WO2021151542A1 - Laderoboter zur induktiven aufladung von fahrzeugen - Google Patents

Laderoboter zur induktiven aufladung von fahrzeugen Download PDF

Info

Publication number
WO2021151542A1
WO2021151542A1 PCT/EP2020/083224 EP2020083224W WO2021151542A1 WO 2021151542 A1 WO2021151542 A1 WO 2021151542A1 EP 2020083224 W EP2020083224 W EP 2020083224W WO 2021151542 A1 WO2021151542 A1 WO 2021151542A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
robot
vehicle
vehicles
inductive
Prior art date
Application number
PCT/EP2020/083224
Other languages
English (en)
French (fr)
Inventor
Ralf Derda
Hannes Schulz
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to CN202080092866.3A priority Critical patent/CN114930676A/zh
Priority to EP20812286.1A priority patent/EP4097821A1/de
Publication of WO2021151542A1 publication Critical patent/WO2021151542A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a charging robot according to the preamble of claim 1 and a charging system according to the preamble of claim 8.
  • DE 102010027670 A1 discloses a device for charging electric vehicles that is able to locate a connection for charging the vehicle. The localized charging connection of the electric vehicle can then be connected to the charging station using sensors.
  • EP 0708517 A1 describes a self-aligning charging device for charging the battery in a vehicle.
  • the charging device can in particular charge the battery inductively.
  • the loading device comprises alignment kinematics that are installed in a stationary manner.
  • the invention is now based on the object of proposing an improved technical solution in order to solve the problems mentioned.
  • a first aspect of the invention relates to a charging robot with an inductive charging device for charging a vehicle with an inductive charging interface which is designed to charge at least one vehicle.
  • the vehicle is preferably in the rest position (parking position) during the charging process.
  • the charging robot comprises a movable boom on which it guides the inductive charging device.
  • the charging robot is compatible with any vehicle that has a rechargeable battery, preferably a rechargeable drive battery, and an inductive interface connected back to it.
  • the loading robot is able to move to the different parked vehicles or at least to reach them from its position and to react flexibly with the movable boom to different types of vehicles, the loading process with the loading robot of the invention is clear more efficient than in the prior art.
  • the degree of utilization of the loading robot of the invention is also significantly increased, so that it can flexibly process a wide variety of vehicles.
  • the loading robot of the invention is therefore particularly suitable for loading vehicles that are difficult to maneuver, such as watercraft or aircraft, and trailers and containers.
  • the loading robot of the invention can, in a preferred embodiment, be a stationary loading robot, the boom of which is designed to reach at least two adjacent or opposite vehicle parking areas.
  • the boom preferably reaches four vehicle parking areas, two vehicle parking areas each being arranged next to one another and thus forming a first group which is opposite a second group of two vehicle parking areas arranged next to one another.
  • vehicle parking area is to be interpreted broadly and relates in the broadest sense to a space provided for parking a vehicle. In connection with passenger cars or commercial vehicles, it can be a parking lot, for example.
  • the stationary loading robot preferably reaches at least 10% of the area of the vehicle parking area with its boom. Furthermore, it preferably reaches at least 20%, particularly preferably at least 30%, in particular at least 40% and very particularly preferably at least 50% of the area of the vehicle parking area. This allows generous tolerances for the position and orientation in which the vehicle is parked. In other words, the charging robot can easily reach the charging interface in large areas of the vehicle parking area.
  • the flexibility of the loading robot is thereby significantly increased without the mechanical and electronic construction of the loading robot increasing in complexity too much.
  • the boom is designed in such a way that the loading robot can guide it under a vehicle of variable overall height.
  • a single degree of freedom is sufficient for the boom.
  • the boom can be folded down via this, for example, and then driven by the mobile charging robot under or against the parked vehicle, depending on where its charging interface is located.
  • two degrees of freedom are sufficient for the boom, for example in the form of a possible rotation of the robot around its vertical axis and an extension movement of the boom, or, for example, at least three degrees of freedom in the case of a two-part horizontally pivoting kinematics of the boom in conjunction with a rotary movement of the Robot around its vertical axis.
  • the boom is preferably always height-adjustable in a further degree of freedom.
  • the boom should be designed, for example, in such a way that it can easily reach different vehicle underbodies by providing a separate degree of freedom for this.
  • care must be taken that when adjusting the height, the inductive charging device does not tilt in relation to the charging interface, as this negatively affects the inductive charging process.
  • the charging interface does not always have to be located under the vehicle. It is also possible, for example, for a charging pad of the charging robot to be driven up to the vehicle from the front and for the charging interface to be provided in the area of a bumper.
  • the charging robot determines and regulates a charging position for the inductive charging device by performing a measurement in relation to an inductive charging interface of a vehicle, selected from the following group: magnetic field measurement, magnetic vector measurement, impedance measurement.
