WO2021149497A1 - Resist ink - Google Patents

Resist ink Download PDF

Info

Publication number
WO2021149497A1
WO2021149497A1 PCT/JP2021/000293 JP2021000293W WO2021149497A1 WO 2021149497 A1 WO2021149497 A1 WO 2021149497A1 JP 2021000293 W JP2021000293 W JP 2021000293W WO 2021149497 A1 WO2021149497 A1 WO 2021149497A1
Authority
WO
WIPO (PCT)
Prior art keywords
deep ultraviolet
reflectance
resist ink
zirconium oxide
substrate
Prior art date
Application number
PCT/JP2021/000293
Other languages
French (fr)
Japanese (ja)
Inventor
延仁 武島
件ニ 山田
Original Assignee
岡本硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡本硝子株式会社 filed Critical 岡本硝子株式会社
Priority to CN202180006773.9A priority Critical patent/CN114762135A/en
Priority to JP2021573054A priority patent/JP7343220B2/en
Publication of WO2021149497A1 publication Critical patent/WO2021149497A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a resist ink used as a protective film (highly reflective insulating film) for a substrate for a deep ultraviolet LED, and relates to a resist ink that efficiently diffuses and reflects deep ultraviolet rays.
  • UVA light with a wavelength of 320 nm to 400 nm and so-called UVB light with a wavelength of 280 nm to 320 nm deep ultraviolet light with a wavelength of 250 nm to 280 nm or less has extremely high energy, and bacteria such as Escherichia coli, phage bacteria, and purpura It is highly expected as light that can purify water and air by sterilizing bacteria and viruses (Non-Patent Document 1). In particular, it has been clarified in the previous study that the bactericidal stress of deep ultraviolet light of 265 nm is high (Non-Patent Document 2).
  • Mercury lamps, halogen lamps, and the like are used as light sources for deep ultraviolet rays, but these are large in size and consume high power, which causes the application to consumer products to not expand. Therefore, there is a demand for conversion to an LED light source that is compact and consumes less power.
  • COB Chip on Board
  • Examples of the material having high heat dissipation include a metal substrate such as aluminum and copper and a ceramic substrate such as aluminum nitride.
  • the metal substrate is conductive, it is necessary to apply an insulating film on the surface in order to mount the deep ultraviolet LED chip.
  • the aluminum nitride substrate has excellent insulating properties, and a deep ultraviolet LED chip can be mounted without applying an insulating film, but deterioration due to deep ultraviolet rays is likely to occur. Therefore, it is necessary to form a protective film on the surface of both metal and ceramic substrates as a substrate for COB packages that is not deteriorated by deep ultraviolet rays.
  • the protective film is required to be a highly reflective insulating film having both insulating properties and high reflectivity of deep ultraviolet rays.
  • Patent Documents 1 and 2 As such a protective film material, a resist ink containing an inorganic filler based on silicone, which is not easily deteriorated by irradiation with deep ultraviolet rays, is known (Patent Documents 1 and 2).
  • the resist ink disclosed here has a very low diffuse reflectance in the deep ultraviolet wavelength region, and does not contribute to the improvement of the luminous efficiency of the deep ultraviolet LED.
  • Patent Document 3 discloses a substrate for deep ultraviolet rays using glass ceramic. Although this substrate also has heat dissipation properties due to heat dissipation vias, it has a reflectance of about 75% at 280 nm, which is sufficient as compared with the substrates used for visible light LEDs (Patent Documents 4 and 5). It cannot be said that it has reflectance.
  • Patent Document 6 discloses an LED module, and discloses a configuration including a binder matrix and inorganic particles dispersed in the binder matrix as a reflective layer that covers at least a part of the substrate, and the inorganic.
  • the particles include at least one selected from the group consisting of aluminum oxide, zirconia oxide, titanium oxide and barium oxide, and further, the average particle size of the inorganic particles is 0.1 ⁇ m or more and 50 ⁇ m or less.
  • Patent Document 6 only describes the reflectance at a wavelength of 360 nm or more, and there is no description or suggestion about the reflectance in the wavelength region of 250 nm to 280 nm, whether or not it is resistant to deep ultraviolet rays, and the like. ..
  • the average particle size of the inorganic particles is 0.01 ⁇ m or more and 50 ⁇ m or less, but the particles are inorganic particles in the specification.
  • the average particle size of ZrO 2 is 2.0 ⁇ m and the content of ZrO 2 particles is 64% by volume, it only shows the reflectance of 360 nm to 740 nm, and the others are used for adjusting the surface roughness Ra. It is probable that it was done.
  • the present invention provides a resist ink having high reflectance in the wavelength region of 250 nm to 280 nm, which is less deteriorated by deep ultraviolet rays and has a high bactericidal action, particularly a resist ink suitable for a protective film of a substrate for a COB package.
  • the resist ink according to the present invention contains silicone and zirconium oxide powder as essential components.
  • Silicone is not particularly limited, but it is desirable that the viscosity at the working temperature (normal temperature) for dispersing the zirconium oxide powder is 10 Pa ⁇ s or less. If it exceeds 10 Pa ⁇ s, the viscosity may increase during mixing with the zirconium oxide powder. If the viscosity increases during mixing, the zirconium oxide powder may not disperse well and the deep UV reflectance may decrease.
  • silicone it is preferable to use purified silicone in order to reduce the siloxane gas generated during the coating / curing process on the COB package substrate or the like.
  • siloxane gas is generated, and when it adheres to the contacts of the LED element, silicon dioxide (SiO2), which is a decomposition component thereof, acts as an electrical insulator, causing a problem of inducing contact failure.
  • the zirconium oxide powder needs to have an average particle size (D50) of 1 ⁇ m or less and a content of 32 wt% or more and 50 wt% or less. Then, it was clarified that when the film thickness of the resist ink after curing was 30 ⁇ m or more, a high reflectance of 85% or more could be achieved in the wavelength region of 250 to 280 nm, which is deep ultraviolet light having a high bactericidal action.
  • D50 average particle size
  • the average particle size (D50) of the zirconium oxide powder exceeds 1 ⁇ m, a long wavelength shift of the reflection band occurs and the reflectance at 250 nm decreases. It is necessary to select a particle size having an average particle size (D50) of 1 ⁇ m or less and a range in which the particles can be uniformly dispersed (not aggregated) in the silicone. From experience, aggregation is likely to occur when the average particle size is 0.2 ⁇ m or less.
  • the content of the zirconium oxide powder needs to be 32 wt% or more. If it is less than 32 wt%, the reflectance of deep ultraviolet rays will decrease. On the contrary, if it exceeds 50 wt%, agglomeration of the zirconium oxide powder begins to occur, and in particular, the reflectance of deep ultraviolet rays at 250 nm is lowered.
  • the shape of the particles in the zirconium oxide powder is not limited, but in general, particles having a shape closer to a spherical shape than the amorphous particles are preferable because the specific surface area can be reduced and the addition amount can be increased.
  • zirconium oxide is an essential component, but other inorganic powders can be appropriately added.
  • an inorganic powder that absorbs ultraviolet rays such as titanium oxide, causes a decrease in the reflectance of deep ultraviolet rays. Therefore, it is necessary to use an inorganic powder that does not have an absorption region for ultraviolet rays. Examples of such an inorganic powder include aluminum oxide (alumina).
  • the particle size of the inorganic powder to be added is preferably such that the average particle size (D50) is 1 ⁇ m or less, similarly to the zirconium oxide powder. This is because the reflectance in the wavelength region of 250 nm to 280 nm is not lowered.
  • the resist ink of the present invention As a method for applying the resist ink of the present invention to the substrate for a COB package, generally known screen printing, dispensing method, spray printing and the like can be used.
  • the print film thickness needs to be 30 ⁇ m or more in order to achieve high reflectance in the wavelength region of 250 nm to 280 nm as described above.
  • the diffuse reflectance is as high as 85% or more in the deep ultraviolet wavelength range of 250 to 280 nm, and even if deep ultraviolet rays are irradiated for a long period of time, there is a clear deterioration such as a decrease in deep ultraviolet reflectance and a change in color tone. It is possible to provide a resist ink that does not occur and has excellent resistance to deep ultraviolet rays.
  • This is an example of the reflection spectrum of the deep ultraviolet protective film on the glass substrate (Sample No. 2) and the aluminum substrate formed by the resist ink of the present invention in the ultraviolet region to the visible light region.
  • This is an example of the reflection spectrum in the ultraviolet region of the deep ultraviolet protective film on the glass substrate formed by the resist ink of the present invention (Sample No. 2).
  • Condensation type PDMS (polydimethylsilicate) was used as the silicone.
