WO2021148033A1 - 换电***及换电***控制方法 - Google Patents

换电***及换电***控制方法 Download PDF

Info

Publication number
WO2021148033A1
WO2021148033A1 PCT/CN2021/073658 CN2021073658W WO2021148033A1 WO 2021148033 A1 WO2021148033 A1 WO 2021148033A1 CN 2021073658 W CN2021073658 W CN 2021073658W WO 2021148033 A1 WO2021148033 A1 WO 2021148033A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
exchange
swapping
limit
Prior art date
Application number
PCT/CN2021/073658
Other languages
English (en)
French (fr)
Inventor
***
黄春华
Original Assignee
奥动新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Priority to JP2022544828A priority Critical patent/JP2023511580A/ja
Priority to US17/794,675 priority patent/US20230065026A1/en
Priority to DE112021000682.7T priority patent/DE112021000682T5/de
Publication of WO2021148033A1 publication Critical patent/WO2021148033A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to a power exchange system.
  • the invention also relates to a control method for a power exchange system.
  • the existing battery replacement system uses a battery replacement trolley (ie, a battery replacement device) to replace the battery pack of an electric vehicle.
  • the replacement process includes unlocking the battery pack from the bottom of the electric vehicle, unloading and transporting the battery pack to the palletizer, and The battery pack of the palletizer is transported to the electric vehicle, and the battery pack is installed on the electric vehicle.
  • the technical problem to be solved by the present invention is to overcome the defect that the battery swap trolley is difficult to align with the electric vehicle in the prior art, and provide a battery swap system and a control method for the battery swap system.
  • a power exchange system which includes:
  • a walking channel where a battery exchange position is provided
  • a battery swapping device which is used to move along the walking path to the battery swapping position.
  • the battery swapping device can be aligned with the electric vehicle, completing the disassembly or installation of the battery pack, and improving the operational stability of the battery swapping system.
  • the switch position is provided with an alignment origin
  • the switch device is provided with an alignment sensor
  • the switch position is provided with an alignment sensor
  • the switch device is provided with an alignment origin
  • the alignment sensor is used to detect whether the power exchange device reaches the alignment origin.
  • the alignment sensor is used to detect the position of the alignment origin.
  • the alignment sensor detects the alignment origin, it means that the replacement device has reached the replacement position, so that the replacement device can accurately stop at the replacement position. .
  • the battery swapping device is used to move along the walking path to the swap position, and the battery swapping device is also used to swap the battery pack to the Battery compartment.
  • the battery replacement device can be stopped at the exchange position, and the disassembled battery pack is placed in the battery compartment in the exchange position, and the charged battery pack is taken out of the battery compartment to realize the exchange of the battery pack .
  • the exchange position is provided with an exchange origin
  • an exchange sensor is provided on the power exchange device, or an exchange sensor is provided at the exchange position
  • an exchange origin is provided on the power exchange device, and the exchange sensor It is used to detect whether the swapping device reaches the swap origin.
  • the battery exchange device can be accurately positioned at the exchange position, and the operation of the exchange battery pack can be ensured to run stably.
  • the walking channel is connected to the battery compartment and the power exchange position, the walking channel is provided with a deceleration positioning point, and the power exchange equipment is provided with a deceleration sensor corresponding to the deceleration positioning point ,
  • the deceleration sensor is used to detect whether the power swapping device reaches the deceleration positioning point, and the power swapping device is also used to move along the walking path toward the power swap position and then decelerate after passing the deceleration positioning point.
  • the replacement equipment moves between the battery compartment and the replacement position, and the replacement equipment moves quickly before reaching the deceleration positioning point to improve operating efficiency; the replacement equipment decelerates after passing the deceleration positioning point to ensure positioning Accuracy, reduce the difficulty of control, and improve the operational safety of the replacement equipment.
  • the walking passage has a first waiting position, the first waiting position is located between the power swapping position and the swapping position, and the power swapping device is used to stop at the first waiting position.
  • the walking passage has a second waiting position
  • the power swapping position is located between the second waiting position and the swapping position
  • the power swapping device is used to stop at the second waiting position
  • the number of the power exchange equipment is two, the two of the power exchange equipment are the first power exchange equipment and the second power exchange equipment, and the walking channel is provided with the first power exchange equipment
  • the first rail connects the battery compartment and the battery swap position, and the second rail connects the battery compartment and the battery compartment. Change the battery position.
  • the two battery swapping devices perform the operations of removing the battery pack and installing the battery pack respectively, thereby increasing the speed of battery swapping.
  • the second battery pack can take out the charged battery pack from the battery compartment.
  • the second battery replacement device can move the battery pack to the battery replacement position and install the battery pack on the electric vehicle.
  • the first battery replacement device can complete the exchange of new and old batteries in the battery compartment, and the two battery replacement devices can be used separately Running on the first track and the second track respectively, the efficiency of power exchange is higher.
  • the first track and the second track are independent of each other, or the first track and the second track are the same track.
  • the two switching equipment can move independently, and the operation efficiency is high; if the first track and the second track are the same track, the two switching equipment Reusing the same track can reduce the cost of the replacement system.
  • the second track is provided with a waiting positioning point, and the second power swapping device is used to stop at the waiting positioning point when the first power swapping device stops at the power swapping position.
  • the second battery swapping device can wait at the waiting position, so that it will not cause the consequences of interference between the two battery swapping devices at the battery swapping position. , It will not affect other battery swapping devices in the battery compartment because the second battery swapping device stops at the swap position.
  • the walking passage has a waiting position
  • the power swapping position is located between the waiting position and the swapping position
  • the power swapping device is used to stop at the waiting position
  • the first battery swapping device and/or the second battery swapping device are controlled to drive to the waiting position.
  • the walking channel is provided with a limit position
  • the power exchange device is also used to stop moving when moving along the walking channel to the limit position.
  • the power-swap equipment is limited by setting limit positions to prevent the power-swap equipment from driving out of the working area, provide a working area boundary for the power-swap equipment, and avoid the danger of the power-swap equipment running out of control.
  • the limit position is provided with a limit positioning point
  • the switching device is provided with a limit sensor corresponding to the limit positioning point, and the limit sensor is used to detect whether the switching device reaches the Limit anchor point.
  • the power swapping device stops moving to prevent the power swapping device from exceeding the limit position and causing danger.
  • the limit position includes a first limit position
  • the first limit position is set on the other side of the power swap position along the traveling direction of the power swap device, and the first limit position is provided with a first limit position.
  • a first limit sensor is provided on the battery swapping device.
  • the first limit position is used to prevent the power swapping device from moving out of the work area from one side of the power swap position, and the first limit positioning point and the first limit sensor are used to cooperate to achieve the above purpose.
  • the power exchange device is used to move along the walking path to the exchange position
  • the limit position further includes a second limit position
  • the second limit position is The walking direction of the battery swapping device is set on the other side of the swap position
  • the second limit position is provided with a second limit positioning point
  • the battery swapping device is provided with a second limit sensor.
  • the second limit position is used to prevent the switching equipment from moving out of the working area from the side of the exchange position, and the second limit positioning point is used in cooperation with the second limit sensor to achieve the above purpose.
  • the distance between the first limit positioning point and the switching position does not exceed 60 mm, and the distance between the second limit positioning point and the switching position does not exceed 60 mm.
  • the distances between the first limit positioning point and the power exchange position, and between the second limit positioning point and the exchange position are set to be small, so as to limit the moving range of the power exchange equipment and reduce the impact of the power exchange system on the site. Space requirements.
  • the present invention also provides a method for controlling a battery swapping system.
  • the battery swapping system includes a walking channel and a battery swapping device.
  • the battery swapping device is used for disassembling and assembling a battery pack of an electric vehicle.
  • the battery swapping system control method includes The following steps:
  • the battery exchange device When a battery removal or battery installation signal is received, the battery exchange device is controlled to move along the walking channel to the exchange potential position.
  • the stroke of the battery swapping device is controlled according to the battery swapping signal, which is beneficial to improve the accuracy of the battery swapping device moving to a designated position.
  • the switch position is provided with an alignment origin
  • the switch device is provided with an alignment sensor
  • the switch position is provided with an alignment sensor
  • the switch device is provided with an alignment origin
  • controlling the battery swapping device to move to the battery swapping position along the walking path includes the following steps:
  • the alignment sensor When the alignment sensor detects the alignment origin, it controls the battery swapping device to stop moving.
  • the alignment sensor and the alignment origin are used to achieve the accurate stop of the battery swapping device at the battery swapping position.
  • controlling the battery swapping device to move to the battery swapping position along the walking path includes the following steps:
  • the battery exchange device When the battery exchange signal is received, the battery exchange device is controlled to move along the walking path to the battery exchange position.
  • the battery replacement device can be stopped at the exchange position, and the disassembled battery pack can be placed in the battery compartment at the exchange position, and the charged battery pack can be taken out of the battery compartment. Realize the exchange of battery packs.
  • the battery replacement device when a battery removal or battery installation signal is received, the battery replacement device is controlled to move to the battery replacement position along the walking path, and then further includes the following steps:
  • the battery replacement device can complete the removal of the battery pack from the electric vehicle and transport the battery pack to the exchange location.
  • an exchange origin is provided at the exchange location, an exchange sensor is provided on the power exchange device, or an exchange sensor is provided at the exchange location, and an exchange origin is provided on the power exchange device;
  • Controlling the movement of the battery swapping device from the battery swapping position to the swapping position includes the following steps:
  • the power exchange device is controlled to stop moving.
  • the swap sensor and the swap origin can be used to accurately move the swapping device to the swap position, ensuring that the swapping device can transport the battery pack to the battery compartment.
  • the walking channel is connected to the battery compartment and the power exchange position, and a deceleration positioning point is provided on the walking channel;
  • Controlling the battery swapping device to move along the walking path to the battery swapping position also includes the following steps:
  • the power swapping device moves toward the power swapping position along the walking path, it is determined whether the power swapping device reaches the deceleration positioning point, and if so, the power swapping device decelerates and moves until it reaches the Stop after changing the battery position.
  • the battery replacement device can be moved quickly and accurately positioned.
  • controlling the power swapping device to move along the walking path to the power swapping position further includes the following steps:
  • the power replacement device can be controlled to gradually approach the power replacement position.
  • the walking channel has a first waiting position, and the first waiting position is located between the power exchange position and the exchange position;
  • the control method of the power exchange system further includes:
