WO2021147277A1 - 多相变压器 - Google Patents

多相变压器 Download PDF

Info

Publication number
WO2021147277A1
WO2021147277A1 PCT/CN2020/103443 CN2020103443W WO2021147277A1 WO 2021147277 A1 WO2021147277 A1 WO 2021147277A1 CN 2020103443 W CN2020103443 W CN 2020103443W WO 2021147277 A1 WO2021147277 A1 WO 2021147277A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnet
phase transformer
placement
placement position
Prior art date
Application number
PCT/CN2020/103443
Other languages
English (en)
French (fr)
Inventor
龚新快
王楚歆
Original Assignee
益仕敦电子(珠海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 益仕敦电子(珠海)有限公司 filed Critical 益仕敦电子(珠海)有限公司
Publication of WO2021147277A1 publication Critical patent/WO2021147277A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers

Definitions

  • the present invention relates to the technical field of transformer equipment, in particular to a multi-phase transformer.
  • This application is based on a Chinese invention patent application with an application date of January 21, 2020 and an application number of CN 202010072211.1. The content of this application is incorporated herein by reference. .
  • a single-phase co-packaged inductor transformer which includes a housing, a magnet assembly, a primary coil, a secondary coil and an inductor coil.
  • the housing has a placement space, and the placement space is divided into an inductance space and a transformation space by a barrier;
  • the magnet assembly includes a first magnet, a second magnet, a third magnet, and a fourth magnet.
  • the first magnet and the second magnet are arranged opposite to each other in the inductor.
  • the third magnet and the fourth magnet are arranged oppositely in the variable pressure space.
  • the inductance coil is located between the first magnet and the second magnet; the first magnetic column and the second magnetic column are formed between the third magnet and the fourth magnet.
  • the primary coil is wound on the first magnetic column, and the secondary coil is wound on the On the second magnetic column, the inductor coil is connected in series with the primary coil.
  • the existing single-phase co-packaged inductor transformer has the problem that the internal arrangement of the single-phase co-packaged inductor transformer makes its volume relatively large. When three or more single-phase co-packaged inductor transformers are used in combination, they occupy Large space and difficult installation.
  • the purpose of the present invention is to provide a multi-phase transformer that is small in size and easy to install.
  • the multi-phase transformer provided by the present invention includes a housing and an inductive transformer unit.
  • the inductive transformer unit includes a magnet assembly, a primary coil, a secondary coil, and an inductive coil; at least three placement spaces are formed in the housing, and the housing includes a barrier wall that blocks Between two adjacent placement spaces, each placement space is provided with an inductance transformer unit; a first coil placement position and a second coil placement position are formed in the magnet assembly, and the inductance coil is placed in the first coil placement position, The primary coil and the secondary coil are concentrically arranged in the second coil placement position, and the inductance coil is connected in series with the primary coil.
  • the magnet assembly includes a first magnet, a second magnet, a third magnet, and a fourth magnet; the first magnet and the second magnet are arranged along a first direction, and a first coil is formed between the first magnet and the second magnet Placement position; the third magnet and the fourth magnet are arranged along the first direction, and the second coil placement position is formed between the third magnet and the fourth magnet; the first coil placement position and the second coil placement position are sequentially arranged along the second direction, The second direction is perpendicular to the first direction, and the inductor coil, the primary coil and the secondary coil are all wound and extended in the first direction.
  • the magnet assembly includes a fifth magnet, a sixth magnet, and a seventh magnet that are sequentially arranged along a third direction; a first coil placement position is formed between the fifth magnet and the sixth magnet, and the sixth magnet and the A second coil placement position is formed between the seven magnets, the first coil placement position and the second coil placement position are sequentially arranged along the third direction, and the inductor coil, the primary coil and the secondary coil are all wound and extended along the third direction.
  • the multi-phase transformer includes a first coil former and a second coil former; the first coil former is fixed in the first coil placement position, the inductor coil is wound on the first coil former; the second coil former is fixed on the first coil former In the second coil placement position, the primary coil and the secondary coil are both wound on the second coil former.
  • a further solution is that the middle of the first coil former has a first through hole, the magnet assembly has a first magnetic column in the first coil placement position, the first magnetic column is inserted in the first through hole, and/or the second
  • the middle of the bobbin has a second through hole, the magnet assembly has a second magnetic column in the second coil placement position, and the second magnetic column is inserted in the second through hole.
  • a further solution is that a first clamping position is formed on the first coil frame, at least a part of the magnet assembly is located in the first clamping position, and/or a second clamping position is formed on the second coil frame, and at least a part of the magnet assembly Located in the second card installation position.
  • the housing includes a bottom wall, a peripheral wall and a face cover that are detachably connected, and the placement space is formed between the bottom wall, the peripheral wall and the face cover.
  • a further solution is that a lead groove is formed on the front side of the face cover; the lead-out part of the primary coil, the lead-out part of the secondary coil and/or the lead-out part of the inductance coil are located in the lead groove.
  • the face cover has a wire hole which is connected between the placement space and the outside of the multiphase transformer; the lead-out part of the primary coil, the lead-out part of the secondary coil and/or the lead-out part of the inductance coil pass through Wire hole.
  • the multi-phase transformer includes conductive terminals, the conductive terminals have wiring holes, and the conductive terminals are inserted in the housing; the lead-out ends of the primary coil, the lead-out ends of the secondary coil, and/or the lead-out ends of the inductance coil are inserted in Wiring hole.
  • a plurality of independent placement spaces are arranged in the housing, which can accommodate the multi-phase inductive transformer unit and can also realize the shielding effect between the multi-phase inductive transformer unit; the primary coil and the secondary coil
  • the concentric arrangement can further reduce the volume of the magnet assembly, thereby reducing the overall volume of the multi-phase transformer; a one-time resin potting in the shell can form a potting layer in multiple placement spaces, ensuring product heat dissipation performance and improving production efficiency .
  • both of the two setting modes can realize the arrangement of the inductance transformer unit in the multi-phase transformer provided by the present invention in the placement space.
  • the opening is in the first direction.
