WO2021153379A1 - Polyimide resin, polyimide varnish, and polyimide film - Google Patents

Polyimide resin, polyimide varnish, and polyimide film Download PDF

Info

Publication number
WO2021153379A1
WO2021153379A1 PCT/JP2021/001883 JP2021001883W WO2021153379A1 WO 2021153379 A1 WO2021153379 A1 WO 2021153379A1 JP 2021001883 W JP2021001883 W JP 2021001883W WO 2021153379 A1 WO2021153379 A1 WO 2021153379A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
mol
polyimide
compound
compound represented
Prior art date
Application number
PCT/JP2021/001883
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 安孫子
三田寺 淳
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020227024120A priority Critical patent/KR20220134534A/en
Priority to CN202180011291.2A priority patent/CN115038737A/en
Priority to JP2021574671A priority patent/JPWO2021153379A1/ja
Publication of WO2021153379A1 publication Critical patent/WO2021153379A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
  • polyimide resin Since polyimide resin has excellent mechanical properties, various uses are being studied in fields such as electrical and electronic parts. For example, it is desired to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device, and a polyimide resin suitable as the plastic material is desired. Research is also underway. High transparency is also required for such applications.
  • Patent Document 1 states that norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane for the purpose of high transparency, bending resistance, high heat resistance, and low coefficient of linear thermal expansion.
  • -5,5'', 6,6''-Polyimides containing repeating units made from tetracarboxylic acids and having a coefficient of linear thermal expansion of 50 to 400 ° C. of 100 ppm / K or less and their precursors are disclosed. There is.
  • a polyimide film substrate When a polyimide film substrate is used as an image display device such as a liquid crystal display or an OLED display, the substrate is required to have heat resistance, especially in the step of forming a polysilicon film on the substrate. Further, in recent years, in order to realize thinning and flexibility of devices, polyimide films are also required to be stretched, which is one of the indicators of toughness. However, the film having excellent heat resistance was hard and had poor elongation. Further, in display applications, not only the above-mentioned transparency but also colorlessness is more important. As described above, there has been a demand for a polyimide resin capable of obtaining a polyimide film having both heat resistance and elongation and excellent colorless transparency. An object of the present invention is to provide a polyimide resin that has both heat resistance and elongation, and is also excellent in colorless transparency.
  • the present inventors have found that a polyimide resin containing a combination of specific structural units can solve the above-mentioned problems, and have completed the invention.
  • the structural unit A further includes the structural unit (A2), and the structural unit (A2) is represented by the structural unit (A21) derived from the compound represented by the following formula (a21) and the following formula (a22).
  • Polygonide resin which is at least one selected from the group consisting of the structural unit (A22) derived from the compound to be used and the structural unit (A23) derived from the compound represented by the following formula (a23).
  • the structural unit B further includes the structural unit (B2), and the structural unit (B2) is represented by the structural unit (B21) derived from the compound represented by the following formula (b21) and the following formula (b22).
  • the polyimide resin of the present invention has both heat resistance and elongation, and is also excellent in colorless transparency.
  • the polyimide resin of the present invention is a polyimide resin containing a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from diamine, and the structural unit A is represented by the following formula (a1).
  • the polyimide resin of the present invention contains the structural units (A1) and (B1) to achieve both heat resistance and elongation and is also excellent in colorless transparency is not clear, but the norbornane skeleton, ether bond, etc. It is considered that this is a combined effect due to the rigidity and randomness of the molecular chain due to.
  • the structural unit A is a structural unit derived from tetracarboxylic dianhydride, and includes a structural unit (A1) derived from the compound represented by the formula (a1).
  • the structural unit (A1) improves heat resistance, elongation, and colorless transparency, and above all, heat resistance and colorless transparency are improved.
  • the compound represented by the formula (a1) is norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic dianhydride. It is an anhydride.
  • the structural unit A may include a structural unit other than the structural unit (A1).
  • the structural unit A preferably further includes the structural unit (A2) in addition to the structural unit (A1).
  • the structural unit (A2) is a structural unit derived from the compound represented by the following formula (a2). Depending on the structural unit (A2), the elongation is particularly improved, and the mechanical properties such as strength are also improved.
  • L is a single bond or divalent linking group.
  • the divalent linking group is preferably a substituted or unsubstituted alkylene group, more preferably -CR 1 R 2- (where R 1 and R 2 are independently hydrogen atoms or substituted or substituted or It is an unsubstituted alkyl group, or R 1 and R 2 are bonded to each other to form a ring).
  • L is preferably one selected from the group consisting of a single bond, a group represented by the following formula (L1) and a group represented by the following formula (L2).
  • * indicates a binding site with an aromatic ring.
  • the structural unit (A2) is a structural unit (A21) derived from a compound represented by the following formula (a21), a structural unit (A22) derived from a compound represented by the following formula (a22), and the following formula (a23).
  • ) Is preferably at least one selected from the group consisting of the structural unit (A23) derived from the compound represented by the following formula (a21), and the structural unit (A21) derived from the compound represented by the following formula (a21) and the following. It is preferable that it is at least one selected from the group consisting of the structural unit (A22) derived from the compound represented by the formula (a22), and from the viewpoint of improving the elongation, the compound represented by the following formula (a21) is selected.
  • the structural unit (A21) derived from the compound is more preferable, and the structural unit (A22) derived from the compound represented by the following formula (a22) is more preferable from the viewpoint of heat resistance. That is, it is more preferable that the structural unit A further includes the structural unit (A2), and the structural unit (A2) further includes the structural unit (A21) derived from the compound represented by the following formula (a21). It is more preferable that A further contains a structural unit (A2), and the structural unit (A2) includes a structural unit (A22) derived from a compound represented by the following formula (a22).
  • the compound represented by the formula (a21) is biphenyltetracarboxylic dianhydride (BPDA), and specific examples thereof include 3,3', 4,4'-biphenyl represented by the following formula (a21s).
  • BPDA biphenyltetracarboxylic dianhydride
  • specific examples thereof include 3,3', 4,4'-biphenyl represented by the following formula (a21s).
  • a-BPDA 2,2,', 3,3'-biphenyltetracarboxylic dianhydride represented.
  • the compound represented by the formula (a22) is 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride.
  • the compound represented by the formula (a23) is 4,4'-(hexafluoroisopropyridene) diphthalic anhydride.
  • the content ratio of the structural unit (A1) in the structural unit A is preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 80 mol%. % Or more, more preferably 90 mol% or more, still more preferably 95 mol% or more.
  • the upper limit of the content ratio of the structural unit (A1) is not particularly limited, that is, 100 mol%.
  • the structural unit A may consist of only the structural unit (A1). By including the structural unit (A1) in the structural unit A at the above-mentioned content ratio, the colorless transparency and heat resistance are particularly excellent.
  • the ratio of the structural unit (A2) in the structural unit A is preferably 5 to 50 mol%, more preferably 10 to 40 mol%, and further preferably. Is 15-35 mol%.
  • the molar ratio [(A1) / (A2)] of the constituent unit (A1) to the constituent unit (A2) is preferably 50/50 to 95/5. It is more preferably 60/40 to 90/10, and even more preferably 65/35 to 85/15.
  • the structural unit A may include a structural unit other than the structural units (A1) and (A2).
  • the tetracarboxylic dianhydride forming such a structural unit is not particularly limited, but is an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride (however, a compound represented by the formula (a2)).
  • alicyclic tetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydrides and 1,2,4,5-cyclohexanetetracarboxylic dianhydrides (provided that the formula is (Excluding the compound represented by (a1)); and aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride.
  • the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and the alicyclic tetracarboxylic dianhydride has one alicyclic ring.
  • the structural unit other than the structural unit (A1) arbitrarily included in the structural unit A may be one type or two or more types.
  • the structural unit B is a structural unit derived from a diamine, and includes a structural unit (B1) derived from a compound represented by the formula (b1).
  • the structural unit (B1) improves heat resistance, elongation, and colorless transparency, but above all, elongation is improved, and colorlessness is also improved.
  • the compound represented by the formula (b1) is 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA).
  • the structural unit B may include a structural unit other than the structural unit (B1).
  • the structural unit B preferably further includes a structural unit (B2) in addition to the structural unit (B1).
  • the structural unit (B2) is selected from the group consisting of the structural unit (B21) derived from the compound represented by the following formula (b21) and the structural unit (B22) derived from the compound represented by the following formula (b22). At least one is preferable.
  • the heat resistance is particularly improved, and the elastic modulus is also improved.
  • the structural unit (B2) is preferably a structural unit (B22) derived from the compound represented by the formula (b22) from the viewpoint of improving transparency, dimensional stability against heat, and elastic modulus.
  • the structural unit B further includes the structural unit (B2), and the structural unit (B2) includes the structural unit (B22) derived from the compound represented by the following formula (b22).
  • the structural unit (B2) is preferably a structural unit (B21) derived from the compound represented by the formula (b21), and the structural unit (B21) particularly improves heat resistance and elastic modulus.
  • the compound represented by the formula (b21) is 9,9-bis (4-aminophenyl) fluorene.
  • the compound represented by the formula (b22) is 2,2'-bis (trifluoromethyl) benzidine.
  • the content ratio of the structural unit (B1) in the structural unit B is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol% or more, still more preferably 50 mol. % Or more, more preferably 60 mol% or more, still more preferably 80 mol% or more.
  • the upper limit of the content ratio of the structural unit (B1) is not particularly limited, that is, 100 mol%.
  • the structural unit B may consist of only the structural unit (B1). By including the structural unit (B1) in the structural unit B in the above-mentioned content ratio, the elongation is particularly improved, and the colorlessness is also improved.
  • the ratio of the structural unit (B2) in the structural unit B is preferably 1 to 90 mol%, more preferably 1 to 80 mol%, and further preferably. Is 2 to 70 mol%, more preferably 3 to 50 mol%, even more preferably 4 to 40 mol%, and even more preferably 5 to 20 mol%.
  • the constituent unit B includes the constituent unit (B2)
  • the molar ratio [(B1) / (B2)] of the constituent unit (B1) to the constituent unit (B2) is determined from the viewpoint of colorlessness, elongation, and transparency.
  • the molar ratio of the structural unit (B1) to the structural unit (B2) [(B1) / (B2)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, still more preferably 10/90 to 40/60, and even more preferably 10/90. It is 90 to 30/70, more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
  • the constituent unit B includes the constituent unit (B2) and the constituent unit (B2) includes the constituent unit (B22)
  • the constituent unit (B1) and the constituent unit (B22) are particularly from the viewpoint of colorlessness, elongation, and transparency.
  • the molar ratio [(B1) / (B22)] is preferably 10/90 to 99/1, more preferably 20/80 to 99/1, and even more preferably 30/70 to 98/2. Yes, more preferably 50/50 to 97/3, even more preferably 60/40 to 96/4, and even more preferably 80/20 to 95/5.
  • the molar ratio of the structural unit (B1) to the structural unit (B22) [(B1) / (B22)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, still more preferably 10/90 to 40/60, and even more preferably 10/90. It is 90 to 30/70, more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
  • the structural unit B may include a structural unit other than the structural units (B1) and (B2).
  • the diamine forming such a constituent unit is not particularly limited, but is limited to 1,4-phenylenediamine, p-xylylene diamine, 3,5-diaminobenzoic acid, and 2,2'-dimethylbiphenyl-4,4'.
  • the aromatic diamine means a diamine containing one or more aromatic rings
  • the alicyclic diamine means a diamine containing one or more alicyclic rings and not containing an aromatic ring, and is a fat.
  • the group diamine means a diamine that does not contain an aromatic ring or an alicyclic ring.
  • the structural unit other than the structural unit (B1) arbitrarily included in the structural unit B may be one type or two or more types.
  • the number average molecular weight of the polyimide resin of the present invention is preferably 5,000 to 200,000 from the viewpoint of the mechanical strength of the obtained polyimide film.
  • the number average molecular weight of the polyimide resin can be obtained from, for example, a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
  • the polyimide resin of the present invention has both heat resistance and elongation, and is also excellent in colorless transparency, and can have the following physical property values.
  • the polyimide resin of the present invention has a total light transmittance of preferably 85% or more, more preferably 88% or more, still more preferably 90% or more, and more when it is made into a polyimide film having a thickness of 10 ⁇ m. More preferably, it is 91% or more.
  • the polyimide resin of the present invention has a yellow index (YI) of preferably 3.5 or less, more preferably 3.0 or less, still more preferably 2.0 or less when a polyimide film having a thickness of 10 ⁇ m is formed. Is.
  • the glass transition temperature (Tg) of the polyimide resin of the present invention is preferably 350 ° C. or higher, more preferably 380 ° C. or higher, further preferably 400 ° C. or higher, and even more preferably 430 ° C. or higher.
  • the total light transmittance, the yellow index (YI), and the glass transition temperature (Tg) in the present invention can be specifically measured by the methods described in Examples.
  • the polyimide resin of the present invention can be produced by reacting a tetracarboxylic acid component containing the compound giving the above-mentioned structural unit (A1) with a diamine component containing the compound giving the above-mentioned structural unit (B1). can.
  • Examples of the compound that gives the structural unit (A1) include the compound represented by the formula (a1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit can be formed.
  • the tetracarboxylic dian corresponding to the compound represented by the formula (a1) that is, norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5,5' ', 6, 6''-tetracarboxylic dian
  • alkyl esters of the tetracarboxylic dian As the compound giving the structural unit (A1), the compound represented by the formula (a1) (that is, tetracarboxylic dianhydride) is preferable.
  • the tetracarboxylic acid component may contain a compound other than the compound that gives the structural unit (A1).
  • the tetracarboxylic acid component preferably contains a compound that further gives a constituent unit (A2) in addition to the compound that gives the constituent unit (A1).
  • Examples of the compound giving the structural unit (A2) include the compound represented by the formula (a2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit can be formed. Examples of the derivative include a tetracarboxylic acid corresponding to the compound represented by the formula (a2) and an alkyl ester of the tetracarboxylic acid.
  • the compound represented by the formula (a2) (that is, tetracarboxylic dianhydride) is preferable.
  • the compound that gives the structural unit (A2) is a compound that gives the structural unit (A21) represented by the formula (a21), a compound that gives the structural unit (A22) represented by the formula (a22), and a compound that gives the structural unit (A22) represented by the formula (a23). It is preferably at least one selected from the group consisting of the compound giving the structural unit (A23) represented, and is selected from the group consisting of the compound giving the structural unit (A21) and the compound giving the structural unit (A22). It is preferably at least one, more preferably a compound giving a constituent unit (A21) from the viewpoint of improving elongation, and more preferably a compound giving a constituent unit (A22) from the viewpoint of heat resistance. preferable.
  • the tetracarboxylic acid component contains a compound that gives the structural unit (A1) in an amount of preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 80 mol% or more. It contains, more preferably 90 mol% or more, and even more preferably 95 mol% or more.
  • the upper limit of the content ratio of the compound giving the structural unit (A1) is not particularly limited, that is, 100 mol%.
  • the tetracarboxylic acid component may consist only of the compound giving the structural unit (A1).
  • the tetracarboxylic acid component when the tetracarboxylic acid component contains a compound that gives the structural unit (A2), the tetracarboxylic acid component preferably contains 5 to 50 mol%, more preferably 10 to 40 mol%, of the compound that gives the structural unit (A2). Includes, more preferably 15-35 mol%.
  • the molar ratio [(A1) / (A2)] of the compound that gives the structural unit (A1) to the compound that gives the structural unit (A2) is preferable. It is 50/50 to 95/5, more preferably 60/40 to 90/10, and even more preferably 65/35 to 85/15.
  • the tetracarboxylic acid component may contain a compound other than the compound giving the structural unit (A1) and the compound giving the structural unit (A2), and the compound includes the above-mentioned aromatic tetracarboxylic dianhydride and alicyclic type. Examples thereof include tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride, and derivatives thereof (tetracarboxylic dian, alkyl ester of tetracarboxylic dian, etc.).
  • the compound arbitrarily contained in the tetracarboxylic acid component (that is, the compound other than the compound giving the structural unit (A1)) may be one kind or two or more kinds.
  • Examples of the compound that gives the structural unit (B1) include the compound represented by the formula (b1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit can be formed.
  • Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b1).
  • the compound represented by the formula (b1) that is, a diamine is preferable.
  • the diamine component may contain a compound other than the compound that gives the structural unit (B1).
  • the diamine component preferably contains, in addition to the compound that gives the structural unit (B1), a compound that further gives the structural unit (B2).
  • the compound that gives the structural unit (B2) is preferably a compound that gives the structural unit (B22) represented by the formula (b22) from the viewpoint of improving transparency, dimensional stability against heat, and elastic modulus. From the viewpoint of improving heat resistance and elastic modulus, the structural unit (B2) is preferably a compound that gives the structural unit (B21) represented by the formula (b21).
  • Examples of the compound giving the structural unit (B2) include, but are not limited to, the compound represented by the formula (b21) and the compound represented by the formula (b22), and the derivative thereof within the range in which the same structural unit can be formed. There may be.
  • Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b21) and diisocyanate corresponding to the compound represented by the formula (b22).
  • a compound represented by the formula (b21) and a compound represented by the formula (b22) that is, a diamine are preferable.
  • the diamine component preferably contains a compound that gives the structural unit (B1) in an amount of 10 mol% or more, more preferably 20 mol% or more, further preferably 30 mol% or more, still more preferably 50 mol% or more. Even more preferably, it contains 60 mol% or more, and even more preferably 80 mol% or more.
  • the upper limit of the content ratio of the compound giving the structural unit (B1) is not particularly limited, that is, 100 mol%.
  • the diamine component may consist only of a compound that gives the structural unit (B1).
  • the diamine component when the diamine component contains a compound that gives the structural unit (B2), the diamine component preferably contains 1 to 90 mol%, more preferably 1 to 80 mol%, and more preferably the compound that gives the structural unit (B2). Contains 2 to 70 mol%, more preferably 3 to 50 mol%, even more preferably 4 to 40 mol%, still more preferably 5 to 20 mol%.
  • the diamine component contains a compound that gives a constituent unit (B2)
  • ) / (B2)] is preferably 10/90 to 99/1, more preferably 20/80 to 99/1, still more preferably 30/70 to 98/2, and even more preferably. It is 50/50 to 97/3, more preferably 60/40 to 96/4, and even more preferably 80/20 to 95/5. Further, from the viewpoint of improving mechanical properties such as elastic modulus, heat resistance, and thermal properties such as dimensional stability with respect to heat, the molars of the compound giving the structural unit (B1) and the compound giving the structural unit (B2).
  • the ratio [(B1) / (B2)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, and even more preferably 10/90 to 40/60. It is even more preferably 10/90 to 30/70, even more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
  • the molar ratio [(B1) / (B22)] of the compound giving B1) to the compound giving the structural unit (B22) is preferably 10/90 to 99/1, more preferably 20/80 to 99/1. It is more preferably 30/70 to 98/2, even more preferably 50/50 to 97/3, even more preferably 60/40 to 96/4, and even more preferably 80/ It is 20 to 95/5.
  • the ratio [(B1) / (B22)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, and even more preferably 10/90 to 40/60. It is even more preferably 10/90 to 30/70, even more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
  • the diamine component may contain a compound that gives the constituent unit (B1) and a compound other than the compound that gives the constituent unit (B2), and the compounds include the above-mentioned aromatic diamine, alicyclic diamine, and aliphatic diamine, and Examples thereof include derivatives (diamines and the like).
  • the compound arbitrarily contained in the diamine component (that is, the compound other than the compound giving the structural unit (B1)) may be one kind or two or more kinds.
  • the ratio of the amount of the tetracarboxylic acid component to the diamine component charged in the production of the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
  • an end-capping agent may be used for producing the polyimide resin.
  • the terminal encapsulant monoamines or dicarboxylic acids are preferable.
  • the amount of the terminal encapsulant to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, based on 1 mol of the tetracarboxylic acid component.
  • Examples of the monoamine terminal encapsulant include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3-. Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used.
  • dicarboxylic acid terminal encapsulant dicarboxylic acids are preferable, and a part thereof may be ring-closed.
  • phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenonedicarboxylic acid, 3,4-benzophenonedicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 -Dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like are recommended.
  • phthalic acid and phthalic anhydride can be preferably used.
  • the method for reacting the above-mentioned tetracarboxylic acid component with the diamine component is not particularly limited, and a known method can be used.
  • Specific reaction methods include (1) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor, stirring at 0 to 80 ° C. for 0.5 to 30 hours, and then raising the temperature to imidize. Method of carrying out the reaction, (2) After charging the diamine component and the reaction solvent into the reactor and dissolving them, the tetracarboxylic acid component is charged, and if necessary, the mixture is stirred at 0 to 80 ° C. for 0.5 to 30 hours, and then.
  • Examples thereof include a method of carrying out an imidization reaction by raising the temperature to (3) a method of charging a tetracarboxylic acid component, a diamine component and a reaction solvent into a reactor and immediately raising the temperature to carry out the imidization reaction.
  • the reaction solvent used in the production of the polyimide resin may be one that does not inhibit the imidization reaction and can dissolve the produced polyimide.
  • an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like can be mentioned.
  • aprotonic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea and the like.
  • Amide-based solvents lactone-based solvents such as ⁇ -butyrolactone and ⁇ -valerolactone, phosphorus-containing amide-based solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane.
  • Examples thereof include based solvents, ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picolin and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
  • phenolic solvent examples include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
  • ether solvent examples include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
  • the carbonate solvent examples include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
  • an amide solvent or a lactone solvent is preferable.
  • the above-mentioned reaction solvent may be used alone or in mixture of 2 or more types.
  • the imidization reaction it is preferable to carry out the reaction while removing water generated during production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
  • a known imidization catalyst can be used.
  • the imidization catalyst include a base catalyst and an acid catalyst.
  • Base catalysts include pyridine, quinoline, isoquinoline, ⁇ -picoline, ⁇ -picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N, N.
  • Examples thereof include organic base catalysts such as dimethylaniline and N, N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
  • the acid catalyst examples include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid and the like. Can be mentioned.
  • the above-mentioned imidization catalyst may be used alone or in combination of two or more.
  • a base catalyst more preferably an organic base catalyst, further preferably triethylamine, and particularly preferably a combination of triethylamine and triethylenediamine.
  • the temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C. from the viewpoint of suppressing the reaction rate and gelation.
  • the reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
  • the polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
  • the organic solvent may be any one that dissolves the polyimide resin, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in combination of two or more as the reaction solvent used for producing the polyimide resin. Since the polyimide resin of the present invention has solvent solubility, it is possible to obtain a high-concentration varnish that is stable at room temperature.
  • the polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 3 to 40% by mass, more preferably 5 to 30% by mass.
  • the viscosity of the polyimide varnish is preferably 0.1 to 200 Pa ⁇ s, more preferably 0.5 to 150 Pa ⁇ s.
  • the polyimide varnish of the present invention contains an inorganic filler, an adhesion accelerator, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and an optical brightener as long as the required properties of the polyimide film are not impaired.
  • Various additives such as a whitening agent, a cross-linking agent, a polymerization initiator, and a photosensitizer may be contained.
  • the method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
  • the polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention has good heat resistance and elongation, and is also excellent in colorless transparency.
  • the method for producing the polyimide film (production method) of the present invention is not particularly limited, and a known method can be used. For example, a method of removing the organic solvent after applying or molding the polyimide varnish of the present invention into a film form can be mentioned. From the viewpoint of obtaining a smooth film having a desired thickness, the polyimide varnish of the present invention is formed into a film form. A method of removing the organic solvent after coating or molding is preferable.
  • the polyimide film of the present invention Since the polyimide film of the present invention has good heat resistance and elongation, and is also excellent in colorless transparency, it can be used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. It is preferably used.
  • the polyimide film of the present invention is particularly preferably used as a substrate for an image display device such as a liquid crystal display or an OLED display.
  • Solid content concentration The solid content concentration of the varnish was measured by heating the sample at 320 ° C. ⁇ 120 min in a small electric furnace “MMF-1” manufactured by AS ONE Corporation, and calculating from the mass difference of the sample before and after heating.
  • Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Co., Ltd.
  • Total light transmittance, yellow index (YI) The measurement was carried out in accordance with JIS K7361-1 using a color / turbidity simultaneous measuring device "COH400" manufactured by Nippon Denshoku Industries Co., Ltd.
  • CTE Coefficient of linear thermal expansion
  • the elastic modulus and strength are tensile elastic modulus and tensile strength according to JIS K7127, and were measured using a tensile tester "Strograph VG-1E” manufactured by Toyo Seiki Co., Ltd.
  • Elongation Elongation was performed by a tensile test (measurement of elongation) in accordance with JIS K7127.
  • the test piece used had a width of 10 mm and a thickness of 10 to 60 ⁇ m.
  • tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations and the like are as follows.
  • ⁇ Tetracarboxylic acid component> CpODA: Norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic dianhydride (manufactured by JX Energy Co., Ltd .; Compound represented by formula (a1)) s-BPDA: 3,3', 4,4'-biphenyltetracarboxylic dianhydride (compound represented by the formula (a21s)) BPAF :: 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Co., Ltd .; compound represented by formula (a22)) TAHQ: p-phenylenebis (trimeritate) dianhydr
  • NMP N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Corporation)
  • GBL ⁇ -Butyrolactone (manufactured by Mitsubishi Chemical Corporation)
  • TEDA Triethylenediamine TEA: Triethylamine
  • Example 1 33.624 g (0.100 mol) of 6FODA in a 500 mL five-necked round-bottom flask equipped with a stainless steel half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. And GBL was added in an amount of 86.474 g, and the mixture was stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
  • Example 2 Same as Example 1 except that the amount of CpODA was changed from 38.438 g (0.100 mol) to 30.750 g (0.080 mol) and 5.884 g (0.020 mol) of s-BPDA was added.
  • a polyimide varnish was prepared by the above method to obtain a polyimide varnish having a solid content concentration of 15% by mass. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 3 The same method as in Example 1 except that the amount of 6FODA was changed from 33.624 g (0.100 mol) to 3.362 g (0.010 mol) and 28.822 g (0.090 mol) of TFMB was added. To prepare a polyimide varnish, a polyimide varnish having a solid content concentration of 15% by mass was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 4 The same method as in Example 1 except that the amount of 6FODA was changed from 33.624 g (0.100 mol) to 6.725 g (0.020 mol) and 25.619 g (0.080 mol) of TFMB was added. To prepare a polyimide varnish, a polyimide varnish having a solid content concentration of 15% by mass was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 5 The same method as in Example 1 except that the amount of 6FODA was changed from 33.624 g (0.100 mol) to 16.812 g (0.050 mol) and 16.012 g (0.050 mol) of TFMB was added. To prepare a polyimide varnish, a polyimide varnish having a solid content concentration of 15% by mass was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 6> The amount of 6FODA was changed from 33.624 g (0.100 mol) to 20.174 g (0.060 mol), BAFL was added 13.938 g (0.040 mol), and the amount of CpODA was 38.438 g (0).
  • a polyimide varnish was prepared by the same method as in Example 1 except that 11.769 g (0.040 mol) of s-BPDA was added by changing from (100 mol) to 23.063 g (0.060 mol). A polyimide varnish having a solid content concentration of 15% by mass was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • Example 7 Change the amount of 6FODA from 33.624 g (0.100 mol) to 18.493 g (0.055 mol), add 15.680 g (0.045 mol) of BAFL, and increase the amount of CpODA to 38.438 g (0).
  • a polyimide varnish was prepared by the same method as in Example 1 except that the amount was changed from (100 mol) to 34.594 g (0.090 mol) and 4.584 g (0.010 mol) of BPAF was added. A polyimide varnish having a concentration of 15% by mass was obtained. Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
  • the obtained polyamic acid varnish was applied onto a glass plate by spin coating, held at 80 ° C. for 20 minutes on a hot plate, and then heated at 400 ° C. for 30 minutes in a hot air dryer under a nitrogen atmosphere (ascending). The solvent was evaporated at a temperature rate of 5 ° C./min) and further thermally imidized to obtain a polyimide film.
  • a polyamic acid varnish was prepared by the same method as in Comparative Example 2 except that 38.438 g (0.100 mol) of CpODA was changed to 45.833 g (0.100 mol) of TAHQ, and a polyamide having a solid content concentration of 15% by mass was prepared. Obtained acid varnish. Using the obtained polyamic acid varnish, a polyimide film was obtained by the same method as in Comparative Example 2.
  • the polyimide film of the example has good heat resistance and elongation, and is also excellent in colorless transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

