WO2021152658A1 - 撮像装置、および、内視鏡 - Google Patents

撮像装置、および、内視鏡 Download PDF

Info

Publication number
WO2021152658A1
WO2021152658A1 PCT/JP2020/002758 JP2020002758W WO2021152658A1 WO 2021152658 A1 WO2021152658 A1 WO 2021152658A1 JP 2020002758 W JP2020002758 W JP 2020002758W WO 2021152658 A1 WO2021152658 A1 WO 2021152658A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
semiconductor
image pickup
electrodes
elements
Prior art date
Application number
PCT/JP2020/002758
Other languages
English (en)
French (fr)
Inventor
拓郎 巣山
山本 賢
考俊 五十嵐
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/002758 priority Critical patent/WO2021152658A1/ja
Publication of WO2021152658A1 publication Critical patent/WO2021152658A1/ja
Priority to US17/868,929 priority patent/US12028597B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/0011Manufacturing of endoscope parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/128Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/52Elements optimising image sensor operation, e.g. for electromagnetic interference [EMI] protection or temperature control by heat transfer or cooling elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • the present invention relates to an imaging device including a laminated element and an endoscope including an imaging device including a laminated element.
  • the imaging signal output by the imaging device arranged at the tip of the endoscope is processed and transmitted by a plurality of electronic components.
  • Japanese Patent Application Laid-Open No. 2013-30593 discloses a laminated element in which a plurality of semiconductor elements are laminated in order to accommodate a plurality of electronic components in a small space and to reduce a parasitic capacitance due to wiring. ..
  • An object of the present invention is to provide an image pickup device capable of reducing the thermal effect of the stacked semiconductor elements on the image pickup device, and an endoscope provided with the image pickup device.
  • a plurality of semiconductor elements each having a plurality of through electrodes are laminated with a plurality of intermediate layers each having a plurality of junction conductors interposed therebetween, and the plurality of semiconductor elements facing each other are bonded to the plurality of junctions.
  • the first semiconductor element having the highest thermal resistance of the plurality of through electrodes forms the first circuit which is the semiconductor circuit having the largest calorific value. It is arranged in front of the first surface.
  • the endoscope of the embodiment includes an imaging device, in which a plurality of semiconductor elements each having a plurality of through electrodes are laminated with a plurality of intermediate layers each having a plurality of junction conductors interposed therebetween, and face each other.
  • the plurality of semiconductor elements are provided with a laminated element to which the plurality of semiconductor elements are electrically connected by the plurality of junction conductors, and the plurality of semiconductor elements are arranged with an image pickup element in which a light receiving circuit is formed and behind the image pickup element.
  • the first semiconductor element having the highest thermal resistance of the plurality of through electrodes is the semiconductor having the largest calorific value. It is arranged in front of the first surface on which the first circuit, which is a circuit, is formed.
  • an image pickup device capable of reducing the thermal influence of the stacked semiconductor elements on the image pickup device, and an endoscope provided with the image pickup device.
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2 of the image pickup apparatus of the first embodiment. It is sectional drawing in the direction orthogonal to the optical axis of the conformal via of the image pickup apparatus of 1st Embodiment. It is sectional drawing in the direction orthogonal to the optical axis of the filled via of the image pickup apparatus of 1st Embodiment. It is sectional drawing in the direction orthogonal to the optical axis of the image pickup device of the image pickup apparatus of the modification 1 of the 1st Embodiment.
  • the endoscope system 8 shown in FIG. 1 includes an endoscope 9 of the present embodiment, a processor 80, a light source device 81, and a monitor 82.
  • the endoscope 9 has an insertion unit 90, an operation unit 91, and a universal cord 92.
  • the insertion portion 90 is inserted into the body cavity of the subject, takes an internal image of the subject, and outputs an image signal.
  • the insertion portion 90 is composed of a tip portion 90A in which the image pickup apparatus 1 is arranged, a bendable bending portion 90B connected to the tip portion 90A, and a flexible portion 90C connected to the bending portion 90B. NS.
  • the curved portion 90B is curved by the operation of the operating portion 91.
  • an operation portion 91 provided with various buttons for operating the endoscope 9 is arranged.
  • the light source device 81 has, for example, a white LED.
  • the illumination light emitted by the light source device 81 is guided to the tip 90A by passing through a light guide (not shown) that inserts the universal cord 92 and the insertion portion 90, and illuminates the subject.
  • the universal cord 92 is connected to the processor 80 via a connector.
  • the processor 80 controls the entire endoscope system 8 and processes the imaging signal output by the imaging device 1 to output it as an image signal.
  • the monitor 82 displays the image signal output by the processor 80 as an endoscopic image.
  • the image pickup device 1 is compact and highly reliable because it can reduce the thermal effect of the stacked semiconductor elements on the image pickup device. Therefore, the endoscope 9 is highly reliable and is minimally invasive due to the small diameter of the tip 90A.
  • the endoscope 9 is a flexible endoscope for medical use
  • the endoscope of the present invention may be a rigid endoscope or its use may be for industrial use.
  • the endoscope 9 may be an industrial endoscope in which the insertion portion 90 and the monitor 82 are directly connected.
  • the image pickup apparatus 1 of the present embodiment shown in FIGS. 2 and 3 includes a laminated element 30, a wiring board 40, and a signal cable 50.
  • the laminated element 30 having the front surface 30SA and the rear surface 30SB on the opposite side of the front surface 30SA includes an image pickup element 10A arranged at the front portion and a plurality of circuit elements 10B and 10C arranged behind the image pickup element 10A.
  • 10D is a substantially rectangular parallelepiped that is laminated.
  • the image sensor 10A and the circuit elements 10B, 10C, and 10D are all semiconductor elements based on silicon.
  • the image sensor (imager) 10A has, for example, a light receiving circuit 11A made of a CCD or CMOS and a peripheral circuit 12A on the front surface 30SA.
  • the light receiving circuit 11A and the like are connected to a plurality of through electrodes 15A.
  • the image sensor 10A may be either a front-illuminated image sensor or a back-illuminated image sensor.
  • a cover glass and an imaging optical system are arranged on the front surface 30SA.
  • Semiconductor circuits 12B, 12C, and 12D are formed in the circuit elements 10B, 10C, and 10D, respectively.
  • the circuit elements 10B, 10C, and 10D have a plurality of through electrodes 15B, 15C, and 15D, respectively.
  • the cross-sectional shape of the through electrodes 15A to 15D orthogonal to the optical axis O is circular, but the cross-sectional shape of the through electrodes may be rectangular.
  • the semiconductor circuits 12B, 12C, and 12D process the image pickup signal output by the image pickup device 10A and the control signal for controlling the image pickup device 10A.
  • the circuit elements 10B to 10D include, for example, an AD conversion circuit, a memory, a transmission output circuit, a drive signal generation circuit, a filter circuit, a thin film capacitor, and a thin film inductor.
  • a plurality of semiconductor circuits may be formed on one circuit element, or semiconductor circuits may be formed on both main surfaces of one circuit element.
  • the laminated element 30 has four semiconductor elements (imaging element 10A and circuit elements 10B to 10D), but the present invention is not limited to this.
  • the number of semiconductor elements included in the laminated element 30 may be 2 or more including the image pickup element 10A, and is preferably 2 or more and 10 or less, for example.
  • the image pickup elements 10A and the circuit elements 10B to 10D are laminated with the intermediate layers 20A to 20C each having the bonding conductors 25A to 25C interposed therebetween.
  • Each of the intermediate layers 20A to 20C has a sealing resin and a bonding conductor 25A to 25C for electrically connecting the image pickup element 10A and the circuit elements 10B to 10D.
  • the intermediate layers 20A to 20C may have air or an inert gas instead of the sealing resin. However, it is preferable that the intermediate layers 20A to 20C have a sealing resin from the viewpoint of improving the durability of the laminated element 30.
  • sealing resin examples include epoxy resin, polyimide resin, fluororesin, polyamideimide, polyphenylene ether, polypropylene, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyetherimide, and fluorine-based thermoplastic. Elastomer, butadiene-based rubber and the like can be used.
  • the bonded conductors 25A to 25C are composed of, for example, solder bumps produced by electroplating, a solder paste film produced by printing, stud bumps made of gold, or the like.
  • a bonded conductor made of solder bonds two electrodes by thermal bonding or thermal ultrasonic bonding in which heat is applied together with ultrasonic application.
  • circuit elements 10B to 10D are solder-bonded to each other by the solder-bonded conductors 25B and 25C, and then the circuit element 10B and the image pickup element 10A are ultrasonically bonded by the gold-bonded conductor 25A to form the laminated element 30. Is produced.
