WO2021146863A1 - 通信方法、装置及设备 - Google Patents

通信方法、装置及设备 Download PDF

Info

Publication number
WO2021146863A1
WO2021146863A1 PCT/CN2020/073308 CN2020073308W WO2021146863A1 WO 2021146863 A1 WO2021146863 A1 WO 2021146863A1 CN 2020073308 W CN2020073308 W CN 2020073308W WO 2021146863 A1 WO2021146863 A1 WO 2021146863A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
rlc
data
configuration information
status report
Prior art date
Application number
PCT/CN2020/073308
Other languages
English (en)
French (fr)
Inventor
付喆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080077071.5A priority Critical patent/CN114642060B/zh
Priority to PCT/CN2020/073308 priority patent/WO2021146863A1/zh
Publication of WO2021146863A1 publication Critical patent/WO2021146863A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method, device and equipment.
  • Non-Terrestrial Network refers to a communication network between a terminal device and a satellite (also called a network device).
  • the failed data is usually retransmitted.
  • the signal propagation delay between the terminal device and the network device is relatively large, the data retransmission delay between the terminal device and the network device is relatively large, and the communication performance between the terminal device and the network device is poor.
  • the embodiments of the present application provide a communication method, device, and equipment, which reduce the data retransmission delay between terminal equipment and network equipment.
  • an embodiment of the present application provides a communication method, including:
  • the first device obtains configuration information, where the configuration information is used to instruct to repeatedly send the first information
  • the first device repeatedly sends the first information to the second device according to the configuration information.
  • an embodiment of the present application provides a communication method, including:
  • the second device receives multiple pieces of first information repeatedly sent by the first device, and the multiple pieces of first information have the same identities
  • the second device processes the plurality of first information.
  • an embodiment of the present application provides a communication device, which is applied to a first device, and the device includes a processing module and a sending module, where:
  • the processing module is configured to obtain configuration information, where the configuration information is used to instruct to repeatedly send the first information
  • the sending module is configured to repeatedly send the first information to the second device according to the configuration information.
  • an embodiment of the present application provides a communication device, which is applied to a second device, and the device includes a receiving module and a processing module, where:
  • the receiving module is configured to receive multiple pieces of first information repeatedly sent by the first device, and the multiple pieces of first information have the same identifier;
  • the processing module is used to process the multiple pieces of first information.
  • an embodiment of the present application provides a terminal device, including: a transceiver, a processor, and a memory;
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the communication method according to any one of the first aspect or the second aspect.
  • an embodiment of the present application provides a network device, including: a transceiver, a processor, and a memory;
  • the memory stores computer execution instructions
  • the processor executes a computer-executable instruction stored in the memory, so that the processor executes the communication method according to any one of the first aspect or the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, they are used to implement the foregoing The communication method according to any one of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer-executable instruction, and when the computer-executable instruction is executed by a processor, it is used to implement the foregoing The communication method according to any one of the second aspect.
  • the first device can obtain configuration information, and the configuration information is used to indicate repeated transmission of the first information. Accordingly, when the first device sends the first information, it can be based on The configuration information repeatedly sends the first information, so that the first device does not need to retransmit to the second device after receiving the failure response message (indicating that the data was not successfully received) from the second device. This reduces the time delay of retransmission of data between the terminal device and the network device, and improves the communication performance between the terminal device and the network device.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the architecture of another communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a communication process provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of yet another communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of another communication process provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of another communication process provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of yet another communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of still another communication process provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of still another communication device provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a network device provided by an embodiment of the application.
  • Terminal equipment usually has a wireless transceiver function, terminal equipment can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; can also be deployed on the water (such as ships, etc.); can also be deployed in the air (such as airplanes, balloons, etc.) And satellite class).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial Wireless terminals in industrial control, in-vehicle terminal equipment, wireless terminals in self-driving (self-driving), wireless terminal equipment in remote medical, wireless terminal equipment in smart grid, Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, wearable terminal equipment, etc.
  • VR virtual reality
  • AR augmented reality
  • the terminal equipment involved in the embodiments of the present application may also be referred to as a terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station , Remote terminal equipment, mobile equipment, UE terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile.
  • Network equipment usually has a wireless transceiver function, the network equipment may have mobile characteristics, for example, the network equipment may be a mobile device.
  • the network equipment can be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • LEO low earth orbit
  • MEO medium earth orbit
  • GEO geostationary earth orbit
  • HEO high elliptical orbit
  • the orbital height range of LEO satellites is usually 500km to 1500km, and the orbital period (the period of rotation around the earth) is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is about 20ms.
  • the single-hop communication delay between users refers to the transmission delay between the terminal device and the network device, or the delay between the network device and the transmission device.
  • the maximum visible time of the satellite is about 20 minutes.
  • the maximum visible time refers to the longest time that the beam of the satellite covers a certain area of the ground.
  • LEO satellites move relative to the ground. As the satellite moves, the ground area covered by it is also Changing.
  • the signal propagation distance of the LEO satellite is short, the link loss is small, and the requirement for the transmission power of the terminal equipment is not high.
  • the orbital height of GEO satellites is usually 35786km, and the orbital period is 24 hours.
  • the signal propagation delay of single-hop communication between users is about 250ms.
  • satellites can use multiple beams to cover the ground.
  • a satellite can form dozens or hundreds of beams to cover the ground, and one beam can cover dozens to hundreds of kilometers in diameter.
  • Ground area can also be a base station set up in land, water, etc., for example, the network equipment can be a next generation NodeB (gNB) or a next generation-evolved NodeB (ng-eNB) .
  • gNB provides UE with new radio (NR) user plane functions and control plane functions
  • ng-eNB provides UE with evolved universal terrestrial radio access (E-UTRA) user plane Functions and control plane functions.
  • NR new radio
  • E-UTRA evolved universal terrestrial radio access
  • the network equipment can also be a base transceiver station (BTS) in a GSM system or a CDMA system, a base station (nodeB, NB) in a WCDMA system, or an evolutional node B (evolutional node B) in an LTE system. eNB or eNodeB).
  • BTS base transceiver station
  • nodeB, NB base station
  • evolutional node B evolutional node B
  • the network equipment may also be relay stations, access points, in-vehicle equipment, wearable equipment, and network side equipment in the network after 5G or network equipment in the future evolved PLMN network, road site unit (RSU) )Wait.
  • RSU road site unit
  • Radio link control (RLC) entity Each logical channel of a terminal device corresponds to an RLC entity.
  • the RLC entity can be configured in different RLC modes.
  • the RLC mode can be any of the following three modes: transparent mode (TM), unacknowledged mode (UM), and acknowledged mode (acknowledged mode, AM). Below, the three modes are described:
  • Transparent transmission mode The RLC entity configured in the transparent transmission mode can also be referred to as a TM RLC entity.
  • the TM RLC entity In the transparent transmission mode, the TM RLC entity only provides the function of transparent transmission of data.
  • Unacknowledged mode RLC entities configured in unacknowledged mode can also be called UM RLC entities.
  • UM RLC entities can provide everything except retransmission, re-segmentation, duplicate packet detection, and protocol error detection. RLC function, therefore, the reliability of the transmission service provided by the UM RLC entity is poor.
  • the RLC entity configured in the acknowledgement mode can also be called an AM RLC entity.
  • the AM RLC entity can provide all RLC functions. Since the AM RLC entity can provide functions such as error detection and retransmission, the transmission provided by the AM RLC entity The reliability of the service is strong.
  • the RLC service data unit (SDU) segmentation and reorganization function can be supported. Since the size of the resource used for data transmission is usually determined by the medium access control (MAC) scheduler, the size of the resource determined by the MAC scheduler may not be the same as the MAC protocol data unit (PDU). Therefore, the sender needs to segment the RLC SDU to match the resource size indicated by the MAC layer. Correspondingly, after the receiving end receives the segmented RLC SDU, it reorganizes the segmented RLC SDU to recover the original RLC SDU and submit it to the upper layer.
  • the upper layer can be a packet data convergence protocol (packet data convergence protocol). , PDCP) layer.
  • the network device can configure an RLC reassembly timer (t-Reassembly) for the terminal device, and control the time for the terminal device to reassemble the RLC SDU through the RLC reassembly timer. For example, after receiving a PDU segment from the MAC layer, if at least one byte (byte) before the PDU segment has not been received, if the RLC reassembly timer is not currently running, start the RLC reassembly timing Device. If the RLC reassembly timer expires, it means that at least one of the waiting bytes has not been received.
  • the terminal device triggers to discard the corresponding received UMD PDU.
  • the terminal device sends an RLC status report to the network device to inform the network device which RLC SDU was not received correctly, and the network device retransmits the RLC SDU to the terminal device after receiving the RLC status report.
