WO2021152742A1 - コンプレッサ装置及びターボチャージャ - Google Patents

コンプレッサ装置及びターボチャージャ Download PDF

Info

Publication number
WO2021152742A1
WO2021152742A1 PCT/JP2020/003235 JP2020003235W WO2021152742A1 WO 2021152742 A1 WO2021152742 A1 WO 2021152742A1 JP 2020003235 W JP2020003235 W JP 2020003235W WO 2021152742 A1 WO2021152742 A1 WO 2021152742A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
hole
tip
compressor
compressor wheel
Prior art date
Application number
PCT/JP2020/003235
Other languages
English (en)
French (fr)
Inventor
浩範 本田
水田 徹
敬信 吉澤
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2020/003235 priority Critical patent/WO2021152742A1/ja
Publication of WO2021152742A1 publication Critical patent/WO2021152742A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00

Definitions

  • the present disclosure relates to a compressor device and a turbocharger equipped with the compressor device.
  • the compressor device incorporated in the turbocharger has a so-called bore-through structure compressor device in which a through hole is formed in the central axis of the compressor wheel and a shaft is inserted into the through hole, and an opening is provided in the back surface of the compressor wheel.
  • a compressor device having a so-called boreless structure in which an insertion hole at the bottom is formed and a shaft is inserted into the insertion hole.
  • a so-called boreless structure may be adopted in a compressor incorporated in a relatively large turbocharger attached to a commercial vehicle or an industrial engine. It has been confirmed that the boreless structure has advantages such as reduction of stress concentration generated in the area around the insertion hole.
  • Patent Document 1 discloses a turbocharger that employs a bore-through structure and a boreless structure for a compressor.
  • the axis of the shaft tends to deviate from the axis of the insertion hole during assembly, and the axis of the shaft is more likely to be displaced with respect to the axis of the insertion hole.
  • the inclination (deviation angle) of the shaft axis tends to increase. If the deviation angle becomes large, an unbalanced force is generated during the rotation of the shaft, which may impair the stable operation of the device such as vibration.
  • measures such as strict control of tolerances can be considered, but this measure requires high-precision processing and assembly, which leads to an increase in cost. This will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a vertical cross-sectional view showing a compressor wheel (including a hub portion) having a conventional boreless structure
  • FIG. 6 is a vertical cross-sectional view showing a compressor wheel (including a hub portion) having a conventional bore-through structure. It is a figure.
  • a bottomed insertion hole 026 having an opening in the back surface 023 is formed along the axis 022a, and the tip of the shaft 012 is inserted into the insertion hole 026 to insert the insertion hole. It is fixed at 026.
  • FIG. 5 is a vertical cross-sectional view showing a compressor wheel (including a hub portion) having a conventional boreless structure
  • FIG. 6 is a vertical cross-sectional view showing a compressor wheel (including a hub portion) having a conventional bore-through structure. It is a figure.
  • a bottomed insertion hole 026 having an opening in the back surface 023 is formed along the axis 022a, and the tip of the shaft 012 is inserted into
  • the compressor wheel 022B having a bore-through structure is formed with a through hole 027 penetrating the compressor wheel 022B in the axial direction, that is, from the back surface 023 to the tip side, and the tip portion of the shaft 012 is formed in the through hole 027. Is inserted.
  • the length of the fitting portion between the bore-through structure compressor wheel 022B and the shaft 012 is longer than the length of the fitting portion between the boreless structure compressor wheel 022A and the shaft 012.
  • the longer the length of the fitting portion the smaller the inclination angle (deviation angle) of the axis 012a of the shaft 012 with respect to the axis 022a of the compressor wheel 022A or 022B. Therefore, since the deviation angle ⁇ 1 in the case of the boreless structure is larger than the deviation angle ⁇ 2 in the case of the bore-through structure, an unbalanced force is generated during the rotation of the shaft 012, resulting in lack of stability.
  • the present disclosure has been made in view of the above-mentioned problems, and suppresses the misalignment between the shaft and the compressor wheel in a compressor device having a boreless structure without requiring high-precision machining or assembly.
  • the purpose is.
  • the compressor device is a compressor device including a compressor wheel and a shaft inserted into a bottomed insertion hole having an opening on the back surface of the compressor wheel.
  • the hole is a first hole portion having a first diameter, and has a first hole portion extending from the back surface toward the tip end side of the compressor wheel and a second hole portion having a second diameter smaller than the first diameter.
  • a second hole portion including a second hole portion extending from the tip end of the first hole portion toward the tip end side of the compressor wheel, and the shaft is fitted into the first hole portion. Includes a first shaft portion having one fitting portion and a second shaft portion having a second fitting portion that fits into the second hole portion.
  • the turbocharger according to the present disclosure includes the above-mentioned compressor device provided on one end side of the shaft and a turbine device including a turbine wheel fixed to the other end side of the shaft and rotated by exhaust gas.
  • the compressor device and turbocharger in a compressor device having a boreless structure, it is possible to suppress an axial misalignment between the shaft and the compressor wheel without requiring high-precision machining or assembly. .. As a result, it is possible to avoid an unbalanced force generated on the rotating shaft and vibration or the like, and stable operation of the device becomes possible.
  • FIG. 1 shows a compressor apparatus. It is a partially enlarged vertical sectional view of the compressor wheel which concerns on one Embodiment. It is a partially enlarged vertical sectional view of the compressor wheel which concerns on one Embodiment. It is a partially enlarged vertical sectional view of the compressor wheel which concerns on one Embodiment. It is a partially enlarged vertical sectional view of the compressor wheel which concerns on one Embodiment. It is a partially enlarged vertical sectional view which shows the compressor wheel of the conventional boreless structure. It is a partially enlarged vertical sectional view which shows the compressor wheel of the conventional bore-through structure.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range in which the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • FIG. 1 is a vertical cross-sectional view showing a turbocharger 10 including a compressor device 20 having a boreless structure according to an embodiment
  • FIG. 2 is a partially enlarged view of FIG. 1 showing the compressor device 20.
  • the turbocharger 10 includes a compressor device 20 at one end of the shaft 12, and a turbine device 30 at the other end of the shaft 12 opposite to the compressor device 20.
  • the compressor device 20 includes a compressor wheel 22 fixed to one end of a shaft 12 and a plurality of compressor blades 24 provided on the outer periphery of the compressor wheel 22 in the circumferential direction.
  • An opening is provided in the back surface 23 of the compressor wheel 22, and a bottomed insertion hole 26 is formed on the axis 12a of the compressor wheel 22 along the axis, and one end of the shaft 12 is inserted and fixed in the insertion hole 26. ..
  • the turbine device 30 includes a turbine wheel 32 attached to the other end of the shaft 12 by means such as welding, and a plurality of turbine blades 34 provided in the circumferential direction on the outer periphery of the turbine wheel 32.
  • the shaft 12 is supported by a journal bearing (not shown) at the center in the direction along the axis 12a.
  • the compressor device 20 is housed inside a compressor housing (not shown)
  • the axial central portion of the shaft 12 is housed inside a bearing housing (not shown)
  • the turbine device 30 is housed in a turbine housing (not shown). It is housed inside (not shown).
  • a thrust collar 16 is provided around the shaft 12 near the compressor device 20.
  • a thrust bearing (not shown) that supports the shaft 12 with respect to an axial thrust load applied to the shaft 12 is provided, and the thrust collar 16 supports the thrust bearing.
  • 3A, 3B and 4 are vertical cross-sectional views of the vicinity of the insertion hole 26 of the compressor wheel 22 (including the hub portion 50 described later) according to some embodiments.
  • the insertion hole 26 has two holes 26a and 26b having different diameters.
  • the hole portion 26a first hole portion 26a
  • the hole portion 26b second hole portion 26b
