WO2021153628A1 - Imaging element and method for manufacturing imaging element - Google Patents

Imaging element and method for manufacturing imaging element Download PDF

Info

Publication number
WO2021153628A1
WO2021153628A1 PCT/JP2021/002887 JP2021002887W WO2021153628A1 WO 2021153628 A1 WO2021153628 A1 WO 2021153628A1 JP 2021002887 W JP2021002887 W JP 2021002887W WO 2021153628 A1 WO2021153628 A1 WO 2021153628A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
electrode
organic photoelectric
conversion unit
Prior art date
Application number
PCT/JP2021/002887
Other languages
French (fr)
Japanese (ja)
Inventor
宣年 藤井
村田 賢一
齋藤 卓
秀起 辻合
正喜 岡本
佳紀 白數
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2021574081A priority Critical patent/JPWO2021153628A1/ja
Publication of WO2021153628A1 publication Critical patent/WO2021153628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to an image sensor having a photoelectric conversion layer using an organic semiconductor material and a method for manufacturing the same.
  • Patent Document 1 in a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated, which is provided above a semiconductor substrate, the first electrode, the photoelectric conversion layer, and the second electrode are arranged apart from the first electrode and an insulating layer.
  • An image pickup device having a charge storage electrode arranged so as to face the photoelectric conversion layer is disclosed. In this image sensor, the charge generated by the photoelectric conversion is stored on the charge storage electrode to reduce the generation of noise and improve the image quality of the image.
  • Patent Document 2 in the peripheral region, by providing a layer composed of a buffer layer, a sealing layer, a color filter, a flattening layer and a protective film on the insulating layer or the upper electrode, problems such as film peeling occur.
  • An imaging device is disclosed in which the occurrence of the above-mentioned is reduced and the manufacturing yield is improved.
  • the image sensor is required to improve the manufacturing yield.
  • the image pickup element of the embodiment of the present disclosure is provided on a semiconductor substrate having an effective pixel region in which a plurality of pixels are arranged and a peripheral region provided around the effective pixel region, and on the light receiving surface side of the semiconductor substrate.
  • a first electrode composed of a plurality of electrodes, a second electrode arranged to face the first electrode, and an electric charge extending in an effective pixel region while being sequentially laminated between the first electrode and the second electrode.
  • An organic photoelectric conversion unit having an accumulation layer and an organic photoelectric conversion layer, and a sealing layer in which a first layer and a second layer having different etching rates are laminated above the organic photoelectric conversion unit are provided. It is a thing.
  • an effective pixel region in which a plurality of pixels are arranged and an effective pixel region on the light receiving surface side of a semiconductor substrate having a peripheral region provided around the effective pixel region are formed.
  • the organic photoelectric conversion unit after stacking the first electrode composed of a plurality of electrodes, the charge storage layer, the organic photoelectric conversion layer, and the second electrode in this order, different etching rates are applied above the organic photoelectric conversion unit. It forms a sealing layer formed by laminating a first layer and a second layer having the same.
  • a first layer and a second layer having different etching rates are laminated on the organic photoelectric conversion unit.
  • the layer it is easy to form a contact with the organic photoelectric conversion unit from above the organic photoelectric conversion unit.
  • FIG. 5 is a schematic plan view showing an example of the layout of the lower electrodes constituting the organic photoelectric conversion unit shown in FIG. 1. It is a perspective view of the layout of the lower electrode shown in FIG. 5A.
  • FIG. 5 is a schematic plan view showing another example of the layout of the lower electrode constituting the organic photoelectric conversion unit shown in FIG. 1.
  • FIG. 5 is a schematic plan view showing an example of the layout of one inorganic photoelectric conversion unit shown in FIG. 1 and various transistors related thereto. It is a plan schematic diagram which shows an example of the layout of the other inorganic photoelectric conversion part shown in FIG. 1 and various transistors related thereto. It is a signal line arrangement diagram for driving the storage electrode shown in FIG. It is a figure which shows a part of the wiring connected to the adjacent photoelectric conversion part and various transistors related thereto. It is a figure which shows a part of the wiring connected to the adjacent photoelectric conversion part and various transistors related thereto.
  • FIG. 38 It is sectional drawing which shows an example of the structure of the main part of the image pickup device which concerns on 4th Embodiment of this disclosure. It is a schematic diagram which shows the planar structure of the image pickup device shown in FIG. 38. It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 39. It is sectional drawing which shows the process following FIG. 40. It is sectional drawing which shows the process following FIG. 41. It is sectional drawing which shows the process following FIG. 42. It is sectional drawing which shows the process following FIG. 43. It is sectional drawing which shows the other example of the structure of the main part of the image pickup device which concerns on 4th Embodiment of this disclosure. It is a schematic diagram which shows the planar structure of the image pickup device shown in FIG.
  • FIG. 45 It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 46. It is sectional drawing which shows the process following FIG. 47. It is sectional drawing which shows the process following FIG. 48. It is sectional drawing which shows the process following FIG. 49. It is sectional drawing which shows an example of the structure of the main part of the image pickup device which concerns on the modification of this disclosure. It is a schematic diagram which shows the planar structure of the image pickup device shown in FIG. 51. It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. It is sectional drawing which shows the process following FIG. 53. It is sectional drawing which shows the process following FIG. 54. It is sectional drawing which shows the process following FIG. 55.
  • FIG. 5 is a functional block diagram showing an example of an electronic device (camera) using the image pickup apparatus shown in FIG. 57. It is a block diagram which shows an example of the schematic structure of the body information acquisition system. It is a figure which shows an example of the schematic structure of the endoscopic surgery system. It is a block diagram which shows an example of the functional structure of a camera head and a CCU. It is a block diagram which shows an example of the schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit.
  • the second embodiment (an example of an image sensor having a sealing layer in which a second layer containing oxygen and a first layer containing nitrogen are laminated in this order above the organic photoelectric conversion unit).
  • Third Embodiment (Example in which the first layer is selectively provided in the contact portion with the upper upper pole) 4.
  • Fourth embodiment (an example in which an inter-pixel light-shielding film is provided and this inter-pixel light-shielding film is used together with the first layer as an etching stopper layer). 5.
  • Modification example (an example in which an inter-pixel light-shielding film is provided and used as the first layer) 6.
  • Application example Application example
  • FIG. 1 shows a cross-sectional configuration of an image pickup device (image pickup device 10A) according to the first embodiment of the present disclosure.
  • FIG. 2 schematically shows a cross-sectional configuration of a main part of the image pickup device 10A shown in FIG.
  • FIG. 3 is an equivalent circuit diagram of the image pickup device 10A shown in FIG.
  • FIG. 4 schematically shows the arrangement of the lower electrode 21 of the image pickup device 10A shown in FIG. 1 and the transistors constituting the control unit.
  • the image sensor 10A is, for example, one pixel (unit pixel P) in an image pickup device (imaging device 1; see FIG.
  • the image pickup apparatus 1 has an effective pixel area 110A in which a plurality of pixels are arranged, and a peripheral area 110B provided around the effective pixel area 110A in which a peripheral circuit unit 130 such as a row scanning unit 131 is formed.
  • CMOS Complementary Metal Oxide Semiconductor
  • the image sensor 10A is a so-called vertical spectroscopic image sensor in which one organic photoelectric conversion unit 20 and two inorganic photoelectric conversion units 32B and 32R are vertically laminated, and four pixels adjacent to each other are arranged. , Each of which has a pixel sharing structure that shares one floating diffusion FD1, FD2, and FD3 corresponding to each.
  • the organic photoelectric conversion unit 20 is provided on the light receiving surface (first surface (back surface) 30S1) of the semiconductor substrate 30. From the semiconductor substrate 30 side, the organic photoelectric conversion unit 20 includes a lower electrode 21 (first electrode) composed of a plurality of electrodes, an insulating layer 22, a charge storage layer 23, a photoelectric conversion layer 24 (organic photoelectric conversion layer), and an upper electrode 25.
  • (Second electrode) has a structure in which (second electrode) is laminated in this order.
  • the image pickup device 10A of the present embodiment is provided with a sealing layer 26 above the organic photoelectric conversion unit 20, specifically, on the upper electrode 25.
  • the first layer 26A, the second layer 26B and the third layer 26C are laminated in this order, the first layer 26A uses an insulating material containing nitrogen, and the second layer 26B is oxygen.
  • Each is formed using an insulating material containing.
  • the inorganic photoelectric conversion units 32B and 32R are embedded and formed in the semiconductor substrate 30, and are laminated in the thickness direction of the semiconductor substrate 30.
  • the organic photoelectric conversion unit 20 and the inorganic photoelectric conversion units 32B and 32R selectively detect light in different wavelength ranges and perform photoelectric conversion. Specifically, for example, the organic photoelectric conversion unit 20 acquires a green (G) color signal.
  • the inorganic photoelectric conversion units 32B and 32R acquire blue (B) and red (R) color signals, respectively, depending on the difference in absorption coefficient.
  • the image sensor 10A can acquire a plurality of types of color signals in one pixel without using a color filter.
  • floating diffusion (floating diffusion layer) FD1 region 35 in the semiconductor substrate 30
  • FD2, FD3, transfer transistors TR2trs, TR3trs, and amplifier transistors (modulation) Elements) TR1amp, TR2amp, reset transistors TR1rst, TR2rst, selection transistors TR1sel, TR2sel, and a multilayer wiring layer 40 are provided.
  • the reset gate Grst of the reset transistor TR1rst is arranged next to the floating diffusion FD1 (one source / drain region of the reset transistor TR1rst). As a result, the electric charge accumulated in the floating diffusion FD1 can be reset by the reset transistor TR1rst.
  • the multilayer wiring layer 40 has, for example, a configuration in which the wiring layers 41, 42, and 43 are laminated in the insulating layer 44.
  • the first surface 30S1 side of the semiconductor substrate 30 is represented as the light incident side S1
  • the second surface 30S2 side is represented as the wiring layer side S2.
  • the light incident on the organic photoelectric conversion unit 20 from the light incident side S1 is absorbed by the photoelectric conversion layer 24.
  • the excitons generated thereby move to the interface between the electron donor and the electron acceptor constituting the photoelectric conversion layer 24, and exciton separation, that is, dissociation into electrons and holes.
  • the charges (electrons and holes) generated here are due to diffusion due to the difference in carrier concentration and the internal electric field due to the difference in work function between the anode (here, the upper electrode 25) and the cathode (here, the lower electrode 21). They are carried to different electrodes and detected as photocurrent. Further, by applying an electric potential between the lower electrode 21 and the upper electrode 25, the transport direction of electrons and holes can be controlled.
  • the organic photoelectric conversion unit 20 is an organic photoelectric conversion element that absorbs green light corresponding to a part or all of a selective wavelength range (for example, 450 nm or more and 650 nm or less) to generate excitons.
  • the organic photoelectric conversion unit 20 has a charge storage layer 23 and a photoelectric conversion layer 24 between the lower electrode 21 and the upper electrode 25 arranged so as to face each other, and the charge storage layer 23 and the charge storage layer 23 are separated from each other.
  • An insulating layer 22 is provided.
  • the lower electrode 21 is composed of, for example, a readout electrode 21A and a storage electrode 21B which are separated and formed for each image sensor 10A and whose insulating layer 22 is separated from each other, and a shield electrode 21C which surrounds four pixels adjacent to each other. It is configured.
  • the readout electrode 21A is shared between two or four pixels adjacent to each other, as shown in FIGS. 5A and 6A, and has an opening 22H provided in the insulating layer 22. It is electrically connected to the charge storage layer 23 via.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are provided, for example, as continuous layers common to a plurality of image pickup devices 10A, and extend to the effective pixel region 110A.
  • the lower electrode 21 is composed of the separately formed read-out electrode 21A, the storage electrode 21B, and the shield electrode 21C as described above.
  • the read electrode 21A is for transferring the electric charge (electrons in this case) generated in the photoelectric conversion layer 24 to the floating diffusion FD1, and for example, the via V1, the pad portion 36A, the via V2, the pad portion 35A, and the through. It is connected to the floating diffusion FD1 via the electrode 34, the connecting portion 41A, and the lower first contact 45.
  • the storage electrode 21B is for accumulating electrons as signal charges in the charge storage layer 23 among the charges generated in the photoelectric conversion layer 24.
  • the storage electrode 21B is provided in a region that faces the light receiving surfaces of the inorganic photoelectric conversion units 32B and 32R formed in the semiconductor substrate 30 and covers these light receiving surfaces.
  • the storage electrode 21B is preferably larger than the readout electrode 21A, which allows a large amount of charge to be stored.
  • the shield electrode 21C is for suppressing charge leakage to adjacent pixels.
  • the lower electrode 21 is made of a light-transmitting conductive film, for example, made of ITO (indium tin oxide).
  • ITO indium tin oxide
  • a tin oxide (SnO 2 ) -based material to which a dopant is added or a zinc oxide-based material obtained by adding a dopant to zinc oxide (ZnO) is used as the constituent material of the lower electrode 21, in addition to this ITO, a tin oxide (SnO 2 ) -based material to which a dopant is added or a zinc oxide-based material obtained by adding a dopant to zinc oxide (ZnO) is used. You may use it.
  • the zinc oxide-based material include aluminum zinc oxide (AZO) to which aluminum (Al) is added as a dopant, gallium zinc oxide (GZO) to which gallium (Ga) is added, and indium zinc oxide to which indium (In) is added. (IZO) can be mentioned.
  • the thickness of the lower electrode 21 is, for example, preferably 20 nm or more and 200 nm or less, and more preferably 30 nm or more and 100 nm or less.
  • the insulating layer 22 is for electrically insulating the storage electrode 21B and the charge storage layer 23.
  • the insulating layer 22 is provided on, for example, the interlayer insulating layer 29 and the lower electrode 21 so as to cover the lower electrode 21. Further, the insulating layer 22 is provided with an opening 22H on the reading electrode 21A of the lower electrodes 21, and the reading electrode 21A and the charge storage layer 23 are electrically connected via the opening 22H. There is.
  • the insulating layer 22 is, for example, a single-layer film made of, for example, one of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), or any of these. It is composed of a laminated film composed of two or more types.
  • the thickness of the insulating layer 22 is, for example, 20 nm or more and 500 nm or less.
  • the charge storage layer 23 is provided under the photoelectric conversion layer 24, specifically, between the insulating layer 22 and the photoelectric conversion layer 24, and stores the signal charges (electrons in this case) generated in the photoelectric conversion layer 24. It is for doing.
  • the charge storage layer 23 is preferably formed by using a material having a higher charge mobility than the photoelectric conversion layer 24 and a large band gap.
  • the band gap of the constituent material of the charge storage layer 23 is preferably 3.0 eV or more.
  • oxide semiconductor materials such as IGZO and organic semiconductor materials.
  • the organic semiconductor material include transition metal dichalcogenides, silicon carbide, diamond, graphene, carbon nanotubes, condensed polycyclic hydrocarbon compounds, condensed heterocyclic compounds and the like.
  • the thickness of the charge storage layer 23 is, for example, 10 nm or more and 300 nm or less.
  • the photoelectric conversion layer 24 converts light energy into electrical energy.
  • the photoelectric conversion layer 24 is composed of, for example, two or more types of organic materials (p-type semiconductor materials or n-type semiconductor materials) that function as p-type semiconductors or n-type semiconductors, respectively.
  • the photoelectric conversion layer 24 has a bulk heterojunction structure including a junction surface (p / n junction surface) between the p-type semiconductor material and the n-type semiconductor material in the layer.
  • the p-type semiconductor functions relatively as an electron donor (donor)
  • the n-type semiconductor functions relatively as an electron acceptor (acceptor).
  • the photoelectric conversion layer 24 provides a place where excitons generated when light is absorbed are separated into electrons and holes. Specifically, excitons are composed of an electron donor and an electron acceptor. It separates into electrons and holes at the interface (p / n junction surface).
  • the photoelectric conversion layer 24 includes, in addition to the p-type semiconductor material and the n-type semiconductor material, an organic material that photoelectrically converts light in a predetermined wavelength range while transmitting light in another wavelength range, that is, a so-called dye material. It may have been done.
  • the photoelectric conversion layer 24 is formed using three types of organic materials, a p-type semiconductor material, an n-type semiconductor material, and a dye material, the p-type semiconductor material and the n-type semiconductor material have a visible region (for example, 450 nm or more). It is preferable that the material has light transmission at 800 nm or less).
  • the thickness of the photoelectric conversion layer 24 is, for example, 50 nm or more and 500 nm or less.
  • Examples of the organic material constituting the photoelectric conversion layer 24 include quinacridone, boron chlorinated subphthalocyanine, pentacene, benzothioenobenzothiophene and fullerene, or derivatives thereof.
  • the photoelectric conversion layer 24 is composed of a combination of two or more of the above organic materials.
  • the organic material functions as a p-type semiconductor or an n-type semiconductor depending on the combination thereof.
  • the organic material constituting the photoelectric conversion layer 24 is not particularly limited.
  • any one of naphthalene, anthracene, phenanthrene, tetracene, pyrene, perylene and fluoranthene or derivatives thereof is preferably used.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picolin, thiophene, acetylene and diacetylene or derivatives thereof may be used.
  • metal complex dyes cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rodacyanine dyes, xanthene dyes, macrocyclic azaanulene dyes, azulene dyes, naphthoquinones, anthracene dyes, Condensed polycyclic aromatics such as anthracene and pyrene and chain compounds condensed with aromatic or heterocyclic compounds, or containing two components such as quinoline, benzothiazole, and benzoxanthene having a squarylium group and a croconite methine group as binding chains.
  • a nitrogen heterocycle or a cyanine-like dye bonded by a squarylium group and a croconite methine group can be preferably used.
  • the metal complex dye is preferably, but is not limited to, a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye.
  • the photoelectric conversion layer 24 and the lower electrode 21 are provided between the photoelectric conversion layer 24 and the lower electrode 21 (for example, between the charge storage layer 23 and the photoelectric conversion layer 24) and between the photoelectric conversion layer 24 and the upper electrode 25. May be good.
  • the charge storage layer 23, the electron blocking layer, the photoelectric conversion layer 24, the hole blocking layer, the work function adjusting layer, and the like may be laminated in this order from the lower electrode 21 side.
  • an undercoat layer and a hole transport layer may be provided between the lower electrode 21 and the photoelectric conversion layer 24, and a buffer layer and an electron transport layer may be provided between the photoelectric conversion layer 24 and the upper electrode 25.
  • the upper electrode 25 is made of a conductive film having light transmission like the lower electrode 21.
  • the upper electrode 25 may be separated for each pixel, or may be formed as a common electrode for each pixel.
  • the thickness of the upper electrode 25 is, for example, 10 nm or more and 200 nm or less.
  • the wiring 52 is electrically connected to the upper electrode 25 via, for example, the opening 51H2.
  • the wiring 52 is electrically connected to the pad portion 36D provided in the peripheral region 110B via the opening 51H1 penetrating the flattening layer 51 and the sealing layer 26 described later. There is. That is, the upper electrode 25 is electrically connected to the pad portion 36D via, for example, the wiring 52.
  • the sealing layer 26 composed of the first layer 26A, the second layer 26B, and the third layer 26C is provided on the upper electrode 25.
  • the sealing layer 26 is for suppressing the invasion of hydrogen (H 2 ) into the organic photoelectric conversion unit 20, and it is preferable that the hydrogen content is low or the film itself does not contain hydrogen.
  • the first layer 26A and the second layer 26B are provided on the upper surface of the upper electrode 25, and the third layer 26C is formed from the upper surface of the upper electrode 25 to the upper electrode 25, the photoelectric conversion layer 24 and the photoelectric conversion layer 24. It is formed on the insulating layer 22 via the side surface of the charge storage layer 23, and extends to, for example, the end of the peripheral region 110B.
  • the material constituting the sealing layer 26 examples include an insulating material having light transmittance and high sealing property.
  • the first layer 26A can be formed by using, for example, aluminum nitride (AlN x ) or silicon nitride (SiN x).
  • the second layer 26B and the third layer 26C can be formed by using , for example, aluminum oxide (AlO x).
  • the first layer 26A and the second layer 26B can be formed, for example, by using an atomic layer deposition method (ALD method), for example, with a film thickness of 1 nm or more and 100 nm or less.
  • ALD method atomic layer deposition method
  • the third layer 26C can be formed, for example, by using a sputtering method, for example, with a film thickness of 100 nm or more and 1000 nm or less.
  • a fixed charge layer 27, an insulating layer 28, and an interlayer insulating layer 29 are provided between the first surface 30S1 of the semiconductor substrate 30 and the lower electrode 21 in this order.
  • the fixed charge layer 27 may be a film having a positive fixed charge or a film having a negative fixed charge.
  • Materials for films with a negative fixed charge include hafnium oxide (HfO x ), aluminum oxide (AlO x ), zirconium oxide (ZrO x ), tantalum oxide (TaO x ), titanium oxide (TiO x ), and lanthanum oxide (TiO x).
  • the fixed charge layer 27 may have a configuration in which two or more types of films are laminated. Thereby, for example, in the case of a film having a negative fixed charge, the function as a hole storage layer can be further enhanced.
  • the insulating layer 28 is provided on the fixed charge layer 27 formed on the first surface 30S1 of the semiconductor substrate 30 and in the through holes 30H1, 30H2, 30H3, 30H4 in which the through electrodes 34A, 34B, 34C, and 34D are formed, which will be described later. It is provided between the fixed charge layer 27 and the through electrodes 34A, 34B, 34C, 34D, and is for electrically insulating the through electrodes 34A, 34B, 34C, 34D and the semiconductor substrate 30.
  • the constituent material of the insulating layer 28 is not particularly limited, but can be formed of, for example, silicon oxide (SiO x ), TEOS, silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), or the like.
  • the interlayer insulating layer 29 is a single layer made of, for example, one of silicon oxide (SiO x ), TEOS, silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like. It is composed of a film or a laminated film composed of two or more of these.
  • pad portions 35A and 36A that electrically connect the readout electrode 21A and the through electrode 34A, and pad portions 35B that electrically connect the storage electrode 21B and the through electrode 34B, 36B, pad portions 35C and 36C that electrically connect the shield electrode 21C and the through electrode 34C, pad portions 35D and 36D that electrically connect the wiring 52 and the through electrode 34D, and each electrode and the pad portion are electrically connected.
  • Wiring such as vias V1 and V2 connected to is provided.
  • the semiconductor substrate 30 is composed of, for example, an n-type silicon (Si) substrate, and has a p-well 31 in a predetermined region (for example, an effective pixel region 110A).
  • the second surface 30S2 of the p-well 31 is provided with the above-mentioned transfer transistors TR1trs, TR2trs, TR3trs, amplifier transistors TR1amp, TR2amp, reset transistors TR1rst, TR2rst, selection transistors TR1sel, TR2sel, and the like.
  • the peripheral region 110B of the semiconductor substrate 30 is provided with a peripheral circuit unit 130 or the like including a logic circuit or the like.
  • FIG. 5A shows an example of the layout of the lower electrode 21 constituting the organic photoelectric conversion unit 20, and FIG. 5B shows the layout of the lower electrode 21 shown in FIG. 5A as a perspective perspective view.
  • FIG. 6A shows an example of the layout of the lower electrode 21 constituting the organic photoelectric conversion unit 20, and FIG. 6B shows the layout of the lower electrode 21 shown in FIG. 6A as a perspective perspective view.
  • FIG. 7 shows an example of the layout of the inorganic photoelectric conversion unit 32B and various transistors related thereto.
  • FIG. 5A shows an example of the layout of the lower electrode 21 constituting the organic photoelectric conversion unit 20
  • FIG. 5B shows the layout of the lower electrode 21 shown in FIG. 5A as a perspective perspective view.
  • FIG. 6A shows an example of the layout of the lower electrode 21 constituting the organic photoelectric conversion unit 20
  • FIG. 6B shows the layout of the lower electrode 21 shown in FIG. 6A as a perspective perspective view.
  • FIG. 7 shows an example of the layout of the inorganic
  • FIG. 8 shows an example of the layout of the inorganic photoelectric conversion unit 32R and various transistors related thereto.
  • FIG. 9 shows an example of signal wiring for driving the storage electrode 21B in the organic photoelectric conversion unit 20.
  • 10 to 12 show an example of wiring connected to each photoelectric conversion unit 20, 32B, 32R and various transistors related thereto.
  • the four organic photoelectric conversion units 20 adjacent to each other are connected to one floating diffusion FD1.
  • One reset transistor TR1rst and a power supply line Vdd are connected in series to the floating diffusion FD1.
  • one of each of the amplifier transistor TR1amp and the selection transistor TR1sel and the signal line (data output line) VSL1 are connected in series to the floating diffusion FD1.
  • the four storage electrodes 21B adjacent to each other and the reset transistor TR1rst, the amplifier transistor TR1amp, and the selection transistor TR1sel provided one for each pixel are read-out operations and reset operations of the four organic photoelectric conversion units 20 adjacent to each other. It constitutes a set of control units (first control unit). When reading signal charges from four organic photoelectric conversion units 20 adjacent to each other, for example, time division is performed in order using the first control unit.
  • inorganic photoelectric conversion unit 32B four photodiodes PD2 adjacent to each other are connected to one floating diffusion FD2 via four transfer transistors TR2trs provided one for each pixel.
  • the inorganic photoelectric conversion unit 32R similarly to the inorganic photoelectric conversion unit 32B, four photodiodes PD3 adjacent to each other are connected to one floating diffusion FD3 via four transfer transistors TR3trs provided one for each pixel. It is connected.
  • One reset transistor TR2rst and a power supply line Vdd are connected in series to one floating diffusion FD2. Separately from this, one of each of the amplifier transistor TR2amp and the selection transistor TR2sel and the signal line (data output line) VSL2 are connected in series to the floating diffusion FD2.
  • the inorganic photoelectric conversion unit 32B and the inorganic photoelectric conversion unit 32R are one transfer transistor TR2trs and one transfer transistor TR3trs provided for each pixel.
  • a set of control units (second) that are responsible for reading and resetting the four inorganic photoelectric conversion units 32B and the inorganic photoelectric conversion units 32R that are adjacent to each other by the reset transistor TR2rst, the amplifier transistor TR2amp, and the selection transistor TR2sel that are provided respectively.
  • Control unit That is, in the four inorganic photoelectric conversion units 32B and the four inorganic photoelectric conversion units 32R provided in the stacked image pickup element 10A for four pixels, one set of control units (second control) except for the transfer transistors TR2trs and TR3trs. Department) is shared.
  • the second control unit When reading signal charges from the floating diffusion FD2 corresponding to the four inorganic photoelectric conversion units 32B adjacent to each other and the floating diffusion FD3 corresponding to the four inorganic photoelectric conversion units 32R, the second control unit is used, for example. Read processing is performed in order by time division.
  • the four inorganic photoelectric conversion units 32B adjacent to each other and the floating diffusion FD2 and FD3 shared by the inorganic photoelectric conversion unit 32R are arranged at places separated by one pixel from each other. This makes it possible to realize high integration of the image sensor 10A.
  • Electrodes 34A, 34B, 34C, 34D are provided between the first surface 30S1 and the second surface 30S2 of the semiconductor substrate 30.
  • the through electrode 34A is electrically connected to the read electrode 21A of the organic photoelectric conversion unit 20, and the organic photoelectric conversion unit 20 passes through the through electrode 34A, for example, the gate Gamp of the amplifier transistor TR1amp and the floating diffusion FD1. It is connected to one source / drain region of the reset transistor RST (reset transistor TR1rst) that also serves as.
  • the reset transistor RST reset transistor TR1rst
  • the through electrode 34B is electrically connected to the storage electrode 21B of the organic photoelectric conversion unit 20, so that a voltage independent of the read electrode 21A can be applied to the storage electrode 21B.
  • the through electrode 34C is electrically connected to the shield electrode 21C, whereby the leakage of electric charge to the adjacent pixel is suppressed.
  • the through silicon via 34D is electrically connected to the pad portion 36D provided in the peripheral region 110B.
  • the wiring 52 is electrically connected to the pad portion 36D via the opening 51H1 to form a guard ring 55.
  • the guard ring 55 can prevent water from entering from the outer circumference.
  • the wiring 52 constituting the guard ring 55 does not necessarily have to be electrically connected to the upper electrode 25.
  • the protective layer 53 is embedded in the opening 51H1 constituting the guard ring 55, the present invention is not limited to this, and for example, even if the sealing layer 26 or the flattening layer 51 is embedded. good.
  • the lower ends of the through electrodes 34A, 34B, 34C, and 34D are connected to the wiring layer 41, respectively.
  • the through electrode 34A is connected to the connecting portion 41A in the wiring layer 41, and the connecting portion 41A and the floating diffusion FD1 (region 35) are connected via, for example, the lower first contact 45. ..
  • the upper end of the through electrode 34A is connected to the readout electrode 21A via, for example, the pad portion 35A, the via V2, the pad portion 36A, and the via V1.
  • one through electrode 34A is provided for each of four pixels adjacent to each other.
  • the through silicon via 34A has a function as a connector between the organic photoelectric conversion unit 20 of each pixel and the gate Gamp and the floating diffusion FD1 of the amplifier transistor TR1amp, and also has the charge (here, electrons) generated in the organic photoelectric conversion unit 20. It is a transmission path.
  • a flattening layer 51, a protective layer 53, and an on-chip lens layer 56 are further provided on the sealing layer 26 in this order.
  • the flattening layer 51 and the protective layer 53 are provided on the entire surface of the semiconductor substrate 30, including, for example, the effective pixel region 110A and the peripheral region 110B.
  • the flattening layer 51 and the protective layer 53 are preferably formed using, for example, a material having light transmittance and high sealing property. Examples of such a material include insulating materials such as aluminum oxide (AlO x ), silicon nitride (SiN x ), and carbon-containing silicon oxide (SiOC). Further, it is preferable that the flattening layer 51 and the protective layer 53 have a lower hydrogen content than, for example, the insulating layer 22, or the film itself does not contain hydrogen, like the sealing layer 26.
  • the flattening layer 51 and the protective layer 53 have, for example, low stress and further have an ultraviolet absorbing ability. Furthermore, the flattening layer 51 and the protective layer 53 preferably contain a small amount of water, and preferably suppress the invasion of water (H 2 O). From the above, it is desirable to use aluminum oxide (AlO x ) among the above materials as the constituent material of the flattening layer 51 and the protective layer 53.
  • the flattening layer 51 and the protective layer 53 may be formed by using the same materials as the insulating layer 28 and the interlayer insulating layer 29.
  • the flattening layer 51 and the protective layer 53 are a single-layer film composed of one of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y), and the like, or As a laminated film consisting of two or more of aluminum oxide (AlO x ), silicon nitride (SiN x ), carbon-containing silicon oxide film (SiOC), silicon oxide (SiO x ) and silicon oxynitride (SiO x N y). May be good.
  • the thickness of the flattening layer 51 is, for example, 100 nm or more and 1000 nm or less.
  • the thickness of the protective layer 53 is, for example, 10 nm or more and 1000 nm or less.
  • Wiring 52 is provided on the protective layer 53 of the peripheral region 110B. As described above, the wiring 52 is electrically connected to the upper electrode 25 via, for example, an opening 51H2 that penetrates the flattening layer 51 and the sealing layer 26. Further, the wiring 52 is electrically connected to the pad portion 36D provided in the interlayer insulating layer 29 via the opening 51H1 penetrating the flattening layer 51, the sealing layer 26 and the insulating layer 22 in the peripheral region 110B. It forms a guard ring 55. A through electrode 34D that penetrates the via V2, the pad portion 35D, and the semiconductor substrate 30 and is connected to the wiring layer 41 provided on the second surface 30S2 side of the semiconductor substrate 30 is connected to the pad portion 36D. As a result, it functions as a transmission path for the electric charge (here, holes) generated in the organic photoelectric conversion unit 20.
  • the electric charge here, holes
  • a light-shielding film 54 is provided on the protective layer 53 of the peripheral region 110B.
  • Examples of the material of the light-shielding film 54 include tungsten (W), titanium (Ti), titanium nitride (TiN) and aluminum (Al), and the light-shielding film 54 is, for example, a W / TiN / Ti laminated film or W. It is configured as a monolayer film of.
  • the thickness of the light-shielding film 54 is, for example, 50 nm or more and 400 nm or less.
  • an on-chip lens layer 56 in which, for example, an on-chip lens 56L (microlens) is formed for each unit pixel P is provided in the effective pixel region 110A.
  • the on-chip lens 56L collects the incident light on the light receiving surfaces of the organic photoelectric conversion unit 20, the inorganic photoelectric conversion unit 32B, and the inorganic photoelectric conversion unit 32R.
  • An optical member such as a color filter that controls spectroscopy may be provided below the on-chip lens 56L.
  • the image sensor 10A of the present embodiment can be manufactured, for example, as follows.
  • a p-well 31 is formed as a first conductive type well in the semiconductor substrate 30, and second conductive type (for example, n-type) inorganic photoelectric conversion units 32B and 32R are formed in the p-well 31. do.
  • a p + region is formed in the vicinity of the first surface 30S1 of the semiconductor substrate 30.
  • n + region to be, for example, floating diffusion FD1 to FD3 on the second surface 30S2 of the semiconductor substrate 30, a gate insulating layer 33, various transfer transistors TR1trs, TR2trs, TR3trs, selection transistors TR1sel, TR2sel, and amplifier transistors TR1amp are formed. , TR2amp and a gate wiring layer 47 including the gates of the reset transistors TR1rst and TR2rst.
  • a multilayer wiring layer 40 composed of wiring layers 41 to 43 including a lower first contact 45 and a connecting portion 41A and an insulating layer 44 is formed on the second surface 30S2 of the semiconductor substrate 30.
  • an SOI (Silicon on Insulator) substrate in which a semiconductor substrate 30, an embedded oxide film (not shown), and a holding substrate (not shown) are laminated is used.
  • the embedded oxide film and the holding substrate are bonded to the first surface 30S1 of the semiconductor substrate 30. After ion implantation, annealing is performed.
  • a support substrate (not shown) or another semiconductor substrate is bonded to the second surface 30S2 side (multilayer wiring layer 40 side) of the semiconductor substrate 30, and the semiconductor substrate 30 is turned upside down. Subsequently, the semiconductor substrate 30 is separated from the embedded oxide film and the holding substrate of the SOI substrate to expose the first surface 30S1 of the semiconductor substrate 30.
  • the above steps can be performed by techniques used in ordinary CMOS processes, such as ion implantation and chemical vapor deposition (CVD method).
  • the semiconductor substrate 30 is processed from the first surface 30S1 side by, for example, dry etching to form, for example, annular through holes 30H1, 30H2, 30H3, 30H4.
  • the depths of the through holes 30H1 to 30H4 penetrate from the first surface 30S1 to the second surface 30S2 of the semiconductor substrate 30.
  • a fixed charge layer 27 is formed on the first surface 30S1 of the semiconductor substrate 30 and the side surface of the through hole 30H by using, for example, the ALD method.
  • a continuous fixed charge layer 27 is formed on the first surface 30S1 of the semiconductor substrate 30, the side surfaces and the bottom surface of the through holes 30H1, 30H2, 30H3, and 30H4.
  • the insulating layer 28 is formed on the first surface 30S1 of the semiconductor substrate 30 of the fixed charge layer 27 and in the through holes 30H1, 30H2, 30H3, 30H4, and then the interlayer insulating layer 29 is further formed on the insulating layer 28.
  • the insulating film constituting the above is formed.
  • the insulating film, the insulating layer 28, the fixed charge layer 27, and the insulating layer 44 constituting the interlayer insulating layer 29 are placed in the insulating layer 28 formed in the through holes 30H1, 30H2, 30H3, and 30H4 by dry etching.
  • a through hole is formed which penetrates and reaches the connection portion 41A.
  • the insulating film forming the interlayer insulating layer 29 on the first surface 30S1 is also thinned.
  • a conductive film is formed on the insulating film constituting the interlayer insulating layer 29 and in the through hole 27H, and then a photoresist is formed at a predetermined position on the conductive film.
  • electrodes 34A, 34B, 34C, and 34D having pad portions 35A, 35B, 35C, and 35D, respectively, are formed on the first surface 30S1 of the semiconductor substrate 30.
  • via V2 pad portions 36, 36B, 36C, 36D, and via V1 are formed on the insulating film and through electrodes 34A, 34B, 34C, and 34D constituting the interlayer insulating layer 29, respectively, and then chemical mechanical polishing ( The surface of the interlayer insulating layer 29 is flattened by CMP). Subsequently, a conductive film is formed on the interlayer insulating layer 29, and then a photoresist is formed at a predetermined position of the conductive film. After that, the readout electrode 21A, the storage electrode 21B, and the shield electrode 21C are formed by etching and removing the photoresist.
  • an insulating layer 22 is formed on the interlayer insulating layer 29, the readout electrode 21A, the storage electrode 21B, and the shield electrode 21C, and then the opening 22H is provided on the readout electrode 21A. Subsequently, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22.
  • the film forming method of the photoelectric conversion layer 24 is not necessarily limited to the method using the vacuum deposition method, and other methods such as spin coating technology and printing technology may be used.
  • an aluminum nitride (AlN x ) film as the first layer 26A and an aluminum oxide (AlO x ) film as the second layer 26B were formed on the upper electrode 25 by using the ALD method.
  • Each is formed with a thickness of, for example, 30 nm.
  • trimethylaluminum is used as an Al precursor, and nitrogen (N 2 ) plasma is irradiated to form an AlN x film (first layer 26A), and then nitrogen (N 2 ) plasma is charged with oxygen (N 2).
  • An AlO x film (second layer 26B) is formed by changing to plasma.
  • the first layer 26A is formed of a silicon nitride (SiN x ) film
  • SiN x silicon nitride
  • bis (tert-butylamino) silane is used as a Si precursor, and nitrogen (N 2 ) / ammonia (NH 3 ) plasma is used.
  • N 2 ) / ammonia (NH 3 ) plasma is used.
  • NH 3 ammonia
  • an AlO x film is formed by using an Al precursor (for example, trimethylaluminum) and oxygen (O 2) plasma.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 in the peripheral portion of the peripheral region 110B are removed by using a lithography technique.
  • a photoresist is formed at a predetermined position of the second layer 26B, the second layer 26B is patterned, and then dry etching is performed using this as a mask. Can be removed.
  • the side surfaces and insulation of the second layer 26B and the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the first layer 26A and the second layer 26B are used.
  • An AlO x film (third layer 26C) extending on the layer 22 is formed to a thickness of, for example, 30 nm, and then an AlO x film (flattening layer 51) is formed to a thickness of, for example, 500 nm by a sputtering method. do.