  • ARQ Automatic repeat request
  • the first device After the first device receives the status report sent by the second device, the first device retransmits data to the second device, where the status report may include an indication and/or indication information of unsuccessful data reception, and the unsuccessful reception
  • the indication of the data may be an identifier of unsuccessfully received data, the indication information is used to indicate that there is unsuccessfully received data, and the indication information may be NACK.
  • the unsuccessfully received data may be RLC SDU, RLC SDU segment, and so on.
  • the first device may be a terminal device and the second device may be a network device, or the first device may be a network device and the second device may be a terminal device.
  • the first device may be referred to as an RLC sending entity
  • the second device may be referred to as an RLC receiving entity.
  • the second device sends the above-mentioned status report to the first device:
  • Condition 1 After the second device receives the probe indication information (also referred to as a polling indication) sent by the first device, the second device sends the above-mentioned status report to the first device.
  • the probe indication information also referred to as a polling indication
  • the polling instruction can be sent in the following manner: the value of a preset field (for example, the P field) in the AMD PDU is set to a preset value (for example, 1), and the AMD PDU is sent. That is, by setting the value of P field in the AMD PDU to 1, and sending the AMD PDU, the polling instruction can be sent.
  • a preset field for example, the P field
  • a preset value for example, 1
  • the second device may send a polling instruction to the first device in any of the following situations:
  • Case 1 The number of AMD PDUs sent by the second device that does not include the polling indication is greater than or equal to the threshold of the number of probe PDUs.
  • the number of AMD PDUs that do not include the polling indication can also be referred to as PDU_WITHOUT_POLL, and the number threshold of the probe PDU can be referred to as pollPDU.
  • case 1 can be recorded as: PDU_WITHOUT_POLL ⁇ pollPDU.
  • Case 2 The number of bytes sent by the second device excluding the bytes indicated by polling is greater than or equal to the byte number threshold.
  • the number of bytes not including the polling indication can be referred to as BYTE_WITHOUT_POLL, and the byte number threshold can be referred to as pollByte.
  • case 2 can also be recorded as: BYTE_WITHOUT_POLL ⁇ pollByte.
  • the probe indication information retransmission timer (also called poll retransmission timer or t-PollRetransmit) expires, and after sending the AMD PDU of the upcoming packet, the transmission buffer and retransmission buffer are both Empty, or there is no new RLC SDU to be sent.
  • the start or restart condition of the poll retransmission timer may be: when AMD PDU containing the polling indication is submitted (submit) to the lower layer. After the status report is sent once, the next status report can be sent after the timer expires.
  • Condition 2 When the second device detects that the AMD PDU reception fails, the second device sends the above-mentioned status report to the first device.
  • the second device After the second device detects that the RLC reassembly timer expires, and the second device determines that the AMD PDU reception fails, the second device sends the above-mentioned status report to the first device.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application. Please refer to FIG. 1, including a terminal device 101 and a satellite 102, and wireless communication can be performed between the terminal device 101 and the satellite 102.
  • the network formed between the terminal device 101 and the satellite 102 may also be referred to as NTN.
  • the satellite 102 has the function of a base station, and the terminal device 101 and the satellite 102 can directly communicate with each other. Under the system architecture, the satellite 102 can be referred to as a network device.
  • Fig. 2 is a schematic structural diagram of another communication system provided by an embodiment of the application.
  • FIG. 2 which includes a terminal device 201, a satellite 202, and a base station 203.
  • the terminal device 201 and the satellite 202 can communicate wirelessly, and the satellite 202 and the base station 203 can communicate.
  • the network formed between the terminal device 201, the satellite 202 and the base station 203 may also be referred to as NTN.
  • the satellite 202 does not have the function of a base station, and the communication between the terminal device 101 and the base station 203 needs to be relayed by the satellite 202.
  • the base station 103 can be referred to as a network device.
  • the first device during the communication between the terminal device and the network device, the first device (network device or terminal device) can obtain configuration information, and the configuration information is used to indicate that the first information is repeatedly sent, and accordingly, When the first device sends the first information, it can repeatedly send the first information according to the configuration information. In this way, the first device does not need to send the second device's failure response message (indicating unsuccessful reception of data) after receiving the failure response message from the second device.
  • the second device retransmits the data unsuccessfully received by the second device, reducing the time delay of retransmitting data between the terminal device and the network device, and improving the communication performance between the terminal device and the network device.
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application. See Figure 3. The method can include:
  • the first device obtains configuration information.
  • the first device may be a terminal device and the second device may be a network device, or the first device may be a network device and the second device may be a terminal device.
  • the first device may be referred to as an RLC sending entity
  • the second device may be referred to as an RLC receiving entity.
  • the first information is any one of the following information: RLC data, exploration indication information, and status report information.
  • the configuration information is used to indicate that the first information is repeatedly sent.
  • the configuration information may further indicate that the first information is sent according to the first probe parameter.
  • the configuration information may be different.
  • the configuration information corresponding to the different first information will be described, which will not be repeated here.
  • the first device when the first device is different, the first device obtains the configuration information in a different manner.
  • the following describes the manner in which the first device obtains the configuration information.
  • the first device When the first device is a terminal device, the first device can obtain configuration information in the following manner:
  • Method 1 Receive the configuration information sent by the network device.
  • the terminal device may receive second information sent by the network device, and the second information includes the configuration information.
  • the second information may be any one of the following messages: RRC configuration information, MAC control element (CE) information, and downlink control information (DCI).
  • the configuration information is determined by the network device.
  • the network device may assume that the transmission delay between the terminal device and the network device is a larger delay (that is, assume that the distance between the terminal device and the satellite is a larger distance), and based on the larger time delay.
  • this method can be used to generate configuration information.
  • the network device can also obtain the position information of the terminal device and the movement trajectory of the satellite, and determine the distance (or transmission delay) between the terminal device and the satellite according to the position information of the terminal device and the movement trajectory of the satellite. And according to the distance between the terminal equipment and the satellite (or transmission delay) to generate configuration information.
  • the network device can generate accurate configuration information.
  • the network device can periodically update the configuration information of the terminal device, or when the network device determines that the distance between the terminal device and the satellite has changed (or the amplitude of the change is greater than the preset amplitude), the network device updates Configuration information. After the network device updates the configuration information, it can send the updated configuration information to the terminal device.
  • the terminal device can send its location information to the network device. For example, if the terminal device has not sent its location information to the network device, the terminal device sends its location information to the network device, or the location information of the terminal device After the change (or the change amplitude is greater than the preset amplitude), the terminal device sends its location information to the network device.
  • the terminal device predefines the configuration information.
  • the pre-defined configuration information may be preset or agreed upon in an agreement.
  • the predefined configuration information can be stored locally in the terminal device.
  • the terminal device can obtain the configuration information locally.
  • the first device may obtain the configuration information in the following manner: the network device may predefine the configuration information.
  • the pre-defined configuration information may be preset or agreed upon in an agreement.
  • Manner 3 One part of the configuration information is determined by the network device, and the other part of the configuration information is determined by the terminal device.
  • the retransmission times and time information in the configuration information may be determined by the terminal device, and the indication information and retransmission conditions may be determined by the network device.
  • a part determined by the network device and a part determined by the terminal device can be set according to actual needs.
  • the embodiments of the present application do not specifically limit this.
  • the configuration information can also be completely determined by the network device, or completely determined by the terminal device.
  • the configuration information may all be determined by the network device, and in the foregoing manner 2, the configuration information may be all determined by the terminal device.
  • S302 The first device repeatedly sends the first information to the second device according to the configuration information.
  • the first device may repeatedly send the first information to the second device in the following manner: the first device sends multiple pieces of first information to the second device at the same time, or the first device sequentially sends the first information to the second device in a preset order Send multiple pieces of first information, or the first device may periodically send multiple pieces of first information to the second device.
  • the manner in which the first device repeatedly sends the first information to the second device according to the configuration information is also different.
  • the process of the first device repeatedly sending the first information to the second device according to the configuration information is described, and details are not described herein again.
  • the second device processes multiple pieces of first information.
  • the second device processes the first information in a different manner. It should be noted that the processing method of the first information is described in the embodiment shown in FIG. 4 to FIG. 11, which is not repeated here.
  • the first device can obtain configuration information, and the configuration information is used to instruct to repeatedly send the first information.
  • the first device can compare the configuration information to the first device.
  • a message is repeatedly sent, so that the first device does not need to retransmit the unsuccessful data received by the second device to the second device after receiving the failure response message from the second device (indicating that the data was not successfully received).
  • the time delay of retransmission of data between the terminal device and the network device is improved, and the communication performance between the terminal device and the network device is improved.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of this application. Referring to Figure 4, the method may include:
  • S401 The first device obtains configuration information.
  • the configuration information is used to indicate repeated transmission of RLC data.
  • RLC data may include one or more of the following data: RLC SDU data, RLC SDU segment data, RLC PDU data, RLC PDU segment data.
  • the configuration information may be configured for a certain object in the first device (RLC entity, RLC mode, radio bearer, etc.), that is, the configuration information is configuration information corresponding to a certain object in the first device.