  • the magnets, inductance coils, and second magnets can be installed in the placement space one by one, and the installation difficulty is reduced; in another setting mode, due to the inductance coil
  • the sixth magnet is shared between the primary coil and the secondary coil. This configuration can further reduce the volume of the multi-phase transformer, and at the same time can reduce the inductance and reduce the loss.
  • the arrangement of the first coil former and the second coil former enables the inductance coil, the primary coil and the secondary coil to be more stably arranged in the magnet assembly, and the structure of the multi-wire transformer is more stable.
  • the first coil former, the second coil former and the magnet assembly are mutually positioned.
  • first bobbin, the second bobbin and the magnet assembly can further realize mutual positioning in other directions, and the structure of the inductance transformer unit is more stable.
  • the detachable face cover facilitates the installation of the inductive transformer unit. Since the bottom wall is detachable, the bottom wall can be made of a metal material with better thermal conductivity, which improves the heat dissipation of the multi-phase transformer under the premise of ensuring the shielding effect of the surrounding wall. performance.
  • the multi-phase transformer of the present invention can effectively solve the problem of fixing the coil lead-out part.
  • the multi-phase transformer of the present invention increases the shielding rate of the surface cover to the placement space on the premise that the multi-phase transformer realizes the line-passing function, thereby producing better protection and shielding effects for the multi-phase transformer.
  • the conductive terminals are inserted into the housing to complete the fixing and electrical connection of the lead ends of the coils at the same time, thereby improving production efficiency.
  • Fig. 1 is a structural diagram of a first embodiment of a multi-phase transformer of the present invention.
  • Fig. 2 is an exploded view of the structure of the first embodiment of the multi-phase transformer of the present invention.
  • FIG 3 is an exploded view of the structure of the inductance transformer unit in the first embodiment of the multi-phase transformer of the present invention.
  • Fig. 4 is a structural diagram of a second embodiment of a multi-phase transformer of the present invention.
  • Fig. 5 is an exploded view of the structure of the third embodiment of the multi-phase transformer of the present invention.
  • FIG. 1 is a structural diagram of a first embodiment of a multi-phase transformer of the present invention
  • FIG. 2 is a structural exploded view of the first embodiment of a multi-phase transformer of the present invention.
  • This embodiment is a three-phase transformer, and this embodiment is composed of a casing 1, three inductance transformer units 2, 12 conductive terminals 14, and a potting layer 4 potted in the casing 1.
  • the housing 1 includes a detachable bottom wall 12, a peripheral wall 11, and a face cover 13.
  • the bottom wall 12, the peripheral wall 11 and the face cover 13 form a space 100 for accommodating three inductive transformer units 2, and the peripheral wall 11 also has a connection
  • the two barrier walls 111 divide the space 100 into three independent storage spaces 101, each of which is used for placing an inductive transformer unit 2.
  • the shell 1 is a metal shell
  • the peripheral wall 11 is made of aluminum alloy material
  • the bottom wall 12 is made of aluminum alloy material or a metal material with a higher thermal conductivity than aluminum alloy material.
  • the outer circumference, inner circumference of the peripheral wall 11 and the barrier wall 111 are each provided with a bolt slot 112 with a c-shaped cross section extending in the z-axis direction (that is, the first direction), and the first bolt 123 passes through the bolt through hole of the bottom wall 12
  • the bottom wall 12 and the peripheral wall 11 can be fixed between the bottom wall 12 and the peripheral wall 11 by locking 121 to the bolt slot 112.
  • Baffles are raised on the front surface of the cover 13, and lead grooves 131 are formed between the two adjacent baffles.
  • a total of 12 lead grooves 131 are arranged on opposite sides of the cover 13, and the lead grooves 131 are used for multiple pairs.
  • the lead part of each coil is guided and fixed.
  • the middle part of the cover 13 is also provided with three wire passing holes 132.
  • Each wire passing hole 132 is connected between a corresponding placement space 101 and the outside of the multiphase transformer.
  • the lead groove 131 is led out from the edge of the wire passing hole 132.
  • One wire via 132 communicates with the extension start ends of the four lead grooves 131.
  • the second bolt 124 passes through the bolt through hole on the face cover 13 and is locked with the c-shaped bolt slot 112 to complete the fixation between the face cover 13 and the peripheral wall 11, and the bolt slot 112 extends on the peripheral wall 11 on the z-axis. Between the opposite ends in the direction, the first bolt 123 and the second bolt 124 are locked and fitted with the same bolt insertion hole 112 on the barrier wall 111.
  • FIG. 3 is an exploded view of the structure of the inductance transformer unit in the first embodiment of the multiphase transformer of the present invention.
  • the inductor transformer unit 2 is composed of a magnet assembly 20, an inductor coil 31, a primary coil 32, a secondary coil 33, a first coil former 25 and a second coil former 26.
  • the magnet assembly 20 includes a first magnet 21, a second magnet 22, a third magnet 23 and a fourth magnet 24 having similar structures.
  • the first magnet 21 includes a first substrate 211, a first semi-magnetic column 212 protruding from the center of the first substrate 211 in the positive z-axis direction, and two second magnetic pillars 212 protruding from the outer periphery of the first substrate 211 in the positive z-axis direction.
  • a magnetic wall 213, two first magnetic walls 213 and a first half magnetic column 212 form a first position 210 in a circular shape.
  • the second magnet 22 includes a second substrate 221, a second half-magnetic column 222, and two second magnetic walls 223. A second position is formed between the two second magnetic walls 223 and the second half-magnetic column 222.
  • the third magnet 23 includes a third substrate 231, a third half-magnetic column 232 and two third magnetic walls 233, a third position 230 is formed between the two third magnetic walls 233 and the third half-magnetic column 232;
  • the fourth magnet 24 includes a fourth substrate 241, a fourth half magnetic column 242 and two fourth magnetic walls 243.
  • a fourth position 240 is formed between the two fourth magnetic walls 243 and the fourth half magnetic column 242.
  • the first magnet 21 and the second magnet 22 are arranged oppositely along the first direction, the first magnetic wall 213 and the second magnetic wall 223 are butted, the first half magnetic column 212 and the second half magnetic column 222 are butted to form the first magnetic column, and the first position 210 and the second position 220 symmetrically form a first coil placement position 201 between the first substrate 211 and the second substrate 221.
  • the third magnet 23 and the fourth magnet 24 are arranged oppositely along the first direction, the third magnetic wall 233 and the fourth magnetic wall 243 are butted, the third half magnetic column 232 and the fourth half magnetic column 242 are butted to form the second magnetic column, and the third position 230 and the fourth position 240 symmetrically form a second coil placement position 202 between the third substrate 231 and the fourth substrate 241.
