WO2021157352A1 - Metallic glass powder magnetic core having high density and high specific resisance, and method for manufacturing same - Google Patents

Metallic glass powder magnetic core having high density and high specific resisance, and method for manufacturing same Download PDF

Info

Publication number
WO2021157352A1
WO2021157352A1 PCT/JP2021/001773 JP2021001773W WO2021157352A1 WO 2021157352 A1 WO2021157352 A1 WO 2021157352A1 JP 2021001773 W JP2021001773 W JP 2021001773W WO 2021157352 A1 WO2021157352 A1 WO 2021157352A1
Authority
WO
WIPO (PCT)
Prior art keywords
metallic glass
silicone resin
soft magnetic
dust core
powder
Prior art date
Application number
PCT/JP2021/001773
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 健一
亮介 福田
Original Assignee
株式会社ダイヤメット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイヤメット filed Critical 株式会社ダイヤメット
Priority to JP2021575698A priority Critical patent/JP7285346B2/en
Publication of WO2021157352A1 publication Critical patent/WO2021157352A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/08Metallic powder characterised by particles having an amorphous microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention relates to a high-density and high-resistivity metallic glass dust core and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2020-017361 filed in Japan on February 4, 2020, the contents of which are incorporated herein by reference.
  • a magnetic core material for high frequency soft ferrite, high silicon steel, amorphous, pressure powder magnetic core and the like are mainly used.
  • the reason why these materials are used is that the specific resistance of the material itself is high like soft ferrite, or it can be thinned or powdered like other metal materials, and the specific resistance of the material itself is high. This is because the eddy current can be reduced by thinning or powdering even if it is low.
  • These materials are used properly according to the frequency and application used, because the material with high resistivity such as soft ferrite has a low saturation magnetic flux density, and the material with high saturation magnetic flux density such as high silicon steel has a high saturation magnetic flux density. This is due to the low resistivity. That is, a magnetic material having high saturation magnetic flux density and specific resistance is not provided.
  • ferromagnetic metal elements such as Fe, Ni, and Co, and one or more metals selected from Zr, Nb, Ta, Hf, Mo, Ti, V, Cr, and W.
  • a binder of 10% by mass or less was mixed with a soft magnetic metallic glass alloy having a composition of element M, one or more metal elements M'selected from Zn, Sn, and rare earth metal, and Si to obtain a molded body.
  • a magnetic core for high frequency is known (see Patent Document 1).
  • a binder of 10% by mass or less is mixed with a powder of a soft magnetic metallic glass alloy and pressure-molded at room temperature, 150 ° C. or 550 ° C. to form a magnetic core.
  • a magnetic core having a resistance of 0.1 ⁇ cm or more and a magnetic flux density of 0.67 to 1.33 T (at: 1.6 ⁇ 10 4 A / m) can be obtained.
  • Patent Document 1 has a problem that both high resistivity and high density cannot be achieved at the same time. This is because when the proportion of the binder added to obtain a high resistivity is increased, the proportion of the soft magnetic metallic glass particles decreases, and thus the saturation magnetic flux density inevitably decreases. On the contrary, if the ratio of the binder is reduced in order to obtain a high saturation magnetic flux density, the amount of the binder as an insulator existing between the soft magnetic metallic glass particles is inevitably reduced. This is due to insufficient insulation.
  • Equation (1) We (intra) is the eddy current loss in the soft magnetic particles, We (inter) is the eddy current loss generated between the soft magnetic particles, Ke'is a constant, d is the particle size of the soft magnetic metal particles.
  • ⁇ Fe is the resistance value inside the soft magnetic metal particles
  • L is the width of the soft magnetic metal particle aggregate (when the magnetic core is a ring-shaped magnetic core, the length of one side of the cross section of the ring-shaped magnetic core is approximately the magnetic path cross section. (Corresponding to the dimension)
  • is the specific resistance of the soft magnetic metal particle aggregate
  • f is the frequency
  • B is the magnetic flux density.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a metallic glass dust core having high resistivity, low iron loss and high density, and to provide a method for producing the same.
  • the present inventor has formed into magnetic cores the desired shape using powder and binder soft magnetic glassy alloy, the case of obtaining a powder magnetic core, exhibits 1 ⁇ 10 5 ⁇ m level or more high resistivity, and a high density As a result of researching a technique capable of showing the above, the present invention has been reached.
  • the high-density and high-specific-resistance metallic glass dust core is formed between a plurality of particles made of a soft magnetic metallic glass alloy and the plurality of particles. It is a metallic glass dust core composed of an insulating film of 1% by mass or less formed at the grain boundary, and has a density ratio of 0.90 or more and an iron loss of 200 kW / m 3 (0.1 T) at a magnetic path cross section of 10 mm. It is characterized by having a specific resistance of 1 ⁇ 10 5 ⁇ m or more and less than / 50 kHz).
  • the insulating film is made of a warm-molded heat-treated product of a silicone resin, and the silicone resin has a thermal history equivalent to the warm-molding temperature of the silicone resin.
  • the hardness of is preferably 0.1 to 1.0 MHv.
  • the amount of the silicone resin added is 0.2 to 0.8% by mass with respect to the mass of the particles of the soft magnetic metallic glass alloy, and the density is said.
  • the ratio is preferably 0.94 or more.
  • the supercooled liquid temperature ⁇ Tx of the soft magnetic metallic glass alloy is preferably 20 K or more.
  • the soft magnetic metallic glass alloy has a general formula (Fe 1-ab Mo a Ga b ) 100-w-x-yz P w.
  • C x B y Si z (0 ⁇ a ⁇ 0.075,0.025 ⁇ b ⁇ 0.0375,10 ⁇ w ⁇ 12,0 ⁇ x ⁇ 6,2 ⁇ y ⁇ 8,0 ⁇ z ⁇ 2, w + z
  • a indicates the ratio of Mo based on Fe
  • b indicates the ratio of Ga based on Fe
  • w, x, y, and z indicate the atomic% of each element.
  • the method for producing a metallic glass dust core includes a step of mixing a plurality of powders made of a soft magnetic metallic glass alloy and a silicone resin to prepare a mixed powder, and the mixed powder.
  • a plurality of particles made of a soft magnetic metallic glass alloy and a grain boundary between the particles are warmly formed into a desired shape at a temperature equal to or higher than the glass transition point of the soft magnetic metallic glass alloy and lower than the crystallization temperature. It is characterized by having a step of obtaining a structure having an insulating film made of a warm molded product of the silicone resin formed in.
  • a silicone resin having a hardness of 0.1 to 1.0 MHv after a heat history equivalent to the warm forming temperature.
  • the amount of the silicone resin added is 0.2 to 0.8% by mass with respect to the mass of the particles of the metallic glass alloy, and the density ratio is set. It is preferable to obtain a metallic glass dust core having a mass of 0.90 or more.
  • the density ratio is 0.94 or more
  • the iron loss at a magnetic path cross section of 10 mm is 200 kW / m 3 or less (0.1 T / 50 kHz). It is preferable to obtain a metallic glass dust core having a specific resistance of 1 ⁇ 10 5 ⁇ m or more.
  • the molding temperature at the time of warm molding is 450 to 480 ° C.
  • FIG. 1A It is a perspective view which shows an example of the reactor to which the metallic glass dust core which concerns on this embodiment is applied. It is a front view of the reactor of FIG. 1A. It is a perspective view which shows the reactor of the reactor of FIG. 1A and FIG. 1B. It is a perspective view which shows an example of the coil incorporated in the rear tractor of FIG. 2A. It is a graph which shows the relationship between the silicone resin hardness and the specific resistance obtained by the metallic glass dust core of the Example and the comparative example. It is a graph which shows the relationship between the silicone resin hardness and iron loss obtained by the metallic glass dust core of the Example and the comparative example.
  • FIG. 1A and 1B show an example of the reactor A in which the metallic glass dust core according to the present embodiment is applied to the reactor.
  • the reactor A of this embodiment includes an upper yoke 1 and a lower yoke 2 extending in the left-right direction, and two cylindrical legs 3 sandwiched between the upper yoke 1 and the lower yoke 2, and each leg is provided.
  • a cylindrical coil body 4 is extrapolated to the portion 3.
  • the rear actuator (magnetic core) B shown in FIG. 2A is configured from the upper yoke 1 and the lower yoke 2 and the two legs 3 arranged in parallel.
  • the leg portion 3 is configured to be divisible in two in the length direction thereof.
  • the coil 4 is externally inserted into the leg portion 3 having a shape in which each leg portion 3 is divided into two, and then the divided legs are integrated with each other via the gap G.
  • the reactor A having the configuration shown in FIGS. 1A and 1B can be obtained.
  • the reactor B of the present embodiment is composed of a molded body (metal glass dust core) of a plurality of metallic glass particles made of a soft magnetic metallic glass alloy, which will be described later. Further, an insulating film made of a binder is formed between the plurality of metallic glass particles. This insulating film mechanically (physically) bonds the metallic glass particles to each other, and insulates and separates the metallic glass particles individually.
  • the metallic glass dust core is composed of a plurality of metallic glass particles and an insulating film formed at a grain boundary between the plurality of metallic glass particles.
  • the insulating film is preferably made of a warm molded product of a silicone resin which is a binder.
  • the amount of the insulating film is 1% by mass or less, preferably 0.2% by mass or more and 0.8% by mass or less, based on 100% by mass of the amount of the metallic glass particles.
  • the powder (particles) made of a soft magnetic metallic glass alloy is also referred to as a metallic glass powder (particles) or a soft magnetic metallic glass alloy powder (particles).
  • the metallic glass dust core is also called a molded body.
  • a indicates the ratio of Mo based on Fe
  • b indicates the ratio of Ga based on Fe.
  • a is the ratio of the number of atoms of Mo to the total number of atoms of Fe, Mo, and Ga of 1
  • b is Fe, Mo, and Ga. It is the ratio of the number of atoms of Ga to the total number of atoms of 1.
  • w, x, y, and z indicate the ratio (atomic%) of the number of atoms of each element to the total number of atoms of all elements of 100 atomic%.
  • a binder of 1% by mass or less, preferably 0.2% by mass or more and 0.8% by mass or less is mixed with respect to 100% by mass of the amount of the powder (metal glass powder) made of the soft magnetic metal glass alloy having this composition. Make a mixed powder. The mixed powder is then warm molded in the temperature range described below. As a result, a molded product (metal glass dust core) can be obtained.
  • Fe which is a main component, is an element responsible for magnetism and is indispensable for obtaining a high saturation magnetic flux density.
  • a part of this Fe can be replaced with Mo or Ga, and this substitution component has an effect of improving the glass forming ability.
  • P is an essential element for glass formation, but a part of its P content can be replaced with Si.
  • P can be contained in an amount in the range of 10 to 12 atomic%. When the P content is less than 10 atomic%, the glass forming ability is lowered, and when the P content is more than 12 atomic%, the magnetic flux density is lowered and the soft magnetic property is deteriorated.
  • Si is an element responsible for glass formation.
  • the glass forming ability is improved by containing Si. Since the glass forming ability decreases when the Si content is high, the Si content is preferably 2 atomic% or less.
  • B is an essential element for glass formation. If the B content is low, glass formation may become difficult. Therefore, the B content is set to 2 atomic% or more. Further, if the B content is high, the soft magnetic properties deteriorate, so the B content is set to 8 atomic% or less.
  • C is an element responsible for glass formation. Although it may be 0 atomic%, the glass forming ability is improved by containing C. If the amount of C is large, the alloy becomes embrittled and the soft magnetic properties deteriorate. Therefore, the C content is set to 6 atomic% or less.
  • the powder of the soft magnetic metallic glass alloy is preferably produced by a water atomization method or a gas atomization method, and is preferably a powder having a particle size of at least 50% by volume or more of particles of 10 ⁇ m or more.
  • the water atomization method has been established as a method for producing a large amount of alloy powder at low cost, and it is an industrial advantage that the powder can be produced by this method.
  • the alloy powder produced by the water atomization method has an appropriate oxide film formed on the powder surface, so if a binder described later is mixed with this to form a molded product, a magnetic core with high resistivity can be easily formed. can get.
  • the supercooled liquid temperature ⁇ Tx is 20 K or more, preferably 30 K or more regardless of the composition. , More preferably, a powder of a soft magnetic metallic glass alloy having a temperature of 40 K or higher can be obtained.
  • the glass transition temperature Tg and the crystallization temperature Tx of the powder of the soft magnetic metallic glass alloy are measured by a thermal analysis method using a differential scanning calorimeter (DSC) or the like. Then, the supercooled liquid temperature ⁇ Tx can be obtained by the following equation (2).
  • ⁇ Tx Tx-Tg (2)
  • a mixed powder is prepared by mixing a binder of 1% by mass or less with 100% by mass of a powder of a soft magnetic metallic glass alloy having the above-mentioned composition and an average particle size (D50) of about 50 ⁇ m, and this mixed powder is prepared.
  • a dust core is produced by molding. As a result, a dust core having excellent performance, which shows extremely low loss characteristics at high frequencies, can be obtained, and by winding the dust core, an excellent inductance component can be obtained.
  • the powder particle size the eddy current loss can be reduced by reducing the particle size, but the hysteresis loss increases when the particle size is reduced.
  • the average particle size of the metallic glass powder is preferably about 10 to 80 ⁇ m, more preferably 50 ⁇ m or less, and most preferably 30 ⁇ m or less.
  • the average particle size of the metallic glass powder is adjusted according to the frequency used. In the case of a metallic glass dust core used in a high frequency band, the average particle size of the metallic glass powder is preferably 50 ⁇ m or less.