  • Dioctyl tin (Nitto Kasei Co., Ltd.) was used as a curing agent for curing silicone.
  • zirconium oxide a powder commercially available from Daiichi Rare Element Chemical Industry Co., Ltd. or Nippon Denko Co., Ltd. was used depending on the average particle size. Products with an average particle size (D50) of 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m and 14 ⁇ m were used and the deep UV reflectance was compared.
  • D50 average particle size
  • the resist ink using 0.5 ⁇ m or 1 ⁇ m as the average particle size (D50) of the zirconium oxide powder 60 wt% PDMS, 35 wt% zirconium oxide powder and 5 wt% solvent are centrifuged in a centrifugal stirrer (ARE-made by THINKY). The mixture was mixed by 310), and then precisely dispersed by a three-roll mill (three-roll mill machine manufactured by Inoue Seisakusho). The gap of the three roll mills was set to 15 ⁇ m, and precision dispersion was performed. Texanol was used as the solvent.
  • the resist ink using an average particle size (D50) of zirconium oxide powder of 2 ⁇ m, 3 ⁇ m or 14 ⁇ m, 62 wt% PDMS, 36 wt% zirconium oxide powder and 2 wt% solvent (texanol) are mixed by a centrifugal stirrer. After that, it was manufactured by precision dispersion with a three-roll mill. The gap of the three roll mills was set to 15 ⁇ m.
  • Resist inks having different contents of zirconium oxide powder were prepared under the following conditions. Using a powder having an average particle size (D50) of zirconium oxide of 0.5 ⁇ m, (60 + X) wt% PDMS, (35-X) wt% zirconium oxide powder and 5 wt% solvent (texanol) are centrifuged and stirred. The mixture was mixed with a vessel and then precisely dispersed with a three-roll mill. The gap of the three roll mills was set to 15 ⁇ m. At this time, X was set to 0, 3 and 5.
  • a powder having an average particle size (D50) of zirconium oxide of 0.5 ⁇ m was used, and 58 wt% PDMS, 37 wt% zirconium oxide powder and 5 wt% solvent (texanol) were mixed by a centrifugal stirrer. After that, it was manufactured by precision dispersion with a three-roll mill. Here, the gap of the three roll mill was set to 15 ⁇ m. Further, the sample No. having a zirconium oxide powder content of 50 wt%. In No.
  • a powder having an average particle size (D50) of zirconium oxide of 0.5 ⁇ m was used, and 43 wt% PDMS, 50 wt% zirconium oxide powder and 7 wt% solvent (texanol) were mixed by a centrifugal stirrer. After that, it was manufactured by precision dispersion with a three-roll mill. Here, the gap of the three roll mill was set to 15 ⁇ m.
  • a resist ink to which zirconium oxide powder and other inorganic powder was added was prepared under the following conditions. Using a powder having an average particle size (D50) of zirconium oxide of 0.5 ⁇ m, centrifuge 35 wt% zirconium oxide powder, (60-Y) wt% PDMS, Y wt% inorganic powder, and 5 wt% solvent (texanol). The mixture was mixed with a separate stirrer and then precisely dispersed with a three-roll mill. The gap of the three roll mills was set to 10 ⁇ m. At this time, Y was set to 30 and 20.
  • D50 average particle size of zirconium oxide of 0.5 ⁇ m
  • the mixture was mixed with a separate stirrer and then precisely dispersed with
  • Titanium oxide Ti-Pure R-101 manufactured by The Chemours
  • aluminum oxide AL-S43B manufactured by Sumitomo Chemical Co., Ltd. or AL-45-A manufactured by Showa Denko Co., Ltd.
  • a curing agent (Dioctyl tin (Nitto Kasei Co., Ltd.)) was added in an amount of 1 wt% to the resist ink, and the glass substrate was printed by screen printing using a mesh of # 325. The film thickness was adjusted by changing the number of print layers. After printing, the glass substrate was cured at 180 ° C. for 2 hours to prepare a glass substrate with a deep ultraviolet high reflection protective film coated with a resist ink.
  • the prepared glass substrate with a deep ultraviolet high reflection protective film was irradiated with ultraviolet rays having a wavelength of 265 nm at 37 mW / cm2 for 1000 hours.
  • the change in reflectance at a wavelength of 265 nm before and after irradiation was measured.
  • the deep ultraviolet reflectance of the prepared deep ultraviolet reflective substrate and the substrate after ultraviolet irradiation was measured using a spectrophotometer. Diffuse reflectance was measured using an integrating sphere using Spectralon (manufactured by labsphere) as a base.
  • Table 1 shows the reflectance of a highly reflective substrate obtained by applying a resist ink prepared using zirconium oxide powder having a different particle size (D50) (content is 32 wt% in each case) and cross-linking and curing. ..
  • D50 particle size
  • the particle size is 0.5 ⁇ m
  • the deep ultraviolet reflectance when the coating film thickness is changed is also shown.
  • the reflective substrate obtained by applying a resist ink prepared using zirconium oxide having a particle size of 1 ⁇ m or less and cross-linking and curing the substrate is 250 to 250, except when the film thickness is less than 30 ⁇ m (Sample No. 1). It can be seen that a high reflectance of 85% or more is obtained in the wavelength region of 280 nm.
  • Table 2 shows the reflectance of the deep ultraviolet reflective substrate obtained by applying resist inks having different contents of zirconium oxide powder and cross-linking and curing. It can be seen that when the content of the zirconium oxide powder is 32 wt% or more, a high reflectance of 85% or more is obtained in the wavelength region of 250 to 280 nm.
  • Table 3 shows the reflectance of the highly reflective substrate obtained by applying and cross-linking and curing a resist ink prepared by mixing zirconium oxide powder and other inorganic powder.
  • the deep ultraviolet reflectance of the sample containing the titanium oxide powder is significantly reduced. This is due to the fact that titanium oxide absorbs ultraviolet rays. It can be seen that in the substrate containing the aluminum oxide powder, a high reflectance of 85% or more is obtained in the wavelength region of 250 to 280 nm only when the powder having an average particle size (D50) of 0.8 ⁇ m is used. ..
  • the results of evaluating the resistance to deep ultraviolet rays are shown in Table 1.
  • the deep ultraviolet resistance is obtained by adjusting ultraviolet rays having a wavelength of 265 nm to 37 mW / cm2, irradiating them for 1000 hours, and measuring the change in reflectance at a wavelength of 265 nm before and after irradiation.
  • the sample No. 12
  • the amount of change was about 4%.
  • Sample No. In 2 and 5 the reflectance at 265 nm after irradiation was 85% or more.
  • a glass substrate with a protective film having high diffuse reflectance in the deep ultraviolet region of 250 to 280 nm, which has high diffuse reflectance and excellent resistance to deep ultraviolet, could be applied to produce a glass substrate having high reflection in the deep ultraviolet region.
  • FIG. 1 shows a COB substrate on which a deep ultraviolet LED chip 3 is mounted.
  • Four deep ultraviolet LED chips 3 are arranged in series by a gold wire 4 and can irradiate a wide range of deep ultraviolet rays.
  • the deep ultraviolet rays radiated to the rear are reflected forward without being transmitted and absorbed by the protective film (highly reflective insulating film) 5 formed by using the resist ink of the present invention, and the amount of deep ultraviolet rays increases. ..
  • FIG. 2 is an enlarged view of a protective film (highly reflective insulating film) 5 formed by using the resist ink of the present invention, in which the silicone matrix 7 contains a predetermined content of zirconium oxide powder 8 having a predetermined particle size. It is dispersed in.
  • the thickness of the highly reflective insulating film 5 is 30 ⁇ m or more.
  • the protective film was translucent (appearingly) in the visible light region.
  • FIG. 3 shows the sample No. It shows the reflectance in a wide range from the deep ultraviolet region to the visible light region of No. 2 (solid line). While the reflectance is about 70% to 30% in the visible light region, it selectively shows a high reflectance of 85% or more in the wavelength region of 250 nm to 280 nm, which is the most important deep ultraviolet region for bactericidal action. You can see that.
  • An example in which the same protective film is formed on an aluminum substrate with a film thickness of 47 ⁇ m is shown by a broken line in FIG.
  • the reflectance from the substrate itself contributes to the reflectance, but the reflectance is 60 to 80% in the visible light region, whereas it is selectively in the wavelength region of 250 nm to 280 nm.
  • FIG. 4 shows the sample No. It is an enlarged view of the reflection spectrum in the deep ultraviolet region of No. 2, and it is clear that the reflectance is as high as 85% or more in the wavelength region of 250 nm to 280 nm.
  • FIG. 5 shows the sample No.
  • the reflection spectra in the deep ultraviolet region of 16 and 17 have a high reflectance of 85% or more in the wavelength region of 250 nm to 280 nm, but when the content of zirconium oxide powder increases, the effect of aggregation appears. Therefore, the reflectance on the long wavelength side increases, but the reflectance on the short wavelength side decreases.
  • the content of the zirconium oxide powder is 50 wt%, the reflectance at 250 nm becomes 85%.
  • Electrode 1 Electrode 2 ; Sealing resin 3 ; Deep ultraviolet LED chip 4 ; Gold wire 5 ; Protective film (highly reflective insulating film) 6 ... Metal substrate 7 ... Silicone 8 ... Zirconium oxide powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