  • control the power exchange device When receiving the first waiting signal, control the power exchange device to move along the walking path to the first waiting position.
  • the movement route of the battery swapping device can be coordinated when the battery swapping system is working, so as to prevent interference and collision of the battery swapping device.
  • the walking channel has a second waiting position, and the power exchange position is located between the second waiting position and the exchange position;
  • the control method of the power exchange system further includes:
  • the movement route of the battery swapping device can be coordinated when the battery swapping system is working, so as to prevent interference and collision of the battery swapping device.
  • the number of the power exchange equipment is two, the two of the power exchange equipment are the first power exchange equipment and the second power exchange equipment, and the walking channel is provided with the first power exchange equipment A first track for walking and a second track for the second switching device to travel;
  • the control method of the power exchange system further includes:
  • the first power swapping device is controlled to move along the first rail to the power swap position for disassembly of the battery pack
  • the second power swapping device is controlled to move along the second rail to the battery pack.
  • the first track and the second track are two different tracks
  • the first track and the second track are the same track.
  • the two power exchange equipment can move independently, and the operation efficiency is high; if the first track and the second track are the same track, the two power exchange equipment Reusing the same track can reduce the cost of the replacement system.
  • control method of the power exchange system further includes:
  • the first power exchange device is controlled to drive to the exchange position.
  • the first battery swapping device can be controlled to drive to the swap position, so that the first battery swapping device enters the battery compartment.
  • the walking channel has a waiting position, and the power exchange position is located between the waiting position and the exchange position;
  • the control method of the power exchange system further includes:
  • the second battery swapping device can be controlled to drive to the waiting position.
  • control method of the power exchange system further includes the following steps:
  • the second battery swapping device is controlled to remove the battery pack adapted to the electric vehicle from the battery compartment, and then wait for the first battery swapping device.
  • the electrical equipment moves away from the switch position.
  • the second track is provided with a waiting positioning point
  • the second power swapping device is provided with a waiting positioning sensor for detecting the waiting positioning point
  • the second power swapping device is provided with a waiting positioning point
  • the second track is provided with a waiting position sensor for detecting the waiting position point
  • the second battery swapping device is controlled to remove the battery pack adapted to the electric vehicle from the battery compartment, and then wait for the first battery swapping device.
  • the driving of the electrical equipment away from the replacement position includes the following steps:
  • the second power swapping device stops at the waiting location.
  • the second power swapping device can use the waiting positioning point to wait for the first power swapping device to leave the power swapping position.
  • the walking channel is provided with a limit position
  • the control method of the power exchange system further includes:
  • the limit position includes a first limit position, and the first limit position is provided on the other side of the power swap position along the traveling direction of the power swap device, and the first limit position is provided with a A limit positioning point, a first limit sensor is provided on the power swapping device, or a first limit sensor is provided on the first limit position, and a first limit positioning point is provided on the power swapping device;
  • Controlling the battery swapping device to stop at the limit position of the walking channel includes:
  • the first limit sensor When the first limit sensor detects the first limit positioning point, it controls the battery swapping device to stop moving.
  • the first limit position can prevent the battery swapping device from moving out of the working area from the side of the battery swap position, and the first limit positioning point and the first limit sensor can be used to cooperate to achieve the above purpose .
  • the limit position further includes a second limit position.
  • the second limit position is The walking direction of the battery swapping device is set on the other side of the swap position, the second limit position is provided with a second limit positioning point, and the battery swapping device is provided with a second limit sensor, or the second limit position A second limit sensor is provided, and a second limit positioning point is provided on the battery swapping device;
  • Controlling the battery swapping device to stop at the limit position of the walking channel includes:
  • the battery replacement device is controlled to stop moving.
  • the second limit position can prevent the battery swapping device from moving out of the working area from the two sides of the battery swap position, and the second limit positioning point and the second limit sensor can be used to cooperate to achieve the above purpose .
  • the positive progress effect of the present invention is that the power swap system and the power swap system control method of the present invention can realize rapid power swap operations, improve power swap efficiency and stability of power swap operations.
  • FIG. 1 is a schematic diagram of the structure of a power exchange system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the steps of the control method of the power exchange system according to Embodiment 3 of the present invention.
  • FIG. 3 is a schematic diagram of the steps of the control method of the power exchange system according to Embodiment 5 of the present invention.
  • the present invention provides a power exchange system.
  • the power exchange system includes a walking channel 2 and a power exchange device 1.
  • the walking channel 2 is provided with a power exchange position 4.
  • the battery swapping device 1 moves along the walking channel 2 to the battery swapping position 4.
  • the battery swapping device 1 can be aligned with the electric vehicle 3 to complete the disassembly or installation of the battery pack, and improve the operating stability of the battery swapping system.
  • the replacement position 4 is provided with an alignment origin
  • the replacement device 1 is provided with an alignment sensor, which is used to detect whether the replacement device 1 has reached the alignment origin.
  • the alignment sensor is used to detect the position of the alignment origin. When the alignment sensor detects the alignment origin, it means that the power swapping device 1 has reached the power swapping position 4, so that the power swapping device 1 can accurately stop at the power swapping position 4.
  • the setting positions of the alignment origin and the alignment sensor can also be interchanged, that is, the alignment origin can be set on the battery swapping device 1, and the alignment sensor can be set at the battery swapping position, which can also achieve the above Effect.
  • the walking channel 2 has an exchange position 6, and the power exchange device 1 is used to move along the walking channel 2 to the exchange position 6, and the power exchange device 1 is also used to exchange the battery pack to the battery compartment 5 at the exchange position 6.
  • the battery replacement device can deliver the battery to the battery transfer device, and then the battery transfer device puts the battery into the battery compartment 5, and the battery compartment 5 can be used to store the battery pack and can also be used to charge the battery pack.
  • the battery replacement device 1 can be stopped at the exchange position 6, and the disassembled battery pack is placed in the battery compartment 5 in the exchange position 6, and the charged battery pack is taken out of the battery compartment 5 to realize the exchange of the battery pack.
  • the exchange position 6 is provided with an exchange origin, and the exchange device 1 is equipped with an exchange sensor, and the exchange sensor is used to detect whether the exchange device 1 reaches the exchange origin.
  • the exchange sensor By using the exchange sensor to detect the exchange origin, the battery exchange device 1 can be accurately positioned at the exchange position 6 to ensure stable operation of the battery pack exchange operation.
  • the walking channel 2 is connected to the battery compartment 5 and the power replacement position 4.
  • the walking channel 2 is provided with a deceleration positioning point
  • the power replacement device 1 is equipped with a deceleration sensor corresponding to the deceleration positioning point.
  • the deceleration sensor is used to detect whether the power replacement device 1 is Reaching the deceleration positioning point, the replacement equipment 1 moves along the walking channel 2 toward the replacement position and then decelerates after passing the deceleration positioning point.
  • the battery swapping device 1 moves between the battery compartment 5 and the battery swapping position 4.
  • the battery swapping device 1 moves quickly before reaching the deceleration positioning point to improve operating efficiency; the battery swapping device 1 moves at a slower speed after the deceleration positioning point to ensure battery replacement
  • the equipment can be accurately parked to the power replacement position, which reduces the difficulty of control and improves the operational safety of the power replacement device 1.
  • the walking channel 2 has a first waiting position, the first waiting position is located between the power swapping position 4 and the swapping position 6, and the power swapping device 1 is used to stop at the first waiting position.
  • the battery swapping device 1 Before the electric car is parked in place, the battery swapping device 1 can stay in the first waiting position in advance. After the electric car is parked in place, the battery swapping device 1 can enter the battery swapping position 4 from the first waiting position for battery disassembly and assembly. There may be multiple battery swapping devices 1 in the battery swapping system at the same time. When there is a battery swapping device 1 at the battery swapping position 4 for battery disassembly and assembly, other battery swapping devices 1 can stop at the first waiting position. By setting the first waiting position, the time required for the horizontal movement of the battery replacement device 1 when it enters the bottom of the vehicle for battery disassembly and assembly can be reduced, and the battery replacement efficiency can be improved.
  • the walking channel 2 also has a second waiting position
  • the power exchange position 4 is located between the second waiting position and the exchange position 6, and the power exchange device 1 is used to stop at the second waiting position.
  • the battery swapping device 1 moves along the walking channel 2 to the battery swapping position 4 for battery removal and assembly, it continues to move forward along the original walking direction to the second waiting position, so as to perform the next battery swapping action. For example, after removing the battery, you can wait for another battery replacement device to move along the same walking path to the battery replacement position to perform the battery loading action, or after the battery is installed, move to the second waiting position and wait for the electric vehicle to leave.
  • the number of power swapping devices 1 is two, and the two power swapping devices 1 are the first power swapping device 11 and the second power swapping device 12, and the walking channel 2 is provided with the first power swapping device 11 The first rail 21 for walking and the second rail 22 for the second switching device 12 to travel.
  • the two battery swapping devices 1 perform the operations of removing the battery pack and installing the battery pack respectively, thereby improving the battery swapping speed. For example, when the first battery swapping device 11 removes the battery pack at the battery swapping position 4, the second battery swapping device 12 can take out the charged battery pack from the battery compartment 5.
  • the second battery swapping device 12 can move the battery pack to the battery swapping position 4 and install the battery pack on the electric vehicle. At this time, the first battery swapping device 11 can complete the new and old batteries in the battery compartment 5.
  • the two power swapping devices 1 can run on the first rail 21 and the second rail 22 respectively, and the power swapping efficiency is relatively high.
  • the first rail 21 and the second rail 22 are independent of each other, the first rail 21 connects the power exchange position 4 and the battery compartment 5, and the second rail 22 connects the power exchange position 4 and In the other battery compartment 5, the two battery replacement devices 1 can be moved independently, and the operation efficiency is high.
  • the first track 21 and the second track 22 may also be the same track, and the two power switching devices 1 reuse the same track, which can reduce the cost of the power switching system.
  • the second track 22 is provided with a waiting location point.
  • the second power swapping device 12 is provided with a waiting location sensor for detecting the waiting location point, and the second power swapping device 12 is used to stop the first battery at the power swap position 4. Stop waiting for the positioning point when replacing the power device 11.
  • the second power-swap device 12 can wait at the waiting point. In this way, it will not cause interference between the two power-swap devices 1 in the power-swap position 4. It will not affect other battery swapping devices 1 in the battery compartment 5 because the second battery swapping device 12 stops at the swap position 6.