  • the average particle size of the metal glass powder is the median diameter (D50) measured by the laser diffraction / scattering method, and the median diameter (D50) is the particle size at which the volume accumulation is 50%.
  • the binder used in the magnetic core of the present embodiment is a binder mainly composed of a silicone resin that is soft at room temperature, and a binder of a type that can maintain a soft state even after warm molding in the temperature range described later is used.
  • a binder capable of maintaining a soft state even when subjected to a heat history at a warm molding temperature of 450 to 480 ° C., which will be described later a hardness after the heat history equivalent to that of the warm molding temperature is preferably 0.1 to 1. It is desirable to use a binder in the range of 0 MHv, more preferably 0.2 to 1.0 MHv.
  • the hardness of the silicone resin after a heat history equivalent to the warm forming temperature is measured by, for example, the following method.
  • a silicone resin layer having a thickness required for hardness measurement is formed on the surface of a metal plate that does not melt at the temperature of warm forming, for example, a steel plate.
  • the steel sheet is heated at a temperature of 450 to 480 ° C., for example, 480 ° C. for a required time, and cooled to room temperature. Then, the hardness of the silicone resin layer is measured.
  • a powder of a soft magnetic metallic glass alloy having the above composition and a binder made of a silicone resin are mixed to prepare a mixed powder.
  • the amount of the binder (silicone resin) added is preferably 1% by mass or less, more preferably 0.2 to 0.8% by mass, based on 100% by mass of the amount of the metallic glass powder (powder made of a soft magnetic metallic glass alloy).
  • silicone resin is a liquid.
  • the silicone resin is diluted with a solvent to prepare a silicone resin solution.
  • the ratio (mass ratio) of the mass of the solvent to the mass of the silicone resin is preferably 5 to 40.
  • the metallic glass powder and the silicone resin solution are mixed.
  • the metallic glass powder and the silicone resin solution are mixed while spraying the silicone resin solution onto the metallic glass powder using a high-speed mixer or the like. Then, the mixture is heated and dried to obtain a mixed powder. The mixture is preferably dried under reduced pressure. Next, the mixed powder is molded using a mold or molded to obtain a molded product having a desired shape. At the time of molding, it is preferable to warmly mold the mixed powder into a desired shape at a temperature equal to or higher than the glass transition point of the soft magnetic metallic glass alloy and lower than the crystallization temperature. Specifically, the range of the warm forming temperature can be selected from the range of 450 to 480 ° C.
  • the powder of the soft magnetic metallic glass alloy is superplastically deformed. Therefore, the powder particles satisfactorily fill the gaps during molding, and the soft binder spreads in the gaps between the powder particles to fill the gaps.
  • an insulating film made of a warm molded product (warm molding heat-treated product) of silicone resin is formed at the grain boundaries between the particles of the metallic glass particles.
  • the metallic glass powder is hard and does not increase in density by normal molding.
  • the temperature range of the above-mentioned warm molding is the supercooled liquid temperature range of the metallic glass powder, and the density is increased by pressure molding in this temperature range, and the density ratio of the metallic glass dust core is 0.90 or more. Can be.
  • the original hardness of the binder is low and it is soft, and when warm-molding in the above-mentioned temperature range, the binder wraps around the grain boundaries of the soft magnetic metallic glass alloy particles satisfactorily.
  • the binder spreads without gaps at the grain boundaries of the soft magnetic metallic glass alloy particles and fills the grain boundaries. Therefore, it is possible to obtain a molded product having high specific resistance in which the soft magnetic metallic glass alloy particles are individually well insulated.
  • the density ratio is 0.90 or more and the specific resistance is 1 ⁇ 10 5 ⁇ m or more high-frequency magnetic core.
  • the density ratio is calculated by dividing the density of the molded product by the true density of the metallic glass alloy (7.37 g / cm 3).
  • the density of the molded product is measured by the Archimedes method.
  • the density ratio is preferably 0.94 or more.
  • Resistivity is preferably 1 ⁇ 10 6 ⁇ m or more.
  • the amount of the binder added is more preferably in the range of 0.2 to 0.8% by mass with respect to 100% by mass of the particles of the metallic glass alloy. When the amount of the binder added is less than 0.2% by mass, the specific resistance becomes low and the iron loss value becomes large. If the amount of the binder added exceeds 0.8% by mass, the density ratio of the molded product becomes lower than 0.9.
  • the reactor B has a structure consisting of a plurality of particles of the soft magnetic metallic glass alloy produced as described above and an insulating film interposed at the grain boundaries thereof, it has a density ratio of 0.90 or more. However, since the particles of the metallic glass alloy are densely packed, it shows a high magnetic flux density. Also, there are a plurality of grain boundaries in the insulating film of the particles, there is a high probability of insulation separating the particles into individual, 1 ⁇ 10 5 ⁇ m or more high resistivity can be obtained. Therefore, it is possible to provide the reactor A as a magnetic component having a small iron loss (eddy current loss) and excellent magnetic characteristics.
  • the metallic glass dust core of the present embodiment is applied to the reactor A having the configuration shown in FIGS. 1A, 1B, 2A, and 2B.
  • the application of the magnetic core is not limited to the illustrated example.
  • the metallic glass dust core of the present embodiment can be applied to magnetic cores of various shapes.
  • the present embodiment includes various generally known magnetic cores such as a magnetic core composed of a racetrack type or C type core, or a magnetic core composed of a combination type core composed of a combination of cores having a plurality of shapes.
  • a metallic glass dust core can be applied.
  • the added amount of silicone resin shown in Table 1 was diluted with a solvent to prepare a silicone resin solution. Then, the metallic glass powder and the silicone resin solution were mixed while spraying the silicone resin solution onto the metallic glass powder using a high-speed mixer (wet coating). Then, the mixture was heated in the air at 290 ° C. for 60 minutes and dried to prepare a mixed powder. By this coating treatment, the outer periphery of the metallic glass particles was coated with a silicone resin.
  • the amount of the silicone resin added is an amount (mass%) with respect to 100% by mass of the amount of the metallic glass powder.
  • the first silicone resin a resin having a hardness of 0.2 MHv after a heat history equivalent to the warm molding temperature (480 ° C.) described later was used, and Examples 1, 2 and 6 and Comparative Examples 1 and 6 were mixed.
  • a powder was prepared.
  • a mixed powder of Comparative Example 2 was prepared using a resin having a hardness of 6.7 MHv after a heat history equivalent to the warm molding temperature (480 ° C.) described later.
  • the third silicone resin a mixed powder of Comparative Example 3 was prepared using a resin having a hardness of 12.8 MHv after a heat history equivalent to the warm molding temperature (480 ° C.) described later.
  • the first to third silicone resins are soft before undergoing a thermal history.
  • Example 3 Example 3
  • Comparative Examples 4 and 5 Example 5
  • the first silicone resin and the second silicone resin were mixed at the following blending ratios to prepare a mixed silicone resin.
  • the mixed silicone resin added in the amount shown in Table 1 was diluted with a solvent to prepare a mixed silicone resin solution.
  • the metallic glass powder and the mixed silicone resin solution were mixed while spraying the mixed silicone resin solution onto the metallic glass powder using a high-speed mixer (wet coating).
  • the mixture was heated in the air at 290 ° C. for 60 minutes and dried to prepare a mixed powder.
  • the metallic glass powder the atomized powder of Example 1 was used.
  • Example 3 60 parts by mass of the first silicone resin and 40 parts by mass of the second silicone resin were mixed.
  • Example 4 40 parts by mass of the first silicone resin and 60 parts by mass of the second silicone resin were mixed. In Example 5, 30 parts by mass of the first silicone resin and 70 parts by mass of the second silicone resin were mixed. In Comparative Example 4, 20 parts by mass of the first silicone resin and 80 parts by mass of the second silicone resin were mixed. In Comparative Example 5, 10 parts by mass of the first silicone resin and 90 parts by mass of the second silicone resin were mixed.
  • Example 7 (Mixed powder of Examples 7 to 10)
  • the raw material powder metallic glass powder
  • an atomized powder having a composition of Fe 74 Mo 4 Ga 2 P 10 C 4 B 4 Si 2 was used as the raw material powder (metallic glass powder).
  • the crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 517 ° C.
  • the glass transition point (glass transition temperature) Tg was 467 ° C. Therefore, the supercooled liquid temperature ⁇ Tx was 50K.
  • Example 8 atomized powder having a composition of Fe 75 Mo 2 Ga 3 P 10 C 4 B 4 Si 2 was used as the raw material powder (metallic glass powder).
  • the crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 525 ° C., and the glass transition point (glass transition temperature) Tg was 465 ° C. Therefore, the supercooled liquid temperature ⁇ Tx was 60K.
  • the raw material powder metallic glass powder
  • an atomized powder having a composition of Fe 73 Mo 4 Ga 3 P 10 C 4 B 4 Si 2 was used as the raw material powder (metallic glass powder).
  • the crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 528 ° C., and the glass transition point (glass transition temperature) Tg was 471 ° C. Therefore, the supercooled liquid temperature ⁇ Tx was 57K.
  • Example 10 as the raw material powder (metallic glass powder), an atomized powder having a composition of Fe 75 Mo 2 Ga 3 P 11 C 4 B 4 Si 1 was used.
  • the crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 516 ° C.
  • the glass transition point (glass transition temperature) Tg was 472 ° C. Therefore, the supercooled liquid temperature ⁇ Tx was 44K.
  • All of the atomized powders were passed through a sieve having a mesh size of 150 ⁇ m (sieving), and the particle size was 150 ⁇ m or less.
  • the average particle size (D50) measured by the laser diffraction / scattering method was 50 ⁇ m.
  • the first silicone resin added in the amount shown in Table 1 was diluted with a solvent to prepare a first silicone resin solution. Then, using a high-speed mixer, the metallic glass powder and the first silicone resin solution were mixed while spraying the first silicone resin solution onto the above-mentioned metallic glass powder (wet coating). Then, the mixture was heated in the air at 290 ° C. for 60 minutes and dried to prepare a mixed powder.
  • test piece (molded product)
  • the mixed powder was put into a mold heated to 480 ° C., and after the temperature of the powder reached 480 ° C., pressure molding was performed at a molding pressure of 588 MPa for 5 seconds to form a ring-shaped test piece (outer diameter ⁇ 12 mm ⁇ inner diameter ⁇ 5 mm ⁇ ). Thickness L3.5 mm) was obtained.
  • the hardness of the insulating film existing at the grain boundaries of the soft magnetic metallic glass alloy particles cannot be measured. Therefore, a silicone resin was applied on the iron plate to form a silicone resin layer having a thickness of 1 mm.
  • This iron plate was heated at a temperature of 480 ° C. at the time of warm forming for 10 minutes. Then, it was cooled to room temperature, the hardness of the silicone resin layer was measured, and this measured value was used as a substitute for the hardness of the insulating film.
  • a silicone resin layer having a thickness of 1 mm was formed on the iron plate in the same manner, and the silicone resin layer was held at 290 ° C. for 1 hour and baked.
  • the hardness (MHv) after each temperature history is shown in Table 2 below.
  • the film hardness in Table 1 means the hardness of the silicone resin after a thermal history equivalent to the warm forming temperature of the silicone resin.
  • Wi indicates iron loss
  • Wh indicates hysteresis loss
  • We indicates eddy current loss
  • has a relationship of Wi Wh + We.
  • the ratio of iron loss iron loss Wi when the magnetic path cross section is 10 mm / iron loss Wi when the magnetic path cross section is 3.5 mm.
  • the composition ratios of Fe, Mo, Ga, P, C, B, and Si were adjusted, and 0.36% by mass of a soft silicone resin was used, but the density ratio was 0.95.
  • the specific resistance was in the range of 2.2 ⁇ 10 5 ⁇ m to 1 ⁇ 10 6 ⁇ m, and a high specific resistance could be obtained. It was also found that the value of iron loss when the magnetic path cross section was 10 mm also showed an excellent value of 151 to 157 kW / m 3 which was 200 kW / m 3 or less.
  • FIG. 3 shows the relationship between the hardness of the silicone resin and the specific resistance of the sample for which the results shown in Table 1 were obtained.
  • the hardness of the silicone resin is 1 MHv or less, the specific resistance is significantly improved.
  • the silicone resin becomes soft, when molding a mixed powder, the film also stretches following the deformation of the powder during molding, and the particles can be maintained in a state of being covered with an insulating film, so that the specific resistance as a magnetic core is improved. Can be estimated.
  • FIG. 4 shows the relationship between the hardness of the silicone resin and the iron loss for the samples for which the results shown in Table 1 were obtained.
  • the hardness of the silicone resin is 1 MHv or less
  • the iron loss when the magnetic path cross section is 10 mm is a low value. Therefore, according to the above embodiment, a high density ratio (0.90 or higher) and high specific resistance (1 ⁇ 10 5 ⁇ m or higher), provides a metallic glass dust core iron loss can satisfy all the characteristics of low can do.
  • the metallic glass dust core of the present embodiment is suitably applied to various reactors (magnetic cores) regardless of the frequency, application, and core size used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A metallic glass powder magnetic core which comprises a plurality of grains each comprising a soft magnetic metallic glass alloy and 1% by mass or less of an insulation film formed at each of grain boundaries among the plurality of grains, has a density ratio of 0.90 or more, an iron loss of 200 kW/m3 (0.1 T/50 kHz) or less in a magnetic path cross section of 10 mm, and has specific resistance of 1×105 μΩm or more.