  • the diameter of the cross section of the second hole portion 26b is configured to be smaller than the diameter of the cross section of the first hole portion 26a.
  • the tip of the shaft 12 inserted into the insertion hole 26 has a first shaft portion 40 and a second shaft portion 42.
  • the first shaft portion 40 has a first fitting portion 44 (44a, 44b) that fits into the first hole portion 26a
  • the second shaft portion 42 has a second fitting that fits into the second hole portion 26b. It has a joint 46 (46a, 46b). That is, the diameter of the cross section of the first fitting portion 44 (first diameter) is larger than the diameter of the cross section of the second fitting portion 46 (second diameter).
  • the first shaft portion 40 is fitted into the first hole portion 26a by the first fitting portion 44, and the second shaft portion is formed. 42 is fitted into the second hole portion 26b by the second fitting portion 46.
  • the tip end portion of the shaft 12 inserted into the insertion hole 26 is supported at two places, the first fitting portion 44 and the second fitting portion 46.
  • the deviation angle ⁇ 1 of the shaft 12 generated by the axial deviation between the insertion hole 26 and the shaft 12 is fitted by one from the first fitting portion 44 to the second fitting portion 46. It can be kept as small as when the portion is formed. This eliminates the imbalance during rotation of the shaft 12 and enables stable operation.
  • the shaft 12 is inserted into the insertion hole 26 and the second fitting portion 46 of the second shaft portion 42 is the first hole.
  • the inner peripheral surface of the first hole portion 26a and the second fitting portion 46 do not come into contact with each other. Therefore, the process of fitting the second fitting portion 46 into the second hole portion 26b becomes easy.
  • the insertion hole 26 and the tip of the shaft 12 are fitted only by the first fitting portion 44 and the second fitting portion 46, and the assembly tolerance can be set loosely for the other parts, so that high-precision machining is performed. Or assembly is not required. Therefore, the manufacturing cost of the compressor wheel 22 and the shaft 12 can be suppressed.
  • the insertion hole 26 is formed linearly along the axis of the compressor wheel 22, and the first shaft portion 40 and the second shaft portion 42 extend linearly along the axial direction of the insertion hole 26.
  • the insertion hole 26, the first shaft portion 40, and the second shaft portion 42 have a circular cross section. Further, the cross sections of the first shaft portion 40 and the second shaft portion 42 are arranged concentrically with the same center of the cross section.
  • the difference in diameter between the first hole 26a and the second hole 26b should be greater than or equal to the tolerance and less. That is, the smaller the diameter of the second hole portion 26b, the more difficult the assembly and the lower the strength.
  • the contact area between the first fitting portion 44 (44a) and the first hole portion 26a, and the contact area between the second fitting portion 46 (46a) and the second hole portion 26b. Can minimize the deterioration of assembling property by making it as small as possible.
  • a hub portion 50 extending toward the center of the shaft 12 along the axial direction is formed at the center of the back surface 23 of the compressor wheel 22, and the central portion of the hub portion 50 is formed.
  • An insertion hole 26 is formed in the hole 26.
  • L 0 indicates the length of the fitting portion between the hub portion 50 and the tip end portion of the shaft 12 in the insertion hole 26.
  • the hub portion 50 is rotatably supported by a support member (not shown) in contact with the outer peripheral surface of the hub portion 50.
  • an inclined planar chamfer 56 is formed on the outer periphery of the tip of the first shaft portion 40, whereby the first hole portion 26a of the first shaft portion 40 is formed. Easy positioning when inserting into. Further, a chamfer 58 having a curved surface at the outer peripheral end of the tip end portion of the second shaft portion 42 is formed, which facilitates positioning of the second shaft portion 42 at the time of insertion into the second hole portion 26b.
  • the first hole portion 26a includes a female screw portion 62 extending from the back surface 23 of the compressor wheel 22 toward the tip end side of the compressor wheel 22 and a female screw portion 62. It has a non-threaded portion 64 extending from the tip of the threaded portion 62 toward the tip end side of the compressor wheel 22.
  • the first shaft portion 40 has a male screw portion 66 that can be screwed into the female screw portion 62, and the first fitting portion 44 is configured to fit at least a part of the non-threaded portion 64. ing.
  • the first shaft portion 40 and the second shaft portion 42 are supported by the first fitting portion 44 and the second fitting portion 46, and the axial misalignment between the insertion hole 26 and the shaft 12 is provided.
  • the female screw portion 62 and the male screw portion 66 are screwed together to be fixed to the compressor wheel 22.
  • the first fitting portion 44 (44a, 44b) of the tip and the second fitting portion 46 (46a, 46b) the length L 1 between the tips of the non-threaded portion 64 tip and non It is configured to be longer than the length L 2 between the threaded portion 64 and the rear end (L 2 ⁇ L 1 ).
  • the tip of the second fitting portion 46 is inserted into the second hole portion 26b and the second shaft portion with respect to the second hole portion 26b. Axial alignment of 42 is performed.
  • the axis alignment between the second hole portion 26b and the second shaft portion 42 is performed before the axis alignment between the first hole portion 26a and the first shaft portion 40, so that the insertion after assembly is performed. It is possible to suppress the axial deviation of the shaft tip with respect to the hole 26.
  • the first fitting portion 44 (44b) and the second fitting portion 46 (46b) are gathered at substantially one point in the axial direction of the compressor wheel 22. Therefore, the front end and the rear end are almost at the same position. Also in this embodiment, when the length L 1 and the length L 2 are set (L 2 ⁇ L 1 ), the same effects as those in the embodiments shown in FIGS. 3A and 3B can be obtained.
  • an inclined surface 60 inclined with respect to the axial direction is formed at the tip of the non-threaded portion 64.
  • the positioning of the second shaft portion 42 with respect to the second hole portion 26b and the insertion of the first shaft portion 40 into the first hole portion 26a become easy.
  • stress is generated in the vicinity of the axis of the compressor wheel 22 in the region C along the axis of the compressor wheel 22.
  • the maximum stress is generated at the position where the compressor wheel 22 has the maximum diameter in the axial direction. Therefore, it is desirable that the insertion hole 26 does not extend to the position where it has the maximum diameter in the axial direction.
  • the axial length b of the inclined surface 60 is prevented from being larger than the radial length a (b ⁇ a).
  • the insertion hole 26 is formed in the stress generation region C, so that it is possible to avoid a decrease in the strength of the compressor wheel 22 in the stress generation region C.
  • the inclination angle ⁇ 3 of the inclined surface 60 with respect to the cross section perpendicular to the axial direction of the shaft 12 is set to 0 ° ⁇ ⁇ 3 ⁇ 45 °.
  • b ⁇ a can be set, and the insertion hole 26 can be prevented from extending to the position where the maximum diameter is obtained in the axial direction of the compressor wheel 22.
  • the length between the portion 62 and the rear end in the axial direction is larger than the length L 4 (L 4 ⁇ L 3 ).
  • the first fitting portion 44 (44b) and the second fitting portion 46 (46b) are gathered at substantially one point in the axial direction of the compressor wheel 22. Therefore, the front end and the rear end are almost at the same position. Also in this embodiment, when the length L 3 and the length L 4 are set (L 4 ⁇ L 3 ), the same effects as those in the embodiments shown in FIGS. 3A and 3B can be obtained.
  • At least one of the first fitting portion 44 (44b) or the second fitting portion 46 (46b) is formed in a curved surface shape that is convex outward in the radial direction. ing. According to this embodiment, at least one of the contact area between the first fitting portion 44 (44b) and the first hole portion 26a or the contact area between the second fitting portion 46 (46b) and the second hole portion 26b. Since it can be made smaller, the friction between the first fitting portion 44 (44b) and the first hole portion 26a or the friction between the second fitting portion 46 (46a, 46b) and the second hole portion 26b can be reduced. .. Therefore, the shaft 12 can be easily inserted into the insertion hole 26.
  • the outer edge of the axial cross section of the first fitting portion 44 (44b) or the second fitting portion 46 (46b) is configured to form an arc or an ellipse.