  • the waiting positioning point can also be set at other positions of the walking channel 2 and is not limited to the track. In some preferred embodiments, it is also possible to set the waiting location point on the second battery swapping device 12, and set the waiting location sensor on the walking channel 2, so that the above effects can also be achieved.
  • the walking channel 2 has a waiting position
  • the power exchange position 4 is located between the waiting position and the exchange position 6, and the power exchange device 1 is used to stop at the waiting position.
  • the second battery swapping device 12 finishes installing the battery pack, the first battery swapping device 11 and/or the second battery swapping device 12 are controlled to drive to the waiting position.
  • the walking channel 2 is provided with an extreme position, and the power exchange device 1 is also used to stop moving when moving along the walking channel 2 to the extreme position.
  • the limit position is set to limit the battery swapping device 1 to prevent the battery swapping device 1 from moving out of the working area, providing a working area boundary for the battery swapping device 1 and avoiding the danger of the battery swapping device 1 running out of control.
  • the limit position is provided with a limit positioning point
  • the power replacement device 1 is provided with a limit sensor corresponding to the limit positioning point
  • the limit sensor is used to detect whether the power replacement device 1 reaches the limit positioning point.
  • the limit sensor detects the limit positioning point
  • the battery swapping device 1 stops moving to prevent the battery swapping device 1 from exceeding the limit position and causing danger.
  • the limit locating point can also be set on the battery swapping device 1, and accordingly, the limit sensor is set at the limit position, which can also achieve the above-mentioned effects.
  • the limit position includes the first limit position, the first limit position is set on the other side of the battery swapping position 4 along the walking direction of the battery swapping device 1, the first limit position is provided with a first limit positioning point, and the battery swapping device 1 is provided with a first limit position.
  • the first limit position is used to prevent the power swapping device 1 from moving out of the working area from one side of the power swap position 4, and the first limit positioning point and the first limit sensor are used to cooperate to achieve the above purpose.
  • the positions of the first limit positioning point and the first limit sensor can be exchanged.
  • the extreme position also includes a second extreme position.
  • the second extreme position is set on the other side of the exchange position 6 along the traveling direction of the power exchange device 1, and the second extreme position is provided with a second extreme positioning point.
  • Two limit sensors are used to prevent the swapping device 1 from moving out of the working area from one side of the swap position 6, and the second limit positioning point is used in cooperation with the second limit sensor to achieve the above purpose.
  • the positions of the second limit positioning point and the second limit sensor can be interchanged.
  • the distance between the first limit positioning point and the switching position 4 does not exceed 60 mm, and the distance between the second limit positioning point and the switching position 6 does not exceed 60 mm.
  • the distances between the first limit positioning point and the swapping position 4, and the second limit positioning point and the swapping position 6 are set to be small to limit the moving range of the swapping device 1 and reduce the space requirements of the swapping system. .
  • the present invention also provides a control method for a battery swap system.
  • the battery swap system includes a walking channel 2 and a battery swap device 1.
  • the battery swap device 1 is used for disassembly and assembly of the battery pack of an electric vehicle 3.
  • the battery swap system control method includes the following steps :
  • the controller of the battery replacement device controls the battery replacement device 1 to move along the walking path 2 to the battery replacement position.
  • the power exchange position 4 is provided with an alignment origin
  • the power exchange device 1 is provided with an alignment sensor.
  • the alignment sensor may also be set at the battery swapping position 4, and the alignment origin can be set on the battery swapping device 1.
  • S10 includes the following steps:
  • the alignment sensor and the alignment origin are used to realize that the battery swapping device 1 is accurately stopped at the battery swapping position 4.
  • the control method of the power exchange system also includes the following steps:
  • the controller of the battery swapping device controls the battery swapping device 1 to move along the walking channel 2 to the battery swapping position 6.
  • the battery swapping device 1 can be stopped at the swapping position 6, and The disassembled battery pack is placed in the battery compartment 5 at the exchange position 6, and the charged battery pack is taken out of the battery compartment 5 to realize the exchange of the battery pack.
  • control method of the power exchange system of this embodiment is shown in FIG. 2, and the following steps are added on the basis of Embodiment 2.
  • S1002 Control the power exchange device 1 to move from the power exchange position 4 to the exchange position 6.
  • the battery replacement device 1 can complete the removal of the battery pack from the electric vehicle 3 and transport the battery pack to the exchange position 6.
  • the exchange point 6 is provided with an exchange origin
  • the power exchange device 1 is provided with an exchange sensor; in other embodiments, the exchange origin and the position of the exchange sensor can also be reversed.
  • S1002 includes the following steps:
  • the swap sensor and the swap origin can be used to accurately move the battery swapping device 1 to the swap position 6 to ensure that the battery swapping device 1 can transport the battery pack to the battery compartment 5.
  • the control method of the battery exchange system in this embodiment adds the following steps on the basis of the third embodiment.
  • the walking channel 2 is connected to the battery compartment 5 and the battery replacement position 4, and the walking channel 2 is provided with a deceleration positioning point.
  • S10 also includes the following steps:
  • the battery replacement device 1 can be moved quickly and can be accurately positioned.
  • S10010 also includes the following steps:
  • the power swapping device 1 can be controlled to gradually approach the power swapping position 4 to ensure that the power swapping device can be accurately parked to the power swapping position.
  • the control method of the battery replacement system of this embodiment adds the following steps on the basis of the second embodiment.
  • the walking channel 2 has a first waiting position, and the first waiting position is located between the power exchange position 4 and the exchange position 6.
  • the control method of the power exchange system also includes:
  • the controller of the battery swapping device 1 controls the battery swapping device 1 to move along the walking channel 2 to the first waiting position.
  • the battery swapping device 1 It can stay in the first waiting position in advance.
  • the battery replacement device 1 can enter the battery replacement position from the first waiting position. 4
  • the battery can be disassembled and assembled. If there can be multiple replacements in one battery replacement system.
  • the electrical device 1 when there is a battery replacement device 1 at the battery replacement position 4 to disassemble and assemble the battery, other battery replacement devices 1 can stop at the first waiting position.
  • the time required for the horizontal movement of the battery replacement device 1 when it enters the bottom of the vehicle for battery disassembly and assembly can be reduced, and the battery replacement efficiency can be improved.
  • the walking channel 2 also has a second waiting position, and the power exchange position 4 is located between the second waiting position and the exchange position 6.
  • the control method of the power exchange system also includes:
  • the controller of the battery swapping device 1 controls the battery swapping device 1 to move along the walking path 2 to the second waiting position.
  • the battery swapping device 1 can stop in the second waiting position. Location. After the battery swapping device 1 moves along the walking channel 2 to the battery swapping position 4 for battery removal and assembly, it continues to move forward along the original walking direction to the second waiting position, so as to perform the next battery swapping action. For example, after removing the battery, you can wait for another battery replacement device to move along the same walking path to the battery replacement position to perform the battery loading action, or after the battery is installed, move to the second waiting position and wait for the electric vehicle to leave.
  • the control method of the battery replacement system of this embodiment adds the following steps on the basis of the second embodiment.
  • the number of power swapping devices 1 is two, and the two power swapping devices 1 are the first power swapping device 11 and the second power swapping device 12.
  • the walking channel 2 is provided with a first track 21 for the first power swapping device 11 to travel. And a second track 22 for the second battery swapping device 12 to travel.
  • the control method of the power exchange system also includes:
  • control the first power swap device 11 When receiving the disassembly signal, control the first power swap device 11 to move along the first track 21 to the power swap position 4 to disassemble the battery pack, and control the second power swap device 12 to move along the second rail 22 to the swap position 6 to obtain the corresponding model Battery pack.
  • the first battery swapping device 11 and the second battery swapping device 12 receive the disassembly signal, the first battery swapping device 11 is controlled to move along the first track 21 to the battery swapping position 4 to remove the battery pack, and control the second battery swapping device 12 moves along the second track 22 to the exchange position 6 to obtain the battery pack of the corresponding model.
  • the first rail 21 and the second rail 22 can be two different rails.
  • the first rail 21 connects the power exchange position 4 and the battery compartment 5
  • the second rail 22 connects the power exchange position 4 and the other battery compartment 5.
  • Each power exchange device 1 can move independently, and the operation efficiency is high.
  • the first track 21 and the second track 22 may also be the same track, and the two power switching devices 1 reuse the same track, which can reduce the cost of the power switching system.
  • the control method of the battery exchange system of this embodiment adds the following steps on the basis of the seventh embodiment.
  • the control method of the power exchange system also includes:
  • the first power exchange device 11 When the exchange signal is received, the first power exchange device 11 is controlled to drive to the exchange position 6.
  • the first power swapping device 11 When the first power swapping device 11 receives the swap signal, it controls the first power swapping device 11 to drive to the swap position 6. Through the above steps, the first battery swapping device 11 can be controlled to drive to the swap position 6, so that the first battery swapping device 11 enters the battery compartment 5.
  • the walking channel 2 has a waiting position, and the power exchange position 4 is located between the waiting position and the exchange position 6;
  • the control method of the power exchange system also includes:
  • the second battery swapping device 12 can be controlled to travel to the waiting position.
  • the control method of the power exchange system also includes the following steps:
  • the second track 22 is provided with a waiting location point, and correspondingly, the second power swapping device 12 is provided with a waiting location sensor for detecting the waiting location point.
  • the waiting positioning point can also be set at other positions of the walking channel 2 and is not limited to the track.
  • the waiting location point may also be set on the second battery swapping device 12, and the waiting location sensor may be set on the walking channel 2.
  • S100101 includes the following steps:
  • the second power swapping device 12 stops at a waiting point for positioning.
  • the second power swapping device 12 can use the waiting location to wait for the first power swapping device 11 to leave the power swapping position 4.
  • the control method of the battery replacement system of this embodiment adds the following steps on the basis of the second embodiment.
  • the walking channel 2 is provided with a limit position, and the control method of the power exchange system also includes:
  • the limit position includes a first limit position
  • the first limit position is set on the other side of the battery swapping position 4 along the traveling direction of the battery swapping device 1
  • the first limit position is provided with a first limit positioning point
  • the battery swapping device 1 There is a first limit sensor on it.
  • the positions of the first limit positioning point and the first limit sensor can be exchanged.
  • the first limit position can prevent the power swapping device 1 from moving out of the working area from the side of the power swap position 4, and the first limit positioning point and the first limit sensor can be used to cooperate to achieve the above purpose.
  • the limit position also includes a second limit position.
  • the second limit position is set on the other side of the exchange position 6 along the walking direction of the power exchange device 1, and the second limit position is provided with a second limit positioning point.
  • Two limit sensors In other preferred embodiments, the positions of the second limit positioning point and the second limit sensor can be interchanged.
  • S11 also includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种换电***和换电***控制方法,其中,换电***包括行走通道(2)和换电设备(1),所述行走通道(2)上设有换电位置(4),所述换电设备(1)用于沿所述行走通道(2)移动至所述换电位置(4)。所述换电***和换电***控制方法能够实现快速换电操作,提高换电效率和换电操作的稳定性。