  • openings 51H1 and 51H2 penetrating to the pad portion 36D and the upper electrode 25 are formed.
  • the photoresist is patterned on the flattening layer 51, and then wet etching is performed.
  • an opening 51H1 that reaches the pad portion 36D is formed.
  • the first layer 26A AlN x film
  • the opening 51H2a where the first layer 26A is exposed is formed.
  • the opening 51H2 reaching the upper electrode 25 is formed.
  • the processing of the openings 51H1 and 51H2a shown in FIG. 16 may be formed by using a two-step process of dry etching and wet etching. Specifically, by dry etching using a chlorine (Cl) -based gas, for example, the third layer 26C and the flattening layer 51 made of an AlO x film are etched to a thickness of, for example, 50 to 100 nm, and then wet etching is performed. The remaining AlO x film may be removed by etching. This makes it possible to process the opening 51H1 and the opening 51H2a into a desired shape.
  • a chlorine (Cl) -based gas for example, the third layer 26C and the flattening layer 51 made of an AlO x film are etched to a thickness of, for example, 50 to 100 nm, and then wet etching is performed. The remaining AlO x film may be removed by etching. This makes it possible to process the opening 51H1 and the opening 51H2a into
  • the image pickup element 10A when light is incident on the organic photoelectric conversion unit 20 via the on-chip lens 56L, the light passes through the organic photoelectric conversion unit 20 and the inorganic photoelectric conversion units 32B and 32R in this order, and in the passing process. Photoelectric conversion is performed for each of the green, blue, and red colored lights. Hereinafter, the signal acquisition operation of each color will be described.
  • green light is selectively detected (absorbed) by the organic photoelectric conversion unit 20 and photoelectrically converted.
  • the organic photoelectric conversion unit 20 is connected to the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1 via the through electrode 34. Therefore, the electrons of the excitons generated by the organic photoelectric conversion unit 20 are taken out from the lower electrode 21 side, transferred to the second surface 30S2 side of the semiconductor substrate 30 via the through electrode 34, and accumulated in the floating diffusion FD1. Will be done.
  • the amplifier transistor AMP modulates the amount of charge generated in the organic photoelectric conversion unit 20 into a voltage.
  • the reset gate Grst of the reset transistor TR1rst is arranged next to the floating diffusion FD1. As a result, the electric charge accumulated in the floating diffusion FD1 is reset by the reset transistor TR1rst.
  • the organic photoelectric conversion unit 20 is connected not only to the amplifier transistor TR1amp but also to the floating diffusion FD1 via the through electrode 34A, the charge accumulated in the floating diffusion FD1 can be easily reset by the reset transistor TR1rst. It becomes possible to do.
  • FIG. 19 shows an operation example of the image sensor 10A.
  • A shows the potential at the storage electrode 21B
  • B shows the potential at the floating diffusion FD1 (reading electrode 21A)
  • C shows the potential at the gate (Gsel) of the reset transistor TR1rst. Is.
  • a voltage is individually applied to the readout electrode 21A and the storage electrode 21B.
  • the potential V1 is applied to the readout electrode 21A from the drive circuit and the potential V2 is applied to the storage electrode 21B during the storage period.
  • the potentials V1 and V2 are set to V2> V1.
  • the charges (electrons in this case) generated by the photoelectric conversion are attracted to the storage electrode 21B and accumulated in the region of the charge storage layer 23 facing the storage electrode 21B (storage period).
  • the potential in the region of the charge storage layer 23 facing the storage electrode 21B becomes a more negative value with the passage of time of the photoelectric conversion.
  • the holes are sent from the upper electrode 25 to the drive circuit.
  • a reset operation is performed in the latter half of the accumulation period. Specifically, at timing t1, the scanning unit changes the voltage of the reset signal RST from a low level to a high level. As a result, in the unit pixel P, the reset transistor TR1rst is turned on, and as a result, the voltage of the floating diffusion FD1 is set to the power supply voltage VDD, and the voltage of the floating diffusion FD1 is reset (reset period).
  • the electric charge is read out. Specifically, at the timing t2, the potential V3 is applied to the reading electrode 21A from the drive circuit, and the potential V4 is applied to the storage electrode 21B. Here, the potentials V3 and V4 are set to V3 ⁇ V4. As a result, the electric charge (here, the electron) accumulated in the region corresponding to the storage electrode 21B is read out from the reading electrode 21A to the floating diffusion FD1. That is, the charge accumulated in the charge storage layer 23 is read out to the control unit (transfer period).
  • the potential V1 is applied to the read electrode 21A from the drive circuit again, and the potential V2 is applied to the storage electrode 21B.
  • the electric charge (electrons in this case) generated by the photoelectric conversion is attracted to the storage electrode 21B and accumulated in the region of the photoelectric conversion layer 24 facing the storage electrode 21B (accumulation period).
  • the inorganic photoelectric conversion unit 32R electrons corresponding to the incident red light are accumulated in the n region of the inorganic photoelectric conversion unit 32R, and the accumulated electrons are transferred to the floating diffusion FD3 by the transfer transistor TR3trs.
  • the image pickup device 10A of the present embodiment has a first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2 ) as a sealing layer 26 covering the upper surface of the organic photoelectric conversion unit 20 and the first layer 26A.
  • the second layer 26B made of an insulating material containing oxygen (O 2 ) (for example, AlO x ) was laminated in this order.
  • O 2 oxygen
  • a stacked image sensor in which a plurality of photoelectric conversion units are vertically laminated has been developed.
  • a laminated image sensor for example, two inorganic photoelectric conversion units each made of a photodiode (PD) are laminated on a silicon (Si) substrate, and an organic having a photoelectric conversion layer containing an organic material above the Si substrate. It has a configuration in which a photoelectric conversion unit is provided.
  • a contact with the upper electrode is formed at the end of the effective pixel region.
  • a sealing layer is generally formed on the upper electrode, and a contact with the upper electrode is formed by etching the sealing layer by, for example, dry etching, and then forming a metal film to be a wiring. Will be done.
  • the sealing layer is formed only of aluminum oxide
  • two-step dry etching is performed. Specifically, for example, the sealing layer is half-etched with a chlorine-based gas, and then the remaining sealing layer is etched with a fluorine-based gas to stop at the surface of the upper electrode.
  • in-plane variation occurs in the first step, particles of aluminum fluoride (AlF) are generated in the second step, and there arises a problem that the manufacturing yield is lowered.
  • the first layer 26A made of an insulating material containing nitrogen (N 2 ) (for example, AlN x or SiN x ) and the insulating material containing oxygen (O 2 ) (for example, AlO x ).
  • N 2 nitrogen
  • O 2 oxygen
  • a sealing layer 26 having a second layer 26B made of the same material was formed, and the first layer 26A and the second layer 26B were laminated in this order on the upper surface of the organic photoelectric conversion unit 20.
  • the first layer 26A is used as the etching stopper film.
  • the AlO x film on the layer 26A can be removed. This makes it possible to prevent the occurrence of in-plane variation as described above. Further, in the subsequent dry etching step, only the first layer 26A is etched, so that it is possible to reduce the generation of aluminum fluoride (AlF) particles. Further, when the first layer 26A is formed by using SiN x , it is possible to prevent the generation of particles.
  • AlF aluminum fluoride
  • the upper surface of the organic photoelectric conversion unit 20 has a first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2) and oxygen. Since the second layer 26B made of the insulating material (for example, AlO x ) containing (O 2 ) is covered with the sealing layer 26 laminated in this order, the opening 51H2 to which the upper electrode 25 and the wiring 52 are connected is formed. Easy to form. Therefore, it is possible to improve the manufacturing yield.
  • an insulating material for example, AlN x or SiN x
  • nitrogen (N 2) and oxygen Since the second layer 26B made of the insulating material (for example, AlO x ) containing (O 2 ) is covered with the sealing layer 26 laminated in this order, the opening 51H2 to which the upper electrode 25 and the wiring 52 are connected is formed. Easy to form. Therefore, it is possible to improve the manufacturing yield.
  • FIG. 20 shows the cross-sectional configuration of the image pickup device (image pickup device 10B) according to the second embodiment of the present disclosure. Similar to the image sensor 10A in the first embodiment, the image sensor 10B is one in an image sensor (image sensor 1) such as a CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes a pixel (unit pixel P).
  • image sensor 1 image sensor 1
  • CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes a pixel (unit pixel P).
  • the image pickup device 10B of the present embodiment includes a second layer 26B made of an insulating material (for example, AlO x ) containing oxygen (O 2 ) constituting a sealing layer 26 covering the upper surface of the organic photoelectric conversion unit 20, and nitrogen (for example).
  • the first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing N 2 ) is laminated in this order from the organic photoelectric conversion unit 20 side.
  • the sealing layer 26 is composed of the first layer 26A, the second layer 26B, and the third layer 26C, as in the first embodiment, and is on the organic photoelectric conversion unit 20 side.
  • the second layer 26B, the first layer 26A, and the third layer 26C are laminated in this order.
  • the second layer 26B is provided on the upper surface of the organic photoelectric conversion unit 20, and the first layer 26A and the third layer 26C are respectively from the upper surface of the upper electrode 25 to the upper electrode 25 and the photoelectric conversion. It is formed on the insulating layer 22 via the side surfaces of the layer 24 and the charge storage layer 23, and extends to, for example, the end of the peripheral region 110B.
  • the image sensor 10B can be manufactured, for example, as follows.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment.
  • an aluminum oxide (AlO x ) film as the second layer 26B is formed on the upper electrode 25 by the ALD method to a thickness of, for example, 30 nm, and then the second layer 26B is formed.
  • a photoresist is formed at a predetermined position of the above, and the second layer 26B is patterned.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 in the peripheral portion of the peripheral region 110B are removed by dry etching using the second layer 26B as a mask.
  • the side surfaces and insulation of the second layer 26B and the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the first layer 26A and the second layer 26B are used.
  • the first layer 26A and the third layer 26C extending on the layer 22 are formed in this order with a thickness of, for example, 30 nm, and then an AlO x film (flattening layer 51), for example, 500 nm, is formed by using a sputtering method, for example. It is formed with the thickness of.
  • first layer 26A and the third layer 26C first, trimethylaluminum was used as an Al precursor, and nitrogen (N 2 ) plasma was irradiated to form an AlN x film (first layer 26A). Then, the nitrogen (N 2 ) plasma is changed to the oxygen (O 2 ) plasma to form an AlO x film (third layer 26C).
  • the first layer 26A may be formed of silicon nitride (SiN x) film, in the case of forming silicon nitride in (SiN x) film, as Si precursors such as bis (tert- butylamino) silane It is used to irradiate nitrogen (N 2 ) / ammonia (NH 3 ) plasma to form a SiN x film (first layer 26A). Then, an AlO x film (third layer 26C) is formed by using an Al precursor (for example, trimethylaluminum) and oxygen (O 2) plasma.
  • Si precursors such as bis (tert- butylamino) silane
  • openings 51H1 and 51H2 penetrating to the pad portion 36D and the upper electrode 25 are formed. Specifically, first, the photoresist is patterned on the flattening layer 51, and then wet etching is performed. As a result, as shown in FIG. 24, an opening 51H1 that reaches the pad portion 36D is formed. In the portion where the opening 51H2 is formed, the first layer 26A (AlN x film) serves as an etching stopper film, and the flattening layer 51 and the third layer 26C are removed. Then, the first layer 26A and the second layer 26B are etched by dry etching using, for example, hydrogen fluoride (HF). As a result, the opening 51H2 that reaches the upper electrode 25 is formed.
  • HF hydrogen fluoride
  • the upper surface of the organic photoelectric conversion unit 20 has a second layer 26B made of an insulating material (for example, AlO x ) containing oxygen (O 2 ) and nitrogen (N 2 ).
  • the first layer 26A made of an insulating material containing (for example, AlN x or SiN x ) was covered with a sealing layer 26 laminated in this order.
  • AlF aluminum fluoride
  • FIG. 26 shows an example of the cross-sectional configuration of the image pickup device (image pickup device 10C) according to the third embodiment of the present disclosure.
  • FIG. 27 schematically shows the planar configuration of the image pickup device shown in FIG. 26. Similar to the image sensor 10A in the first embodiment, the image sensor 10C is used in an image sensor (image sensor 1) such as a CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes one pixel (unit pixel P).
  • image sensor 1 image sensor 1
  • CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes one pixel (unit pixel P).
  • the image pickup device 10C of the present embodiment is a first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2 ) constituting the sealing layer 26 covering the upper surface of the organic photoelectric conversion unit 20. Is partially, specifically, provided in the contact portion where the upper electrode 25 and the wiring 52 are electrically connected.
  • the sealing layer 26 the second layer 26B, the third layer 26C, and the first layer 26A are laminated in this order from the organic photoelectric conversion unit 20 side in the contact portion.
  • the image sensor 10C can be manufactured, for example, as follows.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment.
  • an aluminum oxide (AlO x ) film as the second layer 26B is formed on the upper electrode 25 by using the ALD method, for example, with a thickness of 30 nm.
  • the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed.
  • the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the side surface of the second layer 26B, and the insulating layer 22 are spread.
  • a film is formed on the existing third layer 26C with a thickness of, for example, 30 nm.
  • the first layer 26A is formed at a predetermined position, that is, A photoresist is formed at the contact position between the upper electrode 25 and the wiring 52, and the first layer 23A is patterned.
  • an AlO x film (flattening layer 51) covering the third layer 26C and the first layer 26A is formed by, for example, a sputtering method.
  • the first layer 26A serves as an etching stopper film and the flattening layer 51 is removed.
  • the first layer 26A and the second layer 26B are etched by dry etching using, for example, hydrogen fluoride (HF).
  • HF hydrogen fluoride
  • the formation range of the first layer 26A and the formation position in the stacking direction are not limited to this.
  • the first layer 23A may extend to the side surface of the organic photoelectric conversion unit 20.
  • the first layer 23A may extend from the side surface of the organic photoelectric conversion unit 20 to the peripheral region 110B.
  • the sealing layer 26 is formed in the order of the first layer 26A, the second layer 26B, and the third layer 26C, as in the first embodiment. May be good.
  • the first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2) constituting the sealing layer 26 is attached to the upper electrode.
  • the 25 and the wiring 52 are selectively provided in the contact portion where they are electrically connected.
  • the loss of light (incident light) that penetrates into the photoelectric conversion unit 20 by the first layer 26A is reduced, and the device characteristics can be improved.
  • the invasion of a small amount of hydrogen (H 2 ) contained in the first layer 26A into the organic photoelectric conversion unit 20 is suppressed. Therefore, the reduction of the upper electrode 25 constituting the organic photoelectric conversion unit 20 and the deterioration of the organic film are suppressed, and the device characteristics can be further improved.
  • FIG. 38 shows an example of the cross-sectional configuration of the image pickup device (image pickup device 10D) according to the fourth embodiment of the present disclosure. Similar to the image sensor 10A in the first embodiment, the image sensor 10D is used in an image sensor (image sensor 1) such as a CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes one pixel (unit pixel P).
  • image sensor 1 image sensor 1
  • CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes one pixel (unit pixel P).
  • an inter-pixel light-shielding film (light-shielding film 57) is provided on the upper electrode 25 of the organic photoelectric conversion unit 20, and this light-shielding film 57 is used together with the first layer 26A as an etching stopper layer.
  • the first layer 26A constituting the sealing layer 26 is selected as the contact portion where the upper electrode 25 and the wiring 52 are electrically connected. It is provided as a target.
  • Examples of the light-shielding film 57 include metal materials having a light-shielding property such as tungsten (W), titanium (Ti), titanium nitride (TiN) and aluminum (Al), and the light-shielding film 54 is, for example, W / TiN / Ti. It is formed as a laminated film of or a single layer film of W.
  • the image sensor 10D can be manufactured, for example, as follows.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment.
  • an aluminum oxide (AlO x ) film as the second layer 26B is formed on the upper electrode 25 by using the ALD method, for example, with a thickness of 30 nm.
  • the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed.
  • the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the side surface of the second layer 26B, and the insulating layer 22 are spread.
  • a W film is formed in this order as the existing third layer 26C and the light-shielding film 57, respectively, with a thickness of, for example, 30 nm.
  • the first layer 26A can be formed by using silicon oxide (SiO x ) in addition to aluminum nitride (AlN x ) and silicon nitride (SiN x).
  • a photoresist is formed at a predetermined position of the W film (light-shielding film 57), that is, between adjacent pixels and at a contact position between the upper electrode 25 and the wiring 52, and the light-shielding film 57 is patterned.
  • the first layer 26A is formed on the third layer 26C and the light-shielding film 57 with a thickness of, for example, 30 nm.
  • a photoresist is formed at the contact position between the upper electrode 25 of the first layer 26A and the wiring 52, and the first layer 26A is patterned.
  • the first layer 26A is selectively formed on the light-shielding film 57 formed at the contact position between the upper electrode 25 and the wiring 52.
  • an AlO x film (flattening layer 51) is formed with a thickness of, for example, 500 nm by using, for example, a sputtering method.
  • the opening 51H2 is formed by dry etching using, for example, chlorine-based gas.
  • the selective processing ratio (AlO x / SiO x ) between the AlO x film (flattening layer 51) and, for example, the SiO x film (first layer 26A) is about 10. Therefore, even if overetching of about 30% is performed in order to absorb the variation in etching, the SiO x film is scraped only about 20 nm, the first layer 26A serves as an etching stopper film, and the flattening layer 51 is removed.
  • the first layer 26A, the light-shielding film 57, and the second layer 26B are etched.
  • the first layer 26A can be removed by dry etching using a CF gas and the light shielding film 57 can be removed by dry etching using SF 6 gas.
  • the second layer 26B is removed using, for example, a CF-based gas.
  • an opening 51H2 reaching to the upper electrode 25 is formed.
  • the wiring 52, the protective layer 53, the light-shielding film 54, and the on-chip lens layer 56 are formed in the same manner as in the first embodiment.
  • the image sensor 10D shown in FIG. 38 is completed.
  • FIG. 38 shows an example in which the first layer 26A is provided only on the light-shielding film 57 provided in the contact portion where the upper electrode 25 and the wiring 52 are electrically connected, but the present invention is limited to this. It's not something.
  • the first layer 26A may also be provided on the light-shielding film 57 provided between adjacent pixels.
  • the image pickup device 10D shown in FIG. 45 can be manufactured, for example, as follows.
  • the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed.
  • the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the side surface of the second layer 26B, and the insulating layer 22 are spread.
  • the existing third layer 26C, light-shielding film 57, and first layer 26A are formed in this order with a thickness of, for example, 30 nm.
  • a photoresist is formed at a predetermined position of the first layer 26A, that is, between adjacent pixels and at a contact position between the upper electrode 25 and the wiring 52, and the light-shielding film 57 is patterned. ..
  • a laminated film of the light-shielding film 57 and the first layer 26A is selectively formed between adjacent pixels and at the contact position between the upper electrode 25 and the wiring 52.
  • an AlO x film (flattening layer 51) is formed with a thickness of, for example, 500 nm by using, for example, a sputtering method.
  • the selective processing ratio (AlO x / SiO x ) between the flattening layer 51 and, for example, the SiO x film (first layer 26A) is about 10. Therefore, even if overetching of about 30% is performed in order to absorb the variation in etching, the SiO x film is scraped only about 20 nm, the first layer 26A serves as an etching stopper film, and the flattening layer 51 is removed.
  • the first layer 26A, the light-shielding film 57, and the second layer 26B are etched in the same manner as described above.
  • the first layer 26A can be removed by dry etching using a CF gas and the light shielding film 57 can be removed by dry etching using SF 6 gas.
  • the second layer 26B is removed using, for example, a CF-based gas.
  • an opening 51H2 reaching to the upper electrode 25 is formed.
  • the wiring 52, the protective layer 53, the light-shielding film 54, and the on-chip lens layer 56 are formed in the same manner as in the first embodiment.
  • the image sensor 10D shown in FIG. 45 is completed.
  • a light-shielding film 57 is provided between adjacent pixels on the upper electrode 25 of the organic photoelectric conversion unit 20 and on the peripheral edge of the effective pixel area 110A, and the light-shielding film 57 is formed on the light-shielding film 57. It was used as an etching stopper layer together with the 1st layer 26A. This makes it possible to stably form the opening 51H2 without exposing the organic film of the organic photoelectric conversion unit 20 as compared with the third embodiment. Therefore, it is possible to improve the manufacturing yield.
  • the pixels of the obliquely incident light on the photoelectric conversion unit 20 are compared with the first embodiment. It is possible to reduce the color mixing between them and improve the device characteristics.
  • FIG. 51 shows another example of the cross-sectional configuration of the image pickup device 10D as a modification of the fourth embodiment.
  • the first layer 26A is provided on the light-shielding film 57 and used as the etching stopper film.
  • the light-shielding film 57 includes the second layer 26B and the third layer 26C.
  • the first layer 26A may be omitted because the etching rates are different. That is, the light-shielding film 57 may be used as the first layer 26A.
  • the light-shielding film 57 is provided on the third layer 26C, but the light-shielding film 57 is provided directly on the upper electrode 25 of the organic photoelectric conversion unit 20. May be good.
  • the image pickup device 10D shown in FIG. 51 can be manufactured, for example, as follows.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment.
  • the light-shielding film 57 extending between adjacent pixels and from the contact position between the upper electrode 25 and the wiring 52 to the peripheral region 110B and
  • the second layer 26B covering the upper electrode 25 and the light-shielding film 57 is formed by the ALD method, for example, to a thickness of 30 nm.
  • the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the light-shielding film 57, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed.
  • a third layer 26C extending over 22 is formed with a thickness of, for example, 30 nm.
  • an AlO x film (flattening layer 51) is formed with a thickness of, for example, 500 nm by using, for example, a sputtering method.
  • the photoresist is patterned on the flattening layer 51 to form the opening 51H2.
  • reactive ion etching dry etching
  • the selective processing ratio (AlO x / W) of the AlO x film (flattening layer 51) and the W film (light-shielding film 57) is about 10. Therefore, the W film (light-shielding film 57) remains even if overetching of about 30% is performed in order to absorb the variation in etching.
  • the light-shielding film 57 is formed by using a metal material as described above, the continuity between the upper electrode 25 and the wiring 52 is ensured even if the upper electrode 25 is not exposed in the opening 51H2. can do.
  • the image sensor 10D shown in FIG. 51 is completed.
  • the light-shielding film 57 is used as an etching stopper film when processing the second layer 26B and the third layer 26C, and is provided directly on the upper electrode 25. .. This makes it possible to stably form the opening 51H2 without etching the upper electrode 25 as compared with the fourth embodiment. Therefore, it is possible to further improve the manufacturing yield.
  • FIG. 57 shows the overall configuration of an image pickup device (imaging device 1) using the image pickup device 10A (or image pickup device 10B) described in the first and second embodiments for each pixel.
  • the image pickup apparatus 1 is a CMOS image sensor, and has a pixel portion 1a as an imaging area on the semiconductor substrate 30, and in a peripheral region of the pixel portion 1a, for example, a row scanning unit 131, a horizontal selection unit 133, and the like. It has a peripheral circuit unit 130 including a row scanning unit 134 and a system control unit 132.
  • the pixel unit 1a has, for example, a plurality of unit pixels P arranged two-dimensionally in a matrix.
  • a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column.
  • the pixel drive line Lread transmits a drive signal for reading a signal from a pixel.
  • One end of the pixel drive line Lread is connected to the output end corresponding to each line of the line scanning unit 131.
  • the row scanning unit 131 is a pixel driving unit that is composed of a shift register, an address decoder, and the like, and drives each unit pixel P of the pixel unit 1a, for example, in row units.
  • the signal output from each unit pixel P of the pixel row selected and scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig.
  • the horizontal selection unit 133 is composed of an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
  • the column scanning unit 134 is composed of a shift register, an address decoder, etc., and drives each horizontal selection switch of the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signals of each pixel transmitted through each of the vertical signal lines Lsig are sequentially output to the horizontal signal line 135 and transmitted to the outside of the semiconductor substrate 30 through the horizontal signal line 135. ..
  • the circuit portion including the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the horizontal signal line 135 may be formed directly on the semiconductor substrate 30, or may be arranged on the external control IC. It may be. Further, those circuit portions may be formed on another substrate connected by a cable or the like.
  • the system control unit 132 receives a clock given from the outside of the semiconductor substrate 30, data for instructing an operation mode, and the like, and outputs data such as internal information of the image pickup apparatus 1.
  • the system control unit 132 further has a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Controls the drive of peripheral circuits.
  • the image pickup device 1 can be applied to any type of electronic device having an image pickup function, such as a camera system such as a digital still camera or a video camera, or a mobile phone having an image pickup function.
  • FIG. 58 shows a schematic configuration of the electronic device 2 (camera) as an example.
  • the electronic device 2 is, for example, a video camera capable of capturing a still image or a moving image, and drives an image pickup device 1, an optical system (optical lens) 310, a shutter device 311 and an image pickup device 1 and a shutter device 311. It has a drive unit 313 and a signal processing unit 312.
  • the optical system 310 guides the image light (incident light) from the subject to the pixel portion 1a of the image pickup apparatus 1.
  • the optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls the light irradiation period and the light blocking period of the image pickup device 1.
  • the drive unit 313 controls the transfer operation of the image pickup apparatus 1 and the shutter operation of the shutter apparatus 311.
  • the signal processing unit 312 performs various signal processing on the signal output from the image pickup apparatus 1. Is the video signal Dout after signal processing stored in a storage medium such as a memory? Alternatively, it is output to a monitor or the like.
  • the image pickup device 1 can be applied to the following electronic devices (capsule type endoscope 10100 and a moving body such as a vehicle).
  • the technology according to the present disclosure can be applied to various products.
  • the techniques according to the present disclosure may be applied to endoscopic surgery systems.
  • FIG. 59 is a block diagram showing an example of a schematic configuration of a patient's internal information acquisition system using a capsule endoscope to which the technique according to the present disclosure (the present technique) can be applied.
  • the internal information acquisition system 10001 is composed of a capsule endoscope 10100 and an external control device 10200.
  • the capsule endoscope 10100 is swallowed by the patient at the time of examination.
  • the capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside an organ such as the stomach or intestine by peristaltic movement or the like until it is naturally excreted from the patient, and inside the organ.
  • Images (hereinafter, also referred to as internal organ images) are sequentially imaged at predetermined intervals, and information about the internal organ images is sequentially wirelessly transmitted to an external control device 10200 outside the body.
  • the external control device 10200 comprehensively controls the operation of the internal information acquisition system 10001. Further, the external control device 10200 receives information about the internal image transmitted from the capsule endoscope 10100, and based on the information about the received internal image, the internal image is displayed on a display device (not shown). Generate image data to display.
  • the internal information acquisition system 10001 in this way, it is possible to obtain an internal image of the inside of the patient at any time from the time when the capsule endoscope 10100 is swallowed until it is discharged.
  • the capsule endoscope 10100 has a capsule-shaped housing 10101, and the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, the power feeding unit 10115, and the power supply unit are contained in the housing 10101.
  • the 10116 and the control unit 10117 are housed.
  • the light source unit 10111 is composed of, for example, a light source such as an LED (light emission diode), and irradiates the imaging field of view of the imaging unit 10112 with light.
  • a light source such as an LED (light emission diode)
  • the image pickup unit 10112 is composed of an image pickup element and an optical system including a plurality of lenses provided in front of the image pickup element.
  • the reflected light (hereinafter referred to as observation light) of the light applied to the body tissue to be observed is collected by the optical system and incident on the image pickup element.
  • the observation light incident on the image pickup device is photoelectrically converted, and an image signal corresponding to the observation light is generated.
  • the image signal generated by the image capturing unit 10112 is provided to the image processing unit 10113.
  • the image processing unit 10113 is composed of processors such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112.
  • the image processing unit 10113 provides the signal-processed image signal to the wireless communication unit 10114 as RAW data.
  • the wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been signal-processed by the image processing unit 10113, and transmits the image signal to the external control device 10200 via the antenna 10114A. Further, the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A. The wireless communication unit 10114 provides the control unit 10117 with a control signal received from the external control device 10200.
  • the power feeding unit 10115 is composed of an antenna coil for receiving power, a power regeneration circuit that regenerates power from the current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using the so-called non-contact charging principle.
  • the power supply unit 10116 is composed of a secondary battery and stores the electric power generated by the power supply unit 10115.
  • FIG. 59 in order to avoid complication of the drawing, the illustration of the arrow or the like indicating the power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is the light source unit 10111. , Is supplied to the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117, and can be used to drive these.
  • the control unit 10117 is composed of a processor such as a CPU, and is a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the image pickup unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power supply unit 10115. Control as appropriate according to.
  • the external control device 10200 is composed of a processor such as a CPU or GPU, or a microcomputer or a control board on which a processor and a storage element such as a memory are mixedly mounted.
  • the external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A.
  • a control signal from the external control device 10200 can change the light irradiation conditions for the observation target in the light source unit 10111.
  • the imaging conditions for example, the frame rate in the imaging unit 10112, the exposure value, etc.
  • the content of processing in the image processing unit 10113 and the conditions for transmitting the image signal by the wireless communication unit 10114 may be changed by the control signal from the external control device 10200. ..
  • the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured internal image on the display device.
  • the image processing includes, for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing) can be performed.
  • the external control device 10200 controls the drive of the display device to display the captured internal image based on the generated image data.
  • the external control device 10200 may have the generated image data recorded in a recording device (not shown) or printed out in a printing device (not shown).
  • the above is an example of an in-vivo information acquisition system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to, for example, the imaging unit 10112 among the configurations described above. This improves the detection accuracy.
  • FIG. 60 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
  • FIG. 60 shows a surgeon (doctor) 11131 performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101 to be an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image pickup element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
  • CCU Camera Control Unit
  • the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (light emission diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
  • a light source such as an LED (light emission diode)
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue.
  • the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator.
  • the recorder 11207 is a device capable of recording various information related to surgery.
  • the printer 11208 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. A range image can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane. So-called narrow band imaging, in which a predetermined tissue such as a blood vessel is photographed with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 61 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG. 60.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the imaging unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image, and the like. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. good.
  • the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are used for the endoscope 11. It will be installed in 100.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
  • the transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
  • the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
  • the above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the imaging unit 11402 among the configurations described above. By applying the technique according to the present disclosure to the imaging unit 11402, the detection accuracy is improved.
  • the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure includes any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machines, agricultural machines (tractors), and the like. It may be realized as a device mounted on the body.
  • FIG. 62 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 120 53 is shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and an image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 63 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the imaging unit 12031 As the imaging unit 12031, the imaging unit 12101, 12102, 12103, 12104, 12105 is provided.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 63 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the organic photoelectric conversion unit 20 that detects green light and the inorganic photoelectric conversion units 32B and 32R that detect blue light and red light are laminated as an image sensor.
  • the contents of the present disclosure are not limited to such a structure. That is, the organic photoelectric conversion unit may detect red light or blue light, or the inorganic photoelectric conversion unit may detect green light.
  • the number and ratio of these organic photoelectric conversion units and inorganic photoelectric conversion units are not limited, and color signals of a plurality of colors may be obtained only by the organic photoelectric conversion units.
  • the lower electrode 21 is composed of two electrodes, a readout electrode 21A and a storage electrode 21B, is shown as a plurality of electrodes, but in addition to this, a transfer electrode, a discharge electrode, or the like is shown. 3 or 4 or more electrodes may be provided.
  • the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed as a continuous layer common to a plurality of image pickup devices 10A, but the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are separated for each pixel P. May be formed.
  • the dark current characteristics may be deteriorated due to the influence of processing damage on the charge storage layer 23 and the photoelectric conversion layer 24.
  • the continuous layer common to the plurality of image pickup elements 10A is formed extending in the effective pixel region 110A as in the first embodiment, the pixels are connected by the photoelectric conversion layer. Color mixing may occur due to charge mixing between pixels. This is suppressed by providing the shield electrode 21C as described above.
  • the first surface 30S1 of the semiconductor substrate 30 may have an uneven structure. As a result, the reflection of the light incident from the light incident side S1 on the first surface 30S1 of the semiconductor substrate 30 is reduced, and the generation of noise and the like can be suppressed. Further, it is possible to improve the detection sensitivity in the inorganic photoelectric conversion units 32B and 32R.
  • the present technology has a laminated structure of one organic photoelectric conversion unit and one inorganic photoelectric conversion unit, and for example, red light (R), green light (G) and blue light (G) and blue light (A color filter that selectively transmits B) is provided, and the organic photoelectric conversion unit applies each color light of R, G, and B, and the inorganic photoelectric conversion unit also applies to an imaging element capable of detecting infrared light (IR). can do.
  • red light R
  • G green light
  • G blue light
  • IR infrared light
  • the present disclosure may have the following configuration.
  • an encapsulating layer in which a first layer containing nitrogen and a second layer containing oxygen are laminated is provided above the organic photoelectric conversion unit. It becomes easy to form a contact with the organic photoelectric conversion unit from above the conversion unit. Therefore, it is possible to improve the manufacturing yield.
  • a semiconductor substrate having an effective pixel area in which a plurality of pixels are arranged and a peripheral area provided around the effective pixel area, A first electrode provided on the light receiving surface side of the semiconductor substrate and composed of a plurality of electrodes, a second electrode arranged to face the first electrode, and between the first electrode and the second electrode in order.
  • An organic photoelectric conversion unit provided in a laminated manner and having a charge storage layer and an organic photoelectric conversion layer extending in the effective pixel region.
  • An image pickup device including a first layer having different etching rates and a sealing layer formed by laminating a second layer above the organic photoelectric conversion unit.
  • the image pickup device according to any one of (1) to (4), wherein the first layer is provided on a part of the upper surface of the organic photoelectric conversion unit. (6) The first layer is an insulating film containing nitrogen or a metal film having a light-shielding property, and the second layer is an insulating film containing oxygen. The image pickup device described. (7) The image pickup device according to any one of (1) to (5) above, wherein the first layer is an aluminum nitride film, a silicon nitride film, a silicon oxide film, or a tungsten film. (8) The image pickup device according to any one of (1) to (5) and (7) above, wherein the second layer is an aluminum oxide film.
  • the organic photoelectric conversion unit further has an insulating layer between the first electrode and the charge storage layer.
  • the insulating layer has an opening on one of the plurality of electrodes constituting the first electrode, and the one electrode and the charge storage layer are electrically connected through the opening.
  • the image pickup device according to any one of (1) to (8) above.
  • (10) The image pickup device according to any one of (1) to (9) above, wherein the semiconductor substrate has an inorganic photoelectric conversion unit embedded therein.
  • a third electrode composed of a plurality of electrodes as an organic photoelectric conversion unit in the effective pixel region on the light receiving surface side of the semiconductor substrate having an effective pixel region in which a plurality of pixels are arranged and a peripheral region provided around the effective pixel region.
  • a method for manufacturing an image pickup device which forms a sealing layer in which a first layer and a second layer having different etching rates are laminated on the organic photoelectric conversion unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