  • the first coil placement position 201 and the second coil placement position 202 are sequentially arranged along the negative x-axis direction (ie, the second direction).
  • the first bobbin 25 has a first cylindrical portion 251 extending in the z-axis direction and two first retaining rings 252 extending outward from both axial ends of the first cylindrical portion 251, respectively.
  • the middle portion of the first cylindrical portion 251 A first through hole 250 is formed.
  • the first retaining ring 252 has first protrusions 253 on opposite sides of the first through hole 250, and a first clamping position is formed between the first protrusions 253 on both sides. 254.
  • the second bobbin 26 has a second cylindrical portion 261 extending in the z-axis direction and two second retaining rings 262 respectively extending outward from the axial ends of the second cylindrical portion 261.
  • the middle portion of the second cylindrical portion 261 A second through hole 260 is formed.
  • the second retaining ring 262 has second protrusions 263 on opposite sides of the second through hole 260, and a second clamping position is formed between the second protrusions 263 on both sides. 264.
  • the second retaining ring 262 is also provided with a lead hole 265 penetrating in the z-axis direction.
  • the inductance coil 31 is wound on the outer circumference of the first cylindrical portion 251 along the z-axis direction and is limited between the two first retaining rings 252, the first coil former 25 is fixed in the first coil placement position 201, and the first half magnetic column 212
  • the first magnetic column composed of the second half magnetic column 222 is inserted through the first through hole 250, and the first substrate 211 and the second substrate 221 are each restricted in the first clamping position 254 on the corresponding side.
  • the primary coil 32 and the secondary coil 33 are both wound around the outer circumference of the second cylindrical portion 261 in the z-axis direction and are restricted between the two second retaining rings 262, and the primary coil 32 is located on the outer circumference of the secondary coil 33, and the primary coil 32 In series with the inductance coil 31, the lead-in part or lead-in part of the primary coil 32 and the secondary coil 33 can pass through the lead hole 265 for positioning.
  • the second bobbin 26 is fixed in the second coil placement position 202, the second magnetic column composed of the third half magnetic column 232 and the fourth half magnetic column 242 is inserted in the second through hole 260, and the third substrate 231 and the fourth The substrate 241 is each restricted in the second clamping position 264 on the corresponding side.
  • the conductive terminal 14 includes an insertion portion 141, an electrical connection portion 142, and a connection portion 142.
  • the connection portion 143 is provided with a connection hole 144.
  • the insertion portion 141 is fixed and inserted on the front side of the cover 13, and the electrical connection portion 142 faces away from the surface.
  • the cover 13 extends, and the lead-out end 301 is inserted into the wiring hole 144.
  • a plurality of independent placement spaces 101 are provided in the housing 1, which can accommodate the multi-phase inductive transformer unit 2 and can also achieve a shielding effect between the multi-phase inductive transformer unit 2;
  • the concentric winding of the coil 32 and the secondary coil 33 can further reduce the volume of the magnet assembly 20, thereby reducing the overall volume of the multi-phase transformer;
  • the one-time resin potting in the housing 1 can form potting in multiple placement spaces Layer 4, to ensure product heat dissipation performance and improve production efficiency.
  • Fig. 4 is a structural diagram of a second embodiment of a multi-phase transformer of the present invention.
  • the lead-out portion 621 of the secondary coil needs to be extended.
  • the surface cover 53 half-blocks the space 500 in the housing.
  • An opening 501 is formed between the peripheral wall 51 and the surface cover 53.
  • the inductance is connected in series.
  • the two lead-out portions 624 corresponding to the coil and the primary coil and the lead-out portion 621 corresponding to the secondary coil are all led out of the housing from the opening 501.
  • the lead-out portion 624 is fixed along the lead groove 623 on the cover 53, and finally fixed to the cover 53
  • the conductive terminal 622 on the upper side is connected, and the extended end of the freely extending lead part 621 is inserted into the conductive terminal 625.
  • Fig. 5 is an exploded view of the structure of the third embodiment of the multi-phase transformer of the present invention.
  • the magnet assembly 80 of the inductive transformer unit 8 includes a fifth magnet 81, a sixth magnet 82, and a seventh magnet that are sequentially arranged along the negative x-axis (third direction).
  • the magnet 83 forms a first coil placement position 801 between the fifth magnet 81 and the sixth magnet 82, a second coil placement position 802 is formed between the sixth magnet 82 and the seventh magnet 83, and the first coil placement position 801 is connected to the second coil placement position 801.
  • the coil placement positions 802 are sequentially arranged along the negative direction of the x-axis.
  • the fifth magnet 81 has a first magnetic column 811 extending in the negative direction of the x-axis, the first coil former 84 extends in the x-axis direction, the first coil former 84 is placed in the first coil placement position 801, and the first magnetic column 811 is inserted in the first bobbin 84 along the x-axis direction, and the inductance coil 91 is wound on the first bobbin 84 along the x-axis direction.
  • the sixth magnet 82 has a first half column 821 extending in the negative direction of the x-axis
  • the seventh magnet 83 has a second half column 831 extending in the positive direction of the x-axis
  • the first half column 821 and the second The half magnetic column 831 is relatively spliced into a second magnetic column
  • the second coil former 85 extends along the x-axis direction
  • the second coil former 85 is placed in the second coil placement position 802
  • the first half magnetic column 821 and the second half magnetic column 831 is inserted into the second bobbin 85 in the negative and positive x-axis directions respectively
  • the primary coil 92 and the secondary coil 93 are both wound on the second bobbin 85 in the x-axis direction
  • the coil 91 is connected in series
  • the primary coil 92 is wound around the secondary coil 93.
  • the multi-phase transformer of the present invention can be used as an electrical device to be installed in a vehicle-mounted charger.
  • a plurality of independent placement spaces are arranged in the housing, which can accommodate the multi-phase inductive transformer unit and can also realize the shielding effect between the multi-phase inductive transformer unit; the primary coil and the secondary
  • the concentric arrangement of the coils can further reduce the volume of the magnet assembly, thereby reducing the overall volume of the multi-phase transformer; a one-time resin potting in the shell can form a potting layer in multiple placement spaces, ensuring product heat dissipation performance and improving production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种多相变压器,包括:外壳(1)和电感变压单元(2),电感变压单元(2)包括磁体组件(20)、初级线圈(32)、次级线圈(33)和电感线圈(31);外壳(1)内形成至少三个放置空间(101),外壳(1)的阻隔壁(111)阻隔于相邻的两个放置空间(101)之间,每个放置空间(101)内设置一个电感变压单元(2);磁体组件(20)中形成第一线圈放置位(201)和第二线圈放置位(202),电感线圈(31)设置在第一线圈放置位(201)中,初级线圈(32)和次级线圈(33)设置在第二线圈放置位(202)中,电感线圈(31)与初级线圈(32)串联。独立的放置空间保证多相电感变压单元(2)之间屏蔽效果;初级线圈(32)和次级线圈(33)同心设置减小磁体组件(20)体积,从而缩小多相变压器体积;外壳(1)内一次性树脂灌封即可,保证产品散热性能且提高生产效率,多相变压器安装到电路时仅需进行一次性定位安装,安装难度降低且效率提高。