  • RLC entity RLC entity, RLC mode, radio bearer, etc.
  • the configuration information is configuration information corresponding to a certain object in the first device.
  • the configuration information is the configuration information corresponding to the preset RLC entity.
  • the preset RLC entity is the RLC sending entity in the first device.
  • the preset RLC entity may be any one or more RLC entities, or a specific RLC entity.
  • the configuration information is configuration information configured on the preset RLC entity of the first device.
  • the configuration information is configuration information corresponding to the first RLC mode.
  • the first RLC mode includes at least one of the following modes: confirmed mode, non-confirmed mode, or transparent transmission mode.
  • the configuration information is configuration information configured for the first RLC mode of the first device.
  • the configuration information is the corresponding configuration information of the preset RLC entity in the first RLC mode.
  • the first RLC mode includes at least one of the following modes: confirmed mode, non-confirmed mode, or transparent transmission mode.
  • the configuration information is configuration information configured for the preset RLC entity in the first RLC mode of the first device.
  • the configuration information is the configuration information corresponding to the preset radio bearer.
  • the preset radio bearer may be a data radio bearer (DRB).
  • DRB data radio bearer
  • the configuration information is the configuration information of the preset radio bearer configuration of the first device.
  • the configuration information may include at least one of the following information:
  • the first indication information indicates that the RLC data is repeatedly sent.
  • the first indication information may be indication information indicating repeated transmission of data, or the first indication information may be indication information indicating repeated transmission of activation data. For example, when the first indication information indicates that repeated data transmission is activated, and after the first device receives the first indication information, the data repeated transmission function of the first device is activated, so that the first device repeatedly transmits RLC data.
  • the number of repeated transmissions of RLC data is an integer greater than or equal to 2.
  • the number of repeated transmissions can be 2, 3, 4, and so on.
  • the first time information includes a time period
  • the time period may be a time period for the first device to repeatedly send data.
  • the time period may include a start time and an end time.
  • the time period included in the first time information may be 10:00 on January 1, 2019 to 10:10 on January 1, 2019.
  • the first time information includes a start time and/or time length
  • the start time is the time when the first device starts to repeat data transmission
  • the time length is the time length for the first device to repeat data transmission.
  • the first time information may include a start time and an end time, where the start time is the time when the first device starts the repeated data transmission, and the end time is the time when the first device ends the repeated data transmission.
  • the first time information may include first repeated transmission time information and first activation time information.
  • the first repeated transmission time information is used to indicate time information for repeated transmission of RLC data.
  • the first activation time information is used to indicate time information when the repeat sending function of the first device is activated.
  • Both the first retransmission time information and the first activation time information may include a time period, or include a start time and/or duration, or include a start time and an end time, which will not be repeated here.
  • the first condition may include at least one of the following: the channel quality of the first device is less than or equal to the first threshold, and the transmission delay between the first device and the second device is greater than or equal to the second threshold.
  • S402 The first device repeatedly sends RLC data to the second device according to the configuration information.
  • the manner in which the first device repeatedly sends RLC data to the second device according to the configuration information is also different.
  • the configuration information includes the first indication information.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is locally predefined by the first device, when the first device sends RLC data through the first RLC sending entity, the first device repeats the sending according to the first indication information
  • the number of repeated transmissions can be a preset number of times.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is received by the first device (assumed as a terminal device) from the second device, after the first device receives the configuration information, the first device When the first RLC sending entity sends RLC data, the first device repeatedly sends the RLC data according to the first indication information, and the number of repeated sending may be a preset number.
  • the configuration information corresponds to other (for example, RLC mode or radio bearer)
  • the manner in which the first device sends RLC data is similar, and details are not described herein again.
  • the configuration information includes the number of repeated sending of RLC data.
  • the first device when the first device sends RLC data through the first radio bearer, the first device repeats according to the number of times included in the configuration information Send RLC data. For example, assuming that the number of repeated sending of RLC data included in the configuration information is 3, when the first device sends the RLC data, the first device sends the RLC data 3 times repeatedly.
  • the first device passes the first device.
  • the RLC data is repeatedly sent according to the number of times included in the configuration information. For example, assuming that the number of repeated sending of RLC data included in the configuration information is 3, when the first device sends the RLC data, the first device sends the RLC data 3 times repeatedly.
  • the configuration information corresponds to other (for example, RLC entity or RLC mode)
  • the manner in which the first device sends RLC data is similar, and details are not described herein again.
  • Case 3 The configuration information includes the first time information for repeatedly sending the RLC data.
  • the configuration information corresponds to the first RLC mode, and the configuration information is locally pre-defined by the first device
  • the first device when the first device sends RLC data through the RLC sending entity in the first RLC mode, the first device has information at the first time
  • the RLC data is repeatedly sent within the indicated time (for example, time period).
  • the first device may repeatedly send RLC data according to a preset number of times.
  • the first device If the configuration information corresponds to the first RLC mode, and the configuration information is received by the first device (assumed as a terminal device) from the second device, after the first device receives the configuration information, the first device When the RLC sending entity in the first RLC mode sends RLC data, the first device repeatedly sends the RLC data within the time (for example, time period) indicated by the first time information.
  • the first device may repeatedly send RLC data according to a preset number of times.
  • the configuration information corresponds to other (for example, RLC entity or radio bearer)
  • the manner in which the first device sends RLC data is similar, and details are not described herein again.
  • the configuration information includes the first condition for sending RLC data.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is locally predefined by the first device, when the first device sends RLC data through the first RLC sending entity, if the first device satisfies the first condition, then The first device repeatedly sends the RLC data, and the number of repeated sending may be a preset number.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is received by the first device (assumed as a terminal device) from the second device, then after the first device receives the configuration information, the first device When the first RLC sending entity sends RLC data, if the first device satisfies the first condition, the first device repeatedly sends the RLC data, and the number of repeated sending may be a preset number.
  • the configuration information corresponds to other (for example, RLC mode or radio bearer)
  • the manner in which the first device sends RLC data is similar, and details are not described herein again.
  • the configuration information may also include any two or more of the foregoing information.
  • the first device may send RLC data in a combination of the manners corresponding to the foregoing four cases. For example, assuming that the configuration information includes the number of times of repeatedly sending RLC data and the first condition, when the first device satisfies the first condition, the first device sends the RLC data according to the above-mentioned number of times. For example, assuming that the configuration information includes the number of times the RLC data is repeatedly sent and the first time information, the first device sends the RLC data according to the above-mentioned number of times within the time indicated by the first time information. I will not repeat the description of other information combinations one by one here.
  • the first device may repeatedly send RLC data to the second device in the following manner:
  • the first device sends multiple RLC data to the second device at the same time.
  • Manner 2 The first device sends multiple RLC data to the second device in a preset sequence.
  • Manner 3 The first device periodically sends multiple RLC data to the second device.
  • the first device may send RLC data at time intervals.
  • the time interval may be a preset time interval or a time interval calculated by the terminal device according to the configuration information. For example, assuming that the configuration information includes the number and duration of repeatedly sending RLC data, the first device can calculate the time interval according to the number and duration.
  • the time interval for the first device to send RLC data twice may be the same or different.
  • the first device needs to repeatedly send RLC data three times, and the preset time interval is t. After the first device sends RLC data for the first time, the first device waits for a period of time t and sends the RLC data for the second time, and After sending the RLC data for the second time, the first device waits for the duration t and sends the RLC data for the third time.
  • the first device may not continue to send the data to the second device. send.
  • the second device performs repeated data detection processing and/or repeated data discarding processing on multiple RLC data.
  • the second device may perform repeated data detection processing on multiple RLC data in the following manner: the second device determines that the multiple RLC data is repeated data according to the identifiers of the multiple RLC data.
  • the identifier of the RLC data may be a serial number (SN).
  • the second device may perform repeated data discarding processing on multiple RLC data in the following manner: the second device discards the repeated data. For example, assuming that the number of the multiple repeated RLC data is N (N is an integer greater than or equal to 2), the second device may discard N-1 of the N RLC data.
  • the second device includes a PDCP entity and an RLC entity.
  • the PDCP entity in the second device performs repeated data detection processing and/or repeated data discard processing on RLC SDU data and/or RLC SDU segment data in the RLC data.
  • the RLC entity in the second device performs repeated data detection processing and/or repeated data discard processing on RLC PDU data and/or RLC PDU segment data in the RLC data.
  • the first device can repeatedly send RLC data to the second device according to the configuration information, without receiving the failure response message (indicating the unsuccessful reception of RLC data) sent by the second device.
  • Retransmitting the RLC data to the second device reduces the time delay for the first device to retransmit the RLC data to the second device, and improves the communication performance between the first device and the second device.
  • Fig. 5 is a schematic diagram of a communication process provided by an embodiment of the application.
  • the first device is a terminal device and the second device is a network device.
  • P refers to RLC data.