  • the first fitting portion 44 (44b) or the second fitting portion 46 (46b) can be brought into contact with the first hole portion 26a or the second hole portion 26b in a state close to point contact, so that friction between the two can be caused. Can be reduced.
  • the outer edge of the axial cross section of the first fitting portion 44 (44b) having at least a large cross-sectional diameter is configured to form an arc or an ellipse.
  • the distance between the first fitting portion 44 (44b) and the second fitting portion 46 (46b) is increased as much as possible. As a result, the deviation angle ⁇ 1 of the axis 12a at the tip of the shaft 12 with respect to the axis of the insertion hole 26 can be suppressed.
  • the turbocharger 10 is provided with a compressor device 20 according to each of the above embodiments at one end of a shaft 12, and exhaust gas discharged from an internal combustion engine at the other end of the shaft 12.
  • the compressor wheel 22 is rotated, and the pressurized air supply is supplied to the internal combustion engine by the rotation of the compressor wheel 22. do.
  • the turbocharger 10 includes the compressor device 20 according to each of the above embodiments, when the shaft 12 and the compressor wheel 22 are assembled, the shaft 12 is first fitted into the insertion hole 26 formed in the compressor wheel 22. It is supported by the joint portion 44 (44a, 44b) and the second fitting portion 46 (46a, 46b).
  • the deviation angle ⁇ 1 of the shaft 12 caused by the axial deviation between the insertion hole 26 and the shaft 12 can be suppressed to a small value, and the imbalance during rotation of the shaft 12 can be eliminated to enable stable operation.
  • the first diameter of the first shaft portion 40 larger than the second diameter of the second shaft portion 42, it is easy to align the axes of the second shaft portion 42 and the second hole portion 26b to be inserted first.
  • the strength of the tip of the shaft inserted into the insertion hole 26 can be increased.
  • the assembly tolerance can be set loosely except for the first fitting portion 44 and the second fitting portion 46, assembling can be facilitated and the manufacturing cost can be suppressed.
  • the compressor device (20) includes a compressor wheel (22) and a shaft (26) inserted into a bottomed insertion hole (26) having an opening on the back surface (23) of the compressor wheel (22). 12), the insertion hole is a first hole portion having a first diameter, and the first hole portion extending from the back surface toward the tip end side of the compressor wheel (12). 26a) and a second hole portion (26b) having a second diameter smaller than the first diameter portion and extending from the tip end of the first hole portion toward the tip end side of the compressor wheel.
  • the shaft includes the first shaft portion (40) having the first fitting portion (44 (44a, 44b)) to be fitted into the first hole portion, and the shaft is fitted into the second hole portion. Includes a second shaft portion (42) having a matching second fitting portion (46 (46a, 46b)).
  • the shaft has a first shaft portion having a first fitting portion to be fitted into the first hole portion and a second fitting portion to be fitted into the second hole portion. Since it has a biaxial portion, it is supported by the first fitting portion and the second fitting portion with respect to the insertion hole. Therefore, the deviation angle ( ⁇ 1) of the shaft generated by the axial deviation between the insertion hole and the shaft is equivalent to the case where one fitting portion is formed from the first fitting portion to the second fitting portion. Can be kept small. This eliminates the imbalance during rotation of the shaft and enables stable operation. Further, since the diameter of the first hole is larger than the diameter of the second hole, when the shaft is inserted into the insertion hole and the second fitting portion of the second shaft portion passes through the first hole.
  • the inner peripheral surface of the first hole portion and the second fitting portion do not come into contact with each other. Therefore, the process of fitting the second fitting portion into the second hole portion becomes easy. Furthermore, the insertion hole and the tip of the shaft are fitted only at the first fitting part and the second fitting part, and the assembly tolerance can be set loosely for the other parts, so high-precision machining and assembly are required. Do not. Therefore, the manufacturing cost of the compressor wheel and the shaft can be suppressed.
  • the compressor device is the compressor device according to 1), and the first hole portion is a female extending from the back surface of the compressor wheel toward the tip end side of the compressor wheel.
  • the first shaft portion includes a threaded portion (62) and a non-threaded portion (64) extending from the tip of the female threaded portion toward the tip end side of the compressor wheel, and the first shaft portion is attached to the female threaded portion. It has a screwable male screw portion (66), and the first fitting portion is configured to be fitted with a part of the non-threaded portion.
  • the first shaft portion and the second shaft portion are supported by the first fitting portion and the second fitting portion, and the first hole is suppressed while suppressing the axial deviation between the insertion hole and the shaft.
  • the female screw portion and the male screw portion are screwed together to be fixed to the compressor wheel.
  • the compressor device according to still another aspect is the compressor device according to 2), and the length L 1 between the tip of the first fitting portion and the tip of the second fitting portion is It is configured to be longer than the length L 2 between the tip of the non-threaded portion and the rear end of the non-threaded portion.
  • the tip of the second fitting portion is inserted into the second hole portion before the first fitting portion is fitted into the first hole portion.
  • the axis of the second shaft portion is aligned with the second hole portion. In this way, the axis alignment between the second hole portion and the second shaft portion is performed before the axis alignment between the first hole portion and the first shaft portion, so that the tip of the shaft with respect to the insertion hole after assembly is performed. It is possible to suppress the misalignment of the axis of the part.
  • the compressor device according to still another aspect is the compressor device according to 2) or 3), wherein the length L 3 between the tip of the first fitting portion and the tip of the male screw portion is , and it is configured to be larger than the length L 4 between the rear end of the tip and the female screw portion of the female threaded portion.
  • the compressor device is the compressor device according to any one of 1) to 4), and at least one of the first fitting portion or the second fitting portion is radially outside. It is formed in a curved shape that is convex toward.
  • At least one of the contact area between the first fitting portion and the first hole portion or the contact area between the second fitting portion and the second hole portion can be reduced, so that the insertion hole and the tip of the shaft can be reduced. Friction between the parts can be reduced. As a result, the shaft can be easily inserted into the insertion hole.
  • the turbocharger (10) according to one embodiment is fixed to the compressor device according to any one of 1) to 5) provided on one end side of the shaft and the other end side of the shaft, and is driven by exhaust gas. It comprises a turbine apparatus (30) including a rotating turbine wheel.
  • the shaft and the compressor wheel when the shaft and the compressor wheel are assembled, the shaft is supported by the first fitting portion and the second fitting portion with respect to the insertion hole formed in the compressor wheel.
  • the deviation angle of the shaft caused by the misalignment between the insertion hole and the shaft can be suppressed to the same level as when one fitting portion is formed from the first fitting portion to the second fitting portion. can.
  • the diameter of the first hole portion is larger than the diameter of the second hole portion, when the shaft is inserted into the insertion hole and the second fitting portion of the second shaft portion passes through the first hole portion. Since the inner peripheral surface of the first hole portion and the second fitting portion do not come into contact with each other, the process of fitting the second fitting portion into the second hole portion becomes easy.
  • the insertion hole and the tip of the shaft are fitted only at the first fitting part and the second fitting part, and the assembly tolerance can be set loosely for the other parts, so high-precision machining and assembly are required. Do not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一実施形態に係るコンプレッサ装置は、コンプレッサホイールと、コンプレッサホイールの背面に開口を有する有底の挿入孔に挿入されるシャフトと、を備えるコンプレッサ装置であって、挿入孔は、第1直径を有する第1孔部であって、コンプレッサホイールの背面からコンプレッサホイールの先端側へ向かって延在する第1孔部と、第1直径より小さい第2直径を有する第2孔部であって、第1孔部の先端からコンプレッサホイールの先端側へ向かって延在する第2孔部と、を含み、シャフトは、第1孔部に嵌合する第1嵌合部を有する第1軸部と、第2孔部に嵌合する第2嵌合部を有する第2軸部と、を含む。