Description

多相变压器 技术领域
本发明涉及变压设备技术领域,具体涉及一种多相变压器,本申请是基于申请日为2020年1月21日,申请号为CN 202010072211.1的中国发明专利申请,该申请的内容引入本文作为参考。
背景技术
现有一种单相共封装电感变压器,包括外壳、磁体组件、初级线圈、次级线圈和电感线圈。外壳具有放置空间,放置空间又被挡壁分隔为电感空间和变压空间;磁体组件包括第一磁体、第二磁体、第三磁体和第四磁体,第一磁体和第二磁体相对设置在电感空间内,第三磁体和第四磁体相对设置在变压空间内。电感线圈位于第一磁体和第二磁体之间;第三磁体和第四磁体之间形成第一磁柱和第二磁柱,初级线圈卷绕在第一磁柱上,次级线圈卷绕在第二磁柱上,电感线圈与初级线圈串联。
技术问题
现有的该种单相共封装电感变压器存在的问题是,该种单相共封装电感变压器的内部布置方式使其体积较大,三个或多个单相共封装电感变压器组合使用时,占用空间大且安装难度大。
技术解决方案
本发明的目的在于提供一种体积较小且便于安装的多相变压器。
本发明提供的多相变压器包括外壳和电感变压单元,电感变压单元包括磁体组件、初级线圈、次级线圈和电感线圈;外壳内形成至少三个放置空间,外壳包括阻隔壁,阻隔壁阻隔于相邻的两个放置空间之间,每个放置空间内设置一个电感变压单元;磁体组件中形成第一线圈放置位和第二线圈放置位,电感线圈设置在第一线圈放置位中,初级线圈和次级线圈同心设置在第二线圈放置位中,电感线圈与初级线圈串联。
进一步的方案是,磁体组件包括第一磁体、第二磁体、第三磁体和第四磁体;第一磁体和第二磁体沿第一方向设置,第一磁体与第二磁体之间形成第一线圈放置位;第三磁体与第四磁体沿第一方向设置,第三磁体与第四磁体之间形成第二线圈放置位;第一线圈放置位与第二线圈放置位沿第二方向依次设置,第二方向垂直于第一方向,电感线圈、初级线圈和次级线圈均沿第一方向绕卷延伸。
另一进一步的方案是,磁体组件包括沿第三方向依次设置的第五磁体、第六磁体和第七磁体;第五磁体与第六磁体之间形成第一线圈放置位,第六磁体与第七磁体之间形成第二线圈放置位,第一线圈放置位与第二线圈放置位沿第三方向依次设置,电感线圈、初级线圈和次级线圈均沿第三方向绕卷延伸。
进一步的方案是,多相变压器包括第一线圈架和第二线圈架;第一线圈架固定在第一线圈放置位中,电感线圈卷绕在第一线圈架上;第二线圈架固定在第二线圈放置位中,初级线圈和次级线圈均卷绕在第二线圈架上。
进一步的方案是,第一线圈架中部具有第一通孔,磁体组件具有位于第一线圈放置位中的第一磁柱,第一磁柱插装在第一通孔中,和/或第二线圈架中部具有第二通孔,磁体组件具有位于第二线圈放置位中的第二磁柱,第二磁柱插装在第二通孔中。
进一步的方案是,第一线圈架上形成第一卡装位,磁体组件的至少一部分位于第一卡装位中,和/或第二线圈架上形成第二卡装位,磁体组件的至少一部分位于第二卡装位中。
进一步的方案是,外壳包括可拆卸连接的底壁、周壁和面盖,放置空间形成于底壁、周壁和面盖之间。
进一步的方案是,面盖的表侧形成引线槽;初级线圈的引出部、次级线圈的引出部和/或电感线圈的引出部位于引线槽中。
进一步的方案是,面盖具有过线孔,过线孔连通于放置空间与多相变压器的外部之间;初级线圈的引出部、次级线圈的引出部和/或电感线圈的引出部穿过过线孔。
进一步的方案是,多相变压器包括导电端子,导电端子中具有接线孔,导电端子插装在外壳上;初级线圈的引出端、次级线圈的引出端和/或电感线圈的引出端插装在接线孔。
有益效果
本发明的多相变压器中,外壳内设置相互独立的多个放置空间,能容纳多相电感变压单元外还能对在多相电感变压单元之间实现屏蔽作用;初级线圈和次级线圈同心设置能进一步减小磁体组件的体积,从而缩小多相变压器的整体体积;在外壳内进行一次性树脂灌封即可对多个放置空间内形成灌封层,保证产品散热性能且提高生产效率。将多相变压器安装到电路时仅需进行一次性定位安装以及接线即可,安装难度降低且效率提高。
进一步地,本发明的多相变压器中,两种设置方式均能实现本发明提供的多相变压器中电感变压单元在放置空间中的布置,第一种设置方式中,由于外壳上放置空间的开口于第一方向上,该设置方式下,在组装多相变压器时,磁体、电感线圈和第二磁体等可逐一安装到放置空间中,安装难度降低;另一种设置方式中,由于电感线圈与初级线圈、次级线圈之间共用第六磁体,此设置下能进一步缩小多相变压器的体积,同时能降低感抗而降低损耗。
进一步地,本发明的多相变压器中,第一线圈架和第二线圈架的设置使电感线圈与初级线圈、次级线圈更稳固地设置在磁体组件中,多线变压器结构更稳定。
进一步地,本发明的多相变压器中,第一线圈架、第二线圈架与磁体组件之间实现相互定位。