Deep ultraviolet LED which is used for purification of water or air is strongly required to be improved in terms of the efficiency and the resistance to deep ultraviolet light. The present invention provides, as a solution, a resist ink which is able to be used as a protective film for a substrate of COB packages, said protective film being highly reflective to deep ultraviolet light, while being suppressed in deterioration due to deep ultraviolet light, and which contains, as essential components, a silicone and from 32 wt% to 50 wt% of a zirconium oxide powder that has an average particle diameter (D50) of 1 μm or less. If this resist ink is applied to a base material so as to have a film thickness of 30 μm or more, and is subsequently crosslinked and cured, the diffuse reflectance thereof within a wavelength range of from 250 nm to 280 nm is 85% or more.

Description

レジストインクResist ink
本発明は深紫外線LED用基板の保護膜(高反射絶縁膜)として用いられるレジストインクに関し、深紫外線を効率よく拡散反射するレジストインクに関する。 The present invention relates to a resist ink used as a protective film (highly reflective insulating film) for a substrate for a deep ultraviolet LED, and relates to a resist ink that efficiently diffuses and reflects deep ultraviolet rays.
波長320nm~400nmの、いわゆるUVA光や、波長280nm~320nmの、いわゆるUVB光と比べて、波長250nm~280nm以下の深紫外線はエネルギーが非常に高く、大腸菌、ファージ菌、緑膿菌などの菌やウイルスの殺菌による水や空気の浄化が可能な光として大いに期待されている(非特許文献1)。特に、265nmの深紫外光の殺菌応力が高いことが先の研究で明らかとなっている(非特許文献2)。 Compared to so-called UVA light with a wavelength of 320 nm to 400 nm and so-called UVB light with a wavelength of 280 nm to 320 nm, deep ultraviolet light with a wavelength of 250 nm to 280 nm or less has extremely high energy, and bacteria such as Escherichia coli, phage bacteria, and purpura It is highly expected as light that can purify water and air by sterilizing bacteria and viruses (Non-Patent Document 1). In particular, it has been clarified in the previous study that the bactericidal stress of deep ultraviolet light of 265 nm is high (Non-Patent Document 2).
深紫外線の光源としては、水銀ランプやハロゲンランプ等が使用されているが、これらは大型なうえに消費電力が高く、民生品への適用が拡大しない原因となっている。そのため、小型で消費電力の少ないLED光源への転換が求められている。 Mercury lamps, halogen lamps, and the like are used as light sources for deep ultraviolet rays, but these are large in size and consume high power, which causes the application to consumer products to not expand. Therefore, there is a demand for conversion to an LED light source that is compact and consumes less power.
水や空気の浄化に使用される深紫外線LEDは、大面積を一度に照射する必要があることから、基板上に多数個の深紫外線LEDチップを配置する、いわゆるCOB(Chip on Board)パッケージが使用される。ここで、深紫外線LEDチップは可視光LEDと比べて発光効率が低く、発熱性が高い。そのため、COBパッケージ用の基板としては放熱性の高い材料が必要となる。 Since deep ultraviolet LEDs used for purifying water and air need to irradiate a large area at once, a so-called COB (Chip on Board) package in which a large number of deep ultraviolet LED chips are arranged on a substrate is available. used. Here, the deep ultraviolet LED chip has lower luminous efficiency and higher heat generation than the visible light LED. Therefore, a material having high heat dissipation is required as a substrate for a COB package.
放熱性の高い材料としては、アルミニウムや銅などの金属基板や窒化アルミニウムなどのセラミック基板があげられる。ただし、金属基板は導電性であることから、深紫外線LEDチップを実装するには表面に絶縁膜を塗布する必要がある。一方、窒化アルミニウム基板は、絶縁性に優れており絶縁膜を塗布することなく深紫外線LEDチップを実装する事ができるが、深紫外線による劣化が生じやすい。そのため、金属、セラミックどちらの基板においても、深紫外線により劣化しないCOBパッケージ用の基板として、表面に保護膜の形成が必要となる。そしてこの保護膜は絶縁性と深紫外線の高反射性を兼ね備えた、高反射絶縁膜であることが求められる。 Examples of the material having high heat dissipation include a metal substrate such as aluminum and copper and a ceramic substrate such as aluminum nitride. However, since the metal substrate is conductive, it is necessary to apply an insulating film on the surface in order to mount the deep ultraviolet LED chip. On the other hand, the aluminum nitride substrate has excellent insulating properties, and a deep ultraviolet LED chip can be mounted without applying an insulating film, but deterioration due to deep ultraviolet rays is likely to occur. Therefore, it is necessary to form a protective film on the surface of both metal and ceramic substrates as a substrate for COB packages that is not deteriorated by deep ultraviolet rays. The protective film is required to be a highly reflective insulating film having both insulating properties and high reflectivity of deep ultraviolet rays.
このような保護膜用材料としては、深紫外線の照射において劣化し難いシリコーンをベースとして、無機フィラーを含有させたレジストインクが知られている(特許文献1、特許文献2)。しかしながら、ここで開示されたレジストインクは深紫外線波長域における拡散反射率が非常に低く、深紫外線LEDの発光効率の向上には寄与しない。また、特許文献3にはガラスセラミックを使用した深紫外線用基板が公開されている。この基板は、放熱ビアによる放熱性も備えているが、280nmにおける反射率が75%程度であって、可視光LEDに使用される基板(特許文献4、特許文献5)と比べても十分な反射率を有しているとはいえない。 As such a protective film material, a resist ink containing an inorganic filler based on silicone, which is not easily deteriorated by irradiation with deep ultraviolet rays, is known (Patent Documents 1 and 2). However, the resist ink disclosed here has a very low diffuse reflectance in the deep ultraviolet wavelength region, and does not contribute to the improvement of the luminous efficiency of the deep ultraviolet LED. Further, Patent Document 3 discloses a substrate for deep ultraviolet rays using glass ceramic. Although this substrate also has heat dissipation properties due to heat dissipation vias, it has a reflectance of about 75% at 280 nm, which is sufficient as compared with the substrates used for visible light LEDs (Patent Documents 4 and 5). It cannot be said that it has reflectance.
特許文献6は、LEDモジュールを開示したものであって、基板の少なくとも一部を被覆する反射層として、バインダーマトリクスとバインダーマトリクス内に分散されている無機粒子とを含む構成が開示され、この無機粒子として、酸化アルミニウム、酸化ジルコニア、酸化チタン及び酸化バリウムからなる群より選択される少なくとも1種を含む例が開示され、さらにこの無機粒子の平均粒径が、0.1μm以上50μm以下である構成が開示されている。しかしながら、特許文献6には、波長360nm以上の反射率が記載されているだけであって、250nm~280nmの波長領域における反射率や、深紫外線耐性があるかどうかなどについては記載も示唆もない。 Patent Document 6 discloses an LED module, and discloses a configuration including a binder matrix and inorganic particles dispersed in the binder matrix as a reflective layer that covers at least a part of the substrate, and the inorganic. An example is disclosed in which the particles include at least one selected from the group consisting of aluminum oxide, zirconia oxide, titanium oxide and barium oxide, and further, the average particle size of the inorganic particles is 0.1 μm or more and 50 μm or less. Is disclosed. However, Patent Document 6 only describes the reflectance at a wavelength of 360 nm or more, and there is no description or suggestion about the reflectance in the wavelength region of 250 nm to 280 nm, whether or not it is resistant to deep ultraviolet rays, and the like. ..