A polyimide resin including a structural unit A derived from a tetracarboxylic acid dianhydride and a structural unit B derived from a diamine, wherein structural unit A includes a structural unit (A1) derived from a compound represented by formula (a1) and structural unit B includes a structural unit (B1) derived from a compound represented by formula (b1).

Description

ポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムPolyimide resin, polyimide varnish and polyimide film
 本発明はポリイミド樹脂、ポリイミドワニス及びポリイミドフィルムに関する。 The present invention relates to a polyimide resin, a polyimide varnish and a polyimide film.
 ポリイミド樹脂は、優れた機械的特性を有することから、電気・電子部品等分野において様々な利用が検討されている。例えば、液晶ディスプレイやOLEDディスプレイ等の画像表示装置に用いられるガラス基板を、デバイスの軽量化やフレキシブル化を目的として、プラスチック基板へ代替することが望まれており、当該プラスチック材料として適するポリイミド樹脂の研究も進められている。このような用途には、高い透明性も要求される。 Since polyimide resin has excellent mechanical properties, various uses are being studied in fields such as electrical and electronic parts. For example, it is desired to replace a glass substrate used in an image display device such as a liquid crystal display or an OLED display with a plastic substrate for the purpose of reducing the weight and flexibility of the device, and a polyimide resin suitable as the plastic material is desired. Research is also underway. High transparency is also required for such applications.
 たとえば、特許文献1には、高い透明性、折り曲げ耐性、高耐熱性、低い線熱膨張係数を目的として、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸類を原料とする繰り返し単位を含み、50~400℃の線熱膨張係数が100ppm/K以下であるポリイミドとその前駆体が開示されている。 For example, Patent Document 1 states that norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane for the purpose of high transparency, bending resistance, high heat resistance, and low coefficient of linear thermal expansion. -5,5'', 6,6''-Polyimides containing repeating units made from tetracarboxylic acids and having a coefficient of linear thermal expansion of 50 to 400 ° C. of 100 ppm / K or less and their precursors are disclosed. There is.
特開2018-066017号公報Japanese Unexamined Patent Publication No. 2018-066017
 液晶ディスプレイやOLEDディスプレイ等の画像表示装置としてポリイミドフィルム基板を用いた場合、特にその基板上にポリシリコン膜を形成する工程において、基板には耐熱性が求められる。また、近年、デバイスの薄型化・フレキシブル化を実現するために、ポリイミドフィルムにも強靭性の指標のひとつである伸びが要求されている。しかし、耐熱性の優れたフィルムは硬く、伸びが劣るものとなっていた。
 更にディスプレイ用途には、前記の透明性はもちろんのこと、無色性もより重要になっている。以上のように、耐熱性と伸びを両立し、更に無色透明性にも優れるポリイミドフィルムが得られるポリイミド樹脂が求められていた。
 本発明の課題は、耐熱性と伸びを両立し、更に無色透明性にも優れるポリイミド樹脂を提供することにある。
When a polyimide film substrate is used as an image display device such as a liquid crystal display or an OLED display, the substrate is required to have heat resistance, especially in the step of forming a polysilicon film on the substrate. Further, in recent years, in order to realize thinning and flexibility of devices, polyimide films are also required to be stretched, which is one of the indicators of toughness. However, the film having excellent heat resistance was hard and had poor elongation.
Further, in display applications, not only the above-mentioned transparency but also colorlessness is more important. As described above, there has been a demand for a polyimide resin capable of obtaining a polyimide film having both heat resistance and elongation and excellent colorless transparency.
An object of the present invention is to provide a polyimide resin that has both heat resistance and elongation, and is also excellent in colorless transparency.
 本発明者らは、特定の構成単位の組み合わせを含むポリイミド樹脂が上記課題を解決できることを見出し、発明を完成させるに至った。 The present inventors have found that a polyimide resin containing a combination of specific structural units can solve the above-mentioned problems, and have completed the invention.
 即ち、本発明は、下記の[1]~[8]に関する。
[1]テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、構成単位Aが下記式(a1)で表される化合物に由来する構成単位(A1)を含み、構成単位Bが下記式(b1)で表される化合物に由来する構成単位(B1)を含む、ポリイミド樹脂。
That is, the present invention relates to the following [1] to [8].
[1] A polyimide resin containing a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from a diamine, wherein the structural unit A is derived from a compound represented by the following formula (a1). A polyimide resin containing a structural unit (A1), wherein the structural unit B contains a structural unit (B1) derived from a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[2]構成単位Aが、更に構成単位(A2)を含み、構成単位(A2)が、下記式(a21)で表される化合物に由来する構成単位(A21)、下記式(a22)で表される化合物に由来する構成単位(A22)、及び下記式(a23)で表される化合物に由来する構成単位(A23)からなる群より選ばれる少なくとも一つである、上記[1]に記載のポリイミド樹脂。 [2] The structural unit A further includes the structural unit (A2), and the structural unit (A2) is represented by the structural unit (A21) derived from the compound represented by the following formula (a21) and the following formula (a22). The above-mentioned [1], which is at least one selected from the group consisting of the structural unit (A22) derived from the compound to be used and the structural unit (A23) derived from the compound represented by the following formula (a23). Polygonide resin.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[3]構成単位Bが、更に構成単位(B2)を含み、構成単位(B2)が、下記式(b21)で表される化合物に由来する構成単位(B21)、下記式(b22)で表される化合物に由来する構成単位(B22)からなる群より選ばれる少なくとも一つである、上記[1]又は[2]に記載のポリイミド樹脂。 [3] The structural unit B further includes the structural unit (B2), and the structural unit (B2) is represented by the structural unit (B21) derived from the compound represented by the following formula (b21) and the following formula (b22). The polyimide resin according to the above [1] or [2], which is at least one selected from the group consisting of the structural unit (B22) derived from the compound.
Figure JPOXMLDOC01-appb-C000008

[4]構成単位Bが、更に構成単位(B2)を含み、構成単位(B2)が、下記式(b22)で表される化合物に由来する構成単位(B22)を含む、上記[1]~[3]のいずれか1つに記載のポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000009

[5]構成単位Aが、更に構成単位(A2)を含み、構成単位(A2)が、下記式(a22)で表される化合物に由来する構成単位(A22)を含む、上記[1]~[4]のいずれか1つに記載のポリイミド樹脂。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000008

[4] The above-mentioned [1] to [1] to the above, wherein the structural unit B further includes a structural unit (B2), and the structural unit (B2) includes a structural unit (B22) derived from a compound represented by the following formula (b22). The polyimide resin according to any one of [3].
Figure JPOXMLDOC01-appb-C000009