进一步地,第一线圈架、第二线圈架与磁体组件之间能进一步实现在其他方向上的相互定位,电感变压单元的结构更稳定。
进一步地,可拆卸的面盖便于电感变压单元的安装,由于底壁可拆,底壁可采用导热性能更好的金属材料制成,在周壁保证屏蔽效果的前提下提升多相变压器的散热性能。
进一步地,本发明的多相变压器能有效解决线圈引出部的固定问题。
进一步地,本发明的多相变压器实现过线功能的前提下增大面盖对放置空间的遮挡率,从而对多相变压器产生更好的保护和屏蔽效果。
进一步地,本发明的多相变压器,各个线圈的引出端插装到导电端子后,将导电端子插装到外壳上即同时完成线圈引出端的固定以及电连接,提高生产效率。
附图说明
图1为本发明多相变压器第一实施例的结构图。
图2为本发明多相变压器第一实施例的结构分解图。
图3为本发明多相变压器第一实施例中电感变压单元的结构分解图。
图4为本发明多相变压器第二实施例的结构图。
图5为本发明多相变压器第三实施例的结构分解图。
本发明的实施方式
多相变压器第一实施例
参见图1和图2,图1为本发明多相变压器第一实施例的结构图,图2为本发明多相变压器第一实施例的结构分解图。本实施例为三相变压器,本实施例由外壳1、三个电感变压单元2、12个导电端子14以及灌封在外壳1中的灌封层4组成。
外壳1包括可拆卸连接的底壁12、周壁11和面盖13,底壁12、周壁11和面盖13之间形成容纳三个电感变压单元2的空间100,而周壁11上还具有连接在相对两侧内壁面之间的两个阻隔壁111,两个阻隔壁111将空间100分隔为相互独立的三个放置空间101,每个放置空间101用于放置一个电感变压单元2。
外壳1为金属外壳,周壁11采用铝合金材料制成,底壁12采用铝合金材料或导热系数比铝合金材料更高的金属材料制成。周壁11的外周、内周以及阻隔壁111上均设有沿z轴方向(即第一方向)延伸的截面呈c形的螺栓插槽112,第一螺栓123穿过底壁12的螺栓通孔121锁紧到螺栓插槽112即可实现底壁12和周壁11之间的固定。
面盖13的表侧表面上凸起挡板,相邻的两道挡板之间形成引线槽131,共12道引线槽131布置在面盖13的相对两侧,引线槽131用于对多个线圈的引出部进行引导和固定。面盖13的中部还设有三个过线孔132,每个过线孔132连通于对应的一个放置空间101与多相变压器的外部之间,引线槽131从过线孔132的边缘引出,每个过线孔132与四个引线槽131的延伸始端连通。第二螺栓124穿过面盖13上的螺栓通孔并与c形的螺栓插槽112锁紧即完成面盖13和周壁11之间的固定,且螺栓插槽112延伸于周壁11在z轴方向上的相对两端之间,第一螺栓123和第二螺栓124与阻隔壁111上的同一个螺栓插孔112锁紧配合。
结合图3,图3为本发明多相变压器第一实施例中电感变压单元的结构分解图。电感变压单元2由磁体组件20、电感线圈31、初级线圈32、次级线圈33、第一线圈架25和第二线圈架26组成。磁体组件20包括结构相似的第一磁体21、第二磁体22、第三磁体23和第四磁体24。第一磁体21包括第一基板211、从第一基板211的中央沿z轴正向凸起的第一半磁柱212和从第一基板211的外周沿z轴正向凸起的两道第一磁壁213,两道第一磁壁213和第一半磁柱212之间形成环绕状的第一位置210。同理地,第二磁体22包括第二基板221、第二半磁柱222和两道第二磁壁223,两道第二磁壁223和第二半磁柱222之间形成环绕状的第二位置220;第三磁体23包括第三基板231、第三半磁柱232和两道第三磁壁233,两道第三磁壁233和第三半磁柱232之间形成环绕状的第三位置230;第四磁体24包括第四基板241、第四半磁柱242和两道第四磁壁243,两道第四磁壁243和第四半磁柱242之间形成环绕状的第四位置240。
第一磁体21和第二磁体22沿第一方向相对设置,第一磁壁213和第二磁壁223对接,第一半磁柱212和第二半磁柱222对接成为第一磁柱,第一位置210和第二位置220对称形成位于第一基板211与第二基板221之间的第一线圈放置位201。
第三磁体23和第四磁体24沿第一方向相对设置,第三磁壁233和第四磁壁243对接,第三半磁柱232和第四半磁柱242对接成为第二磁柱,第三位置230和第四位置240对称形成位于第三基板231与第四基板241之间的第二线圈放置位202。第一线圈放置位201与第二线圈放置位202沿x轴负向(即第二方向)依次设置。
第一线圈架25具有沿z轴方向延伸的第一筒部251和分别从第一筒部251的轴向两端向外周伸出的两个第一挡圈252,第一筒部251的中部形成第一通孔250,第一挡圈252在第一通孔250的相对两侧均凸起有第一凸起部253,两侧的第一凸起部253之间形成第一卡装位254。
