WO2021153300A1 - 撮像装置、カメラモジュール、および電子機器、並びに撮像システム - Google Patents

撮像装置、カメラモジュール、および電子機器、並びに撮像システム Download PDF

Info

Publication number
WO2021153300A1
WO2021153300A1 PCT/JP2021/001415 JP2021001415W WO2021153300A1 WO 2021153300 A1 WO2021153300 A1 WO 2021153300A1 JP 2021001415 W JP2021001415 W JP 2021001415W WO 2021153300 A1 WO2021153300 A1 WO 2021153300A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
filter
optical axis
imaging
Prior art date
Application number
PCT/JP2021/001415
Other languages
English (en)
French (fr)
Inventor
勝治 木村
英暁 岡野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社, ソニーグループ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/759,435 priority Critical patent/US20230095828A1/en
Priority to CN202180009684.XA priority patent/CN115023940A/zh
Priority to JP2021574643A priority patent/JPWO2021153300A1/ja
Publication of WO2021153300A1 publication Critical patent/WO2021153300A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/205Neutral density filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/706Pixels for exposure or ambient light measuring

Definitions

  • the present disclosure relates to imaging devices, camera modules, and electronic devices, and in particular, imaging devices, camera modules, and electronic devices capable of optically correcting a decrease in peripheral illumination due to the optical characteristics of a lens. Also related to the imaging system.
  • the amount of ambient light is small and the emitted light cannot be effectively captured.
  • the amount of light is small, so erroneous detection may occur in authentication.
  • the amount of light attenuation by the ND filter is changed according to the change in brightness in order to alleviate the decrease in peripheral illumination that may occur due to the insertion of the ND filter into the optical path.
  • a technique has been proposed in which the correction range of image shake is reduced as the amount increases (see, for example, Patent Document 2).
  • ND filters having different densities are arranged in the same manner as the microlens of the solid-state image sensor, but a mask for forming the ND filter when the solid-state image sensor is produced. It is known that equipment is required and is very expensive. Further, when formed on a solid-state image sensor, a solid-state image sensor having lenses having different characteristics of limb darkening cannot obtain a suitable image.
  • the present disclosure has been made in view of such a situation, and in particular, the decrease in peripheral illumination due to the optical characteristics of the lens is optically corrected.
  • the image pickup device, camera module, and electronic device of the first aspect of the present disclosure include a lens that collects incident light on the image pickup surface of the solid-state image sensor that captures an image, and the image captured by the solid-state image sensor.
  • a filter for filtering the incident light so as to make the amount of light uniform is provided, and the filter has a light transmittance in a range far from the optical axis of the lens, which is higher than a light transmittance in a range near the optical axis.
  • the lens focuses the incident light on the imaging surface of the solid-state image sensor that captures the image, and the filter makes the amount of light of the image captured by the solid-state image sensor uniform.
  • the incident light is filtered, and the filter makes the light transmittance at least in the range away from the optical axis of the lens larger than the light transmittance in the range near the optical axis.
  • the imaging system of the second aspect of the present disclosure is an image in which a light projecting device that projects a predetermined light onto a subject and incident light from the subject to which the predetermined light is projected are collected by a lens. It is an imaging system including an imaging device that images as This is an imaging system including a filter that projects light on the subject.
  • the light projecting device projects a predetermined light onto the subject
  • the imaging device collects the incident light from the subject on which the predetermined light is projected by the lens. Then, the light is captured as an image, and in the light projecting device, the predetermined light is filtered by the lens so that the amount of light of the image of the subject to be imaged is uniform. The light is projected onto the subject.
  • FIG. 1 is a side sectional view of a camera module to which the technique of the present disclosure is applied, which optically corrects a decrease in peripheral illumination due to the optical characteristics of a lens.
  • the camera module 11 of FIG. 1 mainly forms an image pickup block 21 including a mechanism for capturing an image centering on a solid-state image sensor 31 and incident light incident on the image pickup block 21 on the image pickup surface of the solid-state image sensor 31. It is composed of an optical block 22 to be operated.
  • the image pickup block 21 is provided with a plate 42 made of a hard metal or the like for fixing the solid-state image sensor 31 at the lowermost part in the drawing, and the solid-state image sensor 31 is adhered to the plate 42 by an adhesive 35. Has been done.
  • the plate 42 is provided with a circuit board 33 formed of a substrate material such as ceramic or glass epoxy, and the solid-state image sensor 31 and the circuit board 33 are electrically connected via a metal wire 32. ing.
  • the solid-state image sensor 31 is composed of a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like, and receives incident light from a subject from which an infrared light component has been removed by an IRCF 37 including an ND filter 51.
  • An image signal is generated by photoelectric conversion in pixel units.
  • a connector 39 for outputting image data captured by the solid-state image sensor 31 to an external device and receiving a control signal input from the external device to the solid-state image sensor 31, and a lens 36 in the optical block 22 are provided.
  • a storage unit 41 for storing a correction value for correcting the variation of the above is provided.
  • the optical block 22 drives the stored lens 36 in the optical axis direction (vertical direction in the drawing) by an actuator integrated with the holder 38 to adjust the focal length and capture the incident light by the solid-state image sensor 31. Adjust so that the image is formed on the surface.
  • an IRCF (IR Cut Filter) 37 for removing infrared light is provided between the lens 36 and the solid-state image sensor 31.
  • the IRCF 37 removes the infrared light component contained in the incident light and transmits it to the solid-state image sensor 31.
  • an ND (Neutral Density) filter 51 is formed in the IRCF 37, and the density of the incident light is filtered and transmitted so as to be uniform with respect to the imaging surface of the solid-state imaging device 31.
  • the ND filter 51 is composed of, for example, an absorption type ND filter, and the light transmittance of at least the peripheral portion is the light in the central portion (the peripheral portion within a predetermined distance from the optical axis including the optical axis).
  • the ND filter 51 is configured so that the light transmittance increases from the central portion to the peripheral portion, and among the incident light, the incident light closer to the optical axis is transmitted lower. The light is transmitted at a rate, and the incident light toward the peripheral portion (the farther away from the optical axis) is filtered so that the light is transmitted at a higher transmittance.
  • FIG. 2 expresses the change in transmittance when the ND filter 51 is viewed from the optical axis direction of the lens 36 as a change in color.
  • FIG. 2 an example of the ND filter 51 having a disk-like shape centered on the optical axis of the lens 36 is shown, but from the optical center position corresponding to the optical axis of the lens 36 to the peripheral portion.
  • a shape other than a disk shape may be used as long as the light transmittance increases toward the end.
  • a square shape may be used as shown in FIG.
  • the ND filter 51 is an optical member (optical filter) having a center gradation characteristic such that the light transmittance gradually increases from the optical center position toward the peripheral portion.
  • the optical characteristic in which the light transmittance changes so as to increase in a gradation from the optical center position toward the peripheral portion is hereinafter referred to as a center gradation characteristic.
  • the ND filter 51 having such a center gradation characteristic is also generally referred to as a gradation ND filter.
  • the center gradation characteristic of the light transmittance of the ND filter 51 is such that the optical center position is substantially coaxial with the optical axis of the lens 36, and the optical center position is directed toward the peripheral portion, in other words, light. It can be said that this is an optical characteristic in which the light transmittance increases as the distance from the axis increases.
  • the light transmittance of the ND filter 51 continuously changes from the optical center position of the ND filter 51 (the optical axis of the lens 36) toward the peripheral portion.
  • continuously changing means that the change at each stage is smaller than a predetermined value even when the change is strictly continuous or even when the change is stepwise (discrete). , Including the case of being substantially continuous, the presence of various design or manufacturing variations is acceptable.
  • the center gradation characteristic of the light transmittance of the ND filter 51 changes according to the light quantity characteristic of the lens 36 provided in the optical path of the optical block 22. That is, the center gradation characteristic of the ND filter 51 corresponds to the characteristic that the amount of light decreases from the optical center position toward the peripheral portion, which is the characteristic of the amount of light of the lens 36, and the light is transmitted from the optical axis toward the peripheral portion. It is preferable that the characteristics are such that the rate is large.
  • the peripheral illumination characteristic of a general lens 36 arranged in the optical path of the optical block 22 is as shown by the waveform L1 in FIG. 4, and the amount of light at the optical center position is 100% (1.0 in FIG. 4). In this case, the amount of light in the peripheral portion is reduced to about 20% (0.2 in FIG. 4).
  • the amount of light in the peripheral portion of the lens 36 is reduced by about 80% with respect to the amount of light in the central portion of the lens 36.
  • the light transmitted through the lens 36 is darkened to about 20% of the brightness of the central part of the lens 36.
  • the image obtained from the incident light transmitted through the lens 36 becomes a darker image as the distance from the optical axis toward the peripheral portion becomes darker, and the amount of light becomes uneven as a whole with the peripheral light amount reduced.
  • the waveform L1 in FIG. 4 is a graph showing the amount of light transmitted by the lens 36 for each distance from the center of the optical axis, the vertical axis representing the amount of light, and the horizontal axis representing the distance from the optical axis of the lens 36. Shown.
  • the pixel signal of each pixel of the lens 36 is multiplied by a correction coefficient that changes so as to increase with distance from the optical axis as shown by the waveform L2 in FIG.
  • the peripheral light amount reduction characteristic was corrected.
  • the waveform L2 in FIG. 5 shows a change in the correction coefficient according to the distance from the optical axis of the lens 36, and the mutual product takes a substantially constant value with respect to the waveform L1 showing the change in the amount of light.
  • the amount of light when the incident light transmitted through the lens 36 is imaged by the solid-state image sensor 31 is corrected so as to be substantially uniform over the entire imaging surface.
  • the image signal in the peripheral portion of the image in which the amount of light is reduced is amplified.
  • the noise component is amplified. It will be.
  • the light transmittance of at least the peripheral portion (edge portion) of the lens 36 is the optical axis in the optical path of the incident light incident on the solid-state image sensor 31.
  • the configuration is such that an ND filter 51 having a center gradation characteristic that is larger than the vicinity of (center portion) is provided.
  • the light transmittance is set to 50% at the optical center position of the ND filter 51 corresponding to the optical axis of the lens 36, and the light transmittance is set to 50% from the optical center position. It is a characteristic that increases toward the peripheral part and is set to be approximately 100% in the peripheral part.