[5] The above-mentioned [1] to [1], wherein the structural unit A further includes a structural unit (A2), and the structural unit (A2) includes a structural unit (A22) derived from a compound represented by the following formula (a22). The polyimide resin according to any one of [4].
Figure JPOXMLDOC01-appb-C000010
[6]上記[1]~[5]のいずれか1つに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。
[7]上記[1]~[5]のいずれか1つに記載のポリイミド樹脂を含む、ポリイミドフィルム。
[8]上記[6]に記載のポリイミドワニスをフィルム状に塗布又は成形した後、有機溶媒を除去する、ポリイミドフィルムの製造方法。
[6] A polyimide varnish in which the polyimide resin according to any one of the above [1] to [5] is dissolved in an organic solvent.
[7] A polyimide film containing the polyimide resin according to any one of the above [1] to [5].
[8] A method for producing a polyimide film, wherein the polyimide varnish according to the above [6] is applied or molded into a film, and then the organic solvent is removed.
 本発明のポリイミド樹脂は、耐熱性と伸びを両立し、更に無色透明性にも優れる。 The polyimide resin of the present invention has both heat resistance and elongation, and is also excellent in colorless transparency.
[ポリイミド樹脂]
 本発明のポリイミド樹脂は、テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、構成単位Aが下記式(a1)で表される化合物に由来する構成単位(A1)を含み、構成単位Bが下記式(b1)で表される化合物に由来する構成単位(B1)を含む、ポリイミド樹脂である。
[Polyimide resin]
The polyimide resin of the present invention is a polyimide resin containing a structural unit A derived from tetracarboxylic acid dianhydride and a structural unit B derived from diamine, and the structural unit A is represented by the following formula (a1). A polyimide resin containing a structural unit (A1) derived from a compound, and the structural unit B containing a structural unit (B1) derived from a compound represented by the following formula (b1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 本発明のポリイミド樹脂が、前記構成単位(A1)と(B1)を含むことによって、耐熱性と伸びを両立でき、更に無色透明性にも優れる理由は定かではないが、ノルボルナン骨格やエーテル結合等による分子鎖の剛直性とランダム性に起因する複合効果であるためと考えられる。 The reason why the polyimide resin of the present invention contains the structural units (A1) and (B1) to achieve both heat resistance and elongation and is also excellent in colorless transparency is not clear, but the norbornane skeleton, ether bond, etc. It is considered that this is a combined effect due to the rigidity and randomness of the molecular chain due to.
<構成単位A>
 構成単位Aは、テトラカルボン酸二無水物に由来する構成単位であり、式(a1)で表される化合物に由来する構成単位(A1)を含む。構成単位(A1)によって、耐熱性、伸び、無色透明性が向上するが、なかでも耐熱性と無色透明性が向上する。
<Structural unit A>
The structural unit A is a structural unit derived from tetracarboxylic dianhydride, and includes a structural unit (A1) derived from the compound represented by the formula (a1). The structural unit (A1) improves heat resistance, elongation, and colorless transparency, and above all, heat resistance and colorless transparency are improved.
 式(a1)で表される化合物は、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物である。 The compound represented by the formula (a1) is norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic dianhydride. It is an anhydride.
 構成単位Aは、構成単位(A1)以外の構成単位を含んでもよい。
 構成単位Aは、構成単位(A1)に加えて、更に構成単位(A2)を含むことが好ましい。構成単位(A2)は、下記式(a2)で表される化合物に由来する構成単位である。構成単位(A2)によって、特に伸びが向上し、更に強度等の機械的特性も向上する。
The structural unit A may include a structural unit other than the structural unit (A1).
The structural unit A preferably further includes the structural unit (A2) in addition to the structural unit (A1). The structural unit (A2) is a structural unit derived from the compound represented by the following formula (a2). Depending on the structural unit (A2), the elongation is particularly improved, and the mechanical properties such as strength are also improved.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(a2)中において、Lは単結合又は二価の連結基である。前記二価の連結基は、好ましくは置換又は無置換のアルキレン基であり、より好ましくは-CR-(ここで、R及びRは、それぞれ独立して、水素原子又は置換若しくは無置換アルキル基であるか、あるいは、R及びRは互いに結合して環を形成する。)である。
 Lは、単結合、下記式(L1)で表される基及び下記式(L2)で表される基からなる群より選ばれる1つであることが好ましい。なお下記式(L1)及び下記式(L2)において、*は芳香族環との結合部位を示す。
In formula (a2), L is a single bond or divalent linking group. The divalent linking group is preferably a substituted or unsubstituted alkylene group, more preferably -CR 1 R 2- (where R 1 and R 2 are independently hydrogen atoms or substituted or substituted or It is an unsubstituted alkyl group, or R 1 and R 2 are bonded to each other to form a ring).
L is preferably one selected from the group consisting of a single bond, a group represented by the following formula (L1) and a group represented by the following formula (L2). In the following formula (L1) and the following formula (L2), * indicates a binding site with an aromatic ring.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 構成単位(A2)は、下記式(a21)で表される化合物に由来する構成単位(A21)、下記式(a22)で表される化合物に由来する構成単位(A22)、及び下記式(a23)で表される化合物に由来する構成単位(A23)からなる群より選ばれる少なくとも1つであることが好ましく、下記式(a21)で表される化合物に由来する構成単位(A21)、及び下記式(a22)で表される化合物に由来する構成単位(A22)からなる群より選ばれる少なくとも1つであることが好ましく、伸びを向上させる観点から、下記式(a21)で表される化合物に由来する構成単位(A21)であることがより好ましく、耐熱性の観点から、下記式(a22)で表される化合物に由来する構成単位(A22)であることがより好ましい。
 すなわち、構成単位Aは、更に構成単位(A2)を含み、構成単位(A2)が、下記式(a21)で表される化合物に由来する構成単位(A21)を含むことがより好ましく、構成単位Aは、更に構成単位(A2)を含み、構成単位(A2)が、下記式(a22)で表される化合物に由来する構成単位(A22)を含むことがより好ましい。
The structural unit (A2) is a structural unit (A21) derived from a compound represented by the following formula (a21), a structural unit (A22) derived from a compound represented by the following formula (a22), and the following formula (a23). ) Is preferably at least one selected from the group consisting of the structural unit (A23) derived from the compound represented by the following formula (a21), and the structural unit (A21) derived from the compound represented by the following formula (a21) and the following. It is preferable that it is at least one selected from the group consisting of the structural unit (A22) derived from the compound represented by the formula (a22), and from the viewpoint of improving the elongation, the compound represented by the following formula (a21) is selected. The structural unit (A21) derived from the compound is more preferable, and the structural unit (A22) derived from the compound represented by the following formula (a22) is more preferable from the viewpoint of heat resistance.
That is, it is more preferable that the structural unit A further includes the structural unit (A2), and the structural unit (A2) further includes the structural unit (A21) derived from the compound represented by the following formula (a21). It is more preferable that A further contains a structural unit (A2), and the structural unit (A2) includes a structural unit (A22) derived from a compound represented by the following formula (a22).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式(a21)で表される化合物は、ビフェニルテトラカルボン酸二無水物(BPDA)であり、その具体例としては、下記式(a21s)で表される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、下記式(a21a)で表される2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(a-BPDA)、下記式(a21i)で表される2,2’,3,3’-ビフェニルテトラカルボン酸二無水物(i-BPDA)が挙げられる。 The compound represented by the formula (a21) is biphenyltetracarboxylic dianhydride (BPDA), and specific examples thereof include 3,3', 4,4'-biphenyl represented by the following formula (a21s). Tetracarboxylic dianhydride (s-BPDA), 2,3,3', 4'-biphenyltetracarboxylic dianhydride (a-BPDA) represented by the following formula (a21a), represented by the following formula (a21i). Examples thereof include 2,2', 3,3'-biphenyltetracarboxylic dianhydride (i-BPDA) represented.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(a22)で表される化合物は、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物である。
 式(a23)で表される化合物は、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物である。
The compound represented by the formula (a22) is 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride.
The compound represented by the formula (a23) is 4,4'-(hexafluoroisopropyridene) diphthalic anhydride.
 構成単位A中における構成単位(A1)の含有比率は、好ましくは50モル%以上であり、より好ましくは55モル%以上であり、更に好ましくは60モル%以上であり、より更に好ましくは80モル%以上であり、より更に好ましくは90モル%以上であり、より更に好ましくは95モル%以上である。構成単位(A1)の含有比率の上限値は特に限定されず、即ち、100モル%である。構成単位Aは構成単位(A1)のみからなっていてもよい。構成単位A中に構成単位(A1)を前記の含有比率で含むことによって、特に無色透明性と耐熱性に優れる。 The content ratio of the structural unit (A1) in the structural unit A is preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 80 mol%. % Or more, more preferably 90 mol% or more, still more preferably 95 mol% or more. The upper limit of the content ratio of the structural unit (A1) is not particularly limited, that is, 100 mol%. The structural unit A may consist of only the structural unit (A1). By including the structural unit (A1) in the structural unit A at the above-mentioned content ratio, the colorless transparency and heat resistance are particularly excellent.
 構成単位Aが構成単位(A2)を含む場合、構成単位A中における構成単位(A2)の比率は、好ましくは5~50モル%であり、より好ましくは10~40モル%であり、更に好ましくは15~35モル%である。
 構成単位Aが構成単位(A2)を含む場合、構成単位(A1)と構成単位(A2)のモル比[(A1)/(A2)]は、好ましくは50/50~95/5であり、より好ましくは60/40~90/10であり、更に好ましくは65/35~85/15である。構成単位A中に構成単位(A2)を前記の含有比率で含むことによって、特に伸びや強度等の機械的特性に優れる。
When the structural unit A includes the structural unit (A2), the ratio of the structural unit (A2) in the structural unit A is preferably 5 to 50 mol%, more preferably 10 to 40 mol%, and further preferably. Is 15-35 mol%.
When the constituent unit A includes the constituent unit (A2), the molar ratio [(A1) / (A2)] of the constituent unit (A1) to the constituent unit (A2) is preferably 50/50 to 95/5. It is more preferably 60/40 to 90/10, and even more preferably 65/35 to 85/15. By including the structural unit (A2) in the structural unit A at the above-mentioned content ratio, the mechanical properties such as elongation and strength are particularly excellent.
 構成単位Aは、構成単位(A1)及び(A2)以外の構成単位を含んでもよい。そのような構成単位を形成するテトラカルボン酸二無水物としては、特に限定されないが、ピロメリット酸二無水物等の芳香族テトラカルボン酸二無水物(ただし、式(a2)で表される化合物を除く);1,2,3,4-シクロブタンテトラカルボン酸二無水物及び1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等の脂環式テトラカルボン酸二無水物(ただし、式(a1)で表される化合物を除く);並びに1,2,3,4-ブタンテトラカルボン酸二無水物等の脂肪族テトラカルボン酸二無水物が挙げられる。
 なお、本明細書において、芳香族テトラカルボン酸二無水物とは芳香環を1つ以上含むテトラカルボン酸二無水物を意味し、脂環式テトラカルボン酸二無水物とは脂環を1つ以上含み、かつ芳香環を含まないテトラカルボン酸二無水物を意味し、脂肪族テトラカルボン酸二無水物とは芳香環も脂環も含まないテトラカルボン酸二無水物を意味する。
 構成単位Aに任意に含まれる構成単位(A1)以外の構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit A may include a structural unit other than the structural units (A1) and (A2). The tetracarboxylic dianhydride forming such a structural unit is not particularly limited, but is an aromatic tetracarboxylic dianhydride such as pyromellitic dianhydride (however, a compound represented by the formula (a2)). (Excluding); alicyclic tetracarboxylic dianhydrides such as 1,2,3,4-cyclobutanetetracarboxylic dianhydrides and 1,2,4,5-cyclohexanetetracarboxylic dianhydrides (provided that the formula is (Excluding the compound represented by (a1)); and aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-butanetetracarboxylic dianhydride.
In the present specification, the aromatic tetracarboxylic dianhydride means a tetracarboxylic dianhydride containing one or more aromatic rings, and the alicyclic tetracarboxylic dianhydride has one alicyclic ring. It means a tetracarboxylic acid dianhydride containing the above and does not contain an aromatic ring, and the aliphatic tetracarboxylic acid dianhydride means a tetracarboxylic acid dianhydride containing neither an aromatic ring nor an alicyclic ring.
The structural unit other than the structural unit (A1) arbitrarily included in the structural unit A may be one type or two or more types.
<構成単位B>
 構成単位Bは、ジアミンに由来する構成単位であり、式(b1)で表される化合物に由来する構成単位(B1)を含む。構成単位(B1)によって、耐熱性、伸び、無色透明性が向上するが、なかでも伸びが向上し、更に無色性も向上する。
<Structural unit B>
The structural unit B is a structural unit derived from a diamine, and includes a structural unit (B1) derived from a compound represented by the formula (b1). The structural unit (B1) improves heat resistance, elongation, and colorless transparency, but above all, elongation is improved, and colorlessness is also improved.
 式(b1)で表される化合物は、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(6FODA)である。 The compound represented by the formula (b1) is 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (6FODA).
 構成単位Bは、構成単位(B1)以外の構成単位を含んでもよい。
 構成単位Bは、構成単位(B1)に加えて、更に構成単位(B2)を含むことが好ましい。構成単位(B2)は、下記式(b21)で表される化合物に由来する構成単位(B21)、下記式(b22)で表される化合物に由来する構成単位(B22)からなる群より選ばれる少なくとも1つであることが好ましい。構成単位(B2)によって、特に耐熱性が向上し、更に弾性率も向上する。
 構成単位(B2)は、透明性、熱に対する寸法安定性、及び弾性率を向上させる観点から、式(b22)で表される化合物に由来する構成単位(B22)であることが好ましい。すなわち、構成単位Bが、更に構成単位(B2)を含み、構成単位(B2)が、下記式(b22)で表される化合物に由来する構成単位(B22)を含むことが好ましい。
 また、構成単位(B2)は、式(b21)で表される化合物に由来する構成単位(B21)であることも好ましく、構成単位(B21)によって、特に耐熱性、弾性率が向上する。
The structural unit B may include a structural unit other than the structural unit (B1).
The structural unit B preferably further includes a structural unit (B2) in addition to the structural unit (B1). The structural unit (B2) is selected from the group consisting of the structural unit (B21) derived from the compound represented by the following formula (b21) and the structural unit (B22) derived from the compound represented by the following formula (b22). At least one is preferable. Depending on the structural unit (B2), the heat resistance is particularly improved, and the elastic modulus is also improved.
The structural unit (B2) is preferably a structural unit (B22) derived from the compound represented by the formula (b22) from the viewpoint of improving transparency, dimensional stability against heat, and elastic modulus. That is, it is preferable that the structural unit B further includes the structural unit (B2), and the structural unit (B2) includes the structural unit (B22) derived from the compound represented by the following formula (b22).
Further, the structural unit (B2) is preferably a structural unit (B21) derived from the compound represented by the formula (b21), and the structural unit (B21) particularly improves heat resistance and elastic modulus.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(b21)で表される化合物は、9,9-ビス(4-アミノフェニル)フルオレンである。
 式(b22)で表される化合物は、2,2’-ビス(トリフルオロメチル)ベンジジンである。
The compound represented by the formula (b21) is 9,9-bis (4-aminophenyl) fluorene.
The compound represented by the formula (b22) is 2,2'-bis (trifluoromethyl) benzidine.
 構成単位B中における構成単位(B1)の含有比率は、好ましくは10モル%以上であり、より好ましくは20モル%以上であり、更に好ましくは30モル%以上であり、より更に好ましくは50モル%以上であり、より更に好ましくは60モル%以上であり、より更に好ましくは80モル%以上である。構成単位(B1)の含有比率の上限値は特に限定されず、即ち、100モル%である。構成単位Bは構成単位(B1)のみからなっていてもよい。構成単位B中に構成単位(B1)を前記の含有比率で含むことによって、特に伸びが向上し、更に無色性も向上する。 The content ratio of the structural unit (B1) in the structural unit B is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol% or more, still more preferably 50 mol. % Or more, more preferably 60 mol% or more, still more preferably 80 mol% or more. The upper limit of the content ratio of the structural unit (B1) is not particularly limited, that is, 100 mol%. The structural unit B may consist of only the structural unit (B1). By including the structural unit (B1) in the structural unit B in the above-mentioned content ratio, the elongation is particularly improved, and the colorlessness is also improved.
 構成単位Bが構成単位(B2)を含む場合、構成単位B中における構成単位(B2)の比率は、好ましくは1~90モル%であり、より好ましくは1~80モル%であり、更に好ましくは2~70モル%であり、より更に好ましくは3~50モル%であり、より更に好ましくは4~40モル%であり、より更に好ましくは5~20モル%である。
 構成単位Bが構成単位(B2)を含む場合、特に無色性と伸び、透明性の観点から、構成単位(B1)と構成単位(B2)のモル比[(B1)/(B2)]は、好ましくは10/90~99/1であり、より好ましくは20/80~99/1であり、更に好ましくは30/70~98/2であり、より更に好ましくは50/50~97/3であり、より更に好ましくは60/40~96/4であり、より更に好ましくは80/20~95/5である。
 また、弾性率等の機械的特性、耐熱性、及び熱に対する寸法安定性等の熱的特性を向上させる観点からは、構成単位(B1)と構成単位(B2)のモル比[(B1)/(B2)]は、好ましくは10/90~60/40であり、より好ましくは10/90~50/50であり、更に好ましくは10/90~40/60であり、より更に好ましくは10/90~30/70であり、より更に好ましくは10/90~20/80であり、より更に好ましくは10/90~15/85である。
When the structural unit B includes the structural unit (B2), the ratio of the structural unit (B2) in the structural unit B is preferably 1 to 90 mol%, more preferably 1 to 80 mol%, and further preferably. Is 2 to 70 mol%, more preferably 3 to 50 mol%, even more preferably 4 to 40 mol%, and even more preferably 5 to 20 mol%.