  • the signal cable 50 is electrically connected to the circuit element 10D.
  • one end of the wiring board 40 is bonded to the bonding electrode 42 on the rear surface 30SB, and the signal cable 50 is bonded to the other end of the wiring board 40.
  • one end of the wiring board 40 is solder-bonded to a bonding electrode 42 made of barrier nickel and gold arranged in a wiring pattern made of copper on the rear surface 30SB.
  • the image pickup apparatus 1 may not include the wiring board 40, and the signal cable 50 may be directly bonded to the bonding electrode 42 of the laminated element 30.
  • the wiring board 40 is a flexible wiring board, but is not limited to this, and may be a rigid wiring board or a molded circuit component (MID: Molded Interconnect Device).
  • the semiconductor circuits 12B to 12D generate heat according to their power consumption.
  • the "circuit having the largest calorific value” means the “circuit having the largest power consumption”.
  • the first semiconductor element (high thermal resistance element) having the highest thermal resistance of the through electrode 15A is the image pickup element 10A.
  • the image sensor 10A is arranged in front of the first surface (heating surface) HSA of the circuit element 10C on which the semiconductor circuit 12C, which is the first circuit (heating circuit) having the largest heat generation amount, is formed. ..
  • the thermal resistance is a parameter indicating the difficulty of heat transfer from one end to the other end of the heat transfer path.
  • the thermal resistance between the through electrodes can be compared by comparing the material of the conductor included in the through electrodes and the heat transfer path. For example, the lower the thermal conductivity of the material of the conductor included in the through electrode, the higher the thermal resistance, and the smaller the thickness of the conductor, that is, the cross-sectional area of the heat transfer path, the higher the thermal resistance.
  • the element 10A is arranged.
  • the through electrode 15A of the image sensor 10A shown in FIG. 4A is a conformal via in which the conductor 16A is arranged on the wall surface of the through via of the substrate 13A and the resin 17 is filled inside.
  • the through electrode 15B of the circuit element 10B shown in FIG. 4B is a filled via in which the through via of the substrate 13B is filled with the conductor 16B.
  • the circuit elements 10C and 10D are similarly configured.
  • the image sensor 10A and the circuit elements 10B to 10D are both based on silicon, and the thickness of the image sensor 10A is substantially the same as 80% or more and 120% or less of the thickness of the circuit elements 10B to 10D. Therefore, the thermal resistance of these substrates is substantially the same. Further, the image sensor 10A and the circuit elements 10B to 10D have substantially the same outer dimensions (cross-sectional area) and number of through electrodes.
  • the thermal conductivity of the conductor 16 of the through electrode 15A is larger than the thermal conductivity of silicon, which is the material of the substrate (for example, the thermal conductivity of copper, which is the conductor 16, is 400 W / m ⁇ K). .). Further, the thermal conductivity of the resin 17 is smaller than the thermal conductivity of silicon, which is the material of the substrate (for example, the thermal conductivity of the epoxy resin, which is the resin 17, is 0.35 W / m ⁇ K). Therefore, the main heat transfer path of the semiconductor element is the conductor of the through electrode.
  • the through electrode 15A of the image sensor 10A contains a resin 17 having a cross-sectional area of the conductor 16A having a large thermal conductivity smaller than that of the through electrodes 15B to 15D and having a small thermal conductivity. Therefore, the through electrode 15A has a higher thermal resistance than the through electrodes 15B to 15D.
  • the image pickup element 10A has a cross-sectional area parallel to the front surface 30SA of the conductor 16A of the penetrating electrode 15A, that is, a cross-sectional area of the conductor 16A of the penetrating electrode 15A in a cross section parallel to the plane direction in the central portion in the thickness direction.
  • the cross-sectional area of the heat path is smaller than the cross-sectional area of the circuit elements 10B to 10D.
  • the thermal resistance of the through electrode 15A of the image pickup element 10A is high, the heat generated from the semiconductor circuit 12C, which is the first circuit having the largest calorific value, is easily transferred to the wiring board 40, and is transferred to the light receiving circuit 11A. It is hard to be done. In other words, the heat generated from the semiconductor circuit 12C is easily transferred to the signal cable 50 via the wiring board 40. Since the image pickup device 1 can reduce the thermal influence of the stacked circuit elements 10B to 10D on the image pickup device 10A, it is compact and highly reliable.
  • the material of the conductor 16A of the through electrode 15A of the image sensor 10A has a smaller thermal conductivity than that of copper, which is the material of the conductors of the through electrodes 15B to 15C. It is more preferable to use, for example, aluminum (thermal conductivity: 236 W / m ⁇ K) or gold (thermal conductivity: 319 W / m ⁇ K) as the conductor 16A of the through electrode 15A.
  • the first semiconductor element having the highest thermal resistance of the through electrode is the image pickup device 10A, and the first circuit having the largest heat generation amount is the semiconductor circuit 12C. It is not something that can be done. That is, the first semiconductor element may be arranged in front of the surface on which the first circuit is formed, and the circuit elements 10B to 10D may be the first semiconductor element, or the semiconductor circuit. 12B and 12D may be the first circuit.
  • the through silicon via 15A of the image pickup element 10A is a filled via having substantially the same size (cross-sectional area) as the through electrodes 15B to 15D of the circuit elements 10B to 10D.
  • the image sensor 10A has five through electrodes 15A
  • the circuit elements 10B to 10D have nine through electrodes 15B to 15D.
  • the image sensor 10A has a smaller total cross-sectional area of the conductors 16 of the plurality of through electrodes in a cross section parallel to the front surface 30SA than the circuit elements 10B, 10C, and 10D. Therefore, the image pickup device 10A is a first semiconductor device having a higher thermal resistance than the circuit elements 10B, 10C, and 10D.
  • the image sensor 10A is the first semiconductor element having a thermal resistance larger than that of the circuit elements 10B, 10C, and 10D, the image sensor 1A does not have a risk of deterioration in image quality or reliability.
  • the thermal resistance of the semiconductor element changes according to the total cross-sectional area of the conductors of the through electrodes. That is, even if the image sensor 10A has the same number of through electrodes as the circuit elements 10B, 10C, and 10D, if the total cross-sectional area of the conductor is smaller than the circuit elements 10B, 10C, and 10D, the thermal resistance is high. It is larger than the circuit elements 10B, 10C, and 10D.
  • the image pickup element 10A has a thicker substrate than the circuit elements 10B, 10C, and 10D. That is, since the thickness d10A of the substrate of the image sensor 10A is more than 120% of the thicknesses d10B, d10C, and d10F of the substrates of the circuit elements 10B, 10C, and 10D, the heat transfer path is long. Therefore, the image pickup device 10A is a first semiconductor device having a higher thermal resistance than the circuit elements 10B, 10C, and 10D.
  • the image sensor 10A is the first semiconductor element having a thermal resistance larger than that of the circuit elements 10B, 10C, and 10D, the image sensor 1B does not have a risk of deterioration in image quality or reliability.
  • the image sensor 10A is the first semiconductor element, there is no risk of deterioration in image quality or reliability.
  • the circuit element 10B which is arranged in front of the first surface HSA, may be the first semiconductor element having the highest thermal resistance of the through electrode.
  • the rear surface of the circuit element 10C on which the semiconductor circuit 12C, which is the first circuit having the largest calorific value, is formed is the first surface HSAC. Therefore, in the image pickup device 1C, the heat generated from the semiconductor circuit 12C is less likely to be transmitted to the image pickup device 10A and more easily to the signal cable 50 than the image pickup device in which the first circuit is formed on the front surface of the circuit element 10C. ..
  • the image pickup element 10A and the circuit elements 10B and 10C arranged in front of the first surface HSA have higher thermal resistance than the circuit element 10D arranged behind the first surface HSA.
  • the heat generated from the semiconductor circuit 12C is easily transferred to the wiring board 40 and is not easily transferred to the light receiving circuit 11A, which is preferable.
  • the image sensor 10A and the circuit elements 10B and 10C arranged in front of the first surface HSA have higher thermal resistance as they are arranged in front of the first surface HSA. This is preferable because heat is not easily transferred to the light receiving circuit 11A.
  • the intermediate layer 20A arranged between the image pickup element 10A and the circuit element 10B closest to the front surface 30SA has the highest thermal resistance among the intermediate layers 20A to 20C.
  • the intermediate layers 20A to 20C are filled with a sealing resin made of an epoxy resin having a thermal conductivity of, for example, 0.35 W / m ⁇ K around the bonded conductors 25A, 25B, 25C made of solder.
  • the thickness d20A of the intermediate layer 20A is more than 150% of the thickness d20B of the intermediate layer 20B and the thickness d20C of the intermediate layer 20C. Therefore, the intermediate layer 20A has a higher thermal resistance than the intermediate layers 20B and 20C.
