WO2021157431A1 - 発光デバイス - Google Patents

発光デバイス Download PDF

Info

Publication number
WO2021157431A1
WO2021157431A1 PCT/JP2021/002636 JP2021002636W WO2021157431A1 WO 2021157431 A1 WO2021157431 A1 WO 2021157431A1 JP 2021002636 W JP2021002636 W JP 2021002636W WO 2021157431 A1 WO2021157431 A1 WO 2021157431A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting device
light emitting
contact layer
Prior art date
Application number
PCT/JP2021/002636
Other languages
English (en)
French (fr)
Inventor
荒木田 孝博
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/792,238 priority Critical patent/US20230047126A1/en
Priority to EP21750147.7A priority patent/EP4084242A4/en
Priority to JP2021575742A priority patent/JPWO2021157431A1/ja
Priority to CN202180010791.4A priority patent/CN115244804A/zh
Publication of WO2021157431A1 publication Critical patent/WO2021157431A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs

Definitions

  • the present disclosure relates to, for example, a back-emission type light emitting device.
  • Patent Document 1 includes an n-type semiconductor multilayer film constituting a substrate-side mirror, a substrate-side contact / injection layer, a p-type semiconductor multilayer film, and a light-emitting layer on an n-type or semi-insulating GaAs substrate.
  • a planar light emitting device in which a cavity and an n-type semiconductor multilayer film constituting an air-side mirror are formed in this order is disclosed.
  • the light emitting device of the embodiment of the present disclosure includes a substrate having a first surface and a second surface facing each other, a first contact layer laminated on the first surface of the substrate, and a first contact layer.
  • a buffer layer having at least one of a carrier concentration, a material composition, and a composition ratio different from that of the first contact layer, and the first contact layer and the buffer layer are laminated on the first surface of the substrate. It is provided with a semiconductor laminate having a light emitting region capable of emitting laser light.
  • a buffer layer having at least one of the carrier concentration, the material composition, and the composition ratio different from that of the first contact layer is provided between the first contact layer and the semiconductor laminate. I did. As a result, a semiconductor laminate having excellent crystal quality is formed.
  • FIG. 3 is a block diagram showing an example of a schematic configuration of a distance measuring device using the lighting device provided with the semiconductor laser shown in FIG. 1.
  • FIG. 1 schematically shows an example of a cross-sectional configuration of a light emitting device (semiconductor laser 1) according to an embodiment of the present disclosure.
  • the semiconductor laser 1 is, for example, a back-emission type VCSEL (Vertical Cavity Surface Emitting LASER), for example, a plurality of VCSELs are integrated in an array as a plurality of light emitting regions.
  • VCSEL Vertical Cavity Surface Emitting LASER
  • the semiconductor laser 1 has, for example, a plurality of semiconductor laminates 10 on the first surface (surface (surface 11S1)) of the substrate 11.
  • the semiconductor laminate 10 has, for example, a columnar shape (mesa shape), and for example, the first light reflecting layer 14, the active layer 15, and the second light reflecting layer 16 are laminated in this order.
  • a current constriction layer 17 forming a current injection region 17A is provided between the first light reflection layer 14 and the active layer 15.
  • the semiconductor laminate 10 corresponds to a specific example of the "semiconductor laminate" of the present disclosure.
  • the first contact layer 12 and the buffer layer 13 are laminated in this order between the semiconductor laminate 10 and the substrate 11, and the buffer layer 13 forms a mesa shape together with the semiconductor laminate 10.
  • the first contact layer 12 extends on the substrate 11 as a common layer for the plurality of semiconductor laminates 10.
  • a first electrode 21 is provided on the first contact layer 12 as a common electrode for each semiconductor laminate 10.
  • a second contact layer 18 and a second electrode 22 are formed on the upper surface (surface 10S1) of each semiconductor laminate 10 in this order, respectively.
  • the upper surface (surface 12S1) of the first contact layer 12 excluding the first electrode 21 and the second electrode 22, the upper surface of the second contact layer 18, and the side surfaces of the second contact layer 18, the semiconductor laminate 10 and the buffer layer 13 It is covered with the insulating film 23, and the second surface (back surface (surface 11S2)) of the substrate 11 is covered with the insulating film 24.
  • the substrate 11 is a support substrate on which a plurality of semiconductor laminates 10 are integrated.
  • the substrate 11 is composed of, for example, a semi-insulating substrate made of a GaAs-based semiconductor that does not contain impurities. Further, the substrate 11 may be any as long as it has a low carrier concentration and the absorption of laser light is reduced, and is not necessarily limited to a general semi-insulating substrate.
  • a substrate having a p-type or n-type carrier concentration of 5 ⁇ 10 17 cm -3 or less can be used as the substrate 11.
  • the first contact layer 12 is made of, for example, a GaAs-based semiconductor having conductivity.
  • the first contact layer 12 is for electrically connecting the first electrode 21 and the first light reflecting layer 14 of each semiconductor laminate 10.
  • the first contact layer 12 is composed of a p-type GaAs having a high carrier concentration, for example, a carrier concentration of 1 ⁇ 10 19 cm -3 or more.
  • the first contact layer 12 corresponds to a specific example of the “first contact layer” of the present disclosure.
  • the film thickness of the first contact layer in the stacking direction is, for example, 200 nm or more and 1500 nm or less.
  • the buffer layer 13 is for recovering the crystal quality of the semiconductor laminate 10 formed above the first contact layer 12.
  • the buffer layer 13 preferably has the following configuration.
  • the buffer layer 13 is formed with a carrier concentration different from that of the first contact layer 12.
  • the buffer layer 13 has a lower carrier concentration than the first contact layer 12, for example, a carrier concentration of less than 1 ⁇ 10 19 cm -3 , preferably 5 ⁇ 10 18 cm -3 or less. It is composed of p-type GaAs that it has.
  • the buffer layer 13 is configured by using a semiconductor having a material composition and a composition ratio different from that of the first contact layer 12 (for example, the GaAs layer).
  • the buffer layer 13 can be formed as a single-layer film or a laminated film including a layer made of any of the above semiconductor materials.
  • the buffer layer 13 is formed above the first contact layer 12 by adopting at least one of the above configurations to alleviate the deterioration of the crystallinity of the first contact layer 12 due to high-concentration doping. The crystal quality of the semiconductor laminate 10 is restored.
  • the film thickness of the buffer layer 13 in the stacking direction is, for example, 100 nm or more and 1000 nm or less.
  • the first light reflecting layer 14 is arranged between the buffer layer 13 and the current constriction layer 17, and faces the second light reflection layer 16 with the active layer 15 and the current constriction layer 17 in between.
  • the first light reflecting layer 14 resonates the light generated in the active layer 15 with the second light reflecting layer 16.
  • the first light reflecting layer 14 corresponds to a specific example of the "first light reflecting layer" of the present disclosure.
  • the first light reflecting layer 14 is a DBR (Distributed Bragg Reflector) layer in which low refractive index layers (not shown) and high refractive index layers (not shown) are alternately laminated.
  • the low refractive index layer is composed of, for example, a p-type Al x1 Ga 1-x1 As (0 ⁇ x1 ⁇ 1) having an optical film thickness of ⁇ ⁇ 1 / 4n
  • the high refractive index layer is, for example, an optical film thickness of ⁇ ⁇ . It is composed of 1 / 4n p-type Al x2 Ga 1-x2 As (0 ⁇ x2 ⁇ x1).
  • is the oscillation wavelength of the laser beam emitted from each light emitting region
  • n is the refractive index.
  • the active layer 15 is provided between the first light reflecting layer 14 and the second light reflecting layer 16.