特許文献6についてさらに詳しく評価すると、出願人は、無機粒子の平均粒径として、0.01μm以上50μ以下という非常に広い範囲を請求項に記載しているものの、明細書中では無機粒子であるZrOの平均粒径が2.0μmで、ZrO粒子の含有量として64体積%のときの360nm~740nmの反射率を示しているだけであって、他は表面粗さRaの調整に使用したものと考えられる。 When patent document 6 is evaluated in more detail, the applicant claims that the average particle size of the inorganic particles is 0.01 μm or more and 50 μm or less, but the particles are inorganic particles in the specification. When the average particle size of ZrO 2 is 2.0 μm and the content of ZrO 2 particles is 64% by volume, it only shows the reflectance of 360 nm to 740 nm, and the others are used for adjusting the surface roughness Ra. It is probable that it was done.
特開2012-227292号公報Japanese Unexamined Patent Publication No. 2012-227292 WO2011/118108号公報WO2011 / 118108 特開2017―117982号公報JP-A-2017-117982 特開2011-246329号公報Japanese Unexamined Patent Publication No. 2011-246329 特開2014-187158号公報Japanese Unexamined Patent Publication No. 2014-187158 特開2019-125683号公報JP-A-2019-125683
今後、水や空気の浄化による安全性向上への要求が高くなるに伴って、殺菌作用に優れた265nm、254nm、270nm及び280nmの各波長の深紫外線LEDの効率向上が強く要求される。そのため、深紫外線による劣化が小さく、且つこれら各波長に対して高反射なCOBパッケージ用基板の保護膜として用いることのできるレジストインクが求められる。 In the future, as the demand for improving safety by purifying water and air increases, it is strongly required to improve the efficiency of deep ultraviolet LEDs having excellent bactericidal action at each wavelength of 265 nm, 254 nm, 270 nm and 280 nm. Therefore, there is a need for a resist ink that is less deteriorated by deep ultraviolet rays and can be used as a protective film for a COB package substrate that is highly reflective for each of these wavelengths.
本発明は、深紫外線による劣化が小さく、且つ殺菌作用の高い250nm~280nmの波長領域で反射率の高いレジストインク、特にCOBパッケージ用基板の保護膜に適したレジストインクを提供する。 The present invention provides a resist ink having high reflectance in the wavelength region of 250 nm to 280 nm, which is less deteriorated by deep ultraviolet rays and has a high bactericidal action, particularly a resist ink suitable for a protective film of a substrate for a COB package.
上記課題を解決するために、本発明に係るレジストインクは、シリコーンと酸化ジルコニウム粉末を必須成分として含有する。 In order to solve the above problems, the resist ink according to the present invention contains silicone and zirconium oxide powder as essential components.
シリコーンは特に限定されるものではないが、酸化ジルコニウム粉末を分散させるための作業温度(常温)での粘度は10Pa・s以下であることが望ましい。10Pa・sを超えると酸化ジルコニウム粉末との混合中に粘度が増大してしまう可能性がある。混合中に粘度が増大すると、酸化ジルコニウム粉末が良好に分散せず、深紫外線反射率が低下する恐れがある。 Silicone is not particularly limited, but it is desirable that the viscosity at the working temperature (normal temperature) for dispersing the zirconium oxide powder is 10 Pa · s or less. If it exceeds 10 Pa · s, the viscosity may increase during mixing with the zirconium oxide powder. If the viscosity increases during mixing, the zirconium oxide powder may not disperse well and the deep UV reflectance may decrease.
また、シリコーンは、COBパッケージ用基板などへの塗布・硬化工程中に発生するシロキサンガスを低減させるため、精製されたシリコーンを使用する事が好ましい。精製されていないシリコーンを用いるとシロキサンガスが発生し、LED素子の接点に付着すると、その分解成分である二酸化ケイ素(SiO2)が電気絶縁物として作用し接点不良を誘発するという問題を生じる。 Further, as the silicone, it is preferable to use purified silicone in order to reduce the siloxane gas generated during the coating / curing process on the COB package substrate or the like. When unrefined silicone is used, siloxane gas is generated, and when it adheres to the contacts of the LED element, silicon dioxide (SiO2), which is a decomposition component thereof, acts as an electrical insulator, causing a problem of inducing contact failure.
本発明において、酸化ジルコニウム粉末は、平均粒子径(D50)が1μm以下であって、その含有量は、32wt%以上50wt%以下である必要がある。そして、レジストインクの硬化後の膜厚を30μm以上としたときに、殺菌作用の高い深紫外線である250~280nmの波長領域において85%以上という高反射率を達成できることが明らかとなった。 In the present invention, the zirconium oxide powder needs to have an average particle size (D50) of 1 μm or less and a content of 32 wt% or more and 50 wt% or less. Then, it was clarified that when the film thickness of the resist ink after curing was 30 μm or more, a high reflectance of 85% or more could be achieved in the wavelength region of 250 to 280 nm, which is deep ultraviolet light having a high bactericidal action.
本発明において、酸化ジルコニウム粉末の平均粒子径(D50)が1μmを超える場合、反射帯域の長波長シフトが発生し、250nmの反射率が低下してしまうことが明らかとなった。平均粒子径(D50)が1μm以下であって、かつシリコーン中に均一に分散できる(凝集しない)範囲の粒子径を選択する必要がある。経験上、平均粒子径が0.2μm以下になると凝集が起こりやすい。 In the present invention, it has been clarified that when the average particle size (D50) of the zirconium oxide powder exceeds 1 μm, a long wavelength shift of the reflection band occurs and the reflectance at 250 nm decreases. It is necessary to select a particle size having an average particle size (D50) of 1 μm or less and a range in which the particles can be uniformly dispersed (not aggregated) in the silicone. From experience, aggregation is likely to occur when the average particle size is 0.2 μm or less.
酸化ジルコニウム粉末の含有量は32wt%以上である必要がある。32wt%未満の場合には、深紫外線の反射率が低下してしまう。逆に、50wt%を超えると、酸化ジルコニウム粉末の凝集が起こり始め、特に250nmの深紫外線の反射率が低下してしまう。 The content of the zirconium oxide powder needs to be 32 wt% or more. If it is less than 32 wt%, the reflectance of deep ultraviolet rays will decrease. On the contrary, if it exceeds 50 wt%, agglomeration of the zirconium oxide powder begins to occur, and in particular, the reflectance of deep ultraviolet rays at 250 nm is lowered.
酸化ジルコニウム粉末中の粒子の形状は限定されるものではないが、一般的に不定形粒子に比べて球状に近い形状の粒子は比表面積を低減させ添加量を増大させることができるため好ましい。 The shape of the particles in the zirconium oxide powder is not limited, but in general, particles having a shape closer to a spherical shape than the amorphous particles are preferable because the specific surface area can be reduced and the addition amount can be increased.