Description

高密度かつ高比抵抗の金属ガラス圧粉磁心とその製造方法High-density and high resistivity metal glass dust core and its manufacturing method
 本発明は、高密度かつ高比抵抗の金属ガラス圧粉磁心とその製造方法に関する。
 本願は、2020年2月4日に、日本に出願された特願2020-017361号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a high-density and high-resistivity metallic glass dust core and a method for producing the same.
The present application claims priority based on Japanese Patent Application No. 2020-017361 filed in Japan on February 4, 2020, the contents of which are incorporated herein by reference.
 従来、高周波用磁心材料として、主にソフトフェライト、高珪素鋼、アモルファス、圧紛磁心等が使用されている。これらの材料が使用される理由は、ソフトフェライトのように材料自体の比抵抗が高いためか、あるいは、その他の金属材料のように薄板化、粉末化が可能であり、材料自体の比抵抗が低くても薄板化あるいは粉末化によって渦電流を小さくできるためである。
 これらの材料は、使用される周波数や用途で使い分けられるが、その理由は、ソフトフェライトのように比抵抗が高い材料では飽和磁束密度が低く、高珪素鋼のように飽和磁束密度が高い材料では比抵抗が低いことによる。即ち、飽和磁束密度及び比抵抗の何れにおいても高い磁性材料が提供されていないことによる。
Conventionally, as a magnetic core material for high frequency, soft ferrite, high silicon steel, amorphous, pressure powder magnetic core and the like are mainly used. The reason why these materials are used is that the specific resistance of the material itself is high like soft ferrite, or it can be thinned or powdered like other metal materials, and the specific resistance of the material itself is high. This is because the eddy current can be reduced by thinning or powdering even if it is low.
These materials are used properly according to the frequency and application used, because the material with high resistivity such as soft ferrite has a low saturation magnetic flux density, and the material with high saturation magnetic flux density such as high silicon steel has a high saturation magnetic flux density. This is due to the low resistivity. That is, a magnetic material having high saturation magnetic flux density and specific resistance is not provided.
 そこで、これらの問題点を解消する目的でFe、Ni、Coなどの強磁性金属元素と、Zr、Nb、Ta、Hf、Mo、Ti、V、Cr、Wから選択される1種以上の金属元素Mと、Zn、Sn、希土類金属から選択される1種以上の金属元素M’と、Siからなる組成の軟磁性金属ガラス合金に、10質量%以下のバインダを混合して成形体とした高周波用磁心が知られている(特許文献1参照)。 Therefore, for the purpose of solving these problems, ferromagnetic metal elements such as Fe, Ni, and Co, and one or more metals selected from Zr, Nb, Ta, Hf, Mo, Ti, V, Cr, and W. A binder of 10% by mass or less was mixed with a soft magnetic metallic glass alloy having a composition of element M, one or more metal elements M'selected from Zn, Sn, and rare earth metal, and Si to obtain a molded body. A magnetic core for high frequency is known (see Patent Document 1).
 特許文献1に記載の技術によれば、軟磁性金属ガラス合金の粉末に10質量%以下のバインダを混合し、常温、150℃あるいは550℃で加圧成形して磁心を形成することにより、比抵抗が0.1Ωcm以上であり、磁束密度が0.67~1.33T(at:1.6×10A/m)の磁心を得ることができる。 According to the technique described in Patent Document 1, a binder of 10% by mass or less is mixed with a powder of a soft magnetic metallic glass alloy and pressure-molded at room temperature, 150 ° C. or 550 ° C. to form a magnetic core. A magnetic core having a resistance of 0.1 Ωcm or more and a magnetic flux density of 0.67 to 1.33 T (at: 1.6 × 10 4 A / m) can be obtained.
 ところが、特許文献1に記載の磁心は、磁束密度を高くするために粉末充填率を90%以上に設定し、バインダの量を少なくすると、比抵抗が0.1~0.5Ωcm程度と小さくなり、逆に、比抵抗を1×10Ωcmレベルまで高くするためにバインダの量を多くすると、粉末充填率が51~52%程度となり、磁束密度が0.57~0.67T程度となって低くなる問題がある。即ち、特許文献1に記載の技術では、高比抵抗と高磁束密度を両立できない問題がある。ここで、高磁束密度を実現するためには、磁心の密度を高くする必要がある。このため、言い換えると、特許文献1に記載の技術では、高比抵抗と高密度を両立できない問題がある。
 これは、高比抵抗を得るために添加するバインダの割合を多くすると、軟磁性金属ガラス粒子の割合が低下するため、必然的に飽和磁束密度が低下することによる。また、逆に、高い飽和磁束密度を得ようとしてバインダの割合を少なくすると、軟磁性金属ガラス粒子間に存在する絶縁物としてのバインダ量が必然的に少なくなるので、軟磁性金属ガラス粒子間の絶縁が不充分となることに起因している。
However, in the magnetic core described in Patent Document 1, when the powder filling rate is set to 90% or more in order to increase the magnetic flux density and the amount of the binder is reduced, the specific resistance becomes as small as about 0.1 to 0.5 Ωcm. On the contrary, when the amount of binder is increased in order to increase the specific resistance to the level of 1 × 10 4 Ωcm, the powder filling rate becomes about 51 to 52% and the magnetic flux density becomes about 0.57 to 0.67 T. There is a problem of becoming low. That is, the technique described in Patent Document 1 has a problem that both high resistivity and high magnetic flux density cannot be achieved at the same time. Here, in order to realize a high magnetic flux density, it is necessary to increase the density of the magnetic core. Therefore, in other words, the technique described in Patent Document 1 has a problem that both high resistivity and high density cannot be achieved at the same time.
This is because when the proportion of the binder added to obtain a high resistivity is increased, the proportion of the soft magnetic metallic glass particles decreases, and thus the saturation magnetic flux density inevitably decreases. On the contrary, if the ratio of the binder is reduced in order to obtain a high saturation magnetic flux density, the amount of the binder as an insulator existing between the soft magnetic metallic glass particles is inevitably reduced. This is due to insufficient insulation.
 近年の磁心においては、更なる高性能化が望まれているが、従来技術において、高比抵抗を示しながら、高い磁束密度を示す磁心、すなわち高比抵抗かつ高密度を示す磁心を提供することは容易ではなかった。 In recent years, further improvement in performance is desired for magnetic cores, but in the prior art, providing a magnetic core exhibiting a high magnetic flux density while exhibiting a high specific resistance, that is, a magnetic core exhibiting a high specific resistance and a high density. Was not easy.
 ところで、磁路断面積が20mm程度以上のようなコアサイズの大きい磁心を製造する場合、コアを構成する磁心材料が高比抵抗でないと、鉄損(渦電流損失)が増大する問題がある。例えば、渦電流損失(We)と抵抗値と磁路断面積の間には以下の(1)式で示される関係がある。
 We=We(intra)+We(inter)
   =Ke’(d/ρFe+L/ρ)×f×B…(1)式
By the way, when manufacturing a magnetic core having a large core size such as a magnetic path cross-sectional area of about 20 mm or more, there is a problem that iron loss (eddy current loss) increases unless the magnetic core material constituting the core has a high resistivity. For example, there is a relationship represented by the following equation (1) between the eddy current loss (We), the resistance value, and the magnetic path cross-sectional area.
We = We (intra) + We (inter)
= Ke'(d 2 / ρ Fe + L 2 / ρ) × f 2 × B 2 … (1)
 (1)式において、We(intra)は軟磁性粒子内の渦電流損失、We(inter)は軟磁性粒子間で生じる渦電流損失、Ke’は定数、dは軟磁性金属粒子の粒径、ρFeは軟磁性金属粒子内部の抵抗値、Lは軟磁性金属粒子集合体の幅(磁心がリング状磁心である場合に、リング状磁心の横断面の一辺長さは、ほぼ磁路断面の寸法に相当する)、ρは軟磁性金属粒子集合体の比抵抗、fは周波数、Bは磁束密度を示す。
 この(1)式からわかるように、コアサイズが大きい場合は磁路断面の寸法が大きくなるので、渦電流損失を小さくするためには、軟磁性金属粒子集合体の比抵抗を大きくする必要があることがわかる。
 以上のような背景において、従来技術では両立することの難しかった高比抵抗かつ低鉄損、例えば0.1T-50kHzで200kW/m、かつ高い密度を有する磁心材料が望まれている。
In equation (1), We (intra) is the eddy current loss in the soft magnetic particles, We (inter) is the eddy current loss generated between the soft magnetic particles, Ke'is a constant, d is the particle size of the soft magnetic metal particles. ρ Fe is the resistance value inside the soft magnetic metal particles, L is the width of the soft magnetic metal particle aggregate (when the magnetic core is a ring-shaped magnetic core, the length of one side of the cross section of the ring-shaped magnetic core is approximately the magnetic path cross section. (Corresponding to the dimension), ρ is the specific resistance of the soft magnetic metal particle aggregate, f is the frequency, and B is the magnetic flux density.
As can be seen from this equation (1), when the core size is large, the size of the magnetic path cross section becomes large. Therefore, in order to reduce the eddy current loss, it is necessary to increase the specific resistance of the soft magnetic metal particle aggregate. It turns out that there is.
Against the above background, a magnetic core material having a high specific resistance and a low iron loss, for example, 200 kW / m 3 at 0.1 T-50 kHz and a high density, which has been difficult to achieve in the prior art, is desired.
特許第4828229号公報Japanese Patent No. 4828229
 本発明は、以上のような事情に鑑みてなされたものであり、高比抵抗、低鉄損かつ高密度の金属ガラス圧粉磁心の提供及びその製造方法の提供を目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a metallic glass dust core having high resistivity, low iron loss and high density, and to provide a method for producing the same.
 本願発明者は、軟磁性金属ガラス合金の粉末とバインダを用いて目的の磁心形状に成形し、圧粉磁心を得る場合、1×10μΩmレベル以上の高比抵抗を発揮し、かつ高い密度を示すことが可能な技術について研究した結果、本願発明に到達した。 The present inventor has formed into magnetic cores the desired shape using powder and binder soft magnetic glassy alloy, the case of obtaining a powder magnetic core, exhibits 1 × 10 5 μΩm level or more high resistivity, and a high density As a result of researching a technique capable of showing the above, the present invention has been reached.
(1)前記課題を解決するために、本発明の一態様に係る高密度かつ高比抵抗の金属ガラス圧粉磁心は、軟磁性金属ガラス合金からなる複数の粒子と、前記複数の粒子間の粒界に形成された1質量%以下の絶縁膜とからなる金属ガラス圧粉磁心であって、密度比が0.90以上、磁路断面10mmでの鉄損が200kW/m(0.1T/50kHz)以下、比抵抗が1×10μΩm以上であることを特徴とする。
(2)本発明の一態様に係る金属ガラス圧粉磁心において、前記絶縁膜がシリコーンレジンの温間成形熱処理物からなり、前記シリコーンレジンの温間成形温度と同等の熱履歴後の前記シリコーンレジンの硬度が0.1~1.0MHvであることが好ましい。
(1) In order to solve the above-mentioned problems, the high-density and high-specific-resistance metallic glass dust core according to one aspect of the present invention is formed between a plurality of particles made of a soft magnetic metallic glass alloy and the plurality of particles. It is a metallic glass dust core composed of an insulating film of 1% by mass or less formed at the grain boundary, and has a density ratio of 0.90 or more and an iron loss of 200 kW / m 3 (0.1 T) at a magnetic path cross section of 10 mm. It is characterized by having a specific resistance of 1 × 10 5 μΩm or more and less than / 50 kHz).
(2) In the metal glass dust core according to one aspect of the present invention, the insulating film is made of a warm-molded heat-treated product of a silicone resin, and the silicone resin has a thermal history equivalent to the warm-molding temperature of the silicone resin. The hardness of is preferably 0.1 to 1.0 MHv.
(3)本発明の一態様に係る金属ガラス圧粉磁心において、前記シリコーンレジンの添加量が前記軟磁性金属ガラス合金の粒子の質量に対し0.2~0.8質量%であり、前記密度比が0.94以上であることが好ましい。
(4)本発明の一態様に係る金属ガラス圧粉磁心において、前記軟磁性金属ガラス合金の過冷却液体温度ΔTxが20K以上であることが好ましい。
(3) In the metallic glass dust core according to one aspect of the present invention, the amount of the silicone resin added is 0.2 to 0.8% by mass with respect to the mass of the particles of the soft magnetic metallic glass alloy, and the density is said. The ratio is preferably 0.94 or more.
(4) In the metallic glass dust core according to one aspect of the present invention, the supercooled liquid temperature ΔTx of the soft magnetic metallic glass alloy is preferably 20 K or more.
(5)本発明の一態様に係る金属ガラス圧粉磁心において、前記軟磁性金属ガラス合金が、一般式(Fe1-a-bMoGa100-w-x-y-zSi(0≦a≦0.075、0.025≦b≦0.0375、10≦w≦12、0≦x≦6、2≦y≦8、0≦z≦2、w+z=12)で表される組成を有することが好ましい。ただし、前記一般式において、aはFeを基準としたMoの比率を示し、bはFeを基準としたGaの比率を示し、w、x、y、zは各元素の原子%を示す。 (5) In the metallic glass dust core according to one aspect of the present invention, the soft magnetic metallic glass alloy has a general formula (Fe 1-ab Mo a Ga b ) 100-w-x-yz P w. C x B y Si z (0 ≦ a ≦ 0.075,0.025 ≦ b ≦ 0.0375,10 ≦ w ≦ 12,0 ≦ x ≦ 6,2 ≦ y ≦ 8,0 ≦ z ≦ 2, w + z It is preferable to have the composition represented by = 12). However, in the above general formula, a indicates the ratio of Mo based on Fe, b indicates the ratio of Ga based on Fe, and w, x, y, and z indicate the atomic% of each element.
(6)本発明の一態様に係る金属ガラス圧粉磁心の製造方法は、軟磁性金属ガラス合金からなる複数の粉末とシリコーンレジンを混合して混合粉末を作製する工程と、前記混合粉末を前記軟磁性金属ガラス合金のガラス転移点以上の温度であって、結晶化温度以下の温度で目的の形状に温間成形し、軟磁性金属ガラス合金からなる複数の粒子と、前記粒子間の粒界に形成された前記シリコーンレジンの温間成形物からなる絶縁膜を有する組織を得る工程と、を有することを特徴とする。 (6) The method for producing a metallic glass dust core according to one aspect of the present invention includes a step of mixing a plurality of powders made of a soft magnetic metallic glass alloy and a silicone resin to prepare a mixed powder, and the mixed powder. A plurality of particles made of a soft magnetic metallic glass alloy and a grain boundary between the particles are warmly formed into a desired shape at a temperature equal to or higher than the glass transition point of the soft magnetic metallic glass alloy and lower than the crystallization temperature. It is characterized by having a step of obtaining a structure having an insulating film made of a warm molded product of the silicone resin formed in.
(7)本発明の一態様に係る金属ガラス圧粉磁心の製造方法において、前記温間成形温度と同等の熱履歴後の硬度が0.1~1.0MHvのシリコーンレジンを用いることが好ましい。
(8)本発明の一態様に係る金属ガラス圧粉磁心の製造方法において、前記シリコーンレジンの添加量を前記金属ガラス合金の粒子の質量に対し0.2~0.8質量%とし、密度比が0.90以上の金属ガラス圧粉磁心を得ることが好ましい。
(7) In the method for producing a metallic glass dust core according to one aspect of the present invention, it is preferable to use a silicone resin having a hardness of 0.1 to 1.0 MHv after a heat history equivalent to the warm forming temperature.
(8) In the method for producing a metallic glass dust core according to one aspect of the present invention, the amount of the silicone resin added is 0.2 to 0.8% by mass with respect to the mass of the particles of the metallic glass alloy, and the density ratio is set. It is preferable to obtain a metallic glass dust core having a mass of 0.90 or more.
(9)本発明の一態様に係る金属ガラス圧粉磁心の製造方法において、密度比が0.94以上、磁路断面10mmでの鉄損が200kW/m以下(0.1T/50kHz)、比抵抗が1×10μΩm以上の金属ガラス圧粉磁心を得ることが好ましい。
(10)本発明の一態様に係る金属ガラス圧粉磁心の製造方法において、前記温間成形時の成形温度を450~480℃とすることが好ましい。
(11)本発明の一態様に係る金属ガラス圧粉磁心の製造方法において、過冷却液体温度ΔTxが20K以上の軟磁性金属ガラス合金を用いることが好ましい。