  • An optimal relative position and a minimum distance between the inductive charging device of the charging robot and the corresponding inductive charging interface of the vehicle are always aimed for as the charging position. If, for example, a charging robot's charging pad is pushed under the vehicle for charging, the charging robot can apply a weak measuring current to the charging pad and measure an opposing magnetic field that is established at the charging interface. Based on the characteristics of the opposing magnetic field, the charging robot can determine the charging position and position the charging pad accordingly.
  • a mobile loading robot it can be equipped with appropriate navigation technology, for example camera-based, and in the case of a stationary or mobile loading robot with appropriate environment sensors, drive motors and the like.
  • the inductive charging device can optionally also be exchangeable in a modular manner on the charging robot.
  • the charging robot includes a charging energy store.
  • the charging robot can be connected to a charging energy source via a flexible line.
  • the flexible line can also be considered for both the stationary and the mobile charging robot. If the charging energy storage of the mobile charging robot is equipped with sufficient capacity, the charging robot can even operate largely independent of location and, for example, also charge vehicles parked in the open street.
  • the charging robot it is basically possible with all variants of the charging robot to use the charging energy store as a buffer accumulator, so that the charging power on the vehicle can even be higher than the power at the mains connection or the power of a charging energy source.
  • Another aspect of the invention relates to a charging system comprising a charging robot according to the invention according to the preceding description and at least one vehicle parking area and at least one vehicle with an inductive charging interface which is arranged on the vehicle parking area.
  • the charging system of the invention comprises a plurality of vehicle parking spaces and vehicles parked on them. It is provided that the charging robot is a mobile charging robot that is able to start up and charge the vehicles.
  • This variant of the charging system is particularly flexible.
  • the charging system of the invention comprises a plurality of vehicle parking spaces and vehicles parked thereon. It is also provided that the charging robot is a stationary charging robot that is able to charge the vehicles from its position.
  • the charging system of the invention is able to supply a large number of vehicles in a confined space and with as little use of technical resources as possible.
  • the two variants of the charging system can also be combined with one another.
  • the present invention relates to a charging robot that guides an inductive charging pad on a flexible boom.
  • the charging pad can be guided so flexibly that a large number of vehicles that are not moving can be charged.
  • Figure 1 shows a charging system according to the invention in a first embodiment
  • FIG. 2 shows a charging system according to the invention in a second embodiment.
  • FIG. 1 shows a charging system 10 according to the invention with a charging robot 12 according to the invention.
  • FIG. 1 shows the charging robot 12 in the area of a vehicle parking area 14 on which a vehicle 16 is parked.
  • the vehicle 16 is a passenger car.
  • the vehicle parking area 14 is, for example, a parking port.
  • the vehicle 16 is an electrically drivable vehicle that can be charged via an inductive charging interface 18.
  • the charging robot 12 is a mobile charging robot 20.
  • the mobile charging robot 20 can move, driven by wheels 22, to different vehicles 16 in order to charge them one after the other. It is equipped with an inductive charging device 24 for this purpose.
  • the inductive charging device 24 comprises a charging pad 26 which can be guided in an unfolding movement 30 via a movable arm 28.
  • the charging device 24 includes corresponding power electronics 32.
  • the mobile charging robot 20 can align the boom 28 horizontally via the unfolding movement 30 and guide the charging pad 26 under the vehicle 16 into the area of the charging interface 18.
  • the mobile charging robot 20 can carry out a magnetic field measurement based on the data from the charging pad 26 Perform the generated magnetic field and the counter magnetic field generated by the charging interface 18.
  • FIG. 2 shows a charging system 10 according to the invention in an alternative embodiment in which the charging system 10 also comprises a plurality of vehicle parking areas 14 on which vehicles 16 are parked. Only one of the vehicles 16 is shown as an example at the top right.
  • the charging robot 12 in FIG. 2 is a stationary charging robot 36. This is designed to charge the vehicles 16 from its fixed position 38.
  • the stationary charging robot 36 also comprises a movable boom 28, over which it guides an inductive charging device 24.
  • the boom 28 is designed here to reach inductive charging interfaces 18 of the different vehicles 16 without the stationary charging robot 36 having to leave its position 38 for this.
  • the correct loading position 34 is ensured in accordance with the procedure described in FIG. The difference, however, is that the stationary charging robot 36 does not position the charging pad 26 by changing its own position 38. Rather, the boom 28 is designed accordingly here so that it can achieve a certain number and arrangement of vehicle parking spaces 14 that are to be supplied. In addition, the stationary loading robot 36 can preferably rotate about its vertical axis 40.
  • the charging robot 12 can include a charging energy store 42 in both FIG. 1 and FIG. 2 or can also be connected to a charging energy source 46 via a flexible line 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft einen Laderoboter (12; 20; 36) mit einer induktiven Ladeeinrichtung (24) zur Aufladung eines Fahrzeugs (16) mit einer induktiven Ladeschnittstelle (18). Der Laderoboter (12; 20; 36) ist ausgebildet, mindestens ein Fahrzeug (16) zu laden. Dafür ist vorgesehen, dass der Laderoboter (12; 20; 36) einen beweglichen Ausleger (28) umfasst, an dem er die induktive Ladeeinrichtung (24; 26) führt (30). Die Erfindung betrifft ferner ein Ladesystem (10), umfassend einen erfindungsgemäßen Laderoboter (12), wenigstens eine Fahrzeugstellfläche (14) und wenigstens ein Fahrzeug (16) mit einer induktiven Ladeschnittstelle (18), das auf der Fahrzeugstellfläche (14) angeordnet ist.