Description

コンプレッサ装置及びターボチャージャ
 本開示は、コンプレッサ装置及び該コンプレッサ装置を備えたターボチャージャに関する。
 ターボチャージャに組み込まれたコンプレッサ装置には、コンプレッサホイールの中心軸に貫通孔が形成され、該貫通孔にシャフトが挿入される、所謂ボアスルー構造のコンプレッサ装置と、コンプレッサホイールの背面に開口を有する有底の挿入孔が形成され、該挿入孔にシャフトが挿入される、所謂ボアレス構造のコンプレッサ装置とがある。商用車や産業用エンジンに取り付けられる比較的大型のターボチャージャに組み込まれるコンプレッサでは、所謂ボアレス構造が採用される場合がある。ボアレス構造は挿入孔周辺の部位に発生する応力集中が低減されるなどの長所が確認されている。特許文献1には、コンプレッサにボアスルー構造及びボアレス構造を採用したターボチャージャが開示されている。
国際公開第2018/167892号
 ボアレス構造のコンプレッサ装置は、ボアスルー構造のコンプレッサ装置よりシャフトとコンプレッサホイールとの嵌合部の長さが短いため、組立時に挿入孔の軸線に対するシャフトの軸心ズレが起りやすく、挿入孔の軸線に対するシャフトの軸線の傾き(偏差角)が大きくなりやすい。偏差角が大きくなると、シャフトの回転中不均衡な力が発生し、振動の発生など装置の安定運転を損なうおそれがある。このような軸心ズレをなくすため、公差の管理を厳しくするなどの対策が考えられるが、この対策は高精度な加工や組立が求められるため、コスト増に繋がる。このことを図5及び図6を用いて説明する。
 図5は、従来のボアレス構造を有するコンプレッサホイール(ハブ部を含む。)を示す縦断面図であり、図6は、従来のボアスルー構造を有するコンプレッサホイール(ハブ部を含む。)を示す縦断面図である。図5において、ボアレス構造を有するコンプレッサホイール022Aには、背面023に開口を有する有底の挿入孔026が軸線022aに沿って形成され、挿入孔026にシャフト012の先端部が挿入され、挿入孔026に固定される。図6において、ボアスルー構造を有するコンプレッサホイール022Bには、軸方向に、即ち、背面023から先端側へ向けてコンプレッサホイール022Bを貫通する貫通孔027が形成され、貫通孔027にシャフト012の先端部が挿入される。挿入孔026又は貫通孔027とシャフト012の先端部との組立公差が小さいほど、コンプレッサホイール022A又は022Bの軸線022aとシャフト012の軸線012aとのズレは小さくなるが、両者の組立が難しくなるため、組立コストは増加する。 
 図5及び図6に示すように、ボアスルー構造のコンプレッサホイール022Bとシャフト012との嵌合部の長さは、ボアレス構造のコンプレッサホイール022Aとシャフト012との嵌合部の長さより長くなる。そして、嵌合部の長さが長くなるほど、コンプレッサホイール022A又は022Bの軸線022aに対するシャフト012の軸線012aの傾斜角(偏差角)は小さくなる。従って、ボアレス構造の場合の偏差角θ1はボアスルー構造の場合の偏差角θ2より大きくなるため、シャフト012の回転中アンバランスな力が発生し、安定性に欠ける。
 本開示は、上述する問題点に鑑みてなされたもので、ボアレス構造のコンプレッサ装置において、高精度な加工や組立を必要とすることなく、シャフトとコンプレッサホイールとの間の軸心ズレを抑制することを目的とする。
 上記目的を達成するため、本開示に係るコンプレッサ装置は、コンプレッサホイールと、前記コンプレッサホイールの背面に開口を有する有底の挿入孔に挿入されるシャフトと、を備えるコンプレッサ装置であって、前記挿入孔は、第1直径を有する第1孔部であって、前記背面から前記コンプレッサホイールの先端側へ向かって延在する第1孔部と、前記第1直径より小さい第2直径を有する第2孔部であって、前記第1孔部の先端から前記コンプレッサホイールの前記先端側へ向かって延在する第2孔部と、を含み、前記シャフトは、前記第1孔部に嵌合する第1嵌合部を有する第1軸部と、前記第2孔部に嵌合する第2嵌合部を有する第2軸部と、を含む。
 本開示に係るターボチャージャは、前記シャフトの一端側に設けられた上述のコンプレッサ装置と、前記シャフトの他端側に固定され、排ガスによって回転するタービンホイールを含むタービン装置と、を備える。
 本開示に係るコンプレッサ装置及びターボチャージャによれば、ボアレス構造のコンプレッサ装置において、高精度な加工や組立を必要とすることなく、シャフトとコンプレッサホイールとの間の軸心ズレを抑制することができる。これによって、回転中のシャフトに不均衡な力が発生して振動などが発生するのを回避でき、装置の安定運転が可能になる。
一実施形態に係るターボチャージャの回転部位を示す一部断裁正面図である。 コンプレッサ装置を示す図1の一部拡大縦断面図である。 一実施形態に係るコンプレッサホイールの一部拡大縦断面図である。 一実施形態に係るコンプレッサホイールの一部拡大縦断面図である。 一実施形態に係るコンプレッサホイールの一部拡大縦断面図である。 従来のボアレス構造のコンプレッサホイールを示す一部拡大縦断面図である。 従来のボアスルー構造のコンプレッサホイールを示す一部拡大縦断面図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、一実施形態に係るボアレス構造のコンプレッサ装置20を含むターボチャージャ10を示す縦断面図であり、図2はコンプレッサ装置20を示す図1の一部拡大図である。ターボチャージャ10は、シャフト12の一端部にコンプレッサ装置20を備え、コンプレッサ装置20と反対側のシャフト12の他端部にタービン装置30を備えている。コンプレッサ装置20は、シャフト12の一端部に固定されたコンプレッサホイール22と、コンプレッサホイール22の外周に周方向に設けられた複数のコンプレッサブレード24とを備えている。コンプレッサホイール22の背面23に開口を有し、コンプレッサホイール22の軸線12a上に該軸線に沿って有底の挿入孔26が形成され、挿入孔26にシャフト12の一端部が挿入固定されている。