(9) In the method for producing a metallic glass dust core according to one aspect of the present invention, the density ratio is 0.94 or more, the iron loss at a magnetic path cross section of 10 mm is 200 kW / m 3 or less (0.1 T / 50 kHz). It is preferable to obtain a metallic glass dust core having a specific resistance of 1 × 10 5 μΩm or more.
(10) In the method for producing a metallic glass dust core according to one aspect of the present invention, it is preferable that the molding temperature at the time of warm molding is 450 to 480 ° C.
(11) In the method for producing a metallic glass dust core according to one aspect of the present invention, it is preferable to use a soft magnetic metallic glass alloy having a supercooled liquid temperature ΔTx of 20 K or more.
(12)本発明の一態様に係る金属ガラス圧粉磁心の製造方法において、一般式(Fe1-a-bMoGa100-w-x-y-zSi(0≦a≦0.075、0.025≦b≦0.0375、10≦w≦12、0≦x≦6、2≦y≦8、0≦z≦2、w+z=12)で表される軟磁性金属ガラス合金を用いることが好ましい。ただし、前記一般式において、aはFeを基準としたMoの比率を示し、bはFeを基準としたGaの比率を示し、w、x、y、zは各元素の原子%を示す。 (12) In the method for manufacturing a metallic glass dust core according to an embodiment of the present invention, the general formula (Fe 1-a-b Mo a Ga b) 100-w-x-y-z P w C x B y Si Table with z (0 ≦ a ≦ 0.075, 0.025 ≦ b ≦ 0.0375, 10 ≦ w ≦ 12, 0 ≦ x ≦ 6, 2 ≦ y ≦ 8, 0 ≦ z ≦ 2, w + z = 12) It is preferable to use a soft magnetic metallic glass alloy. However, in the above general formula, a indicates the ratio of Mo based on Fe, b indicates the ratio of Ga based on Fe, and w, x, y, and z indicate the atomic% of each element.
 本発明の一態様によれば、高比抵抗、低鉄損かつ高密度の金属ガラス圧粉磁心を提供することができ、その製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a high specific resistance, low iron loss, and high density metallic glass dust core, and it is possible to provide a method for producing the same.
本実施形態に係る金属ガラス圧粉磁心が適用されたリアクトルの一例を示す斜視図である。It is a perspective view which shows an example of the reactor to which the metallic glass dust core which concerns on this embodiment is applied. 図1Aのリアクトルの正面図である。It is a front view of the reactor of FIG. 1A. 図1A,図1Bのリアクトルのリアクトルコアを示す斜視図である。It is a perspective view which shows the reactor of the reactor of FIG. 1A and FIG. 1B. 図2Aのリアクトルコアに組み込まれるコイルの一例を示す斜視図である。It is a perspective view which shows an example of the coil incorporated in the rear tractor of FIG. 2A. 実施例と比較例の金属ガラス圧粉磁心で得られたシリコーンレジン硬さと比抵抗の関係を示すグラフである。It is a graph which shows the relationship between the silicone resin hardness and the specific resistance obtained by the metallic glass dust core of the Example and the comparative example. 実施例と比較例の金属ガラス圧粉磁心で得られたシリコーンレジン硬さと鉄損の関係を示すグラフである。It is a graph which shows the relationship between the silicone resin hardness and iron loss obtained by the metallic glass dust core of the Example and the comparative example.
 以下、本発明の一実施形態について図面を参照しながら説明する。
 図1A,図1Bは本実施形態に係る金属ガラス圧粉磁心がリアクトルコアに適用されたリアクトルAの一例を示す。この実施形態のリアクトルAは、左右方向に延在する上部ヨーク1と下部ヨーク2と、上部ヨーク1と下部ヨーク2の間に挟持された円柱状の2本の脚部3を備え、各脚部3に円筒状のコイル体4が外挿されている。リアクトルAにおいて、平行に配置された上部ヨーク1および下部ヨーク2と2本の脚部3から図2Aに示すリアクトルコア(磁心)Bが構成されている。この実施形態では脚部3がその長さ方向に2つに分割可能に構成される。各脚部3を2分割した形状の脚部3にコイル4を外挿し、次いで分割した脚部どうしをギャップGを介し一体化する。これにより図1A、図1Bに示す構成のリアクトルAが得られる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1A and 1B show an example of the reactor A in which the metallic glass dust core according to the present embodiment is applied to the reactor. The reactor A of this embodiment includes an upper yoke 1 and a lower yoke 2 extending in the left-right direction, and two cylindrical legs 3 sandwiched between the upper yoke 1 and the lower yoke 2, and each leg is provided. A cylindrical coil body 4 is extrapolated to the portion 3. In the reactor A, the rear actuator (magnetic core) B shown in FIG. 2A is configured from the upper yoke 1 and the lower yoke 2 and the two legs 3 arranged in parallel. In this embodiment, the leg portion 3 is configured to be divisible in two in the length direction thereof. The coil 4 is externally inserted into the leg portion 3 having a shape in which each leg portion 3 is divided into two, and then the divided legs are integrated with each other via the gap G. As a result, the reactor A having the configuration shown in FIGS. 1A and 1B can be obtained.
 本実施形態のリアクトルコアBは後に説明する軟磁性金属ガラス合金からなる複数の金属ガラス粒子の成形体(金属ガラス圧粉磁心)からなる。また、複数の金属ガラス粒子間にはバインダからなる絶縁膜が形成されている。この絶縁膜は、金属ガラス粒子どうしを機械的に(物理的に)結合し、金属ガラス粒子を個々に絶縁分離する。
 詳細には、金属ガラス圧粉磁心は、複数の金属ガラス粒子と、複数の金属ガラス粒子間の粒界に形成された絶縁膜とからなる。絶縁膜は、バインダであるシリコーンレジンの温間成形物からなることが好ましい。絶縁膜の量は、金属ガラス粒子の量100質量%に対して、1質量%以下であり、好ましくは0.2質量%以上0.8質量%以下である。
 以下、軟磁性金属ガラス合金からなる粉末(粒子)は、金属ガラス粉末(粒子)、軟磁性金属ガラス合金粉末(粒子)とも言う。金属ガラス圧粉磁心は、成形体とも言う。
The reactor B of the present embodiment is composed of a molded body (metal glass dust core) of a plurality of metallic glass particles made of a soft magnetic metallic glass alloy, which will be described later. Further, an insulating film made of a binder is formed between the plurality of metallic glass particles. This insulating film mechanically (physically) bonds the metallic glass particles to each other, and insulates and separates the metallic glass particles individually.
Specifically, the metallic glass dust core is composed of a plurality of metallic glass particles and an insulating film formed at a grain boundary between the plurality of metallic glass particles. The insulating film is preferably made of a warm molded product of a silicone resin which is a binder. The amount of the insulating film is 1% by mass or less, preferably 0.2% by mass or more and 0.8% by mass or less, based on 100% by mass of the amount of the metallic glass particles.
Hereinafter, the powder (particles) made of a soft magnetic metallic glass alloy is also referred to as a metallic glass powder (particles) or a soft magnetic metallic glass alloy powder (particles). The metallic glass dust core is also called a molded body.
 金属ガラス粒子を構成する軟磁性金属ガラス合金は、一般式(Fe1-a-bMoGa100-w-x-y-zSi(0≦a≦0.075、0.025≦b≦0.0375、10≦w≦12、0≦x≦6、2≦y≦8、0≦z≦2、w+z=12)で表される組成を有することが好ましい。ただし、前記一般式において、aはFeを基準としたMoの比率を示し、bはFeを基準としたGaの比率を示す。すなわち、Fe,Mo,Gaの原子数の合計を1としたとき、aは、Fe,Mo,Gaの原子数の合計1に対するMoの原子数の比であり、bは、Fe,Mo,Gaの原子数の合計1に対するGaの原子数の比である。w、x、y、zは、全ての元素の原子数の合計100原子%に対する各元素の原子数の比率(原子%)を示す。
 また、この組成の軟磁性金属ガラス合金からなる粉末(金属ガラス粉末)の量100質量%に対し1質量%以下、好ましくは0.2質量%以上0.8質量%以下のバインダを混合して混合粉末を作製する。次いで混合粉末を後述する温度範囲で温間成形する。これにより、成形体(金属ガラス圧粉磁心)を得ることができる。
Soft magnetic glassy alloy constituting the metal glass particles, the general formula (Fe 1-a-b Mo a Ga b) 100-w-x-y-z P w C x B y Si z (0 ≦ a ≦ 0 .075, 0.025 ≦ b ≦ 0.0375, 10 ≦ w ≦ 12, 0 ≦ x ≦ 6, 2 ≦ y ≦ 8, 0 ≦ z ≦ 2, w + z = 12) preferable. However, in the above general formula, a indicates the ratio of Mo based on Fe, and b indicates the ratio of Ga based on Fe. That is, when the total number of atoms of Fe, Mo, and Ga is 1, a is the ratio of the number of atoms of Mo to the total number of atoms of Fe, Mo, and Ga of 1, and b is Fe, Mo, and Ga. It is the ratio of the number of atoms of Ga to the total number of atoms of 1. w, x, y, and z indicate the ratio (atomic%) of the number of atoms of each element to the total number of atoms of all elements of 100 atomic%.
Further, a binder of 1% by mass or less, preferably 0.2% by mass or more and 0.8% by mass or less is mixed with respect to 100% by mass of the amount of the powder (metal glass powder) made of the soft magnetic metal glass alloy having this composition. Make a mixed powder. The mixed powder is then warm molded in the temperature range described below. As a result, a molded product (metal glass dust core) can be obtained.
 ここでの軟磁性金属ガラス合金の組成について説明すれば、主成分であるFeは磁性を担う元素であり、高い飽和磁束密度を得るために必須である。このFeの一部をMoまたはGaで置換することが可能であり、この置換成分はガラス形成能を向上させる効果がある。
 Pは、ガラス形成に必須元素であるが、そのP含有量の一部をSiで置き換えることができる。Pは、10~12原子%の範囲の量で含有させることができる。P含有量が10原子%未満の場合はガラス形成能が低下し、P含有量が12原子%を超えると、磁束密度が低下して軟磁気特性が劣化する。
 Siはガラス形成を担う元素である。0原子%でもよいが、Siを含有することでガラス形成能を向上させる。Si含有量が多いとガラス形成能が低下するため、Si含有量を2原子%以下とすることが好ましい。
 Bは、ガラス形成に必須元素である。B含有量が少ないとガラス形成が困難になる場合がある。そのため、B含有量を2原子%以上とする。またB含有量が多いと軟磁気特性が低下するため、B含有量を8原子%以下とする。
 Cは、ガラス形成を担う元素である。0原子%でもよいが、Cを含有することでガラス形成能を向上させる。Cが多いと合金が脆化、及び軟磁気特性が低下するため、C含有量を6原子%以下とする。
Explaining the composition of the soft magnetic metallic glass alloy here, Fe, which is a main component, is an element responsible for magnetism and is indispensable for obtaining a high saturation magnetic flux density. A part of this Fe can be replaced with Mo or Ga, and this substitution component has an effect of improving the glass forming ability.
P is an essential element for glass formation, but a part of its P content can be replaced with Si. P can be contained in an amount in the range of 10 to 12 atomic%. When the P content is less than 10 atomic%, the glass forming ability is lowered, and when the P content is more than 12 atomic%, the magnetic flux density is lowered and the soft magnetic property is deteriorated.
Si is an element responsible for glass formation. Although it may be 0 atomic%, the glass forming ability is improved by containing Si. Since the glass forming ability decreases when the Si content is high, the Si content is preferably 2 atomic% or less.
B is an essential element for glass formation. If the B content is low, glass formation may become difficult. Therefore, the B content is set to 2 atomic% or more. Further, if the B content is high, the soft magnetic properties deteriorate, so the B content is set to 8 atomic% or less.
C is an element responsible for glass formation. Although it may be 0 atomic%, the glass forming ability is improved by containing C. If the amount of C is large, the alloy becomes embrittled and the soft magnetic properties deteriorate. Therefore, the C content is set to 6 atomic% or less.
 前述の一般式(Fe1-a-bMoGa100-w-x-y-zSi(0≦a≦0.075、0.025≦b≦0.0375、10≦w≦12、0≦x≦6、2≦y≦8、0≦z≦2、w+z=12)で表される軟磁性金属ガラス合金において、結晶化温度Txは480~530℃であり、ガラス転移点(ガラス転移温度)Tgは450~480℃である。 The aforementioned general formula (Fe 1-a-b Mo a Ga b) 100-w-x-y-z P w C x B y Si z (0 ≦ a ≦ 0.075,0.025 ≦ b ≦ 0. In the soft magnetic metallic glass alloy represented by 0375, 10 ≦ w ≦ 12, 0 ≦ x ≦ 6, 2 ≦ y ≦ 8, 0 ≦ z ≦ 2, w + z = 12), the crystallization temperature Tx is 480 to 530 ° C. The glass transition point (glass transition temperature) Tg is 450 to 480 ° C.
 また、軟磁性金属ガラス合金の粉末については、水アトマイズ法か、或いはガスアトマイズ法で作製されたものが望ましく、少なくとも粒子の50体積%以上の粒径が10μm以上の粉末であることが好ましい。特に水アトマイズ法は、合金粉末を安価に大量に製造する方法として確立されており、この方法で粉末を製造できるのは工業的に有利な点である。
 加えて、水アトマイズ法で作製された合金粉末は、粉末表面に適度な酸化皮膜が形成されているので、これに後述のバインダを混合して成形体を成形すると比抵抗の高い磁心が容易に得られる。
The powder of the soft magnetic metallic glass alloy is preferably produced by a water atomization method or a gas atomization method, and is preferably a powder having a particle size of at least 50% by volume or more of particles of 10 μm or more. In particular, the water atomization method has been established as a method for producing a large amount of alloy powder at low cost, and it is an industrial advantage that the powder can be produced by this method.
In addition, the alloy powder produced by the water atomization method has an appropriate oxide film formed on the powder surface, so if a binder described later is mixed with this to form a molded product, a magnetic core with high resistivity can be easily formed. can get.
 前記組成範囲であって前記水アトマイズ法あるいはガスアトマイズ法により得られた軟磁性金属ガラス合金からなる粉末であるならば、いずれの組成であっても過冷却液体温度ΔTxが20K以上、好ましくは30K以上、より好ましくは40K以上である軟磁性金属ガラス合金の粉末を得ることができる。なお、示差走査熱量計(DSC)などを用いた熱分析法により、軟磁性金属ガラス合金の粉末のガラス転移温度Tg及び結晶化温度Txを測定する。そして以下の(2)式により、過冷却液体温度ΔTxは得られる。
 ΔTx=Tx-Tg  (2)式
If the powder is in the composition range and is a powder made of a soft magnetic metallic glass alloy obtained by the water atomization method or the gas atomization method, the supercooled liquid temperature ΔTx is 20 K or more, preferably 30 K or more regardless of the composition. , More preferably, a powder of a soft magnetic metallic glass alloy having a temperature of 40 K or higher can be obtained. The glass transition temperature Tg and the crystallization temperature Tx of the powder of the soft magnetic metallic glass alloy are measured by a thermal analysis method using a differential scanning calorimeter (DSC) or the like. Then, the supercooled liquid temperature ΔTx can be obtained by the following equation (2).
ΔTx = Tx-Tg (2)
 「軟磁性金属ガラス合金粉末の粒径」
 前述の組成であって平均粒径(D50)が50μm程度の軟磁性金属ガラス合金の粉末の量100質量%に対し、1質量%以下のバインダを混合して混合粉末を作製し、この混合粉末を成形することで圧粉磁心を作製する。これにより、高周波で極めて低い損失特性を示す従来に無い優れた性能を持つ圧粉磁心が得られ、この圧粉磁心に巻線を施すことよって優れたインダクタンス部品が得られる。
 粉末粒径について、粒径を小さくした方が渦電流損失を少なくできるが、粒径を小さくするとヒステリシス損失が高くなる。このため、金属ガラス粉末の平均粒径は、10~80μm程度が好ましく、50μm以下がより好ましく、30μm以下が最も好ましい。金属ガラス粉末の平均粒径は、使用される周波数に応じて調整される。高周波数帯で使用される金属ガラス圧粉磁心の場合、金属ガラス粉末の平均粒径は50μm以下が好ましい。
 ここで、金属ガラス粉末の平均粒径は、レーザー回折散乱法で測定されたメディアン径(D50)であり、このメディアン径(D50)とは、体積累積が50%となる粒子径である。
"Grain size of soft magnetic metallic glass alloy powder"
A mixed powder is prepared by mixing a binder of 1% by mass or less with 100% by mass of a powder of a soft magnetic metallic glass alloy having the above-mentioned composition and an average particle size (D50) of about 50 μm, and this mixed powder is prepared. A dust core is produced by molding. As a result, a dust core having excellent performance, which shows extremely low loss characteristics at high frequencies, can be obtained, and by winding the dust core, an excellent inductance component can be obtained.