Description

Beschreibung
Laderoboter zur induktiven Aufladung von Fahrzeugen
Die Erfindung betrifft einen Laderoboter gemäß dem Oberbegriff des Patentanspruchs 1 sowie ein Ladesystem gemäß dem Oberbegriff des Patentanspruchs 8.
Auf dem technischen Gebiet der Fahrzeuge, insbesondere der Elektrofahrzeuge, stellt sich zunehmend die Anforderung nach einer Möglichkeit, mit geringem technischen Aufwand und kundenfreundlich Batterien derartiger Fahrzeuge aufzuladen.
Hierzu sind bereits unterschiedliche Ansätze bekannt. Die DE 102010027670 A1 offenbart beispielsweise eine Vorrichtung zum Aufladen von Elektrofahrzeugen, die in der Lage ist, einen Anschluss zum Aufladen des Fahrzeugs zu lokalisieren. Sodann kann sensorgeführt der lokalisierte Ladeanschluss des Elektrofahrzeuges an die Ladestation angeschlossen werden.
Des Weiteren beschreibt die EP 0708517 A1 eine sich selbst ausrichtende Ladevorrichtung zur Aufladung der Batterie in einem Fahrzeug. Die Ladevorrichtung kann die Batterie insbesondere induktiv aufladen. Die Ladevorrichtung umfasst eine Ausrichtungskinematik, die ortsfest installiert ist.
Aus der AT 513 353 A1 ist schließlich eine autonom bewegliche Service-Vorrichtung bekannt, die sich unter ein Fahrzeug begeben kann, um dessen Batterie induktiv aufzuladen.
Die bekannten Lösungen weisen aber unterschiedliche Nachteile auf. So ist es bei vielen dieser Lösungen erforderlich, dass das aufzuladende Fahrzeug stets ziemlich genau vor der Ladevorrichtung positioniert werden muss. Dies setzt zum einen den Komfort für den Fahrzeugnutzer herab und zum anderen wird durch unvermeidbare Abweichungen einer optimalen Relativlage zwischen Fahrzeug- und Ladevorrichtung die Effizienz des Ladevorgangs, insbesondere bei induktiven Ladevorgängen, negativ beeinflusst.
Bei steckverbindungsbasierten Ladevorrichtungen wiederum ist das Herstellen einer Verbindung mit dem Fahrzeug entsprechend aufwendig. Lösungen, bei denen die Ladevorrichtung automatisiert relativ zu einem gegebenen Fahrzeug ausgerichtet wird, sind technisch vergleichsweise ineffizient, da stets immer nur ein vor der entsprechenden Vorrichtung geparktes Fahrzeug bedient werden kann oder das Fahrzeug in seiner Bauart kaum variieren darf.
Der Erfindung liegt nun die Aufgabe zugrunde, eine verbesserte technische Lösung vorzuschlagen, um die genannten Probleme zu lösen.
Die Aufgabe wird durch die Gegenstände der unabhängigen Patentansprüche 1 und 8 gelöst. Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen und der Beschreibung genannten Merkmalen.
Ein erster Aspekt der Erfindung betrifft einen Laderoboter mit einer induktiven Ladeeinrichtung zur Aufladung eines Fahrzeugs mit einer induktiven Ladeschnittstelle, der ausgebildet ist, mindestens ein Fahrzeug zu laden. Das Fahrzeug befindet sich während des Ladevorganges vorzugsweise in Ruheposition (Parkposition).
Erfindungsgemäß ist vorgesehen, dass der Laderoboter einen beweglichen Ausleger umfasst, an dem er die induktive Ladeeinrichtung führt.
Der Laderoboter ist mit jedem Fahrzeug kompatibel, das eine aufladbare Batterie, vorzugsweise eine aufladbare Antriebsbatterie, sowie eine mit dieser rückverbundene induktive Schnittstelle umfasst.
Dadurch, dass der Laderoboter in der Lage ist, sich zu den unterschiedlichen abgestellten Fahrzeugen zu bewegen oder zumindest diese aus seiner Position heraus zu erreichen und mit dem beweglichen Ausleger auf unterschiedlichste Bauarten von Fahrzeugen flexibel zu reagieren, ist der Ladevorgang mit dem Laderoboter der Erfindung deutlich effizienter als im Stand der Technik. Auch der Nutzungsgrad des Laderoboters der Erfindung ist signifikant erhöht, so dass er flexibel verschiedenste Fahrzeuge abarbeiten kann.
Neben allen Landfahrzeugen bietet sich der Laderoboter der Erfindung somit insbesondere auch für das Aufladen von schwer manövrierbaren Fahrzeugen, wie Wasser- oder Luftfahrzeuge, und Anhänger und Container an. Durch Verwendung des beweglichen Auslegers kann es sich bei dem Laderoboter der Erfindung in einer bevorzugten Ausgestaltung um einen stationären Laderoboter handeln, dessen Ausleger dazu ausgebildet ist, wenigstens zwei nebeneinander oder gegenüberliegende Fahrzeugstellflächen zu erreichen.