 タービン装置30は、シャフト12の他端部に例えば溶接などの手段で取り付けられたタービンホイール32と、タービンホイール32の外周に周方向に設けられた複数のタービンブレード34とを備えている。シャフト12は軸線12aに沿う方向の中央部においてジャーナル軸受(不図示)で支持される。図2に示すように、コンプレッサ装置20はコンプレッサハウジング(不図示)の内部に収容され、シャフト12の軸線方向中央部は軸受ハウジング(不図示)の内部に収容され、タービン装置30はタービンハウジング(不図示)の内部に収容されている。
 図1に示す実施形態では、コンプレッサ装置20寄りのシャフト12の周囲にスラストカラー16が設けられている。シャフト12に加わる軸方向のスラスト荷重に対してシャフト12を支持するスラスト軸受(不図示)が設けられ、スラストカラー16は該スラスト軸受を支持している。
 図3A、図3B及び図4は、幾つかの実施形態に係るコンプレッサホイール22(後述するハブ部50を含む。)の挿入孔26付近の縦断面図である。これらの図に示すように、挿入孔26は、直径が異なる2つの孔部26a及び26bを有している。孔部26a(第1孔部26a)は、コンプレッサホイール22の背面23からコンプレッサホイール22の先端側へ向かって延在する。孔部26b(第2孔部26b)は、第1孔部26aの先端からコンプレッサホイール22の先端側へ向かって延在する。第2孔部26bの横断面の直径は第1孔部26aの横断面の直径より小さくなるように構成されている。
 一方、挿入孔26に挿入されるシャフト12の先端部は第1軸部40及び第2軸部42を有する。第1軸部40は、第1孔部26aに嵌合する第1嵌合部44(44a、44b)を有し、第2軸部42は、第2孔部26bに嵌合する第2嵌合部46(46a、46b)を有する。即ち、第1嵌合部44の横断面の直径(第1直径)は第2嵌合部46の横断面の直径(第2直径)より大きい。
 このような構成によれば、挿入孔26に挿入されたシャフト12の先端部は、第1軸部40が第1嵌合部44で第1孔部26aに嵌合すると共に、第2軸部42が第2嵌合部46で第2孔部26bに嵌合する。こうして、挿入孔26に挿入されるシャフト12の先端部は、第1嵌合部44及び第2嵌合部46の2か所で支持される。この2点支持によって、挿入孔26とシャフト12との間の軸心ズレによって発生するシャフト12の偏差角θ1を、第1嵌合部44から第2嵌合部46に至るまで一つの嵌合部が形成されている場合と同等まで小さく抑えることができる。これによって、シャフト12の回転中のアンバランスをなくし、安定運転が可能になる。
 また、第2孔部26bの直径よりも第1孔部26aの直径の方が大きいため、シャフト12を挿入孔26に挿入して第2軸部42の第2嵌合部46が第1孔部26aを通過する際に、第1孔部26aの内周面と第2嵌合部46とが当接することがない。このため、第2嵌合部46を第2孔部26bに嵌合するまでの工程が容易になる。さらに、挿入孔26とシャフト12の先端部とは、第1嵌合部44及び第2嵌合部46のみで嵌合し、その他の部位は組立公差を緩めに設定できるので、高精度な加工や組立を必要としない。そのため、コンプレッサホイール22やシャフト12の製造コストを抑制できる。
 一実施形態では、挿入孔26はコンプレッサホイール22の軸線上に沿って直線状に形成され、第1軸部40及び第2軸部42は、挿入孔26の軸線方向に沿って直線状に延在し、挿入孔26及び第1軸部40、第2軸部42は横断面が円形を有している。また、第1軸部40及び第2軸部42の横断面は互いに断面の中心を同じくする同心状に配置されている。第1孔部26aと第2孔部26bとの直径の差は公差以上であってかつ少ないほうがよい。即ち、第2孔部26bの直径が小さいほど、組立が難しくなりかつ強度が低下するためである。
 図3A及び3Bに示す実施形態において、第1嵌合部44(44a)と第1孔部26aとの接触面積、及び第2嵌合部46(46a)と第2孔部26bとの接触面積は、できるだけ小さくすることで組立性の悪化を最小限に抑えることができる。
 一実施形態では、図2に示すように、コンプレッサホイール22の背面23の中心には、軸方向に沿ってシャフト12の中央側へ延在するハブ部50が形成され、ハブ部50の中心部に挿入孔26が形成されている。同図において、Lは、挿入孔26におけるハブ部50とシャフト12の先端部との嵌合部の長さを示す。ハブ部50は、ハブ部50の外周面に接する支持部材(不図示)によって回転自在に支持されている。
 一実施形態では、図3A、3B及び図4に示すように、第1軸部40の先端外周に傾斜平面状の面取り56が形成され、これによって、第1軸部40の第1孔部26aへの挿入時の位置決めが容易になる。また、第2軸部42の先端部の外周端を曲面とした面取り58が形成され、これによって、第2軸部42の第2孔部26bへの挿入時の位置決めが容易になる。
 一実施形態では、図3A、3B及び図4に示すように、第1孔部26aは、コンプレッサホイール22の背面23からコンプレッサホイール22の先端側へ向かって延在する雌ネジ部62と、雌ネジ部62の先端からコンプレッサホイール22の先端側へ向かって延在する非ネジ部64と、を有する。一方、第1軸部40は、雌ネジ部62に螺合可能な雄ネジ部66を有し、第1嵌合部44は、非ネジ部64の少なくとも一部と嵌合するように構成されている。この実施形態によれば、第1軸部40及び第2軸部42は第1嵌合部44及び第2嵌合部46によって支持されて、挿入孔26とシャフト12との間の軸心ズレを抑えながら第1孔部26a及び第2孔部26bに挿入された後、雌ネジ部62と雄ネジ部66とが螺合することで、コンプレッサホイール22に固定される。
 一実施形態では、第1嵌合部44(44a、44b)の先端と第2嵌合部46(46a、46b)の先端との間の長さLは、非ネジ部64の先端と非ネジ部64の後端との間の長さLより大きくなるように構成されている(L<L)。これによって、第1嵌合部44が第1孔部26aに嵌合する前に、第2嵌合部46の先端が第2孔部26bに挿入されて第2孔部26bに対する第2軸部42の軸心合わせが行われる。このように、第2孔部26bと第2軸部42との軸心合わせが、第1孔部26aと第1軸部40との軸心合わせより先に行われるので、組付け後の挿入孔26に対するシャフト先端部の軸心ズレを抑制できる。
