における温度変化による焦点位置の変動を抑制することができる。
 また、表19に示すように、実施例1~9において、d2/Fの値は、上記の式(4)を満たしている。第2レンズL2の光軸上の厚さd2が比較的厚いことにより、球面収差を好適に補正することができる。実際、実施例1~9において、図2A、4A、6A、8A、10A、12A、14A、16A、18Aに示すように、波長455nm、502nm、546nm、614nm、661nmの球面収差が良好に補正され、高解像度な撮像レンズ系11を実現できている。
 また、実施例1~9において、第4レンズL4及び第5レンズL5が、相互に接合されている。これにより、色収差を好適に補正することができる。
 (実施の形態2:撮像装置への適用例)
 図19は、撮像装置21は、撮像レンズ系11と、撮像素子22と、を備える。撮像レンズ系11と撮像素子22とは筐体(不図示)に収容されている。撮像レンズ系11は、上述の実施の形態1に記載された撮像レンズ系11である。
 撮像素子22は、受光した光を電気信号に変換する素子であり、例えば、CCDイメージセンサやCMOSイメージセンサが用いられる。撮像素子22は、撮像レンズ系11の結像位置に配置されている。
 このように、実施の形態2の撮像装置によれば、自動運転における画像認識に必要なレベルで、収差を小さくし、温度変化による焦点位置の変化を抑制できる撮像装置を提供することができる。
 なお、本発明は上記実施例に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施例2は、実施例1~9に適用してもよい。例えば、本発明の撮像レンズ系の用途は、車載カメラや監視カメラに限定されるものではなく、携帯電話等の小型電子機器に搭載する等の他の用途にも用いることができる。
 この出願は、2020年2月3日に出願された日本出願特願2020-015971及び2021年1月8日に出願された日本出願特願2021-001775を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 温度変化による焦点位置の変化を抑制できる撮像レンズ系及び撮像装置を提供することができる。
11 撮像レンズ系
12 IRカットフィルタ
21 撮像装置
22 撮像素子
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
L4 第4レンズ
L5 第5レンズ
L6 第6レンズ
STOP 絞り
IMG 結像面

Claims (14)

  1.  物体側から像側に向かって順に、第i番目(iは正の整数)に配置された第iレンズの焦点距離をfiとし、光学系全体の焦点距離をFとした場合に、|fi/F|<20.0を満たすパワーレンズを少なくとも5枚有し、
     温度変化による前記第iレンズのd線の屈折率Ndの変化率を(dNd/dt)iとし、Pdi=(dNd/dt)i/fiとした場合に、当該Pdiの値の符号が、物体側から像側に向かって順に交互に切り替わるように、前記パワーレンズが配置されている、撮像レンズ系。
  2.  前記パワーレンズが、|Pdi|<1.5×10-5を満たす、請求項1に記載の撮像レンズ系。
  3.  物体側から像側に向かって順に、25℃における(dNd/dt)iの値が0(1/K)より大きく、且つ9×10-6(1/K)未満の材料のみで構成された2枚以上のレンズが隣接して配列された第1レンズ群と、前記第1レンズ群の像側に、25℃における(dNd/dt)iの値が-8×10-5(1/K)以下の材料のみで構成された4枚以上のレンズが隣接して配列された第2レンズ群とからなり、
     前記第2レンズ群の合成焦点距離をfr、レンズ系全体の焦点距離をFと定義したときに、以下の式(1)を満たす、請求項1又は2に記載の撮像レンズ系。
         fr/F>3.5  ・・・(1)
  4.  以下の式(2)を満たす請求項3に記載の撮像レンズ系。
         fr/F≧4.1   ・・・(2)
  5.  前記第1レンズ群の2枚のレンズを構成する全ての材料の25℃における(dNd/dt)iが、3.0×10-6(1/K)以上で、且つ、8.2×10-6(1/K)以下であり、前記第2レンズ群の4枚のレンズを構成する全ての材料の25℃における(dNd/dt)iが、-12×10-5(1/K)以上で、且つ、-8.5×10-5(1/K)以下である請求項3又は4に記載の撮像レンズ系。
  6.  物体側から像側に向かって順に、負のパワーを有し、像側に凹面を有する第1レンズ、正のパワーを有し、物体側に凸面を有する第2レンズ、正のパワーを有する第3レンズ、負のパワーを有する第4レンズ、正のパワーを有する第5レンズ、第6レンズからなり、
     前記第1レンズと前記第2レンズの間、前記第2レンズと前記第3レンズの間、前記第3レンズと前記第4レンズの間の何れか1か所に配置された絞りを備える請求項1又は2に記載の撮像レンズ系。
  7.  前記第1レンズ群は、物体側から像側に向かって順に、負のパワーを有し、像側に凹面を有する第1レンズ、正のパワーを有し、物体側に凸面を有する第2レンズからなり、
     前記第2レンズ群は、物体側から像側に向かって順に、正のパワーを有する第3レンズ、負のパワーを有する第4レンズ、正のパワーを有する第5レンズ、第6レンズからなり、
     前記第1レンズと前記第2レンズの間、前記第2レンズと前記第3レンズの間、前記第3レンズと前記第4レンズの間の何れか1か所に配置された絞りを備える請求項3~5の何れか一項に記載の撮像レンズ系。
  8.  前記第1レンズ及び前記第2レンズは、d線の屈折率Ndが1.7以上の硝材で形成されており、前記第3レンズ~前記第6レンズはd線の屈折率Ndが1.7未満の硝材で形成されている、請求項6又は7に記載の撮像レンズ系。
  9.  半画角が50°以上である、請求項6又は8に記載の撮像レンズ系。
  10.  前記第3レンズ、前記第4レンズ、前記第5レンズ、前記第6レンズの合成焦点距離をf(3~6)とした場合に、以下の式(3)を満たす請求項6、8、9の何れか一項に記載の撮像レンズ系。
         f(3~6)/F>3.5   ・・・(3)
  11.  前記第2レンズの光軸上の厚さをd2とした場合に、以下の式(4)を満たす、請求項6~10の何れか一項に記載の撮像レンズ系。
         0.63<d2/F<0.9   ・・・(4)
  12.  前記第4レンズ及び前記第5レンズが、相互に接合されている請求項6~11の何れか一項に記載の撮像レンズ系。
  13.  前記第1レンズ群を構成するレンズの光軸上の厚さの総和をΣA、前記第2レンズ群を構成するレンズの光軸上の厚さの総和ΣBと定義したとき、以下の式(5)を満たす請求項3~5、又は7の何れか一項に記載の撮像レンズ系。
         0.9≦ΣB/ΣA≦1.8   ・・・(5)
  14.  請求項1~13の何れか一項に記載の撮像レンズ系と、
     前記撮像レンズ系の焦点位置に配置された撮像素子と、を備える撮像装置。
PCT/JP2021/003547 2020-02-03 2021-02-01 撮像レンズ系及び撮像装置 WO2021157527A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020015971A JP7498569B2 (ja) 2020-02-03 2020-02-03 撮像レンズ系及び撮像装置
JP2020-015971 2020-02-03
JP2021-001775 2021-01-08
JP2021001775A JP2022107088A (ja) 2021-01-08 2021-01-08 撮像レンズ系及び撮像装置