Regarding the powder particle size, the eddy current loss can be reduced by reducing the particle size, but the hysteresis loss increases when the particle size is reduced. Therefore, the average particle size of the metallic glass powder is preferably about 10 to 80 μm, more preferably 50 μm or less, and most preferably 30 μm or less. The average particle size of the metallic glass powder is adjusted according to the frequency used. In the case of a metallic glass dust core used in a high frequency band, the average particle size of the metallic glass powder is preferably 50 μm or less.
Here, the average particle size of the metal glass powder is the median diameter (D50) measured by the laser diffraction / scattering method, and the median diameter (D50) is the particle size at which the volume accumulation is 50%.
「バインダ」
 本実施形態の磁心において用いるバインダは、シリコーンレジンを主体とする常温で軟質のバインダであり、後述する温度範囲の温間成形後であっても、軟質な状態を維持できる種類のバインダを用いることが望ましい。例えば、後述する450~480℃の温間成形温度において熱履歴を受けても軟質の状態を維持できるバインダとして、温間成形温度と同等の熱履歴後の硬度が好ましくは0.1~1.0MHvの範囲、より好ましくは0.2~1.0MHvのバインダを用いることが望ましい。
 温間成形温度と同等の熱履歴後のシリコーンレジンの硬度は、例えば、以下の方法で測定される。温間成形の温度で溶融しない金属板、例えば鋼板の表面に、硬度測定に必要な厚さのシリコーンレジン層を形成する。この鋼板を450~480℃の温度、例えば、480℃にて必要時間加熱し、室温まで冷却する。そしてシリコーンレジン層の硬度を計測する。
"Binder"
The binder used in the magnetic core of the present embodiment is a binder mainly composed of a silicone resin that is soft at room temperature, and a binder of a type that can maintain a soft state even after warm molding in the temperature range described later is used. Is desirable. For example, as a binder capable of maintaining a soft state even when subjected to a heat history at a warm molding temperature of 450 to 480 ° C., which will be described later, a hardness after the heat history equivalent to that of the warm molding temperature is preferably 0.1 to 1. It is desirable to use a binder in the range of 0 MHv, more preferably 0.2 to 1.0 MHv.
The hardness of the silicone resin after a heat history equivalent to the warm forming temperature is measured by, for example, the following method. A silicone resin layer having a thickness required for hardness measurement is formed on the surface of a metal plate that does not melt at the temperature of warm forming, for example, a steel plate. The steel sheet is heated at a temperature of 450 to 480 ° C., for example, 480 ° C. for a required time, and cooled to room temperature. Then, the hardness of the silicone resin layer is measured.
 次に、成形体の成形方法について説明する。
 まず上述の組成の軟磁性金属ガラス合金の粉末と、シリコーンレジンからなるバインダを混合して混合粉末を作製する。バインダ(シリコーンレジン)の添加量は、金属ガラス粉末(軟磁性金属ガラス合金からなる粉末)の量100質量%に対して、1質量%以下が好ましく、0.2~0.8質量%がより好ましい。
 一般にシリコーンレジンは、液体である。シリコーンレジンを溶媒で希釈し、シリコーンレジン溶液を作製する。ここで、シリコーンレジンの質量に対する溶媒の質量の比(質量比)は5~40であることが好ましい。次いで、金属ガラス粉末とシリコーンレジン溶液を混合する。例えば、ハイスピードミキサーなどを用いて、シリコーンレジン溶液を金属ガラス粉末に噴霧しながら、金属ガラス粉末とシリコーンレジン溶液を混合する。そして、混合物を加熱して乾燥し、混合粉末を得る。混合物の乾燥は、減圧下で行うことが好ましい。
 次に混合粉末に対して、金型を用いた成形、あるいはモールド成形を施し、目的の形状の成形体を得る。
 成形に際し、軟磁性金属ガラス合金のガラス転移点以上の温度であって、結晶化温度以下の温度で混合粉末を目的の形状に温間成形することが好ましい。具体的に温間成形温度の範囲は、450~480℃の範囲を選択することができる。この温度範囲において温間成形することで軟磁性金属ガラス合金の粉末は超塑性変形する。このため、成形時に粉末粒子同士が良好に隙間を埋め、更にこれら粉末粒子間の隙間に軟質のバインダが広がって隙間埋めする。これにより、金属ガラス粒子の粒子間の粒界にシリコーンレジンの温間成形物(温間成形熱処理物)からなる絶縁膜が形成される。以上により、金属ガラス粒子と絶縁膜からなる組織を有し、高密度化した、密度比の高い成形体を得ることが可能となる。
 詳細には、金属ガラス粉末は硬く、通常の成形では密度が上がらない。上述の温間成形の温度域は、金属ガラス粉末の過冷却液体温度域であり、この温度域で加圧成形することにより、密度が上がり、金属ガラス圧粉磁心の密度比を0.90以上とすることができる。
Next, a molding method of the molded product will be described.
First, a powder of a soft magnetic metallic glass alloy having the above composition and a binder made of a silicone resin are mixed to prepare a mixed powder. The amount of the binder (silicone resin) added is preferably 1% by mass or less, more preferably 0.2 to 0.8% by mass, based on 100% by mass of the amount of the metallic glass powder (powder made of a soft magnetic metallic glass alloy). preferable.
Generally, silicone resin is a liquid. The silicone resin is diluted with a solvent to prepare a silicone resin solution. Here, the ratio (mass ratio) of the mass of the solvent to the mass of the silicone resin is preferably 5 to 40. Then, the metallic glass powder and the silicone resin solution are mixed. For example, the metallic glass powder and the silicone resin solution are mixed while spraying the silicone resin solution onto the metallic glass powder using a high-speed mixer or the like. Then, the mixture is heated and dried to obtain a mixed powder. The mixture is preferably dried under reduced pressure.
Next, the mixed powder is molded using a mold or molded to obtain a molded product having a desired shape.
At the time of molding, it is preferable to warmly mold the mixed powder into a desired shape at a temperature equal to or higher than the glass transition point of the soft magnetic metallic glass alloy and lower than the crystallization temperature. Specifically, the range of the warm forming temperature can be selected from the range of 450 to 480 ° C. By warm molding in this temperature range, the powder of the soft magnetic metallic glass alloy is superplastically deformed. Therefore, the powder particles satisfactorily fill the gaps during molding, and the soft binder spreads in the gaps between the powder particles to fill the gaps. As a result, an insulating film made of a warm molded product (warm molding heat-treated product) of silicone resin is formed at the grain boundaries between the particles of the metallic glass particles. As described above, it is possible to obtain a molded product having a structure composed of metallic glass particles and an insulating film, having a high density, and having a high density ratio.
Specifically, the metallic glass powder is hard and does not increase in density by normal molding. The temperature range of the above-mentioned warm molding is the supercooled liquid temperature range of the metallic glass powder, and the density is increased by pressure molding in this temperature range, and the density ratio of the metallic glass dust core is 0.90 or more. Can be.
 また、前述のバインダであるならば、バインダ本来の硬度が低く軟質であり、前述の温度範囲で温間成形する際、軟磁性金属ガラス合金粒子の粒界にバインダが良好に回り込む。軟磁性金属ガラス合金粒子の粒界にバインダが隙間なく拡がり、粒界を埋める。このため、軟磁性金属ガラス合金粒子を個々に良好に絶縁した比抵抗の高い成形体を得ることができる。 Further, in the case of the above-mentioned binder, the original hardness of the binder is low and it is soft, and when warm-molding in the above-mentioned temperature range, the binder wraps around the grain boundaries of the soft magnetic metallic glass alloy particles satisfactorily. The binder spreads without gaps at the grain boundaries of the soft magnetic metallic glass alloy particles and fills the grain boundaries. Therefore, it is possible to obtain a molded product having high specific resistance in which the soft magnetic metallic glass alloy particles are individually well insulated.
 以上説明の製造方法により得られた成形体であるならば、密度比が0.90以上であり、且つ比抵抗が1×10μΩm以上の高周波用磁心となる。なお、密度比は、成形体の密度を金属ガラス合金の真密度(7.37g/cm)で割って算出される。成形体の密度は、アルキメデス法により測定される。密度比は、好ましくは0.94以上である。比抵抗は、好ましくは1×10μΩm以上である。また、磁路断面10mmでの鉄損は200kW/m(B=0.1T/50kHz)以下である。なお、0.1Tと50kHzは、励磁の際の交番磁界の磁束密度と周波数である。
 また、成形体の密度が高いため、高い磁束密度が得られる。
 なお、前述のバインダの添加量について、金属ガラス合金の粒子の量100質量%に対し、0.2~0.8質量%の範囲であることがより好ましい。
 バインダの添加量が0.2質量%を下回ると比抵抗が低くなり、鉄損の値も大きくなる。バインダの添加量が0.8質量%を超えるようでは成形体としての密度比が0.9より低くなる。
If a molded body obtained by the production method of the description or more, the density ratio is 0.90 or more and the specific resistance is 1 × 10 5 μΩm or more high-frequency magnetic core. The density ratio is calculated by dividing the density of the molded product by the true density of the metallic glass alloy (7.37 g / cm 3). The density of the molded product is measured by the Archimedes method. The density ratio is preferably 0.94 or more. Resistivity is preferably 1 × 10 6 μΩm or more. The iron loss at a magnetic circuit cross section of 10 mm is 200 kW / m 3 (B = 0.1 T / 50 kHz) or less. Note that 0.1 T and 50 kHz are the magnetic flux densities and frequencies of the alternating magnetic field at the time of excitation.
Further, since the density of the molded product is high, a high magnetic flux density can be obtained.
The amount of the binder added is more preferably in the range of 0.2 to 0.8% by mass with respect to 100% by mass of the particles of the metallic glass alloy.
When the amount of the binder added is less than 0.2% by mass, the specific resistance becomes low and the iron loss value becomes large. If the amount of the binder added exceeds 0.8% by mass, the density ratio of the molded product becomes lower than 0.9.
 以上説明のように製造された軟磁性金属ガラス合金の複数の粒子とそれらの粒界に介在された絶縁膜からなる組織を有するリアクトルコアBであるならば、0.90以上の密度比を有し、金属ガラス合金の粒子が密に詰まっているので、高い磁束密度を示す。また、複数の粒子の粒界に絶縁膜が存在し、粒子を個々に絶縁分離する確率が高いので、1×10μΩm以上の高比抵抗が得られる。
 このため、鉄損(渦電流損失)の小さい、磁気特性の優れた磁気部品としてのリアクトルAを提供できる。
If the reactor B has a structure consisting of a plurality of particles of the soft magnetic metallic glass alloy produced as described above and an insulating film interposed at the grain boundaries thereof, it has a density ratio of 0.90 or more. However, since the particles of the metallic glass alloy are densely packed, it shows a high magnetic flux density. Also, there are a plurality of grain boundaries in the insulating film of the particles, there is a high probability of insulation separating the particles into individual, 1 × 10 5 μΩm or more high resistivity can be obtained.
Therefore, it is possible to provide the reactor A as a magnetic component having a small iron loss (eddy current loss) and excellent magnetic characteristics.
 ところで、本実施形態では図1A,図1B,図2A,図2Bに示す構成のリアクトルAに本実施形態の金属ガラス圧粉磁心を適用した例について説明したが、本実施形態の金属ガラス圧粉磁心を適用できるのは、図示した例に限るものではない。本実施形態の金属ガラス圧粉磁心は、種々の形状の磁心に適用できるのは勿論である。
 磁心についてはレーストラック型やC型のコアからなる磁心、あるいは、複数の形状のコアを組み合わせて構成する組み合わせタイプのコアからなる磁心など一般的に知られている種々の磁心に本実施形態の金属ガラス圧粉磁心を適用できるのは勿論である。
By the way, in the present embodiment, an example in which the metallic glass dust core of the present embodiment is applied to the reactor A having the configuration shown in FIGS. 1A, 1B, 2A, and 2B has been described. The application of the magnetic core is not limited to the illustrated example. Of course, the metallic glass dust core of the present embodiment can be applied to magnetic cores of various shapes.
Regarding the magnetic core, the present embodiment includes various generally known magnetic cores such as a magnetic core composed of a racetrack type or C type core, or a magnetic core composed of a combination type core composed of a combination of cores having a plurality of shapes. Of course, a metallic glass dust core can be applied.
 以下、実施例を示して本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1,2,6、比較例1~3,6の混合粉末)
 原料粉末(金属ガラス粉末)として、組成がFe76MoGa10Siであるアトマイズ粉末を使用した。このアトマイズ粉末は、目開き150μmの篩を通過させており(篩分け)、粒径は150μm以下であった。レーザー回折散乱法により測定した平均粒径(D50)は50μmであった。前記組成の軟磁性金属ガラス合金の結晶化温度Txは515℃であり、ガラス転移点(ガラス転移温度)Tgは463℃であった。このため、過冷却液体温度ΔTxは52Kであった。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
(Mixed powder of Examples 1, 2 and 6 and Comparative Examples 1 to 3 and 6)
As the raw material powder (metallic glass powder), atomized powder having a composition of Fe 76 Mo 2 Ga 2 P 10 C 4 B 4 Si 2 was used. This atomized powder was passed through a sieve having a mesh size of 150 μm (sieving), and the particle size was 150 μm or less. The average particle size (D50) measured by the laser diffraction / scattering method was 50 μm. The crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 515 ° C., and the glass transition point (glass transition temperature) Tg was 463 ° C. Therefore, the supercooled liquid temperature ΔTx was 52K.
 表1に示す添加量のシリコーンレジンを溶媒で希釈し、シリコーンレジン溶液を作製した。次いで、ハイスピードミキサーを用いて、シリコーンレジン溶液を金属ガラス粉末に噴霧しながら、金属ガラス粉末とシリコーンレジン溶液を混合した(湿式コーティング)。そして、混合物を大気中において290℃で60分間加熱して乾燥し、混合粉末を作製した。このコーティング処理により、金属ガラス粒子の外周にシリコーンレジンを被覆した。
 なお、シリコーンレジンの添加量は、金属ガラス粉末の量100質量%に対する量(質量%)である。
The added amount of silicone resin shown in Table 1 was diluted with a solvent to prepare a silicone resin solution. Then, the metallic glass powder and the silicone resin solution were mixed while spraying the silicone resin solution onto the metallic glass powder using a high-speed mixer (wet coating). Then, the mixture was heated in the air at 290 ° C. for 60 minutes and dried to prepare a mixed powder. By this coating treatment, the outer periphery of the metallic glass particles was coated with a silicone resin.
The amount of the silicone resin added is an amount (mass%) with respect to 100% by mass of the amount of the metallic glass powder.
 第1のシリコーンレジンとして、後述する温間成形温度(480℃)と同等の熱履歴後の硬度が0.2MHvとなるものを用い、実施例1、2、6および比較例1、6の混合粉末を作製した。
 第2のシリコーンレジンとして、後述する温間成形温度(480℃)と同等の熱履歴後の硬度が6.7MHvとなるものを用い、比較例2の混合粉末を作製した。
 第3のシリコーンレジンとして、後述する温間成形温度(480℃)と同等の熱履歴後の硬度が12.8MHvとなるものを用い、比較例3の混合粉末を作製した。
 なお、第1~第3のシリコーンレジンは、熱履歴を経る前は軟質のものである。
As the first silicone resin, a resin having a hardness of 0.2 MHv after a heat history equivalent to the warm molding temperature (480 ° C.) described later was used, and Examples 1, 2 and 6 and Comparative Examples 1 and 6 were mixed. A powder was prepared.
As the second silicone resin, a mixed powder of Comparative Example 2 was prepared using a resin having a hardness of 6.7 MHv after a heat history equivalent to the warm molding temperature (480 ° C.) described later.
As the third silicone resin, a mixed powder of Comparative Example 3 was prepared using a resin having a hardness of 12.8 MHv after a heat history equivalent to the warm molding temperature (480 ° C.) described later.