  • the center gradation characteristic of the ND filter 51 in FIG. 6 is an example, and it is desirable that the center gradation characteristic is set according to the light quantity characteristic of the lens 36, and it is desirable that the center gradation characteristic is set according to the light quantity characteristic of the lens 36.
  • the correction by signal processing is not denied, and the correction by signal processing may be added together with the optical correction, and both corrections may be used together.
  • the correction in the region of the solid-state image sensor 31 for which the optical correction is not sufficient may be supplemented by the correction in the signal processing.
  • the pixels of the solid-state image sensor 31 including the CCD image sensor and the CMOS image sensor can be miniaturized, so that a high-definition image can be captured. Become.
  • the center gradation characteristic of the ND filter 51 increases as the light transmittance increases from the optical axis toward the peripheral portion in accordance with the light amount characteristic of the lens 36, so that the brightness (luminance) of the image captured by the solid-state image sensor 31 increases. ) Can be made substantially uniform from the optical axis to the peripheral portion.
  • peripheral brightness correction shading correction
  • the peripheral brightness correction shading correction in the optical design of the lens 36 can be relaxed, so that the number of lenses constituting the lens 36 can be reduced, and as a result, cost reduction and height reduction are achieved. It becomes possible.
  • distortion image distortion
  • the states St1 to St5 in FIG. 7 are side sectional views when the ND filter 51 is manufactured, and the states St6 are top views of the ND filter 51 at the time of completion.
  • the lower member 71 of the ND filter 51 having the recess 71a is placed with the recess 71a facing up. It is desirable that the shape of the recess 71a is a shape corresponding to the light intensity characteristic of the lens 36.
  • a liquid mask material 72 for changing the light transmittance of the incident light is dropped onto the recess 71a of the lower member 71.
  • the mask material 72 is filled in the recess 71a.
  • the light transmittance of the mask material 72 changes according to the thickness of the light in the incident direction.
  • the upper member 73 having the same shape as the lower member 71 is placed so that the recess 73a and the recess 71a face each other from the upper surface to the lower member 71. It is desirable that the shape of the recess 73a also has a shape corresponding to the light intensity characteristic of the lens 36.
  • the lower member 71 and the upper member 73 are bonded so that the mask material 72 is sandwiched between the recesses 71a and 73a, respectively.
  • the ND filter 51 is completed by laminating the lower member 71, the mask material 72, and the upper member 73 in this order.
  • the shapes of the recesses 71a and 73a are formed deep at the optical center position and shallow at the peripheral portion, so that the ND filter 51 has an optical center with respect to the transmission direction of the incident light. It is formed so as to be thick at the position and thin toward the periphery.
  • the ND filter 51 having the lowest light transmittance at the optical center position and the center gradation characteristic that the light transmittance decreases from the optical center position toward the peripheral portion is manufactured. It becomes possible to do.
  • the upper member 73 and the lower member 71 may be any material that transmits light, such as glass, plastic, and a resin forming material.
  • the mask material 72 may be processed to have a center gradation characteristic by vapor deposition on a single plate-shaped member in which the lower member 71 or the upper member 73 is put together to form the ND filter 51. good.
  • the process of applying the mask material 72 to the plate-shaped member by vapor deposition to provide the center gradation characteristic is expensive, and the mask material 72 is vapor-deposited so as to have the center gradation characteristic according to the light intensity characteristic of the lens 36. Requires a high degree of adjustment. From this, the ND filter 51 generated by the manufacturing method described with reference to FIG. 7 can realize a cost reduction and an improvement in yield as compared with the case where the center gradation characteristic is realized by thin film deposition.
  • the recesses 71a and 73a are provided in both the lower member 71 and the upper member 73.
  • the recess 73a is provided in place of the upper member 73.
  • the ND filter 51' may be used so that the mask material 72'with a flat upper surface is formed by using the plate-shaped upper member 73'.
  • the thickness of the mask material 72 is adjusted only in the recess 71a of the lower member 71, so that only the recess 71a has a shape corresponding to the light intensity characteristic of the lens 36. Need to be designed.
  • recesses 71a and 73a are provided, and the lower member 71'' and the upper member are integrally formed with the lens shape when they are bonded together.
  • the ND filter 51'' made of the member 73'' may be formed.
  • the ND filter 51 ′′ has a configuration separate from that of the IRCF 37, and the ND filter 51 ′′ has a function as a lens. Therefore, the optical characteristics combined with the lens 36 are taken into consideration. Design is required.
  • Second Embodiment >> In the above, an example in which the IRCF 37 of the camera module 11 is provided with the ND filter 51 having the center gradation characteristic has been described, but the imaging device used in the biometric authentication system (imaging system) also has the same function. It may be.
  • the biometric authentication system has, for example, a configuration as shown in FIG.
  • the biometric authentication system 101 of FIG. 10 is composed of a floodlight device 111, a DoE (Diffractive Optical Element) 112, and an image pickup device 113.
  • a floodlight device 111 a DoE (Diffractive Optical Element) 112
  • an image pickup device 113 an image pickup device 113.
  • the light projecting device 111 generates infrared light composed of laser light and projects light to the user 121 as a subject via DoE112.
  • the DoE (Diffractive Optical Element) 112 changes the transmission region to change the diffracted dot pattern of infrared light composed of the 0th-order light LO and the diffracted light LD, and is incident from the floodlight device 111.
  • the infrared light to be diffracted is projected onto the user 121 who is the subject.
  • the image pickup device 113 functions as a so-called ToF (Time of Flight) sensor, and is based on the timing at which infrared light is projected from the light projecting device 111 and the DoE 112 reflected on the surface of the user 121 as a subject by the image pickup device 113.
  • the distance to the surface of the user (face) 121, which is the subject, is detected (distance measurement) from the light reception timing of the formed predetermined diffraction dot pattern, and the distance to the surface of the face of the user 121, which is the subject, is detected.
  • the uneven shape pattern on the surface of the face of the user 121 is recognized from the detection pattern, and the user is authenticated.
  • the image pickup apparatus 113 is also provided with a lens 36 similar to the camera module 11 described with reference to FIG.
  • the center position of the image P1 is imaged brightest, and the darker the image is, the farther away from the center position is the image. Therefore, there is a possibility that an authentication error may occur because the authentication process using the information in the peripheral part cannot be performed well.
  • the circles in the image P1 in FIG. 11 imitate the diffraction dot pattern formed by DoE112, and each color expresses the brightness, and the diffraction dot pattern near the center of the image is white. It is expressed that it is expressed in a color close to black and is recognized as a bright image, whereas the diffraction dot pattern in the peripheral portion is expressed in a color close to black and is recognized as a dark image. It is represented.
  • the image pickup device 113 has, for example, a configuration as shown in FIG. 12, and is a BPF that transmits infrared light to the front stage of the solid-state image pickup device 31 in order to receive the reflected light from the user 121 composed of infrared light. (Band Pass Filter) 151 is provided.
  • FIG. 12 shows the configuration around the solid-state image sensor 31 of the image pickup device 113 and the configuration of the lens 36, and the same configurations as those of the camera module 11 in FIG. 1 are designated by the same reference numerals. However, the description thereof will be omitted as appropriate.
  • the image pickup apparatus 113 of FIG. 12 differs from the camera module 11 of FIG. 1 in that it includes an ND filter 152 having a center gradation characteristic instead of an IRCF 37 including an ND filter 51 having a center gradation characteristic.
  • the point is that it is equipped with a BPF 151 that transmits light.
  • the ND filter 152 having the center gradation characteristic is included in the BPF 151.
  • the light transmittance increases from the optical axis of the lens 36 toward the peripheral portion, so that the image is captured from the center position (optical axis of the lens 36) of the solid-state image sensor 31. It is possible to realize optical adjustment so that the brightness is uniform over the peripheral portion.
  • the image pickup apparatus 113 can perform biometric authentication using an image having a uniform brightness of the entire image, which occurs when an image P1 having a dark peripheral portion as shown in FIG. 11 is used. It is possible to reduce authentication errors.
  • the dark infrared light is projected near the center of the image to be imaged near the optical axis of the lens 36 of the imaging device 113, and is projected to the peripheral portion.
  • a bright infrared light may be emitted toward the direction.
  • a dark image is captured near the center of the image captured by the image pickup apparatus 113, but an optical block is used for a region where bright light is projected toward the peripheral portion. Since the image is imaged as a dark image according to the light amount characteristic of 22, the image as a whole is imaged as an image having uniform brightness.
  • the light projecting device 111 is connected to a laser light source 201 that generates laser light composed of infrared light and a correction lens 202 that converts laser light emitted from the laser light source 201 into parallel light. It is composed.
  • FIG. 13 shows an example in which the correction lens 202 is composed of two lenses, the lenses 202a and 202b, the correction lens 202 may be composed of a number of lenses other than the two lenses.
  • the DoE 112 is arranged after the correction lens 202, and the light having a predetermined diffraction dot pattern emitted from the light projecting device 111 is projected to the user 121 who is the subject.
  • the lenses 202a, 202b and DoE112 constituting the correction lens 202 are provided with ND filters 211,212,213 having center gradation characteristics, respectively, as shown in FIG. 14, for example.
  • ND filters 211,212,213 having center gradation characteristics, respectively, as shown in FIG. 14, for example.
  • infrared light in a dark state and bright in a distance toward the peripheral portion is projected onto the user 121 as the subject. ..
  • the circles indicate the diffraction dot pattern formed by DoE112, and the colors of the circles represent the brightness of the projected infrared light.
  • a dark image is captured in the vicinity of the center of the image captured by the image pickup apparatus 113, but the peripheral portion Since bright light is projected toward the lens 36, the image is captured as a dark image according to the light amount characteristics of the lens 36, so that the captured image is captured as an image of uniform brightness as a whole.
  • ND filters 211, 212, 213 having a center gradation characteristic are provided on the lenses 202a, 202b and DoE112 constituting the correction lens 202, respectively.
  • the ND filters 211, 212, and 213 having the center gradation characteristic need only be provided at at least one of them, and may not necessarily be provided at all positions.
  • the light transmittance needs to be adjusted so that infrared light is emitted to the user 121 who is the subject with the light distribution as shown in FIG. 14, for example.