  • the heat generated from the semiconductor circuit 12C, which is the first circuit, is easily transferred to the wiring board 40 and difficult to be transferred to the light receiving circuit 11A because the thermal resistance of the heat transfer path to the wiring board 40 is small. Therefore, the image quality of the image pickup apparatus 1D is not deteriorated or the reliability is not deteriorated due to the thermal noise.
  • the intermediate layer 20B may be the first layer having the highest thermal resistance. That is, if the first layer having the highest thermal resistance among the plurality of intermediate layers is arranged between the first surface HSA and the front surface 30SA, the heat generated from the semiconductor circuit 12C, which is the first circuit, is generated. Is difficult to transfer to the image sensor 10A.
  • the through electrodes 15A of the image pickup device 10A are conformal vias, and the through electrodes 15B, 15C, and 15D of the circuit elements 10B, 10C, and 10D are filled vias.
  • the image sensor 10A has a higher thermal resistance than the circuit elements 10B, 10C, and 10D.
  • conformal vias cannot have a joint conductor placed directly under the vias. Therefore, the thermal resistance of the heat path from the junction conductor 25A to the through electrode 15A is large. That is, since the image pickup device 1D is unlikely to transfer heat from the intermediate layer 20A to the image pickup device 10A, there is no possibility that the image quality or reliability is particularly deteriorated.
  • the image pickup apparatus 1D has the first semiconductor element having the highest thermal resistance among the plurality of semiconductor elements 10A to 10D, and the highest thermal resistance among the plurality of intermediate layers 20A to 20C.
  • the first layer is arranged between the first surface HSA and the front surface 30SA on which the semiconductor circuit 12C, which is the first circuit, is formed.
  • the imaging device includes a first semiconductor element having the highest thermal resistance among the plurality of semiconductor elements 10A to 10D, and a first layer having the highest thermal resistance among the plurality of intermediate layers 20A to 20C. If at least one of them is arranged between the first surface HSA on which the semiconductor circuit 12C, which is the first circuit, is formed and the front surface 30SA, it is difficult for heat to be transferred from the intermediate layer 20A to the image pickup element 10A. There is no risk of image quality deterioration or reliability deterioration.
  • the image pickup apparatus 1E of the present modification shown in FIG. 9 includes five semiconductor elements 10A to 10E and four intermediate layers 20A to 20D.
  • the semiconductor circuit 12C of the circuit element 10C is the first circuit having the largest calorific value.
  • the image pickup device 1E has a different number of joint conductors 25A to 25D in the intermediate layers 20A to 20D.
  • the intermediate layer 20A has four joint conductors 25A, and the intermediate layer 20B has six joint conductors 25B.
  • the intermediate layer 20C and the intermediate layer 20D have nine bonding conductors 25C and 25D.
  • the thicknesses of the intermediate layers 20A to 20D are substantially the same, but the intermediate layer 20A has the highest thermal resistance because the total cross-sectional area of the bonded conductor 25A in the cross section parallel to the front surface 30SA is the smallest. This is the first layer.
  • the heat generated by the semiconductor circuit 12C is not easily transferred to the image pickup device 10A by the intermediate layer 20A, there is no possibility that the image quality or the reliability is deteriorated.
  • the intermediate layer may have a dummy junction conductor (dummy electrode) having the same configuration as the junction conductor but not electrically connected to the light receiving circuit 11A in order to reduce the thermal resistance.
  • the image pickup apparatus 1E includes a dummy junction conductor D25.
  • the intermediate layer 20B is the first layer having the highest thermal resistance. That is, the thickness d20B of the intermediate layer 20B is thicker than the thicknesses d20A, d20C, d20D of the other intermediate layers 20A, 20C, 20D.
  • the intermediate layer 20B which is the first layer having the thickest thickness and the highest thermal resistance among the plurality of intermediate layers, is arranged between the first surface HSA and the front surface 30SA.
  • the image pickup device 1F heat is not easily transferred from the semiconductor circuit 12C, which is the first circuit, to the image pickup device 10A by the intermediate layer 20B, so that there is no risk of deterioration in image quality or reliability.
  • the total value of the configuration of the image pickup apparatus 1D in which the thickness of the first layer is more than 150% of the thickness of the other intermediate layer and the cross-sectional area of the bonded conductor contained in the first layer is larger than that of the other intermediate layers. If the first layer having at least one of the configurations of the image pickup apparatus 1E, which is small in size, is arranged between the first surface HAS and the front surface 30SA, the image quality is deteriorated and the reliability is deteriorated. There is no fear.
  • All the intermediate layers 20A and 20B arranged between the front surface 30SA and the first surface HSA are more than all the intermediate layers 20C and 20D arranged between the first surface HSA and the rear surface 30SB. It is particularly preferable that the thermal resistance is high because the heat generated from the semiconductor circuit 12C, which is the first circuit, is easily transferred to the wiring board 40 and is not easily transferred to the light receiving circuit 11A.
  • the intermediate layers 20C and 20D arranged between the first surface HSA and the rear surface 30SB have a smaller thermal resistance than the intermediate layer 20D closer to the rear surface 30SB, which is the first circuit of the semiconductor. This is particularly preferable because the heat generated from the circuit 12C is easily transferred to the wiring board 40.
  • a filler having high thermal conductivity may be mixed with the resin of the intermediate layer.
  • non-conductive filler having a higher thermal conductivity than the resin examples include SiO 2 , SiC, AlN, ZnO, Si 3 N 4 , BN, and Al 2 O 3 .
  • the intermediate layers 20A and 20B arranged between the front surface 30SA and the first surface HSA have a higher thermal resistance as the intermediate layer 20A closer to the front surface 30SA, which is the first circuit of the semiconductor. This is preferable because the heat generated from the circuit 12C is not easily transferred to the light receiving circuit 11A.
  • a resin containing, for example, 10% by volume or more of air may be used. Since the thermal conductivity of air is as small as 0.024 W / m ⁇ K, the thermal resistance of the resin containing air is high.
  • the semiconductor circuit which is the first circuit, may be arranged between the first surface HSA and the front surface 30SA on which the semiconductor circuit is formed.
  • the first semiconductor device having at least one of the modifications of the first embodiment and the first embodiment, and the first layer of at least one of the modifications of the second embodiment and the first embodiment. , May be provided in the imaging device.
  • the wiring plate 40 is joined to the rear surface 10ESB (rear surface 30SB of the laminated element 30) of the circuit element 10E arranged at the rearmost portion of the laminated element 30 including the circuit elements 10B to 10E. It has a junction electrode 42, which is a region to be formed.
  • a conductor film 19 having a wide area surrounding the bonding region of the intermediate layer 20D with the bonding conductor 25D is arranged on the front surface 10ESA of the circuit element 10E.
  • the conductor film 19 is arranged in a superposed region that overlaps the region where the bonding electrode 42 of the rear surface 10ESB is arranged and viewed from the optical axis direction. Therefore, in the superposed region, the ratio of the area where the conductor film 19 is arranged is larger than the region around the superposed region.
  • the front surface 10ESA of the circuit element 10E which is the semiconductor element arranged at the rearmost part of the plurality of semiconductor elements, has a superposed area that overlaps the bonding area with the wiring board 40 when viewed from the stacking direction, and other peripheral areas. A region and a region are provided, and the ratio of the area where the conductor film 19 is formed is larger in the superposed region than in the peripheral region.
  • the heat generated from the circuit element 10E and the heat transferred from the other circuit elements to the circuit element 10E are transferred to the wiring board 40 in the order of the conductor film 19, the bonded conductor 25D, and the bonded electrode 42. Therefore, in the image pickup apparatus 1G, the heat generated from the semiconductor circuit 12C is easily transferred to the wiring board 40, so that there is no possibility that the image quality or the reliability is deteriorated.
  • the semiconductor circuit 12D of the circuit element 10D having the rear surface 30SB is the first circuit having the largest calorific value.
  • the semiconductor circuit 12D is formed on the rear surface 30SB. That is, the rear surface 30SB is the first surface HSA.
  • the heat generated from the semiconductor circuit 12D is easily transferred to the wiring board 40 and is not easily transferred to the light receiving circuit 11A. Heat is easily transferred to the signal cable 50 via the wiring board 40. Therefore, the image quality of the image pickup apparatus 1H is not deteriorated or the reliability is not deteriorated due to the thermal noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Endoscopes (AREA)