When the constituent unit B includes the constituent unit (B2), the molar ratio [(B1) / (B2)] of the constituent unit (B1) to the constituent unit (B2) is determined from the viewpoint of colorlessness, elongation, and transparency. It is preferably 10/90 to 99/1, more preferably 20/80 to 99/1, still more preferably 30/70 to 98/2, and even more preferably 50/50 to 97/3. Yes, more preferably 60/40 to 96/4, and even more preferably 80/20 to 95/5.
Further, from the viewpoint of improving mechanical properties such as elastic modulus, heat resistance, and thermal properties such as dimensional stability with respect to heat, the molar ratio of the structural unit (B1) to the structural unit (B2) [(B1) / (B2)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, still more preferably 10/90 to 40/60, and even more preferably 10/90. It is 90 to 30/70, more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
 構成単位Bが構成単位(B2)を含み、構成単位(B2)が構成単位(B22)を含む場合、特に無色性と伸び、透明性の観点から、構成単位(B1)と構成単位(B22)のモル比[(B1)/(B22)]は、好ましくは10/90~99/1であり、より好ましくは20/80~99/1であり、更に好ましくは30/70~98/2であり、より更に好ましくは50/50~97/3であり、より更に好ましくは60/40~96/4であり、より更に好ましくは80/20~95/5である。
 また、弾性率等の機械的特性、耐熱性、及び熱に対する寸法安定性等の熱的特性を向上させる観点からは、構成単位(B1)と構成単位(B22)のモル比[(B1)/(B22)]は、好ましくは10/90~60/40であり、より好ましくは10/90~50/50であり、更に好ましくは10/90~40/60であり、より更に好ましくは10/90~30/70であり、より更に好ましくは10/90~20/80であり、より更に好ましくは10/90~15/85である。
When the constituent unit B includes the constituent unit (B2) and the constituent unit (B2) includes the constituent unit (B22), the constituent unit (B1) and the constituent unit (B22) are particularly from the viewpoint of colorlessness, elongation, and transparency. The molar ratio [(B1) / (B22)] is preferably 10/90 to 99/1, more preferably 20/80 to 99/1, and even more preferably 30/70 to 98/2. Yes, more preferably 50/50 to 97/3, even more preferably 60/40 to 96/4, and even more preferably 80/20 to 95/5.
Further, from the viewpoint of improving mechanical properties such as elastic modulus, heat resistance, and thermal properties such as dimensional stability with respect to heat, the molar ratio of the structural unit (B1) to the structural unit (B22) [(B1) / (B22)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, still more preferably 10/90 to 40/60, and even more preferably 10/90. It is 90 to 30/70, more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
 構成単位Bは構成単位(B1)及び(B2)以外の構成単位を含んでもよい。そのような構成単位を形成するジアミンとしては、特に限定されないが、1,4-フェニレンジアミン、p-キシリレンジアミン、3,5-ジアミノ安息香酸、2,2’-ジメチルビフェニル-4,4’-ジアミン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、4,4’-ジアミノベンズアニリド、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-5-アミン、α,α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、N,N’-ビス(4-アミノフェニル)テレフタルアミド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、及び2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン等の芳香族ジアミン(ただし、式(b1)で表される化合物、式(b21)で表される化合物及び式(b22)で表される化合物を除く);1,3-ビス(アミノメチル)シクロヘキサン及び1,4-ビス(アミノメチル)シクロヘキサン等の脂環式ジアミン;並びにエチレンジアミン及びヘキサメチレンジアミン等の脂肪族ジアミンが挙げられる。
 なお、本明細書において、芳香族ジアミンとは芳香環を1つ以上含むジアミンを意味し、脂環式ジアミンとは脂環を1つ以上含み、かつ芳香環を含まないジアミンを意味し、脂肪族ジアミンとは芳香環も脂環も含まないジアミンを意味する。
 構成単位Bに任意に含まれる構成単位(B1)以外の構成単位は、1種でもよいし、2種以上であってもよい。
The structural unit B may include a structural unit other than the structural units (B1) and (B2). The diamine forming such a constituent unit is not particularly limited, but is limited to 1,4-phenylenediamine, p-xylylene diamine, 3,5-diaminobenzoic acid, and 2,2'-dimethylbiphenyl-4,4'. -Diamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-aminophenyl) sulfone, 4,4'-diaminobenz Anilide, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl-1H-indene-5-amine, α, α'-bis (4-aminophenyl) -1,4- Diisopropylbenzene, N, N'-bis (4-aminophenyl) terephthalamide, 4,4'-bis (4-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, And aromatic amines such as 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane (however, the compound represented by the formula (b1), the compound represented by the formula (b21) and the formula ( b22)); alicyclic diamines such as 1,3-bis (aminomethyl) cyclohexane and 1,4-bis (aminomethyl) cyclohexane; and aliphatic diamines such as ethylenediamine and hexamethylenediamine. Can be mentioned.
In the present specification, the aromatic diamine means a diamine containing one or more aromatic rings, and the alicyclic diamine means a diamine containing one or more alicyclic rings and not containing an aromatic ring, and is a fat. The group diamine means a diamine that does not contain an aromatic ring or an alicyclic ring.
The structural unit other than the structural unit (B1) arbitrarily included in the structural unit B may be one type or two or more types.
<ポリイミド樹脂の特性>
 本発明のポリイミド樹脂の数平均分子量は、得られるポリイミドフィルムの機械的強度の観点から、好ましくは5,000~200,000である。なお、ポリイミド樹脂の数平均分子量は、例えば、ゲルろ過クロマトグラフィー測定による標準ポリメチルメタクリレート(PMMA)換算値より求めることができる。
<Characteristics of polyimide resin>
The number average molecular weight of the polyimide resin of the present invention is preferably 5,000 to 200,000 from the viewpoint of the mechanical strength of the obtained polyimide film. The number average molecular weight of the polyimide resin can be obtained from, for example, a standard polymethylmethacrylate (PMMA) conversion value measured by gel filtration chromatography.
 本発明のポリイミド樹脂は、耐熱性と伸びを両立し、更に無色透明性にも優れるものであり、以下のような物性値を有することができる。 The polyimide resin of the present invention has both heat resistance and elongation, and is also excellent in colorless transparency, and can have the following physical property values.
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際に全光線透過率が、好ましくは85%以上であり、より好ましくは88%以上であり、更に好ましくは90%以上であり、より更に好ましくは91%以上である。 The polyimide resin of the present invention has a total light transmittance of preferably 85% or more, more preferably 88% or more, still more preferably 90% or more, and more when it is made into a polyimide film having a thickness of 10 μm. More preferably, it is 91% or more.
 本発明のポリイミド樹脂は、厚さ10μmのポリイミドフィルムとした際にイエローインデックス(YI)が、好ましくは3.5以下であり、より好ましくは3.0以下であり、更に好ましくは2.0以下である。 The polyimide resin of the present invention has a yellow index (YI) of preferably 3.5 or less, more preferably 3.0 or less, still more preferably 2.0 or less when a polyimide film having a thickness of 10 μm is formed. Is.
 本発明のポリイミド樹脂のガラス転移温度(Tg)は、好ましくは350℃以上であり、より好ましくは380℃以上であり、更に好ましくは400℃以上であり、より更に好ましくは430℃以上である。
 なお、本発明における全光線透過率、イエローインデックス(YI)及びガラス転移温度(Tg)は、具体的には実施例に記載の方法で測定することができる。
The glass transition temperature (Tg) of the polyimide resin of the present invention is preferably 350 ° C. or higher, more preferably 380 ° C. or higher, further preferably 400 ° C. or higher, and even more preferably 430 ° C. or higher.
The total light transmittance, the yellow index (YI), and the glass transition temperature (Tg) in the present invention can be specifically measured by the methods described in Examples.
[ポリイミド樹脂の製造方法]
 本発明のポリイミド樹脂は、上述の構成単位(A1)を与える化合物を含有するテトラカルボン酸成分と、上述の構成単位(B1)を与える化合物を含むジアミン成分とを反応させることにより製造することができる。
[Manufacturing method of polyimide resin]
The polyimide resin of the present invention can be produced by reacting a tetracarboxylic acid component containing the compound giving the above-mentioned structural unit (A1) with a diamine component containing the compound giving the above-mentioned structural unit (B1). can.
 構成単位(A1)を与える化合物としては、式(a1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(a1)で表される化合物に対応するテトラカルボン酸(即ち、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸)、及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A1)を与える化合物としては、式(a1)で表される化合物(即ち、テトラカルボン酸二無水物)が好ましい。 Examples of the compound that gives the structural unit (A1) include the compound represented by the formula (a1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit can be formed. As the derivative, the tetracarboxylic dian corresponding to the compound represented by the formula (a1) (that is, norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5,5' ', 6, 6''-tetracarboxylic dian), and alkyl esters of the tetracarboxylic dian. As the compound giving the structural unit (A1), the compound represented by the formula (a1) (that is, tetracarboxylic dianhydride) is preferable.
 テトラカルボン酸成分は、構成単位(A1)を与える化合物以外の化合物を含んでもよい。テトラカルボン酸成分は、構成単位(A1)を与える化合物に加えて、更に構成単位(A2)を与える化合物を含むことが好ましい。
 構成単位(A2)を与える化合物としては、式(a2)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(a2)で表される化合物に対応するテトラカルボン酸及び当該テトラカルボン酸のアルキルエステルが挙げられる。構成単位(A2)を与える化合物としては、式(a2)で表される化合物(即ち、テトラカルボン酸二無水物)が好ましい。
 構成単位(A2)を与える化合物は、式(a21)で表される構成単位(A21)を与える化合物、式(a22)で表される構成単位(A22)を与える化合物、及び式(a23)で表される構成単位(A23)を与える化合物からなる群より選ばれる少なくとも1つであることが好ましく、構成単位(A21)を与える化合物、及び構成単位(A22)を与える化合物からなる群より選ばれる少なくとも1つであることが好ましく、伸びを向上させる観点から、構成単位(A21)を与える化合物であることがより好ましく、耐熱性の観点から、構成単位(A22)を与える化合物であることがより好ましい。
The tetracarboxylic acid component may contain a compound other than the compound that gives the structural unit (A1). The tetracarboxylic acid component preferably contains a compound that further gives a constituent unit (A2) in addition to the compound that gives the constituent unit (A1).
Examples of the compound giving the structural unit (A2) include the compound represented by the formula (a2), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit can be formed. Examples of the derivative include a tetracarboxylic acid corresponding to the compound represented by the formula (a2) and an alkyl ester of the tetracarboxylic acid. As the compound giving the structural unit (A2), the compound represented by the formula (a2) (that is, tetracarboxylic dianhydride) is preferable.
The compound that gives the structural unit (A2) is a compound that gives the structural unit (A21) represented by the formula (a21), a compound that gives the structural unit (A22) represented by the formula (a22), and a compound that gives the structural unit (A22) represented by the formula (a23). It is preferably at least one selected from the group consisting of the compound giving the structural unit (A23) represented, and is selected from the group consisting of the compound giving the structural unit (A21) and the compound giving the structural unit (A22). It is preferably at least one, more preferably a compound giving a constituent unit (A21) from the viewpoint of improving elongation, and more preferably a compound giving a constituent unit (A22) from the viewpoint of heat resistance. preferable.
 テトラカルボン酸成分は、構成単位(A1)を与える化合物を、好ましくは50モル%以上含み、より好ましくは55モル%以上含み、更に好ましくは60モル%以上含み、より更に好ましくは80モル%以上含み、より更に好ましくは90モル%以上含み、より更に好ましくは95モル%以上含む。構成単位(A1)を与える化合物の含有比率の上限値は特に限定されず、即ち、100モル%である。テトラカルボン酸成分は構成単位(A1)を与える化合物のみからなっていてもよい。 The tetracarboxylic acid component contains a compound that gives the structural unit (A1) in an amount of preferably 50 mol% or more, more preferably 55 mol% or more, still more preferably 60 mol% or more, still more preferably 80 mol% or more. It contains, more preferably 90 mol% or more, and even more preferably 95 mol% or more. The upper limit of the content ratio of the compound giving the structural unit (A1) is not particularly limited, that is, 100 mol%. The tetracarboxylic acid component may consist only of the compound giving the structural unit (A1).
 テトラカルボン酸成分が構成単位(A2)を与える化合物を含む場合、テトラカルボン酸成分は、構成単位(A2)を与える化合物を、好ましくは5~50モル%含み、より好ましくは10~40モル%含み、更に好ましくは15~35モル%含む。
 テトラカルボン酸成分が構成単位(A2)を与える化合物を含む場合、構成単位(A1)を与える化合物と構成単位(A2)を与える化合物のモル比[(A1)/(A2)]は、好ましくは50/50~95/5であり、より好ましくは60/40~90/10であり、更に好ましくは65/35~85/15である。
When the tetracarboxylic acid component contains a compound that gives the structural unit (A2), the tetracarboxylic acid component preferably contains 5 to 50 mol%, more preferably 10 to 40 mol%, of the compound that gives the structural unit (A2). Includes, more preferably 15-35 mol%.
When the tetracarboxylic acid component contains a compound that gives a structural unit (A2), the molar ratio [(A1) / (A2)] of the compound that gives the structural unit (A1) to the compound that gives the structural unit (A2) is preferable. It is 50/50 to 95/5, more preferably 60/40 to 90/10, and even more preferably 65/35 to 85/15.
 テトラカルボン酸成分は、構成単位(A1)を与える化合物及び構成単位(A2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、及び脂肪族テトラカルボン酸二無水物、並びにそれらの誘導体(テトラカルボン酸、テトラカルボン酸のアルキルエステル等)が挙げられる。
 テトラカルボン酸成分に任意に含まれる化合物(即ち、構成単位(A1)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The tetracarboxylic acid component may contain a compound other than the compound giving the structural unit (A1) and the compound giving the structural unit (A2), and the compound includes the above-mentioned aromatic tetracarboxylic dianhydride and alicyclic type. Examples thereof include tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride, and derivatives thereof (tetracarboxylic dian, alkyl ester of tetracarboxylic dian, etc.).
The compound arbitrarily contained in the tetracarboxylic acid component (that is, the compound other than the compound giving the structural unit (A1)) may be one kind or two or more kinds.
 構成単位(B1)を与える化合物としては、式(b1)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b1)で表される化合物に対応するジイソシアネートが挙げられる。構成単位(B1)を与える化合物としては、式(b1)で表される化合物(即ち、ジアミン)が好ましい。 Examples of the compound that gives the structural unit (B1) include the compound represented by the formula (b1), but the compound is not limited to this, and may be a derivative thereof as long as the same structural unit can be formed. Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b1). As the compound that gives the structural unit (B1), the compound represented by the formula (b1) (that is, a diamine) is preferable.
 ジアミン成分は、構成単位(B1)を与える化合物以外の化合物を含んでもよい。ジアミン成分は、構成単位(B1)を与える化合物に加えて、更に構成単位(B2)を与える化合物を含むことが好ましい。
 構成単位(B2)を与える化合物は、透明性、熱に対する寸法安定性、及び弾性率を向上させる観点から、式(b22)で表される構成単位(B22)を与える化合物であることが好ましく、耐熱性、及び弾性率を向上させる観点から、構成単位(B2)は、式(b21)で表される構成単位(B21)を与える化合物であることが好ましい。
 構成単位(B2)を与える化合物としては、式(b21)で表される化合物及び式(b22)で表される化合物が挙げられるが、それに限られず、同じ構成単位を形成できる範囲でその誘導体であってもよい。当該誘導体としては、式(b21)で表される化合物に対応するジイソシアネート及び式(b22)で表される化合物に対応するジイソシアネートが挙げられる。構成単位(B2)を与える化合物としては、式(b21)で表される化合物及び式(b22)で表される化合物(即ち、ジアミン)が好ましい。
The diamine component may contain a compound other than the compound that gives the structural unit (B1). The diamine component preferably contains, in addition to the compound that gives the structural unit (B1), a compound that further gives the structural unit (B2).
The compound that gives the structural unit (B2) is preferably a compound that gives the structural unit (B22) represented by the formula (b22) from the viewpoint of improving transparency, dimensional stability against heat, and elastic modulus. From the viewpoint of improving heat resistance and elastic modulus, the structural unit (B2) is preferably a compound that gives the structural unit (B21) represented by the formula (b21).
Examples of the compound giving the structural unit (B2) include, but are not limited to, the compound represented by the formula (b21) and the compound represented by the formula (b22), and the derivative thereof within the range in which the same structural unit can be formed. There may be. Examples of the derivative include diisocyanate corresponding to the compound represented by the formula (b21) and diisocyanate corresponding to the compound represented by the formula (b22). As the compound giving the structural unit (B2), a compound represented by the formula (b21) and a compound represented by the formula (b22) (that is, a diamine) are preferable.
 ジアミン成分は、構成単位(B1)を与える化合物を、好ましくは10モル%以上含み、より好ましくは20モル%以上含み、更に好ましくは30モル%以上含み、より更に好ましくは50モル%以上含み、より更に好ましくは60モル%以上含み、より更に好ましくは80モル%以上含む。構成単位(B1)を与える化合物の含有比率の上限値は特に限定されず、即ち、100モル%である。ジアミン成分は構成単位(B1)を与える化合物のみからなっていてもよい。 The diamine component preferably contains a compound that gives the structural unit (B1) in an amount of 10 mol% or more, more preferably 20 mol% or more, further preferably 30 mol% or more, still more preferably 50 mol% or more. Even more preferably, it contains 60 mol% or more, and even more preferably 80 mol% or more. The upper limit of the content ratio of the compound giving the structural unit (B1) is not particularly limited, that is, 100 mol%. The diamine component may consist only of a compound that gives the structural unit (B1).