  • the active layer 15 is made of, for example, an aluminum gallium arsenide (AlGaAs) -based semiconductor material.
  • AlGaAs aluminum gallium arsenide
  • holes and electrons injected from the first electrode 21 and the second electrode 22 are luminescent and recombinated to generate stimulated emission light.
  • the region of the active layer 15 facing the current injection region 17A is the light emitting region.
  • undoped Al x3 Ga 1-x3 As (0 ⁇ x3 ⁇ 0.45) can be used.
  • the active layer 15 may have, for example, a Multi Quantum Well (MQW) structure of GaAs and AlGaAs.
  • MQW Multi Quantum Well
  • the constituent material of the active layer 15 may be selected according to the desired wavelength region of the laser beam. For example, in the case of obtaining laser characteristics in the 900 nm band, a multiple quantum well structure of indium gallium arsenic (InGaAs) and AlGaAs is used.
  • the active layer 15 may be formed.
  • the active layer 15 corresponds to a specific example of the “active layer” of the present disclosure.
  • the second light reflecting layer 16 is a DBR layer arranged between the active layer 15 and the second contact layer 18.
  • the second light reflecting layer 16 faces the first light reflecting layer 14 with the active layer 15 and the current constriction layer 17 in between.
  • the second light reflecting layer 16 corresponds to a specific example of the "second light reflecting layer" of the present disclosure.
  • the second light reflecting layer 16 has a laminated structure in which low refractive index layers and high refractive index layers are alternately laminated.
  • the low refractive index layer is, for example, an n-type Al x4 Ga 1-x4 As (0 ⁇ x4 ⁇ 1) having an optical film thickness of ⁇ / 4n.
  • the high refractive index layer is, for example, an n-type Al x5 Ga 1-x5 As (0 ⁇ x5 ⁇ x4) having an optical film thickness of ⁇ / 4n.
  • the current constriction layer 17 is provided between the first light reflection layer 14 and the active layer 15, and is formed in an annular shape having a predetermined width from the outer peripheral side to the inner side of the semiconductor laminate 10 having a mesa shape, for example. ing.
  • the current constriction layer 17 is provided between the first light reflection layer 14 and the active layer 15, and has an opening having a predetermined width in the central portion thereof, and this opening becomes the current injection region 17A.
  • the current constriction layer 17 is made of, for example, p-type AlGaAs.
  • the current constriction layer 17 is composed of Al 0.85 Ga 0.15 As to Al As, and by oxidizing this to form an aluminum oxide (AlO x ) layer, the current is constricted.
  • AlO x aluminum oxide
  • the semiconductor laser 1 by providing the current constriction layer 17, the current to be injected from the first electrode 21 into the active layer 15 is constricted, and the current injection efficiency is improved.
  • the second contact layer 18 is made of, for example, a GaAs-based semiconductor having conductivity.
  • the second contact layer 18 is made of, for example, an n-type GaAs.
  • the second contact layer 18 corresponds to a specific example of the "second contact layer" of the present disclosure.
  • the first electrode 21 is provided on the first contact layer 12, and is formed of, for example, a multilayer film of titanium (Ti) / platinum (Pt) / gold (Au).
  • the second electrode 22 is provided above the semiconductor laminate 10, specifically, on the second contact layer 18, and is, for example, a gold-germanium (Au-Ge) / nickel (Ni) / gold (Au) multilayer film. Is formed by.
  • the insulating film 23 is formed continuously, for example, on the upper surface of the second contact layer 18, the second contact layer 18, the side surfaces of the semiconductor laminate 10 and the buffer layer 13, and the upper surface (surface 12S1) of the first contact layer 12. There is.
  • the insulating film 23 is made of a single-layer film or a laminated film such as silicon nitride (SiN) or silicon oxide (SiO 2).
  • An opening 23H (see, for example, FIG. 2D) is provided at a predetermined position on the upper surface of each of the second contact layers 18 and the first contact layer 12 of the insulating film 23, and the first electrode 21 is provided in each opening 23H.
  • the second electrode 22 is embedded.
  • the insulating film 24 is formed on the back surface (surface 11S2) of the substrate 11, for example, the entire surface.
  • the insulating film 24 is made of a single-layer film or a laminated film such as silicon nitride (SiN) or silicon oxide (SiO 2).
  • the plurality of semiconductor laminates 10 provided on the substrate 11 and the first electrode 21 are electrically connected to each other by, for example, a first contact layer 12 formed of p-type GaAs. It is a semiconductor laser having a so-called common anode structure connected to.
  • the semiconductor laser 1 when a predetermined voltage is applied to the first electrode 21 and the second electrode 22, a voltage is applied to the semiconductor laminate 10 from the first electrode 21 and the second electrode 22. As a result, electrons are injected from the first electrode 21 and holes are injected into the active layer 15 from the second electrode 22, and light is generated by recombination of the electrons and holes. The light resonates and is amplified between the first light reflecting layer 14 and the second light reflecting layer 16, and the laser beam L is emitted from the back surface (surface 11S2) of the substrate 11.
  • the first contact layer 12, the buffer layer 13, and the first contact layer 12 are formed on the substrate 11 by an epitaxial crystal growth method such as a metal organic chemical vapor deposition (MOCVD) method.
  • MOCVD metal organic chemical vapor deposition
  • Each compound semiconductor layer constituting the light reflecting layer 14, the active layer 15, the second light reflecting layer 16 and the second contact layer 18 is formed in this order to prepare an epibuffer.
  • a methyl-based organometallic compound such as trimethylaluminum (TMAl), trimethylgallium (TMGa), or trimethylindium (TMIn) and arsine (AsH 3 ) gas are used as a raw material for donor impurities.
  • TMAl trimethylaluminum
  • TMGa trimethylgallium
  • TMIn trimethylindium
  • AsH 3 arsine
  • Uses, for example, disilane (Si 2 H 6 ) and uses, for example, carbon tetrabromide (CBr 4 ) as a raw material
  • the second contact layer 18 and the second contact layer 18 are used as a mask.
  • the light reflecting layer 16, the active layer 15, and the first light reflecting layer 14 are etched to form a columnar mesa structure (semiconductor laminate 10).
  • RIE reactive Ion Etching
  • Cl-based gas Cl-based gas
  • an oxide layer having a high aluminum (Al) composition for example, an AlGaAs layer, which has been laminated in advance during epi-growth, is oxidized and a current is narrowed (current narrowing layer 17).
  • Al aluminum
  • the buffer layer 13 is removed by etching to expose the first contact layer 12.
  • the insulating film 24 is formed.
  • the first electrode 21 and the second electrode 22 are formed on the first contact layer 12 and the second contact layer 18, respectively.
  • the insulating films 23 and 24 are formed by, for example, a chemical vapor deposition (CVD) method or an atomic layer deposition (ALD) method.
  • the insulating film 23 is formed so as to cover the entire upper surface (surface 12S1) of the first contact layer 12 exposed by etching from the upper surface of the second contact layer 18, and then a resist film (surface 12S1) having a predetermined pattern is formed on the insulating film 23. (Not shown) is formed into a pattern, and etching such as RIE is performed to form an opening 23H at a predetermined position. Then, for example, a lift-off method using a resist pattern is used to form a pattern of the first electrode 21 and the second electrode 22 on the first contact layer 12 and on the upper surface of the second contact layer 18, respectively. As a result, the semiconductor laser 1 shown in FIG. 1 is completed.
  • a buffer layer 13 having a carrier concentration, a material composition, or a composition ratio different from that of the first contact layer 12 is provided between the first contact layer 12 and the semiconductor laminate 10. I did. As a result, the semiconductor laminate 10 having excellent crystal quality is formed. This will be described below.