The first to third silicone resins are soft before undergoing a thermal history.
(実施例3~5、比較例4,5の混合粉末)
 第1のシリコーンレジンと第2のシリコーンレジンを以下の配合比で混合し、混合シリコーンレジンを作製した。表1に示す添加量の混合シリコーンレジンを溶媒で希釈し、混合シリコーンレジン溶液を作製した。次いで、ハイスピードミキサーを用いて、混合シリコーンレジン溶液を金属ガラス粉末に噴霧しながら、金属ガラス粉末と混合シリコーンレジン溶液を混合した(湿式コーティング)。そして、混合物を大気中において290℃で60分間加熱して乾燥し、混合粉末を作製した。
 なお、金属ガラス粉末として、実施例1のアトマイズ粉末を使用した。
 実施例3では、第1のシリコーンレジン60質量部と、第2のシリコーンレジン40質量部を混合した。
 実施例4では、第1のシリコーンレジン40質量部と第2のシリコーンレジン60質量部を混合した。
 実施例5では、第1のシリコーンレジン30質量部と第2のシリコーンレジン70質量部を混合した。
 比較例4では、第1のシリコーンレジン20質量部と第2のシリコーンレジン80質量部を混合した。
 比較例5では、第1のシリコーンレジン10質量部と第2のシリコーンレジン90質量部を混合した。
(Mixed powder of Examples 3 to 5 and Comparative Examples 4 and 5)
The first silicone resin and the second silicone resin were mixed at the following blending ratios to prepare a mixed silicone resin. The mixed silicone resin added in the amount shown in Table 1 was diluted with a solvent to prepare a mixed silicone resin solution. Then, the metallic glass powder and the mixed silicone resin solution were mixed while spraying the mixed silicone resin solution onto the metallic glass powder using a high-speed mixer (wet coating). Then, the mixture was heated in the air at 290 ° C. for 60 minutes and dried to prepare a mixed powder.
As the metallic glass powder, the atomized powder of Example 1 was used.
In Example 3, 60 parts by mass of the first silicone resin and 40 parts by mass of the second silicone resin were mixed.
In Example 4, 40 parts by mass of the first silicone resin and 60 parts by mass of the second silicone resin were mixed.
In Example 5, 30 parts by mass of the first silicone resin and 70 parts by mass of the second silicone resin were mixed.
In Comparative Example 4, 20 parts by mass of the first silicone resin and 80 parts by mass of the second silicone resin were mixed.
In Comparative Example 5, 10 parts by mass of the first silicone resin and 90 parts by mass of the second silicone resin were mixed.
(実施例7~10の混合粉末)
 実施例7では、原料粉末(金属ガラス粉末)として、組成がFe74MoGa10Siであるアトマイズ粉末を使用した。前記組成の軟磁性金属ガラス合金の結晶化温度Txは517℃であり、ガラス転移点(ガラス転移温度)Tgは467℃であった。このため、過冷却液体温度ΔTxは50Kであった。
 実施例8では、原料粉末(金属ガラス粉末)として、組成がFe75MoGa10Siであるアトマイズ粉末を使用した。前記組成の軟磁性金属ガラス合金の結晶化温度Txは525℃であり、ガラス転移点(ガラス転移温度)Tgは465℃であった。このため、過冷却液体温度ΔTxは60Kであった。
 実施例9では、原料粉末(金属ガラス粉末)として、組成がFe73MoGa10Siであるアトマイズ粉末を使用した。前記組成の軟磁性金属ガラス合金の結晶化温度Txは528℃であり、ガラス転移点(ガラス転移温度)Tgは471℃であった。このため、過冷却液体温度ΔTxは57Kであった。
 実施例10では、原料粉末(金属ガラス粉末)として、組成がFe75MoGa11Siであるアトマイズ粉末を使用した。前記組成の軟磁性金属ガラス合金の結晶化温度Txは516℃であり、ガラス転移点(ガラス転移温度)Tgは472℃であった。このため、過冷却液体温度ΔTxは44Kであった。
 いずれのアトマイズ粉末も、目開き150μmの篩を通過させており(篩分け)、粒径は150μm以下であった。レーザー回折散乱法により測定した平均粒径(D50)は50μmであった。
 表1に示す添加量の第1のシリコーンレジンを溶媒で希釈し、第1のシリコーンレジン溶液を作製した。次いで、ハイスピードミキサーを用いて、第1のシリコーンレジン溶液を上述した金属ガラス粉末に噴霧しながら、金属ガラス粉末と第1のシリコーンレジン溶液を混合した(湿式コーティング)。そして、混合物を大気中において290℃で60分間加熱して乾燥し、混合粉末を作製した。
(Mixed powder of Examples 7 to 10)
In Example 7, as the raw material powder (metallic glass powder), an atomized powder having a composition of Fe 74 Mo 4 Ga 2 P 10 C 4 B 4 Si 2 was used. The crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 517 ° C., and the glass transition point (glass transition temperature) Tg was 467 ° C. Therefore, the supercooled liquid temperature ΔTx was 50K.
In Example 8, atomized powder having a composition of Fe 75 Mo 2 Ga 3 P 10 C 4 B 4 Si 2 was used as the raw material powder (metallic glass powder). The crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 525 ° C., and the glass transition point (glass transition temperature) Tg was 465 ° C. Therefore, the supercooled liquid temperature ΔTx was 60K.
In Example 9, as the raw material powder (metallic glass powder), an atomized powder having a composition of Fe 73 Mo 4 Ga 3 P 10 C 4 B 4 Si 2 was used. The crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 528 ° C., and the glass transition point (glass transition temperature) Tg was 471 ° C. Therefore, the supercooled liquid temperature ΔTx was 57K.
In Example 10, as the raw material powder (metallic glass powder), an atomized powder having a composition of Fe 75 Mo 2 Ga 3 P 11 C 4 B 4 Si 1 was used. The crystallization temperature Tx of the soft magnetic metallic glass alloy having the above composition was 516 ° C., and the glass transition point (glass transition temperature) Tg was 472 ° C. Therefore, the supercooled liquid temperature ΔTx was 44K.
All of the atomized powders were passed through a sieve having a mesh size of 150 μm (sieving), and the particle size was 150 μm or less. The average particle size (D50) measured by the laser diffraction / scattering method was 50 μm.
The first silicone resin added in the amount shown in Table 1 was diluted with a solvent to prepare a first silicone resin solution. Then, using a high-speed mixer, the metallic glass powder and the first silicone resin solution were mixed while spraying the first silicone resin solution onto the above-mentioned metallic glass powder (wet coating). Then, the mixture was heated in the air at 290 ° C. for 60 minutes and dried to prepare a mixed powder.
(試験片(成形体)の作製)
 混合粉末を480℃に加熱した金型に投入し、粉末の温度が480℃になった後に成形圧588MPaにて5秒間、加圧成形し、リング状の試験片(外径φ12mm×内径φ5mm×厚さL3.5mm)を得た。
(Preparation of test piece (molded product))
The mixed powder was put into a mold heated to 480 ° C., and after the temperature of the powder reached 480 ° C., pressure molding was performed at a molding pressure of 588 MPa for 5 seconds to form a ring-shaped test piece (outer diameter φ12 mm × inner diameter φ5 mm ×). Thickness L3.5 mm) was obtained.
 成形に用いた金属ガラス合金粉末の結晶化温度Tx、ガラス転移温度Tgは示差走査熱量計(DSC)にて測定した。そして以下の(2)式により、過冷却液体温度ΔTxを算出した。
 ΔTx=Tx-Tg  (2)式
 得られた成形体の密度はアルキメデス法により測定した。測定された密度を金属ガラス合金の真密度(7.37g/cm)で割って密度比を算出した。
 鉄損を交流BHアナライザー(岩通計測株式会社 SY-8219)にて測定した。比抵抗を4端子法にて測定した。
 以上の結果を併せて以下の表1に記載する。
The crystallization temperature Tx and the glass transition temperature Tg of the metallic glass alloy powder used for molding were measured by a differential scanning calorimeter (DSC). Then, the supercooled liquid temperature ΔTx was calculated by the following equation (2).
ΔTx = Tx-Tg (2) Formula The density of the obtained molded product was measured by the Archimedes method. The measured density was divided by the true density of the metallic glass alloy (7.37 g / cm 3 ) to calculate the density ratio.
The iron loss was measured with an AC BH analyzer (Iwadori Measurement Co., Ltd. SY-8219). The specific resistance was measured by the 4-terminal method.
The above results are also shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 皮膜硬さについては、軟磁性金属ガラス合金粒子の粒界に存在する絶縁膜の硬さを測ることができない。このため、鉄板の上にシリコーンレジンを塗布し、厚さ1mmのシリコーンレジン層を形成した。この鉄板を温間成形時の温度480℃にて10分間加熱した。そして、室温まで冷却し、シリコーンレジン層の硬度を測定し、この測定値を絶縁膜の硬さの代用とした。
 また、別途、同様にして鉄板上に厚さ1mmのシリコーンレジン層を形成し、このシリコーンレジン層を290℃で1時間保持し、焼き付けた。そして、室温まで冷却し、焼き付け後のシリコーンレジン層の硬度を測定した。
 それぞれの温度履歴後における硬さ(MHv)について以下の表2に記載する。表1の皮膜硬さは、シリコーンレジンの温間成形温度と同等の熱履歴後のシリコーンレジンの硬度を意味する。
Regarding the film hardness, the hardness of the insulating film existing at the grain boundaries of the soft magnetic metallic glass alloy particles cannot be measured. Therefore, a silicone resin was applied on the iron plate to form a silicone resin layer having a thickness of 1 mm. This iron plate was heated at a temperature of 480 ° C. at the time of warm forming for 10 minutes. Then, it was cooled to room temperature, the hardness of the silicone resin layer was measured, and this measured value was used as a substitute for the hardness of the insulating film.
Separately, a silicone resin layer having a thickness of 1 mm was formed on the iron plate in the same manner, and the silicone resin layer was held at 290 ° C. for 1 hour and baked. Then, it was cooled to room temperature, and the hardness of the silicone resin layer after baking was measured.
The hardness (MHv) after each temperature history is shown in Table 2 below. The film hardness in Table 1 means the hardness of the silicone resin after a thermal history equivalent to the warm forming temperature of the silicone resin.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す鉄損の測定結果から、試料の磁路断面寸法(L=3.5mm)に対し、より大きな磁路断面寸法(L=10mm)とした場合の鉄損を計算により求めた。
 表1において、Wiは鉄損を示し、Whはヒステリシス損失を示し、Weは渦電流損失を示し、Wi=Wh+Weの関係を有する。また、鉄損の比率=磁路断面10mm時の鉄損Wi/磁路断面3.5mm時の鉄損Wiである。
 この例ではL=10mmの場合の鉄損は、200kW/m以下であることが好ましいと判断した。
From the measurement results of the iron loss shown in Table 1, the iron loss when the magnetic path cross-sectional dimension (L = 3.5 mm) of the sample was set to be larger than the magnetic path cross-sectional dimension (L = 3.5 mm) was calculated.
In Table 1, Wi indicates iron loss, Wh indicates hysteresis loss, We indicates eddy current loss, and has a relationship of Wi = Wh + We. Further, the ratio of iron loss = iron loss Wi when the magnetic path cross section is 10 mm / iron loss Wi when the magnetic path cross section is 3.5 mm.
In this example, it was determined that the iron loss when L = 10 mm is preferably 200 kW / m 3 or less.
 表1に示す比較例1の試料では、軟質のシリコーンレジンを用いたものの、添加量が少ないため、比抵抗の値が1×10μΩmとなり低くなった。磁路断面10mm時の鉄損の値も大きくなっている。
 実施例1~6の試料では、軟質のシリコーンレジンを適量(0.2~0.72質量%)用いたが、0.94以上の密度比を示し、比抵抗が1×10μΩm~2.6×10μΩmの範囲であり、高い比抵抗を示した。また、磁路断面10mm時の鉄損の値も200kW/m以下を示した。
 比較例2、3の試料では、シリコーンレジンが硬いため、比抵抗が低下し、磁路断面10mm時の鉄損の値が極めて大きくなった。
 比較例4、5の試料では、実施例の試料よりもシリコーンレジンが硬いため、比抵抗が低下し、磁路断面10mm時の鉄損の値が大きくなった。
 比較例6の試料では、シリコーンレジンの添加量が多いため、密度比が低下した。
 実施例7~10の試料では、組成がFe73~76Mo2~4Ga2~310~11Si1~2であるアトマイズ粉末を使用した。
 実施例7~10の試料では、Fe、Mo、Ga、P、C、B、Siの組成比を調整し、軟質のシリコーンレジンを0.36質量%用いたが、0.95の密度比を示し、比抵抗が2.2×10μΩm~1×10μΩmの範囲であり、高い比抵抗を得ることができた。また、磁路断面10mm時の鉄損の値も200kW/m以下である151~157kW/mの優れた値を示すことが分かった。
In the sample of Comparative Example 1 shown in Table 1, although a soft silicone resin was used, the specific resistance value was as low as 1 × 10 4 μΩm due to the small amount of addition. The value of iron loss when the magnetic path cross section is 10 mm is also large.
In the samples of Examples 1-6, although the silicone resin soft using an appropriate amount (0.2 to 0.72 wt%), shows a 0.94 or more density ratio, resistivity 1 × 10 5 μΩm ~ 2 It was in the range of .6 × 10 6 μΩm and showed high resistivity. In addition, the value of iron loss when the magnetic path cross section was 10 mm was 200 kW / m 3 or less.
In the samples of Comparative Examples 2 and 3, since the silicone resin was hard, the specific resistance was lowered and the value of iron loss when the magnetic path cross section was 10 mm was extremely large.
In the samples of Comparative Examples 4 and 5, since the silicone resin was harder than the samples of Examples, the specific resistance was lowered and the value of iron loss when the magnetic path cross section was 10 mm was large.
In the sample of Comparative Example 6, the density ratio was lowered because the amount of the silicone resin added was large.
In the samples of Examples 7 to 10, atomized powder having a composition of Fe 73 to 76 Mo 2 to 4 Ga 2 to 3 P 10 to 11 C 4 B 4 Si 1 to 2 was used.
In the samples of Examples 7 to 10, the composition ratios of Fe, Mo, Ga, P, C, B, and Si were adjusted, and 0.36% by mass of a soft silicone resin was used, but the density ratio was 0.95. As shown, the specific resistance was in the range of 2.2 × 10 5 μΩm to 1 × 10 6 μΩm, and a high specific resistance could be obtained. It was also found that the value of iron loss when the magnetic path cross section was 10 mm also showed an excellent value of 151 to 157 kW / m 3 which was 200 kW / m 3 or less.
 図3は、表1に示す結果が得られた試料について、シリコーンレジンの硬さと比抵抗の関係を示す。シリコーンレジンの硬さが1MHv以下になると、比抵抗が大幅に向上している。シリコーンレジンが軟質になると、混合粉末を成形する場合、成形時の粉末の変形に追随して皮膜も伸び、粒子が絶縁膜で被覆された状態を維持できるため、磁心としての比抵抗が向上すると推定できる。 FIG. 3 shows the relationship between the hardness of the silicone resin and the specific resistance of the sample for which the results shown in Table 1 were obtained. When the hardness of the silicone resin is 1 MHv or less, the specific resistance is significantly improved. When the silicone resin becomes soft, when molding a mixed powder, the film also stretches following the deformation of the powder during molding, and the particles can be maintained in a state of being covered with an insulating film, so that the specific resistance as a magnetic core is improved. Can be estimated.
 図4は、表1に示す結果が得られた試料について、シリコーンレジンの硬さと鉄損の関係を示す。シリコーンレジンの硬さが1MHv以下になると、磁路断面10mm時の鉄損が低い値となっている。
 従って上述の実施形態によれば、高い密度比(0.90以上)と高い比抵抗(1×10μΩm以上)であり、鉄損が低いという特性を全て満足できる金属ガラス圧粉磁心を提供することができる。
FIG. 4 shows the relationship between the hardness of the silicone resin and the iron loss for the samples for which the results shown in Table 1 were obtained. When the hardness of the silicone resin is 1 MHv or less, the iron loss when the magnetic path cross section is 10 mm is a low value.
Therefore, according to the above embodiment, a high density ratio (0.90 or higher) and high specific resistance (1 × 10 5 μΩm or higher), provides a metallic glass dust core iron loss can satisfy all the characteristics of low can do.
 本実施形態の金属ガラス圧粉磁心は、使用される周波数、用途、コアサイズに関わらずに様々なリアクトルコア(磁心)に好適に適用される。 The metallic glass dust core of the present embodiment is suitably applied to various reactors (magnetic cores) regardless of the frequency, application, and core size used.
 A…リアクトル、B…リアクトルコア、G…ギャップ、1…上部コア、2…下部コア、3…脚部、4…コイル。 A ... Reactor, B ... Reactor, G ... Gap, 1 ... Upper core, 2 ... Lower core, 3 ... Leg, 4 ... Coil.