Abstract

撮像装置1は、複数の貫通電極15A~15Dをそれぞれが有する複数の半導体素子10A~10Dのそれぞれが、複数の接合導体25A~25Cをそれぞれが有する複数の中間層20A~20Cを挟んで積層された積層素子30を備え、前記複数の半導体素子10A~10Dのうち、前記複数の貫通電極15Aの熱抵抗が最も高い第1の半導体素子が、最も発熱量の大きい半導体回路である第1の回路が形成されている第1の面よりも前方に配置されている。

Description

撮像装置、および、内視鏡
 本発明は、積層素子を具備する撮像装置、および、積層素子を具備する撮像装置を含む内視鏡に関する。
 内視鏡の先端部に配設された撮像装置が出力する撮像信号は、複数の電子部品によって処理され伝送される。
 日本国特開2013-30593号公報には、複数の電子部品を小さい空間に収容するため、かつ、配線による寄生容量を小さくするために、複数の半導体素子を積層した積層素子が開示されている。
 国際公開第2017/073440号には、撮像素子の裏面に複数の半導体素子を接合することによって、撮像装置の小型化および高機能化を実現した内視鏡が開示されている。
 撮像素子の裏面に半導体素子を接合すると、半導体素子の回路から発生した熱が撮像素子に伝熱され、サーマルノイズによって画質が低下したり、撮像素子の信頼性が低下したりするおそれがある。
特開2013-30593号公報 国際公開第2017/073440号
 本発明の実施形態は、積層された半導体素子から撮像素子への熱影響を低減できる撮像装置、および、これを備える内視鏡を提供することを目的とする。
 実施形態の撮像装置は、複数の貫通電極をそれぞれ有する複数の半導体素子が、複数の接合導体をそれぞれ有する複数の中間層を挟んで積層され、互いに対向する前記複数の半導体素子が前記複数の接合導体によって電気的に接続される積層素子を備え、前記複数の半導体素子が、受光回路が形成された撮像素子と、前記撮像素子の後方に配置され、半導体回路がそれぞれ形成されている複数の回路素子と、を含み、前記複数の半導体素子のうち、前記複数の貫通電極の熱抵抗が最も高い第1の半導体素子が、最も発熱量の大きい前記半導体回路である第1の回路が形成されている第1の面よりも前方に配置されている。
 実施形態の内視鏡は、撮像装置を含み、前記撮像装置は、複数の貫通電極をそれぞれ有する複数の半導体素子が、複数の接合導体をそれぞれ有する複数の中間層を挟んで積層され、互いに対向する前記複数の半導体素子が前記複数の接合導体によって電気的に接続される積層素子を備え、前記複数の半導体素子が、受光回路が形成された撮像素子と、前記撮像素子の後方に配置され、半導体回路がそれぞれ形成されている複数の回路素子と、を含み、前記複数の半導体素子のうち、前記複数の貫通電極の熱抵抗が最も高い第1の半導体素子が、最も発熱量の大きい前記半導体回路である第1の回路が形成されている第1の面よりも前方に配置されている。
 本発明の実施形態によれば、積層された半導体素子から撮像素子への熱影響を低減できる撮像装置、および、これを備える内視鏡を提供できる。
実施形態の内視鏡の外観図である。 第1実施形態の撮像装置の斜視図である。 第1実施形態の撮像装置の図2のIII-III線に沿った断面図である。 第1実施形態の撮像装置のコンフォーマルビアの光軸に直交する方向の断面図である。 第1実施形態の撮像装置のフィルドビアの光軸に直交する方向の断面図である。 第1実施形態の変形例1の撮像装置の撮像素子の光軸に直交する方向の断面図である。 第1実施形態の変形例1の撮像装置の回路素子の光軸に直交する方向の断面図である。 第1実施形態の変形例2の撮像装置の断面図である。 第1実施形態の変形例3の撮像装置の断面図である。 第2実施形態の撮像装置の断面図である。 第2実施形態の変形例1の撮像装置の断面図である。 第2実施形態の変形例2の撮像装置の断面図である。 第3実施形態の撮像装置の回路素子の後面の図である。 第3実施形態の撮像装置の回路素子の前面の図である。 第4実施形態の撮像装置の断面図である。
<内視鏡の構成>
 図1に示す内視鏡システム8は、本実施形態の内視鏡9と、プロセッサ80と、光源装置81と、モニタ82と、を具備する。内視鏡9は、挿入部90と操作部91とユニバーサルコード92とを有する。内視鏡9は、挿入部90が被検体の体腔内に挿入されて、被検体の体内画像を撮影し画像信号を出力する。
 挿入部90は、撮像装置1が配設されている先端部90Aと、先端部90Aに連設された湾曲自在な湾曲部90Bと、湾曲部90Bに連設された軟性部90Cとによって構成される。湾曲部90Bは、操作部91の操作によって湾曲する。
 内視鏡9の挿入部90の基端部には、内視鏡9を操作する各種ボタン類が設けられた操作部91が配設されている。
 光源装置81は、例えば、白色LEDを有する。光源装置81が出射する照明光は、ユニバーサルコード92および挿入部90を挿通するライトガイド(不図示)を経由することによって先端部90Aに導光され、被写体を照明する。
 ユニバーサルコード92は、コネクタを経由することによってプロセッサ80に接続される。プロセッサ80は内視鏡システム8の全体を制御するとともに、撮像装置1が出力する撮像信号に信号処理を行い画像信号として出力する。モニタ82は、プロセッサ80が出力する画像信号を内視鏡画像として表示する。
 後述するように、撮像装置1は、積層された半導体素子から撮像素子への熱影響を低減できるため、小型で信頼性が高い。このため、内視鏡9は、信頼性が高く、先端部90Aが細径のために低侵襲である。
 なお、内視鏡9は医療用の軟性内視鏡であるが、本発明の内視鏡は硬性内視鏡でもよいし、その用途は工業用でもよい。内視鏡9は、挿入部90とモニタ82とが直結されている工業用内視鏡でもよい。
<第1実施形態>
 図2および図3に示す本実施形態の撮像装置1は、積層素子30と配線板40と信号ケーブル50とを具備する。
 なお、各実施形態に基づく図面は、模式的なものである。各部分の厚さと幅との関係、夫々の部分の厚さの比率および相対角度などは現実のものとは異なる。図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、一部の構成要素の図示および符号の付与を省略する。また、撮像される被写体のある方向を「前方」といい、前方の反対方向を「後方」という。
 前面30SAと前面30SAの反対側である後面30SBとを有する積層素子30は、最前部に配置されている撮像素子10Aと、撮像素子10Aの後方に配置されている複数の回路素子10B、10C、10Dとが、積層されている略直方体である。撮像素子10Aおよび回路素子10B、10C、10Dは、いずれもシリコンを基体とする半導体素子である。
 撮像素子(イメージャー)10Aは、例えば、CCDまたはCMOSからなる受光回路11Aと周辺回路12Aとを前面30SAに有する。受光回路11A等は、複数の貫通電極15Aと接続されている。撮像素子10Aは、表面照射型イメージセンサおよび裏面照射型イメージセンサのいずれでもよい。図示しないが、前面30SAには、カバーガラスおよび撮像光学系が配設されている。
 回路素子10B、10C、10Dには、それぞれ半導体回路12B、12C、12Dが形成されている。回路素子10B、10C、10Dは、それぞれ複数の貫通電極15B、15C、15Dを有する。なお、貫通電極15A~15Dの光軸Oに直交する断面形状は円形であるが、貫通電極の断面形状は矩形でもよい。
 半導体回路12B、12C、12Dは、撮像素子10Aが出力する撮像信号の処理および撮像素子10Aを制御する制御信号の処理を行う。回路素子10B~10Dは、例えば、AD変換回路、メモリ、伝送出力回路、駆動信号発生回路、フィルタ回路、薄膜コンデンサ、薄膜インダクタを含んでいる。1つの回路素子に複数の半導体回路が形成されていてもよいし、1つの回路素子の両方の主面にそれぞれ半導体回路が形成されていてもよい。
 撮像装置1では、積層素子30が4つの半導体素子(撮像素子10Aおよび回路素子10B~10D)を有しているが、これに限られるものではない。積層素子30が含む半導体素子の数は、撮像素子10Aを含めて2以上であればよく、例えば、2以上10以下であることが好ましい。
 撮像素子10Aおよび回路素子10B~10Dのそれぞれは、接合導体25A~25Cをそれぞれが有する中間層20A~20Cを挟んで積層されている。中間層20A~20Cのそれぞれは、封止樹脂と、撮像素子10Aおよび回路素子10B~10Dを電気的に接続する接合導体25A~25Cと、を有している。
 中間層20A~20Cは、封止樹脂に替えて空気または不活性気体を有していてもよい。ただし、中間層20A~20Cは封止樹脂を有することが積層素子30の耐久性向上の観点から好ましい。
 封止樹脂としては、例えば、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、ポリアミドイミド、ポリフェニレンエーテル、ポリプロピレン、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルイミド、フッ素系の熱可塑性エラストマー、ブタジエン系のゴム等を用いることができる。
 接合導体25A~25Cは、例えば、電気めっき法による半田バンプ、印刷等による半田ペースト膜、金からなるスタッドバンプ等で構成されている。半田からなる接合導体は、熱接合、または超音波印加とともに熱を印加する熱超音波接合によって、二つの電極を接合する。金からなる接合導体は、超音波接合によって二つの電極を接合する。
 例えば、回路素子10B~10Dが、半田からなる接合導体25B、25Cによって互いに半田接合されてから、回路素子10Bと撮像素子10Aとが金からなる接合導体25Aによって超音波接合されて、積層素子30が作製される。