添加する無機粉末としては、酸化ジルコニウムを必須成分とするが他の無機粉末を適宜添加する事ができる。この時、酸化チタンのように紫外線を吸収する無機粉末は深紫外線の反射率低下を招いてしまう。そのため、紫外線に吸収領域を持たない無機粉末である必要がある。そのような無機粉末としては酸化アルミ(アルミナ)を挙げることができる。また、添加する無機粉末の粒子径は、酸化ジルコニウム粉末と同様に平均粒子径(D50)が1μm以下であることが好ましい。250nm~280nmの波長領域の反射率を低下させないためである。 As the inorganic powder to be added, zirconium oxide is an essential component, but other inorganic powders can be appropriately added. At this time, an inorganic powder that absorbs ultraviolet rays, such as titanium oxide, causes a decrease in the reflectance of deep ultraviolet rays. Therefore, it is necessary to use an inorganic powder that does not have an absorption region for ultraviolet rays. Examples of such an inorganic powder include aluminum oxide (alumina). Further, the particle size of the inorganic powder to be added is preferably such that the average particle size (D50) is 1 μm or less, similarly to the zirconium oxide powder. This is because the reflectance in the wavelength region of 250 nm to 280 nm is not lowered.
本発明のレジストインクをCOBパッケージ用基板に塗布する方法としては、一般的に知られているスクリーン印刷やディスペンス法、スプレー印刷などを使用できる。印刷膜厚としては、前記したように250nm~280nmの波長領域で高反射率を達成するため、30μm以上とする必要がある。 As a method for applying the resist ink of the present invention to the substrate for a COB package, generally known screen printing, dispensing method, spray printing and the like can be used. The print film thickness needs to be 30 μm or more in order to achieve high reflectance in the wavelength region of 250 nm to 280 nm as described above.
本発明によれば、250~280nmの深紫外線波長域において拡散反射率が85%以上と高く、深紫外線が長期間照射されても、深紫外線反射率の低下や色調変化などの明らかな劣化が生じず、深紫外線耐性に優れたレジストインクが提供可能となる。 According to the present invention, the diffuse reflectance is as high as 85% or more in the deep ultraviolet wavelength range of 250 to 280 nm, and even if deep ultraviolet rays are irradiated for a long period of time, there is a clear deterioration such as a decrease in deep ultraviolet reflectance and a change in color tone. It is possible to provide a resist ink that does not occur and has excellent resistance to deep ultraviolet rays.
深紫外線LEDチップが実装されたCOBパッケージを表す図である。It is a figure which shows the COB package which mounted the deep ultraviolet LED chip. 本発明のレジストインクで形成した深紫外線保護膜(深紫外線高反射絶縁膜)の模式図である。It is a schematic diagram of the deep ultraviolet protection film (deep ultraviolet high reflection insulating film) formed by the resist ink of this invention. 本発明のレジストインクで形成したガラス基板上(サンプルNo.2)及びアルミ基板上深紫外線保護膜について、紫外線領域から可視光線領域における反射スペクトルの一例である。This is an example of the reflection spectrum of the deep ultraviolet protective film on the glass substrate (Sample No. 2) and the aluminum substrate formed by the resist ink of the present invention in the ultraviolet region to the visible light region. 本発明のレジストインクで形成したガラス基板上深紫外線保護膜の紫外線領域における反射スペクトルの一例である(サンプルNo.2)。This is an example of the reflection spectrum in the ultraviolet region of the deep ultraviolet protective film on the glass substrate formed by the resist ink of the present invention (Sample No. 2). 本発明のレジストインクで形成したガラス基板上深紫外線保護膜の紫外線領域の反射スペクトルの他の例である(サンプルNo.16及びNo.17)。This is another example of the reflection spectrum of the deep ultraviolet protective film on the glass substrate formed by the resist ink of the present invention in the ultraviolet region (Samples No. 16 and No. 17).
以下、実施例をあげて本発明を具体的に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
シリコーンとして、縮合型PDMS(ポリジメチルシリケート)を使用した。シリコーンを硬化させる硬化剤としてはジオクチル錫(日東化成株式会社)を使用した。 Condensation type PDMS (polydimethylsilicate) was used as the silicone. Dioctyl tin (Nitto Kasei Co., Ltd.) was used as a curing agent for curing silicone.
酸化ジルコニウムは、平均粒子径に応じて、第一希元素化学工業株式会社又は新日本電工株式会社から市販されている粉末を使用した。平均粒子径(D50)が0.5μm、1μm、2μm、3μmおよび14μmの製品を使用し、深紫外線反射率を対比した。 As the zirconium oxide, a powder commercially available from Daiichi Rare Element Chemical Industry Co., Ltd. or Nippon Denko Co., Ltd. was used depending on the average particle size. Products with an average particle size (D50) of 0.5 μm, 1 μm, 2 μm, 3 μm and 14 μm were used and the deep UV reflectance was compared.
酸化ジルコニウム粉末の平均粒子径(D50)として0.5μmまたは1μmを使用したレジストインクは、60wt%のPDMSと35wt%の酸化ジルコニウム粉末および5wt%の溶剤を遠心分離式攪拌器(THINKY製ARE-310)により混合し、その後、三本ロールミル(井上製作所製三本ロールミル機)で精密分散して作製した。三本ロールミルのギャップは15μmに設定し、精密分散を施した。なお、溶剤としてはテキサノールを使用した。 For the resist ink using 0.5 μm or 1 μm as the average particle size (D50) of the zirconium oxide powder, 60 wt% PDMS, 35 wt% zirconium oxide powder and 5 wt% solvent are centrifuged in a centrifugal stirrer (ARE-made by THINKY). The mixture was mixed by 310), and then precisely dispersed by a three-roll mill (three-roll mill machine manufactured by Inoue Seisakusho). The gap of the three roll mills was set to 15 μm, and precision dispersion was performed. Texanol was used as the solvent.
酸化ジルコニウム粉末の平均粒子径(D50)が2μm、3μmまたは14μmを使用したレジストインクは、62wt%のPDMSと36wt%の酸化ジルコニウム粉末および2wt%の溶剤(テキサノール)を遠心分離式攪拌器により混合し、その後三本ロールミルで精密分散して作製した。三本ロールミルのギャップは15μmに設定した。 For the resist ink using an average particle size (D50) of zirconium oxide powder of 2 μm, 3 μm or 14 μm, 62 wt% PDMS, 36 wt% zirconium oxide powder and 2 wt% solvent (texanol) are mixed by a centrifugal stirrer. After that, it was manufactured by precision dispersion with a three-roll mill. The gap of the three roll mills was set to 15 μm.
酸化ジルコニウム粉末の含有量の異なるレジストインクを次の条件で作製した。酸化ジルコニウムの平均粒子径(D50)が0.5μmの粉末を用い、(60+X)wt%のPDMSと(35-X)wt%の酸化ジルコニウム粉末および5wt%の溶剤(テキサノール)を遠心分離式攪拌器により混合し、その後三本ロールミルで精密分散した。三本ロールミルのギャップは15μmに設定した。この時、Xは0、3および5とした。 Resist inks having different contents of zirconium oxide powder were prepared under the following conditions. Using a powder having an average particle size (D50) of zirconium oxide of 0.5 μm, (60 + X) wt% PDMS, (35-X) wt% zirconium oxide powder and 5 wt% solvent (texanol) are centrifuged and stirred. The mixture was mixed with a vessel and then precisely dispersed with a three-roll mill. The gap of the three roll mills was set to 15 μm. At this time, X was set to 0, 3 and 5.