 なお、図4に示す実施形態では、後述するように、第1嵌合部44(44b)及び第2嵌合部46(46b)は、コンプレッサホイール22の軸方向でほぼ1点に集約されるので、先端及び後端はほぼ同一位置となる。この実施形態においても、長さL及び長さLが設定されたとき(L<L)、図3A及び図3B示す実施形態と同様の作用効果を得ることができる。
 一実施形態では、図3A、3B及び図4に示すように、非ネジ部64の先端部に軸方向に対して傾斜した傾斜面60が形成されている。傾斜面60を形成することで、第2軸部42の第2孔部26bに対する位置決め及び第1軸部40の第1孔部26aへの挿入が容易になる。一方、図1に示すように、ボアレス構造のコンプレッサホイール22では、コンプレッサホイール22の軸心付近に、コンプレッサホイール22の軸線に沿う領域Cで応力が発生する。特に、軸方向でコンプレッサホイール22が最大径となる位置に最大応力が発生する。そのため、挿入孔26が軸方向で最大径となる位置まで延在しないことが望ましい。
 そのために、一実施形態では、傾斜面60の軸方向長さbが径方向長さaより大きくならないようにする(b≦a)。これによって、応力発生領域Cに挿入孔26が形成されることで、応力発生領域Cでコンプレッサホイール22の強度が低下するのを回避できる。別な実施形態では、シャフト12の軸方向に直角な横断面に対する傾斜面60の傾斜角θ3を0°≦θ3≦45°とする。これによって、b≦aとすることができ、挿入孔26がコンプレッサホイール22の軸方向で最大径となる位置まで延在しないようにすることができる。
 一実施形態では、第1嵌合部44(44a、44b)の軸方向先端と雄ネジ部66の軸方向先端との間の長さLは、雌ネジ部62の軸方向先端と雌ネジ部62の軸方向後端との間の長さLより大きくなるように構成されている(L<L)。この実施形態によれば、雌ネジ部62と雄ネジ部66とが螺合する前に、第1嵌合部44の先端が第1孔部26aに挿入され、第1孔部26aに対する第1軸部40の軸心合わせが行われる。このように、挿入孔26とシャフト12間の軸心合わせを終えた後で、挿入孔26にシャフト12を固定できる。
 なお、図4に示す実施形態では、後述するように、第1嵌合部44(44b)及び第2嵌合部46(46b)は、コンプレッサホイール22の軸方向でほぼ1点に集約されるので、先端及び後端はほぼ同一位置となる。この実施形態においても、長さL及び長さLが設定されたとき(L<L)、図3A及び図3B示す実施形態と同様の作用効果を得ることができる。
 一実施形態では、図4に示すように、第1嵌合部44(44b)又は第2嵌合部46(46b)の少なくとも一方は、径方向外側に向かって凸となる曲面状に形成されている。この実施形態によれば、第1嵌合部44(44b)と第1孔部26aとの接触面積又は第2嵌合部46(46b)と第2孔部26bとの接触面積の少なくとも一方を小さくできるため、第1嵌合部44(44b)と第1孔部26aとの間の摩擦又は第2嵌合部46(46a、46b)と第2孔部26bとの間の摩擦を低減できる。従って、挿入孔26へのシャフト12の挿入が容易になる。
 一実施形態では、第1嵌合部44(44b)又は第2嵌合部46(46b)の軸方向断面の外縁が円弧又は楕円形を形成するように構成する。これによって、第1嵌合部44(44b)又は第2嵌合部46(46b)を第1孔部26a又は第2孔部26bに点接触に近い状態で接触できるので、両者間の摩擦を軽減できる。
 一実施形態では、少なくとも横断面の直径が大きい第1嵌合部44(44b)の軸方向断面の外縁が円弧又は楕円形を形成するように構成する。直径が大きい第1嵌合部44(44b)をこのような形状の加工対象とすることで、加工が容易になる。
 一実施形態では、第1嵌合部44(44b)と第2嵌合部46(46b)との間隔をなるべく広げるようにする。これによって、挿入孔26の軸線に対するシャフト12の先端部の軸線12aの偏差角θ1を抑えることができる。
 一実施形態に係るターボチャージャ10は、図1に示すように、シャフト12の一端部に上記各実施形態に係るコンプレッサ装置20が設けられ、シャフト12の他端部に内燃機関から排出される排ガスによって回転するタービンホイール32を含むタービン装置30が設けられているタービンホイール32及びシャフト12が回転することで、コンプレッサホイール22が回転し、コンプレッサホイール22の回転によって加圧給気を内燃機関に供給する。ターボチャージャ10は、上記各実施形態に係るコンプレッサ装置20を備えているため、シャフト12とコンプレッサホイール22との組立時に、シャフト12はコンプレッサホイール22に形成された挿入孔26に対して第1嵌合部44(44a、44b)及び第2嵌合部46(46a、46b)とで支持される。
 これによって、挿入孔26とシャフト12間の軸心ズレによって発生するシャフト12の偏差角θ1を小さく抑えることができると共に、シャフト12の回転中のアンバランスをなくし、安定運転が可能になる。また、第1軸部40の第1直径を第2軸部42の第2直径より大きくすることで、先に挿入される第2軸部42と第2孔部26bとの軸心合わせが容易になると共に、挿入孔26に挿入されるシャフト先端部の強度を増加できる。さらに、第1嵌合部44及び第2嵌合部46以外は組立公差を緩めに設定できるので、組付けが容易になると共に、製造コストを抑制できる。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