Bevorzugt erreicht der Ausleger vier Fahrzeugstellflächen, wobei vorzugsweise jeweils zwei Fahrzeugstellflächen nebeneinander angeordnet sind und somit eine erste Gruppe bilden, der eine zweite Gruppe von wiederum zwei nebeneinander angeordneten Fahrzeugstellflächen gegenüberliegt.
Untersuchungen haben gezeigt, dass dieses Layout sich mit einem stationären Laderoboter in einem besonders günstigen Aufwand-Nutzen-Verhältnis realisieren lässt. Natürlich können auch mehr als vier Fahrzeugstellflächen durch den stationären Laderoboter bedient werden.
Der Begriff der Fahrzeugstellfläche ist weit auszulegen und betrifft im weitesten Sinne einen zum Abstellen eines Fahrzeuges vorgesehenen Raumbereich. Im Zusammenhang mit Personenkraftwagen oder Nutzfahrzeugen kann es sich beispielsweise um eine Parkbucht handeln.
Bevorzugt erreicht der stationäre Laderoboter mit seinem Ausleger wenigstens 10 % der Fläche der Fahrzeugstellfläche. Weiterhin bevorzugt erreicht er wenigstens 20 %, besonders bevorzugt mindestens 30 %, insbesondere mindestens 40 % und ganz besonders bevorzugt wenigstens 50 % der Fläche der Fahrzeugstellfläche. Dadurch sind großzügige Toleranzen für die Position und Orientierung, in dem das Fahrzeug abgestellt wird, zulässig. Mit anderen Worten kann der Laderoboter die Ladeschnittstelle in weiten Bereichen der Fahrzeugstellfläche gut erreichen.
Die beschriebene Charakterisierung der Fahrzeugstellfläche gilt auch für die folgende alternative bevorzugte Ausgestaltung des Laderoboters der Erfindung.
In dieser ist vorgesehen, dass es sich um einen mobilen Laderoboter handelt, der unterschiedliche Fahrzeugstellflächen anfahren kann.
Die Flexibilität des Laderoboters wird dadurch signifikant erhöht, ohne dass die mechanische und elektronische Konstruktion des Laderoboters allzu stark in ihrer Komplexität steigt. ln bevorzugter Ausgestaltung des Laderoboters der Erfindung ist vorgesehen, dass der Ausleger derart ausgebildet ist, dass der Laderoboter ihn unter ein Fahrzeug variabler Bauhöhe führen kann.
Bei einem mobilen Laderoboter genügt hierfür beispielsweise schon ein einziger Freiheitsgrad für den Ausleger. Über diesen kann der Ausleger beispielsweise heruntergeklappt werden und dann von dem mobilen Laderoboter unter oder an das abgestellte Fahrzeug gefahren werden, je nachdem wo sich dessen Ladeschnittstelle befindet.
Bei einem stationären Laderoboter genügen bereits zwei Freiheitsgrade für den Ausleger, beispielsweise in Form einer möglichen Drehbewegung des Roboters um seine vertikale Achse und einer Ausfahrbewegung des Auslegers, oder beispielsweise wenigstens drei Freiheitsgrade im Falle einer zweigliedrigen horizontal ausschwenkbaren Kinematik des Auslegers in Verbindung mit einer Drehbewegung des Roboters um seine vertikale Achse.
Bevorzugt ist der Ausleger zudem stets in einem weiteren Freiheitsgrad höhenverstellbar. Mit anderen Worten sollte der Ausleger beispielsweise so konstruiert sein, dass er unterschiedliche Unterböden von Fahrzeugen gut erreichen kann, indem hierfür ein eigener Freiheitsgrad vorgesehen ist. Zudem ist darauf zu achten, dass es beim Justieren der Höhe nicht zum Verkippen der induktiven Ladeeinrichtung gegenüber der Ladeschnittstelle kommt, da diese den induktiven Ladevorgang negativ beeinflusst.
Natürlich muss die Ladeschnittstelle nicht immer unter dem Fahrzeug angeordnet sein. So ist es auch möglich, dass beispielsweise ein Ladepad des Laderoboters von vorne an das Fahrzeug herangefahren wird und die Ladeschnittstelle im Bereich einer Stoßstange vorgesehen ist.
In weiterer bevorzugter Ausgestaltung des Laderoboters der Erfindung ist vorgesehen, dass der Laderoboter eine Ladeposition für die induktive Ladeeinrichtung ermittelt und einregelt, unter Durchführung einer Messung in Bezug auf eine induktive Ladeschnittstelle eines Fahrzeugs, ausgewählt aus folgender Gruppe: Magnetfeldmessung, Magnetvektormessung, Impedanzmessung.