An imaging element according to one embodiment of the present disclosure comprises: a semiconductor substrate having a valid pixel region in which a plurality of pixels are arranged and a peripheral region provided around the valid pixel region; a first electrode that is provided on the light-receiving surface side of the semiconductor substrate and that comprises a plurality of electrodes; a second electrode that is arranged opposite the first electrode; an organic photoelectric conversion unit that includes a charge storage layer and an organic photoelectric conversion layer that are provided stacked in order between the first electrode and the second electrode and that extend to the valid pixel region; and a sealing layer obtained by stacking, above the organic photoelectric conversion unit, a first layer and a second layer which have mutually different etching rates.

Description

撮像素子および撮像素子の製造方法Image sensor and manufacturing method of image sensor
 本開示は、有機半導体材料を用いた光電変換層を有する撮像素子およびその製造方法に関する。 The present disclosure relates to an image sensor having a photoelectric conversion layer using an organic semiconductor material and a method for manufacturing the same.
 例えば、特許文献1では、半導体基板の上方に設けられる、第1電極、光電変換層および第2電極が積層されてなる光電変換部において、第1電極と離間して配置され、且つ、絶縁層を介して光電変換層と対向配置された電荷蓄積用電極を有する撮像素子が開示されている。この撮像素子では、光電変換によって生成した電荷を電荷蓄積用電極上に蓄えることにより、ノイズの発生を低減して撮像画質を図っている。また、例えば、特許文献2では、周辺領域において、絶縁層上または上部電極上に緩衝層、封止層、カラーフィルタ、平坦化層および保護膜からなる層を設けることで、膜剥がれ等の不具合の発生を低減して製造歩留まりの改善を図った撮像装置が開示されている。 For example, in Patent Document 1, in a photoelectric conversion unit in which a first electrode, a photoelectric conversion layer, and a second electrode are laminated, which is provided above a semiconductor substrate, the first electrode, the photoelectric conversion layer, and the second electrode are arranged apart from the first electrode and an insulating layer. An image pickup device having a charge storage electrode arranged so as to face the photoelectric conversion layer is disclosed. In this image sensor, the charge generated by the photoelectric conversion is stored on the charge storage electrode to reduce the generation of noise and improve the image quality of the image. Further, for example, in Patent Document 2, in the peripheral region, by providing a layer composed of a buffer layer, a sealing layer, a color filter, a flattening layer and a protective film on the insulating layer or the upper electrode, problems such as film peeling occur. An imaging device is disclosed in which the occurrence of the above-mentioned is reduced and the manufacturing yield is improved.
特開2017-157816号公報JP-A-2017-157816 特開2019-140386号公報JP-A-2019-140386
 このように、撮像素子では、製造歩留まりの向上が求められている。 In this way, the image sensor is required to improve the manufacturing yield.
 製造歩留まりを向上させることが可能な撮像素子および撮像素子の製造方法を提供することが望ましい。 It is desirable to provide an image sensor and a method for manufacturing the image sensor that can improve the manufacturing yield.
 本開示の一実施形態の撮像素子は、複数の画素が配置された有効画素領域および有効画素領域の周囲に設けられた周辺領域を有する半導体基板と、半導体基板の受光面側に設けられると共に、複数の電極からなる第1電極と、第1電極と対向配置された第2電極と、第1電極と第2電極との間に順に積層して設けられると共に、有効画素領域に延在する電荷蓄積層および有機光電変換層とを有する有機光電変換部と、有機光電変換部の上方において互いに異なるエッチングレートを有する第1の層および第2の層が積層されてなる封止層とを備えたものである。 The image pickup element of the embodiment of the present disclosure is provided on a semiconductor substrate having an effective pixel region in which a plurality of pixels are arranged and a peripheral region provided around the effective pixel region, and on the light receiving surface side of the semiconductor substrate. A first electrode composed of a plurality of electrodes, a second electrode arranged to face the first electrode, and an electric charge extending in an effective pixel region while being sequentially laminated between the first electrode and the second electrode. An organic photoelectric conversion unit having an accumulation layer and an organic photoelectric conversion layer, and a sealing layer in which a first layer and a second layer having different etching rates are laminated above the organic photoelectric conversion unit are provided. It is a thing.
 本開示の一実施形態の撮像素子の製造方法は、複数の画素が配置された有効画素領域および有効画素領域の周囲に設けられた周辺領域を有する半導体基板の受光面側の有効画素領域に、有機光電変換部として、複数の電極からなる第1電極と、電荷蓄積層と、有機光電変換層と、第2電極とをこの順に積層した後、有機光電変換部の上方に互いに異なるエッチングレートを有する第1の層および第2の層が積層されてなる封止層を形成するものである。 In the method for manufacturing an image sensor according to an embodiment of the present disclosure, an effective pixel region in which a plurality of pixels are arranged and an effective pixel region on the light receiving surface side of a semiconductor substrate having a peripheral region provided around the effective pixel region are formed. As the organic photoelectric conversion unit, after stacking the first electrode composed of a plurality of electrodes, the charge storage layer, the organic photoelectric conversion layer, and the second electrode in this order, different etching rates are applied above the organic photoelectric conversion unit. It forms a sealing layer formed by laminating a first layer and a second layer having the same.
 本開示の一実施形態の撮像素子および一実施形態の撮像素子の製造方法では、有機光電変換部の上方に、互いにエッチングレートが異なる第1の層および第2の層が積層されてなる封止層を設けることにより、有機光電変換部の上方からの有機光電変換部とのコンタクトの形成を容易にする。 In the image pickup device of one embodiment and the method of manufacturing the image pickup device of one embodiment of the present disclosure, a first layer and a second layer having different etching rates are laminated on the organic photoelectric conversion unit. By providing the layer, it is easy to form a contact with the organic photoelectric conversion unit from above the organic photoelectric conversion unit.
本開示の第1の実施の形態に係る撮像素子の構成を表す断面模式図である。It is sectional drawing which shows the structure of the image sensor which concerns on 1st Embodiment of this disclosure. 図1に示した撮像素子の要部の構成を説明するための断面模式図である。It is sectional drawing for demonstrating the structure of the main part of the image pickup element shown in FIG. 図1に示した撮像素子の等価回路図である。It is an equivalent circuit diagram of the image pickup device shown in FIG. 図1に示した撮像素子の下部電極および制御部を構成するトランジスタの配置を表す模式図である。It is a schematic diagram which shows the arrangement of the lower electrode of the image pickup device shown in FIG. 1 and the transistor which constitutes the control part. 図1に示した有機光電変換部を構成する下部電極のレイアウトの一例を表す平面模式図である。FIG. 5 is a schematic plan view showing an example of the layout of the lower electrodes constituting the organic photoelectric conversion unit shown in FIG. 1. 図5Aに示した下部電極のレイアウトの透視斜視図である。It is a perspective view of the layout of the lower electrode shown in FIG. 5A. 図1に示した有機光電変換部を構成する下部電極のレイアウトの他の例を表す平面模式図である。FIG. 5 is a schematic plan view showing another example of the layout of the lower electrode constituting the organic photoelectric conversion unit shown in FIG. 1. 図6Aに示した下部電極のレイアウトの透視斜視図である。It is a perspective view of the layout of the lower electrode shown in FIG. 6A. 図1に示した一の無機光電変換部およびこれに関連する各種トランジスタのレイアウトの一例を表す平面模式図である。FIG. 5 is a schematic plan view showing an example of the layout of one inorganic photoelectric conversion unit shown in FIG. 1 and various transistors related thereto. 図1に示した他の無機光電変換部およびこれに関連する各種トランジスタのレイアウトの一例を表す平面模式図である。It is a plan schematic diagram which shows an example of the layout of the other inorganic photoelectric conversion part shown in FIG. 1 and various transistors related thereto. 図1に示した蓄積電極を駆動するための信号線配置図である。It is a signal line arrangement diagram for driving the storage electrode shown in FIG. 隣接する光電変換部およびこれに関連する各種トランジスタに接続される配線の一部を表す図である。It is a figure which shows a part of the wiring connected to the adjacent photoelectric conversion part and various transistors related thereto. 隣接する光電変換部およびこれに関連する各種トランジスタに接続される配線の一部を表す図である。It is a figure which shows a part of the wiring connected to the adjacent photoelectric conversion part and various transistors related thereto. 隣接する光電変換部およびこれに関連する各種トランジスタに接続される配線の一部を表す図である。It is a figure which shows a part of the wiring connected to the adjacent photoelectric conversion part and various transistors related thereto. 図1に示した撮像素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 図13に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図14に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図15に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図16に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図17に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図1に示した撮像素子の一動作例を表すタイミング図である。It is a timing diagram which shows one operation example of the image pickup device shown in FIG. 本開示の第2の実施の形態に係る撮像素子の構成を表す断面模式図である。It is sectional drawing which shows the structure of the image sensor which concerns on 2nd Embodiment of this disclosure. 図20に示した撮像素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 図21に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図22に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図23に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図24に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 本開示の第3の実施の形態に係る撮像素子の要部の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the main part of the image pickup device which concerns on 3rd Embodiment of this disclosure. 図26に示した撮像素子の平面構成を表す模式図である。It is a schematic diagram which shows the planar structure of the image pickup device shown in FIG. 26. 図26に示した撮像素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 図28に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図29に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図30に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 図31に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 本開示の第3の実施の形態に係る撮像素子の要部の構成の他の例を表す断面模式図である。It is sectional drawing which shows the other example of the structure of the main part of the image pickup device which concerns on 3rd Embodiment of this disclosure. 本開示の第3の実施の形態に係る撮像素子の要部の構成の他の例を表す断面模式図である。It is sectional drawing which shows the other example of the structure of the main part of the image pickup device which concerns on 3rd Embodiment of this disclosure. 本開示の第3の実施の形態に係る撮像素子の要部の構成の他の例を表す断面模式図である。It is sectional drawing which shows the other example of the structure of the main part of the image pickup device which concerns on 3rd Embodiment of this disclosure. 本開示の第3の実施の形態に係る撮像素子の要部の構成の他の例を表す断面模式図である。It is sectional drawing which shows the other example of the structure of the main part of the image pickup device which concerns on 3rd Embodiment of this disclosure. 本開示の第3の実施の形態に係る撮像素子の要部の構成の他の例を表す断面模式図である。It is sectional drawing which shows the other example of the structure of the main part of the image pickup device which concerns on 3rd Embodiment of this disclosure. 本開示の第4の実施の形態に係る撮像素子の要部の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the main part of the image pickup device which concerns on 4th Embodiment of this disclosure. 図38に示した撮像素子の平面構成を表す模式図である。It is a schematic diagram which shows the planar structure of the image pickup device shown in FIG. 38. 図39に示した撮像素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 39. 図40に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 40. 図41に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 41. 図42に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 42. 図43に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 43. 本開示の第4の実施の形態に係る撮像素子の要部の構成の他の例を表す断面模式図である。It is sectional drawing which shows the other example of the structure of the main part of the image pickup device which concerns on 4th Embodiment of this disclosure. 図45に示した撮像素子の平面構成を表す模式図である。It is a schematic diagram which shows the planar structure of the image pickup device shown in FIG. 45. 図46に示した撮像素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 46. 図47に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 47. 図48に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 48. 図49に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 49. 本開示の変形例に係る撮像素子の要部の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the main part of the image pickup device which concerns on the modification of this disclosure. 図51に示した撮像素子の平面構成を表す模式図である。It is a schematic diagram which shows the planar structure of the image pickup device shown in FIG. 51. 図52に示した撮像素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the image pickup device shown in FIG. 図53に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 53. 図54に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 54. 図55に続く工程を表す断面模式図である。It is sectional drawing which shows the process following FIG. 55. 図1等に示した撮像素子を画素として用いた撮像装置の構成を表すブロック図である。It is a block diagram which shows the structure of the image pickup apparatus which used the image pickup element shown in FIG. 1 and the like as a pixel. 図57に示した撮像装置を用いた電子機器(カメラ)の一例を表す機能ブロック図である。FIG. 5 is a functional block diagram showing an example of an electronic device (camera) using the image pickup apparatus shown in FIG. 57. 体内情報取得システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of the body information acquisition system. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of a camera head and a CCU. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit.
 以下、本開示における一実施形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.第1の実施の形態(有機光電変換部の上方に、窒素を含む第1層および酸素を含む第2層がこの順に積層された封止層を有する撮像素子の例)
   1-1.撮像素子の構成
   1-2.撮像素子の製造方法
   1-3.作用・効果
 2.第2の実施の形態(有機光電変換部の上方に、酸素を含む第2層および窒素を含む第1層がこの順に積層された封止層を有する撮像素子の例)
 3.第3の実施の形態(第1層を上部上極とのコンタクト部に選択的に設けた例)
 4.第4の実施の形態(画素間遮光膜を設け、この画素間遮光膜をエッチングストッパ層として第1層と共に用いた例)
 5.変形例(画素間遮光膜を設け、これを第1層として用いた例)
 6.適用例
 7.応用例
Hereinafter, one embodiment in the present disclosure will be described in detail with reference to the drawings. The following description is a specific example of the present disclosure, and the present disclosure is not limited to the following aspects. Further, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, etc. of each component shown in each figure. The order of explanation is as follows.
1. 1. 1st Embodiment (Example of an image sensor having a sealing layer in which a first layer containing nitrogen and a second layer containing oxygen are laminated in this order above the organic photoelectric conversion unit)
1-1. Configuration of image sensor 1-2. Manufacturing method of image sensor 1-3. Action / effect 2. The second embodiment (an example of an image sensor having a sealing layer in which a second layer containing oxygen and a first layer containing nitrogen are laminated in this order above the organic photoelectric conversion unit).
3. 3. Third Embodiment (Example in which the first layer is selectively provided in the contact portion with the upper upper pole)
4. Fourth embodiment (an example in which an inter-pixel light-shielding film is provided and this inter-pixel light-shielding film is used together with the first layer as an etching stopper layer).
5. Modification example (an example in which an inter-pixel light-shielding film is provided and used as the first layer)
6. Application example 7. Application example
<1.第1の実施の形態>
(1-1.撮像素子の構成)
 図1は、本開示の第1の実施の形態に係る撮像素子(撮像素子10A)の断面構成を表したものである。図2は、図1に示した撮像素子10Aの要部の断面構成を模式的に表したものである。図3は、図1に示した撮像素子10Aの等価回路図である。図4は、図1に示した撮像素子10Aの下部電極21および制御部を構成するトランジスタの配置を模式的に表したものである。撮像素子10Aは、例えば、デジタルスチルカメラ、ビデオカメラ等の電子機器に用いられるCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像装置(撮像装置1;図57参照)において1つの画素(単位画素P)を構成するものである。撮像装置1は、複数の画素が配置された有効画素領域110Aと、その周辺に設けられ、例えば行走査部131等の周辺回路部130が形成された周辺領域110Bとを有する。
<1. First Embodiment>
(1-1. Configuration of image sensor)
FIG. 1 shows a cross-sectional configuration of an image pickup device (image pickup device 10A) according to the first embodiment of the present disclosure. FIG. 2 schematically shows a cross-sectional configuration of a main part of the image pickup device 10A shown in FIG. FIG. 3 is an equivalent circuit diagram of the image pickup device 10A shown in FIG. FIG. 4 schematically shows the arrangement of the lower electrode 21 of the image pickup device 10A shown in FIG. 1 and the transistors constituting the control unit. The image sensor 10A is, for example, one pixel (unit pixel P) in an image pickup device (imaging device 1; see FIG. 57) such as a CMOS (Complementary Metal Oxide Semiconductor) image sensor used in electronic devices such as digital still cameras and video cameras. ). The image pickup apparatus 1 has an effective pixel area 110A in which a plurality of pixels are arranged, and a peripheral area 110B provided around the effective pixel area 110A in which a peripheral circuit unit 130 such as a row scanning unit 131 is formed.
 撮像素子10Aは、1つの有機光電変換部20と、2つの無機光電変換部32B,32Rとが縦方向に積層された、いわゆる縦方向分光型の撮像素子であり、互いに隣接する4つの画素が、それぞれに対応する1つのフローティングディフュージョンFD1,FD2,FD3を共有する、画素共有構造を有するものである。有機光電変換部20は、半導体基板30の受光面(第1面(裏面)30S1)に設けられている。有機光電変換部20は、半導体基板30側から、複数の電極からなる下部電極21(第1電極)、絶縁層22、電荷蓄積層23、光電変換層24(有機光電変換層)および上部電極25(第2電極)がこの順に積層された構成を有する。本実施の形態の撮像素子10Aは、有機光電変換部20の上方、具体的には、上部電極25上に封止層26が設けられている。封止層26は、第1層26A、第2層26Bおよび第3層26Cがこの順に積層されており、第1層26Aは、窒素を含む絶縁材料を用いて、第2層26Bは、酸素を含む絶縁材料を用いてそれぞれ形成されている。無機光電変換部32B,32Rは、半導体基板30内に埋め込み形成され、半導体基板30の厚み方向に積層されている。 The image sensor 10A is a so-called vertical spectroscopic image sensor in which one organic photoelectric conversion unit 20 and two inorganic photoelectric conversion units 32B and 32R are vertically laminated, and four pixels adjacent to each other are arranged. , Each of which has a pixel sharing structure that shares one floating diffusion FD1, FD2, and FD3 corresponding to each. The organic photoelectric conversion unit 20 is provided on the light receiving surface (first surface (back surface) 30S1) of the semiconductor substrate 30. From the semiconductor substrate 30 side, the organic photoelectric conversion unit 20 includes a lower electrode 21 (first electrode) composed of a plurality of electrodes, an insulating layer 22, a charge storage layer 23, a photoelectric conversion layer 24 (organic photoelectric conversion layer), and an upper electrode 25. (Second electrode) has a structure in which (second electrode) is laminated in this order. The image pickup device 10A of the present embodiment is provided with a sealing layer 26 above the organic photoelectric conversion unit 20, specifically, on the upper electrode 25. In the sealing layer 26, the first layer 26A, the second layer 26B and the third layer 26C are laminated in this order, the first layer 26A uses an insulating material containing nitrogen, and the second layer 26B is oxygen. Each is formed using an insulating material containing. The inorganic photoelectric conversion units 32B and 32R are embedded and formed in the semiconductor substrate 30, and are laminated in the thickness direction of the semiconductor substrate 30.
 有機光電変換部20と、無機光電変換部32B,32Rとは、互いに異なる波長域の光を選択的に検出して光電変換を行うものである。具体的には、例えば、有機光電変換部20では、緑(G)の色信号を取得する。無機光電変換部32B,32Rでは、吸収係数の違いにより、それぞれ、青(B)および赤(R)の色信号を取得する。これにより、撮像素子10Aでは、カラーフィルタを用いることなく一つの画素において複数種類の色信号を取得可能となっている。 The organic photoelectric conversion unit 20 and the inorganic photoelectric conversion units 32B and 32R selectively detect light in different wavelength ranges and perform photoelectric conversion. Specifically, for example, the organic photoelectric conversion unit 20 acquires a green (G) color signal. The inorganic photoelectric conversion units 32B and 32R acquire blue (B) and red (R) color signals, respectively, depending on the difference in absorption coefficient. As a result, the image sensor 10A can acquire a plurality of types of color signals in one pixel without using a color filter.
 なお、本実施の形態では、光電変換によって生じる電子および正孔の対(励起子)のうち、電子を信号電荷として読み出す場合(n型半導体領域を光電変換層とする場合)について説明する。また、図中において、「p」「n」に付した「+(プラス)」は、p型またはn型の不純物濃度が高いことを表している。 In the present embodiment, a case where electrons are read out as signal charges (a case where the n-type semiconductor region is used as a photoelectric conversion layer) among pairs (excitons) of electrons and holes generated by photoelectric conversion will be described. Further, in the figure, "+ (plus)" attached to "p" and "n" indicates that the concentration of p-type or n-type impurities is high.
 半導体基板30の第2面(表面)30S2には、例えば、フローティングディフュージョン(浮遊拡散層)FD1(半導体基板30内の領域35),FD2,FD3と、転送トランジスタTR2trs,TR3trsと、アンプトランジスタ(変調素子)TR1amp,TR2ampと、リセットトランジスタTR1rst,TR2rstと、選択トランジスタTR1sel,TR2selと、多層配線層40とが設けられている。フローティングディフュージョンFD1(リセットトランジスタTR1rstの一方のソース/ドレイン領域)の隣には、リセットトランジスタTR1rstのリセットゲートGrstが配置されている。これにより、フローティングディフュージョンFD1に蓄積された電荷を、リセットトランジスタTR1rstによりリセットすることが可能となる。多層配線層40は、例えば、配線層41,42,43が絶縁層44内に積層された構成を有している。 On the second surface (surface) 30S2 of the semiconductor substrate 30, for example, floating diffusion (floating diffusion layer) FD1 (region 35 in the semiconductor substrate 30), FD2, FD3, transfer transistors TR2trs, TR3trs, and amplifier transistors (modulation) Elements) TR1amp, TR2amp, reset transistors TR1rst, TR2rst, selection transistors TR1sel, TR2sel, and a multilayer wiring layer 40 are provided. The reset gate Grst of the reset transistor TR1rst is arranged next to the floating diffusion FD1 (one source / drain region of the reset transistor TR1rst). As a result, the electric charge accumulated in the floating diffusion FD1 can be reset by the reset transistor TR1rst. The multilayer wiring layer 40 has, for example, a configuration in which the wiring layers 41, 42, and 43 are laminated in the insulating layer 44.
 なお、図面では、半導体基板30の第1面30S1側を光入射側S1、第2面30S2側を配線層側S2と表している。 In the drawing, the first surface 30S1 side of the semiconductor substrate 30 is represented as the light incident side S1, and the second surface 30S2 side is represented as the wiring layer side S2.
 撮像素子10Aでは、光入射側S1から有機光電変換部20に入射した光は、光電変換層24で吸収される。これによって生じた励起子は、光電変換層24を構成する電子供与体と電子受容体との界面に移動し、励起子分離、即ち、電子と正孔とに解離する。ここで発生した電荷(電子および正孔)は、キャリアの濃度差による拡散や、陽極(ここでは、上部電極25)と陰極(ここでは、下部電極21)との仕事関数の差による内部電界によってそれぞれ異なる電極へ運ばれ、光電流として検出される。また、下部電極21と上部電極25との間に電位を印加することによって、電子および正孔の輸送方向を制御することができる。 In the image pickup element 10A, the light incident on the organic photoelectric conversion unit 20 from the light incident side S1 is absorbed by the photoelectric conversion layer 24. The excitons generated thereby move to the interface between the electron donor and the electron acceptor constituting the photoelectric conversion layer 24, and exciton separation, that is, dissociation into electrons and holes. The charges (electrons and holes) generated here are due to diffusion due to the difference in carrier concentration and the internal electric field due to the difference in work function between the anode (here, the upper electrode 25) and the cathode (here, the lower electrode 21). They are carried to different electrodes and detected as photocurrent. Further, by applying an electric potential between the lower electrode 21 and the upper electrode 25, the transport direction of electrons and holes can be controlled.
 以下、各部の構成や材料等について説明する。 Below, the composition and materials of each part will be explained.
 有機光電変換部20は、選択的な波長域(例えば、450nm以上650nm以下)の一部または全部の波長域に対応する緑色光を吸収して、励起子を発生させる有機光電変換素子である。有機光電変換部20は、対向配置された下部電極21と上部電極25との間に、電荷蓄積層23および光電変換層24を有し、下部電極21と電荷蓄積層23との間には、絶縁層22が設けられている。下部電極21は、例えば、撮像素子10Aごとに分離形成されると共に、絶縁層22を間に互いに分離された読み出し電極21Aおよび蓄積電極21Bと、互いに隣接する4つの画素を囲うシールド電極21Cとから構成されている。下部電極21のうち、読み出し電極21Aは、例えば図5Aおよび図6A等に示したように、互いに隣接する2つあるいは4つの画素間で共有されると共に、絶縁層22に設けられた開口22Hを介して電荷蓄積層23と電気的に接続されている。電荷蓄積層23、光電変換層24および上部電極25は、例えば、複数の撮像素子10Aに共通した連続層として設けられ、有効画素領域110Aに延在している。 The organic photoelectric conversion unit 20 is an organic photoelectric conversion element that absorbs green light corresponding to a part or all of a selective wavelength range (for example, 450 nm or more and 650 nm or less) to generate excitons. The organic photoelectric conversion unit 20 has a charge storage layer 23 and a photoelectric conversion layer 24 between the lower electrode 21 and the upper electrode 25 arranged so as to face each other, and the charge storage layer 23 and the charge storage layer 23 are separated from each other. An insulating layer 22 is provided. The lower electrode 21 is composed of, for example, a readout electrode 21A and a storage electrode 21B which are separated and formed for each image sensor 10A and whose insulating layer 22 is separated from each other, and a shield electrode 21C which surrounds four pixels adjacent to each other. It is configured. Of the lower electrodes 21, the readout electrode 21A is shared between two or four pixels adjacent to each other, as shown in FIGS. 5A and 6A, and has an opening 22H provided in the insulating layer 22. It is electrically connected to the charge storage layer 23 via. The charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are provided, for example, as continuous layers common to a plurality of image pickup devices 10A, and extend to the effective pixel region 110A.
 下部電極21は、上記のように、分離形成された読み出し電極21A、蓄積電極21Bおよびシールド電極21Cから構成されている。読み出し電極21Aは、光電変換層24内で発生した電荷(ここでは、電子)をフローティングディフュージョンFD1に転送するためのものであり、例えば、ビアV1、パッド部36A、ビアV2、パッド部35A、貫通電極34、接続部41Aおよび下部第1コンタクト45を介してフローティングディフュージョンFD1に接続されている。蓄積電極21Bは、光電変換層24内で発生した電荷のうち、信号電荷として電子を電荷蓄積層23内に蓄積するためのものである。蓄積電極21Bは、半導体基板30内に形成された無機光電変換部32B,32Rの受光面と正対して、これらの受光面を覆う領域に設けられている。蓄積電極21Bは、読み出し電極21Aよりも大きいことが好ましく、これにより、多くの電荷を蓄積することができる。シールド電極21Cは、上記のように、隣接する画素への電荷のリークを抑制するためのものである。 The lower electrode 21 is composed of the separately formed read-out electrode 21A, the storage electrode 21B, and the shield electrode 21C as described above. The read electrode 21A is for transferring the electric charge (electrons in this case) generated in the photoelectric conversion layer 24 to the floating diffusion FD1, and for example, the via V1, the pad portion 36A, the via V2, the pad portion 35A, and the through. It is connected to the floating diffusion FD1 via the electrode 34, the connecting portion 41A, and the lower first contact 45. The storage electrode 21B is for accumulating electrons as signal charges in the charge storage layer 23 among the charges generated in the photoelectric conversion layer 24. The storage electrode 21B is provided in a region that faces the light receiving surfaces of the inorganic photoelectric conversion units 32B and 32R formed in the semiconductor substrate 30 and covers these light receiving surfaces. The storage electrode 21B is preferably larger than the readout electrode 21A, which allows a large amount of charge to be stored. As described above, the shield electrode 21C is for suppressing charge leakage to adjacent pixels.
 下部電極21は、光透過性を有する導電膜により構成され、例えば、ITO(インジウム錫酸化物)により構成されている。但し、下部電極21の構成材料としては、このITOの他にも、ドーパントを添加した酸化スズ(SnO2)系材料、あるいは亜鉛酸化物(ZnO)にドーパントを添加してなる酸化亜鉛系材料を用いてもよい。酸化亜鉛系材料としては、例えば、ドーパントとしてアルミニウム(Al)を添加したアルミニウム亜鉛酸化物(AZO)、ガリウム(Ga)添加のガリウム亜鉛酸化物(GZO)、インジウム(In)添加のインジウム亜鉛酸化物(IZO)が挙げられる。また、この他にも、CuI、InSbO4、ZnMgO、CuInO2、MgIN24、CdO、ZnSnO3等を用いてもよい。下部電極21の厚みは、例えば20nm以上200nm以下であることが好ましく、より好ましくは、30nm以上100nm以下である。 The lower electrode 21 is made of a light-transmitting conductive film, for example, made of ITO (indium tin oxide). However, as the constituent material of the lower electrode 21, in addition to this ITO, a tin oxide (SnO 2 ) -based material to which a dopant is added or a zinc oxide-based material obtained by adding a dopant to zinc oxide (ZnO) is used. You may use it. Examples of the zinc oxide-based material include aluminum zinc oxide (AZO) to which aluminum (Al) is added as a dopant, gallium zinc oxide (GZO) to which gallium (Ga) is added, and indium zinc oxide to which indium (In) is added. (IZO) can be mentioned. Also, the addition to, CuI, InSbO 4, ZnMgO, CuInO 2, MgIN 2 O 4, CdO, may be used ZnSnO 3, and the like. The thickness of the lower electrode 21 is, for example, preferably 20 nm or more and 200 nm or less, and more preferably 30 nm or more and 100 nm or less.
 絶縁層22は、蓄積電極21Bと電荷蓄積層23とを電気的に絶縁するためのものである。絶縁層22は、下部電極21を覆うように、例えば、層間絶縁層29および下部電極21上に設けられている。また、絶縁層22には、下部電極21のうち、読み出し電極21A上に開口22Hが設けられており、この開口22Hを介して、読み出し電極21Aと電荷蓄積層23とが電気的に接続されている。絶縁層22は、例えば、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)および酸窒化シリコン(SiOxy)等のうちの1種よりなる単層膜か、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。絶縁層22の厚みは、例えば、20nm以上500nm以下である。 The insulating layer 22 is for electrically insulating the storage electrode 21B and the charge storage layer 23. The insulating layer 22 is provided on, for example, the interlayer insulating layer 29 and the lower electrode 21 so as to cover the lower electrode 21. Further, the insulating layer 22 is provided with an opening 22H on the reading electrode 21A of the lower electrodes 21, and the reading electrode 21A and the charge storage layer 23 are electrically connected via the opening 22H. There is. The insulating layer 22 is, for example, a single-layer film made of, for example, one of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), or any of these. It is composed of a laminated film composed of two or more types. The thickness of the insulating layer 22 is, for example, 20 nm or more and 500 nm or less.
 電荷蓄積層23は、光電変換層24の下層、具体的には、絶縁層22と光電変換層24との間に設けられ、光電変換層24で発生した信号電荷(ここでは、電子)を蓄積するためのものである。電荷蓄積層23は、光電変換層24よりも電荷の移動度が高く、且つ、バンドギャップが大きな材料を用いて形成されていることが好ましい。例えば、電荷蓄積層23の構成材料のバンドギャップは、3.0eV以上であることが好ましい。このような材料としては、例えば、IGZO等の酸化物半導体材料および有機半導体材料等が挙げられる。有機半導体材料としては、例えば、遷移金属ダイカルコゲナイド、シリコンカーバイド、ダイヤモンド、グラフェン、カーボンナノチューブ、縮合多環炭化水素化合物および縮合複素環化合物等が挙げられる。電荷蓄積層23の厚みは、例えば10nm以上300nm以下である。上記材料によって構成された電荷蓄積層23を光電変換層24の下層に設けることにより、電荷蓄積時における電荷の再結合を防止し、転送効率を向上させることが可能となる。 The charge storage layer 23 is provided under the photoelectric conversion layer 24, specifically, between the insulating layer 22 and the photoelectric conversion layer 24, and stores the signal charges (electrons in this case) generated in the photoelectric conversion layer 24. It is for doing. The charge storage layer 23 is preferably formed by using a material having a higher charge mobility than the photoelectric conversion layer 24 and a large band gap. For example, the band gap of the constituent material of the charge storage layer 23 is preferably 3.0 eV or more. Examples of such materials include oxide semiconductor materials such as IGZO and organic semiconductor materials. Examples of the organic semiconductor material include transition metal dichalcogenides, silicon carbide, diamond, graphene, carbon nanotubes, condensed polycyclic hydrocarbon compounds, condensed heterocyclic compounds and the like. The thickness of the charge storage layer 23 is, for example, 10 nm or more and 300 nm or less. By providing the charge storage layer 23 made of the above material under the photoelectric conversion layer 24, it is possible to prevent the recombination of charges at the time of charge storage and improve the transfer efficiency.