酸化ジルコニウム粉末の含有量が37%であるサンプルNo.16は、酸化ジルコニウムの平均粒子径(D50)が0.5μmの粉末を用い、58wt%のPDMSと37wt%の酸化ジルコニウム粉末および5wt%の溶剤(テキサノール)を遠心分離式攪拌器により混合し、その後三本ロールミルで精密分散して作製した。ここで、三本ロールミルのギャップは15μmに設定した。また、酸化ジルコニウム粉末の含有量が50wt%であるサンプルNo.17は、酸化ジルコニウムの平均粒子径(D50)が0.5μmの粉末を用い、43wt%のPDMSと50wt%の酸化ジルコニウム粉末および7wt%の溶剤(テキサノール)を遠心分離式攪拌器により混合し、その後三本ロールミルで精密分散して作製した。ここで、三本ロールミルのギャップは15μmに設定した。 Sample No. in which the content of the zirconium oxide powder is 37%. In No. 16, a powder having an average particle size (D50) of zirconium oxide of 0.5 μm was used, and 58 wt% PDMS, 37 wt% zirconium oxide powder and 5 wt% solvent (texanol) were mixed by a centrifugal stirrer. After that, it was manufactured by precision dispersion with a three-roll mill. Here, the gap of the three roll mill was set to 15 μm. Further, the sample No. having a zirconium oxide powder content of 50 wt%. In No. 17, a powder having an average particle size (D50) of zirconium oxide of 0.5 μm was used, and 43 wt% PDMS, 50 wt% zirconium oxide powder and 7 wt% solvent (texanol) were mixed by a centrifugal stirrer. After that, it was manufactured by precision dispersion with a three-roll mill. Here, the gap of the three roll mill was set to 15 μm.
次に、酸化ジルコニウム粉末と他の無機粉末を添加したレジストインクを次の条件で作製した。酸化ジルコニウムの平均粒子径(D50)が0.5μmの粉末を用い、35wt%の酸化ジルコニウム粉末と(60-Y)wt%のPDMSとYwt%の無機粉末と5wt%の溶剤(テキサノール)を遠心分離式攪拌器により混合し、その後三本ロールミルで精密分散した。三本ロールミルのギャップは10μmに設定した。この時、Yは30および20とした。無機粉末として酸化チタン(ケマーズ製Ti-Pure R-101)と酸化アルミニウム(住友化学製AL-S43B又は昭和電工製AL-45-A)を使用した。 Next, a resist ink to which zirconium oxide powder and other inorganic powder was added was prepared under the following conditions. Using a powder having an average particle size (D50) of zirconium oxide of 0.5 μm, centrifuge 35 wt% zirconium oxide powder, (60-Y) wt% PDMS, Y wt% inorganic powder, and 5 wt% solvent (texanol). The mixture was mixed with a separate stirrer and then precisely dispersed with a three-roll mill. The gap of the three roll mills was set to 10 μm. At this time, Y was set to 30 and 20. Titanium oxide (Ti-Pure R-101 manufactured by The Chemours) and aluminum oxide (AL-S43B manufactured by Sumitomo Chemical Co., Ltd. or AL-45-A manufactured by Showa Denko Co., Ltd.) were used as the inorganic powder.
(基板への塗布)
レジストインクに硬化剤(ジオクチル錫(日東化成株式会社))を1wt%添加し、#325のメッシュを使用してスクリーン印刷によりガラス基板へ印刷した。印刷層数を変化させることで膜厚を調整した。印刷後180℃で2時間硬化させてレジストインクを塗布した深紫外線高反射保護膜付きガラス基板を作製した。
(Application to substrate)
A curing agent (Dioctyl tin (Nitto Kasei Co., Ltd.)) was added in an amount of 1 wt% to the resist ink, and the glass substrate was printed by screen printing using a mesh of # 325. The film thickness was adjusted by changing the number of print layers. After printing, the glass substrate was cured at 180 ° C. for 2 hours to prepare a glass substrate with a deep ultraviolet high reflection protective film coated with a resist ink.
(深紫外線耐性)
作製した深紫外線高反射保護膜付きガラス基板に、波長265nmの紫外線を37mW/cm2に調整し、1000時間照射した。照射前後での波長265nmにおける反射率変化を測定した。
(Deep UV resistance)
The prepared glass substrate with a deep ultraviolet high reflection protective film was irradiated with ultraviolet rays having a wavelength of 265 nm at 37 mW / cm2 for 1000 hours. The change in reflectance at a wavelength of 265 nm before and after irradiation was measured.
(反射率測定)
作製した深紫外線反射基板および紫外線照射後の該基板について、分光光度計を用いて深紫外線反射率を測定した。ベースとしてスペクトラロン(labsphere製)を用い、積分球を用いて拡散反射率を測定した。
(Reflectance measurement)
The deep ultraviolet reflectance of the prepared deep ultraviolet reflective substrate and the substrate after ultraviolet irradiation was measured using a spectrophotometer. Diffuse reflectance was measured using an integrating sphere using Spectralon (manufactured by labsphere) as a base.
異なる粒子径(D50)の酸化ジルコニウム粉末(含有量はいずれの場合も32wt%)を用いて作製したレジストインクを塗布し、架橋硬化して得られた高反射基板の反射率を表1に示す。また、粒子径0.5μmの場合において、塗布膜厚を変化させた際の深紫外線反射率も示す。表1より、粒子径が1μm以下の酸化ジルコニウムを用いて作製したレジストインクを塗布し架橋硬化して得られた反射基板は、膜厚30μm未満の場合(サンプルNo.1)を除き、250~280nmの波長領域において85%以上の高反射率が得られていることがわかる。また、膜厚30μmで85%以上の反射率が得られているが、さらに膜厚を厚くすると反射率が増大する事がわかった。100μmを塗布すると(サンプルNo.4)、250nm~280nmの波長領域で90%以上の反射率を示す。一方、酸化ジルコニウム粉末の平均粒子径が1μmを超えると、特に短波長側(250nm)の反射率が急激に低下することが判明した(サンプルNo.6~サンプルNo.12)。 Table 1 shows the reflectance of a highly reflective substrate obtained by applying a resist ink prepared using zirconium oxide powder having a different particle size (D50) (content is 32 wt% in each case) and cross-linking and curing. .. In addition, when the particle size is 0.5 μm, the deep ultraviolet reflectance when the coating film thickness is changed is also shown. From Table 1, the reflective substrate obtained by applying a resist ink prepared using zirconium oxide having a particle size of 1 μm or less and cross-linking and curing the substrate is 250 to 250, except when the film thickness is less than 30 μm (Sample No. 1). It can be seen that a high reflectance of 85% or more is obtained in the wavelength region of 280 nm. Further, although a reflectance of 85% or more was obtained at a film thickness of 30 μm, it was found that the reflectance increased when the film thickness was further increased. When 100 μm is applied (Sample No. 4), it exhibits a reflectance of 90% or more in the wavelength region of 250 nm to 280 nm. On the other hand, it was found that when the average particle size of the zirconium oxide powder exceeds 1 μm, the reflectance on the short wavelength side (250 nm) sharply decreases (Sample No. 6 to Sample No. 12).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
酸化ジルコニウム粉末の含有量の異なるレジストインクを塗布し架橋硬化して得られた深紫外線反射基板の反射率を表2に示す。酸化ジルコニウム粉末の含有量が32wt%以上のとき250~280nmの波長領域で85%以上の高反射率が得られていることがわかる。 Table 2 shows the reflectance of the deep ultraviolet reflective substrate obtained by applying resist inks having different contents of zirconium oxide powder and cross-linking and curing. It can be seen that when the content of the zirconium oxide powder is 32 wt% or more, a high reflectance of 85% or more is obtained in the wavelength region of 250 to 280 nm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