 1)一つの態様に係るコンプレッサ装置(20)は、コンプレッサホイール(22)と、前記コンプレッサホイール(22)の背面(23)に開口を有する有底の挿入孔(26)に挿入されるシャフト(12)と、を備えるコンプレッサ装置であって、前記挿入孔は、第1直径を有する第1孔部であって、前記背面から前記コンプレッサホイールの先端側へ向かって延在する第1孔部(26a)と、前記第1直径より小さい第2直径を有する第2孔部であって、前記第1孔部の先端から前記コンプレッサホイールの前記先端側へ向かって延在する第2孔部(26b)と、を含み、前記シャフトは、前記第1孔部に嵌合する第1嵌合部(44(44a、44b))を有する第1軸部(40)と、前記第2孔部に嵌合する第2嵌合部(46(46a、46b))を有する第2軸部(42)と、を含む。
 このような構成によれば、上記シャフトは、第1孔部に嵌合する第1嵌合部を有する第1軸部と、前記第2孔部に嵌合する第2嵌合部を有する第2軸部とを有するため、挿入孔に対して第1嵌合部と第2嵌合部とで支持される。従って、挿入孔とシャフト間の軸心ズレによって発生するシャフトの偏差角(θ1)を、第1嵌合部から第2嵌合部に至るまで一つの嵌合部が形成されている場合と同等まで小さく抑えることができる。これによって、シャフトの回転中のアンバランスをなくし、安定運転が可能になる。また、第2孔部の直径よりも第1孔部の直径の方が大きいため、シャフトを挿入孔に挿入して第2軸部の第2嵌合部が第1孔部を通過する際に、第1孔部の内周面と第2嵌合部とが当接することがない。このため、第2嵌合部を第2孔部に嵌合するまでの工程が容易になる。さらに、挿入孔とシャフトの先端部とは、第1嵌合部及び第2嵌合部のみで嵌合し、その他の部位は組立公差を緩めに設定できるので、高精度な加工や組立を必要としない。そのため、コンプレッサホイールやシャフトの製造コストを抑制できる。
 2)別な態様に係るコンプレッサ装置は、1)に記載のコンプレッサ装置であって、前記第1孔部は、前記コンプレッサホイールの前記背面から前記コンプレッサホイールの前記先端側へ向かって延在する雌ネジ部(62)と、前記雌ネジ部の先端から前記コンプレッサホイールの前記先端側へ向かって延在する非ネジ部(64)と、を含み、前記第1軸部は、前記雌ネジ部に螺合可能な雄ネジ部(66)を有し、前記第1嵌合部は、前記非ネジ部の一部と嵌合するように構成される。
 このような構成によれば、第1軸部及び第2軸部は、第1嵌合部及び第2嵌合部によって支持されて挿入孔とシャフトとの軸心ズレを抑えながら、第1孔部及び第2孔部に挿入された後、上記雌ネジ部と上記雄ネジ部とが螺合することで、コンプレッサホイールに固定される。
 3)さらに別な態様に係るコンプレッサ装置は、2)に記載のコンプレッサ装置であって、前記第1嵌合部の先端と前記第2嵌合部の先端との間の長さLは、前記非ネジ部の先端と前記非ネジ部の後端との間の長さLより大きくなるように構成されている。
 このような構成によれば、L<Lであるため、第1嵌合部が第1孔部に嵌合する前に、第2嵌合部の先端が第2孔部に挿入されて第2孔部に対する第2軸部の軸心合わせが行われる。このように、第2孔部と第2軸部との軸心合わせが、第1孔部と第1軸部との軸心合わせより先に行われるので、組付け後の挿入孔に対するシャフト先端部の軸心ズレを抑制できる。
 4)さらに別な態様に係るコンプレッサ装置は、2)又は3)に記載のコンプレッサ装置であって、前記第1嵌合部の先端と前記雄ネジ部の先端との間の長さLは、前記雌ネジ部の先端と前記雌ネジ部の後端との間の長さLより大きくなるように構成されている。
 このような構成によれば、L<Lであるため、上記雌ネジ部と上記雄ネジ部とが螺合する前に、第1嵌合部の先端が第1孔部に挿入され、第1孔部に対する第1軸部の軸心合わせが行われる。このように、挿入孔とシャフト間の軸心合わせを終えた後で、挿入孔にシャフトを固定できる。
 5)さらに別な態様に係るコンプレッサ装置は、1)乃至4)の何れかに記載のコンプレッサ装置であって、前記第1嵌合部又は前記第2嵌合部の少なくとも一方は、径方向外側に向かって凸となる曲面状に形成されている。
 このような構成によれば、第1嵌合部と第1孔部との接触面積又は第2嵌合部と第2孔部との接触面積の少なくとも一方を小さくできるため、挿入孔とシャフト先端部との間の摩擦を低減できる。これによって、挿入孔へシャフトを容易に挿入できる。
 6)一つの態様に係るターボチャージャ(10)は、前記シャフトの一端側に設けられた1)乃至5)の何れかに記載のコンプレッサ装置と、前記シャフトの他端側に固定され、排ガスによって回転するタービンホイールを含むタービン装置(30)と、を備える。
 このような構成によれば、上記シャフトとコンプレッサホイールとの組立時に、上記シャフトはコンプレッサホイールに形成された挿入孔に対して第1嵌合部及び第2嵌合部とで支持されるため、挿入孔とシャフト間の軸心ズレによって発生するシャフトの偏差角を、第1嵌合部から第2嵌合部に至るまで一つの嵌合部が形成されている場合と同等まで小さく抑えることができる。また、第2孔部の直径よりも第1孔部の直径の方が大きいため、シャフトが挿入孔に挿入されて第2軸部の第2嵌合部が第1孔部を通過する際に、第1孔部の内周面と第2嵌合部とが当接することがないため、第2嵌合部を第2孔部に嵌合するまでの工程が容易になる。さらに、挿入孔とシャフトの先端部とは、第1嵌合部及び第2嵌合部のみで嵌合し、その他の部位は組立公差を緩めに設定できるので、高精度な加工や組立を必要としない。
 10  ターボチャージャ
 12、012  シャフト
  12a、012a  軸線
 14  軸受ハウジング
 16  スラストカラー
 18  スラスト軸受
 20  コンプレッサ装置
 22、022(022A、022B)  コンプレッサホイール
  022a  軸線
 23、023  背面
 24  コンプレッサブレード
 26、026  挿入孔
  26a  第1孔部
  26b  第2孔部
 027  貫通孔
 30  タービン装置
 32  タービンホイール
 34  タービンブレード
 40  第1軸部
 42  第2軸部
 44(44a、44b)  第1嵌合部
 46(46a、46b)  第2嵌合部
 50  ハブ部
 56、58  面取り
 60  傾斜面
 62  雌ネジ部
 64  非ネジ部
 66  雄ネジ部
 C   応力発生領域
 θ1、θ2  偏差角
 θ3  傾斜角