Description

换电***及换电***控制方法
本申请要求申请日为2020年1月23日的中国专利申请2020100769847的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种换电***。
本发明还涉及一种换电***控制方法。
背景技术
现有的换电***利用换电小车(即换电设备)对电动汽车的电池包进行更换,更换的过程包括从电动车底部解锁电池包、将电池包卸下并运送到码垛机、将码垛机的电池包运送到电动车处、将电池包安装到电动车上。
然而现有技术中,换电小车的位置精度较难控制,这使得换电小车难以与电动汽车对准,从而影响电池包的拆卸和安装,导致换电***运行不稳定。
发明内容
本发明要解决的技术问题是为了克服现有技术中换电小车难以与电动汽车对准的缺陷,提供一种换电***及换电***控制方法。
本发明是通过下述技术方案来解决上述技术问题:
一种换电***,所述换电***包括:
行走通道,所述行走通道上设有换电位置;
换电设备,所述换电设备用于沿所述行走通道移动至所述换电位置。
在本技术方案中,通过控制换电设备在行走通道中移动,使换电设备能够对准电动汽车,完成电池包的拆卸或安装,提高换电***运行稳定性。
较佳地,所述换电位置设有对位原点,所述换电设备上设有对位传感器,或所述换 电位置设有对位传感器,所述换电设备设有对位原点,所述对位传感器用于检测所述换电设备是否到达所述对位原点。
在本技术方案中,利用对位传感器检测对位原点的位置,当对位传感器检测到对位原点时,说明换电设备已到达换电位置,使得换电设备能够准确地停在换电位置。
较佳地,所述行走通道上具有交换位置,所述换电设备用于沿所述行走通道移动至所述交换位置,所述换电设备还用于在所述交换位置将电池包交换至电池仓。
在本技术方案中,换电设备可以停在交换位置,并在交换位置将拆卸下来的电池包放置在电池仓内,并将充好电的电池包从电池仓中取出,实现电池包的交换。
较佳地,所述交换位置设有交换原点,所述换电设备上设有交换传感器,或所述交换位置处设有交换传感器,所述换电设备上设有交换原点,所述交换传感器用于检测所述换电设备是否到达所述交换原点。
在本技术方案中,通过利用交换传感器检测交换原点,使得换电设备能够准确地定位在交换位置,保证交换电池包的操作能够稳定运行。
较佳地,所述行走通道连接所述电池仓和所述换电位置,所述行走通道上设置有减速定位点,所述换电设备上设有与所述减速定位点相对应的减速传感器,所述减速传感器用于检测所述换电设备是否到达所述减速定位点,所述换电设备还用于沿所述行走通道朝向所述换电位置移动经过所述减速定位点后减速移动。
在本技术方案中,换电设备在电池仓和换电位置之间移动,换电设备到达减速定位点之前快速移动,以提高运行效率;换电设备通过减速定位点后减速移动,以保证定位的准确性,降低控制难度,并提高换电设备的运行安全性。
较佳地,所述行走通道具有第一等待位置,所述第一等待位置位于所述换电位置和所述交换位置之间,所述换电设备用于停在所述第一等待位置。
在本技术方案中,一个换电***中可以同时存在多个换电设备,当换电位置处有换电设备时,其他换电设备可以停在第一等待位置。
较佳地,所述行走通道具有第二等待位置,所述换电位置位于所述第二等待位置和所述交换位置之间,所述换电设备用于停在所述第二等待位置。
在本技术方案中,一个换电***中可以同时存在多个换电设备,当交换位置处有换电设备时,其他换电设备可以停在第二等待位置。
较佳地,所述换电设备的数量为两个,两个所述换电设备为第一换电设备和第二换电设备,所述行走通道内布设有供所述第一换电设备行走的第一轨道和供所述第二换电设备行走的第二轨道,所述第一轨道连接所述电池仓和所述换电位置,所述第二轨道连接所述电池仓和所述换电位置。
在本技术方案中,两个换电设备分别进行拆卸电池包和安装电池包的操作,从而提高换电速度。例如,第一换电设备在换电位置拆卸电池包时,第二换电设备可以从电池仓内取出充好电的电池包,当第一换电设备完成电池包拆卸并离开换电位置后,第二换电设备可以携电池包移动到换电位置并将电池包安装到电动车上,此时第一换电设备可以在电池仓内完成新旧电池的交换,两个换电设备可以各自分别在第一轨道和第二轨道运行,换电效率较高。
较佳地,所述第一轨道和所述第二轨道相互独立,或,所述第一轨道和所述第二轨道为同一轨道。
在本技术方案中,若第一轨道和第二轨道相互独立,则两个换电设备可以独立地移动,运行效率较高;若第一轨道和第二轨道为同一轨道,两个换电设备复用同一轨道,可以降低换电***的成本。
较佳地,所述第二轨道设有等待定位点,所述第二换电设备用于在所述换电位置停有所述第一换电设备时停止在所述等待定位点。
在本技术方案中,当第一换电设备在换电位置时,第二换电设备可以在等待定位点等待,这样,既不会造成两个换电设备都在换电位置发生干涉的后果,也不会因第二换电设备停在交换位置影响其他在电池仓内的换电设备。
较佳地,所述行走通道具有等待位置,所述换电位置位于所述等待位置和所述交换位置之间,所述换电设备用于停在所述等待位置。
在本技术方案中,当所述第二换电设备完成安装电池包,控制所述第一换电设备和/或第二换电设备行驶到等待位置。
较佳地,所述行走通道设置有极限位置,所述换电设备还用于沿所述行走通道移动至所述极限位置时停止移动。
在本技术方案中,通过设置极限位置对换电设备进行限位,防止换电设备驶出工作区域,为换电设备提供了工作区域边界,避免换电设备失控脱逃而产生的危险。
较佳地,所述极限位置设置有极限定位点,所述换电设备上设有与所述极限定位点相对应的极限传感器,所述极限传感器用于检测所述换电设备是否到达所述极限定位点。
在本技术方案中,当极限传感器检测到极限定位点时,换电设备停止移动,防止换电设备超越极限位置而造成危险。
较佳地,所述极限位置包括第一极限位置,所述第一极限位置沿所述换电设备行走方向设于所述换电位置的另一侧,所述第一极限位置设有第一极限定位点,所述换电设备上设有第一极限传感器。
在本技术方案中,第一极限位置用于防止换电设备从换电位置的一侧驶出工作区域,并利用第一极限定位点和第一极限传感器相配合实现上述目的。
较佳地,所述行走通道上具有交换位置,所述换电设备用于沿所述行走通道移动至所述交换位置,所述极限位置还包括第二极限位置,所述第二极限位置沿所述换电设备行走方向设于交换位置的另一侧,所述第二极限位置设有第二极限定位点,所述换电设备上设有第二极限传感器。
在本技术方案中,第二极限位置用于防止换电设备从交换位置的一侧驶出工作区域,并利用第二极限定位点和第二极限传感器相配合实现上述目的。
较佳地,所述第一极限定位点与所述换电位置的距离不超过60mm,所述第二极限定位点与所述交换位置的距离不超过60mm。
在本技术方案中,第一极限定位点与换电位置之间、第二极限定位点与交换位置之间的间距设置得较小,以限制换电设备的移动范围,降低换电***对场地空间的要求。
本发明还提供一种换电***控制方法,所述换电***包括行走通道和换电设备,所述换电设备用于电动汽车的电池包的拆装,所述换电***控制方法,包括以下步骤:
收到电池拆卸或电池安装信号时,控制所述换电设备沿所述行走通道移动至换电位 置。
在本技术方案中,通过上述步骤,根据换电信号控制换电设备的行程,有利于提高换电设备移动至指定位置的准确性。
较佳地,所述换电位置设有对位原点,所述换电设备设有对位传感器,或所述换电位置设有对位传感器,所述换电设备设有对位原点;
收到电池拆卸或电池安装信号时,控制所述换电设备沿所述行走通道移动至换电位置,包括以下步骤:
当所述对位传感器检测到所述对位原点时,控制所述换电设备停止移动。
在本技术方案中,通过上述步骤,利用对位传感器和对位原点实现换电设备精准地停在换电位置。
较佳地,所述行走通道上具有交换位置;
收到电池拆卸或电池安装信号时,控制所述换电设备沿所述行走通道移动至换电位置,包括以下步骤:
收到电池交换信号时,控制所述换电设备沿所述行走通道移动至电池交换位置。
在本技术方案中,通过上述步骤,可以使得换电设备停在交换位置,并在交换位置将拆卸下来的电池包放置在电池仓内,并将充好电的电池包从电池仓中取出,实现电池包的交换。
较佳地,收到电池拆卸或电池安装信号时,控制所述换电设备沿所述行走通道移动至换电位置,之后,还包括以下步骤:
控制所述换电设备从所述电动汽车上卸载电池包;
控制所述换电设备从所述换电位置移动到所述交换位置。
在本技术方案中,通过上述步骤,换电设备可以完成将电池包从电动汽车拆下,并将电池包运输到交换位置。
较佳地,所述交换位置处设有交换原点,所述换电设备上设有交换传感器,或所述交换位置处设有交换传感器,所述换电设备上设有交换原点;
控制所述换电设备从换电位置移动到交换位置,包括以下步骤:
当所述交换传感器检测到所述交换原点时,控制所述换电设备停止移动。
在本技术方案中,通过上述步骤,可以利用交换传感器和交换原点将换电设备精确地移动到交换位置,确保换电设备能够将电池包运输到电池仓中。
较佳地,所述行走通道连接所述电池仓和所述换电位置,所述行走通道上设置有减速定位点;
控制所述换电设备沿所述行走通道移动至换电位置,还包括以下步骤:
在所述换电设备沿所述行走通道朝向所述换电位置移动的过程中,判断所述换电设备是否到达所述减速定位点,若是则所述换电设备减速移动,直至到达所述换电位置后停止。
在本技术方案中,通过上述步骤,可以使得换电设备快速移动,并能够准确定位。
较佳地,控制所述换电设备沿所述行走通道移动至换电位置,还包括以下步骤:
S1、预存所述行走通道的总距离、以及所述电池仓到所述减速定位点的第一距离;
S2、控制所述换电设备以第一速度行走所述第一距离;
S3、控制所述换电设备以第二速度行走第二距离,所述第二距离小于所述行走通道的总距离与所述第一距离之差,所述第一速度大于所述第二速度;
S4、判断所述换电设备是否到达所述换电位置;若是,则执行S5;若否则执行S3;
S5、控制所述换电设备停止行走。
在本技术方案中,通过上述步骤,可以控制换电设备逐步接近换电位置。
较佳地,所述行走通道具有第一等待位置,所述第一等待位置位于所述换电位置和所述交换位置之间;
所述换电***控制方法还包括:
收到第一等待信号时,控制所述换电设备沿所述行走通道移动至所述第一等待位置。
在本技术方案中,通过上述步骤,利用第一等待位置,可以在换电***工作时协调换电设备的运动路线,防止换电设备发生干涉和碰撞。