第二线圈架26具有沿z轴方向延伸的第二筒部261和分别从第二筒部261的轴向两端向外周伸出的两个第二挡圈262,第二筒部261的中部形成第二通孔260,第二挡圈262在第二通孔260的相对两侧均凸起有第二凸起部263,两侧的第二凸起部263之间形成第二卡装位264。第二挡圈262还设置有沿z轴方向贯通的引线孔265。
电感线圈31沿z轴方向卷绕在第一筒部251外周并限制在两个第一挡圈252之间,第一线圈架25固定在第一线圈放置位201中,第一半磁柱212和第二半磁柱222组成的第一磁柱穿插在第一通孔250中,第一基板211和第二基板221各限制在对应侧的第一卡装位254中。
初级线圈32、次级线圈33均沿z轴方向卷绕在第二筒部261外周并限制在两个第二挡圈262之间,且初级线圈32位于次级线圈33的外周,初级线圈32与电感线圈31串联,初级线圈32、次级线圈33的引出部或引入部可穿过引线孔265作定位。第二线圈架26固定在第二线圈放置位202中,第三半磁柱232和第四半磁柱242组成的第二磁柱穿插在第二通孔260中,第三基板231和第四基板241各限制在对应侧的第二卡装位264中。
参见图1,电感线圈31、初级线圈32和次级线圈33的引出部30均从过线孔132引出并沿引线槽131布置,最终引出部30的引出端301与导电端子14固定连接。导电端子14包括插装部141、电连接部142和接线部142,接线部143上设置有接线孔144,插装部141固定插装在面盖13的表侧,电连接部142背向面盖13伸出,引出端301插装在接线孔144中。
本发明提供的多相变压器中,外壳1内设置相互独立的多个放置空间101,能容纳多相电感变压单元2外还能对在多相电感变压单元2之间实现屏蔽作用;初级线圈32和次级线圈33同心绕卷能进一步减小磁体组件20的体积,从而缩小多相变压器的整体体积;在外壳1内进行一次性树脂灌封即可对多个放置空间内形成灌封层4,保证产品散热性能且提高生产效率。将多相变压器安装到电路时仅需进行一次性定位安装以及接线即可,安装难度降低且效率提高。
多相变压器第二实施例
参见图4,图4为本发明多相变压器第二实施例的结构图。本实施例中,由于安装连接需求,次级线圈的引出部621需延长外伸,面盖53对外壳内的空间500半封挡,周壁51和面盖53之间形成开口501,串联的电感线圈与初级线圈所对应的两个引出部624以及次级线圈对应的引出部621均从开口501引出外壳外,引出部624沿面盖53上的引线槽623固定,且最终与固定在面盖53上的导电端子622连接,而自由外伸的引出部621的延伸末端则插装在导电端子625中。
多相变压器第三实施例
参见图5,图5为本发明多相变压器第三实施例的结构分解图。与以上两个实施例不同的是,本实施例中,电感变压单元8的磁体组件80包括沿x轴负向(第三方向)依次设置的第五磁体81、第六磁体82和第七磁体83,第五磁体81与第六磁体82之间形成第一线圈放置位801,第六磁体82与第七磁体83之间形成第二线圈放置位802,第一线圈放置位801与第二线圈放置位802沿x轴负向依次设置。
第五磁体81上具有沿x轴负向伸出的第一磁柱811,第一线圈架84沿x轴方向延伸,第一线圈架84置于第一线圈放置位801中,第一磁柱811沿x轴方向插装在第一线圈架84中,电感线圈91沿x轴方向卷绕在第一线圈架84上。
第六磁体82具有沿x轴负向伸出的第一半磁柱821,第七磁体83上具有沿x轴正向伸出的第二半磁柱831,第一半磁柱821和第二半磁柱831相对拼接成为第二磁柱,第二线圈架85沿x轴方向延伸,第二线圈架85置于第二线圈放置位802中,第一半磁柱821和第二半磁柱831分别沿x轴负向和x轴正向插装在第二线圈架85中,初级线圈92和次级线圈93均沿x轴方向卷绕在第二线圈架85上,初级线圈92与电感线圈91串联,初级线圈92卷绕在次级线圈93外。
最后需要强调的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种变化和更改,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明的多相变压器可作为电器件设置于车载充电机中。
本发明提供的多相变压器中,外壳内设置相互独立的多个放置空间,能容纳多相电感变压单元外还能对在多相电感变压单元之间实现屏蔽作用;初级线圈和次级线圈同心设置能进一步减小磁体组件的体积,从而缩小多相变压器的整体体积;在外壳内进行一次性树脂灌封即可对多个放置空间内形成灌封层,保证产品散热性能且提高生产效率。将多相变压器安装到电路时仅需进行一次性定位安装以及接线即可,安装难度降低且效率提高。