  • the ND filter 152 having the center gradation characteristic and the ND filters 211, 212 and 213 are all provided on both the light projecting device 111 side and the imaging device 113 side. Alternatively, at least one or more of these may be provided.
  • ND filters 51, 152, 211 to 213 having center gradation characteristics are provided inside the IRCF37, BPF151, the lenses 202a, 202b of the correction lens 202, the DoE112, and the like. Although the example of doing so has been described, other configurations may be used as long as the ND filter 51 is provided so as to optically correct the captured image.
  • FIG. 15 shows a configuration example of another camera module 221 of the camera module 11 of FIG.
  • the same components as those of the camera module 11 of FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the difference between the camera module 221 of FIG. 15 and the camera module 11 of FIG. 1 is that the protective glass 231 is provided in front of the lens 36 and the solid-state image sensor 31 is CSP (Chip Size Package).
  • WLL Wafer Level Lens
  • a rear lens 232 when the lens 36 is used as a front lens is provided in the front stage.
  • the WLL 233 is a thin lens for each pixel of the solid-state image sensor 31, and the lens 232 constitutes an optical block 22 together with the lens 36 and collects incident light from above in the drawing to collect the incident light of the solid-state image sensor 31. An image is formed on the imaging surface.
  • ND filters 241 to 246 having a center gradation characteristic are provided.
  • the ND filter 241 is provided in the protective glass 231.
  • ND filters 242 to 244 are provided near the upper stage, the middle stage, and the lower stage of the lens 36, respectively.
  • the ND filter 245 is provided between the lens 232 and the WLL233 (inside the glass of the CSP-ized solid-state image sensor 31).
  • the ND filter 246 is provided in the WLL 233.
  • the transmittance is the lowest near the optical axis of the lens 36, and the transmittance increases from the optical axis toward the peripheral portion. It is configured to be elevated. With such a configuration, it is possible to make the brightness of the entire image captured by the solid-state image sensor 31 uniform.
  • FIG. 15 a configuration example in which all six ND filters 241 to 246 are provided is shown, but at least one of them may be provided.
  • the solid-state image sensor 31 may be housed in a package.
  • the solid-state image sensor 31 is configured in that the solid-state image sensor 31 is formed on the base substrate 301 and packaged (stored) in the package 311 made of a light-transmitting material. It is different from the camera module 11 of FIG. 1 mounted on the circuit board 33, and the other configurations are basically the same. Therefore, in the optical block 22, the ND filter 51 has a center gradation characteristic in which the value of the light transmittance increases continuously from the optical axis of the lens 36 toward the peripheral portion (as the distance from the optical axis increases). ing.
  • the package 311 that packages the solid-state image sensor 31 is a package that uses a light-transmitting material, for example, glass as the main constituent material.
  • a WLCSP Wafer Level Chip Size Package
  • the size of the semiconductor chip obtained by cutting the wafer becomes the size of the package 311 as it is, so that the camera module 271 can be made smaller and lighter.
  • the package 311 containing the solid-state image sensor 31 is mounted on the circuit board via the solder bumps 312.
  • the position in the IRCF37 and further, not limited to the IRCF37, is separated from the IRCF37, as in the camera module 11 of FIG. It may be formed at least one place in the lens 36 and in the protective shield glass of the camera module 271.
  • the ND filter having the center gradation characteristic may be formed as the ND filter 321 on the surface of the package 311 as shown in FIG. 17, in addition to the IRCF 37 and the lens 36.
  • the light intensity characteristics and processing of the lens 36 are determined with respect to the formation position. It can be changed as appropriate according to the accuracy and the manufacturing method.
  • any of the camera modules 271 of FIGS. 16 and 17 the same actions and effects as those of the camera module 11 of FIG. 1 can be obtained. That is, in order to solve the small aperture diffraction of the lens 36, the non-uniformity of the amount of light caused by the decrease in the amount of peripheral light caused by increasing the aperture of the lens 36 is caused by the noise component, scratches on the solid-state image sensor, and fine details. It is possible to make optical corrections instead of corrections by signal processing that emphasizes dust, etc., and the amount of light in the entire image to be captured without emphasizing the effects of noise components, scratches, dust, etc. It becomes possible to make it uniform.
  • FIG. 18 is a block diagram showing a configuration of an image pickup apparatus which is an example of the electronic device of the present disclosure.
  • the image pickup device 1100 includes an image pickup optical system 1101, an image pickup unit 1102, a DSP (Digital Signal Processor) circuit 1103, a frame memory 1104, a display device 1105, a recording device 1106, and an operation system 1107. It also has a power supply system 1108 and the like.
  • the DSP circuit 1103, the frame memory 1104, the display device 1105, the recording device 1106, the operation system 1107, and the power supply system 1108 are connected to each other via the bus line 1109.
  • the imaging optical system 1101 captures incident light (image light) from the subject and forms an image on the imaging surface of the imaging unit 1102.
  • the imaging unit 1102 converts the amount of incident light imaged on the imaging surface by the optical system 1101 into an electric signal in pixel units and outputs it as a pixel signal.
  • the DSP circuit 1103 performs general camera signal processing, for example, white balance processing, demosaic processing, gamma correction processing, and the like.
  • the frame memory 1104 is appropriately used for storing data in the process of signal processing in the DSP circuit 1103.
  • the display device 1105 includes a panel-type display device such as a liquid crystal display device or an organic EL (Electro Luminescence) display device, and displays a moving image or a still image captured by the imaging unit 102.
  • the recording device 1106 records the moving image or still image captured by the imaging unit 1102 on a portable semiconductor memory, an optical disk, a recording medium such as an HDD (Hard Disk Drive), or the like.
  • the operation system 1107 issues operation commands for various functions of the image pickup apparatus 1100 under the operation of the user.
  • the power supply system 1108 appropriately supplies various power supplies that serve as operating power supplies for the DSP circuit 1103, the frame memory 1104, the display device 1105, the recording device 1106, and the operation system 1107.
  • the camera module according to the first embodiment or the second embodiment described above can be used as the image pickup optical system 1101 and the image pickup unit 1102. Since the camera module according to these embodiments can realize uniform brightness from the optical center to the peripheral portion, the optical design of shading correction can be relaxed in the lens design of the imaging optical system 1101. Therefore, the number of lenses can be reduced.
  • the technique according to the present disclosure can solve the problem of small-aperture diffraction of the condenser lens, and accordingly, the pixels of the solid-state image sensor can be miniaturized, so that a high-definition image can be captured. ..
  • the present disclosure may also have the following configuration.
  • a filter for filtering the incident light so as to make the amount of light of the image captured by the solid-state image sensor uniform is provided.
  • the filter is an imaging device in which the light transmittance in a range away from the optical axis of the lens is larger than the light transmittance in the range near the optical axis.
  • the filter is an ND (Neutral Density) filter whose light transmittance increases as the distance from the optical axis of the lens increases.
  • ⁇ 3> The image pickup apparatus according to ⁇ 1>, wherein the light transmittance of the filter increases as the distance from the optical axis of the lens increases according to the light amount characteristic of the lens.
  • ⁇ 4> The image pickup apparatus according to ⁇ 1>, wherein the filter is arranged apart from the lens or is formed inside the lens.
  • ⁇ 5> Further equipped with an IRCF (infrared light cut filter) that cuts infrared light contained in the incident light.
  • IRCF infrared light cut filter
  • the filter has a structure in which a lower member made of a light transmitting material and an upper member are bonded to each other, and a mask material is sandwiched between the lower member and the upper member.
  • the imaging apparatus according to any one of ⁇ 1> to ⁇ 5>, wherein a recess filled with the mask material is formed in at least one of the lower member and the upper member.
  • ⁇ 7> The image pickup apparatus according to ⁇ 6>, wherein the shape of the concave portion is shallow with respect to the shape of the concave portion having a deep optical axis of the lens and a shallow distance from the optical axis of the lens toward a peripheral portion.
  • ⁇ 8> The imaging device according to ⁇ 6>, wherein the shape of the recess is a shape based on the light intensity characteristic of the lens.
  • ⁇ 9> The image pickup apparatus according to ⁇ 6>, wherein the upper member and the lower member form a lens that collects the incident light on the image pickup surface of the solid-state image pickup device by being bonded to each other.
  • ⁇ 10> The image pickup device according to any one of ⁇ 1> to ⁇ 9>, wherein the solid-state image pickup device is housed in a package made of a light-transmitting material.
  • a lens that collects incident light on the imaging surface of a solid-state image sensor that captures an image A filter for filtering the incident light so as to make the amount of light of the image captured by the solid-state image sensor uniform is provided.
  • the filter is a camera module in which the light transmittance in a range away from the optical axis of the lens is larger than the light transmittance in the range near the optical axis.
  • a lens that collects incident light on the imaging surface of a solid-state image sensor that captures an image, A filter for filtering the incident light so as to make the amount of light of the image captured by the solid-state image sensor uniform is provided.
  • the filter is an electronic device in which the light transmittance in a range away from the optical axis of the lens is larger than the light transmittance in the range near the optical axis.
  • a floodlight device that projects a predetermined amount of light to the subject,
  • an imaging system including an imaging device that collects incident light from the subject to which the predetermined light is projected by a lens and captures the image as an image.
  • the floodlight device An imaging system including a filter that filters the predetermined light so as to make the amount of light of the image of the subject imaged by being focused by the lens uniform and projects the light onto the subject.
  • ⁇ 14> The imaging system according to ⁇ 13>, wherein the filter is an ND (Neutral Density) filter whose light transmittance increases as the distance from the optical axis of the lens increases.
  • ND Neutral Density
  • the floodlight device is A correction lens that converts the predetermined light into parallel light is further included.
  • the predetermined light is infrared light
  • the light projecting device further includes a pattern forming portion for forming a diffraction dot pattern using the infrared light.
  • the imaging system according to any one of ⁇ 13> to ⁇ 16>, wherein the filter is separated from the pattern forming portion or configured in the pattern forming portion.
  • the subject is the user's face.
  • the imaging device detects the unevenness of the user's face based on the diffraction dot pattern formed by using the infrared light applied to the subject, and authenticates the user in ⁇ 17>.
  • the imaging device includes a ToF (Time of Flight) sensor.
  • the surface of the user's face is based on the distance measurement result to the surface of the user's face by the ToF sensor using the diffraction dot pattern formed by using the infrared light applied to the subject.
  • the imaging system according to ⁇ 18> which detects the unevenness of the surface and authenticates the user.
  • a BPF (Band Pass Filter) that transmits infrared light contained in the incident light is further provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