Als Ladeposition wird dabei stets eine optimale Relativlage und ein minimaler Abstand zwischen der induktiven Ladeeinrichtung des Laderoboters und der entsprechenden induktiven Ladeschnittstelle des Fahrzeugs angestrebt. Wird für die Aufladung beispielsweise ein Ladepad des Laderoboters unter das Fahrzeug geschoben, so kann der Laderoboter das Ladepad mit einem schwachen Messstrom beaufschlagen und ein sich an der Ladeschnittstelle einstellendes Gegenmagnetfeld messtechnisch erfassen. Auf Basis der Charakteristik des Gegenmagnetfeldes kann der Laderoboter so die Ladeposition ermitteln und das Ladepad entsprechend positionieren.
Auf diese Weise wird die Anforderung an die Genauigkeit bei der Fahrzeugabstellung signifikant herabgesetzt, wobei trotzdem sichergestellt ist, dass der Ladevorgang optimal stattfinden kann. Eine aufwendige technische Ausstattung des aufzuladenden Fahrzeugs ist hierfür nicht erforderlich.
Gegebenenfalls können weitere Vorkehrungen zur Ermöglichung einer Kommunikation zwischen dem Laderoboter und dem Fahrzeug vorgesehen sein, um beispielsweise die Bereitschaft zum Aufladen des Fahrzeugs und dessen Ladezustand und Ladeanforderungen auszutauschen.
Besonders bevorzugt im Falle eines mobilen Laderoboters kann dieser mit entsprechender Navigationstechnik ausgestattet sein, beispielsweise kamerabasiert, sowie im Falle eines stationären oder mobilen Laderoboters mit entsprechender Umfeldsensorik, Antriebsmotoren und dergleichen.
Die induktive Ladeeinrichtung kann gegebenenfalls auch modular am Laderoboter wechselbar sein.
In weiterer bevorzugter Ausgestaltung des Laderoboters der Erfindung ist vorgesehen, dass der Laderoboter einen Ladeenergiespeicher umfasst.
In weiterer bevorzugter Ausgestaltung des Laderoboters der Erfindung ist vorgesehen, dass der Laderoboter über eine flexible Leitung mit einer Ladeenergiequelle verbindbar ist.
Insbesondere für einen mobilen Laderoboter stellt der eigene Ladeenergiespeicher die bevorzugte Variante dar. Grundsätzlich kommt aber sowohl für den stationären als auch für den mobilen Laderoboter auch die flexible Leitung in Betracht. Ist der Ladeenergiespeicher des mobilen Laderoboters mit einer ausreichenden Kapazität ausgestattet, so kann der Laderoboter sogar weitgehend ortsunabhängig agieren und beispielsweise auch im freien Straßenraum abgestellte Fahrzeuge aufladen.
Es ist grundsätzlich bei allen Varianten des Laderoboters möglich, den Ladeenergiespeicher als Pufferakkumulator zu verwenden, so dass die Ladeleistung am Fahrzeug sogar höher sein kann als die Leistung am Netzanschluss beziehungsweise die Leistung einer Ladeenergiequelle.
Ein weiterer Aspekt der Erfindung betrifft ein Ladesystem, umfassend einen erfindungsgemäßen Laderoboter gemäß der vorhergehenden Beschreibung sowie wenigstens eine Fahrzeugstellfläche und wenigstens ein Fahrzeug mit einer induktiven Ladeschnittstelle, das auf der Fahrzeugstellfläche angeordnet ist.
In bevorzugter Ausgestaltung des Ladesystems der Erfindung umfasst dieses eine Mehrzahl von Fahrzeugstellflächen und auf diesen abgestellte Fahrzeuge. Es ist dabei vorgesehen, dass der Laderoboter ein mobiler Laderoboter ist, der die Fahrzeuge anzufahren und aufzuladen vermag.
Diese Variante des Ladesystems ist besonders flexibel.
In dazu alternativer Ausgestaltung des Ladesystems der Erfindung ist vorgesehen, dass dieses eine Mehrzahl von Fahrzeugstellflächen und auf diesen abgestellte Fahrzeuge umfasst. Dabei ist weiterhin vorgesehen, dass der Laderoboter ein stationärer Laderoboter ist, der die Fahrzeuge aus seiner Position heraus aufzuladen vermag.
In dieser Variante vermag das Ladesystem der Erfindung auf engem Raum und mit möglichst wenig technischem Mitteleinsatz eine Vielzahl von Fahrzeugen zu versorgen.
Sofern genug Freiraum vorhanden ist, so dass ein mobiler Laderoboter zwischen den Fahrzeugen navigieren kann, können die beiden Varianten des Ladesystems auch miteinander kombiniert werden.