Claims (10)

  1. 多相变压器,包括外壳和电感变压单元,所述电感变压单元包括磁体组件、初级线圈、次级线圈和电感线圈;
    其特征在于:
    所述外壳内形成至少三个放置空间,所述外壳包括阻隔壁,所述阻隔壁阻隔于相邻的两个所述放置空间之间,每个所述放置空间内设置一个所述电感变压单元;
    所述磁体组件中形成第一线圈放置位和第二线圈放置位,所述电感线圈设置在所述第一线圈放置位中,所述初级线圈和所述次级线圈同心设置在所述第二线圈放置位中,所述电感线圈与所述初级线圈串联。
  2. 根据权利要求1所述的多相变压器,其特征在于:
    所述磁体组件包括第一磁体、第二磁体、第三磁体和第四磁体;
    所述第一磁体和所述第二磁体沿第一方向设置,所述第一磁体与所述第二磁体之间形成所述第一线圈放置位;
    所述第三磁体与所述第四磁体沿所述第一方向设置,所述第三磁体与所述第四磁体之间形成所述第二线圈放置位;
    所述第一线圈放置位与所述第二线圈放置位沿第二方向依次设置,所述第二方向垂直于所述第一方向,所述电感线圈、所述初级线圈和所述次级线圈均沿所述第一方向绕卷延伸。
  3. 根据权利要求1所述的多相变压器,其特征在于:
    所述磁体组件包括沿第三方向依次设置的第五磁体、第六磁体和第七磁体;
    所述第五磁体与所述第六磁体之间形成所述第一线圈放置位,所述第六磁体与所述第七磁体之间形成所述第二线圈放置位,所述第一线圈放置位与所述第二线圈放置位沿第三方向依次设置;
    所述电感线圈、所述初级线圈和所述次级线圈均沿所述第三方向绕卷延伸。
  4. 根据权利要求1至3任一项所述的多相变压器,其特征在于:
    所述多相变压器包括第一线圈架和第二线圈架;
    所述第一线圈架固定在所述第一线圈放置位中,所述电感线圈卷绕在所述第一线圈架上;
    所述第二线圈架固定在所述第二线圈放置位中,所述初级线圈和所述次级线圈均卷绕在所述第二线圈架上。
  5. 根据权利要求1至3任一项所述的多相变压器,其特征在于:
    所述第一线圈架中部具有第一通孔,所述磁体组件具有位于所述第一线圈放置位中的第一磁柱,所述第一磁柱插装在所述第一通孔中,
    和/或,
    所述第二线圈架中部具有第二通孔,所述磁体组件具有位于所述第二线圈放置位中的第二磁柱,所述第二磁柱插装在所述第二通孔中。
  6. 根据权利要求1至3任一项所述的多相变压器,其特征在于:
    所述第一线圈架上形成第一卡装位,所述磁体组件的至少一部分位于所述第一卡装位中,
    和/或,
    所述第二线圈架上形成第二卡装位,所述磁体组件的至少一部分位于所述第二卡装位中。
  7. 根据权利要求1至3任一项所述的多相变压器,其特征在于:
    所述外壳包括可拆卸连接的底壁、周壁和面盖,所述放置空间形成于所述底壁、所述周壁和所述面盖之间。
  8. 根据权利要求7所述的多相变压器,其特征在于:
    所述面盖的表侧形成引线槽;
    所述初级线圈的引出部、所述次级线圈的引出部和/或所述电感线圈的引出部位于所述引线槽中。
  9. 根据权利要求7所述的多相变压器,其特征在于:
    所述面盖具有过线孔,所述过线孔连通于所述放置空间与所述多相变压器的外部之间;
    所述初级线圈的引出部、所述次级线圈的引出部和/或所述电感线圈的引出部穿过所述过线孔。
  10. 根据权利要求1至3任一项所述的多相变压器,其特征在于:
    所述多相变压器包括导电端子,所述导电端子中具有接线孔,所述导电端子插装在所述外壳上;
    所述初级线圈的引出端、所述次级线圈的引出端和/或所述电感线圈的引出端插装在所述接线孔。
PCT/CN2020/103443 2020-01-21 2020-07-22 多相变压器 WO2021147277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072211.1A CN111161940A (zh) 2020-01-21 2020-01-21 多相变压器
CN202010072211.1 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147277A1 true WO2021147277A1 (zh) 2021-07-29