 光電変換層24は、光エネルギーを電気エネルギーに変換するものである。光電変換層24は、例えば、それぞれp型半導体またはn型半導体として機能する有機材料(p型半導体材料またはn型半導体材料)を2種以上含んで構成されている。光電変換層24は、層内に、このp型半導体材料とn型半導体材料との接合面(p/n接合面)を含むバルクヘテロ接合構造を有している。p型半導体は、相対的に電子供与体(ドナー)として機能するものであり、n型半導体は、相対的に電子受容体(アクセプタ)として機能するものである。光電変換層24は、光を吸収した際に生じる励起子が電子と正孔とに分離する場を提供するものであり、具体的には、励起子は、電子供与体と電子受容体との界面(p/n接合面)において電子と正孔とに分離する。 The photoelectric conversion layer 24 converts light energy into electrical energy. The photoelectric conversion layer 24 is composed of, for example, two or more types of organic materials (p-type semiconductor materials or n-type semiconductor materials) that function as p-type semiconductors or n-type semiconductors, respectively. The photoelectric conversion layer 24 has a bulk heterojunction structure including a junction surface (p / n junction surface) between the p-type semiconductor material and the n-type semiconductor material in the layer. The p-type semiconductor functions relatively as an electron donor (donor), and the n-type semiconductor functions relatively as an electron acceptor (acceptor). The photoelectric conversion layer 24 provides a place where excitons generated when light is absorbed are separated into electrons and holes. Specifically, excitons are composed of an electron donor and an electron acceptor. It separates into electrons and holes at the interface (p / n junction surface).
 光電変換層24は、p型半導体材料およびn型半導体材料の他に、所定の波長域の光を光電変換する一方、他の波長域の光を透過させる有機材料、いわゆる色素材料を含んで構成されていてもよい。光電変換層24をp型半導体材料、n型半導体材料および色素材料の3種類の有機材料を用いて形成する場合には、p型半導体材料およびn型半導体材料は、可視領域(例えば、450nm以上800nm以下)において光透過性を有する材料であることが好ましい。光電変換層24の厚みは、例えば50nm以上500nm以下である。 The photoelectric conversion layer 24 includes, in addition to the p-type semiconductor material and the n-type semiconductor material, an organic material that photoelectrically converts light in a predetermined wavelength range while transmitting light in another wavelength range, that is, a so-called dye material. It may have been done. When the photoelectric conversion layer 24 is formed using three types of organic materials, a p-type semiconductor material, an n-type semiconductor material, and a dye material, the p-type semiconductor material and the n-type semiconductor material have a visible region (for example, 450 nm or more). It is preferable that the material has light transmission at 800 nm or less). The thickness of the photoelectric conversion layer 24 is, for example, 50 nm or more and 500 nm or less.
 光電変換層24を構成する有機材料としては、例えば、キナクリドン、塩素化ホウ素サブフタロシアニン、ペンタセン、ベンゾチエノベンゾチオフェンおよびフラーレンあるいはそれらの誘導体が挙げられる。光電変換層24は、上記有機材料を2種以上組み合わせて構成されている。上記有機材料は、その組み合わせによってp型半導体またはn型半導体として機能する。 Examples of the organic material constituting the photoelectric conversion layer 24 include quinacridone, boron chlorinated subphthalocyanine, pentacene, benzothioenobenzothiophene and fullerene, or derivatives thereof. The photoelectric conversion layer 24 is composed of a combination of two or more of the above organic materials. The organic material functions as a p-type semiconductor or an n-type semiconductor depending on the combination thereof.
 なお、光電変換層24を構成する有機材料は特に限定されない。上記した有機材料以外には、例えば、ナフタレン、アントラセン、フェナントレン、テトラセン、ピレン、ペリレンおよびフルオランテンあるいはそれらの誘導体のうちのいずれか1種が好適に用いられる。あるいは、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレンおよびジアセチレン等の重合体やそれらの誘導体を用いてもよい。加えて、金属錯体色素、シアニン系色素、メロシアニン系色素、フェニルキサンテン系色素、トリフェニルメタン系色素、ロダシアニン系色素、キサンテン系色素、大環状アザアヌレン系色素、アズレン系色素、ナフトキノン、アントラキノン系色素、アントラセンおよびピレン等の縮合多環芳香族および芳香環あるいは複素環化合物が縮合した鎖状化合物、または、スクアリリウム基およびクロコニツクメチン基を結合鎖として持つキノリン、ベンゾチアゾール、ベンゾオキサゾール等の二つの含窒素複素環、または、スクアリリウム基およびクロコニツクメチン基により結合したシアニン系類似の色素等を好ましく用いることができる。なお、上記金属錯体色素としては、ジチオール金属錯体系色素、金属フタロシアニン色素、金属ポルフィリン色素またはルテニウム錯体色素が好ましいが、これに限定されるものではない。 The organic material constituting the photoelectric conversion layer 24 is not particularly limited. In addition to the above-mentioned organic materials, for example, any one of naphthalene, anthracene, phenanthrene, tetracene, pyrene, perylene and fluoranthene or derivatives thereof is preferably used. Alternatively, polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picolin, thiophene, acetylene and diacetylene or derivatives thereof may be used. In addition, metal complex dyes, cyanine dyes, merocyanine dyes, phenylxanthene dyes, triphenylmethane dyes, rodacyanine dyes, xanthene dyes, macrocyclic azaanulene dyes, azulene dyes, naphthoquinones, anthracene dyes, Condensed polycyclic aromatics such as anthracene and pyrene and chain compounds condensed with aromatic or heterocyclic compounds, or containing two components such as quinoline, benzothiazole, and benzoxanthene having a squarylium group and a croconite methine group as binding chains. A nitrogen heterocycle or a cyanine-like dye bonded by a squarylium group and a croconite methine group can be preferably used. The metal complex dye is preferably, but is not limited to, a dithiol metal complex dye, a metal phthalocyanine dye, a metal porphyrin dye, or a ruthenium complex dye.
 光電変換層24と下部電極21との間(例えば、電荷蓄積層23と光電変換層24との間)および光電変換層24と上部電極25との間には、他の層が設けられていてもよい。具体的には、例えば、下部電極21側から順に、電荷蓄積層23、電子ブロッキング層、光電変換層24、正孔ブロッキング層および仕事関数調整層等が積層されていてもよい。更に、下部電極21と光電変換層24との間に下引き層および正孔輸送層や、光電変換層24と上部電極25との間にバッファ層や電子輸送層を設けるようにしてもよい。 Other layers are provided between the photoelectric conversion layer 24 and the lower electrode 21 (for example, between the charge storage layer 23 and the photoelectric conversion layer 24) and between the photoelectric conversion layer 24 and the upper electrode 25. May be good. Specifically, for example, the charge storage layer 23, the electron blocking layer, the photoelectric conversion layer 24, the hole blocking layer, the work function adjusting layer, and the like may be laminated in this order from the lower electrode 21 side. Further, an undercoat layer and a hole transport layer may be provided between the lower electrode 21 and the photoelectric conversion layer 24, and a buffer layer and an electron transport layer may be provided between the photoelectric conversion layer 24 and the upper electrode 25.
 上部電極25は、下部電極21と同様に光透過性を有する導電膜により構成されている。撮像素子10Aを1つの画素として用いた撮像装置1では、上部電極25は画素毎に分離されていてもよいし、各画素に共通の電極として形成されていてもよい。上部電極25の厚みは、例えば10nm以上200nm以下である。上部電極25には、図2に示したように、例えば開口51H2を介して配線52が電気的に接続されている。この配線52は、図2に示したように、後述する平坦化層51および封止層26を貫通する開口51H1を介して、周辺領域110Bに設けられたパッド部36Dと電気的に接続されている。つまり、上部電極25は、例えば配線52を介してパッド部36Dと電気的に接続されている。 The upper electrode 25 is made of a conductive film having light transmission like the lower electrode 21. In the image pickup apparatus 1 using the image pickup element 10A as one pixel, the upper electrode 25 may be separated for each pixel, or may be formed as a common electrode for each pixel. The thickness of the upper electrode 25 is, for example, 10 nm or more and 200 nm or less. As shown in FIG. 2, the wiring 52 is electrically connected to the upper electrode 25 via, for example, the opening 51H2. As shown in FIG. 2, the wiring 52 is electrically connected to the pad portion 36D provided in the peripheral region 110B via the opening 51H1 penetrating the flattening layer 51 and the sealing layer 26 described later. There is. That is, the upper electrode 25 is electrically connected to the pad portion 36D via, for example, the wiring 52.
 上部電極25上には、上記のように、第1層26A、第2層26Bおよび第3層26Cからなる封止層26が設けられている。封止層26は、有機光電変換部20への水素(H2)の侵入を抑制するためのものであり、水素含有量が少ない、もしくは、膜自身が水素を含まないことが好ましい。封止層26のうち、第1層26Aおよび第2層26Bは、上部電極25の上面に設けられており、第3層26Cは、上部電極25の上面から上部電極25、光電変換層24および電荷蓄積層23の側面を介して絶縁層22上に形成され、例えば周辺領域110Bの端部まで延在している。 As described above, the sealing layer 26 composed of the first layer 26A, the second layer 26B, and the third layer 26C is provided on the upper electrode 25. The sealing layer 26 is for suppressing the invasion of hydrogen (H 2 ) into the organic photoelectric conversion unit 20, and it is preferable that the hydrogen content is low or the film itself does not contain hydrogen. Of the sealing layers 26, the first layer 26A and the second layer 26B are provided on the upper surface of the upper electrode 25, and the third layer 26C is formed from the upper surface of the upper electrode 25 to the upper electrode 25, the photoelectric conversion layer 24 and the photoelectric conversion layer 24. It is formed on the insulating layer 22 via the side surface of the charge storage layer 23, and extends to, for example, the end of the peripheral region 110B.
 封止層26を構成する材料としては、例えば、光透過性を有すると共に、高い封止性を有する絶縁材料が挙げられる。具体的には、第1層26Aは、例えば、窒化アルミニウム(AlNx)または窒化シリコン(SiNx)を用いて形成することができる。第2層26Bおよび第3層26Cは、例えば、酸化アルミニウム(AlOx)を用いて形成することができる。第1層26Aおよび第2層26Bは、例えば原子層堆積法(ALD法)を用いて、例えば、1nm以上100nm以下の膜厚で形成することができる。これにより、上部電極25の上面には高密度な絶縁膜が形成され、有機光電変換部20への水素(H2)の侵入が抑制される。第3層26Cは、例えばスパッタリング法を用いて、例えば、100nm以上1000nm以下の膜厚で形成することができる。 Examples of the material constituting the sealing layer 26 include an insulating material having light transmittance and high sealing property. Specifically, the first layer 26A can be formed by using, for example, aluminum nitride (AlN x ) or silicon nitride (SiN x). The second layer 26B and the third layer 26C can be formed by using , for example, aluminum oxide (AlO x). The first layer 26A and the second layer 26B can be formed, for example, by using an atomic layer deposition method (ALD method), for example, with a film thickness of 1 nm or more and 100 nm or less. As a result, a high-density insulating film is formed on the upper surface of the upper electrode 25, and the invasion of hydrogen (H 2 ) into the organic photoelectric conversion unit 20 is suppressed. The third layer 26C can be formed, for example, by using a sputtering method, for example, with a film thickness of 100 nm or more and 1000 nm or less.
 半導体基板30の第1面30S1と下部電極21との間には、例えば、固定電荷層27、絶縁層28および層間絶縁層29がこの順に設けられている。 For example, a fixed charge layer 27, an insulating layer 28, and an interlayer insulating layer 29 are provided between the first surface 30S1 of the semiconductor substrate 30 and the lower electrode 21 in this order.
 固定電荷層27は、正の固定電荷を有する膜でもよいし、負の固定電荷を有する膜でもよい。負の固定電荷を有する膜の材料としては、酸化ハフニウム(HfOx)、酸化アルミニウム(AlOx)、酸化ジルコニウム(ZrOx)、酸化タンタル(TaOx)、酸化チタン(TiOx)、酸化ランタン(LaOx)、酸化プラセオジム(PrOx)、酸化セリウム(CeOx)、酸化ネオジム(NdOx)、酸化プロメチウム(PmOx)、酸化サマリウム(SmOx)、酸化ユウロピウム(EuOx)、酸化ガドリニウム(GdOx)、酸化テルビウム(TbOx)、酸化ジスプロシウム(DyOx)、酸化ホルミウム(HoOx)、酸化ツリウム(TmOx)、酸化イッテルビウム(YbOx)、酸化ルテチウム(LuOx)、酸化イットリウム(YOx)、窒化ハフニウム(HfNx)、窒化アルミニウム(AlNx)、酸窒化ハフニウム(HfOxy)および酸窒化アルミニウム(AlOxy)等が挙げられる。 The fixed charge layer 27 may be a film having a positive fixed charge or a film having a negative fixed charge. Materials for films with a negative fixed charge include hafnium oxide (HfO x ), aluminum oxide (AlO x ), zirconium oxide (ZrO x ), tantalum oxide (TaO x ), titanium oxide (TiO x ), and lanthanum oxide (TiO x). LaO x ), placeodymium oxide (PrO x ), cerium oxide (CeO x ), neodymium oxide (NdO x ), promethium oxide (PmO x ), samarium oxide (SmO x ), europium oxide (EuO x ), gadolinium oxide (GdO) x), terbium oxide (TBO x), dysprosium oxide (DyO x), holmium oxide (HoO x), thulium oxide (TMO x), ytterbium oxide (YbO x), lutetium oxide (LuO x), yttrium oxide (YO x ), hafnium nitride (HfN x), aluminum nitride (AlN x), hafnium oxynitride (HfO x N y) and aluminum oxynitride (AlO x N y), and the like.
 固定電荷層27は、2種類以上の膜を積層した構成を有していてもよい。これにより、例えば負の固定電荷を有する膜の場合には正孔蓄積層としての機能をさらに高めることが可能である。 The fixed charge layer 27 may have a configuration in which two or more types of films are laminated. Thereby, for example, in the case of a film having a negative fixed charge, the function as a hole storage layer can be further enhanced.
 絶縁層28は、半導体基板30の第1面30S1に形成された固定電荷層27上および後述する、貫通電極34A,34B,34C,34Dが形成される貫通孔30H1,30H2,30H3,30H4内において固定電荷層27と貫通電極34A,34B,34C,34Dとの間に設けられ、貫通電極34A,34B,34C,34Dと半導体基板30との間を電気的に絶縁するためのものである。絶縁層28の構成材料は特に限定されないが、例えば、酸化シリコン(SiOx)、TEOS、窒化シリコン(SiNx)および酸窒化シリコン(SiOxy)等によって形成することができる。 The insulating layer 28 is provided on the fixed charge layer 27 formed on the first surface 30S1 of the semiconductor substrate 30 and in the through holes 30H1, 30H2, 30H3, 30H4 in which the through electrodes 34A, 34B, 34C, and 34D are formed, which will be described later. It is provided between the fixed charge layer 27 and the through electrodes 34A, 34B, 34C, 34D, and is for electrically insulating the through electrodes 34A, 34B, 34C, 34D and the semiconductor substrate 30. The constituent material of the insulating layer 28 is not particularly limited, but can be formed of, for example, silicon oxide (SiO x ), TEOS, silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), or the like.
 層間絶縁層29は、絶縁層28と同様に、例えば、酸化シリコン(SiOx)、TEOS、窒化シリコン(SiNx)および酸窒化シリコン(SiOxy)等のうちの1種よりなる単層膜、あるいはこれらのうちの2種以上よりなる積層膜により構成されている。なお、層間絶縁層29内には、例えば、読み出し電極21Aと貫通電極34Aとを電気的に接続するパッド部35A,36A、蓄積電極21Bと貫通電極34Bとを電気的に接続するパッド部35B,36B、シールド電極21Cと貫通電極34Cとを電気的に接続するパッド部35C,36C、配線52と貫通電極34Dとを電気的に接続するパッド部35D,36Dおよび各電極とパッド部とを電気的に接続するビアV1,V2等の配線が設けられている。 Similar to the insulating layer 28, the interlayer insulating layer 29 is a single layer made of, for example, one of silicon oxide (SiO x ), TEOS, silicon nitride (SiN x ), silicon oxynitride (SiO x N y ), and the like. It is composed of a film or a laminated film composed of two or more of these. In the interlayer insulating layer 29, for example, pad portions 35A and 36A that electrically connect the readout electrode 21A and the through electrode 34A, and pad portions 35B that electrically connect the storage electrode 21B and the through electrode 34B, 36B, pad portions 35C and 36C that electrically connect the shield electrode 21C and the through electrode 34C, pad portions 35D and 36D that electrically connect the wiring 52 and the through electrode 34D, and each electrode and the pad portion are electrically connected. Wiring such as vias V1 and V2 connected to is provided.
 半導体基板30は、例えば、n型のシリコン(Si)基板により構成され、所定の領域(例えば、有効画素領域110A)にpウェル31を有している。pウェル31の第2面30S2には、上述した転送トランジスタTR1trs,TR2trs,TR3trs、アンプトランジスタTR1amp,TR2amp、リセットトランジスタTR1rst,TR2rst、選択トランジスタTR1sel,TR2sel等が設けられている。更に、半導体基板30の周辺領域110Bには、ロジック回路等からなる周辺回路部130等が設けられている。 The semiconductor substrate 30 is composed of, for example, an n-type silicon (Si) substrate, and has a p-well 31 in a predetermined region (for example, an effective pixel region 110A). The second surface 30S2 of the p-well 31 is provided with the above-mentioned transfer transistors TR1trs, TR2trs, TR3trs, amplifier transistors TR1amp, TR2amp, reset transistors TR1rst, TR2rst, selection transistors TR1sel, TR2sel, and the like. Further, the peripheral region 110B of the semiconductor substrate 30 is provided with a peripheral circuit unit 130 or the like including a logic circuit or the like.
 本実施の形態の撮像素子10Aは、上記のように、1つのフローティングディフュージョンFD1,FD2,FD3を、互いに隣接する4つの画素が共有するようにレイアウトされている。図5Aは、有機光電変換部20を構成する下部電極21のレイアウトの一例を表したものであり、図5Bは、図5Aに示した下部電極21のレイアウトを透視斜視図として表したものである。図6Aは、有機光電変換部20を構成する下部電極21のレイアウトの一例を表したものであり、図6Bは、図6Aに示した下部電極21のレイアウトを透視斜視図として表したものである。図7は、無機光電変換部32Bおよびこれに関連する各種トランジスタのレイアウトの一例を表したものである。図8は、無機光電変換部32Rおよびこれに関連する各種トランジスタのレイアウトの一例を表したものである。図9は、有機光電変換部20において、蓄積電極21Bを駆動するための信号配線の一例を表したものである。図10~図12は、各光電変換部20,32B,32Rおよびこれらに関連する各種トランジスタに接続される配線の一例を表したものである。 As described above, the image sensor 10A of the present embodiment is laid out so that one floating diffusion FD1, FD2, and FD3 are shared by four pixels adjacent to each other. FIG. 5A shows an example of the layout of the lower electrode 21 constituting the organic photoelectric conversion unit 20, and FIG. 5B shows the layout of the lower electrode 21 shown in FIG. 5A as a perspective perspective view. .. FIG. 6A shows an example of the layout of the lower electrode 21 constituting the organic photoelectric conversion unit 20, and FIG. 6B shows the layout of the lower electrode 21 shown in FIG. 6A as a perspective perspective view. .. FIG. 7 shows an example of the layout of the inorganic photoelectric conversion unit 32B and various transistors related thereto. FIG. 8 shows an example of the layout of the inorganic photoelectric conversion unit 32R and various transistors related thereto. FIG. 9 shows an example of signal wiring for driving the storage electrode 21B in the organic photoelectric conversion unit 20. 10 to 12 show an example of wiring connected to each photoelectric conversion unit 20, 32B, 32R and various transistors related thereto.
 本実施の形態では、互いに隣接する4つの有機光電変換部20は1つのフローティングディフュージョンFD1に接続されている。フローティングディフュージョンFD1には、1つのリセットトランジスタTR1rstと電源線Vddとが直列に接続されている。また、これとは別に、フローティングディフュージョンFD1には、アンプトランジスタTR1ampおよび選択トランジスタTR1selのそれぞれ1つと信号線(データ出力線)VSL1とが直列に接続されている。互いに隣接する4つの蓄積電極21Bと、それぞれ画素毎に1つずつ設けられたリセットトランジスタTR1rst、アンプトランジスタTR1ampおよび選択トランジスタTR1selとは、互いに隣接する4つの有機光電変換部20の読み出し動作およびリセット動作を担う1組の制御部(第1の制御部)を構成している。互いに隣接する4つの有機光電変換部20から信号電荷を読み出す際には、この第1の制御部を用いて、例えば時分割して順番に読み出し処理が行われる。 In the present embodiment, the four organic photoelectric conversion units 20 adjacent to each other are connected to one floating diffusion FD1. One reset transistor TR1rst and a power supply line Vdd are connected in series to the floating diffusion FD1. Separately from this, one of each of the amplifier transistor TR1amp and the selection transistor TR1sel and the signal line (data output line) VSL1 are connected in series to the floating diffusion FD1. The four storage electrodes 21B adjacent to each other and the reset transistor TR1rst, the amplifier transistor TR1amp, and the selection transistor TR1sel provided one for each pixel are read-out operations and reset operations of the four organic photoelectric conversion units 20 adjacent to each other. It constitutes a set of control units (first control unit). When reading signal charges from four organic photoelectric conversion units 20 adjacent to each other, for example, time division is performed in order using the first control unit.
 無機光電変換部32Bでは、互いに隣接する4つのフォトダイオードPD2が、画素毎に1つずつ設けられた4つの転送トランジスタTR2trsを介して、1つのフローティングディフュージョンFD2に接続されている。 In the inorganic photoelectric conversion unit 32B, four photodiodes PD2 adjacent to each other are connected to one floating diffusion FD2 via four transfer transistors TR2trs provided one for each pixel.
 無機光電変換部32Rでは、無機光電変換部32Bと同様に、互いに隣接する4つのフォトダイオードPD3が、画素毎に1つずつ設けられた4つの転送トランジスタTR3trsを介して、1つのフローティングディフュージョンFD3に接続されている。 In the inorganic photoelectric conversion unit 32R, similarly to the inorganic photoelectric conversion unit 32B, four photodiodes PD3 adjacent to each other are connected to one floating diffusion FD3 via four transfer transistors TR3trs provided one for each pixel. It is connected.
 1つのフローティングディフュージョンFD2には、1つのリセットトランジスタTR2rstと電源線Vddとが直列に接続されている。また、これとは別に、フローティングディフュージョンFD2には、アンプトランジスタTR2ampおよび選択トランジスタTR2selのそれぞれ1つと信号線(データ出力線)VSL2が直列に接続されている。本実施の形態のように画素共有構造を有する撮像素子10Aでは、無機光電変換部32Bおよび無機光電変換部32Rは、画素毎に設けられた転送トランジスタTR2trsおよび転送トランジスタTR3trsと、画素毎に1つずつ設けられたリセットトランジスタTR2rst、アンプトランジスタTR2ampおよび選択トランジスタTR2selとで、互いに隣接する4つの無機光電変換部32Bおよび無機光電変換部32Rの読み出し動作およびリセット動作を担う1組の制御部(第2の制御部)を構成している。即ち、4画素分の積層型の撮像素子10Aに備わる4つの無機光電変換部32Bおよび4つの無機光電変換部32Rでは、転送トランジスタTR2trs,TR3trsを除いて、1組の制御部(第2の制御部)を共有した構成となっている。互いに隣接する4つの無機光電変換部32Bに対応するフローティングディフュージョンFD2および4つの無機光電変換部32Rに対応するフローティングディフュージョンFD3から信号電荷を読み出す際には、この第2の制御部を用いて、例えば時分割して順番に読み出し処理が行われる。 One reset transistor TR2rst and a power supply line Vdd are connected in series to one floating diffusion FD2. Separately from this, one of each of the amplifier transistor TR2amp and the selection transistor TR2sel and the signal line (data output line) VSL2 are connected in series to the floating diffusion FD2. In the image pickup device 10A having a pixel sharing structure as in the present embodiment, the inorganic photoelectric conversion unit 32B and the inorganic photoelectric conversion unit 32R are one transfer transistor TR2trs and one transfer transistor TR3trs provided for each pixel. A set of control units (second) that are responsible for reading and resetting the four inorganic photoelectric conversion units 32B and the inorganic photoelectric conversion units 32R that are adjacent to each other by the reset transistor TR2rst, the amplifier transistor TR2amp, and the selection transistor TR2sel that are provided respectively. Control unit). That is, in the four inorganic photoelectric conversion units 32B and the four inorganic photoelectric conversion units 32R provided in the stacked image pickup element 10A for four pixels, one set of control units (second control) except for the transfer transistors TR2trs and TR3trs. Department) is shared. When reading signal charges from the floating diffusion FD2 corresponding to the four inorganic photoelectric conversion units 32B adjacent to each other and the floating diffusion FD3 corresponding to the four inorganic photoelectric conversion units 32R, the second control unit is used, for example. Read processing is performed in order by time division.
 なお、本実施の形態では、互いに隣接する4つの無機光電変換部32Bおよび無機光電変換部32Rが共有するフローティングディフュージョンFD2,FD3は、それぞれ、1画素分ずつ離間した場所に配置されている。これにより、撮像素子10Aの高集積化を実現することが可能となる。 In the present embodiment, the four inorganic photoelectric conversion units 32B adjacent to each other and the floating diffusion FD2 and FD3 shared by the inorganic photoelectric conversion unit 32R are arranged at places separated by one pixel from each other. This makes it possible to realize high integration of the image sensor 10A.
 半導体基板30の第1面30S1と第2面30S2との間には、貫通電極34A,34B,34C,34Dが設けられている。 Through electrodes 34A, 34B, 34C, 34D are provided between the first surface 30S1 and the second surface 30S2 of the semiconductor substrate 30.
 貫通電極34Aは、有機光電変換部20の読み出し電極21Aと電気的に接続されており、有機光電変換部20は、貫通電極34Aを介して、例えば、アンプトランジスタTR1ampのゲートGampと、フローティングディフュージョンFD1を兼ねるリセットトランジスタRST(リセットトランジスタTR1rst)の一方のソース/ドレイン領域に接続されている。これにより、撮像素子10Aでは、半導体基板30の第1面30S1側の有機光電変換部20で生じた電荷(ここでは、電子)を半導体基板30の第2面30S2側に良好に転送し、特性を高めることが可能となっている。 The through electrode 34A is electrically connected to the read electrode 21A of the organic photoelectric conversion unit 20, and the organic photoelectric conversion unit 20 passes through the through electrode 34A, for example, the gate Gamp of the amplifier transistor TR1amp and the floating diffusion FD1. It is connected to one source / drain region of the reset transistor RST (reset transistor TR1rst) that also serves as. As a result, in the image pickup element 10A, the electric charges (electrons in this case) generated in the organic photoelectric conversion unit 20 on the first surface 30S1 side of the semiconductor substrate 30 are satisfactorily transferred to the second surface 30S2 side of the semiconductor substrate 30, and the characteristics It is possible to increase.
 貫通電極34Bは、有機光電変換部20の蓄積電極21Bと電気的に接続されており、これにより、蓄積電極21Bには、読み出し電極21Aとは独立した電圧を印加可能となっている。 The through electrode 34B is electrically connected to the storage electrode 21B of the organic photoelectric conversion unit 20, so that a voltage independent of the read electrode 21A can be applied to the storage electrode 21B.
 貫通電極34Cは、シールド電極21Cと電気的に接続されており、これにより、隣接する画素への電荷のリークが抑制されている。貫通電極34Dは、周辺領域110Bに設けられたパッド部36Dと電気的に接続されている。パッド部36Dには、図1に示したように、開口51H1を介して配線52が電気的に接続されており、ガードリング55を構成している。これによって、上部電極25へ電圧を印加可能となっている。また、ガードリング55は外周からの水の浸入を防止することができる。なお、ガードリング55を構成する配線52は、必ずしも上部電極25と電気的に接続されていなくてもよい。また、ガードリング55を構成する開口51H1には、図2では保護層53が埋め込まれた例を示したが、これに限らず、例えば封止層26や平坦化層51が埋め込まれていてもよい。 The through electrode 34C is electrically connected to the shield electrode 21C, whereby the leakage of electric charge to the adjacent pixel is suppressed. The through silicon via 34D is electrically connected to the pad portion 36D provided in the peripheral region 110B. As shown in FIG. 1, the wiring 52 is electrically connected to the pad portion 36D via the opening 51H1 to form a guard ring 55. This makes it possible to apply a voltage to the upper electrode 25. Further, the guard ring 55 can prevent water from entering from the outer circumference. The wiring 52 constituting the guard ring 55 does not necessarily have to be electrically connected to the upper electrode 25. Further, although the protective layer 53 is embedded in the opening 51H1 constituting the guard ring 55, the present invention is not limited to this, and for example, even if the sealing layer 26 or the flattening layer 51 is embedded. good.
 貫通電極34A,34B,34C,34Dの下端は、配線層41にそれぞれ接続されている。特に、貫通電極34Aは、配線層41内の接続部41Aに接続されており、接続部41Aと、フローティングディフュージョンFD1(領域35)とは、例えば、下部第1コンタクト45を介して接続されている。貫通電極34Aの上端は、例えば、パッド部35A、ビアV2、パッド部36AおよびビアV1を介して読み出し電極21Aに接続されている。 The lower ends of the through electrodes 34A, 34B, 34C, and 34D are connected to the wiring layer 41, respectively. In particular, the through electrode 34A is connected to the connecting portion 41A in the wiring layer 41, and the connecting portion 41A and the floating diffusion FD1 (region 35) are connected via, for example, the lower first contact 45. .. The upper end of the through electrode 34A is connected to the readout electrode 21A via, for example, the pad portion 35A, the via V2, the pad portion 36A, and the via V1.
 貫通電極34Aは、例えば、互いに隣接する4つの画素に対して1つずつ設けられている。貫通電極34Aは、各画素の有機光電変換部20とアンプトランジスタTR1ampのゲートGampおよびフローティングディフュージョンFD1とのコネクタとしての機能を有すると共に、有機光電変換部20において生じた電荷(ここでは、電子)の伝送経路となっている。 For example, one through electrode 34A is provided for each of four pixels adjacent to each other. The through silicon via 34A has a function as a connector between the organic photoelectric conversion unit 20 of each pixel and the gate Gamp and the floating diffusion FD1 of the amplifier transistor TR1amp, and also has the charge (here, electrons) generated in the organic photoelectric conversion unit 20. It is a transmission path.
 封止層26上には、さらに、平坦化層51、保護層53およびオンチップレンズ層56がこの順に設けられている。 A flattening layer 51, a protective layer 53, and an on-chip lens layer 56 are further provided on the sealing layer 26 in this order.
 平坦化層51および保護層53は、例えば、有効画素領域110Aおよび周辺領域110Bを含む、半導体基板30上の全面に設けられている。平坦化層51および保護層53は、例えば、光透過性を有すると共に、高い封止性を有する材料を用いて形成することが好ましい。このような材料としては、例えば酸化アルミニウム(AlOx)、窒化シリコン(SiNx)および炭素含有シリコン酸化物(SiOC)等の絶縁材料が挙げられる。また、平坦化層51および保護層53は、封止層26と同様に、例えば、絶縁層22よりも水素含有量が少ない、もしくは、膜自身が水素を含まないことが好ましい。更に、平坦化層51および保護層53は、例えば、応力が小さく、さらに紫外線吸収能を有することが好ましい。更にまた、平坦化層51および保護層53は、含有する水分量が少ないことが好ましく、水分(H2O)の侵入を抑制することが好ましい。以上のことから、平坦化層51および保護層53の構成材料としては、上記材料の中でも酸化アルミニウム(AlOx)を用いることが望ましい。 The flattening layer 51 and the protective layer 53 are provided on the entire surface of the semiconductor substrate 30, including, for example, the effective pixel region 110A and the peripheral region 110B. The flattening layer 51 and the protective layer 53 are preferably formed using, for example, a material having light transmittance and high sealing property. Examples of such a material include insulating materials such as aluminum oxide (AlO x ), silicon nitride (SiN x ), and carbon-containing silicon oxide (SiOC). Further, it is preferable that the flattening layer 51 and the protective layer 53 have a lower hydrogen content than, for example, the insulating layer 22, or the film itself does not contain hydrogen, like the sealing layer 26. Further, it is preferable that the flattening layer 51 and the protective layer 53 have, for example, low stress and further have an ultraviolet absorbing ability. Furthermore, the flattening layer 51 and the protective layer 53 preferably contain a small amount of water, and preferably suppress the invasion of water (H 2 O). From the above, it is desirable to use aluminum oxide (AlO x ) among the above materials as the constituent material of the flattening layer 51 and the protective layer 53.
 なお、平坦化層51および保護層53は、上記絶縁層28および層間絶縁層29と同様の材料を用いて形成してもよい。例えば、平坦化層51および保護層53は、酸化シリコン(SiOx)、窒化シリコン(SiNx)および酸窒化シリコン(SiOxy)等のうちの1種よりなる単層膜か、あるいは、酸化アルミニウム(AlOx)、窒化シリコン(SiNx)、炭素含有シリコン酸化膜(SiOC)、酸化シリコン(SiOx)および酸窒化シリコン(SiOxy)のうちの2種以上よりなる積層膜としてもよい。平坦化層51の厚みは、例えば、100nm以上1000nm以下である。保護層53の厚みは、例えば、10nm以上1000nm以下である。 The flattening layer 51 and the protective layer 53 may be formed by using the same materials as the insulating layer 28 and the interlayer insulating layer 29. For example, the flattening layer 51 and the protective layer 53 are a single-layer film composed of one of silicon oxide (SiO x ), silicon nitride (SiN x ), silicon oxynitride (SiO x N y), and the like, or As a laminated film consisting of two or more of aluminum oxide (AlO x ), silicon nitride (SiN x ), carbon-containing silicon oxide film (SiOC), silicon oxide (SiO x ) and silicon oxynitride (SiO x N y). May be good. The thickness of the flattening layer 51 is, for example, 100 nm or more and 1000 nm or less. The thickness of the protective layer 53 is, for example, 10 nm or more and 1000 nm or less.
 周辺領域110Bの保護層53上には、配線52が設けられている。この配線52は、上記のように、例えば、平坦化層51および封止層26を貫通する開口51H2を介して上部電極25と電気的に接続されている。また、配線52は、周辺領域110Bにおいて、平坦化層51、封止層26および絶縁層22を貫通する開口51H1を介して層間絶縁層29内に設けられたパッド部36Dと電気的に接続されており、ガードリング55を形成している。パッド部36Dには、ビアV2、パッド部35Dおよび半導体基板30を貫通して、半導体基板30の第2面30S2側に設けられた配線層41に接続される貫通電極34Dが接続されており、これによって、有機光電変換部20において生じた電荷(ここでは、正孔)の伝送経路として機能する。 Wiring 52 is provided on the protective layer 53 of the peripheral region 110B. As described above, the wiring 52 is electrically connected to the upper electrode 25 via, for example, an opening 51H2 that penetrates the flattening layer 51 and the sealing layer 26. Further, the wiring 52 is electrically connected to the pad portion 36D provided in the interlayer insulating layer 29 via the opening 51H1 penetrating the flattening layer 51, the sealing layer 26 and the insulating layer 22 in the peripheral region 110B. It forms a guard ring 55. A through electrode 34D that penetrates the via V2, the pad portion 35D, and the semiconductor substrate 30 and is connected to the wiring layer 41 provided on the second surface 30S2 side of the semiconductor substrate 30 is connected to the pad portion 36D. As a result, it functions as a transmission path for the electric charge (here, holes) generated in the organic photoelectric conversion unit 20.
 周辺領域110Bの保護層53上には、遮光膜54が設けられている。遮光膜54の材料としては、例えば、タングステン(W)、チタン(Ti)、窒化チタン(TiN)あるいはアルミニウム(Al)が挙げられ、遮光膜54は、例えばW/TiN/Tiの積層膜あるいはWの単層膜として構成されている。遮光膜54の厚みは、例えば50nm以上400nm以下である。 A light-shielding film 54 is provided on the protective layer 53 of the peripheral region 110B. Examples of the material of the light-shielding film 54 include tungsten (W), titanium (Ti), titanium nitride (TiN) and aluminum (Al), and the light-shielding film 54 is, for example, a W / TiN / Ti laminated film or W. It is configured as a monolayer film of. The thickness of the light-shielding film 54 is, for example, 50 nm or more and 400 nm or less.
 更に、保護層53上には、有効画素領域110Aにおいて、例えば単位画素P毎にオンチップレンズ56L(マイクロレンズ)が形成されたオンチップレンズ層56が設けられている。オンチップレンズ56Lは、入射した光を、有機光電変換部20、無機光電変換部32Bおよび無機光電変換部32Rの各受光面へ集光させるものである。なお、オンチップレンズ56Lの下方には、分光を制御するカラーフィルタ等の光学部材を設けるようにしてもよい。 Further, on the protective layer 53, an on-chip lens layer 56 in which, for example, an on-chip lens 56L (microlens) is formed for each unit pixel P is provided in the effective pixel region 110A. The on-chip lens 56L collects the incident light on the light receiving surfaces of the organic photoelectric conversion unit 20, the inorganic photoelectric conversion unit 32B, and the inorganic photoelectric conversion unit 32R. An optical member such as a color filter that controls spectroscopy may be provided below the on-chip lens 56L.
(1-2.撮像素子の製造方法)
 本実施の形態の撮像素子10Aは、例えば、次のようにして製造することができる。
(1-2. Manufacturing method of image sensor)
The image sensor 10A of the present embodiment can be manufactured, for example, as follows.