Claims (12)

  1.  軟磁性金属ガラス合金からなる複数の粒子と、前記複数の粒子間の粒界に形成された1質量%以下の絶縁膜とからなる金属ガラス圧粉磁心であって、密度比が0.90以上、磁路断面10mmでの鉄損が200kW/m(0.1T/50kHz)以下、比抵抗が1×10μΩm以上であることを特徴とする高密度かつ高比抵抗の金属ガラス圧粉磁心。 A metallic glass dust core composed of a plurality of particles made of a soft magnetic metallic glass alloy and an insulating film of 1% by mass or less formed at a grain boundary between the plurality of particles, and has a density ratio of 0.90 or more. A high-density and high-specific-resistance metallic glass dust powder having an iron loss of 200 kW / m 3 (0.1 T / 50 kHz) or less and a specific resistance of 1 × 10 5 μΩm or more at a magnetic path cross section of 10 mm. core.
  2.  前記絶縁膜がシリコーンレジンの温間成形熱処理物からなり、前記シリコーンレジンの温間成形温度と同等の熱履歴後の前記シリコーンレジンの硬度が0.1~1.0MHvであることを特徴とする請求項1に記載の高密度かつ高比抵抗の金属ガラス圧粉磁心。 The insulating film is made of a heat-treated product for warm molding of a silicone resin, and the hardness of the silicone resin after a heat history equivalent to the warm molding temperature of the silicone resin is 0.1 to 1.0 MHv. The metal glass dust core having a high density and a high specific resistance according to claim 1.
  3.  前記シリコーンレジンの添加量が前記軟磁性金属ガラス合金の粒子の質量に対し0.2~0.8質量%であり、前記密度比が0.94以上であることを特徴とする請求項2に記載の高密度かつ高比抵抗の金属ガラス圧粉磁心。 The second aspect of the present invention is characterized in that the amount of the silicone resin added is 0.2 to 0.8% by mass with respect to the mass of the particles of the soft magnetic metallic glass alloy, and the density ratio is 0.94 or more. The high density and high specific resistance metallic glass dust core described.
  4.  前記軟磁性金属ガラス合金の過冷却液体温度ΔTxが20K以上であることを特徴とする請求項1~請求項3のいずれか一項に記載の高密度かつ高比抵抗の金属ガラス圧粉磁心。 The high-density and high-resistivity metallic glass dust core according to any one of claims 1 to 3, wherein the supercooled liquid temperature ΔTx of the soft magnetic metallic glass alloy is 20 K or more.
  5.  前記軟磁性金属ガラス合金が、一般式(Fe1-a-bMoGa100-w-x-y-zSi(0≦a≦0.075、0.025≦b≦0.0375、10≦w≦12、0≦x≦6、2≦y≦8、0≦z≦2、w+z=12)で表される組成を有することを特徴とする請求項1~請求項4のいずれか一項に記載の高密度かつ高比抵抗の金属ガラス圧粉磁心。
     ただし、前記一般式において、aはFeを基準としたMoの比率を示し、bはFeを基準としたGaの比率を示し、w、x、y、zは各元素の原子%を示す。
    The soft magnetic metallic glass alloys has the general formula (Fe 1-a-b Mo a Ga b) 100-w-x-y-z P w C x B y Si z (0 ≦ a ≦ 0.075,0. 025 ≦ b ≦ 0.0375, 10 ≦ w ≦ 12, 0 ≦ x ≦ 6, 2 ≦ y ≦ 8, 0 ≦ z ≦ 2, w + z = 12). The metallic glass dust core having a high density and a high specific resistance according to any one of 1 to 4.
    However, in the above general formula, a indicates the ratio of Mo based on Fe, b indicates the ratio of Ga based on Fe, and w, x, y, and z indicate the atomic% of each element.
  6.  軟磁性金属ガラス合金からなる複数の粉末とシリコーンレジンを混合して混合粉末を作製する工程と、
     前記混合粉末を前記軟磁性金属ガラス合金のガラス転移点以上の温度であって、結晶化温度以下の温度で目的の形状に温間成形し、軟磁性金属ガラス合金からなる複数の粒子と、前記粒子間の粒界に形成された前記シリコーンレジンの温間成形物からなる絶縁膜を有する組織を得る工程と、を有することを特徴とする金属ガラス圧粉磁心の製造方法。
    A process of mixing a plurality of powders made of soft magnetic metallic glass alloy and a silicone resin to prepare a mixed powder, and
    The mixed powder is warmly molded into a desired shape at a temperature equal to or higher than the glass transition point of the soft magnetic metallic glass alloy and lower than the crystallization temperature, and a plurality of particles made of the soft magnetic metallic glass alloy and the above. A method for producing a metallic glass dust core, which comprises a step of obtaining a structure having an insulating film made of a warm molded product of the silicone resin formed at a grain boundary between particles.
  7.  前記温間成形温度と同等の熱履歴後の硬度が0.1~1.0MHvのシリコーンレジンを用いることを特徴とする請求項6に記載の金属ガラス圧粉磁心の製造方法。 The method for producing a metallic glass dust core according to claim 6, wherein a silicone resin having a hardness of 0.1 to 1.0 MHv after a heat history equivalent to the warm forming temperature is used.
  8.  前記シリコーンレジンの添加量を前記軟磁性金属ガラス合金の粒子の質量に対し0.2~0.8質量%とし、密度比が0.90以上の金属ガラス圧粉磁心を得ることを特徴とする請求項6または請求項7に記載の金属ガラス圧粉磁心の製造方法。 The addition amount of the silicone resin is 0.2 to 0.8% by mass with respect to the mass of the particles of the soft magnetic metal glass alloy, and a metallic glass dust core having a density ratio of 0.90 or more is obtained. The method for producing a metallic glass dust core according to claim 6 or 7.
  9.  密度比が0.94以上、磁路断面10mmでの鉄損が200kW/m以下(0.1T/50kHz)、比抵抗が1×10μΩm以上の金属ガラス圧粉磁心を得ることを特徴とする請求項6~請求項8のいずれか一項に記載の金属ガラス圧粉磁心の製造方法。 Density ratio of 0.94 or more, the iron loss in the magnetic path cross section 10mm is 200 kW / m 3 or less (0.1 T / 50 kHz), characterized in that the specific resistance obtain 1 × 10 5 μΩm or more metallic glass powder core The method for producing a metallic glass dust core according to any one of claims 6 to 8.
  10.  前記温間成形時の成形温度を450~480℃とすることを特徴とする請求項6~請求項9のいずれか一項に記載の金属ガラス圧粉磁心の製造方法。 The method for producing a metallic glass dust core according to any one of claims 6 to 9, wherein the molding temperature during warm molding is 450 to 480 ° C.
  11.  過冷却液体温度ΔTxが20K以上の軟磁性金属ガラス合金を用いることを特徴とする請求項6~請求項10のいずれか一項に記載の金属ガラス圧粉磁心の製造方法。 The method for producing a metallic glass dust core according to any one of claims 6 to 10, wherein a soft magnetic metallic glass alloy having a supercooled liquid temperature ΔTx of 20 K or more is used.
  12.  一般式(Fe1-a-bMoGa100-w-x-y-zSi(0≦a≦0.075、0.025≦b≦0.0375、10≦w≦12、0≦x≦6、2≦y≦8、0≦z≦2、w+z=12)で表される軟磁性金属ガラス合金を用いることを特徴とする請求項6~請求項11のいずれか一項に記載の金属ガラス圧粉磁心の製造方法。
     ただし、前記一般式において、aはFeを基準としたMoの比率を示し、bはFeを基準としたGaの比率を示し、w、x、y、zは各元素の原子%を示す。
    Formula (Fe 1-a-b Mo a Ga b) 100-w-x-y-z P w C x B y Si z (0 ≦ a ≦ 0.075,0.025 ≦ b ≦ 0.0375, Claims 6 to 6 to claim that a soft magnetic metallic glass alloy represented by 10 ≦ w ≦ 12, 0 ≦ x ≦ 6, 2 ≦ y ≦ 8, 0 ≦ z ≦ 2, w + z = 12) is used. The method for producing a metallic glass dust core according to any one of No. 11.
    However, in the above general formula, a indicates the ratio of Mo based on Fe, b indicates the ratio of Ga based on Fe, and w, x, y, and z indicate the atomic% of each element.
PCT/JP2021/001773 2020-02-04 2021-01-20 Metallic glass powder magnetic core having high density and high specific resisance, and method for manufacturing same WO2021157352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021575698A JP7285346B2 (en) 2020-02-04 2021-01-20 Metallic glass powder magnetic core with high density and high resistivity and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-017361 2020-02-04
JP2020017361 2020-02-04