酸化ジルコニウム粉末と他の無機粉末を混合して作製したレジストインクを塗布・架橋硬化して得られた高反射基板の反射率を表3に示す。酸化チタン粉末を含有させた試料は深紫外線反射率が大きく低下している。これは、酸化チタンが紫外線を吸収する事に起因している。酸化アルミニウム粉末を含有させた基板においては、平均粒子径(D50)が0.8μmの粉末を使用したときのみ250~280nmの波長領域において85%以上の高反射率が得られていることがわかる。 Table 3 shows the reflectance of the highly reflective substrate obtained by applying and cross-linking and curing a resist ink prepared by mixing zirconium oxide powder and other inorganic powder. The deep ultraviolet reflectance of the sample containing the titanium oxide powder is significantly reduced. This is due to the fact that titanium oxide absorbs ultraviolet rays. It can be seen that in the substrate containing the aluminum oxide powder, a high reflectance of 85% or more is obtained in the wavelength region of 250 to 280 nm only when the powder having an average particle size (D50) of 0.8 μm is used. ..
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
深紫外線耐性を評価した結果を表1中に示している。深紫外線耐性は、波長265nmの紫外線を37mW/cm2に調整し、1000時間照射し、照射前後での波長265nmにおける反射率変化を測定したものである。酸化ジルコニウム粉末として平均粒子径が14μmという大きな粒子を用いたサンプル(No.12)では、反射率が増大したが、その理由は不明である。それ以外は、サンプルNo.2、5、6及び10のいずれのサンプルでも約4%前後の変化量であった。サンプルNo.2及び5では、照射後の265nmにおける反射率が85%以上であった。 The results of evaluating the resistance to deep ultraviolet rays are shown in Table 1. The deep ultraviolet resistance is obtained by adjusting ultraviolet rays having a wavelength of 265 nm to 37 mW / cm2, irradiating them for 1000 hours, and measuring the change in reflectance at a wavelength of 265 nm before and after irradiation. In the sample (No. 12) using large particles having an average particle diameter of 14 μm as the zirconium oxide powder, the reflectance increased, but the reason is unknown. Other than that, sample No. In any of the samples 2, 5, 6 and 10, the amount of change was about 4%. Sample No. In 2 and 5, the reflectance at 265 nm after irradiation was 85% or more.
上記の通り、250~280nmの深紫外線波長域において拡散反射率が高く、深紫外線耐性に優れたレジストインクを塗布して、深紫外線領域で高反射となる保護膜付きガラス基板を作製できた。 As described above, a glass substrate with a protective film having high diffuse reflectance in the deep ultraviolet region of 250 to 280 nm, which has high diffuse reflectance and excellent resistance to deep ultraviolet, could be applied to produce a glass substrate having high reflection in the deep ultraviolet region.
図1は深紫外線LEDチップ3が実装されたCOB基板を表したものである。深紫外線LEDチップ3は、金線4によって4個直列に配置され、広範囲に深紫外線を照射できる。後方に照射された深紫外線は、本発明のレジストインクを用いて形成された保護膜(高反射絶縁膜)5によって透過・吸収されることなく、前方に反射され、深紫外線の光量が増大する。 FIG. 1 shows a COB substrate on which a deep ultraviolet LED chip 3 is mounted. Four deep ultraviolet LED chips 3 are arranged in series by a gold wire 4 and can irradiate a wide range of deep ultraviolet rays. The deep ultraviolet rays radiated to the rear are reflected forward without being transmitted and absorbed by the protective film (highly reflective insulating film) 5 formed by using the resist ink of the present invention, and the amount of deep ultraviolet rays increases. ..
図2は、本発明のレジストインクを用いて形成された保護膜(高反射絶縁膜)5の拡大図であって、シリコーンマトリックス7中に所定の粒子径の酸化ジルコニウム粉末8が所定の含有量で分散している。そして、高反射絶縁膜5の厚みは30μm以上である。本保護膜は、ガラス基板上に形成された場合、可視光線の領域で(見た目には)、半透明であった。 FIG. 2 is an enlarged view of a protective film (highly reflective insulating film) 5 formed by using the resist ink of the present invention, in which the silicone matrix 7 contains a predetermined content of zirconium oxide powder 8 having a predetermined particle size. It is dispersed in. The thickness of the highly reflective insulating film 5 is 30 μm or more. When formed on a glass substrate, the protective film was translucent (appearingly) in the visible light region.
図3は、サンプルNo.2の深紫外線領域から可視光線領域の広範囲における反射率を示したものである(実線)。可視光線領域では70%から30%程度の反射率であるのに対して、殺菌作用にとって最も重要な深紫外線領域である250nm~280nmの波長領域で選択的に85%以上という高い反射率を示していることがわかる。同じ保護膜をアルミ基板上に47μmの膜厚で形成した例を、図3中に破線で示した。アルミ基板上では、反射率に対して基板そのものからの反射率の寄与があるが、可視光線の領域で60~80%の反射率であるのに対して、250nm~280nmの波長領域で選択的に90%以上という高い反射率を示していることがわかる。図4は、サンプルNo.2の深紫外線領域での反射スペクトルの拡大図であって、250nm~280nmの波長領域で85%以上の高反射率となっていることが明らかである。 FIG. 3 shows the sample No. It shows the reflectance in a wide range from the deep ultraviolet region to the visible light region of No. 2 (solid line). While the reflectance is about 70% to 30% in the visible light region, it selectively shows a high reflectance of 85% or more in the wavelength region of 250 nm to 280 nm, which is the most important deep ultraviolet region for bactericidal action. You can see that. An example in which the same protective film is formed on an aluminum substrate with a film thickness of 47 μm is shown by a broken line in FIG. On an aluminum substrate, the reflectance from the substrate itself contributes to the reflectance, but the reflectance is 60 to 80% in the visible light region, whereas it is selectively in the wavelength region of 250 nm to 280 nm. It can be seen that it shows a high reflectance of 90% or more. FIG. 4 shows the sample No. It is an enlarged view of the reflection spectrum in the deep ultraviolet region of No. 2, and it is clear that the reflectance is as high as 85% or more in the wavelength region of 250 nm to 280 nm.
図5は、サンプルNo.16及び17の深紫外線領域での反射スペクトルであって、250nm~280nmの波長領域で85%以上の高反射率となっているが、酸化ジルコニウム粉末の含有量が増大すると凝集の影響が出てきて、長波長側の反射率は増大するものの、短波長側の反射率が減少する。酸化ジルコニウム粉末の含有量が50wt%になると、250nmでの反射率が85%となる。 FIG. 5 shows the sample No. The reflection spectra in the deep ultraviolet region of 16 and 17 have a high reflectance of 85% or more in the wavelength region of 250 nm to 280 nm, but when the content of zirconium oxide powder increases, the effect of aggregation appears. Therefore, the reflectance on the long wavelength side increases, but the reflectance on the short wavelength side decreases. When the content of the zirconium oxide powder is 50 wt%, the reflectance at 250 nm becomes 85%.
1・・・電極
2・・・封止樹脂
3・・・深紫外線LEDチップ
4・・・金線
5・・・保護膜(高反射絶縁膜)
6・・・金属基板
7・・・シリコーン
8・・・酸化ジルコニウム粉末
   