 信号ケーブル50は回路素子10Dと電気的に接続されている。
 撮像装置1では、後面30SBの接合電極42に配線板40の一端部が接合され、配線板40の他端部に信号ケーブル50が接合されていている。例えば、後面30SBの銅からなる配線パターンに配設された、バリアニッケルおよび金からなる接合電極42に、配線板40の一端部が半田接合されている。なお、撮像装置1は配線板40を備えていなくてもよく、信号ケーブル50が積層素子30の接合電極42に直接に接合されていてもよい。また、図示例では、配線板40は、フレキシブル配線板であるが、これに限られるものではなく、リジッド配線板、または、成形回路部品(MID:Molded Interconnect Device)であってもよい。
 半導体回路12B~12Dは、その消費電力に応じて発熱する。本発明において「最も発熱量が大きい回路」とは、「最も消費電力が大きい回路」のことである。
 撮像装置1では、4つの半導体素子(撮像素子10Aおよび回路素子10B~10D)のうち、貫通電極15Aの熱抵抗が最も高い第1の半導体素子(高熱抵抗素子)は撮像素子10Aである。そして、最も発熱量の大きい第1の回路(発熱回路)である半導体回路12Cが形成されている回路素子10Cの第1の面(発熱面)HSAよりも前方に撮像素子10Aが配置されている。
 ここで、熱抵抗とは、伝熱経路の一端から他端への熱の伝わりにくさを示すパラメータである。例えば、貫通電極同士の熱抵抗の比較は、貫通電極に含まれる導体の材質および伝熱経路を比較することによって実施できる。例えば、貫通電極に含まれる導体の材質の熱伝導率が低いほど熱抵抗は高くなり、当該導体の太さ、すなわち伝熱経路の断面積が小さいほど熱抵抗は高くなる。
 すなわち、最も発熱量の大きい第1の回路である半導体回路12Cが形成されている第1の面HSAよりも前方に、貫通電極15A~15Dの中で熱抵抗が最も高い貫通電極15Aを有する撮像素子10Aが配置されている。
 図4Aに示す撮像素子10Aの貫通電極15Aは、基体13Aの貫通ビアの壁面に導体16Aが配設され、内部に樹脂17が充填されているコンフォーマルビアである。これに対して、図4Bに示す回路素子10Bの貫通電極15Bは、基体13Bの貫通ビアに導体16Bが充填されているフィルドビアである。回路素子10C、10Dも同様に構成されている。
 すでに説明したように、撮像素子10Aおよび回路素子10B~10Dは、いずれもシリコンを基体としており、撮像素子10Aの厚さも回路素子10B~10Dの厚さの80%以上120%以下と、略同じであるため、それらの基体の熱抵抗は略同じである。また、撮像素子10Aおよび回路素子10B~10Dは、貫通電極の外寸(断面積)および数も略同じである。
 貫通電極15Aの導体16の熱伝導率は、基体の材料であるシリコンの熱伝導率(160W/m・K)よりも大きい(例えば、導体16である銅の熱伝導率は400W/m・K。)。さらに、樹脂17の熱伝導率は、基体の材料であるシリコンの熱伝導率よりも小さい(例えば、樹脂17であるエポキシ樹脂の熱伝導率は0.35W/m・K)。このため、半導体素子の主たる伝熱経路は貫通電極の導体である。
 撮像素子10Aの貫通電極15Aは、熱伝導率が大きい導体16Aの断面積が貫通電極15B~15Dよりも小さく、かつ、熱伝導率の小さい樹脂17を含んでいる。このため、貫通電極15Aは貫通電極15B~15Dよりも熱抵抗が高い。
 しかし、撮像素子10Aは、貫通電極15Aの導体16Aの前面30SAと平行な断面積、すなわち、厚さ方向中央部において面方向に平行な断面における貫通電極15Aの導体16Aの断面積である、伝熱経路の断面積が、回路素子10B~10Dの前記断面積よりも小さい
 撮像素子10Aの貫通電極15Aの熱抵抗が高いため、最も発熱量の大きい第1の回路である半導体回路12Cから発生した熱は、配線板40に伝熱されやすく、受光回路11Aには伝熱されにくい。言い替えれば、半導体回路12Cから発生した熱は、配線板40を経由して信号ケーブル50に伝熱されやすい。撮像装置1は、積層された回路素子10B~10Dから撮像素子10Aへの熱影響を低減できるため、小型で信頼性が高い。
 なお、撮像素子10Aの貫通電極15Aの導体16Aの材料は、貫通電極15B~15Cの導体の材料である銅よりも熱伝導率が小さいことが、より好ましい。貫通電極15Aの導体16Aとして、例えば、アルミニウム(熱伝導率:236W/m・K)、金(熱伝導率:319W/m・K)を用いることが、より好ましい。
 また、撮像装置1では、貫通電極の熱抵抗が最も高い第1の半導体素子が撮像素子10Aであり、最も発熱量の大きい第1の回路が半導体回路12Cであるものとしたが、これに限られるものではない。すなわち、第1の半導体素子が、第1の回路が形成されている面よりも前方に配置されていればよく、回路素子10B~10Dが第1の半導体素子であってもよいし、半導体回路12B、12Dが第1の回路であってもよい。
<第1実施形態の変形例>
 第1実施形態の変形例の撮像装置1A~1Cは、撮像装置1と類似しているため、同じ機能の構成要素には同じ符号を付し説明は省略する。
<第1実施形態の変形例1>
 図5Aおよび図5Bに示す本変形例の撮像装置1Aでは、撮像素子10Aの貫通電極15Aは、回路素子10B~10Dの貫通電極15B~15Dと略同じ大きさ(断面積)のフィルドビアである。しかし、撮像素子10Aが5個の貫通電極15Aを有しているのに対して、回路素子10B~10Dは、9個の貫通電極15B~15Dを有している。
 撮像素子10Aは、回路素子10B、10C、10Dよりも、前面30SAと平行な断面における複数の貫通電極の導体16の断面積の合計値が小さい。このため、撮像素子10Aは、回路素子10B、10C、10Dよりも、熱抵抗が高い第1の半導体素子である。
 撮像装置1Aは、撮像素子10Aが回路素子10B、10C、10Dよりも熱抵抗が大きい第1の半導体素子であるため、画質が低下したり信頼性が低下したりするおそれがない。
 なお、貫通電極の数が同じでも、貫通電極の導体の断面積の合計値に応じて、半導体素子の熱抵抗が変化することは言うまでも無い。すなわち、撮像素子10Aは、回路素子10B、10C、10Dと同じ数の貫通電極を有していても、導体の断面積の合計値が回路素子10B、10C、10Dよりも小さければ、熱抵抗が回路素子10B、10C、10Dよりも大きくなる。
<第1実施形態の変形例2>
 図6に示す本変形例の撮像装置1Bでは、撮像素子10Aは、回路素子10B、10C、10Dよりも、基体が厚い。すなわち、撮像素子10Aの基体の厚さd10Aは、回路素子10B、10C、10Dの基体の厚さd10B、d10C、d10Fの120%超と厚いため、伝熱経路が長い。このため、撮像素子10Aは、回路素子10B、10C、10Dよりも熱抵抗が高い第1の半導体素子である。
 撮像装置1Bは、撮像素子10Aが回路素子10B、10C、10Dよりも熱抵抗が大きい第1の半導体素子であるため、画質が低下したり信頼性が低下したりするおそれがない。
 撮像素子10Aの貫通電極15Aがコンフォーマルビアであり、回路素子10B~10Dの貫通電極15B~15Dが、フィルドビアである撮像素子10Aの構成、および、貫通電極15Aは、貫通電極15B~15Dよりも数が少ない撮像装置1Aの構成、および、撮像素子10Aの基体の厚さd10Aが、回路素子10B~10Dの基体の厚さd10B、d10C、d10Fよりも厚い撮像装置1Bの構成の少なくともいずれかの構成によって、撮像素子10Aが第1の半導体素子となっていれば、画質が低下したり信頼性が低下したりするおそれがない。
 なお、第1の面HSAよりも前方に配置されている、回路素子10Bが貫通電極の熱抵抗が最も高い第1の半導体素子であってもよい。
<第1実施形態の変形例3>  
 図7に示す本変形例の撮像装置1Cでは、最も発熱量の大きい第1の回路である半導体回路12Cが形成されている回路素子10Cの後面が、第1の面HSACである。このため、第1の回路が回路素子10Cの前面に形成されている撮像装置よりも、撮像装置1Cは、半導体回路12Cから発生した熱が撮像素子10Aに伝わりにくく、かつ信号ケーブル50に伝わりやすい。
 第1の回路である半導体回路12Cから発生した熱は、配線板40に伝熱されやすく、受光回路11Aに伝熱されにくい。このため、撮像装置1Cは、サーマルノイズによって画質が低下したり、信頼性が低下したりするおそれがない。
 また、第1の面HSAよりも前方に配置されている撮像素子10Aおよび回路素子10B、10Cは、第1の面HSAよりも後方に配置されている回路素子10Dよりも、熱抵抗が高いことが、半導体回路12Cから発生した熱が配線板40に伝熱されやすく、受光回路11Aに伝熱されにくいため、好ましい。
 また、第1の面HSAよりも前方に配置されている撮像素子10Aおよび回路素子10B、10Cは、前方に配置されているものほど、熱抵抗が高いことが、半導体回路12Cから発生した熱が受光回路11Aに伝熱されにくいため、好ましい。
<第2実施形態>
 第2実施形態の撮像装置1Dは、撮像装置1と類似しているため、同じ機能の構成要素には同じ符号を付し説明は省略する。
 図8に示す撮像装置1Dでは、撮像素子10Aと前面30SAに最も近接している回路素子10Bとの間に配置されている中間層20Aが、中間層20A~20Cの中で熱抵抗の最も高い第1の層(熱シールド層)である。すなわち、第1の面HSAから前面30SAの間に熱抵抗の最も高い第1の層(中間層20A)が配置されている。
 中間層20A~20Cは、半田からなる接合導体25A、25B、25Cの周囲には、例えば、熱伝導率が、0.35W/m・Kのエポキシ樹脂からなる封止樹脂が充填されている。
 中間層20Aの厚さd20Aは、中間層20Bの厚さd20Bおよび中間層20Cの厚さd20Cの150%超である。このため、中間層20Aは、熱抵抗が、中間層20B、20Cよりも高い。