较佳地,所述行走通道具有第二等待位置,所述换电位置位于第二等待位置和所述交换位置之间;
所述换电***控制方法还包括:
收到第二等待信号时,控制所述换电设备沿所述行走通道移动至所述第二等待位置。
在本技术方案中,通过上述步骤,利用第二等待位置,可以在换电***工作时协调换电设备的运动路线,防止换电设备发生干涉和碰撞。
较佳地,所述换电设备的数量为两个,两个所述换电设备为第一换电设备和第二换电设备,所述行走通道内布设有供所述第一换电设备行走的第一轨道和供所述第二换电设备行走的第二轨道;
所述换电***控制方法还包括:
收到拆卸信号时,控制所述第一换电设备沿所述第一轨道移动至所述换电位置进行电池包的拆卸,控制所述第二换电设备沿所述第二轨道移动至所述交换位置获取相应型号的电池包。
在本技术方案中,通过上述步骤,可以控制两个换电设备在换电***内工作,提高换电效率。
较佳地,所述第一轨道和所述第二轨道为不同的两个轨道,
或,所述第一轨道和所述第二轨道为同一轨道。
在本技术方案中,若第一轨道和第二轨道相互独立,则两个换电设备可以独立地移动,运行效率较高;若第一轨道和第二轨道为同一轨道,两个换电设备复用同一轨道,可以降低换电***的成本。
较佳地,所述换电***控制方法还包括:
收到交换信号时,控制所述第一换电设备行驶到所述交换位置。
在本技术方案中,通过上述步骤,可以控制第一换电设备行驶到交换位置,使得第一换电设备进入电池仓内。
较佳地,所述行走通道具有等待位置,所述换电位置位于所述等待位置和所述交换位置之间;
所述换电***控制方法还包括:
当所述第二换电设备完成安装电池包,控制所述第一换电设备和/或第二换电设备行 驶到等待位置。
在本技术方案中,通过上述步骤,可以控制第二换电设备行驶到等待位置。
较佳地,所述换电***控制方法还包括以下步骤:
在所述第一换电设备驶离所述换电位置之前,控制所述第二换电设备从所述电池仓取下与所述电动汽车适配的电池包,然后等待所述第一换电设备驶离所述换电位置。
在本技术方案中,通过上述步骤,可以避免第二换电设备与第一换电设备干涉。
较佳地,所述第二轨道设有等待定位点,所述第二换电设备设有用于检测所述等待定位点的等待定位传感器,或所述第二换电设备设有等待定位点,所述第二轨道设有用于检测所述等待定位点的等待定位传感器;
在所述第一换电设备驶离所述换电位置之前,控制所述第二换电设备从所述电池仓取下与所述电动汽车适配的电池包,然后等待所述第一换电设备驶离所述换电位置,包括以下步骤:
在所述第一换电设备驶离所述换电位置之前,所述第二换电设备停在所述等待定位点。
在本技术方案中,通过上述步骤,可以使得第二换电设备利用等待定位点等待第一换电设备驶离换电位置。
较佳地,所述行走通道设有极限位置,所述换电***控制方法还包括:
控制所述换电设备在所述行走通道的极限位置停止。
在本技术方案中,通过上述步骤,可以防止换电设备驶离工作区域、造成危险。
较佳地,所述极限位置包括第一极限位置,所述第一极限位置沿所述换电设备行走方向设于所述换电位置的另一侧,所述第一极限位置设有第一极限定位点,所述换电设备上设有第一极限传感器,或所述第一极限位置设有第一极限传感器,所述换电设备上设有第一极限定位点;
控制所述换电设备在所述行走通道的极限位置停止,包括:
所述第一极限传感器检测到第一极限定位点时,控制所述换电设备停止移动。
在本技术方案中,通过上述步骤,可以使得第一极限位置能够防止换电设备从换电 位置的一侧驶出工作区域,并利用第一极限定位点和第一极限传感器相配合实现上述目的。
较佳地,所述行走通道上具有交换位置,所述极限位置还包括第二极限位置,当所述换电设备沿所述行走通道移动至所述交换位置时,所述第二极限位置沿所述换电设备行走方向设于交换位置的另一侧,所述第二极限位置设有第二极限定位点,所述换电设备上设有第二极限传感器,或所述第二极限位置设有第二极限传感器,所述换电设备上设有第二极限定位点;
控制所述换电设备在所述行走通道的极限位置停止,包括:
所述第二极限传感器检测到第二极限定位点时,控制所述换电设备停止移动。
在本技术方案中,通过上述步骤,可以使得第二极限位置能够防止换电设备从换电位置的二侧驶出工作区域,并利用第二极限定位点和第二极限传感器相配合实现上述目的。
本发明的积极进步效果在于:本发明的换电***和换电***控制方法能够实现快速换电操作,提高换电效率和换电操作的稳定性。
附图说明
图1为本发明实施例1的换电***的结构示意图。
图2为本发明实施例3的换电***控制方法的步骤示意图。
图3为本发明实施例5的换电***控制方法的步骤示意图。
附图标记说明
换电设备 1
第一换电设备 11
第二换电设备 12
行走通道 2
第一轨道 21
第二轨道 22
电动汽车 3
换电位置 4
电池仓 5
交换位置 6
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在的实施例范围之中。
实施例1
如图1所示,本发明提供一种换电***,换电***包括行走通道2和换电设备1,其中,行走通道2上设有换电位置4,在进行电池的拆卸或安装时,换电设备1沿行走通道2移动至换电位置4。通过控制换电设备1在行走通道2中移动,使换电设备1能够对准电动汽车3,完成电池包的拆卸或安装,提高换电***运行稳定性。
换电位置4设有对位原点,换电设备1上设有对位传感器,对位传感器用于检测换电设备1是否到达对位原点。利用对位传感器检测对位原点的位置,当对位传感器检测到对位原点时,说明换电设备1已到达换电位置4,使得换电设备1能够准确地停在换电位置4。在其他的优选实施例中,对位原点、对位传感器的设置位置也可以互换,即对位原点可以设于换电设备1上,对位传感器可以设于换电位置,也能够实现上述效果。
行走通道2上具有交换位置6,换电设备1用于沿行走通道2移动至交换位置6,换电设备1还用于在交换位置6将电池包交换至电池仓5。换电设备可以将电池交给电池转运装置,再由电池转运装置将电池放入电池仓5,电池仓5可以用于存储电池包,也可以用于对电池包充电。换电设备1可以停在交换位置6,并在交换位置6将拆卸下来的电池包放置在电池仓5内,并将充好电的电池包从电池仓5中取出,实现电池包的交换。
交换位置6设有交换原点,换电设备1上设有交换传感器,交换传感器用于检测换电设备1是否到达交换原点。通过利用交换传感器检测交换原点,使得换电设备1能够 准确地定位在交换位置6,保证交换电池包的操作能够稳定运行。
行走通道2连接电池仓5和换电位置4,行走通道2上设置有减速定位点,换电设备1上设有与减速定位点相对应的减速传感器,减速传感器用于检测换电设备1是否到达减速定位点,换电设备1沿行走通道2朝向换电位置移动经过减速定位点后减速移动。换电设备1在电池仓5和换电位置4之间移动,换电设备1到达减速定位点之前快速移动,以提高运行效率;换电设备1通过减速定位点后减速移动,以保证换电设备能准确停靠至换电位置,降低控制难度,并提高换电设备1的运行安全性。
行走通道2具有第一等待位置,第一等待位置位于换电位置4和交换位置6之间,换电设备1用于停在第一等待位置。在电动汽车停靠到位之前,换电设备1可以预先停留在第一等待位置,待电动汽车停靠到位后,换电设备1可以自第一等待位置进入换电位置4进行电池的拆装,若一个换电***中可以同时存在多个换电设备1,当换电位置4处有换电设备1进行电池的拆装时,其他换电设备1可以停在第一等待位置。通过设置第一等待位置,可以减少换电设备1进入车底进行电池拆装时的水平移动所需时间,提高换电效率。
进一步地,行走通道2还具有第二等待位置,换电位置4位于第二等待位置和交换位置6之间,换电设备1用于停在第二等待位置。当换电设备1沿行走通道2移动至换电位置4进行拆装电池的动作后,沿着原先的行走方向继续向前移动至第二等待位置,以便执行下一步换电动作。如在拆卸完电池后,可等待另一换电设备沿相同的行走通道移动至换电位置执行装电池动作,或者在装完电池后,移动至第二等待位置,等待电动汽车离开。
在本实施例中,换电设备1的数量为两个,两个换电设备1为第一换电设备11和第二换电设备12,行走通道2内布设有供第一换电设备11行走的第一轨道21和供第二换电设备12行走的第二轨道22。两个换电设备1分别进行拆卸电池包和安装电池包的操作,从而提高换电速度。例如,第一换电设备11在换电位置4拆卸电池包时,第二换电设备12可以从电池仓5内取出充好电的电池包,当第一换电设备11完成电池包拆卸并离开换电位置4后,第二换电设备12可以携电池包移动到换电位置4并将电池包安装到 电动车上,此时第一换电设备11可以在电池仓5内完成新旧电池的交换,两个换电设备1可以各自分别在第一轨道21和第二轨道22运行,换电效率较高。
在本实施例中,如图1所示,第一轨道21和第二轨道22相互独立,第一轨道21连接换电位置4和电池仓5,而第二轨道22则连接换电位置4和另一电池仓5,两个换电设备1可以独立地移动,运行效率较高。在其他的某些实施例中,第一轨道21和第二轨道22也可以为同一轨道,两个换电设备1复用同一轨道,可以降低换电***的成本。
第二轨道22设有等待定位点,相应地,第二换电设备12设有用于检测所述等待定位点的等待定位传感器,第二换电设备12用于在换电位置4停有第一换电设备11时停止在等待定位点。当第一换电设备11在换电位置4时,第二换电设备12可以在等待定位点等待,这样,既不会造成两个换电设备1都在换电位置4发生干涉的后果,也不会因第二换电设备12停在交换位置6影响其他在电池仓5内的换电设备1。在其他的某些实施例中,等待定位点也可以设置在行走通道2的其他位置处,不限于在轨道上。在某些优选的实施例中,也可以将等待定位点设置在第二换电设备12上,将等待定位传感器设置在行走通道2上,这样也能够实现上述效果。
行走通道2具有等待位置,换电位置4位于等待位置和交换位置6之间,换电设备1用于停在等待位置。当第二换电设备12完成安装电池包,控制第一换电设备11和/或第二换电设备12行驶到等待位置。
行走通道2设置有极限位置,换电设备1还用于沿行走通道2移动至极限位置时停止移动。通过设置极限位置对换电设备1进行限位,防止换电设备1驶出工作区域,为换电设备1提供了工作区域边界,避免换电设备1失控脱逃而产生的危险。