本開示は、レンズの光学特性に起因する周辺光量低下を、信号処理での補正ではなく、光学的に補正できるようにする撮像装置、カメラモジュール、および電子機器、並びに撮像システムに関する。 光学ブロックは、レンズと、センタグラデーションNDフィルタを備えており、NDフィルタは、少なくともレンズの外周部に相当する周辺部の光透過率を、レンズの光軸付近の光透過率よりも大きくする。本開示は、生体認証システムに適応することができる。

Description

撮像装置、カメラモジュール、および電子機器、並びに撮像システム
 本開示は、撮像装置、カメラモジュール、および電子機器、並びに撮像システムに関し、特に、レンズの光学特性に起因する周辺光量低下を光学的に補正できるようにした撮像装置、カメラモジュール、および電子機器、並びに撮像システムに関する。
 近年、デジタルスチルカメラやカメラ付き移動体端末装置などの撮像装置及び生体認証装置において、カメラの高画素化(多画素化)及び小型化が進んでいる。そして、カメラの高画素化及び小型化に伴って、光学系を含む固体撮像装置の小型化が進んでいる。
 このような状況下において、被写体からの画像光(入射光)を取り込んで固体撮像素子の撮像面に導く撮像光学系のレンズの小絞り回折が発生する。この小絞り回折を解決するためには、レンズの口径を大きくすることが必要である。
 ところが、レンズの口径を大きくすると、レンズの光学特性によって発生する、画像の周辺部(周縁部)で光量が低下する周辺光量低下(減光)が生じることが知られている。
 上記の周辺光量低下については、これまで、光量が低下した画像の周辺部の画像信号を信号処理により増幅することで対応していた。
 しかしながら、信号処理での増幅処理では、ノイズ成分、固体撮像素子の傷、固体撮像素子に付着した微細なゴミ、および固体撮像素子や光学材料のムラなどがいずれも強調されてしまうことになるため、撮像装置の歩留りの低下につながっている。
 また、回折光を照射する光源と合わせた生体認証などのカメラにいたっては、周辺の光量が少なく、照射された光を有効的に撮像できないため、周辺の画像を不使用にすることで対応することが考えられるが、不使用の領域が多いと光量が少ないために認証において誤検出が生じることがあった。
 一方で、小絞り回折の問題を解決するために、光透過率が連続的に変化するグラデーションND(Neutral Density)フィルタを2枚対向して配置し、対称的に光路内に挿入/離脱させることにより、広い可変濃度範囲を持つ光量調整装置を実現する技術が提案されている(例えば、特許文献1参照)。
 また、手ぶれ補正機能実行時、NDフィルタを光路に挿入することにより発生が懸念される周辺光量低下を緩和するために、明るさの変化に応じてNDフィルタによる光量減衰量を変更し、光量減衰量が大きくなるに従い、像振れの補正範囲を小さくする技術が提案されている(例えば、特許文献2参照)。
 さらに、レンズの輝度シェーディングを補正するためにND機能を有した固体撮像装置が提案されている(例えば、特許文献3参照)。
特開2007-292828号公報 特開2012-134771号公報 特開2004-201203号公報
 しかしながら、特許文献1に記載の技術においては、小絞り回折については解消できるものの、レンズの光学特性に起因する周辺光量低下については考慮されていない。
 また、特許文献2に記載の技術においては、手ぶれ補正が行われても、NDフィルタの掛かり方による周辺光量のアンバランスを目立ち難くできるものの、レンズの光学特性に起因する周辺光量低下については考慮されていない。
 さらに、特許文献3に記載の技術においては、濃度の異なるNDフィルタを固体撮像素子のマイクロレンズなどと同様に配置しているが、固体撮像素子を生産するときにNDフィルタを形成するためのマスク装置が必要となり非常に高価であることが知られている。また、固体撮像素子に形成した場合、周辺減光の特性の異なるレンズを有した固体撮像装置では、好適な画像が得られることがない。
 本開示は、このような状況に鑑みてなされたものであり、特に、レンズの光学特性に起因する周辺光量低下を光学的に補正する。
 本開示の第1の側面の撮像装置、カメラモジュール、および電子機器は、画像を撮像する固体撮像素子の撮像面に入射光を集光するレンズと、前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光をフィルタリングするフィルタとを備え、前記フィルタは、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きい撮像装置、カメラモジュール、および電子機器である。
 本開示の第1の側面においては、レンズにより、画像を撮像する固体撮像素子の撮像面に入射光が集光され、フィルタにより、前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光がフィルタリングされ、前記フィルタにより、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きくされる。
 本開示の第2の側面の撮像システムは、被写体に所定の光を投光する投光装置と、前記所定の光が投光された前記被写体からの入射光を、レンズにより集光して画像として撮像する撮像装置とからなる撮像システムであって、前記投光装置が、前記所定の光を、前記レンズにより集光して撮像される前記被写体の前記画像の光量を均一にするようにフィルタリングして前記被写体に投光するフィルタを備える撮像システムである。
 本開示の第2の側面においては、投光装置により、被写体に所定の光が投光され、撮像装置により、前記所定の光が投光された前記被写体からの入射光が、レンズにより集光されて画像として撮像され、前記投光装置においては、フィルタにより、前記所定の光が、前記レンズにより集光されて撮像される前記被写体の前記画像の光量が均一にされるようにフィルタリングされて前記被写体に投光される。
本開示の第1の実施の形態のカメラモジュールの構成例を説明する図である。 図1のカメラモジュールにおけるNDフィルタの構成例を説明する図である。 図1のカメラモジュールにおけるNDフィルタの構成例を説明する図である。 一般的なレンズの光量特性を説明する図である。 レンズの光量特性に基づいた信号処理による補正例を説明する図である。 本開示のNDフィルタの光透過率を説明する図である。 本開示のNDフィルタの製造方法を説明する図である。 NDフィルタのその他の構成例である。 NDフィルタのさらにその他の構成例である。 本開示の第2の実施の形態の生体認証システムの構成例を説明する図である。 NDフィルタを用いない場合の図10の撮像装置による撮像例を説明する図である。 図10の撮像装置にセンタグラデーションNDフィルタを適用した構成例を説明する図である。 図10の生体認証システムにおける投光装置の構成例を説明する図である。 図13の投光装置により被写体であるユーザに赤外光が投光される例を説明する図である。 本開示の第3の実施の形態のカメラモジュールの構成例を説明する図である。 本開示のカメラモジュールの変形例を説明する図である。 本開示のカメラモジュールの変形例を説明する図である。 本開示の電子機器の一例である撮像装置の構成例を説明する図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 以下、本開示を実施するための形態(以下、実施の形態という)について説明する。なお、説明は以下の順序で行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.変形例
 5.本開示の電子機器の一例である撮像装置に適用した例
 <<1.第1の実施の形態>>
 図1は、本開示の技術を適用した、レンズの光学特性に起因する周辺光量低下を光学的に補正するカメラモジュールの側面断面図である。
 図1のカメラモジュール11は、主に、固体撮像素子31を中心として、画像を撮像する機構からなる撮像ブロック21と、撮像ブロック21に入射する入射光を固体撮像素子31の撮像面において結像させる光学ブロック22とから構成される。
 撮像ブロック21は、図中の最下部において固体撮像素子31を固定するための、硬質の金属などでできたプレート42が設けられており、その上に、接着剤35により固体撮像素子31が接着されている。
 また、プレート42には、セラミックやガラスエポキシなどの基板材料で成形された回路基板33が設けられており、固体撮像素子31と回路基板33とは、金属ワイヤ32を介して電気的に接続されている。
 固体撮像素子31は、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどからなり、NDフィルタ51を含むIRCF37で赤外光成分が除去された、被写体からの入射光を画素単位で光電変換して、画像信号を生成する。
 回路基板33上には、固体撮像素子31により撮像された画像データを外部装置に出力したり、外部装置から固体撮像素子31への制御信号の入力を受け付けるコネクタ39、光学ブロック22におけるレンズ36を駆動させるアクチュエータを制御するためのPWM(Pulse Width Modulation)信号を出力したり、オートフォーカス、ドライバ、およびコントローラ等の機能を備えたLSI(Large Scale Integration)40、および、固体撮像素子31の各画素のばらつきを補正するための補正値を記憶する記憶部41が設けられている。
 また、回路基板33上には、光学ブロック22を構成するレンズ36を駆動させるアクチュエータと一体化した、レンズ36を格納するホルダ38を固定するスペーサ34が設けられている。
 光学ブロック22は、ホルダ38と一体化したアクチュエータにより、格納されるレンズ36を光軸方向(図中の上下方向)に駆動して、焦点距離を調整し、入射光を固体撮像素子31の撮像面において結像するように調整する。
 また、レンズ36と固体撮像素子31との間には、赤外光を除去するIRCF(IR Cut Filter)37が設けられている。
 IRCF37は、入射光に含まれる赤外光成分を除去して、固体撮像素子31に透過させる。
 また、IRCF37内には、ND(Neutral Density)フィルタ51が形成されており、入射光の密度を固体撮像素子31の撮像面に対して均一化するようにフィルタリングして透過させる。
 より具体的には、NDフィルタ51は、例えば、吸収型のNDフィルタから構成され、少なくとも周辺部の光透過率が中心部(光軸を含む光軸から所定の距離内の周辺部)の光透過率よりも大きい光学部材(光学フィルタ)である。
 すなわち、NDフィルタ51は、例えば、図2で示されるように、中心部から周辺部に向かって光透過率が大きくなるように構成され、入射光のうち、光軸に近い入射光程低い透過率で透過させ、周辺部に向かう入射光程(光軸から離れる程)高い透過率で透過させるようにフィルタリングする。
 尚、図2は、NDフィルタ51をレンズ36の光軸方向から見たときの透過率の変化を色の変化として表現しており、黒色が濃い程、光透過率が低く、逆に、黒色が薄い程(白い程)、光透過率が高いことが表現されている。