  • the terminal device Before time t1, if the terminal device does not receive the configuration information sent by the network device, the terminal device does not repeatedly send RLC data when sending RLC data to the network device. For example, referring to Fig. 5, when a terminal device sends RLC data P1, P2, and P3 to a network device, they do not send it repeatedly.
  • the terminal device receives the configuration information sent by the network device, and the configuration information includes the number of repeated sending of RLC data (2).
  • the configuration information is used to instruct the terminal device to repeatedly send RLC data twice.
  • the terminal device After t1, when the terminal device sends RLC data, the terminal device repeatedly sends the RLC data twice. For example, referring to FIG. 5, when the terminal device sends RLC data P4, the terminal device sends the RLC data P4 twice. When the terminal device sends the RLC data P5, the terminal device sends the RLC data P5 twice.
  • the network device since the terminal device repeatedly sends the RLC data P4 and P5 twice, the network device has a higher probability of success in receiving P4 and P5, and the terminal device does not need to receive the network
  • the device feedback that the failure response message of P4 and P5 is not received before retransmitting P4 and P5 to the network device, reducing the delay of the terminal device retransmitting P4 and P5 to the network device, and improving the communication performance of the terminal device and the network device .
  • FIG. 6 is a schematic flowchart of yet another communication method provided by an embodiment of this application. Referring to Figure 6, the method may include:
  • the first device obtains configuration information.
  • the configuration information is used to indicate repeated transmission of the probe indication information (also called polling indication).
  • the discovery indication information is used to instruct the second device to send status report information, that is, after the second device receives the discovery indication information sent by the first device, the second device sends the status report information to the first device.
  • the second device may send the discovery indication information to the first device in the following manner: the second device sends an AMD PDU to the first device, and the value of the preset field in the AMD PDU is a preset value, for example, the preset field may be P field (P field), the preset value may be 1, that is, the second device sends an AMD PDU with the value of P field of 1 to the first device, which is equivalent to the second device sending the probe indication information to the first device.
  • P field P field
  • the preset value may be 1, that is, the second device sends an AMD PDU with the value of P field of 1 to the first device, which is equivalent to the second device sending the probe indication information to the first device.
  • the configuration information may be configured for a certain object in the first device (RLC entity, RLC mode, radio bearer, etc.), that is, the configuration information is configuration information corresponding to a certain object in the first device.
  • RLC entity RLC entity, RLC mode, radio bearer, etc.
  • the configuration information is configuration information corresponding to a certain object in the first device.
  • the configuration information is the configuration information corresponding to the confirmation mode.
  • the configuration information is the configuration information of the confirmation mode configuration of the first device.
  • the configuration information is the configuration information corresponding to the preset RLC entity (RLC sending entity).
  • the preset RLC entity may be any one or more RLC entities, or a specific RLC entity.
  • the configuration information is configuration information configured on the preset RLC entity of the first device.
  • the configuration information is the configuration information corresponding to the preset radio bearer.
  • the preset radio bearer may be DRB.
  • the configuration information is the configuration information of the preset radio bearer configuration of the first device.
  • the content included in the configuration information can refer to the embodiment shown in FIG. 4, and the RLC data in the embodiment of FIG. 4 can be replaced with a polling indication.
  • S602 The first device repeatedly sends the discovery instruction information to the second device according to the configuration information.
  • the first device When the content included in the configuration information is different, the first device repeatedly sends the probe indication information to the second device according to the configuration information in a different manner.
  • the manner in which the first device repeatedly sends the discovery indication information to the second device according to the configuration information refer to Case 1-Case 4 in S402, and replace the first RLC data in S402 with the discovery indication information, which will not be repeated here. .
  • the first device may repeatedly send the discovery indication information in the following manner:
  • the first device sends multiple probe indication information to the second device at the same time.
  • Manner 2 The first device sends a plurality of exploration indication information to the second device in a preset sequence.
  • Manner 3 The first device periodically sends multiple probe indication information to the second device.
  • the first device may send the search indication information according to the time interval.
  • the time interval may be a preset time interval or a time interval calculated by the terminal device according to the configuration information. For example, assuming that the configuration information includes the number and duration of repeated sending of the discovery indication information, the first device may calculate the time interval according to the number and duration.
  • the time interval for the first device to send the probe indication information twice may be the same or different.
  • the first device needs to repeatedly send the discovery instruction information three times, and the preset time interval is t. After the first device sends the discovery instruction information for the first time, the first device waits for a period of time t and sends the second discovery instruction Information, and after sending the exploration instruction information for the second time, the first device waits for the duration t and sends the third exploration instruction information.
  • Manner 3 After the first device sends a probe instruction to the second device, if it receives a failure response message from the second device, the first device repeats sending the next probe instruction to the second device.
  • the failure response message is used to indicate that the second device has not successfully received the probe indication information.
  • the failure response message may be an ARQ NACK message, or a hybrid automatic repeat request (HARQ) NACK message, etc.
  • the first device may not continue to send the data to the second device. send.
  • the second device sends M pieces of status report information corresponding to the probe indication information to the first device.
  • M can be 1, or it can be an integer greater than or equal to 2. If M is an integer greater than or equal to 2, the contents included in the M status report messages are the same.
  • the status report information may include at least one of the following information: an indication of unsuccessful data reception, and an indication that indicates that there is data unsuccessful reception.
  • the indication of unreceived data may be an identifier of unsuccessful data, and the unsuccessful data may be RLC data.
  • the number of search indication information may be N, where N is an integer greater than or equal to 2.
  • the search indication information and the status report information can be in one-to-one correspondence, and correspondingly, M and N are the same.
  • the second device may first generate M pieces of status report information corresponding to the discovery indication information, and then send the M pieces of status report information to the first device. If there is a one-to-one correspondence between the exploration indication information and the status report information, each time the second device receives a piece of exploration indication information, it can generate the status report information corresponding to the exploration indication information.
  • the second device may send the status report information to the first device every time the status report information is generated. Alternatively, the second device may simultaneously send the M pieces of status report information to the first device after generating the M pieces of status report information.
  • the status prohibit timer is used to control the sending of status report information. After the status prohibit timer expires, the next status report information is sent. For example, after sending a status report message, if the status prohibit timer is turned on, the next status report message will not be sent until the status prohibit timer expires. In other words, before the status prohibit timer expires, no Send the next status report message.
  • the way to disable the timer in the on-state is described, which may include the following ways:
  • the status of the status prohibit timer is turned off.
  • the second device Since the second device does not start the state prohibition timer after sending the first K status report information to the first device, there is no need to wait for the state prohibition timer to expire when the second device sends the first K+1 status report information, so that the first The second device can quickly send the first K+1 status report information.
  • K can be M minus 1. In this way, in the process of sending the M status report information, there is no need to wait for the state prohibition timer to expire, so that the efficiency of sending the M status report information is higher.
  • Manner 2 After the second device sends the L status report information corresponding to the discovery indication information to the first device, the second device turns on the status prohibit timer, and L is an integer less than or equal to M.
  • the second device sends the first L-1 status report information to the first device, none of the status prohibit timers are included. In this way, the second device does not need to wait for the state prohibition timer to expire when sending the L status report information, so that the efficiency of sending the L status report information is higher.
  • L is equal to M. In this way, in the process of sending the M status report information, there is no need to wait for the state prohibition timer to expire, so that the efficiency of sending the M status report information is higher.
  • P is an integer greater than or equal to 1.
  • the second device generates and sends status report information corresponding to the exploration indication information after receiving the P exploration indication information.
  • the second device is turned on and prohibits the timer.
  • the second device generates and sends the status report information corresponding to the probe instruction information after each probe instruction information is received.
  • the second device starts the state prohibit timer after receiving the P probe indication information, which can also be understood as: the second device starts the state prohibit timer after sending the P status report information.
  • P is equal to M.
  • the number of state prohibition timers that the second device is turned on may be L, where L is an integer, and 1 ⁇ L ⁇ M.
  • the second device after the second device receives the preset duration of the probe indication information, the second device sends the status report information to the first device and starts the status prohibit timer.
  • the second device after the second device receives the preset duration of the Q probe indication information, the second device sends the status report information to the first device and starts the status prohibit timer.
  • the second device may start the state prohibit timer every time it receives a preset duration of the search indication information. In this way, the second device can periodically send status report information.
  • the number of state prohibition timers that the second device is turned on may be L, where L is an integer, and 1 ⁇ L ⁇ M.
  • S604 The first device retransmits data to the second device according to the M pieces of status report information.
  • the second device After the first device receives the first status report information, the second device can retransmit data to the second device according to the first status report information.
  • the first device may retransmit the data sent within the preset historical period to the second device.
  • the preset historical period may be the current moment The duration corresponding to the previous preset duration.
  • the first device after receiving the status report information, the first device repeatedly sends data when sending data to the second device.
  • the first device retransmits the unsuccessful data to the second device.