 ジアミン成分が構成単位(B2)を与える化合物を含む場合、ジアミン成分は、構成単位(B2)を与える化合物を、好ましくは1~90モル%含み、より好ましくは1~80モル%含み、更に好ましくは2~70モル%含み、より更に好ましくは3~50モル%含み、より更に好ましくは4~40モル%含み、より更に好ましくは5~20モル%含む。
 ジアミン成分が構成単位(B2)を与える化合物を含む場合、特に無色性と伸び、透明性の観点から、構成単位(B1)を与える化合物と構成単位(B2)を与える化合物のモル比[(B1)/(B2)]は、好ましくは10/90~99/1であり、より好ましくは20/80~99/1であり、更に好ましくは30/70~98/2であり、より更に好ましくは50/50~97/3であり、より更に好ましくは60/40~96/4であり、より更に好ましくは80/20~95/5である。
 また、弾性率等の機械的特性、耐熱性、及び熱に対する寸法安定性等の熱的特性を向上させる観点からは、構成単位(B1)を与える化合物と構成単位(B2)を与える化合物のモル比[(B1)/(B2)]は、好ましくは10/90~60/40であり、より好ましくは10/90~50/50であり、更に好ましくは10/90~40/60であり、より更に好ましくは10/90~30/70であり、より更に好ましくは10/90~20/80であり、より更に好ましくは10/90~15/85である。
When the diamine component contains a compound that gives the structural unit (B2), the diamine component preferably contains 1 to 90 mol%, more preferably 1 to 80 mol%, and more preferably the compound that gives the structural unit (B2). Contains 2 to 70 mol%, more preferably 3 to 50 mol%, even more preferably 4 to 40 mol%, still more preferably 5 to 20 mol%.
When the diamine component contains a compound that gives a constituent unit (B2), the molar ratio of the compound that gives the constituent unit (B1) to the compound that gives the constituent unit (B2) [(B1), especially from the viewpoint of colorlessness, elongation, and transparency. ) / (B2)] is preferably 10/90 to 99/1, more preferably 20/80 to 99/1, still more preferably 30/70 to 98/2, and even more preferably. It is 50/50 to 97/3, more preferably 60/40 to 96/4, and even more preferably 80/20 to 95/5.
Further, from the viewpoint of improving mechanical properties such as elastic modulus, heat resistance, and thermal properties such as dimensional stability with respect to heat, the molars of the compound giving the structural unit (B1) and the compound giving the structural unit (B2). The ratio [(B1) / (B2)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, and even more preferably 10/90 to 40/60. It is even more preferably 10/90 to 30/70, even more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
 ジアミン成分が構成単位(B2)を与える化合物を含み、構成単位(B2)を与える化合物が構成単位(B22)を与える化合物を含む場合、特に無色性と伸び、透明性の観点から、構成単位(B1)を与える化合物と構成単位(B22)を与える化合物のモル比[(B1)/(B22)]は、好ましくは10/90~99/1であり、より好ましくは20/80~99/1であり、更に好ましくは30/70~98/2であり、より更に好ましくは50/50~97/3であり、より更に好ましくは60/40~96/4であり、より更に好ましくは80/20~95/5である。
 また、弾性率等の機械的特性、耐熱性、及び熱に対する寸法安定性等の熱的特性を向上させる観点からは、構成単位(B1)を与える化合物と構成単位(B22)を与える化合物のモル比[(B1)/(B22)]は、好ましくは10/90~60/40であり、より好ましくは10/90~50/50であり、更に好ましくは10/90~40/60であり、より更に好ましくは10/90~30/70であり、より更に好ましくは10/90~20/80であり、より更に好ましくは10/90~15/85である。
When the diamine component contains a compound that gives a constituent unit (B2) and the compound that gives the constituent unit (B2) contains a compound that gives the constituent unit (B22), the constituent unit (especially from the viewpoint of colorlessness, elongation, and transparency). The molar ratio [(B1) / (B22)] of the compound giving B1) to the compound giving the structural unit (B22) is preferably 10/90 to 99/1, more preferably 20/80 to 99/1. It is more preferably 30/70 to 98/2, even more preferably 50/50 to 97/3, even more preferably 60/40 to 96/4, and even more preferably 80/ It is 20 to 95/5.
Further, from the viewpoint of improving mechanical properties such as elastic modulus, heat resistance, and thermal properties such as dimensional stability with respect to heat, the molars of the compound giving the structural unit (B1) and the compound giving the structural unit (B22). The ratio [(B1) / (B22)] is preferably 10/90 to 60/40, more preferably 10/90 to 50/50, and even more preferably 10/90 to 40/60. It is even more preferably 10/90 to 30/70, even more preferably 10/90 to 20/80, and even more preferably 10/90 to 15/85.
 ジアミン成分は構成単位(B1)を与える化合物及び構成単位(B2)を与える化合物以外の化合物を含んでもよく、当該化合物としては、上述の芳香族ジアミン、脂環式ジアミン、及び脂肪族ジアミン、並びにそれらの誘導体(ジイソシアネート等)が挙げられる。
 ジアミン成分に任意に含まれる化合物(即ち、構成単位(B1)を与える化合物以外の化合物)は、1種でもよいし、2種以上であってもよい。
The diamine component may contain a compound that gives the constituent unit (B1) and a compound other than the compound that gives the constituent unit (B2), and the compounds include the above-mentioned aromatic diamine, alicyclic diamine, and aliphatic diamine, and Examples thereof include derivatives (diamines and the like).
The compound arbitrarily contained in the diamine component (that is, the compound other than the compound giving the structural unit (B1)) may be one kind or two or more kinds.
 本発明において、ポリイミド樹脂の製造に用いるテトラカルボン酸成分とジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 In the present invention, the ratio of the amount of the tetracarboxylic acid component to the diamine component charged in the production of the polyimide resin is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
 また、本発明において、ポリイミド樹脂の製造には、前述のテトラカルボン酸成分及びジアミン成分の他に、末端封止剤を用いてもよい。末端封止剤としてはモノアミン類あるいはジカルボン酸類が好ましい。導入される末端封止剤の仕込み量としては、テトラカルボン酸成分1モルに対して0.0001~0.1モルが好ましく、特に0.001~0.06モルが好ましい。モノアミン類末端封止剤としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ベンジルアミン、4-メチルベンジルアミン、4-エチルベンジルアミン、4-ドデシルベンジルアミン、3-メチルベンジルアミン、3-エチルベンジルアミン、アニリン、3-メチルアニリン、4-メチルアニリン等が推奨される。これらのうち、ベンジルアミン、アニリンが好適に使用できる。ジカルボン酸類末端封止剤としては、ジカルボン酸類が好ましく、その一部を閉環していてもよい。例えば、フタル酸、無水フタル酸、4-クロロフタル酸、テトラフルオロフタル酸、2,3-ベンゾフェノンジカルボン酸、3,4-ベンゾフェノンジカルボン酸、シクロヘキサン-1,2-ジカルボン酸、シクロペンタン-1,2-ジカルボン酸、4-シクロヘキセン-1,2-ジカルボン酸等が推奨される。これらのうち、フタル酸、無水フタル酸が好適に使用できる。 Further, in the present invention, in addition to the above-mentioned tetracarboxylic acid component and diamine component, an end-capping agent may be used for producing the polyimide resin. As the terminal encapsulant, monoamines or dicarboxylic acids are preferable. The amount of the terminal encapsulant to be introduced is preferably 0.0001 to 0.1 mol, particularly preferably 0.001 to 0.06 mol, based on 1 mol of the tetracarboxylic acid component. Examples of the monoamine terminal encapsulant include methylamine, ethylamine, propylamine, butylamine, benzylamine, 4-methylbenzylamine, 4-ethylbenzylamine, 4-dodecylbenzylamine, 3-methylbenzylamine, 3-. Ethylbenzylamine, aniline, 3-methylaniline, 4-methylaniline and the like are recommended. Of these, benzylamine and aniline can be preferably used. As the dicarboxylic acid terminal encapsulant, dicarboxylic acids are preferable, and a part thereof may be ring-closed. For example, phthalic acid, phthalic anhydride, 4-chlorophthalic acid, tetrafluorophthalic acid, 2,3-benzophenonedicarboxylic acid, 3,4-benzophenonedicarboxylic acid, cyclohexane-1,2-dicarboxylic acid, cyclopentane-1,2 -Dicarboxylic acid, 4-cyclohexene-1,2-dicarboxylic acid and the like are recommended. Of these, phthalic acid and phthalic anhydride can be preferably used.
 前述のテトラカルボン酸成分とジアミン成分とを反応させる方法には特に制限はなく、公知の方法を用いることができる。
 具体的な反応方法としては、(1)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、0~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(2)ジアミン成分及び反応溶剤を反応器に仕込んで溶解させた後、テトラカルボン酸成分を仕込み、必要に応じて0~80℃で0.5~30時間撹拌し、その後に昇温してイミド化反応を行う方法、(3)テトラカルボン酸成分、ジアミン成分、及び反応溶剤を反応器に仕込み、直ちに昇温してイミド化反応を行う方法等が挙げられる。
The method for reacting the above-mentioned tetracarboxylic acid component with the diamine component is not particularly limited, and a known method can be used.
Specific reaction methods include (1) charging a tetracarboxylic acid component, a diamine component, and a reaction solvent into a reactor, stirring at 0 to 80 ° C. for 0.5 to 30 hours, and then raising the temperature to imidize. Method of carrying out the reaction, (2) After charging the diamine component and the reaction solvent into the reactor and dissolving them, the tetracarboxylic acid component is charged, and if necessary, the mixture is stirred at 0 to 80 ° C. for 0.5 to 30 hours, and then. Examples thereof include a method of carrying out an imidization reaction by raising the temperature to (3) a method of charging a tetracarboxylic acid component, a diamine component and a reaction solvent into a reactor and immediately raising the temperature to carry out the imidization reaction.
 ポリイミド樹脂の製造に用いられる反応溶剤は、イミド化反応を阻害せず、生成するポリイミドを溶解できるものであればよい。例えば、非プロトン性溶剤、フェノール系溶剤、エーテル系溶剤、カーボネート系溶剤等が挙げられる。 The reaction solvent used in the production of the polyimide resin may be one that does not inhibit the imidization reaction and can dissolve the produced polyimide. For example, an aprotic solvent, a phenol solvent, an ether solvent, a carbonate solvent and the like can be mentioned.
 非プロトン性溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、1,3-ジメチルイミダゾリジノン、テトラメチル尿素等のアミド系溶剤、γ-ブチロラクトン、γ-バレロラクトン等のラクトン系溶剤、ヘキサメチルホスホリックアミド、ヘキサメチルホスフィントリアミド等の含リン系アミド系溶剤、ジメチルスルホン、ジメチルスルホキシド、スルホラン等の含硫黄系溶剤、アセトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶剤、ピコリン、ピリジン等のアミン系溶剤、酢酸(2-メトキシ-1-メチルエチル)等のエステル系溶剤等が挙げられる。 Specific examples of the aprotonic solvent include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 1,3-dimethylimidazolidinone, tetramethylurea and the like. Amide-based solvents, lactone-based solvents such as γ-butyrolactone and γ-valerolactone, phosphorus-containing amide-based solvents such as hexamethylphosphoric amide and hexamethylphosphintriamide, and sulfur-containing solvents such as dimethylsulfone, dimethylsulfoxide, and sulfolane. Examples thereof include based solvents, ketone solvents such as acetone, cyclohexanone and methylcyclohexanone, amine solvents such as picolin and pyridine, and ester solvents such as acetic acid (2-methoxy-1-methylethyl).
 フェノール系溶剤の具体例としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等が挙げられる。
 エーテル系溶剤の具体例としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、ビス〔2-(2-メトキシエトキシ)エチル〕エーテル、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。
 また、カーボネート系溶剤の具体的な例としては、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 上記反応溶剤の中でも、アミド系溶剤又はラクトン系溶剤が好ましい。また、上記の反応溶剤は単独で又は2種以上混合して用いてもよい。
Specific examples of the phenolic solvent include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4. -Xylenol, 3,5-xylenol and the like can be mentioned.
Specific examples of the ether solvent include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, and bis [2- (2-methoxyethoxy) ethyl]. Examples include ether, tetrahydrofuran, 1,4-dioxane and the like.
Specific examples of the carbonate solvent include diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate and the like.
Among the above reaction solvents, an amide solvent or a lactone solvent is preferable. Moreover, the above-mentioned reaction solvent may be used alone or in mixture of 2 or more types.
 イミド化反応では、ディーンスターク装置などを用いて、製造時に生成する水を除去しながら反応を行うことが好ましい。このような操作を行うことで、重合度及びイミド化率をより上昇させることができる。 In the imidization reaction, it is preferable to carry out the reaction while removing water generated during production using a Dean-Stark apparatus or the like. By performing such an operation, the degree of polymerization and the imidization rate can be further increased.
 上記のイミド化反応においては、公知のイミド化触媒を用いることができる。イミド化触媒としては、塩基触媒又は酸触媒が挙げられる。
 塩基触媒としては、ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエチレンジアミン、イミダゾール、N,N-ジメチルアニリン、N,N-ジエチルアニリン等の有機塩基触媒、水酸化カリウムや水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウム等の無機塩基触媒が挙げられる。
 また、酸触媒としては、クロトン酸、アクリル酸、トランス-3-ヘキセノイック酸、桂皮酸、安息香酸、メチル安息香酸、オキシ安息香酸、テレフタル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、ナフタレンスルホン酸等が挙げられる。上記のイミド化触媒は単独で又は2種以上を組み合わせて用いてもよい。
 上記のうち、取り扱い性の観点から、塩基触媒を用いることが好ましく、有機塩基触媒を用いることがより好ましく、トリエチルアミンを用いることが更に好ましく、トリエチルアミンとトリエチレンジアミンを組み合わせて用いることが特に好ましい。
In the above imidization reaction, a known imidization catalyst can be used. Examples of the imidization catalyst include a base catalyst and an acid catalyst.
Base catalysts include pyridine, quinoline, isoquinoline, α-picoline, β-picoline, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine, triethylenediamine, imidazole, N, N. Examples thereof include organic base catalysts such as dimethylaniline and N, N-diethylaniline, and inorganic base catalysts such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium hydrogencarbonate and sodium hydrogencarbonate.
Examples of the acid catalyst include crotonic acid, acrylic acid, trans-3-hexenoic acid, cinnamic acid, benzoic acid, methylbenzoic acid, oxybenzoic acid, terephthalic acid, benzenesulfonic acid, paratoluenesulfonic acid, naphthalenesulfonic acid and the like. Can be mentioned. The above-mentioned imidization catalyst may be used alone or in combination of two or more.
Of the above, from the viewpoint of handleability, it is preferable to use a base catalyst, more preferably an organic base catalyst, further preferably triethylamine, and particularly preferably a combination of triethylamine and triethylenediamine.
 イミド化反応の温度は、反応率及びゲル化等の抑制の観点から、好ましくは120~250℃、より好ましくは160~200℃である。また、反応時間は、生成水の留出開始後、好ましくは0.5~10時間である。 The temperature of the imidization reaction is preferably 120 to 250 ° C., more preferably 160 to 200 ° C. from the viewpoint of suppressing the reaction rate and gelation. The reaction time is preferably 0.5 to 10 hours after the start of distillation of the produced water.
[ポリイミドワニス]
 本発明のポリイミドワニスは、本発明のポリイミド樹脂が有機溶媒に溶解してなるものである。即ち、本発明のポリイミドワニスは、本発明のポリイミド樹脂及び有機溶媒を含み、当該ポリイミド樹脂は当該有機溶媒に溶解している。
 有機溶媒はポリイミド樹脂が溶解するものであればよく、特に限定されないが、ポリイミド樹脂の製造に用いられる反応溶剤として上述した化合物を、単独又は2種以上を混合して用いることが好ましい。
 本発明のポリイミド樹脂は溶媒溶解性を有しているため、室温で安定な高濃度のワニスとすることができる。本発明のポリイミドワニスは、本発明のポリイミド樹脂を3~40質量%含むことが好ましく、5~30質量%含むことがより好ましい。ポリイミドワニスの粘度は0.1~200Pa・sが好ましく、0.5~150Pa・sがより好ましい。
 また、本発明のポリイミドワニスは、ポリイミドフィルムの要求特性を損なわない範囲で、無機フィラー、接着促進剤、剥離剤、難燃剤、紫外線安定剤、界面活性剤、レベリング剤、消泡剤、蛍光増白剤、架橋剤、重合開始剤、感光剤等各種添加剤を含んでもよい。
 本発明のポリイミドワニスの製造方法は特に限定されず、公知の方法を適用することができる。
[Polyimide varnish]
The polyimide varnish of the present invention is obtained by dissolving the polyimide resin of the present invention in an organic solvent. That is, the polyimide varnish of the present invention contains the polyimide resin of the present invention and an organic solvent, and the polyimide resin is dissolved in the organic solvent.
The organic solvent may be any one that dissolves the polyimide resin, and is not particularly limited, but it is preferable to use the above-mentioned compounds alone or in combination of two or more as the reaction solvent used for producing the polyimide resin.
Since the polyimide resin of the present invention has solvent solubility, it is possible to obtain a high-concentration varnish that is stable at room temperature. The polyimide varnish of the present invention preferably contains the polyimide resin of the present invention in an amount of 3 to 40% by mass, more preferably 5 to 30% by mass. The viscosity of the polyimide varnish is preferably 0.1 to 200 Pa · s, more preferably 0.5 to 150 Pa · s.
In addition, the polyimide varnish of the present invention contains an inorganic filler, an adhesion accelerator, a release agent, a flame retardant, an ultraviolet stabilizer, a surfactant, a leveling agent, a defoaming agent, and an optical brightener as long as the required properties of the polyimide film are not impaired. Various additives such as a whitening agent, a cross-linking agent, a polymerization initiator, and a photosensitizer may be contained.
The method for producing the polyimide varnish of the present invention is not particularly limited, and a known method can be applied.
[ポリイミドフィルム及びポリイミドフィルムの製造方法]
 本発明のポリイミドフィルムは、本発明のポリイミド樹脂を含む。したがって、本発明のポリイミドフィルムは、耐熱性と伸びのいずれもが良好であり、更に無色透明性にも優れる。
 本発明のポリイミドフィルムの製造方法(作製方法)には特に制限はなく、公知の方法を用いることができる。例えば、本発明のポリイミドワニスをフィルム状に塗布又は成形した後、有機溶媒を除去する方法等が挙げられ、目的とする厚さの平滑なフィルムを得る観点から、本発明のポリイミドワニスをフィルム状に塗布又は成形した後、有機溶媒を除去する方法が好ましい。
[Polyimide film and method for manufacturing polyimide film]
The polyimide film of the present invention contains the polyimide resin of the present invention. Therefore, the polyimide film of the present invention has good heat resistance and elongation, and is also excellent in colorless transparency.
The method for producing the polyimide film (production method) of the present invention is not particularly limited, and a known method can be used. For example, a method of removing the organic solvent after applying or molding the polyimide varnish of the present invention into a film form can be mentioned. From the viewpoint of obtaining a smooth film having a desired thickness, the polyimide varnish of the present invention is formed into a film form. A method of removing the organic solvent after coating or molding is preferable.