在本实施例中,极限位置设置有极限定位点,换电设备1上设有与极限定位点相对应的极限传感器,极限传感器用于检测换电设备1是否到达极限定位点。当极限传感器检测到极限定位点时,换电设备1停止移动,防止换电设备1超越极限位置而造成危险。在其他的某些实施例中,极限定位点也可以设置在换电设备1上,相应地,极限传感器设置在极限位置处,这样也能够实现上述效果。
极限位置包括第一极限位置,第一极限位置沿换电设备1行走方向设于换电位置4 的另一侧,第一极限位置设有第一极限定位点,换电设备1上设有第一极限传感器。第一极限位置用于防止换电设备1从换电位置4的一侧驶出工作区域,并利用第一极限定位点和第一极限传感器相配合实现上述目的。在其他的优选实施例中,第一极限定位点和第一极限传感器的位置可以互换。
极限位置还包括第二极限位置,第二极限位置沿换电设备1行走方向设于交换位置6的另一侧,第二极限位置设有第二极限定位点,换电设备1上设有第二极限传感器。第二极限位置用于防止换电设备1从交换位置6的一侧驶出工作区域,并利用第二极限定位点和第二极限传感器相配合实现上述目的。在其他的优选实施例中,第二极限定位点和第二极限传感器的位置可以互换。
第一极限定位点与换电位置4的距离不超过60mm,第二极限定位点与交换位置6的距离不超过60mm。第一极限定位点与换电位置4之间、第二极限定位点与交换位置6之间的间距设置得较小,以限制换电设备1的移动范围,降低换电***对场地空间的要求。
实施例2
本发明还提供一种换电***控制方法,换电***包括行走通道2和换电设备1,换电设备1用于电动汽车3的电池包的拆装,换电***控制方法,包括以下步骤:
S10、收到电池拆卸或电池安装信号时,控制换电设备1沿行走通道2移动至换电位置4。
当换电设备收到电池拆卸或电池安装信号时,换电设备的控制器控制换电设备1沿行走通道2移动至换电位置,通过上述步骤,能够实现换电设备1的水平移动的精准控制,从而提高换电***运行的稳定性。
在本实施例中,换电位置4设有对位原点,换电设备1设有对位传感器。在其他的实施例中,也可以将对位传感器设置在换电位置4,将对位原点设置在换电设备1上。
S10包括以下步骤:
S101、当对位传感器检测到对位原点时,控制换电设备1停止移动。
通过上述步骤,利用对位传感器和对位原点实现换电设备1精准地停在换电位置4。
行走通道2上还具有交换位置6。
换电***控制方法还包括以下步骤:
S20、收到电池交换信号时,控制换电设备1沿行走通道2移动至电池交换位置6。
当换电设备收到电池交换信号时,换电设备的控制器控制换电设备1沿行走通道2移动至电池交换位置6,通过上述步骤,可以使得换电设备1停在交换位置6,并在交换位置6将拆卸下来的电池包放置在电池仓5内,并将充好电的电池包从电池仓5中取出,实现电池包的交换。
实施例3
本实施例的换电***控制方法,如图2所示,在实施例2的基础上再增加以下步骤。
S10之后,还包括以下步骤:
S1001、控制换电设备1从电动汽车3上卸载电池包;
S1002、控制换电设备1从换电位置4移动到交换位置6。
通过上述步骤,换电设备1可以完成将电池包从电动汽车3拆下,并将电池包运输到交换位置6。
在本实施例中,交换位置6处设有交换原点,换电设备1上设有交换传感器;在其他的实施例中,也可以将交换原点和交换传感器的位置对调。
S1002包括以下步骤:
S10021、当交换传感器检测到交换原点时,控制换电设备1停止移动。
通过上述步骤,可以利用交换传感器和交换原点将换电设备1精确地移动到交换位置6,确保换电设备1能够将电池包运输到电池仓5中。
实施例4
本实施例的换电***控制方法,在实施例3的基础上再增加以下步骤。
行走通道2连接电池仓5和换电位置4,行走通道2上设置有减速定位点。
S10还包括以下步骤:
S10010、在换电设备1沿行走通道2朝向换电位置4移动的过程中,判断换电设备1是否到达减速定位点,若是则换电设备1减速移动,直至到达换电位置4后停止。
通过上述步骤,可以使得换电设备1快速移动,并能够准确定位。
实施例5
本实施例的换电***控制方法,如图3所示,在实施例4的基础上再增加以下步骤。
S10010还包括以下步骤:
S1、预存行走通道2的总距离、以及电池仓5到减速定位点的第一距离;
S2、控制换电设备1以第一速度行走第一距离;
S3、控制换电设备1以第二速度行走第二距离,第二距离小于行走通道2的总距离与第一距离之差,第一速度大于第二速度;
S4、判断换电设备1是否到达换电位置4;若是,则执行S5;若否则执行S3;
S5、控制换电设备1停止行走。
通过上述步骤,可以控制换电设备1逐步接近换电位置4,以保证换电设备能准确停靠至换电位置。
实施例6
本实施例的换电***控制方法,在实施例2的基础上再增加以下步骤。
行走通道2具有第一等待位置,第一等待位置位于换电位置4和交换位置6之间。
换电***控制方法还包括:
S1010、收到第一等待信号时,控制换电设备1沿行走通道2移动至第一等待位置。
当换电设备1收到第一等待信号是,换电设备1的控制器控制换电设备1沿行走通道2移动至第一等待位置,通过上述步骤,在电动汽车停靠到位之前,换电设备1可以预先停留在第一等待位置,待电动汽车停靠到位后,换电设备1可以自第一等待位置进入换电位置4进行电池的拆装,若一个换电***中可以同时存在多个换电设备1,当换电位置4处有换电设备1进行电池的拆装时,其他换电设备1可以停在第一等待位置。通过设置第一等待位置,可以减少换电设备1进入车底进行电池拆装时的水平移动所需时间,提高换电效率。
行走通道2还具有第二等待位置,换电位置4位于第二等待位置和交换位置6之间。
换电***控制方法还包括:
S1020、收到第二等待信号时,控制换电设备1沿行走通道2移动至第二等待位置。
当换电设备1收到第二等待信号是,换电设备1的控制器控制换电设备1沿行走通道2移动至第二等待位置,通过上述步骤,换电设备1能够停在第二等待位置。当换电设备1沿行走通道2移动至换电位置4进行拆装电池的动作后,沿着原先的行走方向继续向前移动至第二等待位置,以便执行下一步换电动作。如在拆卸完电池后,可等待另一换电设备沿相同的行走通道移动至换电位置执行装电池动作,或者在装完电池后,移动至第二等待位置,等待电动汽车离开。
实施例7
本实施例的换电***控制方法,在实施例2的基础上再增加以下步骤。
换电设备1的数量为两个,两个换电设备1为第一换电设备11和第二换电设备12,行走通道2内布设有供第一换电设备11行走的第一轨道21和供第二换电设备12行走的第二轨道22。
换电***控制方法还包括:
收到拆卸信号时,控制第一换电设备11沿第一轨道21移动至换电位置4进行电池包的拆卸,控制第二换电设备12沿第二轨道22移动至交换位置6获取相应型号的电池包。
当第一换电设备11和第二换电设备12收到拆卸信号时,控制第一换电设备11沿第一轨道21移动至换电位置4进行电池包的拆卸,控制第二换电设备12沿第二轨道22移动至交换位置6获取相应型号的电池包。通过上述步骤,可以控制两个换电设备1在换电***内工作,提高换电效率。
第一轨道21和第二轨道22可以为不同的两个轨道,第一轨道21连接换电位置4和电池仓5,而第二轨道22则连接换电位置4和另一电池仓5,两个换电设备1可以独立地移动,运行效率较高。在其他的某些实施例中,第一轨道21和第二轨道22也可以为同一轨道,两个换电设备1复用同一轨道,可以降低换电***的成本。
实施例8
本实施例的换电***控制方法,在实施例7的基础上再增加以下步骤。
换电***控制方法还包括:
收到交换信号时,控制第一换电设备11行驶到交换位置6。
当第一换电设备11收到交换信号时,控制第一换电设备11行驶到交换位置6。,通过上述步骤,可以控制第一换电设备11行驶到交换位置6,使得第一换电设备11进入电池仓5内。
行走通道2具有等待位置,换电位置4位于等待位置和交换位置6之间;
换电***控制方法还包括:
S100100、当第二换电设备12完成安装电池包,控制第一换电设备11和/或第二换电设备12行驶到等待位置。
通过上述步骤,可以控制第二换电设备12行驶到等待位置。
换电***控制方法还包括以下步骤:
S100101、在第一换电设备11驶离换电位置4之前,控制第二换电设备12从电池仓5取下与电动汽车3适配的电池包,然后等待第一换电设备11驶离换电位置4。
通过上述步骤,可以避免第二换电设备12与第一换电设备11干涉。
第二轨道22设有等待定位点,相应地,第二换电设备12设有用于检测所述等待定位点的等待定位传感器。在其他的某些实施例中,等待定位点也可以设置在行走通道2的其他位置处,不限于在轨道上。在某些优选的实施例中,也可以将等待定位点设置在第二换电设备12上,将等待定位传感器设置在行走通道2上。
S100101包括以下步骤:
S1001011、在第一换电设备11驶离换电位置4之前,第二换电设备12停在等待定位点。
通过上述步骤,可以使得第二换电设备12利用等待定位点等待第一换电设备11驶离换电位置4。
实施例9
本实施例的换电***控制方法,在实施例2的基础上再增加以下步骤。
行走通道2设有极限位置,换电***控制方法还包括:
S11、控制换电设备1在行走通道2的极限位置停止。
通过上述步骤,可以防止换电设备1驶离工作区域、造成危险。
较佳地,极限位置包括第一极限位置,第一极限位置沿换电设备1行走方向设于换电位置4的另一侧,第一极限位置设有第一极限定位点,换电设备1上设有第一极限传感器。在其他的优选实施例中,第一极限定位点和第一极限传感器的位置可以互换。
控制换电设备1在行走通道2的极限位置停止,包括:
S111、第一极限传感器检测到第一极限定位点时,控制换电设备1停止移动。
通过上述步骤,可以使得第一极限位置能够防止换电设备1从换电位置4的一侧驶出工作区域,并利用第一极限定位点和第一极限传感器相配合实现上述目的。
极限位置还包括第二极限位置,第二极限位置沿换电设备1行走方向设于交换位置6的另一侧,第二极限位置设有第二极限定位点,换电设备1上设有第二极限传感器。在其他的优选实施例中,第二极限定位点和第二极限传感器的位置可以互换。
S11还包括:
S112、第二极限传感器检测到第二极限定位点时,控制换电设备1停止移动。
通过设置第一极限定位点和第一极限传感器,防止因对位原点的失效而导致换电设备不能在行走通道上及时停止,引发安全隐患。通过设置第二极限定位点和第二极限传感器,防止因交换原点失效而导致换电设备与电池仓内的其它设备发生碰撞。。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (20)