 まず、半導体基板30内に、第1の導電型のウェルとして例えばpウェル31を形成し、このpウェル31内に第2の導電型(例えばn型)の無機光電変換部32B,32Rを形成する。半導体基板30の第1面30S1近傍にはp+領域を形成する。 First, for example, a p-well 31 is formed as a first conductive type well in the semiconductor substrate 30, and second conductive type (for example, n-type) inorganic photoelectric conversion units 32B and 32R are formed in the p-well 31. do. A p + region is formed in the vicinity of the first surface 30S1 of the semiconductor substrate 30.
 半導体基板30の第2面30S2には、例えばフローティングディフュージョンFD1~FD3となるn+領域を形成したのち、ゲート絶縁層33と、各種転送トランジスタTR1trs,TR2trs,TR3trs、選択トランジスタTR1sel,TR2sel、アンプトランジスタTR1amp,TR2ampおよびリセットトランジスタTR1rst,TR2rstの各ゲートを含むゲート配線層47とを形成する。これにより、各種転送トランジスタTR1trs,TR2trs,TR3trs、選択トランジスタTR1sel,TR2sel、アンプトランジスタTR1amp,TR2ampおよびリセットトランジスタTR1rst,TR2rstが形成される。更に、半導体基板30の第2面30S2上に、下部第1コンタクト45および接続部41Aを含む配線層41~43および絶縁層44からなる多層配線層40を形成する。 After forming an n + region to be, for example, floating diffusion FD1 to FD3 on the second surface 30S2 of the semiconductor substrate 30, a gate insulating layer 33, various transfer transistors TR1trs, TR2trs, TR3trs, selection transistors TR1sel, TR2sel, and amplifier transistors TR1amp are formed. , TR2amp and a gate wiring layer 47 including the gates of the reset transistors TR1rst and TR2rst. As a result, various transfer transistors TR1trs, TR2trs, TR3trs, selection transistors TR1sel, TR2sel, amplifier transistors TR1amp, TR2amp, and reset transistors TR1rst, TR2rst are formed. Further, a multilayer wiring layer 40 composed of wiring layers 41 to 43 including a lower first contact 45 and a connecting portion 41A and an insulating layer 44 is formed on the second surface 30S2 of the semiconductor substrate 30.
 半導体基板30の基体としては、例えば、半導体基板30と、埋込み酸化膜(図示せず)と、保持基板(図示せず)とを積層したSOI(Silicon on Insulator)基板を用いる。埋込み酸化膜および保持基板は、半導体基板30の第1面30S1に接合されている。イオン注入後、アニール処理を行う。 As the substrate of the semiconductor substrate 30, for example, an SOI (Silicon on Insulator) substrate in which a semiconductor substrate 30, an embedded oxide film (not shown), and a holding substrate (not shown) are laminated is used. The embedded oxide film and the holding substrate are bonded to the first surface 30S1 of the semiconductor substrate 30. After ion implantation, annealing is performed.
 次いで、半導体基板30の第2面30S2側(多層配線層40側)に支持基板(図示せず)または他の半導体基体等を接合して、上下反転する。続いて、半導体基板30をSOI基板の埋込み酸化膜および保持基板から分離し、半導体基板30の第1面30S1を露出させる。以上の工程は、イオン注入および化学気相成長法(CVD法)等、通常のCMOSプロセスで使用されている技術にて行うことが可能である。 Next, a support substrate (not shown) or another semiconductor substrate is bonded to the second surface 30S2 side (multilayer wiring layer 40 side) of the semiconductor substrate 30, and the semiconductor substrate 30 is turned upside down. Subsequently, the semiconductor substrate 30 is separated from the embedded oxide film and the holding substrate of the SOI substrate to expose the first surface 30S1 of the semiconductor substrate 30. The above steps can be performed by techniques used in ordinary CMOS processes, such as ion implantation and chemical vapor deposition (CVD method).
 次いで、例えばドライエッチングにより半導体基板30を第1面30S1側から加工し、例えば環状の貫通孔30H1,30H2,30H3,30H4を形成する。貫通孔30H1~30H4の深さは、半導体基板30の第1面30S1から第2面30S2まで貫通するものである。 Next, the semiconductor substrate 30 is processed from the first surface 30S1 side by, for example, dry etching to form, for example, annular through holes 30H1, 30H2, 30H3, 30H4. The depths of the through holes 30H1 to 30H4 penetrate from the first surface 30S1 to the second surface 30S2 of the semiconductor substrate 30.
 続いて、半導体基板30の第1面30S1および貫通孔30Hの側面に、例えばALD法を用いて固定電荷層27を成膜する。これにより、半導体基板30の第1面30S1、貫通孔30H1,30H2,30H3,30H4の側面および底面に連続する固定電荷層27が形成される。次に、固定電荷層27の半導体基板30の第1面30S1上および貫通孔30H1,30H2,30H3,30H4内に絶縁層28を成膜したのち、さらに、絶縁層28上に、層間絶縁層29を構成する絶縁膜を成膜する。 Subsequently, a fixed charge layer 27 is formed on the first surface 30S1 of the semiconductor substrate 30 and the side surface of the through hole 30H by using, for example, the ALD method. As a result, a continuous fixed charge layer 27 is formed on the first surface 30S1 of the semiconductor substrate 30, the side surfaces and the bottom surface of the through holes 30H1, 30H2, 30H3, and 30H4. Next, the insulating layer 28 is formed on the first surface 30S1 of the semiconductor substrate 30 of the fixed charge layer 27 and in the through holes 30H1, 30H2, 30H3, 30H4, and then the interlayer insulating layer 29 is further formed on the insulating layer 28. The insulating film constituting the above is formed.
 続いて、例えばドライエッチングにより貫通孔30H1,30H2,30H3,30H4内に形成された絶縁層28内に、層間絶縁層29を構成する絶縁膜、絶縁層28および固定電荷層27および絶縁層44を貫通し、接続部41Aに到達する貫通孔を形成する。なお、このとき、第1面30S1上の層間絶縁層29を構成する絶縁膜も薄膜化される。次に、層間絶縁層29を構成する絶縁膜上および貫通孔27H内に導電膜を成膜したのち、導電膜上の所定の位置にフォトレジストを形成する。その後、エッチングおよびフォトレジストを除去することで、半導体基板30の第1面30S1上にパッド部35A,35B,35C,35Dをそれぞれ有する貫通電極34A,34B,34C,34Dが形成される。 Subsequently, for example, the insulating film, the insulating layer 28, the fixed charge layer 27, and the insulating layer 44 constituting the interlayer insulating layer 29 are placed in the insulating layer 28 formed in the through holes 30H1, 30H2, 30H3, and 30H4 by dry etching. A through hole is formed which penetrates and reaches the connection portion 41A. At this time, the insulating film forming the interlayer insulating layer 29 on the first surface 30S1 is also thinned. Next, a conductive film is formed on the insulating film constituting the interlayer insulating layer 29 and in the through hole 27H, and then a photoresist is formed at a predetermined position on the conductive film. After that, by etching and removing the photoresist, through electrodes 34A, 34B, 34C, and 34D having pad portions 35A, 35B, 35C, and 35D, respectively, are formed on the first surface 30S1 of the semiconductor substrate 30.
 次に、層間絶縁層29を構成する絶縁膜および貫通電極34A,34B,34C,34D上に、それぞれビアV2、パッド部36,36B,36C,36D、ビアV1を形成したのち、化学機械研磨(CMP)により層間絶縁層29の表面を平坦化する。続いて、層間絶縁層29上に導電膜を成膜したのち、導電膜の所定の位置にフォトレジストを形成する。その後、エッチングおよびフォトレジストを除去することで、読み出し電極21A、蓄積電極21Bおよびシールド電極21Cを形成する。次に、層間絶縁層29および読み出し電極21A、蓄積電極21Bおよびシールド電極21C上に絶縁層22を成膜したのち、読み出し電極21A上に開口22Hを設ける。続いて、絶縁層22上に、電荷蓄積層23、光電変換層24および上部電極25を形成する。 Next, via V2, pad portions 36, 36B, 36C, 36D, and via V1 are formed on the insulating film and through electrodes 34A, 34B, 34C, and 34D constituting the interlayer insulating layer 29, respectively, and then chemical mechanical polishing ( The surface of the interlayer insulating layer 29 is flattened by CMP). Subsequently, a conductive film is formed on the interlayer insulating layer 29, and then a photoresist is formed at a predetermined position of the conductive film. After that, the readout electrode 21A, the storage electrode 21B, and the shield electrode 21C are formed by etching and removing the photoresist. Next, an insulating layer 22 is formed on the interlayer insulating layer 29, the readout electrode 21A, the storage electrode 21B, and the shield electrode 21C, and then the opening 22H is provided on the readout electrode 21A. Subsequently, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22.
 なお、有機材料を用いて電荷蓄積層23やその他有機層を形成する場合には、真空工程において連続的に(真空一貫プロセスで)形成することが望ましい。また、光電変換層24の成膜方法としては、必ずしも真空蒸着法を用いた手法に限らず、他の手法、例えば、スピンコート技術やプリント技術等を用いてもよい。 When forming the charge storage layer 23 and other organic layers using an organic material, it is desirable to form them continuously (in a vacuum integrated process) in the vacuum process. Further, the film forming method of the photoelectric conversion layer 24 is not necessarily limited to the method using the vacuum deposition method, and other methods such as spin coating technology and printing technology may be used.
 続いて、図13に示したように、上部電極25上に、第1層26Aとして窒化アルミニウム(AlNx)膜および第2層26Bとして酸化アルミニウム(AlOx)膜を、ALD法を用いて、それぞれ、例えば30nmの厚みで形成する。具体的には、まず、Al前駆体としてトリメチルアルミニウムを用い、窒素(N2)プラズマを照射してAlNx膜(第1層26A)を成膜したのち、窒素(N2)プラズマを酸素(O2)プラズマに変えることでAlOx膜(第2層26B)を成膜する。 Subsequently, as shown in FIG. 13, an aluminum nitride (AlN x ) film as the first layer 26A and an aluminum oxide (AlO x ) film as the second layer 26B were formed on the upper electrode 25 by using the ALD method. Each is formed with a thickness of, for example, 30 nm. Specifically, first, trimethylaluminum is used as an Al precursor, and nitrogen (N 2 ) plasma is irradiated to form an AlN x film (first layer 26A), and then nitrogen (N 2 ) plasma is charged with oxygen (N 2). O 2 ) An AlO x film (second layer 26B) is formed by changing to plasma.
 なお、第1層26Aを窒化シリコン(SiNx)膜で形成する場合には、Si前駆体として例えばビス(tert-ブチルアミノ)シランを用い、窒素(N2)/アンモニア(NH3)プラズマを照射してSiNx膜(第1層26A)を成膜する。その後、Al前駆体(例えば、トリメチルアルミニウム)と酸素(O2)プラズマとを用いてAlOx膜(第2層26B)を成膜する。 When the first layer 26A is formed of a silicon nitride (SiN x ) film, for example, bis (tert-butylamino) silane is used as a Si precursor, and nitrogen (N 2 ) / ammonia (NH 3 ) plasma is used. Irradiate to form a SiN x film (first layer 26A). Then, an AlO x film (second layer 26B) is formed by using an Al precursor (for example, trimethylaluminum) and oxygen (O 2) plasma.
 この後、図14に示したように、リソグラフィ技術を用いて周辺領域110Bの周縁部分の電荷蓄積層23、光電変換層24および上部電極25を除去する。電荷蓄積層23、光電変換層24および上部電極25は、例えば、第2層26Bの所定の位置にフォトレジストを形成し、第2層26Bをパターニングしたのち、これをマスクとしてドライエッチングすることで除去することができる。 After that, as shown in FIG. 14, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 in the peripheral portion of the peripheral region 110B are removed by using a lithography technique. For the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25, for example, a photoresist is formed at a predetermined position of the second layer 26B, the second layer 26B is patterned, and then dry etching is performed using this as a mask. Can be removed.
 次に、図15に示したように、例えばALD法を用いて第2層26B上および電荷蓄積層23、光電変換層24、上部電極25、第1層26Aおよび第2層26Bの側面ならびに絶縁層22上に延在するAlOx膜(第3層26C)を、例えば30nmの厚みで形成したのち、例えばスパッタリング法を用いてAlOx膜(平坦化層51)を、例えば500nmの厚みで形成する。 Next, as shown in FIG. 15, for example, using the ALD method, the side surfaces and insulation of the second layer 26B and the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the first layer 26A and the second layer 26B are used. An AlO x film (third layer 26C) extending on the layer 22 is formed to a thickness of, for example, 30 nm, and then an AlO x film (flattening layer 51) is formed to a thickness of, for example, 500 nm by a sputtering method. do.
 続いて、図17に示したように、パッド部36Dおよび上部電極25まで貫通する開口51H1,51H2を形成する。具体的には、まず、平坦化層51上にフォトレジストをパターニングしたのち、ウェットエッチングを行う。これにより、図16に示したように、パッド部36Dまで達する開口51H1が形成される。開口51H2となる部分では、第1層26A(AlNx膜)がエッチングストッパ膜となり、第1層26Aが露出する開口51H2aが形成される。その後、例えばフッ化水素(HF)を用いたドライエッチングにより開口51H2aの底面の露出する第1層26Aをエッチングすることにより、上部電極25まで達する開口51H2が形成される。 Subsequently, as shown in FIG. 17, openings 51H1 and 51H2 penetrating to the pad portion 36D and the upper electrode 25 are formed. Specifically, first, the photoresist is patterned on the flattening layer 51, and then wet etching is performed. As a result, as shown in FIG. 16, an opening 51H1 that reaches the pad portion 36D is formed. In the portion where the opening 51H2 is formed, the first layer 26A (AlN x film) serves as an etching stopper film, and the opening 51H2a where the first layer 26A is exposed is formed. Then, for example, by etching the exposed first layer 26A on the bottom surface of the opening 51H2a by dry etching using hydrogen fluoride (HF), the opening 51H2 reaching the upper electrode 25 is formed.
 また、図16に示した開口51H1および開口51H2aの加工は、ドライエッチングおよびウェットエッチングの2段階工程を用いて形成するようにしてもよい。具体的には、塩素(Cl)系ガスを用いたドライエッチングにより、例えばAlOx膜からなる第3層26Cおよび平坦化層51を、例えば50~100nmの厚みになるまでエッチングしたのち、ウェットエッチングにより残りのAlOx膜を除去するようにしてもよい。これにより、開口51H1および開口51H2aを所望の形状に加工することが可能となる。 Further, the processing of the openings 51H1 and 51H2a shown in FIG. 16 may be formed by using a two-step process of dry etching and wet etching. Specifically, by dry etching using a chlorine (Cl) -based gas, for example, the third layer 26C and the flattening layer 51 made of an AlO x film are etched to a thickness of, for example, 50 to 100 nm, and then wet etching is performed. The remaining AlO x film may be removed by etching. This makes it possible to process the opening 51H1 and the opening 51H2a into a desired shape.
 次に、図18に示したように、平坦化層51上および開口51H1,51H2の側面および底面に連続する配線52を形成したのち、平坦化層51および配線52上、ならびに、開口51H1,51H2内を埋設する保護層53を形成する。これにより、開口51H1,51H2を介した電荷蓄積層23への水素および水分の侵入が抑制される。最後に、遮光膜54およびオンチップレンズ層56を形成する。以上により、図1に示した撮像素子10Aが完成する。 Next, as shown in FIG. 18, after forming continuous wiring 52 on the flattening layer 51 and on the side surfaces and bottom surfaces of the openings 51H1, 51H2, the flattening layer 51 and the wiring 52, and the openings 51H1, 51H2 A protective layer 53 is formed to bury the inside. As a result, the invasion of hydrogen and water into the charge storage layer 23 through the openings 51H1 and 51H2 is suppressed. Finally, the light-shielding film 54 and the on-chip lens layer 56 are formed. As a result, the image sensor 10A shown in FIG. 1 is completed.
 撮像素子10Aでは、有機光電変換部20に、オンチップレンズ56Lを介して光が入射すると、その光は、有機光電変換部20、無機光電変換部32B,32Rの順に通過し、その通過過程において緑、青、赤の色光毎に光電変換される。以下、各色の信号取得動作について説明する。 In the image pickup element 10A, when light is incident on the organic photoelectric conversion unit 20 via the on-chip lens 56L, the light passes through the organic photoelectric conversion unit 20 and the inorganic photoelectric conversion units 32B and 32R in this order, and in the passing process. Photoelectric conversion is performed for each of the green, blue, and red colored lights. Hereinafter, the signal acquisition operation of each color will be described.
(有機光電変換部20による緑色信号の取得)
 撮像素子10Aへ入射した光のうち、まず、緑色光が、有機光電変換部20において選択的に検出(吸収)され、光電変換される。
(Acquisition of green signal by organic photoelectric conversion unit 20)
Of the light incident on the image sensor 10A, first, green light is selectively detected (absorbed) by the organic photoelectric conversion unit 20 and photoelectrically converted.
 有機光電変換部20は、貫通電極34を介して、アンプトランジスタAMPのゲートGampとフローティングディフュージョンFD1とに接続されている。よって、有機光電変換部20で発生した励起子のうちの電子が、下部電極21側から取り出され、貫通電極34を介して半導体基板30の第2面30S2側へ転送され、フローティングディフュージョンFD1に蓄積される。これと同時に、アンプトランジスタAMPにより、有機光電変換部20で生じた電荷量が電圧に変調される。 The organic photoelectric conversion unit 20 is connected to the gate Gamp of the amplifier transistor AMP and the floating diffusion FD1 via the through electrode 34. Therefore, the electrons of the excitons generated by the organic photoelectric conversion unit 20 are taken out from the lower electrode 21 side, transferred to the second surface 30S2 side of the semiconductor substrate 30 via the through electrode 34, and accumulated in the floating diffusion FD1. Will be done. At the same time, the amplifier transistor AMP modulates the amount of charge generated in the organic photoelectric conversion unit 20 into a voltage.
 また、フローティングディフュージョンFD1の隣には、リセットトランジスタTR1rstのリセットゲートGrstが配置されている。これにより、フローティングディフュージョンFD1に蓄積された電荷は、リセットトランジスタTR1rstによりリセットされる。 In addition, the reset gate Grst of the reset transistor TR1rst is arranged next to the floating diffusion FD1. As a result, the electric charge accumulated in the floating diffusion FD1 is reset by the reset transistor TR1rst.
 ここでは、有機光電変換部20が、貫通電極34Aを介して、アンプトランジスタTR1ampだけでなくフローティングディフュージョンFD1にも接続されているので、フローティングディフュージョンFD1に蓄積された電荷をリセットトランジスタTR1rstにより容易にリセットすることが可能となる。 Here, since the organic photoelectric conversion unit 20 is connected not only to the amplifier transistor TR1amp but also to the floating diffusion FD1 via the through electrode 34A, the charge accumulated in the floating diffusion FD1 can be easily reset by the reset transistor TR1rst. It becomes possible to do.
 これに対して、貫通電極34AとフローティングディフュージョンFD1とが接続されていない場合には、フローティングディフュージョンFD1に蓄積された電荷をリセットすることが困難となり、大きな電圧をかけて上部電極25側へ引き抜くことになる。そのため、光電変換層24がダメージを受ける虞がある。また、短時間でのリセットを可能とする構造は暗時ノイズの増大を招き、トレードオフとなるため、この構造は困難である。 On the other hand, when the through electrode 34A and the floating diffusion FD1 are not connected, it becomes difficult to reset the electric charge accumulated in the floating diffusion FD1, and a large voltage is applied to pull it out to the upper electrode 25 side. become. Therefore, the photoelectric conversion layer 24 may be damaged. In addition, a structure that enables resetting in a short time causes an increase in dark noise, which is a trade-off, and this structure is difficult.
 図19は、撮像素子10Aの一動作例を表したものである。(A)は、蓄積電極21Bにおける電位を示し、(B)は、フローティングディフュージョンFD1(読み出し電極21A)における電位を示し、(C)は、リセットトランジスタTR1rstのゲート(Gsel)における電位を示したものである。撮像素子10Aでは、読み出し電極21Aおよび蓄積電極21Bは、それぞれ個別に電圧が印加されるようになっている。 FIG. 19 shows an operation example of the image sensor 10A. (A) shows the potential at the storage electrode 21B, (B) shows the potential at the floating diffusion FD1 (reading electrode 21A), and (C) shows the potential at the gate (Gsel) of the reset transistor TR1rst. Is. In the image sensor 10A, a voltage is individually applied to the readout electrode 21A and the storage electrode 21B.
 撮像素子10Aでは、蓄積期間においては、駆動回路から読み出し電極21Aに電位V1が印加され、蓄積電極21Bに電位V2が印加される。ここで、電位V1,V2は、V2>V1とする。これにより、光電変換によって生じた電荷(ここでは、電子)は、蓄積電極21Bに引きつけられ、蓄積電極21Bと対向する電荷蓄積層23の領域に蓄積される(蓄積期間)。因みに、蓄積電極21Bと対向する電荷蓄積層23の領域の電位は、光電変換の時間経過に伴い、より負側の値となる。なお、正孔は、上部電極25から駆動回路へと送出される。 In the image sensor 10A, the potential V1 is applied to the readout electrode 21A from the drive circuit and the potential V2 is applied to the storage electrode 21B during the storage period. Here, the potentials V1 and V2 are set to V2> V1. As a result, the charges (electrons in this case) generated by the photoelectric conversion are attracted to the storage electrode 21B and accumulated in the region of the charge storage layer 23 facing the storage electrode 21B (storage period). Incidentally, the potential in the region of the charge storage layer 23 facing the storage electrode 21B becomes a more negative value with the passage of time of the photoelectric conversion. The holes are sent from the upper electrode 25 to the drive circuit.
 撮像素子10Aでは、蓄積期間の後期においてリセット動作がなされる。具体的には、タイミングt1において、走査部は、リセット信号RSTの電圧を低レベルから高レベルに変化させる。これにより、単位画素Pでは、リセットトランジスタTR1rstがオン状態になり、その結果、フローティングディフュージョンFD1の電圧が電源電圧VDDに設定され、フローティングディフュージョンFD1の電圧がリセットされる(リセット期間)。 In the image sensor 10A, a reset operation is performed in the latter half of the accumulation period. Specifically, at timing t1, the scanning unit changes the voltage of the reset signal RST from a low level to a high level. As a result, in the unit pixel P, the reset transistor TR1rst is turned on, and as a result, the voltage of the floating diffusion FD1 is set to the power supply voltage VDD, and the voltage of the floating diffusion FD1 is reset (reset period).
 リセット動作の完了後、電荷の読み出しが行われる。具体的には、タイミングt2において、駆動回路から読み出し電極21Aには電位V3が印加され、蓄積電極21Bには電位V4が印加される。ここで、電位V3,V4は、V3<V4とする。これにより、蓄積電極21Bに対応する領域に蓄積されていた電荷(ここでは、電子)は、読み出し電極21AからフローティングディフュージョンFD1へと読み出される。即ち、電荷蓄積層23に蓄積された電荷が制御部に読み出される(転送期間)。 After the reset operation is completed, the electric charge is read out. Specifically, at the timing t2, the potential V3 is applied to the reading electrode 21A from the drive circuit, and the potential V4 is applied to the storage electrode 21B. Here, the potentials V3 and V4 are set to V3 <V4. As a result, the electric charge (here, the electron) accumulated in the region corresponding to the storage electrode 21B is read out from the reading electrode 21A to the floating diffusion FD1. That is, the charge accumulated in the charge storage layer 23 is read out to the control unit (transfer period).
 読み出し動作完了後、再び、駆動回路から読み出し電極21Aに電位V1が印加され、蓄積電極21Bに電位V2が印加される。これにより、光電変換によって生じた電荷(ここでは、電子)は、蓄積電極21Bに引きつけられ、蓄積電極21Bと対向する光電変換層24の領域に蓄積される(蓄積期間)。 After the read operation is completed, the potential V1 is applied to the read electrode 21A from the drive circuit again, and the potential V2 is applied to the storage electrode 21B. As a result, the electric charge (electrons in this case) generated by the photoelectric conversion is attracted to the storage electrode 21B and accumulated in the region of the photoelectric conversion layer 24 facing the storage electrode 21B (accumulation period).
(無機光電変換部32B,32Rによる青色信号および赤色信号の取得)
 続いて、有機光電変換部20を透過した光のうち、青色光は無機光電変換部32B、赤色光は無機光電変換部32Rにおいて、それぞれ順に吸収され、光電変換される。無機光電変換部32Bでは、入射した青色光に対応した電子が無機光電変換部32Bのn領域に蓄積され、蓄積された電子は、転送トランジスタTR2trsによりフローティングディフュージョンFD2へと転送される。同様に、無機光電変換部32Rでは、入射した赤色光に対応した電子が無機光電変換部32Rのn領域に蓄積され、蓄積された電子は、転送トランジスタTR3trsによりフローティングディフュージョンFD3へと転送される。
(Acquisition of blue signal and red signal by inorganic photoelectric conversion units 32B and 32R)
Subsequently, of the light transmitted through the organic photoelectric conversion unit 20, blue light is absorbed by the inorganic photoelectric conversion unit 32B and red light is absorbed by the inorganic photoelectric conversion unit 32R in this order, and the light is photoelectrically converted. In the inorganic photoelectric conversion unit 32B, electrons corresponding to the incident blue light are accumulated in the n region of the inorganic photoelectric conversion unit 32B, and the accumulated electrons are transferred to the floating diffusion FD2 by the transfer transistor TR2trs. Similarly, in the inorganic photoelectric conversion unit 32R, electrons corresponding to the incident red light are accumulated in the n region of the inorganic photoelectric conversion unit 32R, and the accumulated electrons are transferred to the floating diffusion FD3 by the transfer transistor TR3trs.
(1-3.作用・効果)
 本実施の形態の撮像素子10Aは、有機光電変換部20の上面を覆う封止層26として、窒素(N2)を含む絶縁材料(例えば、AlNxまたはSiNx)からなる第1層26Aおよび酸素(O2)含む絶縁材料(例えば、AlOx)からなる第2層26Bをこの順に積層するようにした。これにより、例えば周辺領域110Bにおいて、有機光電変換部20の上部電極25に電圧を印加するための配線52と上部電極25とが接続される開口51H2を容易に形成することが可能となる。以下、これについて説明する。
(1-3. Action / effect)
The image pickup device 10A of the present embodiment has a first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2 ) as a sealing layer 26 covering the upper surface of the organic photoelectric conversion unit 20 and the first layer 26A. The second layer 26B made of an insulating material containing oxygen (O 2 ) (for example, AlO x ) was laminated in this order. As a result, for example, in the peripheral region 110B, it is possible to easily form an opening 51H2 in which the wiring 52 for applying a voltage to the upper electrode 25 of the organic photoelectric conversion unit 20 and the upper electrode 25 are connected. This will be described below.
 近年、CCDイメージセンサやCMOSイメージセンサ等を構成する撮像素子として、複数の光電変換部が縦方向に積層された積層型撮像素子の開発が進められている。積層型撮像素子としては、例えば、シリコン(Si)基板内に、それぞれフォトダイオード(PD)からなる2つ無機光電変換部が積層され、Si基板の上方に有機材料を含む光電変換層を有する有機光電変換部が設けられた構成を有している。 In recent years, as an image sensor constituting a CCD image sensor, a CMOS image sensor, or the like, a stacked image sensor in which a plurality of photoelectric conversion units are vertically laminated has been developed. As a laminated image sensor, for example, two inorganic photoelectric conversion units each made of a photodiode (PD) are laminated on a silicon (Si) substrate, and an organic having a photoelectric conversion layer containing an organic material above the Si substrate. It has a configuration in which a photoelectric conversion unit is provided.
 このような積層型撮像素子では、有効画素領域の端部において上部電極とのコンタクトが形成される。上部電極上には、一般に封止層が製膜されており、上部電極とのコンタクトは、例えばドライエッチングを用いて封止層をエッチングしたのち、配線となる金属膜を成膜することで形成される。 In such a stacked image sensor, a contact with the upper electrode is formed at the end of the effective pixel region. A sealing layer is generally formed on the upper electrode, and a contact with the upper electrode is formed by etching the sealing layer by, for example, dry etching, and then forming a metal film to be a wiring. Will be done.
 その際、封止層が酸化アルミニウムのみで形成されている場合には、2段階のドライエッチングが行われる。具体的には、例えば、塩素系ガスを用いて封止層を途中までエッチングしたのち、フッ素系ガスを用いて残りの封止層をエッチングして上部電極の表面で停止する。このような2段階ドライエッチングでは、1段階目において面内ばらつきが生じ、2段階目でフッ化アルミニウム(AlF)のパーティクルが生じ、製造歩留まりが低下するという課題が生じる。 At that time, if the sealing layer is formed only of aluminum oxide, two-step dry etching is performed. Specifically, for example, the sealing layer is half-etched with a chlorine-based gas, and then the remaining sealing layer is etched with a fluorine-based gas to stop at the surface of the upper electrode. In such two-step dry etching, in-plane variation occurs in the first step, particles of aluminum fluoride (AlF) are generated in the second step, and there arises a problem that the manufacturing yield is lowered.
 これに対して、本実施の形態では、窒素(N2)を含む絶縁材料(例えば、AlNxまたはSiNx)からなる第1層26Aおよび酸素(O2)含む絶縁材料(例えば、AlOx)からなる第2層26Bを有する封止層26を形成し、有機光電変換部20の上面に、第1層26Aおよび第2層26Bの順に積層するようにした。これにより、有機光電変換部20の上部電極25と、電圧を印加するための配線52とを接続するための開口51H2を形成する際のウェットエッチング工程において、第1層26Aをエッチングストッパ膜として第1層26A上のAlOx膜を除去できるようになる。これにより、上述したような面内ばらつきの発生を防ぐことが可能となる。更に、続くドライエッチング工程では、第1層26Aのみをエッチングすることとなるため、フッ化アルミニウム(AlF)のパーティクルの発生を低減することが可能となる。また、第1層26Aを、SiNxを用いて形成した場合には、パーティクルの発生を防ぐことが可能となる。 On the other hand, in the present embodiment, the first layer 26A made of an insulating material containing nitrogen (N 2 ) (for example, AlN x or SiN x ) and the insulating material containing oxygen (O 2 ) (for example, AlO x ). A sealing layer 26 having a second layer 26B made of the same material was formed, and the first layer 26A and the second layer 26B were laminated in this order on the upper surface of the organic photoelectric conversion unit 20. As a result, in the wet etching step when forming the opening 51H2 for connecting the upper electrode 25 of the organic photoelectric conversion unit 20 and the wiring 52 for applying a voltage, the first layer 26A is used as the etching stopper film. The AlO x film on the layer 26A can be removed. This makes it possible to prevent the occurrence of in-plane variation as described above. Further, in the subsequent dry etching step, only the first layer 26A is etched, so that it is possible to reduce the generation of aluminum fluoride (AlF) particles. Further, when the first layer 26A is formed by using SiN x , it is possible to prevent the generation of particles.
 以上のように、本実施の形態の撮像素子10Aでは、有機光電変換部20の上面を、窒素(N2)を含む絶縁材料(例えば、AlNxまたはSiNx)からなる第1層26Aおよび酸素(O2)含む絶縁材料(例えば、AlOx)からなる第2層26Bがこの順に積層された封止層26で覆うようにしたので、上部電極25と配線52とが接続される開口51H2の形成が容易になる。よって、製造歩留まりを向上させることが可能となる。 As described above, in the image pickup device 10A of the present embodiment, the upper surface of the organic photoelectric conversion unit 20 has a first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2) and oxygen. Since the second layer 26B made of the insulating material (for example, AlO x ) containing (O 2 ) is covered with the sealing layer 26 laminated in this order, the opening 51H2 to which the upper electrode 25 and the wiring 52 are connected is formed. Easy to form. Therefore, it is possible to improve the manufacturing yield.
 次に、第2の実施の形態について説明する。なお、第1の実施の形態の撮像素子10Aと同様の構成要素には同一の符号を付して説明を省略する。 Next, the second embodiment will be described. The same components as those of the image sensor 10A of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
<2.第2の実施の形態>
 図20は、本開示の第2の実施の形態に係る撮像素子(撮像素子10B)の断面構成を表したものである。撮像素子10Bは、上記第1の実施の形態における撮像素子10Aと同様に、例えば、デジタルスチルカメラ、ビデオカメラ等の電子機器に用いられるCMOSイメージセンサ等の撮像装置(撮像装置1)において1つの画素(単位画素P)を構成するものである。
<2. Second Embodiment>
FIG. 20 shows the cross-sectional configuration of the image pickup device (image pickup device 10B) according to the second embodiment of the present disclosure. Similar to the image sensor 10A in the first embodiment, the image sensor 10B is one in an image sensor (image sensor 1) such as a CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes a pixel (unit pixel P).
 本実施の形態の撮像素子10Bは、有機光電変換部20の上面を覆う封止層26を構成する酸素(O2)を含む絶縁材料(例えば、AlOx)からなる第2層26Bおよび窒素(N2)を含む絶縁材料(例えば、AlNxまたはSiNx)からなる第1層26Aが、有機光電変換部20側からこの順に積層されたものである。具体的には、撮像素子10Bでは、封止層26は、上記第1の実施の形態と同様に、第1層26A、第2層26Bおよび第3層26Cからなり、有機光電変換部20側から第2層26B、第1層26Aおよび第3層26Cの順に積層されている。本実施の形態では、第2層26Bは、有機光電変換部20の上面に設けられており、第1層26Aおよび第3層26Cは、それぞれ、上部電極25の上面から上部電極25、光電変換層24および電荷蓄積層23の側面を介して絶縁層22上に形成され、例えば周辺領域110Bの端部まで延在している。 The image pickup device 10B of the present embodiment includes a second layer 26B made of an insulating material (for example, AlO x ) containing oxygen (O 2 ) constituting a sealing layer 26 covering the upper surface of the organic photoelectric conversion unit 20, and nitrogen (for example). The first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing N 2 ) is laminated in this order from the organic photoelectric conversion unit 20 side. Specifically, in the image sensor 10B, the sealing layer 26 is composed of the first layer 26A, the second layer 26B, and the third layer 26C, as in the first embodiment, and is on the organic photoelectric conversion unit 20 side. The second layer 26B, the first layer 26A, and the third layer 26C are laminated in this order. In the present embodiment, the second layer 26B is provided on the upper surface of the organic photoelectric conversion unit 20, and the first layer 26A and the third layer 26C are respectively from the upper surface of the upper electrode 25 to the upper electrode 25 and the photoelectric conversion. It is formed on the insulating layer 22 via the side surfaces of the layer 24 and the charge storage layer 23, and extends to, for example, the end of the peripheral region 110B.
 撮像素子10Bは、例えば、次のようにして製造することができる。 The image sensor 10B can be manufactured, for example, as follows.
 まず、上記第1の実施の形態と同様にして、絶縁層22上に、電荷蓄積層23、光電変換層24および上部電極25を形成する。続いて、上部電極25上に、図21に示したように、第2層26Bとして酸化アルミニウム(AlOx)膜を、ALD法を用いて、例えば30nmの厚みで形成したのち、第2層26Bの所定の位置にフォトレジストを形成し、第2層26Bをパターニングする。 First, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment. Subsequently, as shown in FIG. 21, an aluminum oxide (AlO x ) film as the second layer 26B is formed on the upper electrode 25 by the ALD method to a thickness of, for example, 30 nm, and then the second layer 26B is formed. A photoresist is formed at a predetermined position of the above, and the second layer 26B is patterned.
 次に、図22に示したように、第2層26Bをマスクとしてドライエッチングすることにより、周辺領域110Bの周縁部分の電荷蓄積層23、光電変換層24および上部電極25を除去する。 Next, as shown in FIG. 22, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 in the peripheral portion of the peripheral region 110B are removed by dry etching using the second layer 26B as a mask.
 続いて、図23に示したように、例えばALD法を用いて第2層26B上および電荷蓄積層23、光電変換層24、上部電極25、第1層26Aおよび第2層26Bの側面ならびに絶縁層22上に延在する第1層26Aおよび第3層26Cをこの順に、それぞれ、例えば30nmの厚み成膜したのち、例えばスパッタリング法を用いてAlOx膜(平坦化層51)を、例えば500nmの厚みで形成する。具体的には、第1層26Aおよび第3層26Cは、まず、Al前駆体としてトリメチルアルミニウムを用い、窒素(N2)プラズマを照射してAlNx膜(第1層26A)を成膜したのち、窒素(N2)プラズマを酸素(O2)プラズマに変えることでAlOx膜(第3層26C)を成膜する。 Subsequently, as shown in FIG. 23, for example, using the ALD method, the side surfaces and insulation of the second layer 26B and the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the first layer 26A and the second layer 26B are used. The first layer 26A and the third layer 26C extending on the layer 22 are formed in this order with a thickness of, for example, 30 nm, and then an AlO x film (flattening layer 51), for example, 500 nm, is formed by using a sputtering method, for example. It is formed with the thickness of. Specifically, in the first layer 26A and the third layer 26C, first, trimethylaluminum was used as an Al precursor, and nitrogen (N 2 ) plasma was irradiated to form an AlN x film (first layer 26A). Then, the nitrogen (N 2 ) plasma is changed to the oxygen (O 2 ) plasma to form an AlO x film (third layer 26C).