  • a contact layer is provided in the middle of the DBR layer like the above-mentioned planar light emitting element, and a light emitting layer (active layer) is provided via an electrode provided on the contact layer. ) Is applied with a voltage. Therefore, the contact layer is generally formed with a high carrier concentration.
  • the contact layer having a high carrier concentration is formed at a position close to the active layer in the DBR layer as described above, the light absorption by the contact layer may be increased and the laser oscillation characteristics may be deteriorated.
  • the film thickness of the contact layer is reduced in order to reduce the light absorption of the contact layer, there is a possibility that the margin at the time of process processing is lost and the manufacturing yield is lowered. Further, since the crystallinity of the contact layer doped with a high concentration of impurities tends to deteriorate, the crystallinity of the device structure growing on the contact layer may decrease.
  • a buffer layer 13 having a carrier concentration, a material composition, or a composition ratio different from that of the first contact layer 12 is provided on the first contact layer 12, and the buffer layer 13 is provided.
  • the first light reflecting layer 14, the active layer 15, and the second light reflecting layer 16 constituting the device structure (semiconductor laminate 10) are crystal-grown through the structure. This alleviates the deterioration of the crystallinity of the first contact layer 12, and makes it possible to form the semiconductor laminate 10 in which the crystal quality is maintained.
  • any of the carrier concentration, the material composition, and the composition ratio between the first contact layer 12 and the semiconductor laminate 10 is different from that of the first contact layer 12. Since the buffer layer 13 is provided, it is possible to maintain the crystal quality of the semiconductor laminate 10 formed above the first contact layer (for example, on the buffer layer 13). Therefore, it is possible to improve the reliability.
  • the buffer layer 13 is provided between the first contact layer 12 and the semiconductor laminate 10, the degree of freedom in designing the film thickness of the first contact layer is improved. As a result, it becomes possible to reduce the light absorption in the first contact layer while suppressing the decrease in the process margin. Therefore, it is possible to improve the oscillation characteristics of the laser beam L emitted from the back surface (surface 11S2) of the substrate 11 while maintaining the manufacturing yield.
  • This technology can be applied to various electronic devices including semiconductor lasers.
  • a light source provided in a portable electronic device such as a smartphone, a light source of various sensing devices for detecting a shape, an operation, or the like.
  • FIG. 3 is a block diagram showing a schematic configuration of a distance measuring device (distance measuring device 200) using the lighting device 100 provided with the semiconductor laser 1 described above.
  • the distance measuring device 200 measures the distance by the ToF method.
  • the distance measuring device 200 includes, for example, a lighting device 100, a light receiving unit 210, a control unit 220, and a distance measuring unit 230.
  • the lighting device 100 includes, for example, the semiconductor laser 1 shown in FIG. 1 or the like as a light source.
  • illumination light is generated in synchronization with the emission control signal CLKp of a square wave.
  • the light emission control signal CLKp is not limited to a rectangular wave as long as it is a periodic signal.
  • the light emission control signal CLKp may be a sine wave.
  • the light receiving unit 210 receives the reflected light reflected from the irradiation target object 300, and detects the amount of light received within the period of the vertical synchronization signal VSYNC each time the period of the vertical synchronization signal VSYNC has elapsed.
  • a 60 Hz (Hz) periodic signal is used as the vertical sync signal VSYNC.
  • a plurality of pixel circuits are arranged in a two-dimensional lattice pattern in the light receiving unit 210.
  • the light receiving unit 210 supplies image data (frames) corresponding to the amount of light received by these pixel circuits to the distance measuring unit 230.
  • the frequency of the vertical synchronization signal VSYNC is not limited to 60 hertz (Hz), and may be 30 hertz (Hz) or 120 hertz (Hz).
  • the control unit 220 controls the lighting device 100.
  • the control unit 220 generates a light emission control signal CLKp and supplies it to the lighting device 100 and the light receiving unit 210.
  • the frequency of the light emission control signal CLKp is, for example, 20 MHz (MHz).
  • the frequency of the light emission control signal CLKp is not limited to 20 MHz (MHz), and may be, for example, 5 MHz (MHz).
  • the distance measuring unit 230 measures the distance to the irradiation target 300 by the ToF method based on the image data.
  • the distance measuring unit 230 measures the distance for each pixel circuit and generates a depth map showing the distance to the object for each pixel as a gradation value. This depth map is used, for example, for image processing that performs a degree of blurring processing according to a distance, autofocus (AF) processing that obtains the in-focus of a focus lens according to a distance, and the like.
  • AF autofocus
  • the present technology has been described above with reference to embodiments and application examples, the present technology is not limited to the above-described embodiments and can be modified in various ways.
  • the layer structure of the semiconductor laser 1 described in the above embodiment is an example, and other layers may be further provided.
  • the material of each layer is also an example, and is not limited to the above-mentioned ones.
  • the present technology can be configured as follows. According to the present technology having the following configuration, a buffer layer having at least one of the carrier concentration, the material composition, and the composition ratio different from that of the first contact layer 12 is provided between the first contact layer and the semiconductor laminate. Therefore, a semiconductor laminate having excellent crystal quality can be formed. Therefore, it is possible to improve the reliability.
  • a light emitting device comprising a semiconductor laminate having a light emitting region capable of emitting laser light, which is laminated on the first surface of the substrate with the first contact layer and the buffer layer in between.
  • the buffer layer has a single-layer structure or a laminated structure including at least one of a GaAs layer, an AlAs layer, an AlGaAs layer, an InGaAs layer, an AlGaInAs layer, a GaInP layer and an AlGaInP layer (1) to (3).
  • the light emitting device according to any one of the above.
  • the substrate is a semi-insulating substrate having a p-type or n-type carrier concentration of 5 ⁇ 10 17 cm -3 or less.
  • the semiconductor laminate is any one of (1) to (5) above, wherein the first light-reflecting layer, the active layer, and the second light-reflecting layer are laminated in order from the substrate side.
  • the semiconductor laminate further has a current constriction layer having a current injection region between the first light reflection layer and the active layer.
  • the light emitting device according to any one of (6) to (8) above, wherein the semiconductor laminate is a light emitting device in which a second contact layer is further laminated on the second light reflecting layer.
  • a plurality of the semiconductor laminates are provided on the first surface of the substrate.
  • the light emitting device according to any one of (1) to (9), wherein the first contact layer is formed as a common layer for a plurality of the semiconductor laminates.
  • (11) A first electrode provided on the surface of the semiconductor laminate opposite to the substrate and provided so that a predetermined voltage can be applied to the semiconductor laminate in the light emitting region, and the first contact.
  • the light emitting device according to (10) above, further comprising a second electrode provided on the layer.
  • (12) The light emitting device according to any one of (1) to (11), wherein the laser beam is emitted from the second surface of the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本開示の一実施の形態の発光デバイスは、対向する第1の面および第2の面を有する基板と、基板の第1の面に積層された第1のコンタクト層と、第1のコンタクト層に積層され、第1のコンタクト層とは、少なくともキャリア濃度、材料組成および組成比のいずれかが異なるバッファ層と、第1のコンタクト層およびバッファ層を間に、基板の第1の面に積層され、レーザ光を出射可能な発光領域を有する半導体積層体とを備える。