  • the first device can repeatedly send the probe indication information to the second device according to the configuration information, so that the second device repeatedly sends the status indication information to the first device, so that the first device can send the status indication information to the first device repeatedly.
  • the instruction information repeatedly sends RLC data to the second device, and there is no need to retransmit the RLC data to the second device after receiving the failure response message sent by the second device (indicating that the RLC data is not successfully received), which reduces the first device to the second device.
  • the time delay for the second device to retransmit the RLC data improves the communication performance between the first device and the second device.
  • FIG. 7 is a schematic diagram of another communication process provided by an embodiment of this application.
  • the first device is a terminal device and the second device is a network device.
  • P refers to RLC PDU.
  • P1, P4, and P8 are polling indicators
  • P2, P3, and P5-P7 are non-polling indicators.
  • the polling indication can be an RLC PDU with a P field of 1
  • the non-polling indication can be an RLC PDU with a P field of 0.
  • the terminal device receives configuration information, and the configuration information includes a first condition, and the first condition is used to indicate that retransmission is performed when the propagation delay between the terminal device and the network device is greater than a threshold.
  • the configuration information also includes the number of retransmission polling indications (3).
  • the terminal device does not repeatedly transmit the polling instruction.
  • the terminal device does not repeatedly send P1 (polling indication).
  • the polling PDU number threshold (pollPDU) is 3, after the terminal device sends P1 (polling indication), the terminal device sends non-polling indications (P2 and P3).
  • the terminal device After time t2, if the propagation delay between the terminal device and the network device is greater than the threshold, the terminal device repeatedly transmits the polling instruction. Referring to FIG. 7, after the propagation delay between the terminal device and the network device is greater than the threshold, the terminal device repeatedly transmits P4 (polling indication). Assuming that the polling PDU number threshold (pollPDU) is 3, the terminal device sends a non-polling indication after repeatedly sending P4. After the terminal device sends three RLC PDUs (P5, P6, and P7) with a P field of 0, the terminal device repeatedly sends P8 (polling indication).
  • P4 polling PDU number threshold
  • the terminal device since the terminal device sends the polling instructions corresponding to P4 and P8, the terminal device repeatedly sends three times, so that the network device can repeatedly send status report information to the terminal device after receiving the polling instruction, and then This allows the terminal device to repeatedly send RLC data to the network device, reduces the retransmission delay between the terminal device and the network device, and improves the communication performance between the terminal device and the network device.
  • FIG. 8 is a schematic flowchart of another communication method provided by an embodiment of this application. Referring to Figure 8, the method may include:
  • S801 The first device obtains configuration information.
  • the configuration information is used to instruct the pair to send probe indication information (also referred to as polling indication) according to the first probe parameter.
  • the discovery indication information is used to instruct the second device to send status report information, that is, after the second device receives the discovery indication information sent by the first device, the second device sends the status report information to the first device.
  • the search indication information may also be referred to as a polling indication.
  • the second device may send a polling instruction to the first device in the following manner: the second device sends an AMD PDU to the first device, and the value of the preset field in the AMD PDU is a preset value, for example, the preset field may be P Field (P field), the preset value can be 1, that is, the second device sends an AMD PDU with the value of P field of 1 to the first device, which is equivalent to the second device sending a polling instruction to the first device.
  • P field P Field
  • the configuration information may be configured for a certain object in the first device (RLC entity, RLC mode, radio bearer, etc.), that is, the configuration information is configuration information corresponding to a certain object in the first device.
  • RLC entity RLC entity, RLC mode, radio bearer, etc.
  • the configuration information is configuration information corresponding to a certain object in the first device.
  • the configuration information is the configuration information corresponding to the confirmation mode.
  • the configuration information is the configuration information of the confirmation mode configuration of the first device.
  • the configuration information is the configuration information corresponding to the preset RLC entity (RLC sending entity).
  • the preset RLC entity may be any one or more RLC entities, or a specific RLC entity.
  • the configuration information is configuration information configured on the preset RLC entity of the first device.
  • the configuration information is the configuration information corresponding to the preset radio bearer.
  • the preset radio bearer may be DRB.
  • the configuration information is the configuration information of the preset radio bearer configuration of the first device.
  • the configuration information includes at least one of the following information:
  • the second indication information is used for instructing to repeatedly send the exploration indication information (polling indication) according to the first exploration parameter.
  • the first device usually sends the polling instruction according to the probe parameter.
  • the polling instruction For the situation that the first device sends the polling instruction, refer to the situation that the second device sends the polling instruction recorded in the foregoing embodiment, which will not be repeated here.
  • Repeatedly sending the search indication information according to the first search parameter means that when a certain condition is met, the first search parameter is used to send the search indication information.
  • the first search parameter usually meets certain conditions after each period of time. Therefore, repeating the sending of the search indication information according to the first search parameter can also be understood as: sending the search indication information according to the first search parameter.
  • the first probe parameter includes at least one of the following: a probe indication information retransmission timer (may also be referred to as the duration of the probe indication information retransmission timer), a threshold value of the number of probe PDUs, and a threshold value of the number of bytes.
  • a probe indication information retransmission timer may also be referred to as the duration of the probe indication information retransmission timer
  • a threshold value of the number of probe PDUs may also be referred to as the duration of the probe indication information retransmission timer
  • a threshold value of the number of bytes may be described:
  • the duration of the t-PollRetransmit timer is less than or equal to a preset duration.
  • the preset duration may be 4ms (milliseconds).
  • the duration of the search indication information retransmission timer may be 1ms, 2ms, 3ms, or 4ms.
  • the preset duration can be set according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the probe indication information retransmission timer is used to control the retransmission of the polling indication.
  • the polling indication can be retransmitted after the probe indication information retransmission timer expires.
  • the duration of the probing indication information retransmission timer included in the first probing parameter is a part of the pre-defined duration of the probing indicator information retransmission timer.
  • the duration of the probing indication information retransmission timer included in the first probing parameter is X time lengths with the shortest duration among the durations of the predefined probing indicator information retransmission timer, and X may be an integer greater than or equal to 1. .
  • the duration of the predefined probe indication information retransmission timer may include: ms1, ms2, ms3, ms4, ms5, ms10, ms15, ms20, ms25, ms30, ms35, ms40, ms45, ms50, ms55, ms60, ms65 , Ms70, ms75, ms80, ms85, ms90, ms95, ms100, ms105, ms110, ms115, ms120, ms125, ms130, ms135, ms140, ms145, ms150, ms155, ms160, ms165, ms170, ms175, ms180, ms185, ms190 , Ms195, ms200, ms205, ms210, ms215, ms195
  • the duration of the seeking indication retransmission timer in the first seeking parameter may be 1ms, 2ms, 3ms, or 4ms. That is, the duration of the seeking instruction retransmission timer in the first seeking parameter is the shortest 4 durations among the durations of the predefined seeking instruction information retransmission timer.
  • the threshold of the number of probe PDUs is less than or equal to the fifth threshold.
  • the threshold of the number of probe PDUs can also be recorded as pollPDU.
  • the fifth threshold may be 3.
  • the threshold of the number of probe PDUs may be 1, 2, or 3.
  • the fifth threshold can be set according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the threshold of the number of probe PDUs is used to control the sending of the polling indication. For example, when the number of first PDUs sent is greater than or equal to the threshold of the number of PDUs, the probe indication information is sent, and the first PDU does not include the Explore instructions.
  • the threshold for the number of probe PDUs included in the first probe parameter may be a part of the threshold for the number of probe PDUs predefined.
  • the threshold of the number of probe PDUs included in the first probe parameter is the smallest Y threshold among the predefined thresholds of the number of probe PDUs, and Y may be an integer greater than or equal to 1.
  • the pre-defined thresholds for the number of discovery PDUs may include: p1, p2, p3, p4, p8, p16, p32, p64, p128, p256, p512, p1024, p2048, p4096, p6144, p8192, p12288, p16384, p20480, p24576, p28672, p32768, p40960, p49152, p57344, p65536, infinity, spare8, spare7, spare6, spare5, spare4, spare3, spare2, spare1.
  • p refers to the number.
  • Spare refers to spare parameters, and can also be called reserved parameters.
  • the threshold of the number of probe PDUs in the first probe parameter may be 1 or 2 or 3. That is, the threshold for the number of probe PDUs in the first probe parameter is the smallest three thresholds among the predefined thresholds for the number of probe PDUs.
  • the byte count threshold is less than or equal to the sixth threshold.
  • the byte count threshold can also be recorded as pollByte.
  • the sixth threshold may be 500 bytes (Byte), and the number of bytes threshold may be 1 byte, 100 bytes, 500 bytes, and so on.
  • the sixth threshold can be set according to actual needs, which is not specifically limited in the embodiment of the present application.
  • the byte count threshold is used to control the sending of the polling indication. For example, when the number of the first byte being sent is greater than or equal to the byte count threshold, the probe indication information is sent, and the first byte does not include the probe indication information.
  • the threshold of the number of bytes included in the first search parameter may be a part of the predefined threshold of the number of bytes.