 なお、第1層26Aは、窒化シリコン(SiNx)膜で形成してもよく、窒化シリコン(SiNx)膜で形成する場合には、Si前駆体として例えばビス(tert-ブチルアミノ)シランを用い、窒素(N2)/アンモニア(NH3)プラズマを照射してSiNx膜(第1層26A)を成膜する。その後、Al前駆体(例えば、トリメチルアルミニウム)と酸素(O2)プラズマとを用いてAlOx膜(第3層26C)を成膜する。 The first layer 26A may be formed of silicon nitride (SiN x) film, in the case of forming silicon nitride in (SiN x) film, as Si precursors such as bis (tert- butylamino) silane It is used to irradiate nitrogen (N 2 ) / ammonia (NH 3 ) plasma to form a SiN x film (first layer 26A). Then, an AlO x film (third layer 26C) is formed by using an Al precursor (for example, trimethylaluminum) and oxygen (O 2) plasma.
 この後、図24に示したように、パッド部36Dおよび上部電極25まで貫通する開口51H1,51H2を形成する。具体的には、まず、平坦化層51上にフォトレジストをパターニングしたのち、ウェットエッチングを行う。これにより、図24に示したように、パッド部36Dまで達する開口51H1が形成される。開口51H2となる部分では、第1層26A(AlNx膜)がエッチングストッパ膜となり、平坦化層51および第3層26Cが除去される。その後、例えばフッ化水素(HF)を用いたドライエッチングにより第1層26Aおよび第2層26Bをエッチングする。これにより、上部電極25まで達する開口51H2が形成される。 After that, as shown in FIG. 24, openings 51H1 and 51H2 penetrating to the pad portion 36D and the upper electrode 25 are formed. Specifically, first, the photoresist is patterned on the flattening layer 51, and then wet etching is performed. As a result, as shown in FIG. 24, an opening 51H1 that reaches the pad portion 36D is formed. In the portion where the opening 51H2 is formed, the first layer 26A (AlN x film) serves as an etching stopper film, and the flattening layer 51 and the third layer 26C are removed. Then, the first layer 26A and the second layer 26B are etched by dry etching using, for example, hydrogen fluoride (HF). As a result, the opening 51H2 that reaches the upper electrode 25 is formed.
 次に、図25に示したように、平坦化層51上および開口51H1,51H2の側面および底面に連続する配線52を形成したのち、平坦化層51および配線52上、ならびに、開口51H1,51H2内を埋設する保護層53を形成する。これにより、開口51H1,51H2を介した電荷蓄積層23への水素および水分の侵入が抑制される。最後に、遮光膜54およびオンチップレンズ層56を形成する。以上により、図20に示した撮像素子10Bが完成する。 Next, as shown in FIG. 25, after forming continuous wiring 52 on the flattening layer 51 and on the side surfaces and bottom surfaces of the openings 51H1, 51H2, the flattening layer 51 and the wiring 52, and the openings 51H1, 51H2 A protective layer 53 is formed to bury the inside. As a result, the invasion of hydrogen and water into the charge storage layer 23 through the openings 51H1 and 51H2 is suppressed. Finally, the light-shielding film 54 and the on-chip lens layer 56 are formed. As a result, the image sensor 10B shown in FIG. 20 is completed.
 以上のように、本実施の形態の撮像素子10Bでは、有機光電変換部20の上面を、酸素(O2)含む絶縁材料(例えば、AlOx)からなる第2層26Bおよび窒素(N2)を含む絶縁材料(例えば、AlNxまたはSiNx)からなる第1層26Aがこの順に積層された封止層26で覆うようにした。これにより、上記第1の実施の形態と比較して開口51H2を形成するドライエッチング時に、第2層26B分のフッ化アルミニウム(AlF)のパーティクルの発生が増えるものの、一般的な封止層のエッチング工程と比較して、上部電極25と配線52とが接続される開口51H2の形成が容易になる。よって、製造歩留まりを向上させることが可能となる。 As described above, in the image pickup device 10B of the present embodiment, the upper surface of the organic photoelectric conversion unit 20 has a second layer 26B made of an insulating material (for example, AlO x ) containing oxygen (O 2 ) and nitrogen (N 2 ). The first layer 26A made of an insulating material containing (for example, AlN x or SiN x ) was covered with a sealing layer 26 laminated in this order. As a result, the generation of aluminum fluoride (AlF) particles for the second layer 26B increases during dry etching to form the opening 51H2 as compared with the first embodiment, but the general sealing layer Compared with the etching process, it becomes easier to form the opening 51H2 in which the upper electrode 25 and the wiring 52 are connected. Therefore, it is possible to improve the manufacturing yield.
<3.第3の実施の形態>
 図26は、本開示の第3の実施の形態に係る撮像素子(撮像素子10C)の断面構成の一例を表したものである。図27は、図26に示した撮像素子の平面構成を模式的に表したものである。撮像素子10Cは、上記第1の実施の形態における撮像素子10Aと同様に、例えば、デタルスチルカメラ、ビデオカメラ等の電子機器に用いられるCMOSイメージセンサ等の撮像装置(撮像装置1)において1つの画素(単位画素P)を構成するものである。
<3. Third Embodiment>
FIG. 26 shows an example of the cross-sectional configuration of the image pickup device (image pickup device 10C) according to the third embodiment of the present disclosure. FIG. 27 schematically shows the planar configuration of the image pickup device shown in FIG. 26. Similar to the image sensor 10A in the first embodiment, the image sensor 10C is used in an image sensor (image sensor 1) such as a CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes one pixel (unit pixel P).
 本実施の形態の撮像素子10Cは、有機光電変換部20の上面を覆う封止層26を構成する窒素(N2)を含む絶縁材料(例えば、AlNxまたはSiNx)からなる第1層26Aが部分的、具体的には、上部電極25と配線52とが電気的に接続されるコンタクト部分に設けられたものである。封止層26は、コンタクト部分において、第2層26B、第3層26Cおよび第1層26Aが、有機光電変換部20側からこの順に積層されている。 The image pickup device 10C of the present embodiment is a first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2 ) constituting the sealing layer 26 covering the upper surface of the organic photoelectric conversion unit 20. Is partially, specifically, provided in the contact portion where the upper electrode 25 and the wiring 52 are electrically connected. In the sealing layer 26, the second layer 26B, the third layer 26C, and the first layer 26A are laminated in this order from the organic photoelectric conversion unit 20 side in the contact portion.
 撮像素子10Cは、例えば、次のようにして製造することができる。 The image sensor 10C can be manufactured, for example, as follows.
 まず、上記第1の実施の形態と同様にして、絶縁層22上に、電荷蓄積層23、光電変換層24および上部電極25を形成する。続いて、上部電極25上に、第2層26Bとして酸化アルミニウム(AlOx)膜を、ALD法を用いて、例えば30nmの厚みで形成する。その後、図28に示したように、周辺領域110Bの周縁部分の電荷蓄積層23、光電変換層24、上部電極25および第2層26Bを除去する。 First, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment. Subsequently, an aluminum oxide (AlO x ) film as the second layer 26B is formed on the upper electrode 25 by using the ALD method, for example, with a thickness of 30 nm. After that, as shown in FIG. 28, the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed.
 次に、図29に示したように、例えばALD法を用いて第2層26B上および電荷蓄積層23、光電変換層24、上部電極25および第2層26Bの側面ならびに絶縁層22上に延在する第3層26Cに、例えば30nmの厚みで成膜する。 Next, as shown in FIG. 29, for example, using the ALD method, the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the side surface of the second layer 26B, and the insulating layer 22 are spread. A film is formed on the existing third layer 26C with a thickness of, for example, 30 nm.
 続いて、図30に示したように、例えばALD法を用いて第3層26C上に第1層26Aを、例えば50nmの厚みで成膜した後、第1層26Aの所定の位置、即ち、上部電極25と配線52とのコンタクト位置にフォトレジストを形成し、第1層23Aをパターニングする。 Subsequently, as shown in FIG. 30, after forming the first layer 26A on the third layer 26C using, for example, the ALD method with a thickness of, for example, 50 nm, the first layer 26A is formed at a predetermined position, that is, A photoresist is formed at the contact position between the upper electrode 25 and the wiring 52, and the first layer 23A is patterned.
 次に、図31に示したように、例えばスパッタリング法を用いて第3層26Cおよび第1層26Aを覆うAlOx膜(平坦化層51)を形成する。 Next, as shown in FIG. 31, an AlO x film (flattening layer 51) covering the third layer 26C and the first layer 26A is formed by, for example, a sputtering method.
 続いて、平坦化層51上にフォトレジストをパターニングしたのち、図32に示したように、ウェットエッチングを行い、開口51H2を形成する。このとき、開口51H2では、第1層26Aがエッチングストッパ膜となり平坦化層51が除去される。次に、例えばフッ化水素(HF)を用いたドライエッチングにより第1層26Aおよび第2層26Bをエッチングする。これにより、上部電極25まで達する開口51H2が形成される。その後、上記第1の実施の形態と同様にして配線52、保護層53、遮光膜54およびオンチップレンズ層56を形成する。以上により、図26に示した撮像素子10Cが完成する。 Subsequently, after patterning the photoresist on the flattening layer 51, wet etching is performed as shown in FIG. 32 to form the opening 51H2. At this time, in the opening 51H2, the first layer 26A serves as an etching stopper film and the flattening layer 51 is removed. Next, the first layer 26A and the second layer 26B are etched by dry etching using, for example, hydrogen fluoride (HF). As a result, the opening 51H2 that reaches the upper electrode 25 is formed. After that, the wiring 52, the protective layer 53, the light-shielding film 54, and the on-chip lens layer 56 are formed in the same manner as in the first embodiment. As a result, the image sensor 10C shown in FIG. 26 is completed.
 なお、第1層26Aの形成範囲および積層方向の形成位置はこれに限定されるものではない。例えば、図33に示したように、第1層23Aは有機光電変換部20の側面に延在していてもよい。また、図34に示したように、第1層23Aは有機光電変換部20の側面から周辺領域110Bまで延在していてもよい。更に、図35~図37に示したように、封止層26は、第1の実施の形態と同様に、第1層26A、第2層26Bおよび第3層26Cの順に形成するようにしてもよい。 The formation range of the first layer 26A and the formation position in the stacking direction are not limited to this. For example, as shown in FIG. 33, the first layer 23A may extend to the side surface of the organic photoelectric conversion unit 20. Further, as shown in FIG. 34, the first layer 23A may extend from the side surface of the organic photoelectric conversion unit 20 to the peripheral region 110B. Further, as shown in FIGS. 35 to 37, the sealing layer 26 is formed in the order of the first layer 26A, the second layer 26B, and the third layer 26C, as in the first embodiment. May be good.
 以上のように、本実施の形態の撮像素子10Cでは、封止層26を構成する窒素(N2)を含む絶縁材料(例えば、AlNxまたはSiNx)からなる第1層26Aを、上部電極25と配線52とが電気的に接続されるコンタクト部分に選択的に設けるようにした。これにより、上記第1の実施の形態の効果に加えて、第1層26Aによる光電変換部20へ侵入する光(入射光)の損失が低減され、デバイス特性を向上させることが可能となる。また、第1層26Aに含まれる微量な水素(H2)の有機光電変換部20への侵入が抑制される。よって、有機光電変換部20を構成する上部電極25の還元や有機膜の劣化が抑制され、デバイス特性をさらに向上させることが可能となる。 As described above, in the image sensor 10C of the present embodiment, the first layer 26A made of an insulating material (for example, AlN x or SiN x ) containing nitrogen (N 2) constituting the sealing layer 26 is attached to the upper electrode. The 25 and the wiring 52 are selectively provided in the contact portion where they are electrically connected. As a result, in addition to the effects of the first embodiment, the loss of light (incident light) that penetrates into the photoelectric conversion unit 20 by the first layer 26A is reduced, and the device characteristics can be improved. Further, the invasion of a small amount of hydrogen (H 2 ) contained in the first layer 26A into the organic photoelectric conversion unit 20 is suppressed. Therefore, the reduction of the upper electrode 25 constituting the organic photoelectric conversion unit 20 and the deterioration of the organic film are suppressed, and the device characteristics can be further improved.
<4.第4の実施の形態>
 図38は、本開示の第4の実施の形態に係る撮像素子(撮像素子10D)の断面構成の一例を表したものである。撮像素子10Dは、上記第1の実施の形態における撮像素子10Aと同様に、例えば、デタルスチルカメラ、ビデオカメラ等の電子機器に用いられるCMOSイメージセンサ等の撮像装置(撮像装置1)において1つの画素(単位画素P)を構成するものである。
<4. Fourth Embodiment>
FIG. 38 shows an example of the cross-sectional configuration of the image pickup device (image pickup device 10D) according to the fourth embodiment of the present disclosure. Similar to the image sensor 10A in the first embodiment, the image sensor 10D is used in an image sensor (image sensor 1) such as a CMOS image sensor used in an electronic device such as a digital still camera or a video camera. It constitutes one pixel (unit pixel P).
 本実施の形態の撮像素子10Dは、有機光電変換部20の上部電極25上に画素間遮光膜(遮光膜57)を設け、この遮光膜57を第1層26Aと共にエッチングストッパ層として用いたものである。また、本実施の形態では、上記第3の実施の形態と同様に、封止層26を構成する第1層26Aは、上部電極25と配線52とが電気的に接続されるコンタクト部分に選択的に設けられている。 In the image sensor 10D of the present embodiment, an inter-pixel light-shielding film (light-shielding film 57) is provided on the upper electrode 25 of the organic photoelectric conversion unit 20, and this light-shielding film 57 is used together with the first layer 26A as an etching stopper layer. Is. Further, in the present embodiment, as in the third embodiment, the first layer 26A constituting the sealing layer 26 is selected as the contact portion where the upper electrode 25 and the wiring 52 are electrically connected. It is provided as a target.
 遮光膜57は、例えば、タングステン(W)、チタン(Ti)、窒化チタン(TiN)あるいはアルミニウム(Al)等の遮光性を有する金属材料が挙げられ、遮光膜54は、例えばW/TiN/Tiの積層膜あるいはWの単層膜として形成されている。 Examples of the light-shielding film 57 include metal materials having a light-shielding property such as tungsten (W), titanium (Ti), titanium nitride (TiN) and aluminum (Al), and the light-shielding film 54 is, for example, W / TiN / Ti. It is formed as a laminated film of or a single layer film of W.
 撮像素子10Dは、例えば、次のようにして製造することができる。 The image sensor 10D can be manufactured, for example, as follows.
 まず、上記第1の実施の形態と同様にして、絶縁層22上に、電荷蓄積層23、光電変換層24および上部電極25を形成する。続いて、上部電極25上に、第2層26Bとして酸化アルミニウム(AlOx)膜を、ALD法を用いて、例えば30nmの厚みで形成する。その後、図28に示したように、周辺領域110Bの周縁部分の電荷蓄積層23、光電変換層24、上部電極25および第2層26Bを除去する。 First, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment. Subsequently, an aluminum oxide (AlO x ) film as the second layer 26B is formed on the upper electrode 25 by using the ALD method, for example, with a thickness of 30 nm. After that, as shown in FIG. 28, the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed.
 次に、図39に示したように、例えばALD法を用いて第2層26B上および電荷蓄積層23、光電変換層24、上部電極25および第2層26Bの側面ならびに絶縁層22上に延在する第3層26Cおよび遮光膜57としてW膜をこの順に、それぞれ、例えば30nmの厚みで成膜する。本実施の形態では、第1層26Aは、窒化アルミニウム(AlNx)や窒化シリコン(SiNx)の他に、酸化シリコン(SiOx)を用いて形成することができる。 Next, as shown in FIG. 39, for example, using the ALD method, the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the side surface of the second layer 26B, and the insulating layer 22 are spread. A W film is formed in this order as the existing third layer 26C and the light-shielding film 57, respectively, with a thickness of, for example, 30 nm. In the present embodiment, the first layer 26A can be formed by using silicon oxide (SiO x ) in addition to aluminum nitride (AlN x ) and silicon nitride (SiN x).
 続いて、W膜(遮光膜57)の所定の位置、即ち、隣り合う画素間および上部電極25と配線52とのコンタクト位置にフォトレジストを形成し、遮光膜57をパターニングする。その後、例えばALD法を用いて、図40に示したように、第3層26C上および遮光膜57上に第1層26Aを、例えば30nmの厚みで成膜する。 Subsequently, a photoresist is formed at a predetermined position of the W film (light-shielding film 57), that is, between adjacent pixels and at a contact position between the upper electrode 25 and the wiring 52, and the light-shielding film 57 is patterned. Then, for example, using the ALD method, as shown in FIG. 40, the first layer 26A is formed on the third layer 26C and the light-shielding film 57 with a thickness of, for example, 30 nm.
 次に、第1層26Aの上部電極25と配線52とのコンタクト位置にフォトレジストを形成し、第1層26Aをパターニングする。これにより、図41に示したように、上部電極25と配線52とのコンタクト位置に形成された遮光膜57上に第1層26Aが選択的に形成される。 Next, a photoresist is formed at the contact position between the upper electrode 25 of the first layer 26A and the wiring 52, and the first layer 26A is patterned. As a result, as shown in FIG. 41, the first layer 26A is selectively formed on the light-shielding film 57 formed at the contact position between the upper electrode 25 and the wiring 52.
 続いて、図42に示したように、例えばスパッタリング法を用いてAlOx膜(平坦化層51)を、例えば500nmの厚みで形成する。 Subsequently, as shown in FIG. 42, an AlO x film (flattening layer 51) is formed with a thickness of, for example, 500 nm by using, for example, a sputtering method.
 次に、図43に示したように、平坦化層51上にフォトレジスト(マスク61)をパターニングしたのち、例えば、塩素系ガスを用いたドライエッチングを行い、開口51H2を形成する。AlOx膜(平坦化層51)と、例えばSiOx膜(第1層26A)との選択加工比(AlOx/SiOx)は10程度である。このため、エッチングのばらつきを吸収するために30%程度のオーバーエッチングを行ってもSiOx膜は20nm程度しか削られず、第1層26Aがエッチングストッパ膜となり平坦化層51が除去される。 Next, as shown in FIG. 43, after patterning the photoresist (mask 61) on the flattening layer 51, dry etching using, for example, chlorine-based gas is performed to form the opening 51H2. The selective processing ratio (AlO x / SiO x ) between the AlO x film (flattening layer 51) and, for example, the SiO x film (first layer 26A) is about 10. Therefore, even if overetching of about 30% is performed in order to absorb the variation in etching, the SiO x film is scraped only about 20 nm, the first layer 26A serves as an etching stopper film, and the flattening layer 51 is removed.
 続いて、第1層26A、遮光膜57および第2層26Bをエッチングする。例えば、第1層26AはCF系ガス、遮光膜57はSF6ガスを用いたドライエッチングにより除去することができる。第2層26Bは、例えば、CF系ガスを用いて除去する。これにより、図44に示したように、上部電極25まで達する開口51H2が形成される。その後、上記第1の実施の形態と同様にして配線52、保護層53、遮光膜54およびオンチップレンズ層56を形成する。以上により、図38に示した撮像素子10Dが完成する。 Subsequently, the first layer 26A, the light-shielding film 57, and the second layer 26B are etched. For example, the first layer 26A can be removed by dry etching using a CF gas and the light shielding film 57 can be removed by dry etching using SF 6 gas. The second layer 26B is removed using, for example, a CF-based gas. As a result, as shown in FIG. 44, an opening 51H2 reaching to the upper electrode 25 is formed. After that, the wiring 52, the protective layer 53, the light-shielding film 54, and the on-chip lens layer 56 are formed in the same manner as in the first embodiment. As a result, the image sensor 10D shown in FIG. 38 is completed.
 なお、図38では、上部電極25と配線52とが電気的に接続されるコンタクト部分に設けられた遮光膜57上にのみ第1層26Aが設けられた例を示したが、これに限定されるものではない。例えば、第1層26Aは、図45に示したように、隣り合う画素間に設けられた遮光膜57上にも設けられていてもよい。図45に示した撮像素子10Dは、例えば、次のようにして製造することができる。 Note that FIG. 38 shows an example in which the first layer 26A is provided only on the light-shielding film 57 provided in the contact portion where the upper electrode 25 and the wiring 52 are electrically connected, but the present invention is limited to this. It's not something. For example, as shown in FIG. 45, the first layer 26A may also be provided on the light-shielding film 57 provided between adjacent pixels. The image pickup device 10D shown in FIG. 45 can be manufactured, for example, as follows.
 まず、上記と同様にして、図28に示したように、周辺領域110Bの周縁部分の電荷蓄積層23、光電変換層24、上部電極25および第2層26Bを除去する。次に、図46に示したように、例えばALD法を用いて第2層26B上および電荷蓄積層23、光電変換層24、上部電極25および第2層26Bの側面ならびに絶縁層22上に延在する第3層26C、遮光膜57および第1層26Aをこの順に、それぞれ、例えば30nmの厚みで成膜する。 First, in the same manner as above, as shown in FIG. 28, the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed. Next, as shown in FIG. 46, for example, using the ALD method, the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the side surface of the second layer 26B, and the insulating layer 22 are spread. The existing third layer 26C, light-shielding film 57, and first layer 26A are formed in this order with a thickness of, for example, 30 nm.
 続いて、図47に示したように、第1層26Aの所定の位置、即ち、隣り合う画素間および上部電極25と配線52とのコンタクト位置にフォトレジストを形成し、遮光膜57をパターニングする。これにより、隣り合う画素間および上部電極25と配線52とのコンタクト位置に遮光膜57と第1層26Aとの積層膜が選択的に形成される。 Subsequently, as shown in FIG. 47, a photoresist is formed at a predetermined position of the first layer 26A, that is, between adjacent pixels and at a contact position between the upper electrode 25 and the wiring 52, and the light-shielding film 57 is patterned. .. As a result, a laminated film of the light-shielding film 57 and the first layer 26A is selectively formed between adjacent pixels and at the contact position between the upper electrode 25 and the wiring 52.
 次に、図48に示したように、例えばスパッタリング法を用いてAlOx膜(平坦化層51)を、例えば500nmの厚みで形成する。 Next, as shown in FIG. 48, an AlO x film (flattening layer 51) is formed with a thickness of, for example, 500 nm by using, for example, a sputtering method.
 続いて、図49に示したように、平坦化層51上にフォトレジスト(マスク61)をパターニングしたのち、例えば、塩素系ガスを用いたドライエッチングを行い、開口51H2を形成する。上記のように、平坦化層51と、例えばSiOx膜(第1層26A)との選択加工比(AlOx/SiOx)は10程度である。このため、エッチングのばらつきを吸収するために30%程度のオーバーエッチングを行ってもSiOx膜は20nm程度しか削られず、第1層26Aがエッチングストッパ膜となり平坦化層51が除去される。 Subsequently, as shown in FIG. 49, after patterning the photoresist (mask 61) on the flattening layer 51, dry etching using, for example, chlorine-based gas is performed to form the opening 51H2. As described above, the selective processing ratio (AlO x / SiO x ) between the flattening layer 51 and, for example, the SiO x film (first layer 26A) is about 10. Therefore, even if overetching of about 30% is performed in order to absorb the variation in etching, the SiO x film is scraped only about 20 nm, the first layer 26A serves as an etching stopper film, and the flattening layer 51 is removed.
 次に、上記と同様にして、第1層26A、遮光膜57および第2層26Bをエッチングする。例えば、第1層26AはCF系ガス、遮光膜57はSF6ガスを用いたドライエッチングにより除去することができる。第2層26Bは、例えば、CF系ガスを用いて除去する。これにより、図50に示したように、上部電極25まで達する開口51H2が形成される。その後、上記第1の実施の形態と同様にして配線52、保護層53、遮光膜54およびオンチップレンズ層56を形成する。以上により、図45に示した撮像素子10Dが完成する。 Next, the first layer 26A, the light-shielding film 57, and the second layer 26B are etched in the same manner as described above. For example, the first layer 26A can be removed by dry etching using a CF gas and the light shielding film 57 can be removed by dry etching using SF 6 gas. The second layer 26B is removed using, for example, a CF-based gas. As a result, as shown in FIG. 50, an opening 51H2 reaching to the upper electrode 25 is formed. After that, the wiring 52, the protective layer 53, the light-shielding film 54, and the on-chip lens layer 56 are formed in the same manner as in the first embodiment. As a result, the image sensor 10D shown in FIG. 45 is completed.
 以上のように、本実施の形態の撮像素子10Dでは、有機光電変換部20の上部電極25上の隣り合う画素間および有効画素領域110Aの周縁に遮光膜57を設け、この遮光膜57を第1層26Aと共にエッチングストッパ層として用いるようにした。これにより、上記第3の実施の形態と比較して、有機光電変換部20の有機膜を露出させずに安定的に開口51H2を形成することが可能となる。よって、製造歩留まりを向上させることが可能となる。 As described above, in the image pickup device 10D of the present embodiment, a light-shielding film 57 is provided between adjacent pixels on the upper electrode 25 of the organic photoelectric conversion unit 20 and on the peripheral edge of the effective pixel area 110A, and the light-shielding film 57 is formed on the light-shielding film 57. It was used as an etching stopper layer together with the 1st layer 26A. This makes it possible to stably form the opening 51H2 without exposing the organic film of the organic photoelectric conversion unit 20 as compared with the third embodiment. Therefore, it is possible to improve the manufacturing yield.
 また、本実施の形態の撮像素子10Dでは、隣り合う画素間に遮光膜57を設けるようにしたので、上記第1の実施の形態と比較して、光電変換部20への斜入射光の画素間の混色を低減することができ、デバイス特性を向上させることが可能となる。 Further, in the image sensor 10D of the present embodiment, since the light-shielding film 57 is provided between the adjacent pixels, the pixels of the obliquely incident light on the photoelectric conversion unit 20 are compared with the first embodiment. It is possible to reduce the color mixing between them and improve the device characteristics.
<5.変形例>
 図51は、上記第4の実施の形態の変形例としての撮像素子10Dの断面構成の他の例を表したものである。上記第4の実施の形態では、遮光膜57上に第1層26Aを設け、これをエッチングストッパ膜として用いた例を示したが、遮光膜57は、第2層26Bおよび第3層26Cとはエッチングレートが異なるため、第1層26Aは省略してもよい。つまり、遮光膜57を第1層26Aとして用いるようにしてもよい。また、上記第4の実施の形態では、第3層26C上に遮光膜57を設けた例を示したが、遮光膜57は、有機光電変換部20の上部電極25上に直接設けるようにしてもよい。
<5. Modification example>
FIG. 51 shows another example of the cross-sectional configuration of the image pickup device 10D as a modification of the fourth embodiment. In the fourth embodiment, the first layer 26A is provided on the light-shielding film 57 and used as the etching stopper film. However, the light-shielding film 57 includes the second layer 26B and the third layer 26C. The first layer 26A may be omitted because the etching rates are different. That is, the light-shielding film 57 may be used as the first layer 26A. Further, in the fourth embodiment, an example in which the light-shielding film 57 is provided on the third layer 26C is shown, but the light-shielding film 57 is provided directly on the upper electrode 25 of the organic photoelectric conversion unit 20. May be good.
 図51に示した撮像素子10Dは、例えば、次のようにして製造することができる。 The image pickup device 10D shown in FIG. 51 can be manufactured, for example, as follows.
 まず、上記第1の実施の形態と同様にして、絶縁層22上に、電荷蓄積層23、光電変換層24および上部電極25を形成する。続いて、図52に示したように、上部電極25上に、上記と同様にして、隣り合う画素間および上部電極25と配線52とのコンタクト位置から周辺領域110Bまで延在する遮光膜57および上部電極25および遮光膜57を覆う第2層26Bをそれぞれ、ALD法を用いて、例えば30nmの厚みで形成する。 First, the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed on the insulating layer 22 in the same manner as in the first embodiment. Subsequently, as shown in FIG. 52, on the upper electrode 25, in the same manner as described above, the light-shielding film 57 extending between adjacent pixels and from the contact position between the upper electrode 25 and the wiring 52 to the peripheral region 110B and The second layer 26B covering the upper electrode 25 and the light-shielding film 57 is formed by the ALD method, for example, to a thickness of 30 nm.
 次に、図53に示したように、周辺領域110Bの周縁部分の電荷蓄積層23、光電変換層24、上部電極25、遮光膜57および第2層26Bを除去する。 Next, as shown in FIG. 53, the charge storage layer 23, the photoelectric conversion layer 24, the upper electrode 25, the light-shielding film 57, and the second layer 26B in the peripheral portion of the peripheral region 110B are removed.
 続いて、図54に示したように、例えばALD法を用いて第2層26B上および遮光膜57、電荷蓄積層23、光電変換層24、上部電極25および第2層26Bの側面ならびに絶縁層22上に延在する第3層26C、例えば30nmの厚みで成膜する。 Subsequently, as shown in FIG. 54, for example, using the ALD method, on the second layer 26B and the light-shielding film 57, the charge storage layer 23, the photoelectric conversion layer 24, the side surfaces of the upper electrode 25 and the second layer 26B, and the insulating layer. A third layer 26C extending over 22 is formed with a thickness of, for example, 30 nm.
 次に、図55に示したように、例えばスパッタリング法を用いてAlOx膜(平坦化層51)を、例えば500nmの厚みで形成する。 Next, as shown in FIG. 55, an AlO x film (flattening layer 51) is formed with a thickness of, for example, 500 nm by using, for example, a sputtering method.
 続いて、図56に示したように、平坦化層51上にフォトレジストをパターニングして開口51H2を形成する。ここでは、例えば塩素系ガスを用いた反応性イオンエッチング(ドライエッチング)を行う。AlOx膜(平坦化層51)とW膜(遮光膜57)との選択加工比(AlOx/W)は10程度である。このため、エッチングのばらつきを吸収するために30%程度のオーバーエッチングを行ってもW膜(遮光膜57)は残る。本変形例では、上記のように遮光膜57は金属材料を用いて形成していることから、開口51H2に上部電極25が露出していなくても、上部電極25と配線52との導通を確保することができる。 Subsequently, as shown in FIG. 56, the photoresist is patterned on the flattening layer 51 to form the opening 51H2. Here, for example, reactive ion etching (dry etching) using a chlorine-based gas is performed. The selective processing ratio (AlO x / W) of the AlO x film (flattening layer 51) and the W film (light-shielding film 57) is about 10. Therefore, the W film (light-shielding film 57) remains even if overetching of about 30% is performed in order to absorb the variation in etching. In this modification, since the light-shielding film 57 is formed by using a metal material as described above, the continuity between the upper electrode 25 and the wiring 52 is ensured even if the upper electrode 25 is not exposed in the opening 51H2. can do.
 その後、フォトレジストを除去した後、上記第1の実施の形態と同様にして配線52、保護層53、遮光膜54およびオンチップレンズ層56を形成する。以上により、図51に示した撮像素子10Dが完成する。 Then, after removing the photoresist, the wiring 52, the protective layer 53, the light-shielding film 54, and the on-chip lens layer 56 are formed in the same manner as in the first embodiment. As a result, the image sensor 10D shown in FIG. 51 is completed.
 以上のように、本変形例の撮像素子10Dでは、遮光膜57を、第2層26Bおよび第3層26Cを加工する際のエッチングストッパ膜として用いると共に、上部電極25上に直接設けるようにした。これにより、上記第4の実施の形態と比較して、上部電極25がエッチングされることなく安定的に開口51H2を形成することが可能となる。よって、製造歩留まりをさらに向上させることが可能となる。 As described above, in the image sensor 10D of the present modification, the light-shielding film 57 is used as an etching stopper film when processing the second layer 26B and the third layer 26C, and is provided directly on the upper electrode 25. .. This makes it possible to stably form the opening 51H2 without etching the upper electrode 25 as compared with the fourth embodiment. Therefore, it is possible to further improve the manufacturing yield.
<6.適用例>
(適用例1)
 図57は、上記第1,第2の実施の形態において説明した撮像素子10A(または、撮像素子10B)を各画素に用いた撮像装置(撮像装置1)の全体構成を表したものである。この撮像装置1は、CMOSイメージセンサであり、半導体基板30上に、撮像エリアとしての画素部1aを有すると共に、この画素部1aの周辺領域に、例えば、行走査部131、水平選択部133、列走査部134およびシステム制御部132からなる周辺回路部130を有している。
<6. Application example>
(Application example 1)
FIG. 57 shows the overall configuration of an image pickup device (imaging device 1) using the image pickup device 10A (or image pickup device 10B) described in the first and second embodiments for each pixel. The image pickup apparatus 1 is a CMOS image sensor, and has a pixel portion 1a as an imaging area on the semiconductor substrate 30, and in a peripheral region of the pixel portion 1a, for example, a row scanning unit 131, a horizontal selection unit 133, and the like. It has a peripheral circuit unit 130 including a row scanning unit 134 and a system control unit 132.
 画素部1aは、例えば、行列状に2次元配置された複数の単位画素Pを有している。この単位画素Pには、例えば、画素行ごとに画素駆動線Lread(具体的には行選択線およびリセット制御線)が配線され、画素列ごとに垂直信号線Lsigが配線されている。画素駆動線Lreadは、画素からの信号読み出しのための駆動信号を伝送するものである。画素駆動線Lreadの一端は、行走査部131の各行に対応した出力端に接続されている。 The pixel unit 1a has, for example, a plurality of unit pixels P arranged two-dimensionally in a matrix. In the unit pixel P, for example, a pixel drive line Lread (specifically, a row selection line and a reset control line) is wired for each pixel row, and a vertical signal line Lsig is wired for each pixel column. The pixel drive line Lread transmits a drive signal for reading a signal from a pixel. One end of the pixel drive line Lread is connected to the output end corresponding to each line of the line scanning unit 131.
 行走査部131は、シフトレジスタやアドレスデコーダ等によって構成され、画素部1aの各単位画素Pを、例えば、行単位で駆動する画素駆動部である。行走査部131によって選択走査された画素行の各単位画素Pから出力される信号は、垂直信号線Lsigの各々を通して水平選択部133に供給される。水平選択部133は、垂直信号線Lsigごとに設けられたアンプや水平選択スイッチ等によって構成されている。 The row scanning unit 131 is a pixel driving unit that is composed of a shift register, an address decoder, and the like, and drives each unit pixel P of the pixel unit 1a, for example, in row units. The signal output from each unit pixel P of the pixel row selected and scanned by the row scanning unit 131 is supplied to the horizontal selection unit 133 through each of the vertical signal lines Lsig. The horizontal selection unit 133 is composed of an amplifier, a horizontal selection switch, and the like provided for each vertical signal line Lsig.
 列走査部134は、シフトレジスタやアドレスデコーダ等によって構成され、水平選択部133の各水平選択スイッチを走査しつつ順番に駆動するものである。この列走査部134による選択走査により、垂直信号線Lsigの各々を通して伝送される各画素の信号が順番に水平信号線135に出力され、当該水平信号線135を通して半導体基板30の外部へ伝送される。 The column scanning unit 134 is composed of a shift register, an address decoder, etc., and drives each horizontal selection switch of the horizontal selection unit 133 in order while scanning. By the selective scanning by the column scanning unit 134, the signals of each pixel transmitted through each of the vertical signal lines Lsig are sequentially output to the horizontal signal line 135 and transmitted to the outside of the semiconductor substrate 30 through the horizontal signal line 135. ..
 行走査部131、水平選択部133、列走査部134および水平信号線135からなる回路部分は、半導体基板30上に直に形成されていてもよいし、あるいは外部制御ICに配設されたものであってもよい。また、それらの回路部分は、ケーブル等により接続された他の基板に形成されていてもよい。 The circuit portion including the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the horizontal signal line 135 may be formed directly on the semiconductor substrate 30, or may be arranged on the external control IC. It may be. Further, those circuit portions may be formed on another substrate connected by a cable or the like.
 システム制御部132は、半導体基板30の外部から与えられるクロックや、動作モードを指令するデータ等を受け取り、また、撮像装置1の内部情報等のデータを出力するものである。システム制御部132はさらに、各種のタイミング信号を生成するタイミングジェネレータを有し、当該タイミングジェネレータで生成された各種のタイミング信号を基に行走査部131、水平選択部133および列走査部134等の周辺回路の駆動制御を行う。 The system control unit 132 receives a clock given from the outside of the semiconductor substrate 30, data for instructing an operation mode, and the like, and outputs data such as internal information of the image pickup apparatus 1. The system control unit 132 further has a timing generator that generates various timing signals, and the row scanning unit 131, the horizontal selection unit 133, the column scanning unit 134, and the like based on the various timing signals generated by the timing generator. Controls the drive of peripheral circuits.