1 ... Electrode 2 ... Sealing resin 3 ... Deep ultraviolet LED chip 4 ... Gold wire 5 ... Protective film (highly reflective insulating film)
6 ... Metal substrate 7 ... Silicone 8 ... Zirconium oxide powder

Claims (2)

  1. レジストインクであって、必須成分としてシリコーンと、平均粒子径(D50)が1μm以下の酸化ジルコニウム粉末を32wt%以上50wt%以下含有し、基材上に30μm以上の膜厚で塗布され架橋硬化されたときに、250~280nmの波長領域における拡散反射率が85%以上であることを特徴とするレジストインク。 A resist ink containing silicone as essential components and zirconium oxide powder having an average particle size (D50) of 1 μm or less in an amount of 32 wt% or more and 50 wt% or less, and is coated on a substrate with a thickness of 30 μm or more and crosslinked and cured. A resist ink characterized by having a diffuse reflectance of 85% or more in a wavelength region of 250 to 280 nm.
  2. 波長265nmの深紫外線を1000時間照射したあとの、波長265nmにおける反射率低下が5%以下であることを特徴とする請求項1に記載のレジストインク。
     
    The resist ink according to claim 1, wherein the decrease in reflectance at a wavelength of 265 nm is 5% or less after irradiation with deep ultraviolet rays having a wavelength of 265 nm for 1000 hours.
PCT/JP2021/000293 2020-01-20 2021-01-07 Resist ink WO2021149497A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180006773.9A CN114762135A (en) 2020-01-20 2021-01-07 Photoresist ink
JP2021573054A JP7343220B2 (en) 2020-01-20 2021-01-07 resist ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007148 2020-01-20
JP2020-007148 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021149497A1 true WO2021149497A1 (en) 2021-07-29

Family

ID=76992584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000293 WO2021149497A1 (en) 2020-01-20 2021-01-07 Resist ink

Country Status (4)

Country Link
JP (1) JP7343220B2 (en)
CN (1) CN114762135A (en)
TW (1) TWI821629B (en)
WO (1) WO2021149497A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104061A1 (en) * 2005-03-29 2006-10-05 Kyocera Corporation Reflective member, light-emitting device using same and illuminating device
JP2011258611A (en) * 2010-06-04 2011-12-22 Sharp Corp Light-emitting device
WO2012144492A1 (en) * 2011-04-18 2012-10-26 イビデン株式会社 Led substrate, light-emitting module, method for producing led substrate, and method for producing light-emitting module
WO2013154133A1 (en) * 2012-04-13 2013-10-17 シャープ株式会社 Light-scattering body, light-scattering body film, light-scattering body substrate, light-scattering body device, light-emitting device, display device, and illumination device
JP2014135400A (en) * 2013-01-10 2014-07-24 Konica Minolta Inc Light emitting device and wavelength conversion element
JP6089144B1 (en) * 2016-03-30 2017-03-01 日本タングステン株式会社 Copper-clad laminate and manufacturing method thereof
US20190044033A1 (en) * 2017-08-03 2019-02-07 Osram Opto Semiconductors Gmbh Component Having Boundary Element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263201B (en) * 2005-09-16 2012-10-17 松下电器产业株式会社 Composite material and optical component using the same
EP3490015A1 (en) * 2010-03-23 2019-05-29 Asahi Rubber Inc. Silicone resin reflective substrate, manufacturing method for same, and base material composition used in reflective substrate
CN110785860B (en) * 2017-08-04 2021-03-26 住友大阪水泥株式会社 Dispersion, composition, sealing member, light-emitting device, lighting fixture, display device, and method for producing light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104061A1 (en) * 2005-03-29 2006-10-05 Kyocera Corporation Reflective member, light-emitting device using same and illuminating device
JP2011258611A (en) * 2010-06-04 2011-12-22 Sharp Corp Light-emitting device
WO2012144492A1 (en) * 2011-04-18 2012-10-26 イビデン株式会社 Led substrate, light-emitting module, method for producing led substrate, and method for producing light-emitting module
WO2013154133A1 (en) * 2012-04-13 2013-10-17 シャープ株式会社 Light-scattering body, light-scattering body film, light-scattering body substrate, light-scattering body device, light-emitting device, display device, and illumination device
JP2014135400A (en) * 2013-01-10 2014-07-24 Konica Minolta Inc Light emitting device and wavelength conversion element
JP6089144B1 (en) * 2016-03-30 2017-03-01 日本タングステン株式会社 Copper-clad laminate and manufacturing method thereof
US20190044033A1 (en) * 2017-08-03 2019-02-07 Osram Opto Semiconductors Gmbh Component Having Boundary Element

Also Published As

Publication number Publication date
JP7343220B2 (en) 2023-09-12
TW202128894A (en) 2021-08-01
CN114762135A (en) 2022-07-15
TWI821629B (en) 2023-11-11
JPWO2021149497A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
KR100713790B1 (en) Light source module and headlamp for vehicle
EP2160082B1 (en) Metal base circuit board
EP3144985B1 (en) Phosphor ceramic, sealed optical semiconductor element, circuit board, optical semiconductor device and light-emitting device
WO2010150880A1 (en) White color reflecting material and process for production thereof
TWI535792B (en) Led encapsulant
JP2009040884A (en) Resin composition for forming light reflecting part, wiring board having film of composition thereof and its manufacturing method, optical semiconductor package, and lighting system
EP2506320A1 (en) Substrate for led mounting
KR101125743B1 (en) Heat dissipation pad with high thermoconductivity and manufacturing method thereof
WO2021193727A1 (en) Dispersion liquid, composition, sealing member, light emitting device, lighting tool, display device, and method for producing dispersion liquid
US11578264B2 (en) Phosphor wheel with inorganic binder
EP3451031B1 (en) Wavelength conversion member, production method therefor, and light emitting device
JP2021528503A (en) Encapsulating resin composition for surface mount discrete devices of LED displays and its applications
WO2021149497A1 (en) Resist ink
JP2012064928A (en) Resin molding material for semiconductor light-emitting device and resin molding
JP2010225960A (en) Light emitting device and illumination apparatus
JP4949793B2 (en) Phosphor, wavelength converter and light emitting device
EP2372799A2 (en) Highly reflective white material and led package
JP5635189B2 (en) Improvement of phosphor
TW201832383A (en) Wavelength conversion member
JP2022057534A (en) Dispersion liquid, composition, sealing member, light-emitting device, lighting fixture, and display device
JP2021155261A (en) Dispersion liquid, composition, sealing member, light-emitting device, lighting device, and display device
KR20200036180A (en) Method for nano coating an inorganic filler and thermal dissipation composite material and sheet using the inorganic filler prepared therefrom
US9203002B2 (en) Ultraviolet reflective silicone compositions, reflectors, and light sources incorporating the same
WO2019031016A1 (en) Wavelength conversion member and light-emitting device
KR102334956B1 (en) Ramp for vehicle and manufacturing method of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744334

Country of ref document: EP

Kind code of ref document: A1