  • the byte number threshold included in the first search parameter may be the smallest Z thresholds among the predefined byte number thresholds, and Z may be an integer greater than or equal to 1.
  • the predefined byte count threshold may include: B1, B100, B500, kB1, kB2, kB5, kB8, kB10, kB15, kB25, kB50, kB75, kB100, kB125, kB250, kB375, kB500, kB750, kB1000 , KB1250, kB1500, kB2000, kB3000, kB4000, kB4500, kB5000, kB5500, kB6000, kB6500, kB7000, kB7500, mB8, mB9, mB10, mB11, mB12, mB13, mB14, mB15, mB16, mB18, mB20, mB18 , MB30, mB40.
  • B is a byte.
  • kB is the unit of bytes and
  • the threshold of the number of bytes included in the first search parameter may be 1 byte, 100 bytes, or 500 bytes. That is, the threshold of the number of bytes included in the first search parameter is the smallest three thresholds among the predefined thresholds of the number of bytes.
  • the second time information of the search indication information is repeatedly sent according to the first search parameter, the second time information includes the time period, or the second time information includes the start time and/or duration, or the second time information Include the start time and/or end time.
  • the second time information is used to indicate the time when the first device sends the exploration instruction information according to the first exploration parameter, and at other times, the first device sends the exploration instruction information according to other exploration parameters.
  • the other search parameters may be other search parameters except the first search parameter among the predefined search parameters.
  • the second time information includes a time period
  • the time period may be a time period during which the first device sends the probe indication information according to the first probe parameter.
  • the time period may include a start time and an end time.
  • the time period included in the first time information may be 10:00 on January 1, 2019 to 10:10 on January 1, 2019.
  • the second time information includes a start time and/or time length
  • the start time is the time when the first device starts to send data repeatedly
  • the time length is the time for the first device to send data repeatedly.
  • the second time information may include a start time and an end time, where the start time is the time when the first device starts repeated data transmission, and the end time is the time when the first device ends repeated data transmission.
  • the second condition includes at least one of the following: the channel quality of the first device is less than or equal to the third threshold, and the transmission delay between the first device and the second device is greater than or equal to the fourth threshold.
  • S802 The first device repeatedly sends the discovery indication information to the second device according to the configuration information and the first discovery parameter.
  • the manner in which the first device repeatedly sends the discovery indication information to the second device according to the configuration information and the first discovery parameter is also different.
  • the following describes the manner in which the first device sends the discovery indication information to the second device according to the first discovery parameter under several different configuration information, which may include the following multiple situations:
  • the configuration information includes the first indication information.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is locally predefined by the first device, when the first device sends the probe indication information through the first RLC sending entity, the first device sends it according to the first probe parameter Explore instructions.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is received by the first device (assumed as a terminal device) from the second device, after the first device receives the configuration information, the first device When the first RLC sending entity sends the probe instruction information, the first device sends the probe instruction information according to the first probe parameter.
  • the manner in which the first device sends the probe indication information according to the first probe parameter is similar, and will not be repeated here.
  • the configuration information is the second configuration information.
  • the configuration information includes second time information for repeatedly sending the search indication information according to the first search parameter.
  • the configuration information corresponds to the first RLC mode, and the configuration information is locally predefined by the first device, when the first device sends the probe indication information through the RLC sending entity in the first RLC mode, the first device will Within the time (for example, time period) indicated by the information, the first device sends the exploration indication information according to the first exploration parameter.
  • the configuration information corresponds to the first RLC mode, and the configuration information is received by the first device (assumed as a terminal device) from the second device, after the first device receives the configuration information, the first device When the RLC sending entity in the first RLC mode sends the probe indication information, the first device sends the probe indication information according to the first probe parameter within the time (for example, time period) indicated by the second time information.
  • the manner in which the first device sends the probe indication information according to the first probe parameter is similar, and will not be repeated here.
  • Configuration information The first configuration information.
  • the configuration information includes a second condition for sending the exploration instruction information according to the first exploration parameter.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is locally predefined by the first device, when the first device sends the probe indication information through the first RLC sending entity, if the first device satisfies the first condition, Then the first device sends the exploration instruction information according to the first exploration parameter.
  • the configuration information corresponds to the first RLC sending entity, and the configuration information is received by the first device (assumed as a terminal device) from the second device, after the first device receives the configuration information, the first device When the first RLC sending entity sends the probe indication information, if the first device satisfies the first condition, the first device sends the probe indication information according to the first probe parameter.
  • the manner in which the first device sends the probe indication information according to the first probe parameter is similar, and will not be repeated here.
  • the configuration information can also include any two or more of the above information.
  • the first device can use the combination of the methods corresponding to the above 3 cases according to the first search
  • the parameter sends the discovery instruction information. For example, assuming that the configuration information includes the second time information and the second condition, when the first device meets the second condition, the first device sends data according to the first probe parameter within the time indicated by the second time information. Explore instructions. I will not repeat the description of other information combinations one by one here.
  • the duration of the probe indication information retransmission timer, the threshold of the number of probe PDUs, and the threshold of the number of bytes in the first probe parameter are all relatively small. Therefore, the first device sends the probe indication information according to the first probe parameter.
  • the frequency of is higher, that is, the time interval between every two adjacent probe instructions sent by the first device according to the first probe parameter is smaller, so that the first device can send the probe instruction information to the second device in time.
  • the second device sends the status report information corresponding to the probe indication information to the first device.
  • the second device After receiving the discovery indication information sent by the first device, the second device generates status report information corresponding to the discovery indication information, and sends the status report information to the first device.
  • the second device Since the first device sends the probe indication information to the second device more frequently, the second device sends the status report information to the first device more frequently, that is, every two devices sent by the second device to the first device The time interval between adjacent status report information is small, so that the second device can send the status report information to the first device in time.
  • S804 The first device retransmits the data to the second device according to the status report information.
  • S804 For the execution process of S804, refer to S604, which will not be repeated this time.
  • S804 and S604 The difference between S804 and S604 is that in S804, the first device receives a piece of status report information, and retransmits data to the second device according to the piece of status report information.
  • the first device since the duration of the retransmission timer, the threshold value of the number of probe PDUs, and the threshold value of the number of bytes in the first probe parameter are all small, the first device uses the first probe parameter
  • the frequency of sending the exploration indication information to the second device is relatively high, that is, the time interval between every two adjacent exploration indication information sent by the first device according to the first exploration parameter is small, so that the first device can send the information to the first device in time.
  • the second device sends the discovery instruction information.
  • FIG. 9 is a schematic diagram of another communication process provided by an embodiment of this application.
  • the first device is a terminal device and the second device is a network device.
  • P refers to RLC PDU.
  • P1, P5, P6, P8, and P10 are polling indicators
  • P2-P4, P7, and P9 are non-polling indicators.
  • the polling indication can be an RLC PDU with a P field of 1
  • the non-polling indication can be an RLC PDU with a P field of 0.
  • the terminal device receives configuration information, and the configuration information includes a second condition.
  • the second condition is used to indicate that the first probe parameter is used to transmit the polling instruction when the propagation delay between the terminal device and the network device is greater than the threshold.
  • the first probe parameter includes a probe PDU number threshold (pollPDU) of 1.
  • the terminal device transmits the polling indication according to the second probe parameter, assuming that the threshold of the number of probe PDUs in the second probe parameter (pollPDU ) Is 3, then the terminal device transmits a polling indication every 3 RLC PDUs with a P domain of 0. For example, referring to FIG. 9, after transmitting P1 (polling indication), the terminal device transmits three RLC PDUs (P2, P3, and P4) with a P domain of 0, and then transmits P5 (polling indication).
  • the terminal device After time t2, if the propagation delay between the terminal device and the network device is greater than the threshold, the terminal device transmits the polling indication according to the first probe parameter. Since the first probe parameter includes a polling PDU number threshold (pollPDU) of 1, the terminal device transmits a polling indication every interval of one RLC PDU with a P field of 0.
  • P6, P8, and P9 transmitted by the terminal device are polling instructions, and P7 and P9 are non-polling instructions.
  • the frequency of sending probe indication information to the network device by the terminal device according to the first probe parameter is higher, that is, the terminal
  • the time interval between every two adjacent exploration indication information sent by the device according to the first exploration parameter is small, so that the terminal device can send the exploration indication information to the network device in time.
  • FIG. 10 is a schematic flowchart of still another communication method provided by an embodiment of this application. Referring to Figure 10, the method can include:
  • the first device obtains configuration information.
  • the configuration information is used to indicate repeated transmission of the status report information.
  • the status report information is used to indicate the RLC data transmission status of the second device, or instruct the second device to retransmit the RLC data.
  • the RLC data transmission status of the second device may be transmission success or transmission failure.
  • the status report information may instruct the second device to retransmit the data, and the data retransmitted by the second device is the first The device did not receive successful data.