(適用例2)
 上記撮像装置1は、例えば、デジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話等、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図58に、その一例として、電子機器2(カメラ)の概略構成を示す。この電子機器2は、例えば、静止画または動画を撮影可能なビデオカメラであり、撮像装置1と、光学系(光学レンズ)310と、シャッタ装置311と、撮像装置1およびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。
(Application example 2)
The image pickup device 1 can be applied to any type of electronic device having an image pickup function, such as a camera system such as a digital still camera or a video camera, or a mobile phone having an image pickup function. FIG. 58 shows a schematic configuration of the electronic device 2 (camera) as an example. The electronic device 2 is, for example, a video camera capable of capturing a still image or a moving image, and drives an image pickup device 1, an optical system (optical lens) 310, a shutter device 311 and an image pickup device 1 and a shutter device 311. It has a drive unit 313 and a signal processing unit 312.
 光学系310は、被写体からの像光(入射光)を撮像装置1の画素部1aへ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、撮像装置1への光照射期間および遮光期間を制御するものである。駆動部313は、撮像装置1の転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、撮像装置1から出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリ等の記憶媒体に記憶されるか、
あるいは、モニタ等に出力される。
The optical system 310 guides the image light (incident light) from the subject to the pixel portion 1a of the image pickup apparatus 1. The optical system 310 may be composed of a plurality of optical lenses. The shutter device 311 controls the light irradiation period and the light blocking period of the image pickup device 1. The drive unit 313 controls the transfer operation of the image pickup apparatus 1 and the shutter operation of the shutter apparatus 311. The signal processing unit 312 performs various signal processing on the signal output from the image pickup apparatus 1. Is the video signal Dout after signal processing stored in a storage medium such as a memory?
Alternatively, it is output to a monitor or the like.
<7.応用例>
 更に、上記撮像装置1は、下記電子機器(カプセル型内視鏡10100および車両等の移動体)にも適用することが可能である。
<7. Application example>
Further, the image pickup device 1 can be applied to the following electronic devices (capsule type endoscope 10100 and a moving body such as a vehicle).
<体内情報取得システムへの応用例>
 更に、本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<Example of application to internal information acquisition system>
Further, the technology according to the present disclosure (the present technology) can be applied to various products. For example, the techniques according to the present disclosure may be applied to endoscopic surgery systems.
 図59は、本開示に係る技術(本技術)が適用され得る、カプセル型内視鏡を用いた患者の体内情報取得システムの概略的な構成の一例を示すブロック図である。 FIG. 59 is a block diagram showing an example of a schematic configuration of a patient's internal information acquisition system using a capsule endoscope to which the technique according to the present disclosure (the present technique) can be applied.
 体内情報取得システム10001は、カプセル型内視鏡10100と、外部制御装置10200とから構成される。 The internal information acquisition system 10001 is composed of a capsule endoscope 10100 and an external control device 10200.
 カプセル型内視鏡10100は、検査時に、患者によって飲み込まれる。カプセル型内視鏡10100は、撮像機能及び無線通信機能を有し、患者から自然排出されるまでの間、胃や腸等の臓器の内部を蠕動運動等によって移動しつつ、当該臓器の内部の画像(以下、体内画像ともいう)を所定の間隔で順次撮像し、その体内画像についての情報を体外の外部制御装置10200に順次無線送信する。 The capsule endoscope 10100 is swallowed by the patient at the time of examination. The capsule endoscope 10100 has an imaging function and a wireless communication function, and moves inside an organ such as the stomach or intestine by peristaltic movement or the like until it is naturally excreted from the patient, and inside the organ. Images (hereinafter, also referred to as internal organ images) are sequentially imaged at predetermined intervals, and information about the internal organ images is sequentially wirelessly transmitted to an external control device 10200 outside the body.
 外部制御装置10200は、体内情報取得システム10001の動作を統括的に制御する。また、外部制御装置10200は、カプセル型内視鏡10100から送信されてくる体内画像についての情報を受信し、受信した体内画像についての情報に基づいて、表示装置(図示せず)に当該体内画像を表示するための画像データを生成する。 The external control device 10200 comprehensively controls the operation of the internal information acquisition system 10001. Further, the external control device 10200 receives information about the internal image transmitted from the capsule endoscope 10100, and based on the information about the received internal image, the internal image is displayed on a display device (not shown). Generate image data to display.
 体内情報取得システム10001では、このようにして、カプセル型内視鏡10100が飲み込まれてから排出されるまでの間、患者の体内の様子を撮像した体内画像を随時得ることができる。 In the internal information acquisition system 10001, in this way, it is possible to obtain an internal image of the inside of the patient at any time from the time when the capsule endoscope 10100 is swallowed until it is discharged.
 カプセル型内視鏡10100と外部制御装置10200の構成及び機能についてより詳細に説明する。 The configuration and function of the capsule endoscope 10100 and the external control device 10200 will be described in more detail.
 カプセル型内視鏡10100は、カプセル型の筐体10101を有し、その筐体10101内には、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、給電部10115、電源部10116、及び制御部10117が収納されている。 The capsule endoscope 10100 has a capsule-shaped housing 10101, and the light source unit 10111, the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, the power feeding unit 10115, and the power supply unit are contained in the housing 10101. The 10116 and the control unit 10117 are housed.
 光源部10111は、例えばLED(light emitting diode)等の光源から構成され、撮像部10112の撮像視野に対して光を照射する。 The light source unit 10111 is composed of, for example, a light source such as an LED (light emission diode), and irradiates the imaging field of view of the imaging unit 10112 with light.
 撮像部10112は、撮像素子、及び当該撮像素子の前段に設けられる複数のレンズからなる光学系から構成される。観察対象である体組織に照射された光の反射光(以下、観察光という)は、当該光学系によって集光され、当該撮像素子に入射する。撮像部10112では、撮像素子において、そこに入射した観察光が光電変換され、その観察光に対応する画像信号が生成される。撮像部10112によって生成された画像信号は、画像処理部10113に提供される。 The image pickup unit 10112 is composed of an image pickup element and an optical system including a plurality of lenses provided in front of the image pickup element. The reflected light (hereinafter referred to as observation light) of the light applied to the body tissue to be observed is collected by the optical system and incident on the image pickup element. In the image pickup unit 10112, the observation light incident on the image pickup device is photoelectrically converted, and an image signal corresponding to the observation light is generated. The image signal generated by the image capturing unit 10112 is provided to the image processing unit 10113.
 画像処理部10113は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサによって構成され、撮像部10112によって生成された画像信号に対して各種の信号処理を行う。画像処理部10113は、信号処理を施した画像信号を、RAWデータとして無線通信部10114に提供する。 The image processing unit 10113 is composed of processors such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit), and performs various signal processing on the image signal generated by the imaging unit 10112. The image processing unit 10113 provides the signal-processed image signal to the wireless communication unit 10114 as RAW data.
 無線通信部10114は、画像処理部10113によって信号処理が施された画像信号に対して変調処理等の所定の処理を行い、その画像信号を、アンテナ10114Aを介して外部制御装置10200に送信する。また、無線通信部10114は、外部制御装置10200から、カプセル型内視鏡10100の駆動制御に関する制御信号を、アンテナ10114Aを介して受信する。無線通信部10114は、外部制御装置10200から受信した制御信号を制御部10117に提供する。 The wireless communication unit 10114 performs predetermined processing such as modulation processing on the image signal that has been signal-processed by the image processing unit 10113, and transmits the image signal to the external control device 10200 via the antenna 10114A. Further, the wireless communication unit 10114 receives a control signal related to drive control of the capsule endoscope 10100 from the external control device 10200 via the antenna 10114A. The wireless communication unit 10114 provides the control unit 10117 with a control signal received from the external control device 10200.
 給電部10115は、受電用のアンテナコイル、当該アンテナコイルに発生した電流から電力を再生する電力再生回路、及び昇圧回路等から構成される。給電部10115では、いわゆる非接触充電の原理を用いて電力が生成される。 The power feeding unit 10115 is composed of an antenna coil for receiving power, a power regeneration circuit that regenerates power from the current generated in the antenna coil, a booster circuit, and the like. In the power feeding unit 10115, electric power is generated using the so-called non-contact charging principle.
 電源部10116は、二次電池によって構成され、給電部10115によって生成された電力を蓄電する。図59では、図面が煩雑になることを避けるために、電源部10116からの電力の供給先を示す矢印等の図示を省略しているが、電源部10116に蓄電された電力は、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び制御部10117に供給され、これらの駆動に用いられ得る。 The power supply unit 10116 is composed of a secondary battery and stores the electric power generated by the power supply unit 10115. In FIG. 59, in order to avoid complication of the drawing, the illustration of the arrow or the like indicating the power supply destination from the power supply unit 10116 is omitted, but the power stored in the power supply unit 10116 is the light source unit 10111. , Is supplied to the imaging unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the control unit 10117, and can be used to drive these.
 制御部10117は、CPU等のプロセッサによって構成され、光源部10111、撮像部10112、画像処理部10113、無線通信部10114、及び、給電部10115の駆動を、外部制御装置10200から送信される制御信号に従って適宜制御する。 The control unit 10117 is composed of a processor such as a CPU, and is a control signal transmitted from the external control device 10200 to drive the light source unit 10111, the image pickup unit 10112, the image processing unit 10113, the wireless communication unit 10114, and the power supply unit 10115. Control as appropriate according to.
 外部制御装置10200は、CPU,GPU等のプロセッサ、又はプロセッサとメモリ等の記憶素子が混載されたマイクロコンピュータ若しくは制御基板等で構成される。外部制御装置10200は、カプセル型内視鏡10100の制御部10117に対して制御信号を、アンテナ10200Aを介して送信することにより、カプセル型内視鏡10100の動作を制御する。カプセル型内視鏡10100では、例えば、外部制御装置10200からの制御信号により、光源部10111における観察対象に対する光の照射条件が変更され得る。また、外部制御装置10200からの制御信号により、撮像条件(例えば、撮像部10112におけるフレームレート、露出値等)が変更され得る。また、外部制御装置10200からの制御信号により、画像処理部10113における処理の内容や、無線通信部10114が画像信号を送信する条件(例えば、送信間隔、送信画像数等)が変更されてもよい。 The external control device 10200 is composed of a processor such as a CPU or GPU, or a microcomputer or a control board on which a processor and a storage element such as a memory are mixedly mounted. The external control device 10200 controls the operation of the capsule endoscope 10100 by transmitting a control signal to the control unit 10117 of the capsule endoscope 10100 via the antenna 10200A. In the capsule endoscope 10100, for example, a control signal from the external control device 10200 can change the light irradiation conditions for the observation target in the light source unit 10111. Further, the imaging conditions (for example, the frame rate in the imaging unit 10112, the exposure value, etc.) can be changed by the control signal from the external control device 10200. Further, the content of processing in the image processing unit 10113 and the conditions for transmitting the image signal by the wireless communication unit 10114 (for example, transmission interval, number of transmitted images, etc.) may be changed by the control signal from the external control device 10200. ..
 また、外部制御装置10200は、カプセル型内視鏡10100から送信される画像信号に対して、各種の画像処理を施し、撮像された体内画像を表示装置に表示するための画像データを生成する。当該画像処理としては、例えば現像処理(デモザイク処理)、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ
補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の信号処理を行うことができる。外部制御装置10200は、表示装置の駆動を制御して、生成した画像データに基づいて撮像された体内画像を表示させる。あるいは、外部制御装置10200は、生成した画像データを記録装置(図示せず)に記録させたり、印刷装置(図示せず)に印刷出力させてもよい。
Further, the external control device 10200 performs various image processing on the image signal transmitted from the capsule endoscope 10100, and generates image data for displaying the captured internal image on the display device. The image processing includes, for example, development processing (demosaic processing), high image quality processing (band enhancement processing, super-resolution processing, NR (Noise reduction) processing and / or camera shake correction processing, etc.), and / or enlargement processing ( Various signal processing such as electronic zoom processing) can be performed. The external control device 10200 controls the drive of the display device to display the captured internal image based on the generated image data. Alternatively, the external control device 10200 may have the generated image data recorded in a recording device (not shown) or printed out in a printing device (not shown).
 以上、本開示に係る技術が適用され得る体内情報取得システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部10112に適用され得る。これにより、検出精度が向上する。 The above is an example of an in-vivo information acquisition system to which the technology according to the present disclosure can be applied. The technique according to the present disclosure can be applied to, for example, the imaging unit 10112 among the configurations described above. This improves the detection accuracy.
<内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<Example of application to endoscopic surgery system>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the techniques according to the present disclosure may be applied to endoscopic surgery systems.
 図60は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 60 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
 図60では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 60 shows a surgeon (doctor) 11131 performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000. As shown, the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100. , A cart 11200 equipped with various devices for endoscopic surgery.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101. In the illustrated example, the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101 to be an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens. The endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image pickup element are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image pickup element by the optical system. The observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統
括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
The CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of, for example, a light source such as an LED (light emission diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue. The pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator. To send. The recorder 11207 is a device capable of recording various information related to surgery. The printer 11208 is a device capable of printing various information related to surgery in various formats such as text, images, and graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 The light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof. When a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. Further, in this case, the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals. By controlling the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. A range image can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane. So-called narrow band imaging, in which a predetermined tissue such as a blood vessel is photographed with high contrast, is performed. Alternatively, in the special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
 図61は、図60に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 61 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG. 60.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405. CCU11201 includes a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. The observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type). When the image pickup unit 11402 is composed of a multi-plate type, for example, each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them. Alternatively, the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (dimensional) display, respectively. The 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site. When the image pickup unit 11402 is composed of a multi-plate type, a plurality of lens units 11401 may be provided corresponding to each image pickup element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 does not necessarily have to be provided on the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201. The communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image, and the like. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11
100に搭載されていることになる。
The imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are used for the endoscope 11.
It will be installed in 100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102. Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electric signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, the communication is performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部11402に適用され得る。撮像部11402に本開示に係る技術を適用することにより、検出精度が向上する。 The above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied. The technique according to the present disclosure can be applied to the imaging unit 11402 among the configurations described above. By applying the technique according to the present disclosure to the imaging unit 11402, the detection accuracy is improved.
 なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Although the endoscopic surgery system has been described here as an example, the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
<移動体への応用例>
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
<Example of application to mobiles>
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure includes any type of movement such as automobiles, electric vehicles, hybrid electric vehicles, motorcycles, bicycles, personal mobility, airplanes, drones, ships, robots, construction machines, agricultural machines (tractors), and the like. It may be realized as a device mounted on the body.
 図62は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 62 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図62に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)120
53が図示されている。
The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 62, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 120
53 is shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating a braking force of a vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図62の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits an output signal of at least one of audio and an image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 62, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
 図63は、撮像部12031の設置位置の例を示す図である。 FIG. 63 is a diagram showing an example of the installation position of the imaging unit 12031.
 図63では、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 63, as the imaging unit 12031, the imaging unit 12101, 12102, 12103, 12104, 12105 is provided.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example. The imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The imaging unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図63には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 63 shows an example of the photographing range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. Such pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、第1,第2の実施の形態および適用例ならびに応用例を挙げて説明したが、本開示内容は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態では、撮像素子として、緑色光を検出する有機光電変換部20と、青色光,赤色光をそれぞれ検出する無機光電変換部32B,32Rとを積層させた構成としたが、本開示内容はこのような構造に限定されるものではない。即ち、有機光電変換部において赤色光あるいは青色光を検出するようにしてもよいし、無機光電変換部において緑色光を検出するようにしてもよい。 Although the first and second embodiments, application examples, and application examples have been described above, the contents of the present disclosure are not limited to the above-described embodiments and the like, and various modifications are possible. For example, in the above embodiment, the organic photoelectric conversion unit 20 that detects green light and the inorganic photoelectric conversion units 32B and 32R that detect blue light and red light are laminated as an image sensor. The contents of the present disclosure are not limited to such a structure. That is, the organic photoelectric conversion unit may detect red light or blue light, or the inorganic photoelectric conversion unit may detect green light.
 また、これらの有機光電変換部および無機光電変換部の数やその比率も限定されるものではなく、有機光電変換部だけで複数色の色信号が得られるようにしてもよい。 Further, the number and ratio of these organic photoelectric conversion units and inorganic photoelectric conversion units are not limited, and color signals of a plurality of colors may be obtained only by the organic photoelectric conversion units.
 更に、上記実施の形態等では、下部電極21を構成する複数の電極として、読み出し電極21Aおよび蓄積電極21Bの2つの電極から構成した例を示したが、この他に、転送電極あるいは排出電極等の3つあるいは4つ以上の電極を設けるようにしてもよい。 Further, in the above-described embodiment and the like, an example in which the lower electrode 21 is composed of two electrodes, a readout electrode 21A and a storage electrode 21B, is shown as a plurality of electrodes, but in addition to this, a transfer electrode, a discharge electrode, or the like is shown. 3 or 4 or more electrodes may be provided.
 更にまた、上記第1の実施の形態では、電荷蓄積層23、光電変換層24および上部電極25を複数の撮像素子10Aに共通した連続層として形成した例を示したが、画素Pごとに分離して形成するようにしてもよい。但し、その場合には、電荷蓄積層23および光電変換層24に対する加工ダメージの影響により、暗電流特性が悪化する虞がある。また、上記第1の実施の形態のように、複数の撮像素子10Aに共通した連続層として有効画素領域110A内において延在形成した場合には、画素間が光電変換層で接続されるため、画素間の電荷混入による混色は発生する虞がある。これに対しては、上述したように、シールド電極21Cを設けることで抑制される。 Furthermore, in the first embodiment, an example in which the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are formed as a continuous layer common to a plurality of image pickup devices 10A is shown, but the charge storage layer 23, the photoelectric conversion layer 24, and the upper electrode 25 are separated for each pixel P. May be formed. However, in that case, the dark current characteristics may be deteriorated due to the influence of processing damage on the charge storage layer 23 and the photoelectric conversion layer 24. Further, when the continuous layer common to the plurality of image pickup elements 10A is formed extending in the effective pixel region 110A as in the first embodiment, the pixels are connected by the photoelectric conversion layer. Color mixing may occur due to charge mixing between pixels. This is suppressed by providing the shield electrode 21C as described above.
 また、例えば、半導体基板30の第1面30S1を凹凸構造としてもよい。これにより、半導体基板30の第1面30S1における光入射側S1から入射した光の反射が低減され、ノイズ等の発生を抑えることが可能となる。また、無機光電変換部32B,32Rにおける検出感度を向上させることが可能となる。 Further, for example, the first surface 30S1 of the semiconductor substrate 30 may have an uneven structure. As a result, the reflection of the light incident from the light incident side S1 on the first surface 30S1 of the semiconductor substrate 30 is reduced, and the generation of noise and the like can be suppressed. Further, it is possible to improve the detection sensitivity in the inorganic photoelectric conversion units 32B and 32R.
 更に、本技術は、1つの有機光電変換部および1つの無機光電変換部の積層構造とし、例えば、オンチップレンズ層56の下層に、赤色光(R)、緑色光(G)および青色光(B)を選択的に透過させるカラーフィルタを設け、有機光電変換部では、R,G,Bの各色光を、無機光電変換部では、赤外光(IR)を検出可能な撮像素子にも適用することができる。 Further, the present technology has a laminated structure of one organic photoelectric conversion unit and one inorganic photoelectric conversion unit, and for example, red light (R), green light (G) and blue light (G) and blue light ( A color filter that selectively transmits B) is provided, and the organic photoelectric conversion unit applies each color light of R, G, and B, and the inorganic photoelectric conversion unit also applies to an imaging element capable of detecting infrared light (IR). can do.
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained.
 なお、本開示は、以下のような構成であってもよい。以下の構成の本技術によれば、有機光電変換部の上方に、窒素を含む第1の層および酸素を含む第2の層が積層されてなる封止層を設けるようにしたので、有機光電変換部の上方からの有機光電変換部とのコンタクトの形成が容易になる。よって、製造歩留まりを向上させることが可能となる。
(1)
 複数の画素が配置された有効画素領域および前記有効画素領域の周囲に設けられた周辺領域を有する半導体基板と、
 前記半導体基板の受光面側に設けられると共に、複数の電極からなる第1電極と、前記第1電極と対向配置された第2電極と、前記第1電極と前記第2電極との間に順に積層して設けられると共に、前記有効画素領域に延在する電荷蓄積層および有機光電変換層とを有する有機光電変換部と、
 前記有機光電変換部の上方において互いに異なるエッチングレートを有する第1の層および第2の層が積層されてなる封止層と
 を備えた撮像素子。
(2)
 前記第1の層および前記第2の層は、前記有機光電変換部の上方にこの順に積層されている、前記(1)に記載の撮像素子。
(3)
 前記第2の層および前記第1の層は、前記有機光電変換部の上方にこの順に積層されている、前記(1)に記載の撮像素子。
(4)
 前記第1の層は、前記有機光電変換部の上方および側面を被覆している、前記(3)に記載の撮像素子。
(5)
 前記第1の層は前記有機光電変換部の上面の一部に設けられている、前記(1)乃至(4)のうちのいずれか1つに記載の撮像素子。
(6)
 前記第1の層は窒素を含む絶縁膜または遮光性を有する金属膜であり、第2の層は酸素を含む絶縁膜である、前記(1)乃至(5)のうちのいずれか1つに記載の撮像素子。
(7)
 前記第1の層は、窒化アルミニウム膜、窒化シリコン膜、酸化シリコン膜またはタングステン膜である、前記(1)乃至(5)のうちのいずれか1つに記載の撮像素子。
(8)
 前記第2の層は、酸化アルミニウム膜である、前記(1)乃至(5)および前記(7)のうちのいずれか1つに記載の撮像素子。
(9)
 前記有機光電変換部は、さらに、前記第1電極と前記電荷蓄積層との間に絶縁層を有し、
 前記絶縁層は、前記第1電極を構成する複数の電極のうちの一の電極上に開口を有し、前記開口を介して前記一の電極と前記電荷蓄積層とが電気的に接続されている、前記(1)乃至(8)のうちのいずれか1つに記載の撮像素子。
(10)
 前記半導体基板は、内部に無機光電変換部が埋め込まれている、前記(1)乃至(9)のうちのいずれか1つに記載の撮像素子。
(11)
 複数の画素が配置された有効画素領域および前記有効画素領域の周囲に設けられた周辺領域を有する半導体基板の受光面側の前記有効画素領域に、有機光電変換部として、複数の電極からなる第1電極と、電荷蓄積層と、有機光電変換層と、第2電極とをこの順に積層した後、
 前記有機光電変換部の上方に互いに異なるエッチングレートを有する第1の層および第2の層が積層されてなる封止層を形成する
 撮像素子の製造方法。
(12)
 前記第1の層をトリメチルアルミニウムおよび窒素プラズマを用いた原子層堆積法を用いて成膜する、前記(11)に記載の撮像素子の製造方法。
(13)
 前記第2の層をトリメチルアルミニウムおよび酸素プラズマを用いた原子層堆積法を用いて成膜する、前記(11)または(12)に記載の撮像素子の製造方法。
(14)
 前記有機光電変換部の上方に、前記第1の層を成膜した後、前記第2の層を成膜する、前記(11)乃至(13)のうちのいずれか1つに記載の撮像素子の製造方法。
(15)
 前記第2の層にウェットエッチングを用いて開口を形成した後、ドライエッチングを用いて前記開口内の前記第1の層を除去する、前記(14)に記載の撮像素子の製造方法。
(16)
 前記有機光電変換部の上方に、前記第2の層を成膜した後、前記第1の層を成膜する、前記(11)乃至(13)のうちのいずれか1つに記載の撮像素子の製造方法。
(17)
 ドライエッチングを用いて前記第1の層および前記第2の層を貫通する開口を一括形成する、前記(16)に記載の撮像素子の製造方法。
The present disclosure may have the following configuration. According to the present technology having the following configuration, an encapsulating layer in which a first layer containing nitrogen and a second layer containing oxygen are laminated is provided above the organic photoelectric conversion unit. It becomes easy to form a contact with the organic photoelectric conversion unit from above the conversion unit. Therefore, it is possible to improve the manufacturing yield.
(1)
A semiconductor substrate having an effective pixel area in which a plurality of pixels are arranged and a peripheral area provided around the effective pixel area,
A first electrode provided on the light receiving surface side of the semiconductor substrate and composed of a plurality of electrodes, a second electrode arranged to face the first electrode, and between the first electrode and the second electrode in order. An organic photoelectric conversion unit provided in a laminated manner and having a charge storage layer and an organic photoelectric conversion layer extending in the effective pixel region.
An image pickup device including a first layer having different etching rates and a sealing layer formed by laminating a second layer above the organic photoelectric conversion unit.
(2)
The image pickup device according to (1), wherein the first layer and the second layer are laminated in this order above the organic photoelectric conversion unit.
(3)
The image pickup device according to (1), wherein the second layer and the first layer are laminated in this order above the organic photoelectric conversion unit.
(4)
The image pickup device according to (3) above, wherein the first layer covers the upper side and the side surface of the organic photoelectric conversion unit.
(5)
The image pickup device according to any one of (1) to (4), wherein the first layer is provided on a part of the upper surface of the organic photoelectric conversion unit.
(6)
The first layer is an insulating film containing nitrogen or a metal film having a light-shielding property, and the second layer is an insulating film containing oxygen. The image pickup device described.
(7)
The image pickup device according to any one of (1) to (5) above, wherein the first layer is an aluminum nitride film, a silicon nitride film, a silicon oxide film, or a tungsten film.
(8)
The image pickup device according to any one of (1) to (5) and (7) above, wherein the second layer is an aluminum oxide film.
(9)
The organic photoelectric conversion unit further has an insulating layer between the first electrode and the charge storage layer.
The insulating layer has an opening on one of the plurality of electrodes constituting the first electrode, and the one electrode and the charge storage layer are electrically connected through the opening. The image pickup device according to any one of (1) to (8) above.
(10)
The image pickup device according to any one of (1) to (9) above, wherein the semiconductor substrate has an inorganic photoelectric conversion unit embedded therein.
(11)
A third electrode composed of a plurality of electrodes as an organic photoelectric conversion unit in the effective pixel region on the light receiving surface side of the semiconductor substrate having an effective pixel region in which a plurality of pixels are arranged and a peripheral region provided around the effective pixel region. After stacking one electrode, a charge storage layer, an organic photoelectric conversion layer, and a second electrode in this order,
A method for manufacturing an image pickup device, which forms a sealing layer in which a first layer and a second layer having different etching rates are laminated on the organic photoelectric conversion unit.
(12)
The method for manufacturing an image sensor according to (11), wherein the first layer is formed into a film by an atomic layer deposition method using trimethylaluminum and nitrogen plasma.
(13)
The method for manufacturing an image sensor according to (11) or (12) above, wherein the second layer is formed into a film by an atomic layer deposition method using trimethylaluminum and oxygen plasma.
(14)
The image pickup device according to any one of (11) to (13), wherein the first layer is formed above the organic photoelectric conversion unit and then the second layer is formed. Manufacturing method.
(15)
The method for manufacturing an image sensor according to (14), wherein an opening is formed in the second layer by wet etching, and then the first layer in the opening is removed by dry etching.
(16)
The image pickup device according to any one of (11) to (13), wherein the second layer is formed above the organic photoelectric conversion unit and then the first layer is formed. Manufacturing method.
(17)
The method for manufacturing an image sensor according to (16), wherein an opening penetrating the first layer and the second layer is collectively formed by using dry etching.
 本出願は、日本国特許庁において2020年1月28日に出願された日本特許出願番号2020-011603号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2020-011603 filed on January 28, 2020 at the Japan Patent Office, and this application is made by referring to all the contents of this application. Invite to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 One of ordinary skill in the art can conceive of various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the appended claims and their equivalents. It is understood that it is one of ordinary skill in the art.