  1. 一种换电***,其特征在于,所述换电***包括:
    行走通道,所述行走通道上设有换电位置;
    换电设备,所述换电设备用于沿所述行走通道移动至所述换电位置。
  2. 如权利要求1所述的换电***,其特征在于,所述换电位置设有对位原点,所述换电设备上设有对位传感器,或所述换电位置设有对位传感器,所述换电设备设有对位原点,所述对位传感器用于检测所述换电设备是否到达所述对位原点。
  3. 如权利要求1或2所述的换电***,其特征在于,所述行走通道上具有交换位置,所述换电设备用于沿所述行走通道移动至所述交换位置,所述换电设备还用于在所述交换位置将电池包交换至电池仓。
  4. 如权利要求3所述的换电***,其特征在于,所述交换位置设有交换原点,所述换电设备上设有交换传感器,或所述交换位置处设有交换传感器,所述换电设备上设有交换原点,所述交换传感器用于检测所述换电设备是否到达所述交换原点。
  5. 如权利要求3或4所述的换电***,其特征在于,所述行走通道连接所述电池仓和所述换电位置,所述行走通道上设置有减速定位点,所述换电设备上设有与所述减速定位点相对应的减速传感器,所述减速传感器用于检测所述换电设备是否到达所述减速定位点,所述换电设备还用于沿所述行走通道朝向所述换电位置移动经过所述减速定位点后减速移动。
  6. 如权利要求3-5中至少一项所述的换电***,其特征在于,所述行走通道具有第一等待位置,所述第一等待位置位于所述换电位置和所述交换位置之间,所述换电设备用于停在所述第一等待位置;
    和/或,所述行走通道具有第二等待位置,所述换电位置位于所述第二等待位置和所述交换位置之间,所述换电设备用于停在所述第二等待位置。
  7. 如权利要求3-6中至少一项所述的换电***,其特征在于,所述换电设备的数量为两个,两个所述换电设备为第一换电设备和第二换电设备,所述行走通道内布设有供所 述第一换电设备行走的第一轨道和供所述第二换电设备行走的第二轨道,所述第一轨道连接所述电池仓和所述换电位置,所述第二轨道连接所述电池仓和所述换电位置;
    优选地,所述第一轨道和所述第二轨道相互独立,或,所述第一轨道和所述第二轨道为同一轨道。
  8. 如权利要求7所述的换电***,其特征在于,所述第二轨道设有等待定位点,所述第二换电设备用于在所述换电位置停有所述第一换电设备时停止在所述等待定位点。
  9. 如权利要求3-8中至少一项所述的换电***,其特征在于,所述行走通道具有等待位置,所述换电位置位于所述等待位置和所述交换位置之间,所述换电设备用于停在所述等待位置。
  10. 如权利要求1-9中至少一项所述的换电***,其特征在于,所述行走通道设置有极限位置,所述换电设备还用于沿所述行走通道移动至所述极限位置时停止移动;优选地,所述极限位置设置有极限定位点,所述换电设备上设有与所述极限定位点相对应的极限传感器,所述极限传感器用于检测所述换电设备是否到达所述极限定位点;
    优选地,所述极限位置包括第一极限位置,所述第一极限位置沿所述换电设备行走方向设于所述换电位置的另一侧,所述第一极限位置设有第一极限定位点,所述换电设备上设有第一极限传感器;
    优选地,所述行走通道上具有交换位置,所述换电设备用于沿所述行走通道移动至所述交换位置,所述极限位置还包括第二极限位置,所述第二极限位置沿所述换电设备行走方向设于交换位置的另一侧,所述第二极限位置设有第二极限定位点,所述换电设备上设有第二极限传感器。
  11. 一种换电***控制方法,所述换电***包括行走通道和换电设备,所述换电设备用于电动汽车的电池包的拆装,其特征在于,所述换电***控制方法,包括以下步骤:
    收到电池拆卸或电池安装信号时,控制所述换电设备沿所述行走通道移动至换电位置。
  12. 如权利要求11所述的换电***控制方法,其特征在于,所述换电位置设有对位原点,所述换电设备设有对位传感器,或所述换电位置设有对位传感器,所述换电设备设 有对位原点;
    收到电池拆卸或电池安装信号时,控制所述换电设备沿所述行走通道移动至换电位置,包括以下步骤:
    当所述对位传感器检测到所述对位原点时,控制所述换电设备停止移动。
  13. 如权利要求11或12所述的换电***控制方法,其特征在于,所述行走通道上具有交换位置;
    换电***控制方法还包括以下步骤:
    收到电池交换信号时,控制所述换电设备沿所述行走通道移动至电池交换位置。
  14. 如权利要求13所述的换电***控制方法,其特征在于,
    收到电池拆卸或电池安装信号时,控制所述换电设备沿所述行走通道移动至换电位置,之后,还包括以下步骤:
    控制所述换电设备从所述电动汽车上卸载电池包;
    控制所述换电设备从所述换电位置移动到所述交换位置;
    优选地,所述交换位置处设有交换原点,所述换电设备上设有交换传感器,或所述交换位置处设有交换传感器,所述换电设备上设有交换原点;
    控制所述换电设备从换电位置移动到交换位置,包括以下步骤:
    当所述交换传感器检测到所述交换原点时,控制所述换电设备停止移动。
  15. 如权利要求14所述的换电***控制方法,其特征在于,
    所述行走通道连接电池仓和所述换电位置,所述行走通道上设置有减速定位点;
    控制所述换电设备沿所述行走通道移动至换电位置,还包括以下步骤:
    在所述换电设备沿所述行走通道朝向所述换电位置移动的过程中,判断所述换电设备是否到达所述减速定位点,若是则所述换电设备减速移动,直至到达所述换电位置后停止;
    优选地,控制所述换电设备沿所述行走通道移动至换电位置,还包括以下步骤:
    S1、预存所述行走通道的总距离、以及所述电池仓到所述减速定位点的第一距离;
    S2、控制所述换电设备以第一速度行走所述第一距离;
    S3、控制所述换电设备以第二速度行走第二距离,所述第二距离小于所述行走通道的总距离与所述第一距离之差,所述第一速度大于所述第二速度;
    S4、判断所述换电设备是否到达所述换电位置;若是,则执行S5;若否则执行S3;
    S5、控制所述换电设备停止行走。
  16. 如权利要求13-15中至少一项所述的换电***控制方法,其特征在于,所述行走通道具有第一等待位置,所述第一等待位置位于所述换电位置和所述交换位置之间;
    所述换电***控制方法还包括:
    收到第一等待信号时,控制所述换电设备沿所述行走通道移动至所述第一等待位置;
    和/或,所述行走通道具有第二等待位置,所述换电位置位于第二等待位置和所述交换位置之间;
    所述换电***控制方法还包括:
    收到第二等待信号时,控制所述换电设备沿所述行走通道移动至所述第二等待位置。
  17. 如权利要求13-16中至少一项所述的换电***控制方法,其特征在于,所述换电设备的数量为两个,两个所述换电设备为第一换电设备和第二换电设备,所述行走通道内布设有供所述第一换电设备行走的第一轨道和供所述第二换电设备行走的第二轨道;
    所述换电***控制方法还包括:
    收到拆卸信号时,控制所述第一换电设备沿所述第一轨道移动至所述换电位置进行电池包的拆卸,控制所述第二换电设备沿所述第二轨道移动至所述交换位置获取相应型号的电池包;
    优选地,所述第一轨道和所述第二轨道为不同的两个轨道,
    或,所述第一轨道和所述第二轨道为同一轨道。
  18. 如权利要求17所述的换电***控制方法,其特征在于,
    所述换电***控制方法还包括:
    收到交换信号时,控制所述第一换电设备行驶到所述交换位置;
    和/或,所述行走通道具有等待位置,所述换电位置位于所述等待位置和所述交换位置之间;
    所述换电***控制方法还包括:
    当所述第二换电设备完成安装电池包,控制所述第一换电设备和/或第二换电设备行驶到等待位置。
  19. 如权利要求17所述的换电***控制方法,其特征在于,
    所述换电***控制方法还包括以下步骤:
    在所述第一换电设备驶离所述换电位置之前,控制所述第二换电设备从所述电池仓取下与所述电动汽车适配的电池包,然后等待所述第一换电设备驶离所述换电位置;
    优选地,所述第二轨道设有等待定位点,所述第二换电设备设有用于检测所述等待定位点的等待定位传感器,或所述第二换电设备设有等待定位点,所述第二轨道设有用于检测所述等待定位点的等待定位传感器;
    在所述第一换电设备驶离所述换电位置之前,控制所述第二换电设备从所述电池仓取下与所述电动汽车适配的电池包,然后等待所述第一换电设备驶离所述换电位置,包括以下步骤:
    在所述第一换电设备驶离所述换电位置之前,控制所述第二换电设备停在所述等待定位点。
  20. 如权利要求12-19中至少一项所述的换电***控制方法,其特征在于,所述行走通道设有极限位置,所述换电***控制方法还包括:
    控制所述换电设备在所述行走通道的极限位置停止;
    优选地,所述极限位置包括第一极限位置,所述第一极限位置沿所述换电设备行走方向设于所述换电位置的另一侧,所述第一极限位置设有第一极限定位点,所述换电设备上设有第一极限传感器,或所述第一极限位置设有第一极限传感器,所述换电设备上设有第一极限定位点;
    控制所述换电设备在所述行走通道的极限位置停止,包括:
    所述第一极限传感器检测到第一极限定位点时,控制所述换电设备停止移动;
    优选地,所述行走通道上具有交换位置,所述极限位置还包括第二极限位置,当所述换电设备沿所述行走通道移动至所述交换位置时,所述第二极限位置沿所述换电设备 行走方向设于交换位置的另一侧,所述第二极限位置设有第二极限定位点,所述换电设备上设有第二极限传感器,或所述第二极限位置设有第二极限传感器,所述换电设备上设有第二极限定位点;
    控制所述换电设备在所述行走通道的极限位置停止,包括:
    所述第二极限传感器检测到第二极限定位点时,控制所述换电设备停止移动。
PCT/CN2021/073658 2020-01-23 2021-01-25 换电***及换电***控制方法 WO2021148033A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022544828A JP2023511580A (ja) 2020-01-23 2021-01-25 電池交換システム及び電池交換システム制御方法
US17/794,675 US20230065026A1 (en) 2020-01-23 2021-01-25 Battery replacement system and control method for battery replacement system
DE112021000682.7T DE112021000682T5 (de) 2020-01-23 2021-01-25 Batteriewechselsystem und Steuerungsverfahren des Batteriewechselsystemes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010076984.7 2020-01-23
CN202010076984.7A CN111231748A (zh) 2020-01-23 2020-01-23 换电***及换电***控制方法