  • the configuration information may be configured for a certain object in the first device (RLC entity, RLC mode, radio bearer, etc.), that is, the configuration information is configuration information corresponding to a certain object in the first device.
  • RLC entity RLC entity, RLC mode, radio bearer, etc.
  • the configuration information is configuration information corresponding to a certain object in the first device.
  • the configuration information is the configuration information corresponding to the confirmation mode.
  • the configuration information is the configuration information of the confirmation mode configuration of the first device.
  • the configuration information is the configuration information corresponding to the preset RLC entity (RLC sending entity).
  • the preset RLC entity may be any one or more RLC entities, or a specific RLC entity.
  • the configuration information is configuration information configured on the preset RLC entity of the first device.
  • the configuration information is the configuration information corresponding to the preset radio bearer.
  • the preset radio bearer may be DRB.
  • the configuration information is the configuration information of the preset radio bearer configuration of the first device.
  • the content included in the configuration information can refer to the embodiment shown in FIG. 4, and the RLC data in the embodiment of FIG. 4 can be replaced with status report information.
  • the first device repeatedly sends status report information to the second device according to the configuration information.
  • execution process of S1002 can be referred to the execution process of S402, and the RLC data in the embodiment of FIG. 4 can be replaced with status report information.
  • the second device retransmits data to the first device according to the status report information.
  • S1004 For the execution process of S1004, refer to S604, which will not be repeated this time.
  • S1004 and S604 The difference between S1004 and S604 is that in S1004, the second device receives a piece of status report information, and retransmits data to the first device according to the piece of status report information.
  • the first device can repeat the status report information to the second device according to the configuration information, so that the second device repeatedly sends RLC data to the first device without receiving a failed transmission from the first device.
  • FIG. 11 is a schematic diagram of still another communication process provided by an embodiment of this application.
  • the first device is a terminal device and the second device is a network device.
  • P refers to status report information.
  • the terminal device Before time t1, if the terminal device does not receive the configuration information sent by the network device, the terminal device does not repeatedly send the status report information when sending the status report information to the network device. For example, referring to FIG. 11, when the terminal device sends the status report information P1, P2, and P3 to the network device, it does not repeat the sending.
  • the terminal device receives the configuration information sent by the network device, and the configuration information includes the number of times the status report information is repeatedly sent (2).
  • the configuration information is used to instruct the terminal device to repeatedly send the status report information twice.
  • the terminal device sends the status report information twice. For example, referring to FIG. 5, when the terminal device sends the status report information P4, the terminal device sends the status report information P4 twice. When the terminal device sends the status report information P5, the terminal device sends the status report information P5 twice.
  • the network device can repeatedly send RLC data to the terminal device, reducing the terminal device’s cost to the network device.
  • the retransmission time delay between the terminals improves the communication performance of the terminal equipment and the network equipment.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the communication device 10 may be set in a first device, and the first device may be a terminal device or a network device.
  • the communication device 10 includes a processing module 11 and a sending module 12, where:
  • the processing module 11 is configured to obtain configuration information, where the configuration information is used to instruct to repeatedly send the first information;
  • the sending module 12 is configured to repeatedly send the first information to the second device according to the configuration information.
  • the communication device provided in the embodiment of the present application can execute the technical solution described in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • the first information is any one of the following information:
  • Probe indication information where the probe indication information is used to instruct the second device to send status report information
  • Status report information where the status report information is used to indicate the RLC data transmission status of the first device, or instruct the second device to retransmit the RLC data.
  • the RLC data includes one or more of the following data: RLC service data unit SDU data, RLC SDU segment data, RLC protocol data unit PDU data, and RLC PDU segment data.
  • the configuration information includes at least one of the following information:
  • First indication information where the first indication information indicates to repeatedly send the first information
  • the first time information of the first information is repeatedly sent, and the first time information includes a time period, or the first time information includes a start time and/or duration, or the first time information includes Including the start time and end time;
  • the first condition for repeatedly sending the first information includes at least one of the following: the channel quality of the first device is less than or equal to a first threshold, and the first device and the second device are The transmission delay between time is greater than or equal to the second threshold.
  • the first information is search indication information;
  • the configuration information includes at least one of the following information:
  • Second indication information where the second indication information is used to instruct to repeatedly send the first information according to the first probe parameter
  • the second time information of the first information is repeatedly sent according to the first search parameter, the second time information includes a time period, or the second time information includes a start time and/or duration, or, The second time information includes a start time and/or an end time;
  • the second condition for repeatedly sending the first information according to the first search parameter where the second condition includes at least one of the following: the channel quality of the first device is less than or equal to a third threshold, and the first device The transmission delay with the second device is greater than or equal to the fourth threshold.
  • the first probe parameter includes at least one of the following: a probe indication information retransmission timer, a threshold value for the number of probe PDUs, and a threshold value for the number of bytes.
  • the duration of the probe indication information retransmission timer is less than or equal to a preset duration
  • the threshold of the number of probe PDUs is less than or equal to the fifth threshold
  • the threshold of the number of bytes is less than Or equal to the sixth threshold.
  • the sending module 12 is specifically configured to:
  • the probe indication information is sent, and the first PDU does not include the probe indication information; and/or,
  • the probe indication information is sent, and the first byte does not include the probe indication information.
  • the first information is RLC data
  • the configuration information is the configuration information corresponding to the preset RLC entity, or the configuration information is the configuration information corresponding to the first RLC mode, or the configuration information is the configuration information corresponding to the preset RLC entity in the first RLC mode Information, or, the configuration information is configuration information corresponding to a preset radio bearer; wherein, the first RLC mode includes at least one of the following modes: confirmed mode, non-confirmed mode, or transparent transmission mode.
  • the first information is search indication information
  • the configuration information is configuration information corresponding to the confirmation mode, or the configuration information is configuration information corresponding to a preset RLC entity, or the configuration information is configuration information corresponding to a preset radio bearer.
  • the first information is status report information
  • the configuration information is configuration information corresponding to the confirmation mode, or the configuration information is configuration information corresponding to a preset RLC entity, or the configuration information is configuration information corresponding to a preset radio bearer.
  • the preset radio bearer is a data radio bearer DRB.
  • the first device is a terminal device
  • the second device is a network device
  • the first device is a network device, and the second device is a terminal device; or,
  • the first device is an RLC sending entity
  • the second device is an RLC receiving entity
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the communication device 10 further includes a receiving module 13, wherein,
  • the receiving module 13 is configured to receive the configuration information from the second device.
  • the receiving module 13 is specifically configured to:
  • the second information is any one of the following messages: RRC configuration information, medium access control MAC control unit CE information, and downlink control information DCI.
  • the sending module 12 is further configured to:
  • the sending module 12 is specifically configured to:
  • the sending module does not send the location information to the second device, or when the location information of the first device changes, the first device sends the location information of the first device to the second device. location information.
  • the first device is a network device
  • the second device is a terminal device
  • the receiving module 13 is further configured to receive the location information of the second device sent by the second device;
  • the processing module 11 is further configured to determine the configuration information according to the location information of the second device.
  • processing module 11 is specifically configured to:
  • the configuration information is determined according to the position information of the second device and the movement track of the satellite.
  • the communication device provided in the embodiment of the present application can execute the technical solution described in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • the communication device 20 may be set in a second device, and the second device may be a terminal device or a network device.
  • the first device shown in FIGS. 12-13 is a terminal device
  • the second device is a network device
  • the first device is a network device
  • the second device is a terminal device.
  • the communication device 20 includes a receiving module 21 and a processing module 22, where:
  • the receiving module 21 is configured to receive multiple pieces of first information repeatedly sent by the first device, and the multiple pieces of first information have the same identifier;
  • the processing module 22 is configured to process the multiple pieces of first information.
  • the communication device provided in the embodiment of the present application can execute the technical solution described in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • the first information is any one of the following information:
  • Probe indication information where the probe indication information is used to instruct the second device to send status report information
  • Status report information where the status report information is used to indicate the RLC data transmission status of the first device, or instruct the second device to retransmit the RLC data.
  • the RLC data includes one or more of the following data: RLC service data unit SDU data, RLC SDU segment data, RLC protocol data unit PDU data, and RLC PDU segment data.
  • the first information is RLC data; the processing module 22 is specifically configured to:
  • processing module 22 is specifically configured to:
  • the identifiers of the multiple pieces of first information it is determined that the multiple pieces of first information are repeated data.
  • processing module 22 is specifically configured to:
  • the duplicate data is discarded.
  • the RLC data includes at least one of RLC SDU data or RLC SDU segment data; the processing module 22 is specifically configured to:
  • the RLC data includes at least one of RLC PDU data or RLC PDU segment data; the processing module 22 is specifically configured to:
  • FIG. 15 is a schematic structural diagram of still another communication device provided by an embodiment of this application. Based on the embodiment shown in FIG. 14, referring to FIG. 15, the communication device 20 further includes a sending module 23, wherein,
  • the sending module 23 is configured to send M pieces of status report information corresponding to the first information to the first device, where M is an integer greater than or equal to 2.