 また、図2においては、レンズ36の光軸を中心とした円板状の形状からなるNDフィルタ51の例が示されているが、レンズ36の光軸に対応する光学中心位置から周辺部に向かって光透過率が増大するような構成であれば、円板状以外の形状であってもよく、例えば、図3で示されるように、方形状の構成でもよい。
 このように、NDフィルタ51は、光透過率が光学中心位置から周辺部に向かって徐々に大きくなるようなセンタグラデーション特性を有する光学部材(光学フィルタ)である。
 尚、このように光透過率が光学中心位置から周辺部に向かってグラデーション状に大きくなるように変化する光学的な特性を、以降においては、センタグラデーション特性と称する。このようにセンタグラデーション特性を有するNDフィルタ51は、一般的に、グラデーションNDフィルタとも称される。
 NDフィルタ51の光透過率のセンタグラデーション特性は、光学中心位置がレンズ36の光軸とほぼ同軸に構成されており、光学中心位置となる光軸から周辺部に向かって、換言すれば、光軸から離れるに従って、光透過率が大きくなる光学特性であるとも言える。
 このとき、NDフィルタ51の光透過率は、NDフィルタ51の光学中心位置(レンズ36の光軸)から周辺部に向かって連続的に変化することが好ましい。
 ここで、「連続的に変化する」とは、厳密に連続的に変化する場合の他、段階的に(離散的に)変化する場合であっても、各段階における変化が所定値よりも小さく、実質的に連続的である場合も含み、設計上または製造上生ずる種々のばらつきの存在は許容される。
 NDフィルタ51の光透過率のセンタグラデーション特性は、光学ブロック22の光路中に設けられているレンズ36の光量特性に合わせて変化することが好ましい。すなわち、NDフィルタ51のセンタグラデーション特性については、レンズ36の光量特性である光学中心位置から周辺部に向かうに連れて光量が低下する特性に対応して、光軸から周辺部に向かうにつれて光透過率が大きくなるような特性にされていることが好ましい。
 <NDフィルタの光学特性>
 次に、NDフィルタ51の詳細な光学特性について説明するに当たって、レンズ36の一般的な光学特性について説明する。
 光学ブロック22の光路中に配される、一般的なレンズ36の周辺光量特性は、図4の波形L1で示されるようなものであり、光学中心位置における光量を100%(図4の1.0)とした場合、周辺部の光量は20%程度(図4の0.2)にまで低下する。
 すなわち、レンズ36を透過した入射光のうち、レンズ36の周辺部の光量は、レンズ36の中心部の光量に対して、80%程度低下する。
 換言すれば、レンズ36を透過した光は、レンズ36の中心部の明るさに対して、20%程度の明るさにまで暗くなる。
 このように、レンズ36を透過した入射光から得られる画像は、光軸から周辺部に向かって離れる程、暗い画像となり、周辺光量が低下した全体として光量が不均一な画像となってしまう。
 これまで、このような周辺光量低下に対しては、光量が低下した周辺部の画像信号を信号処理により補正することで対応するようにしていた。
 尚、図4の波形L1は、レンズ36の透過光の光軸中心からの距離毎の光量を示したグラフであり、縦軸が光量であり、横軸がレンズ36の光軸からの距離を示している。
 より具体的には、信号処理においては、レンズ36の各画素の画素信号に対して、図5の波形L2で示されるように光軸から距離に応じて増大するように変化する補正係数が乗じられるようにすることで、周辺光量低下特性が補正されていた。
 すなわち、図5の波形L2は、レンズ36の光軸からの距離に応じた補正係数の変化を示しており、光量の変化を示す波形L1に対して、相互の積が略一定の値をとるように変化することにより、レンズ36を透過した入射光が固体撮像素子31により撮像されるときの光量が、撮像面全体において、ほぼ均一になるように補正されていた。
 しかしながら、信号処理により周辺光量低下を補正する場合、光量が低下した画像の周辺部の画像信号が増幅される処理となるが、この処理により、光量成分だけでなく、ノイズ成分についても増幅されることになる。
 結果として、信号処理による補正処理では、例えば、ノイズ成分、固体撮像素子31の傷、固体撮像素子31に付着した微細なゴミ、および固体撮像素子31や光学材料のムラなどが強調されてしまい、歩留り低下となる恐れがあった。
 そこで、本開示においては、カメラモジュール11を構成する光学ブロック22において、固体撮像素子31に入射する入射光の光路中に、少なくともレンズ36の周辺部(辺縁部)の光透過率が光軸(中心部)付近よりも大きくなるようなセンタグラデーション特性を備えたNDフィルタ51が設けられるような構成とする。
 NDフィルタ51のセンタグラデーション特性は、例えば、図6で示されるように、レンズ36の光軸に対応するNDフィルタ51の光学中心位置において、光透過率が50%に設定され、光学中心位置から周辺部に向かうにしたがって増大し、周辺部においては、略100%となるように設定される特性である。
 尚、図6のNDフィルタ51のセンタグラデーション特性は、一例であり、レンズ36の光量特性に合わせて設定されることが望ましく、レンズ36の光量特性に合わせて設定されることが望ましい。
 このような構成により、レンズ36の小絞り回折を解決するために、レンズ36の口径を大きくすることで発生する周辺光量低下に起因した光量の不均一性を除去するために発生する、ノイズ成分、固体撮像素子の傷、および微細なゴミなどが強調される信号処理による補正ではなく、光学的に補正することが可能となる。
 但し、信号処理での補正を否定するものではなく、光学的な補正と共に、信号処理による補正を加えて、双方の補正を併用するようにしてもよい。
 即ち、光学的な補正では充分でない固体撮像素子31の領域における補正を、信号処理での補正で補うようにしてもよい。
 換言すれば、周辺光量低下を光学的に補正できることにより、レンズ36の口径を大きくしても、光量低下に起因した光量の不均一さが発生しないため、レンズ36の小絞り回折を解決することができる。
 そして、レンズ36の小絞り回折を解決できることにより、CCDイメージセンサやCMOSイメージセンサなどからなる固体撮像素子31の画素の微細化を図ることが可能になるので、高精細な画像の撮像が可能になる。
 特に、NDフィルタ51のセンタグラデーション特性が、レンズ36の光量特性に合わせて光透過率が、光軸から周辺部に向かうにつれて大きくなるので、固体撮像素子31により撮像された画像の明るさ(輝度)を、光軸から周辺部に亘って略均一にすることが可能となる。
 これにより、レンズ36の光学設計における、周辺の明るさ補正(シェーディング補正)を緩和できるため、レンズ36を構成するレンズ枚数を削減することが可能となり、結果として、コスト低減及び低背化を図ることが可能となる。
 また、シェーディング補正の光学設計を緩和できることにより、ディストーション(画像の歪み)の改善を図ることができる。
 <センタグラデーション特性を備えたNDフィルタの製造方法>
 次に、図7を参照して、センタグラデーション特性を備えたNDフィルタ51の製造方法について説明する。尚、図7の状態St1乃至St5は、NDフィルタ51が製造される際の側面断面図であり、状態St6は、完成時のNDフィルタ51の上面図である。
 状態St1において、凹部71aを備えたNDフィルタ51の下部材71が、凹部71aを上面にして載置される。尚、この凹部71aの形状は、レンズ36の光量特性に応じた形状とされることが望ましい。
 状態St2において、下部材71の凹部71aに対して、入射光の光透過率を変化させるための液体状のマスク素材72を滴下する。
 そして、状態St3で示されるように、マスク素材72が凹部71aに充填されるようにする。尚、マスク素材72は、光の入射方向の厚さに応じて光透過率が変化する。
 状態St4において、下部材71と同様の形状からなる上部材73を上面から下部材71に対して、凹部73aと凹部71aとが対向するように載置する。尚、この凹部73aの形状も、レンズ36の光量特性に応じた形状とされることが望ましい。
 状態St5で示されるように、下部材71と上部材73とが、それぞれの凹部71a,73aとの間にマスク素材72が挟み込こまれるように貼り合わされる。
 そして、下部材71、マスク素材72、および上部材73からなる順序で貼り合わされることにより、NDフィルタ51が完成される。
 凹部71a,73aの形状は、図7で示されるように、光学中心位置において深く、かつ、周辺部において浅く形成されているので、NDフィルタ51は、入射光の透過方向に対して、光学中心位置において厚く、周辺部に向かった薄くなるように形成される。
 結果として、状態St6で示されるように、光学中心位置における光透過率が最も低く、光学中心位置から周辺部に向かうに従って光透過率が低下するようなセンタグラデーション特性を備えたNDフィルタ51を製造することが可能となる。
 尚、上部材73、および下部材71は、例えば、ガラス、プラスティック、樹脂形成材料などの光を透過させる素材であればよい。
 また、下部材71または上部材73をまとめた一枚の板状の部材に対して、マスク素材72を蒸着によりセンタグラデーション特性を備えるように加工して、NDフィルタ51を形成するようにしてもよい。
 しかしながら、マスク素材72を板状部材へと蒸着により塗布し、センタグラデーション特性を備えるようにする加工は、高価であり、また、レンズ36の光量特性に応じたセンタグラデーション特性を備えるように蒸着するには高度な調整が必要となる。このことから、図7を参照して説明した製造方法により生成されるNDフィルタ51は、センタグラデーション特性を蒸着により実現する場合よりもコストの低減と歩留まりの向上を実現することが可能となる。
 <第1の実施の形態におけるNDフィルタの応用例1>
 以上においては、下部材71および上部材73の双方に凹部71a,73aが設けられる例について説明してきたが、例えば、図8で示されるように、上部材73に代えて、凹部73aが設けられていない、板状の上部材73’を用いるようにして、上面が平面からなるマスク素材72’が形成されるような、NDフィルタ51’とするようにしてもよい。
 図8のNDフィルタ51’の場合、マスク素材72の厚さについては、下部材71の凹部71aでのみの調整となるため、凹部71aのみでレンズ36の光量特性に応じた形状となるように設計される必要がある。
 <第1の実施の形態におけるNDフィルタの応用例2>
 また、下部材71および上部材73に代えて、図9で示されるように、凹部71a,73aが設けられ、かつ、貼り合わされるとレンズ形状が一体として形成される下部材71’’および上部材73’’からなる、NDフィルタ51’’が形成されるようにしてもよい。
 尚、図9の場合、NDフィルタ51’’は、IRCF37とは別個の構成とされ、NDフィルタ51’’については、レンズとしての機能を備えているので、レンズ36と合わせた光学特性を考慮した設計が必要となる。
 <<2.第2の実施の形態>>
 以上においては、カメラモジュール11のIRCF37にセンタグラデーション特性を備えたNDフィルタ51が設けられる例について説明してきたが、生体認証システム(撮像システム)に用いられる撮像装置においても同様の機能を持たせるようにしてもよい。