Description

発光デバイス
 本開示は、例えば、裏面出射型の発光デバイスに関する。
 例えば、特許文献1では、n形または半絶縁性のGaAs基板上に、基板側ミラーを構成するn形半導体多層膜と、基板側コンタクト兼注入層およびp形半導体多層膜と、発光層を含むキャビティと、空気側ミラーを構成するn形半導体多層膜とがこの順に形成された面形発光素子が開示されている。
特開平5-211346号公報
 ところで、発光デバイスでは信頼性の向上が望まれている。
 信頼性を向上させることが可能な発光デバイスを提供することが望ましい。
 本開示の一実施の形態の発光デバイスは、対向する第1の面および第2の面を有する基板と、基板の第1の面に積層された第1のコンタクト層と、第1のコンタクト層に積層され、第1のコンタクト層とは、少なくともキャリア濃度、材料組成および組成比のいずれかが異なるバッファ層と、第1のコンタクト層およびバッファ層を間に、基板の第1の面に積層され、レーザ光を出射可能な発光領域を有する半導体積層体とを備えたものである。
 本開示の一実施の形態の発光デバイスでは、第1のコンタクト層と半導体積層体との間に、少なくともキャリア濃度、材料組成および組成比のいずれかが第1コンタクト層とは異なるバッファ層を設けるようにした。これにより、優れた結晶品質を有する半導体積層体を形成する。
本開示の一実施の形態に係る半導体レーザの構成の一例を表す断面模式図である。 図1に示した半導体レーザの製造方法の一例を説明する断面模式図である。 図2Aに続く工程を表す断面模式図である。 図2Bに続く工程を表す断面模式図である。 図2Cに続く工程を表す断面模式図である。 図1に示した半導体レーザを備えた照明装置を用いた測距装置の概略構成の一例を表すブロック図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態(第1コンタクト層と第1光反射層との間に、第1コンタクト層とはキャリア濃度、材料組成および組成比のいずれかが異なるバッファ層を有する裏面出射型の半導体レーザの例)
  1-1.半導体レーザの構成
  1-2.半導体レーザの製造方法
  1-3.作用・効果
 2.適用例(測距装置の例)
<1.実施の形態>
 図1は、本開示の一実施の形態に係る発光デバイス(半導体レーザ1)の断面構成の一例を模式的に表したものである。この半導体レーザ1は、例えば、裏面出射型のVCSEL(Vertical Cavity Surface Emitting LASER)であり、例えば、複数の発光領域として複数のVCSELがアレイ状に集積されたものである。
(1-1.半導体レーザの構成)
 半導体レーザ1は、例えば、基板11の第1面(表面(面11S1))に複数の半導体積層体10を有している。半導体積層体10は、例えば柱状形状(メサ形状)を有し、例えば、第1光反射層14、活性層15および第2光反射層16がこの順に積層されている。第1光反射層14と活性層15との間には、電流注入領域17Aを形成する電流狭窄層17が設けられている。この半導体積層体10が、本開示の「半導体積層体」の一具体例に相当する。半導体積層体10と基板11との間には、第1コンタクト層12およびバッファ層13が基板側から順に積層されており、バッファ層13は半導体積層体10と共にメサ形状を形成している。第1コンタクト層12は、複数の半導体積層体10に対する共通層として基板11上に延在している。第1コンタクト層12上には、第1電極21が各半導体積層体10の共通電極として設けられている。各半導体積層体10の上面(面10S1)には、それぞれ、第2コンタクト層18および第2電極22がこの順に形成されている。更に、第1電極21および第2電極22を除く第1コンタクト層12の上面(面12S1)および第2コンタクト層18の上面ならびに第2コンタクト層18、半導体積層体10およびバッファ層13の側面は絶縁膜23に覆われており、基板11の第2面(裏面(面11S2))は絶縁膜24に覆われている。
 以下に、半導体レーザ1の各部の構成や材料等について詳細に説明する。
 基板11は、複数の半導体積層体10を集積する支持基板である。基板11は、例えば不純物を含まない、例えばGaAs系半導体からなる半絶縁性基板によって構成されている。また、基板11は、キャリア濃度が低く、レーザ光の吸収が低減されるものであればよく、必ずしも、一般的な半絶縁性基板に限定されるものではない。例えば、基板11としては、p型またはn型のキャリア濃度が5×1017cm-3以下のキャリア濃度を有する基板を用いることができる。
 第1コンタクト層12は、導電性を有する、例えばGaAs系半導体によって構成されている。第1コンタクト層12は、第1電極21と各半導体積層体10の第1光反射層14とを電気的に接続するためのものである。第1コンタクト層12は、高いキャリア濃度、例えば1×1019cm-3以上のキャリア濃度を有するp型のGaAsによって構成されている。第1コンタクト層12は、本開示の「第1のコンタクト層」の一具体例に相当する。第1コンタクト層の積層方向の膜厚は、例えば200nm以上1500nm以下である。
 バッファ層13は、第1コンタクト層12の上方に形成される半導体積層体10の結晶品質を回復するためのものである。バッファ層13は、以下のような構成を有していることが好ましい。例えば、バッファ層13は、第1コンタクト層12とは異なるキャリア濃度で形成されている。具体的には、バッファ層13は、第1コンタクト層12よりも低いキャリア濃度を有し、例えば1×1019cm-3未満、好ましくは、例えば5×1018cm-3以下のキャリア濃度を有しているp型のGaAsによって構成されている。例えば、バッファ層13は、第1コンタクト層12(例えばGaAs層)とは異なる材料組成や組成比の半導体を用いて構成されている。バッファ層13の構成材料としては、例えば、AlAs、AlGaAs、InGaAs、AlGaInAs、GaInPおよびAlGaInPが挙げられる。バッファ層13は、上記いずれかの半導体材料からなる層を含む単層膜または積層膜として形成することができる。
 バッファ層13は、少なくとも上記いずれかの構成をとることにより、高濃度にドーピングされたことによる第1コンタクト層12の結晶性の悪化を緩和して、第1コンタクト層12の上方に形成される半導体積層体10の結晶品質を回復する。バッファ層13の積層方向の膜厚は、例えば100nm以上1000nm以下である。
 第1光反射層14は、バッファ層13と電流狭窄層17との間に配置され、活性層15および電流狭窄層17を間にして第2光反射層16と対向している。第1光反射層14は、活性層15で発生した光を第2光反射層16との間で共振させるようになっている。第1光反射層14は、本開示の「第1の光反射層」の一具体例に相当する。
 第1光反射層14は、低屈折率層(図示せず)および高屈折率層(図示せず)を交互に積層したDBR(Distributed Bragg Reflector)層である。低屈折率層は、例えば光学膜厚がλ×1/4nのp型のAlx1Ga1-x1As(0<x1≦1)からなり、高屈折率層は、例えば光学膜厚がλ×1/4nのp型のAlx2Ga1-x2As(0≦x2<x1)からなる。λは、各発光領域から発せられるレーザ光の発振波長であり、nは、屈折率である。
 活性層15は、第1光反射層14と第2光反射層16との間に設けられている。活性層15は、例えばアルミニウムガリウムヒ素(AlGaAs)系の半導体材料により構成されている。活性層15では、第1電極21および第2電極22から注入された正孔および電子が発光再結合して誘導放出光を発生するようになっている。活性層15のうち電流注入領域17Aとの対向領域が発光領域となる。活性層15には、例えばアンドープのAlx3Ga1-x3As(0<x3≦0.45)を用いることができる。活性層15は、例えばGaAsとAlGaAsとの多重量子井戸(MQW:Multi Quantum Well)構造を有していてもよい。活性層15は、所望のレーザ光の波長地域に応じて構成材料を選択すればよく、例えば900nm帯域のレーザ特性を得る場合には、インジウムガリウムヒ素(InGaAs)とAlGaAsとの多重量子井戸構造により活性層15を構成するようにしてもよい。活性層15は、本開示の「活性層」の一具体例に相当する。