 本発明のポリイミドフィルムは、耐熱性と伸びのいずれもが良好であり、更に無色透明性にも優れるものであるため、カラーフィルター、フレキシブルディスプレイ、半導体部品、光学部材等の各種部材用のフィルムとして好適に用いられる。本発明のポリイミドフィルムは、液晶ディスプレイやOLEDディスプレイ等の画像表示装置の基板として、特に好適に用いられる。 Since the polyimide film of the present invention has good heat resistance and elongation, and is also excellent in colorless transparency, it can be used as a film for various members such as color filters, flexible displays, semiconductor parts, and optical members. It is preferably used. The polyimide film of the present invention is particularly preferably used as a substrate for an image display device such as a liquid crystal display or an OLED display.
 以下に、実施例により本発明を具体的に説明する。但し、本発明はこれらの実施例により何ら制限されるものではない。
 実施例及び比較例で得たワニスの固形分濃度及びポリイミドフィルムの各物性は以下に示す方法によって測定した。結果は表1に示す。
Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to these examples.
The solid content concentration of the varnish obtained in Examples and Comparative Examples and the physical characteristics of the polyimide film were measured by the methods shown below. The results are shown in Table 1.
(1)固形分濃度
 ワニスの固形分濃度の測定は、アズワン株式会社製の小型電気炉「MMF-1」で試料を320℃×120minで加熱し、加熱前後の試料の質量差から算出した。
(2)フィルム厚さ
 フィルム厚さは、株式会社ミツトヨ製のマイクロメーターを用いて測定した。
(3)全光線透過率、イエローインデックス(YI)
 測定はJIS K7361-1準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH400」を用いて行った。
(4)ヘイズ(Haze)
 測定はJIS K7361-1に準拠し、日本電色工業株式会社製の色彩・濁度同時測定器「COH7700」を用いて行った。
(5)ガラス転移温度(Tg)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件でTg以上まで昇温して残留応力を取り除き、その後同条件で50℃から500℃までTMA測定を行い、Tgを求めた。
(6)線熱膨張係数(CTE)
 株式会社日立ハイテクサイエンス製の熱機械的分析装置「TMA/SS6100」を用いて、引張モードで試料サイズ2mm×20mm、荷重0.1N、昇温速度10℃/minの条件でTMA測定を行い、100~350℃のCTEを求めた。
(7)1%重量減少温度(Td1%)
 株式会社日立ハイテクサイエンス製の示差熱熱重量同時測定装置「TG/DTA6200」を用いた。試料を昇温速度10℃/minで40~550℃まで昇温し、300℃における重量と比較して、重量が1%減少した時の温度を1%重量減少温度とした。重量減少温度は数値が大きいほど優れる。
(8)弾性率及び強度
 弾性率及び強度は、JIS K7127に準拠した引張弾性率及び引張強度であり、東洋精機株式会社製の引張試験機「ストログラフVG-1E」を用いて測定した。
(9)伸び
 伸びは、JIS K7127に準拠した引張試験(伸び率の測定)によって行った。試験片は幅10mm、厚さ10~60μmのものを用いた。
(1) Solid content concentration The solid content concentration of the varnish was measured by heating the sample at 320 ° C. × 120 min in a small electric furnace “MMF-1” manufactured by AS ONE Corporation, and calculating from the mass difference of the sample before and after heating.
(2) Film thickness The film thickness was measured using a micrometer manufactured by Mitutoyo Co., Ltd.
(3) Total light transmittance, yellow index (YI)
The measurement was carried out in accordance with JIS K7361-1 using a color / turbidity simultaneous measuring device "COH400" manufactured by Nippon Denshoku Industries Co., Ltd.
(4) Haze
The measurement was performed in accordance with JIS K7361-1 using a color / turbidity simultaneous measuring device "COH7700" manufactured by Nippon Denshoku Industries Co., Ltd.
(5) Glass transition temperature (Tg)
Using the thermomechanical analyzer "TMA / SS6100" manufactured by Hitachi High-Tech Science Corporation, the temperature is raised to Tg or more in the tension mode under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 ° C / min. Then, the residual stress was removed, and then TMA measurement was performed from 50 ° C. to 500 ° C. under the same conditions to determine Tg.
(6) Coefficient of linear thermal expansion (CTE)
Using the thermomechanical analyzer "TMA / SS6100" manufactured by Hitachi High-Tech Science Corporation, TMA measurement was performed in tensile mode under the conditions of sample size 2 mm x 20 mm, load 0.1 N, and heating rate 10 ° C / min. A CTE of 100-350 ° C. was determined.
(7) 1% weight loss temperature (Td1%)
A differential thermogravimetric simultaneous measuring device "TG / DTA6200" manufactured by Hitachi High-Tech Science Corporation was used. The temperature of the sample was raised to 40 to 550 ° C. at a heating rate of 10 ° C./min, and the temperature at which the weight was reduced by 1% as compared with the weight at 300 ° C. was defined as the 1% weight loss temperature. The larger the value, the better the weight loss temperature.
(8) Elastic modulus and strength The elastic modulus and strength are tensile elastic modulus and tensile strength according to JIS K7127, and were measured using a tensile tester "Strograph VG-1E" manufactured by Toyo Seiki Co., Ltd.
(9) Elongation Elongation was performed by a tensile test (measurement of elongation) in accordance with JIS K7127. The test piece used had a width of 10 mm and a thickness of 10 to 60 μm.
 実施例及び比較例にて使用したテトラカルボン酸成分及びジアミン成分、並びにその略号等は下記の通りである。
<テトラカルボン酸成分>
CpODA:ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(JXエネルギー株式会社製;式(a1)で表される化合物)
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(式(a21s)で表される化合物)
BPAF::9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物(JFEケミカル株式会社製;式(a22)で表される化合物)
TAHQ:p-フェニレンビス(トリメリテート)二無水物(マナック株式会社製)
<ジアミン成分>
6FODA:2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル(ChinaTech (Tianjin) Chemical Co., Ltd.製、式(b1)で表される化合物)
BAFL:9,9-ビス(4-アミノフェニル)フルオレン(田岡化学工業株式会社製;式(b21)で表される化合物)
TFMB:2,2’-ビス(トリフルオロメチル)ベンジジン(和歌山精化工業株式会社製;式(b22)で表される化合物)
The tetracarboxylic acid component and diamine component used in Examples and Comparative Examples, and their abbreviations and the like are as follows.
<Tetracarboxylic acid component>
CpODA: Norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5,5'', 6,6''-tetracarboxylic dianhydride (manufactured by JX Energy Co., Ltd .; Compound represented by formula (a1))
s-BPDA: 3,3', 4,4'-biphenyltetracarboxylic dianhydride (compound represented by the formula (a21s))
BPAF :: 9,9'-bis (3,4-dicarboxyphenyl) fluorene dianhydride (manufactured by JFE Chemical Co., Ltd .; compound represented by formula (a22))
TAHQ: p-phenylenebis (trimeritate) dianhydride (manufactured by Manac Inc.)
<Diamine component>
6FODA: 2,2'-bis (trifluoromethyl) -4,4'-diaminodiphenyl ether (CinnaTech (Tianjin) Chemical Co., manufactured by Ltd., compound represented by formula (b1))
BAFL: 9,9-bis (4-aminophenyl) fluorene (manufactured by Taoka Chemical Industry Co., Ltd .; compound represented by formula (b21))
TFMB: 2,2'-bis (trifluoromethyl) benzidine (manufactured by Wakayama Seika Kogyo Co., Ltd .; compound represented by formula (b22))
 実施例及び比較例において使用した、溶媒及びイミド化触媒の略号等は下記の通りである。
NMP:N-メチル-2-ピロリドン(三菱ケミカル株式会社製)
GBL:γ―ブチロラクトン(三菱ケミカル株式会社製)
TEDA:トリエチレンジアミン
TEA:トリエチルアミン
The abbreviations of the solvent and the imidization catalyst used in Examples and Comparative Examples are as follows.
NMP: N-methyl-2-pyrrolidone (manufactured by Mitsubishi Chemical Corporation)
GBL: γ-Butyrolactone (manufactured by Mitsubishi Chemical Corporation)
TEDA: Triethylenediamine TEA: Triethylamine
<実施例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、6FODAを33.624g(0.100モル)とGBLを86.474g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、CpODAを38.438g(0.100モル)と、GBLを21.619gとを一括で添加した後、イミド化触媒とTEAを0.506g、TEDAを0.056g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度15質量%となるようにGBLを279.836g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化して、ポリイミドワニスを得た。
 続いてガラス板上へ、得られたポリイミドワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中400℃で30分加熱し(昇温速度5℃/min)、溶媒を蒸発させ、フィルムを得た。
<Example 1>
33.624 g (0.100 mol) of 6FODA in a 500 mL five-necked round-bottom flask equipped with a stainless steel half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. And GBL was added in an amount of 86.474 g, and the mixture was stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
After adding 38.438 g (0.100 mol) of CpODA and 21.619 g of GBL in a batch to this solution, 0.506 g of imidization catalyst and TEA and 0.056 g of TEDA were added, and a mantle heater was added. The temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 279.836 g of GBL was added so as to have a solid content concentration of 15% by mass, the temperature inside the reaction system was cooled to 100 ° C., and the mixture was further stirred for about 1 hour to homogenize to obtain a polyimide varnish.
Subsequently, the obtained polyimide varnish was applied onto a glass plate by spin coating, held on a hot plate at 80 ° C. for 20 minutes, and then heated in a hot air dryer at 400 ° C. for 30 minutes in a nitrogen atmosphere (heat temperature). The solvent was evaporated at a rate of 5 ° C./min) to obtain a film.
<実施例2>
 CpODAの量を38.438g(0.100モル)から30.750g(0.080モル)に変更し、s-BPDAを5.884g(0.020モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
<Example 2>
Same as Example 1 except that the amount of CpODA was changed from 38.438 g (0.100 mol) to 30.750 g (0.080 mol) and 5.884 g (0.020 mol) of s-BPDA was added. A polyimide varnish was prepared by the above method to obtain a polyimide varnish having a solid content concentration of 15% by mass.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
<実施例3>
 6FODAの量を33.624g(0.100モル)から3.362g(0.010モル)に変更し、TFMBを28.822g(0.090モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
<Example 3>
The same method as in Example 1 except that the amount of 6FODA was changed from 33.624 g (0.100 mol) to 3.362 g (0.010 mol) and 28.822 g (0.090 mol) of TFMB was added. To prepare a polyimide varnish, a polyimide varnish having a solid content concentration of 15% by mass was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
<実施例4>
 6FODAの量を33.624g(0.100モル)から6.725g(0.020モル)に変更し、TFMBを25.619g(0.080モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
<Example 4>
The same method as in Example 1 except that the amount of 6FODA was changed from 33.624 g (0.100 mol) to 6.725 g (0.020 mol) and 25.619 g (0.080 mol) of TFMB was added. To prepare a polyimide varnish, a polyimide varnish having a solid content concentration of 15% by mass was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
<実施例5>
 6FODAの量を33.624g(0.100モル)から16.812g(0.050モル)に変更し、TFMBを16.012g(0.050モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
<Example 5>
The same method as in Example 1 except that the amount of 6FODA was changed from 33.624 g (0.100 mol) to 16.812 g (0.050 mol) and 16.012 g (0.050 mol) of TFMB was added. To prepare a polyimide varnish, a polyimide varnish having a solid content concentration of 15% by mass was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
<実施例6>
 6FODAの量を33.624g(0.100モル)から20.174g(0.060モル)に変更してBAFLを13.938g(0.040モル)追加し、CpODAの量を38.438g(0.100モル)から23.063g(0.060モル)に変更してs-BPDAを11.769g(0.040モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
<Example 6>
The amount of 6FODA was changed from 33.624 g (0.100 mol) to 20.174 g (0.060 mol), BAFL was added 13.938 g (0.040 mol), and the amount of CpODA was 38.438 g (0). A polyimide varnish was prepared by the same method as in Example 1 except that 11.769 g (0.040 mol) of s-BPDA was added by changing from (100 mol) to 23.063 g (0.060 mol). A polyimide varnish having a solid content concentration of 15% by mass was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
<実施例7>
 6FODAの量を33.624g(0.100モル)から18.493g(0.055モル)に変更してBAFLを15.680g(0.045モル)追加し、CpODAの量を38.438g(0.100モル)から34.594g(0.090モル)に変更してBPAFを4.584g(0.010モル)追加した以外は、実施例1と同様の方法によりポリイミドワニスを作製し、固形分濃度15質量%のポリイミドワニスを得た。
 得られたポリイミドワニスを用いて、実施例1と同様の方法によりフィルムを得た。
<Example 7>
Change the amount of 6FODA from 33.624 g (0.100 mol) to 18.493 g (0.055 mol), add 15.680 g (0.045 mol) of BAFL, and increase the amount of CpODA to 38.438 g (0). A polyimide varnish was prepared by the same method as in Example 1 except that the amount was changed from (100 mol) to 34.594 g (0.090 mol) and 4.584 g (0.010 mol) of BPAF was added. A polyimide varnish having a concentration of 15% by mass was obtained.
Using the obtained polyimide varnish, a film was obtained by the same method as in Example 1.
<比較例1>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、TFMBを32.024g(0.100モル)とGBLを84.554g投入し、系内温度70℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、CpODAを38.438g(0.100モル)と、GBLを21.139gとを一括で添加した後、イミド化触媒としてTEAを0.506g、TEDAを0.056g投入し、マントルヒーターで加熱し、約20分かけて反応系内温度を190℃まで上げた。留去される成分を捕集し、回転数を粘度上昇に合わせて調整しつつ、反応系内温度を190℃に保持して約5時間還流した。
 その後、固形分濃度15質量%となるようにGBLを273.169g添加して、反応系内温度を100℃まで冷却した後、更に約1時間撹拌して均一化し、濁った(曇り(ヘイズ)のある)ポリイミドワニスを得た。24時間後、ゲル化してワニスの流動性はなくなっており、製膜は困難であり、フィルムは得られなかった。
<Comparative example 1>
32.024g (0.100mol) of TFMB in a 500mL five-necked round-bottom flask equipped with a stainless half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. And GBL was added in an amount of 84.554 g, and the mixture was stirred at a system temperature of 70 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
After adding 38.438 g (0.100 mol) of CpODA and 21.139 g of GBL in a batch to this solution, 0.506 g of TEA and 0.056 g of TEDA were added as imidization catalysts, and a mantle heater was added. The temperature inside the reaction system was raised to 190 ° C. over about 20 minutes. The components to be distilled off were collected, and the temperature inside the reaction system was maintained at 190 ° C. while adjusting the rotation speed according to the increase in viscosity, and the mixture was refluxed for about 5 hours.
Then, 273.169 g of GBL was added so that the solid content concentration became 15% by mass, the temperature in the reaction system was cooled to 100 ° C., and then the mixture was further stirred for about 1 hour to homogenize and become turbid (cloudiness (haze)). A polyimide varnish was obtained. After 24 hours, the varnish was gelled and the fluidity of the varnish was lost, and it was difficult to form a film, and a film could not be obtained.
<比較例2>
 ステンレス製半月型撹拌翼、窒素導入管、冷却管を取り付けたディーンスターク、温度計、ガラス製エンドキャップを備えた500mLの5つ口丸底フラスコに、6FODAを33.624g(0.100モル)と、NMPを201.747gとを投入し、系内温度50℃、窒素雰囲気下、回転数200rpmで撹拌して溶液を得た。
 この溶液に、s-BPDAを29.422g(0.100モル)と、NMPを50.437gとを一括で投入し、マントルヒーターで50℃に保持したまま5時間撹拌した。
 その後、NMPを105.077g添加し均一化した後、室温に戻し固形分濃度15質量%のポリアミド酸ワニスを得た。
 続いてガラス板上へ、得られたポリアミド酸ワニスをスピンコートにより塗布し、ホットプレートで80℃、20分間保持し、その後、窒素雰囲気下、熱風乾燥機中400℃で30分加熱し(昇温速度5℃/min)、溶媒を蒸発させ、さらに熱イミド化させポリイミドフィルムを得た。
<Comparative example 2>
33.624 g (0.100 mol) of 6FODA in a 500 mL five-necked round-bottom flask equipped with a stainless steel half-moon agitator, a nitrogen inlet tube, a Dean Stark with a cooling tube, a thermometer, and a glass end cap. Then, 201.747 g of NMP was added, and the mixture was stirred at a system temperature of 50 ° C. and a nitrogen atmosphere at a rotation speed of 200 rpm to obtain a solution.
29.422 g (0.100 mol) of s-BPDA and 50.437 g of NMP were collectively added to this solution, and the mixture was stirred with a mantle heater at 50 ° C. for 5 hours.
Then, 105.077 g of NMP was added to homogenize the mixture, and the mixture was returned to room temperature to obtain a polyamic acid varnish having a solid content concentration of 15% by mass.
Subsequently, the obtained polyamic acid varnish was applied onto a glass plate by spin coating, held at 80 ° C. for 20 minutes on a hot plate, and then heated at 400 ° C. for 30 minutes in a hot air dryer under a nitrogen atmosphere (ascending). The solvent was evaporated at a temperature rate of 5 ° C./min) and further thermally imidized to obtain a polyimide film.
<比較例3>
 CpODA 38.438g(0.100モル)をTAHQ 45.833g(0.100モル)に変更した以外は、比較例2と同様の方法によりポリアミド酸ワニスを作製し、固形分濃度15質量%のポリアミド酸ワニスを得た。
 得られたポリアミド酸ワニスを用いて、比較例2と同様の方法によりポリイミドフィルムを得た。
<Comparative example 3>
A polyamic acid varnish was prepared by the same method as in Comparative Example 2 except that 38.438 g (0.100 mol) of CpODA was changed to 45.833 g (0.100 mol) of TAHQ, and a polyamide having a solid content concentration of 15% by mass was prepared. Obtained acid varnish.
Using the obtained polyamic acid varnish, a polyimide film was obtained by the same method as in Comparative Example 2.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1に示すように、実施例のポリイミドフィルムは、耐熱性と伸びのいずれもが良好であり、更に無色透明性にも優れていることがわかる。 As shown in Table 1, it can be seen that the polyimide film of the example has good heat resistance and elongation, and is also excellent in colorless transparency.