 生体認証システムは、例えば、図10で示されるような構成とされる。
 すなわち、図10の生体認証システム101は、投光装置111、DoE(Diffractive Optical Element:回折光学素子)112、および撮像装置113より構成される。
 投光装置111は、レーザ光からなる赤外光を発生し、DoE112を介して、被写体であるユーザ121に対して投光する。
 DoE(Diffractive Optical Element:回折光学素子)112は、透過領域を変化させて、0次光LOと、回折光LDとからなる赤外光の回折ドットパターンを変化させて、投光装置111から入射される赤外光を被写体であるユーザ121に投光させる。
 撮像装置113は、いわゆるToF(Time of Flight)センサとして機能し、投光装置111より赤外光が投光されたタイミングと、撮像装置113により被写体となるユーザ121の表面において反射されるDoE112により形成された所定の回折ドットパターンの光の受光タイミングとから被写体であるユーザ(の顔)121の表面までの距離を検出(測距)し、被写体であるユーザ121の顔の表面までの距離の検出パターンからユーザ121の顔の表面の凹凸形状パターンを認識し、ユーザを認証する。
 ここで、撮像装置113にも、図1を参照して説明したカメラモジュール11と同様のレンズ36が設けられている。
 このため、撮像装置113において被写体であるユーザ121が、例えば、図11の画像P1として撮像されると、画像P1の中心位置が最も明るく撮像され、中心位置から周辺部に離れるほど暗い画像が撮像されることになるので、周辺部における情報を用いた認証処理が上手くできずに、認証エラーが発生する恐れがあった。
 尚、図11における画像P1内の丸印は、DoE112により形成される回折ドットパターンを模したものであり、それぞれの色が明るさを表現しており、画像中心付近の回折ドットパターンは、白色に近い色で表現され、明るい画像として認識されることが表されているが、これに対して、周辺部の回折ドットパターンは、黒色に近い色で表現され、暗い画像として認識されることが表されている。
 撮像装置113は、例えば、図12で示されるような構成とされており、赤外光からなるユーザ121からの反射光を受光するため、固体撮像素子31の前段に赤外光を透過させるBPF(Band Pass Filter)151が設けられている。
 尚、図12は、撮像装置113の固体撮像素子31周辺の構成と、レンズ36の構成とを示したものであり、図1のカメラモジュール11と同一の構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図12の撮像装置113において、図1のカメラモジュール11と異なる点は、センタグラデーション特性を備えたNDフィルタ51を含むIRCF37に代えて、センタグラデーション特性を備えたNDフィルタ152を含む赤外光を透過させるBPF151を備えている点である。
 そこで、本開示においては、図12で示されるように、BPF151内に、センタグラデーション特性を備えたNDフィルタ152が内包される構成とする。
 図12で示されるような構成により、レンズ36の光軸から周辺部に向けて光透過率が増大することにより、固体撮像素子31において撮像される画像の中心位置(レンズ36の光軸)から周辺部に掛けて均一の輝度(明るさ)となるような光学的な調整を実現することが可能となる。
 結果として、撮像装置113により、画像全体の明るさが均一の画像を用いて生体認証を行うことができるので、図11で示されるような周辺部が暗い画像P1を用いた場合に生じるような認証エラーを低減させることが可能となる。
 <第2の実施の形態における応用例>
 以上においては、生体認証システムにおける、撮像装置113のBPF151にセンタグラデーション特性を備えたNDフィルタ152が設けられる例について説明してきたが、生体認証システムに用いられる投光装置111においても同様の機能を持たせるようにしてもよい。
 すなわち、センタグラデーション特性を備えたNDフィルタが用いられない場合、図11を参照して説明したように、撮像装置113のレンズ36の光軸付近が明るく、光軸から周辺部に離れるほど暗い画像が撮像されることにより、生体認証におけるエラーが生じ易い。
 そこで、投光装置111より赤外光が投光される範囲のうち、撮像装置113のレンズ36の光軸付近が撮像される画像の中心付近に暗い赤外光を投光し、周辺部に向かうに従って明るい赤外光を投光するようにしてもよい。
 このような構成により、撮像装置113において撮像される画像の中心付近においては、暗い画像が撮像されることになるが、周辺部に向かって明るい光が投光されている領域については、光学ブロック22の光量特性に従って暗い画像として撮像されることになるので、撮像される画像全体としては、均一の明るさの画像として撮像される。
 すなわち、投光装置111は、図13で示されるように、赤外光からなるレーザ光を発生するレーザ光源201、およびレーザ光源201より発せられたレーザ光を平行光に変換する補正レンズ202より構成される。
 尚、図13においては、補正レンズ202が、レンズ202a,202bの2枚のレンズから構成される例が示されているが、2枚以外の枚数のレンズから構成されるようにしてもよい。
 そして、補正レンズ202の後段に、DoE112が配置され、投光装置111から発せられた所定の回折ドットパターンからなる光が被写体であるユーザ121に投光される。
 このような構成から、補正レンズ202を構成するレンズ202a,202b、およびDoE112において、それぞれセンタグラデーション特性を備えたNDフィルタ211,212,213が設けられることにより、例えば、図14で示されるように、被写体であるユーザ121に対して、撮像装置113のレンズ36の光軸に対応する中心付近においては暗く、かつ、周辺部に向かって距離に応じて明るい状態の赤外光が投光される。
 尚、図14においては、丸印がDoE112により形成される回折ドットパターンを示しており、丸印の色が、投光される赤外光の明るさを表現している。
 図14で示されるような回折ドットパターンからなる赤外光が投光されることにより、撮像装置113において撮像される画像の中心付近においては、暗い画像が撮像されることになるが、周辺部に向かって明るい光が投光されるので、レンズ36の光量特性に従って暗い画像として撮像されることになるので、撮像される画像は全体として、均一の明るさの画像として撮像される。
 結果として、生体認証に用いられる画像全体の明るさを均一の状態にして撮像することが可能となるので、生体認証におけるエラーの発生を抑制することが可能となる。
 尚、図13の投光装置111においては、センタグラデーション特性を備えたNDフィルタ211,212,213が、それぞれ補正レンズ202を構成するレンズ202a,202b、およびDoE112に設けられる例について説明してきたが、センタグラデーション特性を備えたNDフィルタ211,212,213は、このうちの、少なくとも1カ所以上が設けられていればよく、必ずしも全ての位置に設けられていなくてもよい。
 ただし、光透過率は、全体として、例えば、図14で示されるような配光分布で赤外光が被写体であるユーザ121に対して照射されるように調整される必要がある。
 また、生体認証システムにおいては、投光装置111側と、撮像装置113側との両方にセンタグラデーション特性を備えたNDフィルタ152、並びに、NDフィルタ211,212、および213が全て設けられていてもよいし、これらのうちの少なくとも1つ以上が設けられていてもよい。
 <<3.第3の実施の形態>>
 以上においては、カメラモジュール11や生体認証システム101において、IRCF37、BPF151、補正レンズ202のレンズ202a,202b、およびDoE112等の内部にセンタグラデーション特性を備えたNDフィルタ51,152,211乃至213を設けるようにする例について説明してきたが、撮像される画像に対して光学的に補正が施されるようにNDフィルタ51が設けられれば、その他の構成であってもよい。
 図15は、図1のカメラモジュール11のその他のカメラモジュール221の構成例を示している。
 尚、図15のカメラモジュール221において、図1のカメラモジュール11と同一の構成については、同一の符号を付しており、その説明は適宜省略する。
 すなわち、図15のカメラモジュール221において、図1のカメラモジュール11と異なる点は、保護ガラス231が、レンズ36の前段に設けられている点と、固体撮像素子31がCSP(Chip Size Package)化されており、撮像面に対してWLL(Wafer Level Lens)233が設けられ、さらに前段にレンズ36を前段側レンズとしたときの後段側レンズ232が設けられている点である。
 WLL233は、固体撮像素子31の画素単位の薄型レンズであり、レンズ232は、レンズ36と併せて光学ブロック22を構成し、図中上方からの入射光を集光して、固体撮像素子31の撮像面に結像させる。
 図15のカメラモジュール221においては、センタグラデーション特性を備えたNDフィルタ241乃至246が設けられている。
 NDフィルタ241は、保護ガラス231内に設けられている。
 また、NDフィルタ242乃至244は、レンズ36の、図中の上段付近、中段付近、および下段付近にそれぞれ設けられている。
 さらに、NDフィルタ245は、レンズ232とWLL233との間(CSP化された固体撮像素子31のガラス内)に設けられている。
 また、NDフィルタ246は、WLL233内に設けられている。
 すなわち、図15においては、6枚のNDフィルタ241乃至246によりセンタグラデーション特性が形成されることにより、レンズ36の光軸付近が最も透過率が低く、光軸から周辺部に向かうに従って透過率が高くされるように構成される。そして、このような構成により、固体撮像素子31により撮像される画像全体の明るさを均一にすることが可能となる。
 結果として、全体の明るさが均一の画像を撮像することが可能となる。
 また、図15においては、NDフィルタ241乃至246が6枚全て設けられる構成例が示されているが、このうちの少なくとも1枚以上が設けられていればよい。
 ただし、センタグラデーション特性が形成される部位が薄く、十分な明るさの変化を付けることができない場合については、十分な明るさの変化が得られる程度の複数の枚数に形成される必要がある。
 <<4.変形例>>
 固体撮像素子31は、パッケージに収納されるようにしてもよい。
 すなわち、図16のカメラモジュール271においては、固体撮像素子31がベース基板301に形成されて光透過材料から成るパッケージ311にパッケージング(収納)されている点で、構成上、固体撮像素子31が回路基板33に実装されている図1のカメラモジュール11と相違しており、それ以外の構成については基本的に同じである。従って、光学ブロック22において、NDフィルタ51は、レンズ36の光軸から周辺部に向かうにつれて(光軸から離れるに従って)、好ましくは連続的に光透過率の値が大きくなるセンタグラデーション特性を有している。