 第2光反射層16は、活性層15と第2コンタクト層18との間に配置されたDBR層である。第2光反射層16は、活性層15および電流狭窄層17を間にして第1光反射層14と対向している。第2光反射層16は、本開示の「第2の光反射層」の一具体例に相当する。
 第2光反射層16は、低屈折率層および高屈折率層を交互に重ねた積層構造を有している。低屈折率層は、例えば光学膜厚がλ/4nのn型のAlx4Ga1-x4As(0<x4≦1)である。高屈折率層は、例えば光学膜厚がλ/4nのn型のAlx5Ga1-x5As(0≦x5<x4)である。
 電流狭窄層17は、第1光反射層14と活性層15との間に設けられ、例えば、メサ形状を有する半導体積層体10の外周側から内側に所定の幅を有して環状に形成されている。換言すると、電流狭窄層17は、第1光反射層14と活性層15との間に設けられ、その中央部分に所定の幅の開口を有しており、この開口が電流注入領域17Aとなっている。電流狭窄層17は、例えばp型のAlGaAsにより構成されている。具体的には、電流狭窄層17は、Al0.85Ga0.15As~AlAsからなり、これを酸化して酸化アルミニウム(AlOx)層とすることで、電流を狭窄する。半導体レーザ1では、この電流狭窄層17を設けることにより、第1電極21から活性層15に注入させる電流の狭窄がなされ、電流注入効率が高められる。
 第2コンタクト層18は、導電性を有する、例えばGaAs系半導体によって構成されている。第2コンタクト層18は、例えば、n型のGaAsによって構成されている。第2コンタクト層18は、本開示の「第2のコンタクト層」の一具体例に相当する。
 第1電極21は、第1コンタクト層12上に設けられ、例えば、チタン(Ti)/白金(Pt)/金(Au)の多層膜によって形成されている。
 第2電極22は、半導体積層体10の上方、具体的には、第2コンタクト層18上に設けられ、例えば金-ゲルマニウム(Au-Ge)/ニッケル(Ni)/金(Au)の多層膜によって形成されている。
 絶縁膜23は、第2コンタクト層18の上面および第2コンタクト層18、半導体積層体10およびバッファ層13の側面ならびに第1コンタクト層12の上面(面12S1)に、例えば連続して形成されている。絶縁膜23は、例えば窒化シリコン(SiN)あるいは酸化シリコン(SiO2)等の単層膜または積層膜により構成されている。絶縁膜23の各第2コンタクト層18の上面および第1コンタクト層12の所定の位置は、それぞれ、開口23H(例えば、図2D参照)が設けられており、各開口23Hに、第1電極21または第2電極22が埋め込まれている。
 絶縁膜24は、基板11の裏面(面11S2)の、例えば全面に形成されている。絶縁膜24は、絶縁膜24と同様に、例えば窒化シリコン(SiN)あるいは酸化シリコン(SiO2)等の単層膜または積層膜により構成されている。
 本実施の形態の半導体レーザ1は、基板11上に設けられた複数の半導体積層体10と、第1電極21とが、例えばp型のGaAsによって構成された第1コンタクト層12によって互いに電気的に接続された、所謂アノード共通構造を有する半導体レーザである。
 半導体レーザ1では、第1電極21および第2電極22に所定の電圧を印加すると、第1電極21および第2電極22から半導体積層体10に電圧が印加される。これにより、第1電極21から電子が、第2電極22からホールが、活性層15に注入され、電子およびホールの再結合により光が発生する。光は第1光反射層14と第2光反射層16との間で共振して増幅され、基板11の裏面(面11S2)からレーザ光Lが出射される。
(1-2.半導体レーザの製造方法)
 次に、図2A~図2Dを参照して、半導体レーザ1の製造方法について説明する。
 まず、図2Aに示したように、基板11上に、例えば有機金属気相成長(Metal Organic Chemical Vapor Deposition :MOCVD)法等のエピタキシャル結晶成長法により、第1コンタクト層12、バッファ層13、第1光反射層14、活性層15、第2光反射層16および第2コンタクト層18を構成する各化合物半導体層をこの順に形成し、エピウェハを作製する。この際、化合物半導体の原料としては、トリメチルアルミニウム(TMAl)、トリメチルガリウム(TMGa)、トリメチルインジウム(TMIn)等のメチル系有機金属化合物と、アルシン(AsH3)ガスを用い、ドナー不純物の原料としては、例えばジシラン(Si26)を用い、アクセプタ不純物の原料としては、例えば四臭化炭素(CBr4)を用いる。
 続いて、図2Bに示したように、第2コンタクト層18上に、所定のパターンのレジスト膜(図示せず)を形成した後、このレジスト膜をマスクとして、第2コンタクト層18、第2光反射層16、活性層15および第1光反射層14をエッチングし、柱状のメサ構造(半導体積層体10)を形成する。このとき、例えばCl系ガスによるRIE(Reactive Ion Etching)を用いることが好ましい。第2コンタクト層18、第2光反射層16、活性層15および第1光反射層14のエッチングでは、バッファ層13がエッチングストップ層として機能する。これにより、ウェハ面内におけるエッチングの深さが一定となる。その後、水蒸気雰囲気下で高温処理を施すことで、予めエピ成長の際に積層しておいたアルミニウム(Al)組成の高い、例えばAlGaAs層を酸化し、電流狭窄する酸化層(電流狭窄層17)を形成する。
 次に、図2Cに示したように、バッファ層13をエッチングにより除去し、第1コンタクト層12を露出させる。
 続いて、図2Dに示したように、第2コンタクト層18の上面から第1コンタクト層12上に連続する絶縁膜23および基板11の裏面(面11S2)に絶縁膜24を形成した後、第1コンタクト層12上および第2コンタクト層18上に第1電極21および第2電極22をそれぞれ形成する。絶縁膜23,24は、例えば化学気相成長(CVD:Chemical Vapor Deposition)法または原子層堆積(ALD:Atomic Layer Deposition)法により形成する。絶縁膜23は、第2コンタクト層18の上面からエッチングにより露出した第1コンタクト層12の上面(面12S1)全体を被覆するように形成した後、絶縁膜23上に所定のパターンのレジスト膜(図示せず)をパターン形成し、RIE等のエッチングを行い、所定の位置に開口23Hを形成する。その後、例えばレジストパターンを用いたリフトオフ法を用いて、第1コンタクト層12上および第2コンタクト層18の上面に、それぞれ、第1電極21および第2電極22をパターン形成する。以上により、図1に示した半導体レーザ1が完成する。
(1-3.作用・効果)
 本実施の形態の半導体レーザ1は、第1コンタクト層12と半導体積層体10との間に、キャリア濃度、材料組成および組成比のいずれかが第1コンタクト層12とは異なるバッファ層13を設けるようにした。これにより、優れた結晶品質を有する半導体積層体10を形成する。以下、これについて説明する。
 一般的な面発光レーザでは、前述した面形発光素子のように、例えば、DBR層の途中にコンタクト層が設けられており、このコンタクト層上に設けられた電極を介して発光層(活性層)に電圧が印加されるようになっている。このため、コンタクト層は、一般にキャリア濃度が高く形成されている。このように、キャリア濃度が高いコンタクト層をDBR層中の活性層に近い位置に形成した場合、コンタクト層による光吸収が大きくなり、レーザ発振特性が低下する虞がある。一方で、コンタクト層の光吸収を低減するために、コンタクト層の膜厚を小さくした場合には、プロセス加工時のマージンがなくなり、製造歩留まりが低下する虞がある。また、不純物が高濃度にドーピングされたコンタクト層は結晶性が悪化しやすいため、コンタクト層上に成長するデバイス構造の結晶性が低下する虞がある。