Publications (1)

Publication Number Publication Date
WO2021157352A1 true WO2021157352A1 (en) 2021-08-12

Family

ID=77199329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001773 WO2021157352A1 (en) 2020-02-04 2021-01-20 Metallic glass powder magnetic core having high density and high specific resisance, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7285346B2 (en)
WO (1) WO2021157352A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184616A (en) * 2000-12-18 2002-06-28 Alps Electric Co Ltd Dust core
JP2004204296A (en) * 2002-12-25 2004-07-22 Japan Science & Technology Agency BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
JP2007231415A (en) * 2006-02-02 2007-09-13 Nec Tokin Corp Amorphous soft magnetic alloy, amorphous soft magnetic alloy member, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder and magnetic core and inductance component using the same
JP2008004864A (en) * 2006-06-26 2008-01-10 Nissan Motor Co Ltd Amorphous soft magnetic material
JP2011018822A (en) * 2009-07-10 2011-01-27 Toyota Central R&D Labs Inc Dust core and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184616A (en) * 2000-12-18 2002-06-28 Alps Electric Co Ltd Dust core
JP2004204296A (en) * 2002-12-25 2004-07-22 Japan Science & Technology Agency BULK SHAPED Fe BASED SINTERED ALLOY SOFT MAGNETIC MATERIAL CONSISTING OF METAL GLASS, AND PRODUCTION METHOD THEREFOR
JP2007231415A (en) * 2006-02-02 2007-09-13 Nec Tokin Corp Amorphous soft magnetic alloy, amorphous soft magnetic alloy member, amorphous soft magnetic alloy ribbon, amorphous soft magnetic alloy powder and magnetic core and inductance component using the same
JP2008004864A (en) * 2006-06-26 2008-01-10 Nissan Motor Co Ltd Amorphous soft magnetic material
JP2011018822A (en) * 2009-07-10 2011-01-27 Toyota Central R&D Labs Inc Dust core and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHIN HORYU ET AL.: "Forming ability and crystallization behaviour of Fe-Mo-Ga-P-C-B-Si glass alloy showing excellent soft magnetic properties", SUMMARIES OF YEAR 2005 ANNUAL FALL (137TH) MEETING OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 28 September 2005 (2005-09-28), pages 273, ISSN: 1342-5730 *

Also Published As

Publication number Publication date
JP7285346B2 (en) 2023-06-01
JPWO2021157352A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
US10984932B2 (en) Amorphous soft magnetic alloy and inductance component using the same
JP6867965B2 (en) Soft magnetic alloy powder, powder magnetic core and magnetic parts
EP2482291B1 (en) Magnetic powder material and low-loss composite magnetic material containing same
WO2018150952A1 (en) Soft magnetic powder, dust magnetic core, magnetic part, and method for producing dust magnetic core
KR102012959B1 (en) Powder made of iron-based metallic glass
EP3171368B1 (en) Method for producing magnetic core, magnetic core, and coil component using same
JP6427862B2 (en) Dust core, manufacturing method thereof, inductance element using the dust core, and rotating electric machine
JP6606162B2 (en) Dust core, method for manufacturing the same, and magnetic component using the same
US11817245B2 (en) Soft magnetic powder
WO2018179812A1 (en) Dust core
JP7132231B2 (en) Powder magnetic core manufacturing method, powder magnetic core and inductor
US20180218810A1 (en) Soft magnetic alloy and magnetic device
JP7128439B2 (en) Dust core and inductor element
JP2003059710A (en) Dust core
JP6898057B2 (en) Powder magnetic core
CN107887095B (en) Soft magnetic alloy
JP6314020B2 (en) Powder magnetic core using nanocrystalline soft magnetic alloy powder and manufacturing method thereof
TW201814738A (en) Soft magnetic alloy
WO2021157352A1 (en) Metallic glass powder magnetic core having high density and high specific resisance, and method for manufacturing same
JP7128438B2 (en) Dust core and inductor element
JPH0479302A (en) Dust core
TWI687525B (en) Soft magnetic alloy and magnetic parts
CN111801437B (en) Soft magnetic alloy and magnetic component
JP2022116435A (en) Dust core and manufacturing method for the same
JP2020136647A (en) Magnetic core and magnetic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751469

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575698

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751469

Country of ref document: EP

Kind code of ref document: A1