 固体撮像素子31をパッケージングするパッケージ311は、光透過材料、例えばガラスを主構成材料としたパッケージである。固体撮像素子31のパッケージングには、例えば、ウエハ状態のままでパッケージングまで行うWLCSP(Wafer Level Chip Size Package)半導体パッケージ技術を用いることができる。
 このWLCSP半導体パッケージ技術によれば、ウエハを切断した半導体チップの大きさが、そのままパッケージ311の大きさとなるため、カメラモジュール271の小型化及び軽量化を図ることができる。固体撮像素子31を収納したパッケージ311は、半田バンプ312を介して回路基板に実装される。
 なお、ここでは、NDフィルタ51を、IRCF37内に形成する場合を例示しているが、図1のカメラモジュール11と同様に、IRCF37内、更には、IRCF37に限らず、IRCF37とは離間した位置となる、レンズ36内、カメラモジュール271の保護シールドガラス内の少なくとも1箇所に形成するようにしてもよい。
 また、センタグラデーション特性を備えたNDフィルタは、IRCF37及びレンズ36の他、図17に示すように、パッケージ311の表面にNDフィルタ321として形成されるようにしてもよい。
 そして、NDフィルタ321が、IRCF37側に形成される場合、レンズ36側に形成される場合、パッケージ311側に形成される場合のいずれにおいても、その形成位置については、レンズ36の光量特性や加工精度、製造方法に応じて、適宜変更することができる。
 図16,図17のカメラモジュール271のいずれにおいても、図1のカメラモジュール11と同様の作用、効果を得ることができる。即ち、レンズ36の小絞り回折を解決するために、レンズ36の口径を大きくすることで発生する周辺光量低下に起因した光量の不均一性を、ノイズ成分、および固体撮像素子の傷や微細なゴミなどが強調されてしまう信号処理での補正ではなく、光学的に補正することが可能となり、ノイズ成分、傷、およびゴミなどの影響が強調されることなく、撮像される画像全体における光量を均一にすることが可能となる。
<<5.本開示の電子機器の一例である撮像装置に適用した例>>
 図18は、本開示の電子機器の一例である撮像装置の構成を示すブロック図である。図18に示すように、本例に係る撮像装置1100は、撮像光学系1101、撮像部1102、DSP(Digital Signal Processor)回路1103、フレームメモリ1104、表示装置1105、記録装置1106、操作系1107、及び、電源系1108等を有している。そして、DSP回路1103、フレームメモリ1104、表示装置1105、記録装置1106、操作系1107、及び、電源系1108がバスライン1109を介して相互に接続された構成となっている。
 撮像光学系1101は、被写体からの入射光(画像光)を取り込んで撮像部1102の撮像面上に結像する。撮像部1102は、光学系1101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。DSP回路1103は、一般的なカメラ信号処理、例えば、ホワイトバランス処理、デモザイク処理、ガンマ補正処理などを行う。
 フレームメモリ1104は、DSP回路1103での信号処理の過程で適宜データの格納に用いられる。表示装置1105は、液晶表示装置や有機EL(Electro Luminescence)表示装置等のパネル型表示装置から成り、撮像部102で撮像された動画または静止画を表示する。記録装置1106は、撮像部1102で撮像された動画または静止画を、可搬型の半導体メモリや、光ディスク、HDD(Hard Disk Drive)等の記録媒体に記録する。
 操作系1107は、ユーザによる操作の下に、本撮像装置1100が持つ様々な機能について操作指令を発する。電源系1108は、DSP回路1103、フレームメモリ1104、表示装置1105、記録装置1106、及び、操作系1107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 上記の構成の撮像装置1100において、撮像光学系1101及び撮像部1102として、先述した第1実施形態又は第2実施形態に係るカメラモジュールを用いることができる。これらの実施形態に係るカメラモジュールは、光学中心から周辺部に亘って均一性のある明るさを実現することができることから、撮像光学系1101のレンズの設計において、シェーディング補正の光学設計を緩和できるためレンズ枚数を削減できる。
 従って、撮像光学系1101及び撮像部1102として、第1実施形態又は第2実施形態に係るカメラモジュールを用いることで、レンズ枚数を削減できることに伴ってコスト低減及び低背化を図ることができる。また、本開示に係る技術によって集光レンズの小絞り回折の問題を解決でき、それに伴って固体撮像素子の画素の微細化を図ることができるために、高精細な画像の撮像が可能になる。
 尚、本開示は、以下のような構成も取ることができる。
<1> 画像を撮像する固体撮像素子の撮像面に入射光を集光するレンズと、
 前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光をフィルタリングするフィルタとを備え、
 前記フィルタは、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きい
 撮像装置。
<2> 前記フィルタは、前記レンズの光軸から離れるに連れて光透過率が大きくなるND(Neutral Density)フィルタである
 <1>に記載の撮像装置。
<3> 前記フィルタの光透過率は、前記レンズの光量特性に応じて、前記レンズの光軸から離れるに連れて大きくなる
 <1>に記載の撮像装置。
<4> 前記フィルタは、前記レンズと離間して配設される、または、前記レンズの内部に形成される
 <1>に記載の撮像装置。
<5> 前記入射光に含まれる赤外光をカットするIRCF(赤外光カットフィルタ)をさらに備え、
 前記フィルタは、前記IRCFと離間して配設される、または、前記IRCF内に形成される
 <1>乃至<4>のいずれかに記載の撮像装置。
<6> 前記フィルタは、光透過材料からなる下部材と、上部材とが貼り合わされ、前記下部材と前記上部材との間にマスク素材が挟み込まれた構造であり、
 前記下部材、および、前記上部材の少なくともいずれかに、前記マスク素材が充填される凹部が形成される
 <1>乃至<5>のいずれかに記載の撮像装置。
<7> 前記凹部の形状は、前記レンズの光軸が深く、前記レンズの光軸から周辺部に向かって離れるについて浅い
 <6>に記載の撮像装置。
<8> 前記凹部の形状は、前記レンズの光量特性に基づいた形状である
 <6>に記載の撮像装置。
<9> 前記上部材と前記下部材とは、貼り合わされることにより、前記入射光を固体撮像素子の撮像面に集光するレンズを構成する
 <6>に記載の撮像装置。
<10> 前記固体撮像素子は、光透過材料からなるパッケージに格納される
 <1>乃至<9>のいずれかに記載の撮像装置。
<11> 画像を撮像する固体撮像素子の撮像面に入射光を集光するレンズと、
 前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光をフィルタリングするフィルタとを備え、
 前記フィルタは、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きい
 カメラモジュール。
<12> 画像を撮像する固体撮像素子の撮像面に入射光を集光するレンズと、
 前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光をフィルタリングするフィルタとを備え、
 前記フィルタは、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きい
 電子機器。
<13> 被写体に所定の光を投光する投光装置と、
 前記所定の光が投光された前記被写体からの入射光を、レンズにより集光して画像として撮像する撮像装置とからなる撮像システムにおいて、
 前記投光装置は、
  前記所定の光を、前記レンズにより集光して撮像される前記被写体の前記画像の光量を均一にするようにフィルタリングして前記被写体に投光するフィルタ
 を備える撮像システム。
<14> 前記フィルタは、前記レンズの光軸から離れるに連れて光透過率が大きくなるND(Neutral Density)フィルタである
 <13>に記載の撮像システム。
<15> 前記フィルタの光透過率は、前記レンズの光量特性に応じて、前記レンズの光軸から離れるに連れて大きくなる
 <13>に記載の撮像システム。
<16> 前記投光装置は、
 前記所定の光を平行光に変換する補正レンズをさらに含み、
 前記フィルタは、前記補正レンズと離間して、または、前記補正レンズ内に構成される
 <13>乃至<15>のいずれかに記載の撮像システム。
<17> 前記所定の光は、赤外光であり、
 前記投光装置は、前記赤外光を用いて回折ドットパターンを形成するパターン形成部をさらに含み、
 前記フィルタは、前記パターン形成部と離間して、または、前記パターン形成部内に構成される
 <13>乃至<16>のいずれかに記載の撮像システム。
<18> 前記被写体は、ユーザの顔であり、
 前記撮像装置は、前記被写体に照射された、前記赤外光が用いられて形成された回折ドットパターンに基づいて、前記ユーザの顔の凹凸を検出して、前記ユーザを認証する
 <17>に記載の撮像システム。
<19> 前記撮像装置は、ToF(Time of Flight)センサを含み、
 前記被写体に照射された、前記赤外光が用いられて形成された回折ドットパターンを用いた前記ToFセンサによる、前記ユーザの顔の表面までの測距結果に基づいて、前記ユーザの顔の表面の凹凸を検出して、前記ユーザを認証する
 <18>に記載の撮像システム。
<20> 前記入射光に含まれる赤外光を透過させるBPF(Band Pass Filter)をさらに備え、
 前記フィルタは、前記BPFと離間して配設される、または、前記BPF内に形成される
 <17>に記載の撮像システム。
 11 カメラモジュール, 21 撮像ブロック, 22 光学ブロック, 31 固体撮像素子, 32 金属ワイヤ, 33 回路基板, 34 スペーサ, 35 接着剤, 36 レンズ, 37 IRCF(IR Cut Filter), 38 ホルダ, 39 コネクタ, 40 LSI, 41 記憶部, 42 プレート, 51,51’,51’’ NDフィルタ, 71,71’,71’’, 下部材, 71a 凹部, 72,72’ マスク素材, 73,73’,73’’ 下部材, 73a 凹部, 101 生体認証システム, 111 投光部, 112 DoE, 113 撮像装置, 121 ユーザ, 151 BPF(Band Pass Filter), 152 NDフィルタ, 201 レーザ光源, 202 補正レンズ, 202a,202b レンズ, 211,212,213 NDフィルタ, 221 カメラモジュール, 231 保護ガラス, 232 レンズ, 233 WLL(Wafer Level Lens), 241乃至246 NDフィルタ, 271 カメラモジュール, 311 パッケージ, 312 半田バンプ