 これに対して、本実施の形態では、第1コンタクト層12上に、第1コンタクト層12とはキャリア濃度、材料組成および組成比のいずれかが異なるバッファ層13を設け、このバッファ層13を介してデバイス構造(半導体積層体10)を構成する第1光反射層14、活性層15および第2光反射層16を結晶成長させるようにした。これにより、第1コンタクト層12の結晶性の悪化を緩和し、結晶品質が保持された半導体積層体10の形成が可能となる。
 以上のように、本実施の形態の半導体レーザ1では、第1コンタクト層12と半導体積層体10との間に、キャリア濃度、材料組成および組成比のいずれかが第1コンタクト層12とは異なるバッファ層13を設けるようにしたので、第1コンタクト層の上方(例えば、バッファ層13上)に形成される半導体積層体10の結晶品質を保持することが可能となる。よって、信頼性を向上させることが可能となる。
 また、本実施の形態では、第1コンタクト層12と半導体積層体10との間にバッファ層13を設けるようにしたので、第1コンタクト層の膜厚の設計自由度が向上する。これにより、プロセスマージンの低下を抑制しつつ、第1コンタクト層における光吸収を低減することができるようになる。よって、製造歩留まりを維持しつつ、基板11の裏面(面11S2)から出射されるレーザ光Lの発振特性を向上させることが可能となる。
<2.適用例>
 本技術は、半導体レーザを含む種々の電子機器に適用できる。例えば、スマートフォン等の携帯電子機器に備えられる光源や、形状や動作等を検知する各種センシング機器の光源等に適用できる。
 図3は、上述した半導体レーザ1を備えた照明装置100を用いた測距装置(測距装置200)の概略構成を表したブロック図である。測距装置200は、ToF方式により距離を測定するものである。測距装置200は、例えば、照明装置100と、受光部210と、制御部220と、測距部230とを有する。
 照明装置100は、例えば、図1等に示した半導体レーザ1を光源として備えたものである。照明装置100では、例えば、矩形波の発光制御信号CLKpに同期して照明光を発生する。また、発光制御信号CLKpは、周期信号であれば、矩形波に限定されない。例えば、発光制御信号CLKpは、サイン波であってもよい。
 受光部210は、照射対象物300から反射された反射光を受光して、垂直同期信号VSYNCの周期が経過するたびに、その周期内の受光量を検出するものである。例えば、60ヘルツ(Hz)の周期信号が垂直同期信号VSYNCとして用いられる。また、受光部210には、複数の画素回路が二次元格子状に配置されている。受光部210は、これらの画素回路の受光量に応じた画像データ(フレーム)を測距部230に供給する。なお、垂直同期信号VSYNCの周波数は、60ヘルツ(Hz)に限定されず、30ヘルツ(Hz)や120ヘルツ(Hz)としてもよい。
 制御部220は、照明装置100を制御するものである。制御部220は、発光制御信号CLKpを生成して照明装置100および受光部210に供給する。発光制御信号CLKpの周波数は、例えば20メガヘルツ(MHz)である。なお、発光制御信号CLKpの周波数は、20メガヘルツ(MHz)に限定されず、例えば5メガヘルツ(MHz)としてもよい。
 測距部230は、画像データに基づいて、照射対象物300までの距離をToF方式で測定するものである。この測距部230は、画素回路毎に距離を測定して画素毎に物体までの距離を諧調値で示すデプスマップを生成する。このデプスマップは、例えば、距離に応じた度合いのぼかし処理を行う画像処理や、距離に応じてフォーカスレンズの合焦点を求めるオートフォーカス(AF)処理等に用いられる。
 以上、実施の形態および適用例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態において説明した半導体レーザ1の層構成は一例であり、更に他の層を備えていてもよい。また、各層の材料も一例であって、上述のものに限定されるものではない。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また他の効果があってよい。
 なお、本技術は以下のような構成とすることができる。以下の構成の本技術によれば、第1のコンタクト層と半導体積層体との間に、少なくともキャリア濃度、材料組成および組成比のいずれかが第1コンタクト層12とは異なるバッファ層を設けるようにしたので、優れた結晶品質を有する半導体積層体が形成できるようになる。よって、信頼性を向上させることが可能となる。
(1)
 対向する第1の面および第2の面を有する基板と、
 前記基板の前記第1の面に積層された第1のコンタクト層と、
 前記第1のコンタクト層に積層され、前記第1のコンタクト層とは、少なくともキャリア濃度、材料組成および組成比のいずれかが異なるバッファ層と、
 前記第1のコンタクト層および前記バッファ層を間に、前記基板の前記第1の面に積層され、レーザ光を出射可能な発光領域を有する半導体積層体と
 を備えた発光デバイス。
(2)
 前記バッファ層のキャリア濃度は1×1019cm-3未満である、前記(1)に記載の発光デバイス。
(3)
 前記第1のコンタクト層のキャリア濃度は、1×1019cm-3以上である、前記(1)または(2)に記載の発光デバイス。
(4)
 前記バッファ層は、少なくともGaAs層、AlAs層、AlGaAs層、InGaAs層、AlGaInAs層、GaInP層およびAlGaInP層のうちのいずれかを含む単層構造または積層構造を有する、前記(1)乃至(3)のうちのいずれか1つに記載の発光デバイス。
(5)
 前記基板は、p型またはn型のキャリア濃度が5×1017cm-3以下の半絶縁性基板である、前記(1)乃至(4)のうちのいずれか1つに記載の発光デバイス。
(6)
 前記半導体積層体は、第1の光反射層と、活性層と、第2の光反射層とが、前記基板側から順に積層されている、前記(1)乃至(5)のうちのいずれか1つに記載の発光デバイス。
(7)
 前記半導体積層体は、第1の光反射層と前記活性層との間に、電流注入領域を有する電流狭窄層をさらに有する、前記(6)に記載の発光デバイス。
(8)
 前記第1のコンタクト層、前記バッファ層および前記第1の光反射層は、p型の不純物を含んでいる、前記(6)または(7)に記載の発光デバイス。
(9)
 前記半導体積層体は、前記第2の光反射層に第2のコンタクト層がさらに積層されている、前記(6)乃至(8)のうちのいずれか1つに記載の発光デバイス。
(10)
 前記半導体積層体は、前記基板の前記第1の面に複数設けられ、
 前記第1のコンタクト層は、複数の前記半導体積層体に対する共通層として形成されている、前記(1)乃至(9)のうちのいずれか1つに記載の発光デバイス。
(11)
 前記半導体積層体の、前記基板とは反対側の表面に設けられると共に、前記発光領域において、前記半導体積層体に所定の電圧を印加可能に設けられた第1の電極と、前記第1のコンタクト層上に設けられた第2の電極とをさらに有する、前記(10)に記載の発光デバイス。
(12)
 前記レーザ光は、前記基板の前記第2の面から出射される、前記(1)乃至(11)のうちのいずれか1つに記載の発光デバイス。
 本出願は、日本国特許庁において2020年2月7日に出願された日本特許出願番号2020-019567号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (12)