Claims (17)

  1.  複数の画素が配置された有効画素領域および前記有効画素領域の周囲に設けられた周辺領域を有する半導体基板と、
     前記半導体基板の受光面側に設けられると共に、複数の電極からなる第1電極と、前記第1電極と対向配置された第2電極と、前記第1電極と前記第2電極との間に順に積層して設けられると共に、前記有効画素領域に延在する電荷蓄積層および有機光電変換層とを有する有機光電変換部と、
     前記有機光電変換部の上方において互いに異なるエッチングレートを有する第1の層および第2の層が積層されてなる封止層と
     を備えた撮像素子。
    A semiconductor substrate having an effective pixel area in which a plurality of pixels are arranged and a peripheral area provided around the effective pixel area,
    A first electrode provided on the light receiving surface side of the semiconductor substrate and composed of a plurality of electrodes, a second electrode arranged to face the first electrode, and between the first electrode and the second electrode in order. An organic photoelectric conversion unit provided in a laminated manner and having a charge storage layer and an organic photoelectric conversion layer extending in the effective pixel region.
    An image pickup device including a first layer having different etching rates and a sealing layer formed by laminating a second layer above the organic photoelectric conversion unit.
  2.  前記第1の層および前記第2の層は、前記有機光電変換部の上方にこの順に積層されている、請求項1に記載の撮像素子。 The imaging device according to claim 1, wherein the first layer and the second layer are laminated in this order above the organic photoelectric conversion unit.
  3.  前記第2の層および前記第1の層は、前記有機光電変換部の上方にこの順に積層されている、請求項1に記載の撮像素子。 The imaging device according to claim 1, wherein the second layer and the first layer are laminated in this order above the organic photoelectric conversion unit.
  4.  前記第1の層は、前記有機光電変換部の上方および側面を被覆している、請求項3に記載の撮像素子。 The image pickup device according to claim 3, wherein the first layer covers the upper side and the side surface of the organic photoelectric conversion unit.
  5.  前記第1の層は前記有機光電変換部の上面の一部に設けられている、請求項1に記載の撮像素子。 The image pickup device according to claim 1, wherein the first layer is provided on a part of the upper surface of the organic photoelectric conversion unit.
  6.  前記第1の層は窒素を含む絶縁膜または遮光性を有する金属膜であり、第2の層は酸素を含む絶縁膜である、請求項1に記載の撮像素子。 The image pickup device according to claim 1, wherein the first layer is an insulating film containing nitrogen or a metal film having a light-shielding property, and the second layer is an insulating film containing oxygen.
  7.  前記第1の層は、窒化アルミニウム膜、窒化シリコン膜、酸化シリコン膜またはタングステン膜である、請求項1に記載の撮像素子。 The image pickup device according to claim 1, wherein the first layer is an aluminum nitride film, a silicon nitride film, a silicon oxide film, or a tungsten film.
  8.  前記第2の層は、酸化アルミニウム膜である、請求項1に記載の撮像素子。 The image pickup device according to claim 1, wherein the second layer is an aluminum oxide film.
  9.  前記有機光電変換部は、さらに、前記第1電極と前記電荷蓄積層との間に絶縁層を有し、
     前記絶縁層は、前記第1電極を構成する複数の電極のうちの一の電極上に開口を有し、前記開口を介して前記一の電極と前記電荷蓄積層とが電気的に接続されている、請求項1に記載の撮像素子。
    The organic photoelectric conversion unit further has an insulating layer between the first electrode and the charge storage layer.
    The insulating layer has an opening on one of the plurality of electrodes constituting the first electrode, and the one electrode and the charge storage layer are electrically connected through the opening. The image pickup device according to claim 1.
  10.  前記半導体基板は、内部に無機光電変換部が埋め込まれている、請求項1に記載の撮像素子。 The image pickup device according to claim 1, wherein the semiconductor substrate has an inorganic photoelectric conversion unit embedded therein.
  11.  複数の画素が配置された有効画素領域および前記有効画素領域の周囲に設けられた周辺領域を有する半導体基板の受光面側の前記有効画素領域に、有機光電変換部として、複数の電極からなる第1電極と、電荷蓄積層と、有機光電変換層と、第2電極とをこの順に積層した後、
     前記有機光電変換部の上方に互いに異なるエッチングレートを有する第1の層および第2の層が積層されてなる封止層を形成する
     撮像素子の製造方法。
    A third electrode composed of a plurality of electrodes as an organic photoelectric conversion unit in the effective pixel region on the light receiving surface side of the semiconductor substrate having an effective pixel region in which a plurality of pixels are arranged and a peripheral region provided around the effective pixel region. After stacking one electrode, a charge storage layer, an organic photoelectric conversion layer, and a second electrode in this order,
    A method for manufacturing an image pickup device, which forms a sealing layer in which a first layer and a second layer having different etching rates are laminated on the organic photoelectric conversion unit.
  12.  前記第1の層をトリメチルアルミニウムおよび窒素プラズマを用いた原子層堆積法を用いて成膜する、請求項11に記載の撮像素子の製造方法。 The method for manufacturing an image sensor according to claim 11, wherein the first layer is formed into a film by an atomic layer deposition method using trimethylaluminum and nitrogen plasma.
  13.  前記第2の層をトリメチルアルミニウムおよび酸素プラズマを用いた原子層堆積法を用いて成膜する、請求項11に記載の撮像素子の製造方法。 The method for manufacturing an image sensor according to claim 11, wherein the second layer is formed into a film by an atomic layer deposition method using trimethylaluminum and oxygen plasma.
  14.  前記有機光電変換部の上方に、前記第1の層を成膜した後、前記第2の層を成膜する、請求項11に記載の撮像素子の製造方法。 The method for manufacturing an image sensor according to claim 11, wherein the first layer is formed above the organic photoelectric conversion unit, and then the second layer is formed.
  15.  前記第2の層にウェットエッチングを用いて開口を形成した後、ドライエッチングを用いて前記開口内の前記第1の層を除去する、請求項14に記載の撮像素子の製造方法。 The method for manufacturing an image sensor according to claim 14, wherein an opening is formed in the second layer by wet etching, and then the first layer in the opening is removed by dry etching.
  16.  前記有機光電変換部の上方に、前記第2の層を成膜した後、前記第1の層を成膜する、請求項11に記載の撮像素子の製造方法。 The method for manufacturing an image sensor according to claim 11, wherein the second layer is formed above the organic photoelectric conversion unit, and then the first layer is formed.
  17.  ドライエッチングを用いて前記第1の層および前記第2の層を貫通する開口を一括形成する、請求項16に記載の撮像素子の製造方法。 The method for manufacturing an image sensor according to claim 16, wherein an opening penetrating the first layer and the second layer is collectively formed by using dry etching.
PCT/JP2021/002887 2020-01-28 2021-01-27 Imaging element and method for manufacturing imaging element WO2021153628A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574081A JPWO2021153628A1 (en) 2020-01-28 2021-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020011603 2020-01-28
JP2020-011603 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021153628A1 true WO2021153628A1 (en) 2021-08-05

Family

ID=77079506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002887 WO2021153628A1 (en) 2020-01-28 2021-01-27 Imaging element and method for manufacturing imaging element

Country Status (2)

Country Link
JP (1) JPWO2021153628A1 (en)
WO (1) WO2021153628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106235A1 (en) * 2022-11-15 2024-05-23 ソニーセミコンダクタソリューションズ株式会社 Photo detection device, photo detection device manufacturing method, and electronic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073760A (en) * 2016-11-04 2018-05-10 キヤノン株式会社 Organic device
WO2019058995A1 (en) * 2017-09-20 2019-03-28 ソニー株式会社 Photoelectric conversion element and imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018073760A (en) * 2016-11-04 2018-05-10 キヤノン株式会社 Organic device
WO2019058995A1 (en) * 2017-09-20 2019-03-28 ソニー株式会社 Photoelectric conversion element and imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106235A1 (en) * 2022-11-15 2024-05-23 ソニーセミコンダクタソリューションズ株式会社 Photo detection device, photo detection device manufacturing method, and electronic equipment

Also Published As

Publication number Publication date
JPWO2021153628A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP7372243B2 (en) Image sensor and imaging device
US11792541B2 (en) Solid-state imaging device and method of controlling solid-state imaging device
US11469262B2 (en) Photoelectric converter and solid-state imaging device
JP7486417B2 (en) Solid-state imaging element and solid-state imaging device
WO2020166309A1 (en) Imaging element and imaging device
US11387279B2 (en) Imaging element, electronic apparatus, and method of driving imaging element
JP7433231B2 (en) Image sensor and imaging device
WO2021200509A1 (en) Imaging element and imaging device
WO2021153294A1 (en) Image-capturing element and image-capturing device
WO2021153628A1 (en) Imaging element and method for manufacturing imaging element
WO2021200508A1 (en) Imaging element and imaging device
JP2019186500A (en) Photoelectric conversion element and imaging device
WO2022131101A1 (en) Photoelectric conversion element, light detection device, light detection system, electronic equipment, and moving body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574081

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747122

Country of ref document: EP

Kind code of ref document: A1