Nochmals mit anderen Worten zusammengefasst betrifft die vorliegende Erfindung einen Laderoboter, der ein induktives Ladepad an einem flexiblen Ausleger führt. Das Ladepad kann dabei so flexibel geführt werden, dass eine Mehrzahl von dabei nicht bewegten Fahrzeugen dabei aufgeladen werden können.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:
Figur 1 ein erfindungsgemäßes Ladesystem in einer ersten Ausführungsform und
Figur 2 ein erfindungsgemäßes Ladesystem in einer zweiten Ausführungsform.
Figur 1 zeigt ein erfindungsgemäßes Ladesystem 10 mit einem erfindungsgemäßen Laderoboter 12. Figur 1 zeigt den Laderoboter 12 im Bereich einer Fahrzeugstellfläche 14, auf der ein Fahrzeug 16 abgestellt ist.
Im vorliegenden Beispiel handelt es sich bei dem Fahrzeug 16 um einen Personenkraftwagen. Bei der Fahrzeugstellfläche 14 handelt es sich exemplarisch um einen Parkhafen.
Das Fahrzeug 16 ist ein elektrisch antreibbares Fahrzeug, das über eine induktive Ladeschnittstelle 18 aufgeladen werden kann.
In dem in Figur 1 gezeigten Beispiel handelt es sich bei dem Laderoboter 12 um einen mobilen Laderoboter 20. In dem gezeigten Beispiel kann der mobile Laderoboter 20 sich angetrieben über Räder 22 zu unterschiedlichen Fahrzeugen 16 bewegen, um diese nacheinander aufzuladen. Hierfür ist er mit einer induktiven Ladeeinrichtung 24 ausgestattet. Die induktive Ladeeinrichtung 24 umfasst ein Ladepad 26, welches über einen beweglichen Ausleger 28 in einer Ausklappbewegung 30 geführt werden kann.
Zur Versorgung des Ladepads 26 mit elektrischer Energie umfasst die Ladeeinrichtung 24 eine entsprechende Leistungselektronik 32.
Der mobile Laderoboter 20 kann den Ausleger 28 über die Ausklappbewegung 30 horizontal ausrichten und das Ladepad 26 unter das Fahrzeug 16 in den Bereich der Ladeschnittstelle 18 führen.
Zum Ermitteln einer optimalen Ladeposition 34 des Ladepads 26 relativ zur Ladeschnittstelle 18 kann der mobile Laderoboter 20 eine Magnetfeldmessung auf Basis des von dem Ladepad 26 erzeugten Magnetfeldes und des von der Ladeschnittstelle 18 erzeugten Gegenmagnetfeldes durchführen.
Figur 2 zeigt ein erfindungsgemäßes Ladesystem 10 in einer alternativen Ausführungsform, in der das Ladesystem 10 ebenfalls eine Mehrzahl von Fahrzeugstellflächen 14 umfasst, auf denen Fahrzeuge 16 abgestellt sind. Von den Fahrzeugen 16 ist lediglich eines exemplarisch oben rechts dargestellt.
Abweichend von der in Figur 1 gezeigten Variante des Ladesystems 10 ist der Laderoboter 12 in Figur 2 ein stationärer Laderoboter 36. Dieser ist dazu ausgelegt, die Fahrzeuge 16 aus seiner festen Position 38 heraus aufzuladen.
Auch der stationäre Laderoboter 36 umfasst einen beweglichen Ausleger 28, über den er eine induktive Ladeeinrichtung 24 führt. Der Ausleger 28 ist hier dazu ausgebildet, induktive Ladeschnittstellen 18 der unterschiedlichen Fahrzeuge 16 zu erreichen, ohne dass der stationäre Laderoboter 36 seine Position 38 dafür verlassen muss.
Die Gewährleistung der richtigen Ladeposition 34 erfolgt dabei entsprechend wie in Figur 1 beschrieben. Der Unterschied besteht jedoch darin, dass der stationäre Laderoboter 36 das Ladepad 26 nicht positioniert, indem er seine eigene Position 38 ändert. Vielmehr ist hier der Ausleger 28 entsprechend gestaltet, so dass er eine bestimmte Anzahl und Anordnung von Fahrzeugstellflächen 14, die versorgt werden sollen, erreichen kann. Zusätzlich kann der stationäre Laderoboter 36 sich bevorzugt um seine vertikale Achse 40 drehen.
Zur Bereitstellung der Ladeenergie kann der Laderoboter 12 sowohl in Figur 1 als auch in Figur 2 einen Ladeenergiespeicher 42 umfassen oder auch über eine flexible Leitung 44 mit einer Ladeenergiequelle 46 verbunden sein.
Bezugszeichenliste
Ladesystem
Laderoboter
Fahrzeugstellfläche
Fahrzeug induktive Ladeschnittstelle mobiler Laderoboter Rad induktive Ladeeinrichtung
Ladepad
Ausleger
Ausklappbewegung
Leistungselektronik
Ladeposition stationärer Laderoboter
Position vertikale Achse
Ladeenergiespeicher flexible Leitung
Ladeenergiequelle