Publications (1)

Publication Number Publication Date
WO2021148033A1 true WO2021148033A1 (zh) 2021-07-29

Family

ID=70876835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073658 WO2021148033A1 (zh) 2020-01-23 2021-01-25 换电***及换电***控制方法

Country Status (5)

Country Link
US (1) US20230065026A1 (zh)
JP (1) JP2023511580A (zh)
CN (1) CN111231748A (zh)
DE (1) DE112021000682T5 (zh)
WO (1) WO2021148033A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111231748A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电***及换电***控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201907491U (zh) * 2011-01-11 2011-07-27 山东电力研究院 快速换电池机器人
CN102632871A (zh) * 2012-04-26 2012-08-15 亿源动力(北京)科技有限公司 电动轿车电池快速更换***
US20160318415A1 (en) * 2015-04-29 2016-11-03 General Electric Company Apparatus and method for automated positioning of a vehicle
CN107097762A (zh) * 2017-05-15 2017-08-29 上海蔚来汽车有限公司 轨道导引型换电机器人、充换电站及换电方法
CN108001263A (zh) * 2017-11-23 2018-05-08 臻昊(北京)新能源科技有限公司 动力电池更换***
CN109849861A (zh) * 2017-11-30 2019-06-07 上海电巴新能源科技有限公司 换电站及其控制方法
CN111231748A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电***及换电***控制方法
CN111301216A (zh) * 2020-01-23 2020-06-19 奥动新能源汽车科技有限公司 换电控制方法及***、电子设备及存储介质
CN111452666A (zh) * 2020-05-25 2020-07-28 奥动新能源汽车科技有限公司 换电站及其换电方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009035253A1 (de) * 2009-07-29 2011-02-03 Dürr Systems GmbH Batteriewechsel-Station für Fahrzeuge
CN102152776B (zh) * 2011-03-07 2013-10-09 国电南瑞科技股份有限公司 电动汽车电池更换站的电池更换***及其更换方法
CN202274741U (zh) * 2011-09-10 2012-06-13 鞍钢股份有限公司 一种梭式布料车极限装置
CN102886393B (zh) * 2012-09-29 2014-12-03 鞍钢股份有限公司 一种钢卷小车快速精确定位的控制方法
CN103264684B (zh) * 2013-05-16 2016-01-20 重庆长安汽车股份有限公司 电动汽车的电池拆装机构及电动汽车的电池拆装方法
CN103838260B (zh) * 2014-03-26 2017-07-11 山信软件股份有限公司 一种异步电动机驱动设备定位控制装置及方法
CN206254982U (zh) * 2016-11-17 2017-06-16 蔚来汽车有限公司 穿梭车定位机构
CN107516143A (zh) * 2017-07-24 2017-12-26 上海理工大学 一种基于Dijkstra算法的路径优选AGV搬运***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201907491U (zh) * 2011-01-11 2011-07-27 山东电力研究院 快速换电池机器人
CN102632871A (zh) * 2012-04-26 2012-08-15 亿源动力(北京)科技有限公司 电动轿车电池快速更换***
US20160318415A1 (en) * 2015-04-29 2016-11-03 General Electric Company Apparatus and method for automated positioning of a vehicle
CN107097762A (zh) * 2017-05-15 2017-08-29 上海蔚来汽车有限公司 轨道导引型换电机器人、充换电站及换电方法
CN108001263A (zh) * 2017-11-23 2018-05-08 臻昊(北京)新能源科技有限公司 动力电池更换***
CN109849861A (zh) * 2017-11-30 2019-06-07 上海电巴新能源科技有限公司 换电站及其控制方法
CN111231748A (zh) * 2020-01-23 2020-06-05 奥动新能源汽车科技有限公司 换电***及换电***控制方法
CN111301216A (zh) * 2020-01-23 2020-06-19 奥动新能源汽车科技有限公司 换电控制方法及***、电子设备及存储介质
CN111452666A (zh) * 2020-05-25 2020-07-28 奥动新能源汽车科技有限公司 换电站及其换电方法

Also Published As

Publication number Publication date
DE112021000682T5 (de) 2022-11-03
US20230065026A1 (en) 2023-03-02
CN111231748A (zh) 2020-06-05
JP2023511580A (ja) 2023-03-20

Similar Documents

Publication Publication Date Title
WO2023098712A1 (zh) 适用于电动车辆的底盘换电方法
TWM581072U (zh) 充換電站
CN102666185B (zh) 物品搬运装置
WO2019165722A1 (zh) 电池仓、新能源汽车换电站及电池存储转运方法
WO2019085304A1 (zh) 用于充换电站的车辆定位装置
WO2021148033A1 (zh) 换电***及换电***控制方法
WO2008105434A1 (ja) 架線レス交通システム及びその充電方法
CN210174830U (zh) 多车型电动小客车的共享智能快速换电的换电站
CN210174826U (zh) 基于多车型的共享智能快速换电的双工位换电站
CN112389917A (zh) 换电方法
CN111823936A (zh) 不同换电车型电动小客车的共享智能快速换电的换电站
CN212604638U (zh) 换电仓及包含其的换电站
CN216033884U (zh) 传输装置及换电站
CN115123152B (zh) 一种换电站内电池流转方法
JP2012171775A (ja) クレーンシステム
WO2022184143A1 (zh) 电池转运的电池定位方法及***
CN106585765B (zh) 一种铁水自动转运机器人
KR101373598B1 (ko) 전기버스, 전기버스 배터리 교환 시스템 및 그 방법
CN215204518U (zh) 用于换电站电池转运的传输到位检测***
CN111823938A (zh) 不同换电车型电动小客车的共享智能快速换电控制方法
CN216033886U (zh) 基于皮带的电池包运送装置及换电站
CN115476824A (zh) 一种重卡换电站
CN115009085A (zh) 换电控制方法及换电***
CN115009077A (zh) 换电站的换电控制方法
CN115009081A (zh) 双侧换电***及换电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544828

Country of ref document: JP

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21744030

Country of ref document: EP

Kind code of ref document: A1