Claims (8)

  1.  テトラカルボン酸二無水物に由来する構成単位Aと、ジアミンに由来する構成単位Bとを含むポリイミド樹脂であって、
     構成単位Aが下記式(a1)で表される化合物に由来する構成単位(A1)を含み、
     構成単位Bが下記式(b1)で表される化合物に由来する構成単位(B1)を含む、ポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000001
    A polyimide resin containing a structural unit A derived from tetracarboxylic dianhydride and a structural unit B derived from diamine.
    The structural unit A includes a structural unit (A1) derived from a compound represented by the following formula (a1).
    A polyimide resin in which the structural unit B contains a structural unit (B1) derived from a compound represented by the following formula (b1).
    Figure JPOXMLDOC01-appb-C000001
  2.  構成単位Aが、更に構成単位(A2)を含み、構成単位(A2)が、下記式(a21)で表される化合物に由来する構成単位(A21)、下記式(a22)で表される化合物に由来する構成単位(A22)、及び下記式(a23)で表される化合物に由来する構成単位(A23)からなる群より選ばれる少なくとも1つである、請求項1に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000002
    The structural unit A further includes the structural unit (A2), and the structural unit (A2) is a structural unit (A21) derived from the compound represented by the following formula (a21) and a compound represented by the following formula (a22). The polyimide resin according to claim 1, which is at least one selected from the group consisting of the structural unit (A22) derived from the above and the structural unit (A23) derived from the compound represented by the following formula (a23).
    Figure JPOXMLDOC01-appb-C000002
  3.  構成単位Bが、更に構成単位(B2)を含み、構成単位(B2)が、下記式(b21)で表される化合物に由来する構成単位(B21)、下記式(b22)で表される化合物に由来する構成単位(B22)からなる群より選ばれる少なくとも1つである、請求項1又は2に記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000003
    The structural unit B further includes the structural unit (B2), and the structural unit (B2) is a structural unit (B21) derived from the compound represented by the following formula (b21) and a compound represented by the following formula (b22). The polyimide resin according to claim 1 or 2, which is at least one selected from the group consisting of the structural unit (B22) derived from.
    Figure JPOXMLDOC01-appb-C000003
  4.  構成単位Bが、更に構成単位(B2)を含み、構成単位(B2)が、下記式(b22)で表される化合物に由来する構成単位(B22)を含む、請求項1~3のいずれか1つに記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000004
    Any of claims 1 to 3, wherein the structural unit B further includes a structural unit (B2), and the structural unit (B2) includes a structural unit (B22) derived from a compound represented by the following formula (b22). The polyimide resin described in one.
    Figure JPOXMLDOC01-appb-C000004
  5.  構成単位Aが、更に構成単位(A2)を含み、構成単位(A2)が、下記式(a22)で表される化合物に由来する構成単位(A22)を含む、請求項1~4のいずれか1つに記載のポリイミド樹脂。
    Figure JPOXMLDOC01-appb-C000005
    Any of claims 1 to 4, wherein the structural unit A further includes a structural unit (A2), and the structural unit (A2) includes a structural unit (A22) derived from a compound represented by the following formula (a22). The polyimide resin described in one.
    Figure JPOXMLDOC01-appb-C000005
  6.  請求項1~5のいずれか1つに記載のポリイミド樹脂が有機溶媒に溶解してなるポリイミドワニス。 A polyimide varnish in which the polyimide resin according to any one of claims 1 to 5 is dissolved in an organic solvent.
  7.  請求項1~5のいずれか1つに記載のポリイミド樹脂を含む、ポリイミドフィルム。 A polyimide film containing the polyimide resin according to any one of claims 1 to 5.
  8.  請求項6に記載のポリイミドワニスをフィルム状に塗布又は成形した後、有機溶媒を除去する、ポリイミドフィルムの製造方法。 A method for producing a polyimide film, wherein the polyimide varnish according to claim 6 is applied or molded into a film, and then the organic solvent is removed.
PCT/JP2021/001883 2020-01-31 2021-01-20 Polyimide resin, polyimide varnish, and polyimide film WO2021153379A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227024120A KR20220134534A (en) 2020-01-31 2021-01-20 Polyimide resins, polyimide varnishes and polyimide films
CN202180011291.2A CN115038737A (en) 2020-01-31 2021-01-20 Polyimide resin, polyimide varnish, and polyimide film
JP2021574671A JPWO2021153379A1 (en) 2020-01-31 2021-01-20