Claims

Patentansprüche
1. Laderoboter (12; 20; 36) mit einer induktiven Ladeeinrichtung (24; 26) zur Aufladung eines Fahrzeugs (16) mit einer induktiven Ladeschnittstelle (18), der ausgebildet ist, mindestens ein Fahrzeug (16) zu laden, dadurch gekennzeichnet, dass der Laderoboter (12; 20; 36) einen beweglichen Ausleger (28) umfasst, an dem er die induktive Ladeeinrichtung (24; 26) führt (30).
2. Laderoboter (12; 36) nach Anspruch 1, dadurch gekennzeichnet, dass es sich um einen stationären Laderoboter (36) handelt und dass der Ausleger (28) dazu ausgebildet ist, wenigstens zwei nebeneinander oder gegenüberliegende Fahrzeugstellflächen (14) zu erreichen.
3. Laderoboter (12; 20) nach Anspruch 1, dadurch gekennzeichnet, dass es sich um einen mobilen Laderoboter (20) handelt, der unterschiedliche Fahrzeugstellflächen (14) anfahren kann.
4. Laderoboter (12; 20; 36) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ausleger (28) derart ausgebildet ist, dass der Laderoboter (12; 20; 36) ihn unter ein Fahrzeug (16) variabler Bauhöhe führen kann.
5. Laderoboter (12; 20; 36) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Laderoboter (12; 20; 36) eine Ladeposition (34) für die induktive Ladeeinrichtung (24) ermittelt und einregelt, unter Durchführung einer Messung in Bezug auf eine induktive Ladeschnittstelle (18) eines Fahrzeugs (16), ausgewählt aus folgender Gruppe: Magnetfeldmessung, Magnetvektormessung, Impedanzmessung.
6. Laderoboter (12; 20; 36) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Laderoboter (12; 20; 36) einen Ladeenergiespeicher (42) umfasst.
7. Laderoboter (12; 20; 36) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Laderoboter (12; 20; 36) über eine flexible Leitung (44) mit einer Ladeenergiequelle (46) verbindbar ist.
8. Ladesystem (10), umfassend einen Laderoboter (12) nach einem der vorhergehenden Ansprüche, wenigstens eine Fahrzeugstellfläche (14) und wenigstens ein Fahrzeug (16) mit einer induktiven Ladeschnittstelle (18), das auf der Fahrzeugstellfläche (14) angeordnet ist.
9. Ladesystem (10) nach Anspruch 8, umfassend eine Mehrzahl von Fahrzeugstellflächen (14) und auf diesen abgestellte Fahrzeuge (16), dadurch gekennzeichnet, dass der Laderoboter (12) ein mobiler Laderoboter (20) ist, der die Fahrzeuge (16) anzufahren und aufzuladen vermag.
10. Ladesystem (10) nach Anspruch 8, umfassend eine Mehrzahl von Fahrzeugstellflächen (14) und auf diesen abgestellte Fahrzeuge (16), dadurch gekennzeichnet, dass der Laderoboter (12) ein stationärer Laderoboter (36) ist, der die Fahrzeuge (16) aus seiner Position (38) heraus aufzuladen vermag.
PCT/EP2020/083224 2020-01-31 2020-11-24 Laderoboter zur induktiven aufladung von fahrzeugen WO2021151542A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080092866.3A CN114930676A (zh) 2020-01-31 2020-11-24 用于感应式地为交通工具充电的充电机器人
EP20812286.1A EP4097821A1 (de) 2020-01-31 2020-11-24 Laderoboter zur induktiven aufladung von fahrzeugen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020201187.7 2020-01-31
DE102020201187.7A DE102020201187A1 (de) 2020-01-31 2020-01-31 Laderoboter zur induktiven Aufladung von Fahrzeugen

Publications (1)

Publication Number Publication Date
WO2021151542A1 true WO2021151542A1 (de) 2021-08-05

Family

ID=73598098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/083224 WO2021151542A1 (de) 2020-01-31 2020-11-24 Laderoboter zur induktiven aufladung von fahrzeugen

Country Status (4)

Country Link
EP (1) EP4097821A1 (de)
CN (1) CN114930676A (de)
DE (1) DE102020201187A1 (de)
WO (1) WO2021151542A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238134A1 (en) * 2022-06-09 2023-12-14 Batteri Thomas Ltd. A mobile autonomous charging system for electric vehicles and method of using thereof
DE102022212762A1 (de) 2022-11-29 2024-05-29 Stellantis Auto Sas Priorisierendes Ladesystem für elektrische Fahrzeuge

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708517A1 (de) 1994-10-14 1996-04-24 Hughes Aircraft Company Selbstausrichtendes induktives Ladegerät
DE102010027670A1 (de) 2010-07-20 2012-01-26 Siemens Aktiengesellschaft Vorrichtung, Elektrofahrzeug und Verfahren zum Anschließen eines elektrischen Energiespeichers an eine Ladestation
AT513353A1 (de) 2012-08-30 2014-03-15 Fronius Int Gmbh Vorrichtung und Verfahren zum Bereitstellen einer Service-Funktion für ein Fahrzeug
US20150042278A1 (en) * 2013-08-07 2015-02-12 Powerhydrant Llc Method and system for automatic charging of electric vehicles
US9592742B1 (en) * 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
US20170163073A1 (en) * 2014-06-30 2017-06-08 Abb Schweiz Ag Energy storage robot
CN107856572A (zh) * 2017-12-14 2018-03-30 伽行科技(北京)有限公司 一种汽车智能无线充电***及其充电方法
US20180339600A1 (en) * 2017-05-25 2018-11-29 Dik Co., Ltd. Wireless charger for an electric vehicle
WO2019112586A1 (en) * 2017-12-07 2019-06-13 Ford Global Technologies, Llc Charging delivery system for a vehicle
DE102018204820A1 (de) * 2018-03-29 2019-10-02 Ford Global Technologies, Llc Laderoboter und Verfahren zu dessen Betrieb