Claims (6)

  1.  コンプレッサホイールと、
     前記コンプレッサホイールの背面に開口を有する有底の挿入孔に挿入されるシャフトと、
    を備えるコンプレッサ装置であって、
     前記挿入孔は、
      第1直径を有する第1孔部であって、前記背面から前記コンプレッサホイールの先端側へ向かって延在する第1孔部と、
      前記第1直径より小さい第2直径を有する第2孔部であって、前記第1孔部の先端から前記コンプレッサホイールの前記先端側へ向かって延在する第2孔部と、
     を含み、
     前記シャフトは、
      前記第1孔部に嵌合する第1嵌合部を有する第1軸部と、
      前記第2孔部に嵌合する第2嵌合部を有する第2軸部と、
     を含む
    コンプレッサ装置。
  2.  前記第1孔部は、
      前記コンプレッサホイールの前記背面から前記コンプレッサホイールの前記先端側へ向かって延在する雌ネジ部と、
      前記雌ネジ部の先端から前記コンプレッサホイールの前記先端側へ向かって延在する非ネジ部と、を含み、
     前記第1軸部は、前記雌ネジ部に螺合可能な雄ネジ部を有し、
     前記第1嵌合部は、前記非ネジ部の一部と嵌合するように構成される
    請求項1に記載のコンプレッサ装置。
  3.  前記第1嵌合部の先端と前記第2嵌合部の先端との間の長さLは、前記非ネジ部の先端と前記非ネジ部の後端との間の長さLより大きくなるように構成されている
    請求項2に記載のコンプレッサ装置。
  4.  前記第1嵌合部の先端と前記雄ネジ部の先端との間の名長さLは、前記雌ネジ部の先端と前記雌ネジ部の後端との間の長さLより大きくなるように構成されている
    請求項2又は3に記載のコンプレッサ装置。
  5.  前記第1嵌合部又は前記第2嵌合部の少なくとも一方は、径方向外側に向かって凸となる曲面状に形成されている
    請求項1乃至4の何れか一項に記載のコンプレッサ装置。
  6.  前記シャフトの一端側に設けられた請求項1乃至5の何れか一項に記載のコンプレッサ装置と、
     前記シャフトの他端側に固定され、排ガスによって回転するタービンホイールを含むタービン装置と、
    を備えた
    ターボチャージャ。
PCT/JP2020/003235 2020-01-29 2020-01-29 コンプレッサ装置及びターボチャージャ WO2021152742A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003235 WO2021152742A1 (ja) 2020-01-29 2020-01-29 コンプレッサ装置及びターボチャージャ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003235 WO2021152742A1 (ja) 2020-01-29 2020-01-29 コンプレッサ装置及びターボチャージャ

Publications (1)

Publication Number Publication Date
WO2021152742A1 true WO2021152742A1 (ja) 2021-08-05

Family

ID=77078182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003235 WO2021152742A1 (ja) 2020-01-29 2020-01-29 コンプレッサ装置及びターボチャージャ

Country Status (1)

Country Link
WO (1) WO2021152742A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210024A (ja) * 1990-01-12 1991-09-13 Nissan Motor Co Ltd ターボチャージャのコンプレッサ
JP2002235547A (ja) * 2001-02-09 2002-08-23 Shozo Shimizu ターボチャージャ用タービン軸の接合方法
US20050056013A1 (en) * 2003-08-28 2005-03-17 General Electric Company Turbocharger compressor wheel having a counterbore treated for enhanced endurance to stress-induced fatigue and configurable to provide a compact axial length
US20050111998A1 (en) * 2003-11-25 2005-05-26 Louthan Gary R. Compressor wheel joint
JP2011208620A (ja) * 2010-03-30 2011-10-20 Toyota Motor Corp タービンローターの製造方法
WO2018167892A1 (ja) * 2017-03-15 2018-09-20 三菱重工エンジン&ターボチャージャ株式会社 過給機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03210024A (ja) * 1990-01-12 1991-09-13 Nissan Motor Co Ltd ターボチャージャのコンプレッサ
JP2002235547A (ja) * 2001-02-09 2002-08-23 Shozo Shimizu ターボチャージャ用タービン軸の接合方法
US20050056013A1 (en) * 2003-08-28 2005-03-17 General Electric Company Turbocharger compressor wheel having a counterbore treated for enhanced endurance to stress-induced fatigue and configurable to provide a compact axial length
US20050111998A1 (en) * 2003-11-25 2005-05-26 Louthan Gary R. Compressor wheel joint
JP2011208620A (ja) * 2010-03-30 2011-10-20 Toyota Motor Corp タービンローターの製造方法
WO2018167892A1 (ja) * 2017-03-15 2018-09-20 三菱重工エンジン&ターボチャージャ株式会社 過給機

Similar Documents

Publication Publication Date Title
US6896479B2 (en) Turbocharger rotor
US10036405B2 (en) Impeller rotator and method of assembling said impeller rotator
EP1805398B1 (en) Turbocharger with thrust collar
US7470115B2 (en) Outer diameter nut piloting for improved rotor balance
US10197065B2 (en) Centrifugal compressor, turbocharger provided with the centrifugal compressor, and method for producing the centrifugal compressor
EP2706245A1 (en) Radial gas foil bearing
US10309300B2 (en) Electric rotor fit onto a turbomachine shaft
JP5039730B2 (ja) 可変容量型排気ターボ過給機
WO2021152742A1 (ja) コンプレッサ装置及びターボチャージャ
US10975878B2 (en) Rotary machine
WO2015002141A1 (ja) タービン軸および過給機
WO2017203917A1 (ja) 回転体、および、過給機
WO2020194651A1 (ja) ノズル装置及び排気ターボ過給機
US20240229819A1 (en) Compressor wheel mounting structure and supercharger
US20220389874A1 (en) Assembly for a turbine engine
JP2021134737A (ja) コンプレッサ装置及びターボチャージャ
JP2021134698A (ja) コンプレッサ装置及びターボチャージャ
US20240011545A1 (en) Welded torque converter component
JP2007224800A (ja) タービンロータ及びそれを備えたタービン
WO2019142498A1 (ja) 翼車、シャフト付き翼車、過給機、及び、翼車の製造方法
JP2024098275A (ja) 締付け固定用リング、及びこのリングを備えた軸受ユニット
JP2010101269A (ja) ロータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20916794

Country of ref document: EP

Kind code of ref document: A1