 第1の回路である半導体回路12Cから発生した熱は、配線板40までの伝熱経路の熱抵抗が小さいため、配線板40に伝熱されやすく、受光回路11Aに伝熱されにくい。このため、撮像装置1Dは、サーマルノイズによって画質が低下したり、信頼性が低下したりするおそれがない。
 なお、中間層20Bが熱抵抗の最も高い第1の層であってもよい。すなわち、第1の面HSAから前面30SAの間に、複数の中間層の中で熱抵抗の最も高い第1の層が配置されていれば、第1の回路である半導体回路12Cから発生した熱が撮像素子10Aへ伝熱されにくい。
 また、図8に示す撮像装置1Dでは、撮像素子10Aの貫通電極15Aがコンフォーマルビアであり、回路素子10B、10C、10Dの貫通電極15B、15C、15Dはフィルドビアである。撮像素子10Aは、回路素子10B、10C、10Dよりも熱抵抗が大きい。
 さらに、コンフォーマルビアはフィルドビアと異なり、ビアの直下に接合導体を配置することができない。このため、接合導体25Aから貫通電極15Aへの熱の経路の熱抵抗が大きい。すなわち、撮像装置1Dは、中間層20Aから撮像素子10Aへ伝熱されにくいため、特に、画質が低下したり信頼性が低下したりするおそれがない。
 以上の説明のように、撮像装置1Dは、複数の半導体素子10A~10Dの中で熱抵抗の最も高い第1の半導体素子、および、複数の中間層20A~20Cの中で熱抵抗の最も高い第1の層が、第1の回路である半導体回路12Cが形成されている第1の面HSAから前面30SAの間に配置されている。
 しかし、撮像装置は、複数の半導体素子10A~10Dの中で熱抵抗の最も高い第1の半導体素子、および、複数の中間層20A~20Cの中で熱抵抗の最も高い第1の層、の少なくともいずれかが、第1の回路である半導体回路12Cが形成されている第1の面HSAから前面30SAの間に配置されていれば、中間層20Aから撮像素子10Aへ伝熱されにくいため、画質が低下したり信頼性が低下したりするおそれがない。
<第2実施形態の変形例>
 第2実施形態の変形例の撮像装置1E、1Fは、撮像装置1Dと類似しているため、同じ機能の構成要素には同じ符号を付し説明は省略する。
<第2実施形態の変形例1>
 図9に示す本変形例の撮像装置1Eは、5つの半導体素子10A~10Eおよび4つの中間層20A~20Dを具備している。回路素子10Cの半導体回路12Cが最も発熱量の大きい第1の回路である。
 撮像装置1Eでは撮像装置1Dと異なり、中間層20A~20Dが有する接合導体25A~25Dの数が異なる。中間層20Aは、4個の接合導体25Aを有し、中間層20Bは、6個の接合導体25Bを有する。中間層20Cおよび中間層20Dは、9個の接合導体25C、25Dを有する。
 中間層20A~20Dの厚さは略同じであるが、中間層20Aは、前面30SAと平行な断面における接合導体25Aの断面積の合計値が最も小さいため、中間層20Aが熱抵抗の最も高い第1の層である。
 撮像装置1Eは、中間層20Aによって、半導体回路12Cが発生する熱が撮像素子10Aへ伝熱されにくいため、画質が低下したり信頼性が低下したりするおそれがない。
 なお、中間層は、熱抵抗を下げるために、接合導体と同じ構成であるが受光回路11Aと電気的に接続されていないダミー接合導体(ダミー電極)を有していてもよい。例えば、撮像装置1Eにはダミー接合導体D25が含まれている。
 すなわち、半導体素子の主面における回路配置を設計するときに、受光回路11Aと電気的に接続することが困難な領域にも、配置可能なスペースがあれば、伝熱を目的とするダミー接合導体を配置することが好ましい。
<第2実施形態の変形例2>
 図10に示す本変形例の撮像装置1Fは、中間層20Bが熱抵抗の最も高い第1の層である。すなわち、中間層20Bの厚さd20Bは、他の中間層20A、20C、20Dの厚さd20A、d20C、d20Dよりも厚い。
 撮像装置1Fでは、第1の面HSAから前面30SAの間に、複数の中間層の中で最も厚さが厚く、熱抵抗の最も高い第1の層である中間層20Bが配置されている。
 撮像装置1Fは、中間層20Bによって、第1の回路である半導体回路12Cから撮像素子10Aへ伝熱されにくいため、画質が低下したり信頼性が低下したりするおそれがない。
 第1の層の厚さが他の中間層の厚さの150%超である撮像装置1Dの構成、および、第1の層に含まれる接合導体の断面積の合計値が他の中間層よりも小さい撮像装置1Eの構成、の少なくともいずれかの構成の第1の層が、第1の面HASから前面30SAの間に配置されていれば、画質が低下したり信頼性が低下したりするおそれがない。
 なお、前面30SAから第1の面HSAの間に配置されている全ての中間層20A、20Bは、第1の面HSAから後面30SBの間に配置されている全ての中間層20C、20Dよりも、熱抵抗が高いことが、第1の回路である半導体回路12Cから発生した熱が、配線板40に伝熱されやすく、受光回路11Aに、伝熱されにくいため、特に好ましい。
 さらに、第1の面HSAから後面30SBの間に配置されている中間層20C、20Dは、後面30SBに近接している中間層20Dほど、熱抵抗が小さいことが、第1の回路である半導体回路12Cから発生した熱が、配線板40に伝熱されやすいため、特に好ましい。
 熱抵抗を下げるために、中間層の樹脂に熱伝導率の高いフィラーを混合してもよい。
 樹脂よりも高い熱伝導率の非導電性フィラーとしては、SiO、SiC、AlN、ZnO、Si、BN、Alを、例示できる。
 また、前面30SAか第1の面HSAの間に配置されている中間層20A、20Bは、前面30SAに近接している中間層20Aほど、熱抵抗が高いことが、第1の回路である半導体回路12Cから発生した熱が、受光回路11Aに伝熱されにくいため、好ましい。
 中間層の熱抵抗を上げるために、空気を例えば10体積%以上含む樹脂を用いてもよい。空気の熱伝導率は、0.024W/m・Kと非常に小さいため、空気を含む樹脂の熱抵抗は高い。
 なお、複数の回路素子10B~10Cの中で熱抵抗の最も高い第1の半導体素子、および、複数の中間層20A~20Dの中で熱抵抗の最も高い第1の層、の少なくともいずれかが、第1の回路である半導体回路が形成されている第1の面HSAから前面30SAの間に配置されていればよいことは言うまでも無い。
 すなわち、第1実施形態および第1実施形態の変形例の少なくともいずれかの構成の第1の半導体素子と、第2実施形態および第1実施形態の変形例の少なくともいずれかの第1の層と、を撮像装置が具備していてもよい。
<第3実施形態>
 第3実施形態の撮像装置1Gは、撮像装置1等と類似しているため、同じ機能の構成要素には同じ符号を付し説明は省略する。
 図11Aに示すように、撮像装置1Gは、回路素子10B~10Eを含む積層素子30の最後部に配置される回路素子10Eの後面10ESB(積層素子30の後面30SB)に、配線板40が接合される領域である接合電極42を有する。
 また、図11Bに示すように、回路素子10Eの前面10ESAには、中間層20Dの接合導体25Dとの接合領域を囲む広い面積の導体膜19が配設されている。導体膜19は、後面10ESBの接合電極42が配設されている領域と光軸方向から見て重なる重畳領域に配置されている。このため、重畳領域は、重畳領域の周囲の領域よりも、導体膜19が配設されている面積の割合が大きい。
 言い替えれば、複数の半導体素子のうち最後部に配置される半導体素子である回路素子10Eの前面10ESAには、積層方向から見て配線板40との接合領域と重なる重畳領域と、それ以外の周辺領域と、が設けられ、周辺領域よりも重畳領域の方が、導体膜19が形成されている面積の割合が大きい。
 これにより、回路素子10Eから発生した熱、および他の回路素子から回路素子10Eに伝熱された熱は、導体膜19、接合導体25D、接合電極42の順に配線板40に伝熱される。よって、撮像装置1Gは、半導体回路12Cから発生した熱が、配線板40に伝熱されやすいため、画質が低下したり、信頼性が低下したりするおそれがない。
<第4実施形態>
 第4実施形態の撮像装置1Hは、撮像装置1等と類似しているため、同じ機能の構成要素には同じ符号を付し説明は省略する。
 図12に示す撮像装置1Hでは、後面30SBを有する回路素子10Dの半導体回路12Dが最も発熱量の大きい第1の回路である。そして、半導体回路12Dは、後面30SBに形成されている。すなわち、後面30SBが第1の面HSAである。
 撮像装置1Hは、半導体回路12Dから発生した熱は、配線板40に伝熱されやすく、受光回路11Aに伝熱されにくい。熱は、配線板40を経由して信号ケーブル50に伝熱されやすい。このため、撮像装置1Hは、サーマルノイズによって画質が低下したり、信頼性が低下したりするおそれがない。
 なお、撮像装置1A~1Hを有する内視鏡9A~9Hが、内視鏡9の効果に加えて、それぞれの撮像装置1A~1Hの効果を有することは言うまでも無い。また、撮像装置1A~1Hは、内視鏡用撮像装置であるが、実施形態の撮像装置の用途は限定されるものではない。
 本発明は上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等ができる。
1、1A~1H・・・撮像装置
9、9A~9H・・・内視鏡
10A・・・撮像素子
10B~10E・・・回路素子
11A、12B、12C、12D・・・半導体回路
11A・・・受光回路
12A・・・周辺回路
13・・・基体
15A、15B、15C、15D・・・貫通電極
16・・・導体
17・・・樹脂
19・・・導体膜
20A~20D・・・中間層
25A~25D・・・接合導体
30・・・積層素子
30SA・・・積層素子の前面
30SB・・・積層素子の後面
40・・・配線板
42・・・接合電極
50・・・信号ケーブル
D25・・・ダミー接合導体(ダミー電極)
HSA、HSAC・・・第1の面