Claims (20)

  1.  画像を撮像する固体撮像素子の撮像面に入射光を集光するレンズと、
     前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光をフィルタリングするフィルタとを備え、
     前記フィルタは、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きい
     撮像装置。
  2.  前記フィルタは、前記レンズの光軸から離れるに連れて光透過率が大きくなるND(Neutral Density)フィルタである
     請求項1に記載の撮像装置。
  3.  前記フィルタの光透過率は、前記レンズの光量特性に応じて、前記レンズの光軸から離れるに連れて大きくなる
     請求項1に記載の撮像装置。
  4.  前記フィルタは、前記レンズと離間して配設される、または、前記レンズの内部に形成される
     請求項1に記載の撮像装置。
  5.  前記入射光に含まれる赤外光をカットするIRCF(赤外光カットフィルタ)をさらに備え、
     前記フィルタは、前記IRCFと離間して配設される、または、前記IRCF内に形成される
     請求項1に記載の撮像装置。
  6.  前記フィルタは、光透過材料からなる下部材と、上部材とが貼り合わされ、前記下部材と前記上部材との間にマスク素材が挟み込まれた構造であり、
     前記下部材、および、前記上部材の少なくともいずれかに、前記マスク素材が充填される凹部が形成される
     請求項1に記載の撮像装置。
  7.  前記凹部の形状は、前記レンズの光軸が深く、前記レンズの光軸から周辺部に向かって離れるについて浅い
     請求項6に記載の撮像装置。
  8.  前記凹部の形状は、前記レンズの光量特性に基づいた形状である
     請求項6に記載の撮像装置。
  9.  前記上部材と前記下部材とは、貼り合わされることにより、前記入射光を固体撮像素子の撮像面に集光するレンズを構成する
     請求項6に記載の撮像装置。
  10.  前記固体撮像素子は、光透過材料からなるパッケージに格納される
     請求項1に記載の撮像装置。
  11.  画像を撮像する固体撮像素子の撮像面に入射光を集光するレンズと、
     前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光をフィルタリングするフィルタとを備え、
     前記フィルタは、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きい
     カメラモジュール。
  12.  画像を撮像する固体撮像素子の撮像面に入射光を集光するレンズと、
     前記固体撮像素子により撮像される前記画像の光量を均一にするように前記入射光をフィルタリングするフィルタとを備え、
     前記フィルタは、少なくとも前記レンズの光軸から離れた範囲の光透過率が、前記光軸の付近の範囲の光透過率よりも大きい
     電子機器。
  13.  被写体に所定の光を投光する投光装置と、
     前記所定の光が投光された前記被写体からの入射光を、レンズにより集光して画像として撮像する撮像装置とからなる撮像システムにおいて、
     前記投光装置は、
      前記所定の光を、前記レンズにより集光して撮像される前記被写体の前記画像の光量を均一にするようにフィルタリングして前記被写体に投光するフィルタ
     を備える撮像システム。
  14.  前記フィルタは、前記レンズの光軸から離れるに連れて光透過率が大きくなるND(Neutral Density)フィルタである
     請求項13に記載の撮像システム。
  15.  前記フィルタの光透過率は、前記レンズの光量特性に応じて、前記レンズの光軸から離れるに連れて大きくなる
     請求項13に記載の撮像システム。
  16.  前記投光装置は、
     前記所定の光を平行光に変換する補正レンズをさらに含み、
     前記フィルタは、前記補正レンズと離間して、または、前記補正レンズ内に構成される
     請求項13に記載の撮像システム。
  17.  前記所定の光は、赤外光であり、
     前記投光装置は、前記赤外光を用いて回折ドットパターンを形成するパターン形成部をさらに含み、
     前記フィルタは、前記パターン形成部と離間して、または、前記パターン形成部内に構成される
     請求項13に記載の撮像システム。
  18.  前記被写体は、ユーザの顔であり、
     前記撮像装置は、前記被写体に照射された、前記赤外光が用いられて形成された回折ドットパターンに基づいて、前記ユーザの顔の凹凸を検出して、前記ユーザを認証する
     請求項17に記載の撮像システム。
  19.  前記撮像装置は、ToF(Time of Flight)センサを含み、
     前記被写体に照射された、前記赤外光が用いられて形成された回折ドットパターンを用いた前記ToFセンサによる、前記ユーザの顔の表面までの測距結果に基づいて、前記ユーザの顔の表面の凹凸を検出して、前記ユーザを認証する
     請求項18に記載の撮像システム。
  20.  前記入射光に含まれる赤外光を透過させるBPF(Band Pass Filter)をさらに備え、
     前記フィルタは、前記BPFと離間して配設される、または、前記BPF内に形成される
     請求項17に記載の撮像システム。
PCT/JP2021/001415 2020-01-31 2021-01-18 撮像装置、カメラモジュール、および電子機器、並びに撮像システム WO2021153300A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/759,435 US20230095828A1 (en) 2020-01-31 2021-01-18 Imaging device, camera module, electronic device, and imaging system
CN202180009684.XA CN115023940A (zh) 2020-01-31 2021-01-18 成像装置、相机模块、电子设备和成像***
JP2021574643A JPWO2021153300A1 (ja) 2020-01-31 2021-01-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020015227 2020-01-31
JP2020-015227 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153300A1 true WO2021153300A1 (ja) 2021-08-05

Family

ID=77079321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001415 WO2021153300A1 (ja) 2020-01-31 2021-01-18 撮像装置、カメラモジュール、および電子機器、並びに撮像システム

Country Status (4)

Country Link
US (1) US20230095828A1 (ja)
JP (1) JPWO2021153300A1 (ja)
CN (1) CN115023940A (ja)
WO (1) WO2021153300A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103026U (ja) * 1981-12-29 1983-07-13 株式会社リコー 2焦点距離カメラの受光量変換機構
JPH1144802A (ja) * 1997-07-28 1999-02-16 Asahi Seimitsu Kk Ndフィルター
JP2000131781A (ja) * 1998-10-23 2000-05-12 Fuji Photo Film Co Ltd 透過照明装置
JP2002214145A (ja) * 2001-01-15 2002-07-31 Nippon Steel Corp 表面疵検査における照明方法およびその装置
JP2006267692A (ja) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd カメラ
JP2013152369A (ja) * 2012-01-25 2013-08-08 Nippon Seimitsu Sokki Kk 絞り装置およびカメラ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103026U (ja) * 1981-12-29 1983-07-13 株式会社リコー 2焦点距離カメラの受光量変換機構
JPH1144802A (ja) * 1997-07-28 1999-02-16 Asahi Seimitsu Kk Ndフィルター
JP2000131781A (ja) * 1998-10-23 2000-05-12 Fuji Photo Film Co Ltd 透過照明装置
JP2002214145A (ja) * 2001-01-15 2002-07-31 Nippon Steel Corp 表面疵検査における照明方法およびその装置
JP2006267692A (ja) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd カメラ
JP2013152369A (ja) * 2012-01-25 2013-08-08 Nippon Seimitsu Sokki Kk 絞り装置およびカメラ

Also Published As

Publication number Publication date
CN115023940A (zh) 2022-09-06
US20230095828A1 (en) 2023-03-30
JPWO2021153300A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
US8842194B2 (en) Imaging element and imaging apparatus
CN111508983B (zh) 固体图像传感器、固体图像传感器制造方法和电子设备
US8436286B2 (en) Imager module optical focus and assembly method
US8902347B2 (en) Solid-state image sensing device and electronic apparatus
US8023016B2 (en) Imaging device and manufacturing method thereof
KR101939413B1 (ko) 광학 센서, 렌즈 모듈, 및 카메라 모듈
US7349626B2 (en) Imaging apparatus
US20090121301A1 (en) Image capture module
US20100053394A1 (en) Solid-state image pickup apparatus and electronic device comprising the same
US8587082B2 (en) Imaging device and camera module
WO2015146332A1 (ja) 固体撮像装置、電子機器、および固体撮像装置の製造方法
US8541747B2 (en) Solid-state image sensor and image sensing apparatus
WO2015080163A1 (ja) 電子機器、撮像装置、および、撮像素子
WO2021153300A1 (ja) 撮像装置、カメラモジュール、および電子機器、並びに撮像システム
US9117719B2 (en) Solid-state imaging apparatus, manufacturing method for the same, and electronic apparatus
JP2009188461A (ja) 撮像装置
JP2008219346A (ja) 撮像素子、撮像装置及び撮像素子の駆動方法
WO2021006050A1 (ja) 測距装置および生体認証装置
JPWO2019111575A1 (ja) 撮像装置および撮像装置の製造方法
JP2004201203A (ja) 撮像素子及びそれを備えたデジタル撮影装置
KR101613434B1 (ko) 디지털 촬영장치의 화질 개선 장치 및 화질 개선 방법
JP2021114739A (ja) カラー画像撮像装置
CN117280704A (zh) 成像元件、成像装置和电子装置
JP2024097101A (ja) 撮像素子、撮像装置及び電子機器
JP2015061109A (ja) 電子機器、電子機器の制御方法、及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747616

Country of ref document: EP

Kind code of ref document: A1