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-014960 2020-01-31
JP2020014960 2020-01-31
JP2020-112868 2020-06-30
JP2020112868 2020-06-30

Publications (1)

Publication Number Publication Date
WO2021153379A1 true WO2021153379A1 (en) 2021-08-05

Family

ID=77078529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001883 WO2021153379A1 (en) 2020-01-31 2021-01-20 Polyimide resin, polyimide varnish, and polyimide film

Country Status (5)

Country Link
JP (1) JPWO2021153379A1 (en)
KR (1) KR20220134534A (en)
CN (1) CN115038737A (en)
TW (1) TW202134319A (en)
WO (1) WO2021153379A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108092A (en) * 2013-12-05 2015-06-11 学校法人東京工芸大学 Polyimide production method and polyimide obtained by the same
CN105461923A (en) * 2015-12-25 2016-04-06 南京理工大学 Polyimide film and preparation method thereof
WO2017191822A1 (en) * 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 Polyimide resin
WO2018066522A1 (en) * 2016-10-07 2018-04-12 Jxtgエネルギー株式会社 Polyimide, polyimide precursor resin, solution of same, method for manufacturing polyimide, and film using polyimide
JP2018066017A (en) * 2012-05-28 2018-04-26 宇部興産株式会社 Polyimide precursor and polyimide
JP2019112632A (en) * 2017-12-22 2019-07-11 ドゥーサン コーポレイション Polyamic acid solution and transparent polyimide resin film based on the same
CN110396194A (en) * 2019-09-06 2019-11-01 株洲时代新材料科技股份有限公司 Fluorine-containing wear-resisting polyamidoimide material of one kind and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102345844B1 (en) * 2014-03-31 2021-12-31 닛산 가가쿠 가부시키가이샤 Method for producing resin thin film, and composition for forming resin thin film
KR20220104696A (en) * 2019-11-18 2022-07-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resins, polyimide varnishes and polyimide films

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018066017A (en) * 2012-05-28 2018-04-26 宇部興産株式会社 Polyimide precursor and polyimide
JP2015108092A (en) * 2013-12-05 2015-06-11 学校法人東京工芸大学 Polyimide production method and polyimide obtained by the same
CN105461923A (en) * 2015-12-25 2016-04-06 南京理工大学 Polyimide film and preparation method thereof
WO2017191822A1 (en) * 2016-05-06 2017-11-09 三菱瓦斯化学株式会社 Polyimide resin
WO2018066522A1 (en) * 2016-10-07 2018-04-12 Jxtgエネルギー株式会社 Polyimide, polyimide precursor resin, solution of same, method for manufacturing polyimide, and film using polyimide
JP2019112632A (en) * 2017-12-22 2019-07-11 ドゥーサン コーポレイション Polyamic acid solution and transparent polyimide resin film based on the same
CN110396194A (en) * 2019-09-06 2019-11-01 株洲时代新材料科技股份有限公司 Fluorine-containing wear-resisting polyamidoimide material of one kind and preparation method thereof

Also Published As

Publication number Publication date
TW202134319A (en) 2021-09-16
JPWO2021153379A1 (en) 2021-08-05
KR20220134534A (en) 2022-10-05
CN115038737A (en) 2022-09-09

Similar Documents

Publication Publication Date Title
JP6996609B2 (en) Polyimide resin, polyimide varnish and polyimide film
JP7205491B2 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019188305A1 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019188306A1 (en) Polyimide resin, polyimide varnish and polyimide film
US20210395568A1 (en) Polyimide resin, varnish, and polyimide film
WO2020110948A1 (en) Polyimide resin, polyimide varnish and polyimide film
JPWO2019151336A1 (en) Polyimide resin composition and polyimide film
JPWO2020040057A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2022054766A1 (en) Polymer composition, varnish, and polyimide film
JPWO2019216151A1 (en) Polyamide-imide resin, polyamide-imide varnish and polyamide-imide film
WO2021100727A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021132196A1 (en) Polyimide resin, polyimide varnish, and polyimide film
CN117043229A (en) Polyimide precursor composition
CN111133034B (en) Polyimide resin, polyimide varnish, and polyimide film
WO2022054765A1 (en) Polymer composition, varnish, and polyimide film
WO2021210640A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
WO2021210641A1 (en) Imide-amic acid copolymer and method for producing same, varnish, and polyimide film
WO2021132197A1 (en) Polyimide resin, varnish, and polyimide film
WO2021153379A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2021177145A1 (en) Polyimide resin, polyimide varnish, and polyimide film
WO2023182038A1 (en) Method for producing polymer, varnish, and method for producing varnish
WO2022025144A1 (en) Polyimide resin, polyamide acid, varnish, and polyimide film
WO2023249023A1 (en) Method for producing polyimide varnish
JPWO2019198709A1 (en) Polyimide resin, polyimide varnish and polyimide film
WO2023234085A1 (en) Polyimide resin precursor and polyimide resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747387

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747387

Country of ref document: EP

Kind code of ref document: A1