Claims (12)

  1.  複数の貫通電極をそれぞれ有する複数の半導体素子が、複数の接合導体をそれぞれ有する複数の中間層を挟んで積層され、互いに対向する前記複数の半導体素子が前記複数の接合導体によって電気的に接続される積層素子を備え、
     前記複数の半導体素子が、受光回路が形成された撮像素子と、前記撮像素子の後方に配置され、半導体回路がそれぞれ形成されている複数の回路素子と、を含み、
     前記複数の半導体素子のうち、前記複数の貫通電極の熱抵抗が最も高い第1の半導体素子が、最も発熱量の大きい前記半導体回路である第1の回路が形成されている第1の面よりも前方に配置されていることを特徴とする撮像装置。
  2.  前記第1の半導体素子は、他の前記複数の半導体素子よりも、厚さ方向中央部において面方向に平行な断面における前記複数の貫通電極の導体の断面積が小さいことを特徴とする請求項1に記載の撮像装置。
  3.  前記第1の半導体素子が、前記撮像素子であることを特徴とする請求項1または請求項2に記載の撮像装置。
  4.  前記第1の半導体素子の前記複数の貫通電極が、コンフォーマルビアであり、
     他の前記複数の半導体素子の前記複数の貫通電極が、フィルドビアであることを特徴とする請求項1から請求項3のいずれか1項に記載の撮像装置。
  5.  前記第1の半導体素子は、他の前記複数の半導体素子よりも、前記複数の貫通電極の導体の材料の熱伝導率が小さいことを特徴とする請求項1から請求項4のいずれか1項に記載の撮像装置。
  6.  前記第1の半導体素子は、他の前記複数の半導体素子よりも、前記複数の貫通電極の数が少ないことを特徴とする請求項1から請求項5のいずれか1項に記載の撮像装置。
  7.  前記第1の半導体素子は、他の前記複数の半導体素子よりも、基体が厚いことを特徴とする請求項1から請求項6のいずれか1項に記載の撮像装置。
  8.  前記第1の面は、前記第1の面を有する前記回路素子の後面であることを特徴とする請求項1から請求項7のいずれか1項に記載の撮像装置。
  9.  前記積層素子の後面に接合されている配線板と、
     前記配線板に接合されている信号ケーブルと、をさらに具備することを特徴とする請求項1から請求項8のいずれか1項に記載の撮像装置。
  10.  前記複数の半導体素子のうち最後部に配置される半導体素子の前面には、積層方向から見て前記配線板との接合領域と重なる重畳領域と、それ以外の周辺領域と、が設けられ、前記周辺領域よりも前記重畳領域の方が、導体膜が形成されている面積の割合が大きいことを特徴とする請求項9に記載の撮像装置。
  11.  前記複数の半導体素子のうち最後部に配置される半導体素子の後面に、前記第1の回路が形成されていることを特徴とする請求項1から請求項10のいずれか1項に記載の撮像装置。
  12.  撮像装置を含み、
     前記撮像装置は、
     複数の貫通電極をそれぞれ有する複数の半導体素子が、複数の接合導体をそれぞれ有する複数の中間層を挟んで積層され、互いに対向する前記複数の半導体素子が前記複数の接合導体によって電気的に接続される積層素子を備え、
     前記複数の半導体素子が、受光回路が形成された撮像素子と、前記撮像素子の後方に配置され、半導体回路がそれぞれ形成されている複数の回路素子と、を含み、
     前記複数の半導体素子のうち、前記複数の貫通電極の熱抵抗が最も高い第1の半導体素子が、最も発熱量の大きい前記半導体回路である第1の回路が形成されている第1の面よりも前方に配置されていることを特徴とする内視鏡。
PCT/JP2020/002758 2020-01-27 2020-01-27 撮像装置、および、内視鏡 WO2021152658A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/002758 WO2021152658A1 (ja) 2020-01-27 2020-01-27 撮像装置、および、内視鏡
US17/868,929 US12028597B2 (en) 2020-01-27 2022-07-20 Image pickup apparatus and endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/002758 WO2021152658A1 (ja) 2020-01-27 2020-01-27 撮像装置、および、内視鏡