Family

ID=70565302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103443 WO2021147277A1 (zh) 2020-01-21 2020-07-22 多相变压器

Country Status (2)

Country Link
CN (1) CN111161940A (zh)
WO (1) WO2021147277A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111161940A (zh) * 2020-01-21 2020-05-15 益仕敦电子(珠海)有限公司 多相变压器
EP4167255A1 (en) 2021-10-14 2023-04-19 Premo, S.A. Thermal conductive bobbin for a magnetic power unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167527A (ja) * 1994-12-15 1996-06-25 Meidensha Corp 分割形変圧器
JPH10256047A (ja) * 1997-03-10 1998-09-25 Fuji Electric Co Ltd 変圧器
US20040056747A1 (en) * 2002-09-25 2004-03-25 Masaaki Kaneko Reactor unit
CN205582719U (zh) * 2016-02-29 2016-09-14 济南铂晶电子科技有限公司 一种内设电阻的三相一体式电压互感器
CN106328363A (zh) * 2015-06-30 2017-01-11 西门子公司 外置式电流互感器组件及具有其的气体绝缘开关设备
CN207116165U (zh) * 2017-06-22 2018-03-16 东莞市大忠电子有限公司 一种三相灌封pfc电感
CN207925253U (zh) * 2018-03-28 2018-09-28 益仕敦电子(珠海)有限公司 具有良好散热性能的电感器
CN111161940A (zh) * 2020-01-21 2020-05-15 益仕敦电子(珠海)有限公司 多相变压器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167527A (ja) * 1994-12-15 1996-06-25 Meidensha Corp 分割形変圧器
JPH10256047A (ja) * 1997-03-10 1998-09-25 Fuji Electric Co Ltd 変圧器
US20040056747A1 (en) * 2002-09-25 2004-03-25 Masaaki Kaneko Reactor unit
CN106328363A (zh) * 2015-06-30 2017-01-11 西门子公司 外置式电流互感器组件及具有其的气体绝缘开关设备
CN205582719U (zh) * 2016-02-29 2016-09-14 济南铂晶电子科技有限公司 一种内设电阻的三相一体式电压互感器
CN207116165U (zh) * 2017-06-22 2018-03-16 东莞市大忠电子有限公司 一种三相灌封pfc电感
CN207925253U (zh) * 2018-03-28 2018-09-28 益仕敦电子(珠海)有限公司 具有良好散热性能的电感器
CN111161940A (zh) * 2020-01-21 2020-05-15 益仕敦电子(珠海)有限公司 多相变压器

Also Published As

Publication number Publication date
CN111161940A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
US8614617B2 (en) Reactor
KR101259778B1 (ko) 3상 고주파 트랜스포머
TWI379324B (en) Magnetic component assembly
EP2498266A2 (en) Reactor and power converter using the same
JPS61503063A (ja) 1方の巻線が第2巻線の支持体として用いられる低プロフィル型磁気構造
TW201118898A (en) Transformer
WO2021147277A1 (zh) 多相变压器
US20220130602A1 (en) Transformer And Method For Manufacturing Transformer
CN103915246B (zh) 线圈部件
TWI575542B (zh) Detachable transformer
WO2020143017A1 (zh) 一种新能源汽车用车载变压器及新能源汽车
CN210200467U (zh) 一种多变型变压器
CN211350276U (zh) 多相变压器
WO2021147278A1 (zh) 多相电感器
CN114937549B (zh) 一种共模电感
CN217214393U (zh) 一种电感装置
CN214753298U (zh) 磁集成电抗器和电力电子设备
CN217086330U (zh) 一种扁平共模电感
CN218631607U (zh) 磁集成器件
CN219066578U (zh) 磁元件及电力电子变压器
US20230360844A1 (en) Magnetic integrated device
JP4930809B2 (ja) トランス
EP4328940A1 (en) Inverter and integrated inductor
CN217333815U (zh) 一种适用于大功率高压电源模块的高频变压器
CN112953073B (zh) 一种扁铜线油冷电机定子的端部集成模块及定子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915174

Country of ref document: EP

Kind code of ref document: A1