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112610B4 (de) 2011-09-05 2020-06-04 Grenzebach Maschinenbau Gmbh Vorrichtung und Verfahren zum drahtlosen Übertragen elektrischer Energie auf Fahrzeuge in der Art "mobiler Zapfsäulen" sowie Computerprogramm und maschinenlesbarer Träger
US9555715B2 (en) 2011-12-08 2017-01-31 Institute For Energy Application Technologies Co., Ltd. Rapid charging power supply system
DE102012221128A1 (de) 2012-11-20 2014-05-22 Robert Bosch Gmbh Verfahren und Vorrichtung zum Aufladen eines Elektrofahrzeugs, entsprechende Ladesäulenvorrichtung und entsprechendes Elektrofahrzeug
WO2017083848A1 (en) 2015-11-13 2017-05-18 NextEv USA, Inc. Electric vehicle charging device positioning and method of use
DE102017220478A1 (de) 2017-11-16 2019-05-16 Achim Fricker Selbstfahrender serviceroboter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708517A1 (de) 1994-10-14 1996-04-24 Hughes Aircraft Company Selbstausrichtendes induktives Ladegerät
DE102010027670A1 (de) 2010-07-20 2012-01-26 Siemens Aktiengesellschaft Vorrichtung, Elektrofahrzeug und Verfahren zum Anschließen eines elektrischen Energiespeichers an eine Ladestation
AT513353A1 (de) 2012-08-30 2014-03-15 Fronius Int Gmbh Vorrichtung und Verfahren zum Bereitstellen einer Service-Funktion für ein Fahrzeug
US20150042278A1 (en) * 2013-08-07 2015-02-12 Powerhydrant Llc Method and system for automatic charging of electric vehicles
US9592742B1 (en) * 2014-04-09 2017-03-14 FreeWire Technologies, Inc. Systems, apparatus, and methods of charging electric vehicles
US20170163073A1 (en) * 2014-06-30 2017-06-08 Abb Schweiz Ag Energy storage robot
US20180339600A1 (en) * 2017-05-25 2018-11-29 Dik Co., Ltd. Wireless charger for an electric vehicle
WO2019112586A1 (en) * 2017-12-07 2019-06-13 Ford Global Technologies, Llc Charging delivery system for a vehicle
CN107856572A (zh) * 2017-12-14 2018-03-30 伽行科技(北京)有限公司 一种汽车智能无线充电***及其充电方法
DE102018204820A1 (de) * 2018-03-29 2019-10-02 Ford Global Technologies, Llc Laderoboter und Verfahren zu dessen Betrieb

Also Published As

Publication number Publication date
DE102020201187A1 (de) 2021-08-05
EP4097821A1 (de) 2022-12-07
CN114930676A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2019091674A1 (de) Mobile ladestation und verfahren zum laden eines elektrofahrzeuges
EP3774437B1 (de) Kraftfahrzeug mit einer elektrischen kontaktierungseinheit
WO2016012172A1 (de) Fahrzeugladestation mit einer auf einem ausleger angebrachten speise-kontaktvorrichtung
WO2021151542A1 (de) Laderoboter zur induktiven aufladung von fahrzeugen
WO2016012173A1 (de) Fahrzeugladestation mit einem gelenkarm
EP0836973A2 (de) Multiblock-Robot System zur Batterieversorgung von Elektrofahrzeugen
DE102011108199A1 (de) Elektroantriebsvorrichtung eines Kraftfahrzeugs, mit einem Akkumulatorfach
DE69622042T2 (de) Einrichtung zum vorbereiten der vermietung einer mehrzahl von elektrofahrzeugen, insbesondere von elektrischen scootern, einschliesslich dem austausch und aufladen der fahrzeugbatterien
DE102017009237A1 (de) Ladevorrichtung zum autonomen Laden eines Transportmittels, sowie Verfahren zum Betreiben der Ladevorrichtung
DE102018004919A1 (de) Fahrzeugladestation
DE10324170A1 (de) Elektrofahrzeugsystem
WO2019007730A1 (de) Kraftfahrzeug und verfahren zur anordnung wenigstens eines traktionsenergiespeichers in einem kraftfahrzeug
DE102013201491A1 (de) Vorrichtung zum Übertragen elektrischer Energie an ein Fahrzeug
EP4006269B1 (de) Lager-/parkvorrichtung für fahrzeuge
WO2020144082A1 (de) Transportable ladestation
DE102013113809A1 (de) Flurförderzeug mit batterie-elektrischem Antrieb
DE102021132376A1 (de) Ladestation für elektrifizierte fahrzeuge, konfiguriert zum bereitstellen von parkführung für elektrifizierte fahrzeuge
DE3150652A1 (de) "fahrzeug mit elektrischer antriebsmaschine"
DE102011108543A9 (de) Ladevorrichtung zum induktiven Laden eines Fahrzeugs
DE102020005533A1 (de) Vorrichtung zum konduktiven Laden eines elektrisch betriebenen Fahrzeugs
DE102019126372A1 (de) Anordnung zur Kopplung und Energieversorgung eines Lastmoduls mit einem Transportmodul eines modular aufgebauten Transportsystems
DE202011103341U1 (de) Energiespeichereinheit, Energiespeichereinheitengehäuse und Wechselstation für Energiespeichereinheiten
WO2012104350A2 (de) Induktives übertragungssystem zum laden der traktionsbatterien eines elektrisch angetriebenen fahrzeugs
EP3187362B1 (de) Batterieladevorrichtung für flurförderzeug
DE102021129529A1 (de) System und Verfahren für die Versorgung von Fahrzeugen mit elektrischer Energie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020812286

Country of ref document: EP

Effective date: 20220831