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/868,929 Continuation US12028597B2 (en) 2020-01-27 2022-07-20 Image pickup apparatus and endoscope

Publications (1)

Publication Number Publication Date
WO2021152658A1 true WO2021152658A1 (ja) 2021-08-05

Family

ID=77078045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002758 WO2021152658A1 (ja) 2020-01-27 2020-01-27 撮像装置、および、内視鏡

Country Status (2)

Country Link
US (1) US12028597B2 (ja)
WO (1) WO2021152658A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142458A (ja) * 2010-12-30 2012-07-26 Zycube:Kk インターポーザ及びそれを用いた半導体モジュール
JP2013021031A (ja) * 2011-07-07 2013-01-31 Sony Corp 固体撮像装置、電子機器
JP2013201568A (ja) * 2012-03-23 2013-10-03 Olympus Corp 撮像モジュール
WO2017057291A1 (ja) * 2015-10-01 2017-04-06 オリンパス株式会社 撮像素子、内視鏡、及び内視鏡システム
WO2017072862A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 撮像ユニットおよび内視鏡
WO2017073440A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 内視鏡
WO2018193531A1 (ja) * 2017-04-19 2018-10-25 オリンパス株式会社 内視鏡、撮像モジュール、および撮像モジュールの製造方法
WO2019138442A1 (ja) * 2018-01-09 2019-07-18 オリンパス株式会社 撮像装置、内視鏡、および、撮像装置の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036694B2 (ja) 2002-03-28 2008-01-23 シャープ株式会社 積層型半導体装置
JP2008193358A (ja) 2007-02-02 2008-08-21 Olympus Imaging Corp 撮像素子ユニット
JP2010050259A (ja) 2008-08-21 2010-03-04 Zycube:Kk 3次元積層半導体装置
KR20100046760A (ko) * 2008-10-28 2010-05-07 삼성전자주식회사 반도체 패키지
US9901244B2 (en) * 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
JP5853351B2 (ja) * 2010-03-25 2016-02-09 ソニー株式会社 半導体装置、半導体装置の製造方法、及び電子機器
JP2013030593A (ja) 2011-07-28 2013-02-07 J Devices:Kk 半導体装置、該半導体装置を垂直に積層した半導体モジュール構造及びその製造方法
JP2013187361A (ja) 2012-03-08 2013-09-19 Sony Corp 半導体装置及び電子機器
JP6539992B2 (ja) * 2014-11-14 2019-07-10 凸版印刷株式会社 配線回路基板、半導体装置、配線回路基板の製造方法、半導体装置の製造方法
JP2018085353A (ja) 2015-03-24 2018-05-31 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、及び、電子機器
JP2017079240A (ja) 2015-10-19 2017-04-27 キヤノン株式会社 積層型イメージセンサ
JP6655634B2 (ja) * 2016-01-29 2020-02-26 オリンパス株式会社 撮像装置および内視鏡
TWI826965B (zh) * 2016-06-03 2023-12-21 日商大日本印刷股份有限公司 貫通電極基板及其製造方法、以及安裝基板
JPWO2018092318A1 (ja) 2016-11-21 2019-01-24 オリンパス株式会社 内視鏡用撮像モジュール、および内視鏡

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142458A (ja) * 2010-12-30 2012-07-26 Zycube:Kk インターポーザ及びそれを用いた半導体モジュール
JP2013021031A (ja) * 2011-07-07 2013-01-31 Sony Corp 固体撮像装置、電子機器
JP2013201568A (ja) * 2012-03-23 2013-10-03 Olympus Corp 撮像モジュール
WO2017057291A1 (ja) * 2015-10-01 2017-04-06 オリンパス株式会社 撮像素子、内視鏡、及び内視鏡システム
WO2017072862A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 撮像ユニットおよび内視鏡
WO2017073440A1 (ja) * 2015-10-27 2017-05-04 オリンパス株式会社 内視鏡
WO2018193531A1 (ja) * 2017-04-19 2018-10-25 オリンパス株式会社 内視鏡、撮像モジュール、および撮像モジュールの製造方法
WO2019138442A1 (ja) * 2018-01-09 2019-07-18 オリンパス株式会社 撮像装置、内視鏡、および、撮像装置の製造方法

Also Published As

Publication number Publication date
US20220368816A1 (en) 2022-11-17
US12028597B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
US20200337539A1 (en) Image pickup apparatus, endoscope, and method of manufacturing image pickup apparatus
US10653306B2 (en) Electronic circuit unit, imaging unit, and endoscope
JP5775984B1 (ja) 内視鏡装置
US11000184B2 (en) Image pickup module, fabrication method for image pickup module, and endoscope
US9509890B2 (en) Solid image pickup apparatus
US11627240B2 (en) Image pickup apparatus for endoscope, endoscope, and method of producing image pickup apparatus for endoscope
WO2018078765A1 (ja) 内視鏡用撮像ユニットおよび内視鏡
US20160037029A1 (en) Image pickup apparatus and electronic endoscope
US10617285B2 (en) Imaging module with multi-layer substrate and endoscope apparatus
WO2018092318A1 (ja) 内視鏡用撮像モジュール、および内視鏡
WO2018078767A1 (ja) 内視鏡
JP2607542B2 (ja) 固体撮像装置
US10930696B2 (en) Image pickup unit, endoscope, and method for manufacturing image pickup unit
JP6655634B2 (ja) 撮像装置および内視鏡
US20230291988A1 (en) Image pickup unit, method of manufacturing image pickup unit, and endoscope
WO2021152658A1 (ja) 撮像装置、および、内視鏡
WO2018198189A1 (ja) 内視鏡、および、撮像モジュール
JP2003209751A (ja) 固体撮像装置
WO2021149177A1 (ja) 撮像装置、内視鏡、および撮像装置の製造方法
US11876107B2 (en) Image pickup apparatus for endoscope and endoscope
WO2021059455A1 (ja) 撮像モジュール、および、内視鏡
WO2022264337A1 (ja) 撮像ユニット、および、内視鏡
WO2023233524A1 (ja) 撮像ユニット,内視鏡
JP7149489B2 (ja) 固体撮像装置
US20230080558A1 (en) Electronic module, manufacturing method for electronic module, and endoscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP