WO2021147604A1 - 叶轮、混流风机以及空调器 - Google Patents

叶轮、混流风机以及空调器 Download PDF

Info

Publication number
WO2021147604A1
WO2021147604A1 PCT/CN2020/138875 CN2020138875W WO2021147604A1 WO 2021147604 A1 WO2021147604 A1 WO 2021147604A1 CN 2020138875 W CN2020138875 W CN 2020138875W WO 2021147604 A1 WO2021147604 A1 WO 2021147604A1
Authority
WO
WIPO (PCT)
Prior art keywords
intersection
line
projection
impeller according
impeller
Prior art date
Application number
PCT/CN2020/138875
Other languages
English (en)
French (fr)
Inventor
谭建明
张治平
马屈杨
池晓龙
苏玉海
张碧瑶
夏凯
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021147604A1 publication Critical patent/WO2021147604A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes

Definitions

  • the present disclosure relates to the technical field of fans, in particular to an impeller, a mixed flow fan and an air conditioner.
  • the air duct system is one of the components used in the air conditioner to accelerate the heat exchange of the air in the area of the air conditioner.
  • the designer selects and matches the appropriate fan according to the actual needs of the different models and specifications of the air conditioner to meet the working quality and comfort of the air conditioner.
  • the air path system of the air conditioner in the related art adopts a mixed flow fan.
  • the blades of the mixed flow fan are flat, so that the flow channel area between adjacent blades is small, which in turn affects the fluency of the intake air.
  • the present disclosure provides an impeller, a mixed flow fan, and an air conditioner to optimize the air inlet condition of the fan.
  • the first aspect of the present disclosure provides an impeller, including:
  • the wheel cover includes an inner cavity penetrating along the axis, and the inner cavity has an air inlet end and an air outlet end that are arranged oppositely;
  • the wheel hub is arranged in the wheel cover;
  • a plurality of blades are connected between the outer surface of the hub and the inner surface of the wheel cover.
  • the blades include a leading edge on the side of the air inlet end.
  • the contour of the leading edge is projected with The first intersection point where the projection of the hub intersects and the second intersection point where the projection of the wheel cover intersects, and the projection of the contour line of the front edge is a concave curve connecting the first intersection point and the second intersection point.
  • the direction of the concave curve is opposite to the direction of rotation of the impeller.
  • the concave curve includes a leaf-shaped line.
  • the range of the included angle between the tangent line of the concave curve at the first intersection point and the tangent line of the projection of the hub at the first intersection point is [20°, 150°].
  • the angle between the tangent of the concave curve at the first intersection and the tangent of the projection of the hub at the first intersection is 70°.
  • the range of the included angle between the tangent line of the concave curve at the second intersection point and the tangent line of the projection of the wheel cover at the second intersection point is [20°, 150°].
  • the angle between the tangent of the concave curve at the second intersection and the tangent of the projection of the wheel cover at the second intersection is 78.5°.
  • the line between the first intersection point and the second intersection point forms a chord line, and the length of the chord line ranges from [40mm, 55mm].
  • the length of the string is 48 mm.
  • the line between the first intersection point and the second intersection point forms a chord line
  • the range of the distance from the maximum bending point of the concave curve to the chord line is [2mm, 12mm].
  • the distance from the maximum bending point of the concave curve to the chord line is 2.4 mm.
  • the line between the first intersection point and the second intersection point forms a chord line
  • the distance between the projection of the largest bending point of the concave curve on the chord line and the first intersection point is 20%-85 of the chord length %.
  • the projection of the contour line of the leading edge is an oblique line
  • the distance between the oblique line and the horizontal reference line in the extending direction from the radial inner side to the radial outer side Gradually increase, the horizontal reference line is perpendicular to the axis and passes through the radially inner end point of the inclined line.
  • the range of the maximum distance between the oblique line and the lateral reference line is [0 mm, 15 mm].
  • the blade includes a blade root connected to the hub and extending along the outer surface of the hub and an outer edge opposite to the blade root.
  • the contour line of the outer edge is projected on a longitudinal projection plane passing through the axis as a variable pitch curve, In the direction from the air inlet end to the air outlet end, the angle between the tangent line of the variable inclination curve and the longitudinal reference line gradually increases, and the longitudinal reference line is parallel to the axis.
  • the outer edge is an S-shaped curve.
  • the blade includes a trailing edge opposite to the leading edge, the trailing edge is an inner concave arc, and the inner concave arc is concave toward the outside of the blade.
  • the number of blades is 6-20.
  • a second aspect of the present disclosure provides a mixed flow fan including the above-mentioned impeller.
  • a third aspect of the present disclosure provides an air conditioner, including the mixed flow fan described above.
  • the impeller includes a hub, a wheel cover, and a plurality of blades, which are connected between the outer surface of the hub and the inner surface of the wheel cover, and the blades include a leading edge on one side of the air inlet end, which is perpendicular to the axis.
  • the projection of the contour line of the front edge has a first intersection point that intersects the projection of the hub and a second intersection point that intersects the projection of the wheel cover.
  • the projection of the contour line of the front edge is to connect the first intersection point and the second intersection point. Concave curve of intersection.
  • the shape of the leading edge of the blade of the impeller of the present disclosure is roughly concave.
  • the inlet area of the flow passage between adjacent blades is increased.
  • the improvement of the air intake fluency will correspondingly reduce its air intake resistance.
  • the concave surface of the leading edge allows more airflows in different directions to enter the impeller to avoid the direct impact of the airflow on the blades, thereby reducing noise.
  • the concave surface of the leading edge can rectify the airflow in different directions, so that the speed distribution of the airflow is more uniform.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an impeller of an embodiment of the disclosure
  • Fig. 2 is a schematic cross-sectional structure diagram of the impeller shown in Fig. 1;
  • Fig. 3 is a partial enlarged schematic diagram of the impeller shown in Fig. 2;
  • FIG 4 is a schematic structural view of the impeller shown in Figure 1 with the wheel cover removed;
  • Fig. 5 is a schematic diagram of a three-dimensional structure of one of the blades in Fig. 4;
  • Fig. 6 is a schematic top view of the structure of the impeller shown in Fig. 1;
  • FIG. 7 is a schematic diagram of a partial enlarged structure of the impeller in FIG. 6;
  • Fig. 8 is a schematic diagram of the bottom structure of the impeller shown in Fig. 1;
  • FIG. 9 to 11 are schematic diagrams of the projection structure of another blade on the longitudinal projection plane in FIG. 4;
  • Figure 12 is a vector diagram of the velocity in the inlet flow channel of a mixed flow fan in the related art
  • Figure 13 is a vector diagram of the velocity in the inlet flow channel of the mixed flow fan according to the embodiment of the disclosure.
  • the impeller of the embodiment of the present disclosure includes:
  • the wheel cover 3 includes an inner cavity penetrating along the axis L, and the inner cavity has an air inlet end and an air outlet end disposed oppositely;
  • the wheel hub 1 is arranged in the wheel cover 3;
  • a plurality of blades 2 are connected between the outer surface of the hub 1 and the inner surface of the wheel cover 3, and the blades 2 include a leading edge 21 located on the side of the air inlet end.
  • the leading edge 21 On a transverse projection plane perpendicular to the axis L, the leading edge 21
  • the projection of the contour line has a first intersection E that intersects the projection of the hub 1 and a second intersection F that intersects the projection of the wheel cover 3, and the projection of the contour line of the front edge 21 is to connect the first intersection E and the second intersection F Concave curve.
  • the leading edge 21 of this embodiment has a first intersection E that intersects the hub 1 and a second intersection F that intersects the wheel cover 3.
  • the leading edge 21 It is a concave curve connecting the first intersection E and the second intersection F. That is to say, when the impeller is viewed from above, the shape of the front edge 21 of the blade 2 is roughly concave. Compared with the flat front edge, when the total air inlet area of the impeller is the same, the adjacent blades 2 The air intake area of the flow channel is increased to improve the air intake fluency; and the improvement of the air intake fluency will also reduce the air intake resistance accordingly.
  • the concave surface of the leading edge allows more airflows in different directions to enter the impeller to avoid the direct impact of the airflow on the blades, thereby reducing noise.
  • the concave surface of the leading edge can rectify the airflow in different directions, so that the speed distribution of the airflow is more uniform.
  • the transverse projection plane of the embodiment of the present disclosure is perpendicular to the axis L of the impeller.
  • the longitudinal projection plane of the embodiment of the present disclosure needs to pass through the axis L of the impeller.
  • the longitudinal projection surface refers to the longitudinal projection surface of the blade facing the direction of the axis L.
  • the longitudinal projection surface of the blade located on the front side of the hub 1 and in the middle is the longitudinal projection surface parallel to the paper surface.
  • the position of the longitudinal projection surface is different.
  • the longitudinal reference line of the embodiment of the present disclosure is located in the longitudinal projection plane and is parallel to the axis L, and the transverse reference line is perpendicular to the axis L.
  • the internal flow channel of the mixed flow fan of this embodiment has a special form, so that the airflow flows in along the impeller axis L, and then flows out obliquely.
  • the design of the concave front edge of the blade in this embodiment also facilitates the flow of air out along such an oblique flow channel after entering the interior of the impeller.
  • the impeller flow channel of this embodiment is roughly a flow channel curve M1M2, and the range of the included angle ⁇ between the tangent line of the flow channel curve M1M2 at the air inlet end and the longitudinal reference line is [0 , 30°], the range of the angle ⁇ between the tangent line at the air outlet end and the horizontal reference line is [0, 80°].
  • the angle ⁇ between the tangent line at the air inlet end and the longitudinal reference line of the flow channel curve M 1 M 2 is 10 degrees, and the angle between the tangent line at the air outlet end and the transverse reference line is 10 degrees.
  • the angle ⁇ is 40 degrees.
  • the direction of the concave curve is opposite to the direction of rotation of the impeller. This arrangement makes the airflow entering the impeller rotate under the wrapper of the blade 2, which is more conducive to rectifying the airflow and further improving the uniformity of the airflow velocity distribution.
  • the concave curve of this embodiment includes a leaf-shaped line.
  • the following equation can be used to obtain the leaf profile trajectory.
  • k is the parameter used to adjust the chord length of the concave curve
  • the value range of t is (0,1)
  • m 1 , n 1 , n 2 are used to adjust The degree of curvature of the concave curve.
  • the range of the included angle a between the tangent of the concave curve at the first intersection E and the tangent of the hub 1 at the first intersection E is [20° , 150°]
  • the included angle a is 70°
  • the range of the included angle b between the tangent of the concave curve at the second intersection F and the tangent of the wheel cover 3 at the second intersection F is [20°, 150°].
  • the included angle b is 78.5°.
  • the distance between the projection of the maximum bending point O of the concave curve on the chord line connecting the first intersection E and the second intersection F and the first intersection E is 20%-85% of the chord length.
  • the maximum bending point O here refers to the point on the concave curve with the largest distance from the chord line.
  • the range of the distance c between the maximum bending line O and the chord line is [2mm, 12mm]. In some embodiments, the distance c between the maximum bending line O and the chord line is 2.4 mm.
  • the projection of the front edge 21 on the longitudinal projection plane is an oblique line, and the vertical distance between the oblique line and the horizontal reference line gradually increases in the extending direction from the radial inner side to the radial outer side.
  • the lateral reference line here refers to the lateral reference line that passes through the radially inner end point of the inclined line and is perpendicular to the axis.
  • the range of the maximum vertical distance h between the inclined line and the lateral reference line is [0, 15 mm]. More preferably, h is 6.7 mm.
  • Figures 9 to 11 are projections of a single blade on the longitudinal projection plane.
  • the blade 2 includes a blade root 24 connected to the outer surface of the hub 1 and extending along the outer surface of the hub 1 and a blade outer edge 22 opposite to the blade root 24.
  • the projection of the contour line of the outer edge 22 of the blade on the longitudinal projection plane passing through the axis L is a variable inclination curve, and the angle between the tangent of the variable inclination curve and the longitudinal reference line gradually increases in the direction from the inlet end to the outlet end. Big.
  • the projection of the outer edge 22 of the blade on the longitudinal projection surface of this embodiment is a variable pitch curve, and the angle between the tangent of the variable pitch curve and the longitudinal reference line gradually increases, so that the blade of this embodiment gradually guides the airflow in the flow channel. This avoids large pressure gradients and reduces flow losses.
  • the variable inclination curve includes a first end point B located on the side of the air inlet end and a second end point C located on the side of the air outlet end, wherein the variable inclination angle curve is located at the first end.
  • the range of the entrance angle d between the tangent line at point B and the longitudinal reference line is [20°, 85°].
  • the range of the exit angle g between the tangent line of the variable inclination curve at the second end point C and the longitudinal reference line is [10°, 70°].
  • the flow loss of the airflow is the smallest.
  • the variable inclination curve is a first S-shaped curve.
  • the first S-shaped curve of this embodiment has an inflection point and includes a first curve segment and a second curve segment located on both sides of the inflection point, and the radius of curvature R1 of the first curve segment and the radius of curvature R2 of the second curve segment are different.
  • the range of the ratio between is [0.2, 5].
  • the projection of the blade root 24 on the longitudinal projection surface is a second S-shaped curve.
  • the second S-shaped curve includes a third end point A located on the side of the air inlet end and a fourth end point D located on the side of the air outlet end, wherein the tangent and transverse lines of the second S-shaped curve at the third end point A
  • the range of the entrance angle m between the reference lines is [65°, 120°]; the range of the exit angle n between the tangent of the root S-shaped line at the fourth end point D and the transverse reference line is [10°, 65°].
  • the horizontal reference line here is not an absolute horizontal reference line, but is located in a longitudinal projection plane passing through the axis L and perpendicular to the axis L.
  • the entrance angle m between the tangent line of the second S-shaped curve at the third end point A and the transverse reference line is 91°
  • the tangent line of the second S-shaped curve at the fourth end point D and the transverse reference line is 91°
  • the entrance angle n between the lines is 24°.
  • the second S-shaped curve of this embodiment has an inflection point and includes a first curve segment and a second curve segment located on both sides of the inflection point, and the ratio between the radius of curvature R4 of the first curve segment and the radius of curvature R3 of the second curve segment The range is [0, 3.5].
  • the blade 2 of this embodiment further includes a trailing edge 23 located on the side of the air outlet.
  • the projection of the trailing edge 23 on the longitudinal projection surface is a concave arc.
  • the inner concave arc line is recessed toward the outer side of the blade, where the outer side of the blade refers to the direction away from the blade body. That is to say, as shown in Fig. 6, when the impeller is viewed from below, the approximate shape of the trailing edge 23 of the blade 2 is a concave surface to avoid the formation of vortices when the air flows out and optimize the air flow.
  • the projection length range of the trailing edge chord length CD on the longitudinal projection surface is [10,30mm]
  • the range of the angle e between the end tangent of the trailing edge C point and the chord length is [10°,50°]
  • the tangent line of the D point end The angle f with the chord length is [10°,50°].
  • the projection length of the trailing edge chord length CD on the longitudinal projection plane of this embodiment is 19mm
  • the angle e between the tangent to the trailing edge C point and the chord length is 31°
  • the angle between the end tangent line to the D point and the chord length is 31° f is 31.5°.
  • the impeller of the mixed flow fan is applied to an air conditioner, and the optimal selection range of the number of impeller blades is controlled to be 6-20 according to the structure of the air conditioner shell.
  • a simulation experiment was performed on the mixed flow fan of this embodiment and compared with the simulation of the mixed flow fan before optimization.
  • the experimental data is shown in the following table.
  • the noise measurement point is 0.5m from the outlet of the fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种叶轮、混流风机以及空调器。叶轮包括轮毂(1)、轮盖(3)和多个叶片(2),叶片(2)连接于轮毂(1)的外表面和轮盖(3)的内表面之间,且叶片(2)包括位于进风端一侧的前缘(21),在与轴线L垂直的横向投影面上,前缘(21)的轮廓线的投影具有与轮毂(1)的投影相交的第一交点E以及与轮盖(3)的投影相交的第二交点F,前缘(21)的轮廓线的投影为连接第一交点E与第二交点F的凹曲线。叶轮的叶片(2)的前缘(21)的形状大致为凹面,那么与平面式的前缘(21)相比,在叶轮总进风面积相同的情况下,相邻的叶片(2)之间的流道的进气面积增大从而提高进气流畅性。

Description

叶轮、混流风机以及空调器
相关申请的交叉引用
本申请是以CN申请号为202010066092.9,申请日为2020年1月20日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及风机技术领域,特别涉及一种叶轮、混流风机以及空调器。
背景技术
风路***是空调器内用于促使空调器作用区域内的空气加快热交换的组成部分之一。在空调器的风路***中,设计人员根据空调器的不同机型和规格所对应的实际需求,选择和搭配合适的风机以满足空调器的工作品质和使用舒适性。为满足空调器的风量和压头指标,相关技术中的空调器的风路***采用了混流风机。
发明内容
在发明人了解的相关技术中,混流风机的叶片为平面型,使得相邻叶片之间的流道面积较小,进而影响进气流畅性。
鉴于此,本公开提供一种叶轮、混流风机以及空调器,以优化风机的进风条件。
本公开第一方面提供一种叶轮,包括:
轮盖,包括沿轴线贯通的内腔,且内腔具有相对设置的进风端和出风端;
轮毂,设置于轮盖内;以及
多个叶片,连接于轮毂的外表面和轮盖的内表面之间且叶片包括位于进风端一侧的前缘,在与轴线垂直的横向投影面上,前缘的轮廓线的投影具有与轮毂的投影相交的第一交点以及与轮盖的投影相交的第二交点,前缘的轮廓线的投影为连接第一交点与第二交点的凹曲线。
在一些实施例中,凹曲线的朝向与叶轮的旋转方向相反。
在一些实施例中,凹曲线包括叶形线。
在一些实施例中,凹曲线在第一交点处的切线与轮毂的投影在第一交点处的切线之间的夹角的范围为[20°,150°]。
在一些实施例中,凹曲线在第一交点处的切线与轮毂的投影在第一交点处的切线之间的夹角为70°。
在一些实施例中,凹曲线在第二交点处的切线与轮盖的投影在第二交点处的切线之间的夹角的范围为[20°,150°]。
在一些实施例中,凹曲线在第二交点处的切线与轮盖的投影在第二交点处的切线之间的夹角为78.5°。
在一些实施例中,第一交点与第二交点之间的连线形成弦线,弦线的长度范围为[40mm,55mm]。
在一些实施例中,弦线的长度为48mm。
在一些实施例中,第一交点与第二交点之间的连线形成弦线,凹曲线的最大弯曲点到弦线之间的距离的范围为[2mm,12mm]。
在一些实施例中,凹曲线的最大弯曲点到弦线之间的距离为2.4mm。
在一些实施例中,第一交点与第二交点之间的连线形成弦线,凹曲线的最大弯曲点在弦线上的投影与第一交点之间的距离为弦长的20%-85%。
在一些实施例中,在通过轴线的纵向投影面上,前缘的轮廓线的投影为倾斜线,且从径向内侧到径向外侧的延伸方向上,倾斜线与横向基准线之间的距离逐渐变大,横向基准线与轴线垂直且通过倾斜线的径向内侧的端点。
在一些实施例中,倾斜线与横向基准线之间的最大距离的范围为[0mm,15mm]。
在一些实施例中,叶片包括与轮毂连接且沿轮毂的外表面延伸的叶片根部以及与叶片根部相对的外缘,外缘的轮廓线在通过轴线的纵向投影面上的投影为变倾角曲线,从进风端到出风端的方向上,变倾角曲线的切线与纵向基准线之间的夹角逐渐增大,纵向基准线与轴线平行。
在一些实施例中,外缘为S形曲线。
在一些实施例中,叶片包括与前缘相对的尾缘,尾缘为内凹弧线,内凹弧线朝叶片的外侧凹入。
在一些实施例中,叶片的数量为6个到20个。
本公开第二方面提供一种混流风机,包括上述叶轮。
本公开第三方面提供一种空调器,包括上述混流风机。
基于本公开提供的技术方案,叶轮包括轮毂、轮盖和多个叶片,连接于轮毂的外表面和轮盖的内表面之间且叶片包括位于进风端一侧的前缘,在与轴线垂直的横向投 影面上,前缘的轮廓线的投影具有与轮毂的投影相交的第一交点以及与轮盖的投影相交的第二交点,前缘的轮廓线的投影为连接第一交点与第二交点的凹曲线。本公开的叶轮的叶片的前缘的形状大致为凹面,那么与平面式的前缘相比,在叶轮总进风面积相同的情况下,相邻的叶片之间的流道的进气面积增大从而提高进气流畅性;而且进气流畅性的提高也会相应减小其进气阻力。在进气气流方向不集中时,前缘凹面的设置允许更多不同方向的气流进入到叶轮内以避免气流对叶片的直接冲击从而降低噪音。而且前缘凹面的设置能够对不同方向的气流起到整流的作用,使得气流的速度分布更加均匀。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本公开实施例的叶轮的立体结构示意图;
图2为图1所示的叶轮的剖面结构示意图;
图3为图2所示的叶轮的局部放大结构示意图;
图4为图1所示的叶轮去掉轮盖后的结构示意图;
图5为图4中其中一个叶片的立体结构示意图;
图6为图1所示的叶轮的俯视结构示意图;
图7为图6中的叶轮的局部放大结构示意图;
图8为图1所示的叶轮的仰视结构示意图;
图9至图11为图4中另一个叶片在纵向投影面上的投影结构示意图;
图12为相关技术的混流风机入口流道内的速度矢量图;
图13为本公开实施例的混流风机入口流道内的速度矢量图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合 附图,对本公开的叶轮进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
如图1所示,本公开实施例的叶轮包括:
轮盖3,包括沿轴线L贯通的内腔,且内腔具有相对设置的进风端和出风端;
轮毂1,设置于轮盖3内;以及
多个叶片2,连接于轮毂1的外表面和轮盖3的内表面之间且叶片2包括位于进风端一侧的前缘21,在与轴线L垂直的横向投影面上,前缘21的轮廓线的投影具有与轮毂1的投影相交的第一交点E以及与轮盖3的投影相交的第二交点F,前缘21的轮廓线的投影为连接第一交点E与第二交点F的凹曲线。
如图6和图7所示,在叶轮的俯视图上,本实施例的前缘21具有与轮毂1相交的第一交点E以及与轮盖3相交的第二交点F,此时,前缘21为连接第一交点E与第二交点F的凹曲线。也就是说,从上方俯视叶轮,其叶片2的前缘21的形状大致为凹面,那么与平面式的前缘相比,在叶轮总进风面积相同的情况下,相邻的叶片2之间的流道的进气面积增大从而提高进气流畅性;而且进气流畅性的提高也会相应减小其进气阻力。在进气气流方向不集中时,前缘凹面的设置允许更多不同方向的气流进入到叶轮内以避免气流对叶片的直接冲击从而降低噪音。而且前缘凹面的设置能够对不同方向的气流起到整流的作用,使得气流的速度分布更加均匀。
在此需要说明的是,本公开实施例的横向投影面垂直于叶轮的轴线L。本公开实施例的纵向投影面需要通过叶轮的轴线L。而且对于任一个叶片来说,该纵向投影面指的是该叶片朝向轴线L的方向正对的纵向投影面。例如,图4中的各个叶片2中位于轮毂1的前侧且位于最中间的叶片其所对应的纵向投影面就是与纸面平行的纵向投影面。也就是说,对于不同的叶片,其纵向投影面的位置不同。本公开实施例的纵向基准线位于纵向投影面内且与轴线L平行,横向基准线与轴线L垂直。
如图2所示,本实施例的混流风机内部流道形式特殊,使气流沿叶轮轴线L流入,后斜向流出。本实施例的叶片的前缘凹面的设计也利于气流在进入叶轮内部后沿这样斜向的流道流出。
具体地,在纵向投影面内,本实施例的叶轮流道大致为流道曲线M1M2,该流道曲线M1M2在进风端处的切线与纵向基准线之间的夹角α的范围为[0,30°],在出风端处的切线与横向基准线之间的夹角β的范围为[0,80°]。
在一些实施例中,该流道曲线M 1M 2在进风端处的切线与纵向基准线之间的夹角α为10度,在出风端处的切线与横向基准线之间的夹角β为40度。
在本实施例中,凹曲线的朝向与叶轮的旋转方向相反。如此设置使得进入到叶轮内部的气流在叶片2的包裹下旋转,更利于对气流进行整流进一步提高气流的速度分布均匀性。
具体地,本实施例的凹曲线包括叶形线。例如可以采用如下方程来得到叶形线轨迹。
x=p*m 1*k*t/(n 1+t 3);
y=m 1*k*t 2/(n 2+t 3);
其中,k为用于调节凹曲线的弦长的参数;p=±1用以调节凹曲线的朝向;t的取值范围为(0,1);m 1、n 1、n 2用以调节凹曲线的弯曲程度。
在本实施例中,如图5至图7所示,凹曲线在第一交点E处的切线与轮毂1的投影在第一交点E处的切线之间的夹角a的范围为[20°,150°],在一些实施例中,夹角a为70°。且凹曲线在第二交点F处的切线与轮盖3的投影在第二交点F处的切线之间的夹角b的范围为[20°,150°],在一些实施例中,夹角b为78.5°。
在本实施例中,凹曲线的最大弯曲点O在连接第一交点E和第二交点F的弦线上的投影与第一交点E之间的距离为弦长的20%-85%。此处的最大弯曲点O指的是凹曲线上与弦线之间距离最大的点。
在本实施例中最大弯曲线O与弦线之间距离c的范围为[2mm,12mm]。在一些实施例中,最大弯曲线O与弦线之间距离c为2.4mm。
如图3所示,前缘21在纵向投影面的投影为倾斜线,且从径向内侧到径向外侧的延伸方向上,倾斜线与横向基准线之间的竖直距离逐渐变大。此处的横向基准线指的是经过倾斜线的位于径向内侧的端点并与轴线垂直的横向基准线。
在一些实施例中,倾斜线与横向基准线之间的最大竖直距离h的范围为[0,15mm]。更优地,h为6.7mm。
图9到图11为单叶片在纵向投影面的投影。
如图10所示,叶片2包括与轮毂1的外表面连接并沿轮毂1的外表面延伸的叶片根部24以及与叶片根部24相对的叶片外缘22。叶片外缘22的轮廓线在通过轴线L的纵向投影面上的投影为变倾角曲线,从进风端到出风端的方向上,变倾角曲线的切线与纵向基准线之间的夹角逐渐增大。
本实施例的叶片外缘22在纵向投影面上的投影为变倾角曲线且该变倾角曲线的切线与纵向基准线之间的夹角逐渐增大使得本实施例的叶片对流道内的气流逐步导向从而避免大压力梯度且减小流动损失。
在一些实施例中,如图10所示,变倾角曲线包括位于进风端一侧的第一端点B以及位于出风端一侧的第二端点C,其中,变倾角曲线在第一端点B处的切线与纵向基准线之间的入口夹角d的范围为[20°,85°]。变倾角曲线在第二端点C处的切线与纵向基准线之间的出口夹角g的范围为[10°,70°]。
在一些实施例中,经过试验,将入口夹角d设置为50°,出口夹角g设置为57.7°时,气流的流动损失最小。
在本实施例中,如图10所示,变倾角曲线为第一S形曲线。具体地,本实施例的第一S形曲线具有拐点并包括分别位于拐点两侧的第一曲线段和第二曲线段,第一曲线段的曲率半径R1与第二曲线段的曲率半径R2之间的比值范围为[0.2,5]。
在一些实施例中,经过试验证明,将第一曲线段的曲率半径R1设置为125mm,第二曲线段的曲率半径R2设置为38mm时,气流的流动损失最小。
如图11所示,在本实施例中,叶片根部24在纵向投影面上的投影为第二S形曲线。
具体地,第二S形曲线包括位于进风端一侧的第三端点A以及位于出风端一侧的第四端点D,其中,第二S形曲线在第三端点A处的切线与横向基准线之间的入口夹角m的范围为[65°,120°];根部S形线在第四端点D处的切线与横向基准线之间的出口夹角n的范围为[10°,65°]。此处的横向基准线也不是绝对横向基准线,而是位于通过轴线L的纵向投影面内且与轴线L垂直。
在一些实施例中,第二S形曲线在第三端点A处的切线与横向基准线之间的入口夹角m为91°,第二S形曲线在第四端点D处的切线与横向基准线之间的入口夹角n为24°。
本实施例的第二S形曲线具有拐点并包括分别位于拐点两侧的第一曲线段和第二曲线段,第一曲线段的曲率半径R4与第二曲线段的曲率半径R3之间的比值范围为[0,3.5]。
进一步地,本实施例的叶片2还包括位于出风端一侧的尾缘23,如图9所示,尾缘23在纵向投影面上的投影为内凹弧线。且该内凹弧线朝向叶片的外侧凹入,此处的叶片的外侧指的是远离叶片本体的方向。也就是说,如图6所示,从下方仰视叶轮,其叶片2的尾缘23的大致形状为凹面以避免气流在出气时的形成涡流进而优化气流流动。
实际应用时,尾缘弦长CD在纵向投影面的投影长度范围为[10,30mm],尾缘C点端切线与弦长夹角e范围为[10°,50°],D点端切线与弦长夹角f为[10°,50°]。 在一些实施例中,本实施例的尾缘弦长CD在纵向投影面的投影长度为19mm,尾缘C点的切线与弦长夹角e为31°,D点端切线与弦长夹角f为31.5°。
该混流风机的叶轮应用于空调器,根据空调壳体结构,将叶轮叶片数最佳选取范围控制在6-20片。
对本实施例的混流风机进行仿真实验,并与优化前的混流风机的仿真进行对比,实验数据如下表所示,在仿真实验时,噪音测点为风机出口0.5m处。
Figure PCTCN2020138875-appb-000001
通过仿真数据可知,在风量接近的情况下,优化后风机转速明显下降,同风量下噪音值下降,运行效率和压头都有所提升,风机气动性能和风噪水平得到明显改善。通过如图12和图13所示的速度矢量图对比也可发现,优化后,沿导流圈气流进入方向明显发生变化,气流向流道中部偏移,通过进气整流,流动速度分布更加均匀,速度梯度减缓明显。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
在本公开描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本公开可实施的范围,其相对关系 的改变或调整,在无实质变更技术内容下,当亦视为本公开可实施的范畴。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本公开专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种叶轮,包括:
    轮盖(3),包括沿轴线贯通的内腔,且所述内腔具有相对设置的进风端和出风端;
    轮毂(1),设置于所述轮盖(3)内;以及
    多个叶片(2),连接于所述轮毂(1)的外表面和所述轮盖(3)的内表面之间且所述叶片(2)包括位于所述进风端一侧的前缘(21),在与所述轴线垂直的横向投影面上,所述前缘(21)的轮廓线的投影具有与所述轮毂(1)的投影相交的第一交点(E)以及与所述轮盖(3)的投影相交的第二交点(F),所述前缘(21)的轮廓线的投影为连接第一交点(E)与所述第二交点(F)的凹曲线。
  2. 根据权利要求1所述的叶轮,其中,所述凹曲线的朝向与所述叶轮的旋转方向相反。
  3. 根据权利要求1所述的叶轮,其中,所述凹曲线包括叶形线。
  4. 根据权利要求1所述的叶轮,其中,所述凹曲线在所述第一交点(E)处的切线与所述轮毂(1)的投影在所述第一交点(E)处的切线之间的夹角(a)的范围为[20°,150°]。
  5. 根据权利要求4所述的叶轮,其中,所述凹曲线在所述第一交点(E)处的切 线与所述轮毂(1)的投影在所述第一交点(E)处的切线之间的夹角(a)为70°。
  6. 根据权利要求1所述的叶轮,其中,所述凹曲线在所述第二交点(F)处的切线与所述轮盖(3)的投影在所述第二交点(F)处的切线之间的夹角(b)的范围为[20°,150°]。
  7. 根据权利要求6所述的叶轮,其中,所述凹曲线在所述第二交点(F)处的切线与所述轮盖(3)的投影在所述第二交点(F)处的切线之间的夹角(b)为78.5°。
  8. 根据权利要求1所述的叶轮,其中,所述第一交点(E)与所述第二交点(F)之间的连线形成弦线,所述弦线的长度范围为[40mm,55mm]。
  9. 根据权利要求8所述的叶轮,其中,所述弦线的长度为48mm。
  10. 根据权利要求1所述的叶轮,其中,所述第一交点(E)与所述第二交点(F)之间的连线形成弦线,所述凹曲线的最大弯曲点(O)到所述弦线之间的距离(c)的范围为[2mm,12mm]。
  11. 根据权利要求10所述的叶轮,其中,所述凹曲线的最大弯曲点(O)到所述弦线之间的距离(c)为2.4mm。
  12. 根据权利要求1所述的叶轮,其中,所述第一交点(E)与所述第二交点(F)之间的连线形成弦线,所述凹曲线的最大弯曲点(O)在所述弦线上的投影与第一交点(E)之间的距离为弦长的20%-85%。
  13. 根据权利要求1至12中任一项所述的叶轮,其中,在通过所述轴线的纵向投影面上,所述前缘(21)的轮廓线的投影为倾斜线,且从径向内侧到径向外侧的延伸方向上,所述倾斜线与横向基准线之间的距离逐渐变大,所述横向基准线与所述轴线垂直且通过所述倾斜线的径向内侧的端点。
  14. 根据权利要求13所述的叶轮,其中,所述倾斜线与横向基准线之间的最大距离(h)的范围为[0mm,15mm]。
  15. 根据权利要求1至14中任一项所述的叶轮,其中,所述叶片(2)包括与所述轮毂(1)连接且沿所述轮毂(1)的外表面延伸的叶片根部(24)以及与所述叶片根部(24)相对的外缘(22),所述外缘(22)的轮廓线在通过所述轴线(L)的纵向投影面上的投影为变倾角曲线,从所述进风端到所述出风端的方向上,所述变倾角曲线的切线与纵向基准线之间的夹角逐渐增大,所述纵向基准线与所述轴线(L)平行。
  16. 根据权利要求15所述的叶轮,其中,所述外缘(22)为S形曲线。
  17. 根据权利要求1至16中任一项所述的叶轮,其中,所述叶片(2)包括与所述前缘(21)相对的尾缘(23),所述尾缘(23)为内凹弧线,所述内凹弧线朝所述 叶片(2)的外侧凹入。
  18. 根据权利要求1所述的叶轮,所述叶片(2)的数量为6个到20个。
  19. 一种混流风机,包括如权利要求1至18中任一项所述的叶轮。
  20. 一种空调器,包括如权利要求19所述的混流风机。
PCT/CN2020/138875 2020-01-20 2020-12-24 叶轮、混流风机以及空调器 WO2021147604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010066092.9 2020-01-20
CN202010066092.9A CN111255738A (zh) 2020-01-20 2020-01-20 叶轮、混流风机以及空调器

Publications (1)

Publication Number Publication Date
WO2021147604A1 true WO2021147604A1 (zh) 2021-07-29

Family

ID=70945393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138875 WO2021147604A1 (zh) 2020-01-20 2020-12-24 叶轮、混流风机以及空调器

Country Status (2)

Country Link
CN (1) CN111255738A (zh)
WO (1) WO2021147604A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111441984A (zh) * 2020-01-20 2020-07-24 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN111255738A (zh) * 2020-01-20 2020-06-09 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN111156191A (zh) * 2020-01-20 2020-05-15 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN114962322B (zh) * 2022-05-24 2023-09-26 威灵(芜湖)电机制造有限公司 叶轮结构、风机及家用电器

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2345758Y (zh) * 1998-05-13 1999-10-27 高歌 具有扭曲柳叶型叶片的离心泵叶轮
JP2004044409A (ja) * 2002-07-09 2004-02-12 Mitsubishi Heavy Ind Ltd 水車用ランナ及び水車
CN1573089A (zh) * 2003-06-16 2005-02-02 株式会社东芝 轴向辐流式涡轮
EP1662136A2 (en) * 2004-11-30 2006-05-31 General Electric Canada Runner for francis type hydraulic turbine
JP2010168903A (ja) * 2009-01-20 2010-08-05 Hitachi Ltd 遠心型水力機械
GB2502104A (en) * 2012-05-16 2013-11-20 Dyson Technology Ltd Bladeless fan
WO2014182121A1 (ko) * 2013-05-10 2014-11-13 엘지전자 주식회사 원심팬 및 원심팬의 제조방법
CN106402020A (zh) * 2016-10-31 2017-02-15 广东威灵电机制造有限公司 叶轮和具有其的风机
CN108252949A (zh) * 2018-01-29 2018-07-06 广东美的厨房电器制造有限公司 混流风轮及混流风机
CN110701097A (zh) * 2019-11-19 2020-01-17 东莞市盛沃高叶轮机械设计有限公司 混流式叶轮
CN111156191A (zh) * 2020-01-20 2020-05-15 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN111255738A (zh) * 2020-01-20 2020-06-09 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN111441984A (zh) * 2020-01-20 2020-07-24 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN211449177U (zh) * 2020-01-20 2020-09-08 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN211501072U (zh) * 2020-01-20 2020-09-15 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN211715393U (zh) * 2020-01-20 2020-10-20 珠海格力电器股份有限公司 叶轮、混流风机以及空调器

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2345758Y (zh) * 1998-05-13 1999-10-27 高歌 具有扭曲柳叶型叶片的离心泵叶轮
JP2004044409A (ja) * 2002-07-09 2004-02-12 Mitsubishi Heavy Ind Ltd 水車用ランナ及び水車
CN1573089A (zh) * 2003-06-16 2005-02-02 株式会社东芝 轴向辐流式涡轮
EP1662136A2 (en) * 2004-11-30 2006-05-31 General Electric Canada Runner for francis type hydraulic turbine
JP2010168903A (ja) * 2009-01-20 2010-08-05 Hitachi Ltd 遠心型水力機械
GB2502104A (en) * 2012-05-16 2013-11-20 Dyson Technology Ltd Bladeless fan
WO2014182121A1 (ko) * 2013-05-10 2014-11-13 엘지전자 주식회사 원심팬 및 원심팬의 제조방법
CN106402020A (zh) * 2016-10-31 2017-02-15 广东威灵电机制造有限公司 叶轮和具有其的风机
CN108252949A (zh) * 2018-01-29 2018-07-06 广东美的厨房电器制造有限公司 混流风轮及混流风机
CN110701097A (zh) * 2019-11-19 2020-01-17 东莞市盛沃高叶轮机械设计有限公司 混流式叶轮
CN111156191A (zh) * 2020-01-20 2020-05-15 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN111255738A (zh) * 2020-01-20 2020-06-09 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN111441984A (zh) * 2020-01-20 2020-07-24 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN211449177U (zh) * 2020-01-20 2020-09-08 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN211501072U (zh) * 2020-01-20 2020-09-15 珠海格力电器股份有限公司 叶轮、混流风机以及空调器
CN211715393U (zh) * 2020-01-20 2020-10-20 珠海格力电器股份有限公司 叶轮、混流风机以及空调器

Also Published As

Publication number Publication date
CN111255738A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
WO2021147604A1 (zh) 叶轮、混流风机以及空调器
WO2021147606A1 (zh) 叶轮、混流风机以及空调器
WO2021147605A1 (zh) 叶轮、混流风机以及空调器
US11506211B2 (en) Counter-rotating fan
US9267510B2 (en) Centrifugal fan and air conditioner
CN105358836B (zh) 轴流式风扇
WO2021147593A1 (zh) 消旋结构、混流风机组件及空调器
US9784507B2 (en) Outdoor cooling unit for vehicular air conditioning apparatus
KR20100066561A (ko) 원심팬
CN211715357U (zh) 消旋结构、混流风机组件及空调器
JP6604981B2 (ja) 軸流送風機の羽根車、及び軸流送風機
CN211715393U (zh) 叶轮、混流风机以及空调器
WO2021147498A1 (zh) 消旋器、混流风机和空调器
WO2021063050A1 (zh) 风扇及轴流叶轮
CN211501072U (zh) 叶轮、混流风机以及空调器
CN211449177U (zh) 叶轮、混流风机以及空调器
WO2020134066A1 (zh) 风扇组件的造型方法
CN111577655A (zh) 叶片及使用其的轴流叶轮
CN111120417A (zh) 消旋器、混流风机和空调器
CN211449214U (zh) 消旋器、混流风机和空调器
WO2021147595A1 (zh) 消旋结构、混流风机组件及空调器
CN112228400A (zh) 蜗壳型线的构建方法、蜗壳、风道结构和吸油烟机
CN113153812B (zh) 一种c型启动前弯式多翼离心风机叶轮及制备方法
WO2017054387A1 (zh) 鸟翅型高压轴流风机叶片及其对旋轴流风机
CN113883098A (zh) 一种静叶抗畸变轴流压气机及轴流压气机静叶抗畸变方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915747

Country of ref document: EP

Kind code of ref document: A1