  1.  対向する第1の面および第2の面を有する基板と、
     前記基板の前記第1の面に積層された第1のコンタクト層と、
     前記第1のコンタクト層に積層され、前記第1のコンタクト層とは、少なくともキャリア濃度、材料組成および組成比のいずれかが異なるバッファ層と、
     前記第1のコンタクト層および前記バッファ層を間に、前記基板の前記第1の面に積層され、レーザ光を出射可能な発光領域を有する半導体積層体と
     を備えた発光デバイス。
  2.  前記バッファ層のキャリア濃度は1×1019cm-3未満である、請求項1に記載の発光デバイス。
  3.  前記第1のコンタクト層のキャリア濃度は、1×1019cm-3以上である、請求項1に記載の発光デバイス。
  4.  前記バッファ層は、少なくともGaAs層、AlAs層、AlGaAs層、InGaAs層、AlGaInAs層、GaInP層およびAlGaInP層のうちのいずれかを含む単層構造または積層構造を有する、請求項1に記載の発光デバイス。
  5.  前記基板は、p型またはn型のキャリア濃度が5×1017cm-3以下の半絶縁性基板である、請求項1に記載の発光デバイス。
  6.  前記半導体積層体は、第1の光反射層と、活性層と、第2の光反射層とが、前記基板側から順に積層されている、請求項1に記載の発光デバイス。
  7.  前記半導体積層体は、第1の光反射層と前記活性層との間に、電流注入領域を有する電流狭窄層をさらに有する、請求項6に記載の発光デバイス。
  8.  前記第1のコンタクト層、前記バッファ層および前記第1の光反射層は、p型の不純物を含んでいる、請求項6に記載の発光デバイス。
  9.  前記半導体積層体は、前記第2の光反射層に第2のコンタクト層がさらに積層されている、請求項6に記載の発光デバイス。
  10.  前記半導体積層体は、前記基板の前記第1の面に複数設けられ、
     前記第1のコンタクト層は、複数の前記半導体積層体に対する共通層として形成されている、請求項1に記載の発光デバイス。
  11.  前記半導体積層体の、前記基板とは反対側の表面に設けられると共に、前記発光領域において、前記半導体積層体に所定の電圧を印加可能に設けられた第1の電極と、前記第1のコンタクト層上に設けられた第2の電極とをさらに有する、請求項10に記載の発光デバイス。
  12.  前記レーザ光は、前記基板の前記第2の面から出射される、請求項1に記載の発光デバイス。
PCT/JP2021/002636 2020-02-07 2021-01-26 発光デバイス WO2021157431A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/792,238 US20230047126A1 (en) 2020-02-07 2021-01-26 Light emitting device
EP21750147.7A EP4084242A4 (en) 2020-02-07 2021-01-26 ELECTROLUMINESCENT DEVICE
JP2021575742A JPWO2021157431A1 (ja) 2020-02-07 2021-01-26
CN202180010791.4A CN115244804A (zh) 2020-02-07 2021-01-26 发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020019567 2020-02-07
JP2020-019567 2020-02-07