Publications (1)

Publication Number Publication Date
WO2021157527A1 true WO2021157527A1 (ja) 2021-08-12

Family

ID=77199278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003547 WO2021157527A1 (ja) 2020-02-03 2021-02-01 撮像レンズ系及び撮像装置

Country Status (1)

Country Link
WO (1) WO2021157527A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004842A (ja) * 2013-06-21 2015-01-08 カンタツ株式会社 撮像レンズ
JP6543400B1 (ja) * 2018-08-14 2019-07-10 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004842A (ja) * 2013-06-21 2015-01-08 カンタツ株式会社 撮像レンズ
JP6543400B1 (ja) * 2018-08-14 2019-07-10 エーエーシー テクノロジーズ ピーティーイー リミテッド 撮像光学レンズ

Similar Documents

Publication Publication Date Title
JP6699949B2 (ja) 撮像レンズ
JP4747645B2 (ja) 広角レンズ、及び、撮像装置
JP5252842B2 (ja) 撮像レンズ
JP5084335B2 (ja) 撮像レンズ
WO2015040808A1 (ja) 撮像レンズ系および撮像装置
US8824061B2 (en) Zoom lens and imaging apparatus
KR20070082554A (ko) 촬상 렌즈
JP6769683B2 (ja) 撮像レンズ
JP7149095B2 (ja) 撮像レンズ
JP2019179155A (ja) 撮像レンズ系及び撮像装置
JP2011164237A (ja) 撮像レンズ
KR100920600B1 (ko) 초소형 촬상 광학계
JP2021189245A (ja) 撮像レンズ
CN208521054U (zh) 摄像镜头
US6724547B2 (en) Single-focus lens
US6636364B2 (en) Single-focus lens
KR20230007296A (ko) 촬상 광학계
JP2022003377A (ja) 反射屈折光学系の撮像レンズ
JP5345042B2 (ja) ズームレンズ
JP2002221657A (ja) 単焦点レンズ
JP5693352B2 (ja) 撮像レンズ
CN101988985B (zh) 变焦透镜
KR100992259B1 (ko) 고선명 촬상 광학계
JP2021144151A (ja) 撮像レンズ系及び撮像装置
US8199413B2 (en) Compact zoom optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750810

Country of ref document: EP

Kind code of ref document: A1