Publications (1)

Publication Number Publication Date
WO2021157431A1 true WO2021157431A1 (ja) 2021-08-12

Family

ID=77200041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002636 WO2021157431A1 (ja) 2020-02-07 2021-01-26 発光デバイス

Country Status (6)

Country Link
US (1) US20230047126A1 (ja)
EP (1) EP4084242A4 (ja)
JP (1) JPWO2021157431A1 (ja)
CN (1) CN115244804A (ja)
TW (1) TW202137580A (ja)
WO (1) WO2021157431A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211346A (ja) 1991-01-21 1993-08-20 Nippon Telegr & Teleph Corp <Ntt> 面形発光素子
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
JPH11214750A (ja) * 1998-01-27 1999-08-06 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体発光素子の製造方法
JPH11330554A (ja) * 1998-03-12 1999-11-30 Nichia Chem Ind Ltd 窒化物半導体素子
JP2000151025A (ja) * 1998-11-10 2000-05-30 Hitachi Ltd 光システム
JP2004095838A (ja) * 2002-08-30 2004-03-25 Fuji Photo Film Co Ltd 半導体レーザ素子
JP2005243900A (ja) * 2004-02-26 2005-09-08 Sony Corp 半導体発光素子およびその駆動方法
JP2010016172A (ja) * 2008-07-03 2010-01-21 Seiko Epson Corp 発光装置
JP2013527484A (ja) * 2009-12-19 2013-06-27 トリルミナ コーポレーション デジタル出力用レーザアレイを組み合わせるためのシステムおよび方法
JP2015041627A (ja) * 2013-08-20 2015-03-02 ウシオ電機株式会社 半導体レーザ装置
JP2019033210A (ja) * 2017-08-09 2019-02-28 住友電気工業株式会社 面発光レーザ
JP2020019567A (ja) 2018-07-04 2020-02-06 東洋製罐株式会社 充填システムおよび充填方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656832A (en) * 1994-03-09 1997-08-12 Kabushiki Kaisha Toshiba Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
JP4018177B2 (ja) * 1996-09-06 2007-12-05 株式会社東芝 窒化ガリウム系化合物半導体発光素子
JP3684778B2 (ja) * 1997-08-21 2005-08-17 富士ゼロックス株式会社 面発光型半導体レーザアレイ
JP4250603B2 (ja) * 2005-03-28 2009-04-08 キヤノン株式会社 テラヘルツ波の発生素子、及びその製造方法
JP5653625B2 (ja) * 2009-01-08 2015-01-14 古河電気工業株式会社 半導体発光素子およびその製造方法
US11309686B2 (en) * 2017-06-20 2022-04-19 Sony Corporation Surface emitting laser and method of manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05211346A (ja) 1991-01-21 1993-08-20 Nippon Telegr & Teleph Corp <Ntt> 面形発光素子
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
JPH11214750A (ja) * 1998-01-27 1999-08-06 Sanyo Electric Co Ltd 窒化ガリウム系化合物半導体発光素子の製造方法
JPH11330554A (ja) * 1998-03-12 1999-11-30 Nichia Chem Ind Ltd 窒化物半導体素子
JP2000151025A (ja) * 1998-11-10 2000-05-30 Hitachi Ltd 光システム
JP2004095838A (ja) * 2002-08-30 2004-03-25 Fuji Photo Film Co Ltd 半導体レーザ素子
JP2005243900A (ja) * 2004-02-26 2005-09-08 Sony Corp 半導体発光素子およびその駆動方法
JP2010016172A (ja) * 2008-07-03 2010-01-21 Seiko Epson Corp 発光装置
JP2013527484A (ja) * 2009-12-19 2013-06-27 トリルミナ コーポレーション デジタル出力用レーザアレイを組み合わせるためのシステムおよび方法
JP2015041627A (ja) * 2013-08-20 2015-03-02 ウシオ電機株式会社 半導体レーザ装置
JP2019033210A (ja) * 2017-08-09 2019-02-28 住友電気工業株式会社 面発光レーザ
JP2020019567A (ja) 2018-07-04 2020-02-06 東洋製罐株式会社 充填システムおよび充填方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084242A4

Also Published As

Publication number Publication date
US20230047126A1 (en) 2023-02-16
EP4084242A1 (en) 2022-11-02
JPWO2021157431A1 (ja) 2021-08-12
TW202137580A (zh) 2021-10-01
CN115244804A (zh) 2022-10-25
EP4084242A4 (en) 2023-01-25

Similar Documents

Publication Publication Date Title
US8995489B2 (en) Semiconductor stack and vertical cavity surface emitting laser
JP6947386B2 (ja) 半導体発光素子および半導体発光素子の製造方法
US8218594B2 (en) Vertical cavity surface emitting laser
JP4728656B2 (ja) 面発光レーザ素子
JP2006310534A (ja) 半導体積層構造および半導体光素子
US6546038B1 (en) Semiconductor surface-emitting element
US11942762B2 (en) Surface-emitting laser device and light emitting device including the same
JP2018125404A (ja) 面発光レーザ素子
US20230044637A1 (en) Vertical cavity light-emitting element
US20210167579A1 (en) Surface emitting laser, surface emitting laser device, light source device, and detection apparatus
JP2007299897A (ja) 面発光レーザ素子、それを備えた面発光レーザアレイ、面発光レーザ素子または面発光レーザアレイを備えた画像形成装置、面発光レーザ素子または面発光レーザアレイを備えた光インターコネクションシステムおよび面発光レーザ素子または面発光レーザアレイを備えた光通信システム
JP6923295B2 (ja) 垂直共振器型発光素子及び垂直共振器型発光素子の製造方法
WO2021125005A1 (ja) 発光デバイスおよび発光デバイスの製造方法
JP3785683B2 (ja) 面発光素子
WO2021157431A1 (ja) 発光デバイス
WO2021177036A1 (ja) 面発光レーザ
JP3712686B2 (ja) 面型光半導体装置
JP2007027364A (ja) p型半導体分布ブラッグ反射器および面発光素子および面発光モノリシックアレイおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
JP2007173291A (ja) 面発光型半導体レーザおよびその製造方法
WO2021166661A1 (ja) 発光デバイスおよび発光デバイスの製造方法
JP2007299895A (ja) 面発光レーザ素子、それを備えた面発光レーザアレイ、面発光レーザ素子または面発光レーザアレイを備えた電子写真システム、面発光レーザ素子または面発光レーザアレイを備えた光インターコネクションシステムおよび面発光レーザ素子または面発光レーザアレイを備えた光通信システム
WO2021125054A1 (ja) 発光デバイスおよび発光デバイスの製造方法
JP2006253340A (ja) 面発光レーザ素子およびその製造方法および面発光レーザアレイおよび電子写真システムおよび光通信システムおよび光インターコネクションシステム
JP2007311617A (ja) 半導体装置およびその製造方法
US20220393436A1 (en) Vertical cavity light-emitting element and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575742

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 21750147.7

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021750147

Country of ref document: EP

Effective date: 20220725

NENP Non-entry into the national phase

Ref country code: DE