  • the contents included in the M pieces of status report information are the same.
  • the status of the status prohibit timer is off, where: The status prohibit timer is used to control the sending of status report information. After the status prohibit timer expires, the next status report information is sent, and the K is an integer greater than or equal to 1.
  • the K is the M minus one.
  • processing module 22 is further configured to:
  • the L is an integer less than or equal to the M.
  • the first information is search indication information; the processing module 22 is further configured to:
  • the state prohibit timer is turned on, and the P is an integer greater than or equal to 1.
  • the first information is search indication information; the processing module 22 is further configured to:
  • the state prohibit timer is turned on.
  • the probe indication information is an AM protocol data unit PDU
  • the value of the preset field in the AMD PDU is a preset value
  • the first information is status report information; the sending module 23 is further configured to:
  • the first information includes at least one of the following information: the indication of unsuccessful data reception, and the indication information indicating that there is data unsuccessful reception.
  • the first device is a terminal device
  • the second device is a network device
  • the first device is a network device, and the second device is a terminal device; or,
  • the first device is an RLC sending entity
  • the second device is an RLC receiving entity
  • the communication device provided in the embodiment of the present application can execute the technical solution described in the foregoing method embodiment, and its implementation principles and beneficial effects are similar, and details are not described herein again.
  • FIG. 16 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • the terminal device 30 may include: a transceiver 31, a memory 32, and a processor 33.
  • the transceiver 31 may include: a transmitter and/or a receiver.
  • the transmitter can also be referred to as a transmitter, a transmitter, a transmitting port, or a transmitting interface
  • the receiver can also be referred to as a receiver, a receiver, a receiving port, or a receiving interface, and other similar descriptions.
  • the transceiver 31, the memory 32, and the processor 33 are connected to each other through a bus 34.
  • the memory 32 is used to store program instructions
  • the processor 33 is configured to execute program instructions stored in the memory, so as to enable the terminal device 30 to execute any of the communication methods shown above.
  • the receiver of the transceiver 31 can be used to perform the receiving function of the terminal device in the above-mentioned communication method.
  • the transmitter of the transceiver 31 can be used to perform the transmitting function of the terminal device in the above-mentioned communication method.
  • FIG. 17 is a schematic structural diagram of a network device provided by an embodiment of the application.
  • the network device 40 may include: a transceiver 41, a memory 42, and a processor 43.
  • the transceiver 41 may include: a transmitter and/or a receiver.
  • the transmitter can also be referred to as a transmitter, a transmitter, a transmitting port, or a transmitting interface
  • the receiver can also be referred to as a receiver, a receiver, a receiving port, or a receiving interface, and other similar descriptions.
  • the transceiver 41, the memory 42, and the processor 43 are connected to each other through a bus 44.
  • the memory 42 is used to store program instructions
  • the processor 43 is configured to execute the program instructions stored in the memory, so as to enable the terminal device 30 to execute any of the communication methods shown above.
  • the transmitter of the transceiver 41 can be used to perform the sending function of the network device in the above-mentioned communication method.
  • An embodiment of the present application provides a computer-readable storage medium that stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to implement the above-mentioned communication method.
  • the embodiments of the present application may also provide a computer program product, which can be executed by a processor, and when the computer program product is executed, it can implement the communication method executed by any of the terminal devices shown above.
  • the embodiments of the present application may also provide a computer program product, which can be executed by a processor, and when the computer program product is executed, it can implement the communication method executed by any of the aforementioned network devices.
  • the terminal device, computer-readable storage medium, and computer program product of the embodiments of the present application can execute the communication method executed by the above-mentioned terminal device.
  • the specific implementation process and beneficial effects refer to the above, and will not be repeated here.
  • the network device, computer-readable storage medium, and computer program product of the embodiments of the present application can execute the communication method executed by the above-mentioned network device.
  • the specific implementation process and beneficial effects refer to the above, and will not be repeated here.
  • All or part of the steps in the foregoing method embodiments may be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps including the above-mentioned method embodiments; and the aforementioned memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state hard disk, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.
  • These computer program instructions can be provided to the processing unit of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing equipment to generate a machine, so that the instructions executed by the processing unit of the computer or other programmable data processing equipment can be used to generate It is a device that realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • the term “including” and its variations may refer to non-limiting inclusion; the term “or” and its variations may refer to “and/or”.
  • the terms “first”, “second”, etc. in this application are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence.
  • “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置及设备,该方法包括:第一设备获取配置信息,所述配置信息用于指示重复发送第一信息;所述第一设备根据所述配置信息,向第二设备重复发送第一信息。降低了终端设备和网络设备之间的数据重传时延。

Description

通信方法、装置及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置及设备。
背景技术
非地面通信网络(Non-Terrestrial Network,NTN)是指终端设备和卫星(还可以称为网络设备)之间的通信网络。
在终端设备和网络设备通信过程中,当一个设备向另外一个设备发送数据失败时,通常对发送失败的数据进行重传。然而,由于终端设备与网络设备之间的信号传播时延较大,使得终端设备和网络设备之间的数据重传的时延较大,进而导致终端设备与网络设备之间的通信性能较差。
发明内容
本申请实施例提供一种通信方法、装置及设备,降低了终端设备和网络设备之间的数据重传时延。
第一方面,本申请实施例提供一种通信方法,包括:
第一设备获取配置信息,所述配置信息用于指示重复发送第一信息;
所述第一设备根据所述配置信息,向第二设备重复发送第一信息。
第二方面,本申请实施例提供一种通信方法,包括:
第二设备接收第一设备重复发送的多个第一信息,所述多个第一信息的标识相同;
所述第二设备对所述多个第一信息进行处理。
第三方面,本申请实施例提供一种通信装置,应用于第一设备,所述装置包括处理模块和发送模块,其中,
所述处理模块用于,获取配置信息,所述配置信息用于指示重复发送第一信息;
所述发送模块用于,根据所述配置信息,向第二设备重复发送第一信息。
第四方面,本申请实施例提供一种通信装置,应用于第二设备,所述装置包括接收模块和处理模块,其中,
所述接收模块用于,接收第一设备重复发送的多个第一信息,所述多个第一信息的标识相同;
所述处理模块用于,对所述多个第一信息进行处理。
第五方面,本申请实施例提供一种终端设备,包括:收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行上述第一方面或第二方面任一项所述的通信方法。
第六方面,本申请实施例提供一种网络设备,包括:收发器、处理器、存储器;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行上述第一方面或者第二方面任一项所述的通信方法。
第七方面,本申请实施例提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现上述第一方面任一项所述的通信方法。
第八方面,本申请实施例提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现上述第二方面任一项所述的通信方法。
本申请实施例提供的通信方法、装置及设备,第一设备均可以获取配置信息,配置信息用于指示对第一信息进行重复发送,相应的,第一设备在发送第一信息时,可以根据配置信息对第一信息进行重复发送,这样,第一设备无需在接收到第二设备的失败响应消息(指示未成功接收到数据)之后,再向第二设备重发第二设备未成功接收到的数据,降低了终端设备和网络设备之间重传数据的时延,提高了终端设备和网络设备之间的通信性能。
附图说明
图1为本申请实施例提供的一种通信***的架构示意图;
图2为本申请实施例提供的另一种通信***的架构示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为本申请实施例提供的另一种通信方法的流程示意图;
图5为本申请实施例提供的一种通信过程示意图;
图6为本申请实施例提供的再一种通信方法的流程示意图;
图7为本申请实施例提供的另一种通信过程示意图;
图8为本申请实施例提供的又一种通信方法的流程示意图;
图9为本申请实施例提供的又一种通信过程示意图;
图10为本申请实施例提供的再一种通信方法的流程示意图;
图11为本申请实施例提供的再一种通信过程示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图;
图14为本申请实施例提供的又一种通信装置的结构示意图;
图15为本申请实施例提供的再一种通信装置的结构示意图;
图16为本申请实施例提供的终端设备的结构示意图;
图17为本申请实施例提供的网络设备的结构示意图。
具体实施方式
为了便于理解,首先,对本申请所涉及的概念进行说明。
终端设备:通常具有无线收发功能,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,简称VR)终端设备、增强现实(augmented reality,简称AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备、可穿戴终端设备等。本申请实施例所涉及的终端设备还可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
网络设备:通常具有无线收发功能,网络设备可以具有移动特性,例如,网络设备可以为移动的设备。可选的,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。例如,LEO卫星的轨道高度范围通常为500km~1500km,轨道周期(围绕地球旋转的周期)约为1.5小时~2小时。用户间单跳通信的信号传播延迟约为20ms,用户间单跳通信时延是指终端设备到网络设备之间的传输时延,或者网络设备到传输设备之间的时延。最大卫星可视时间约为20分钟,最大可视时间是指卫星的波束覆盖地面某一片区域的最长时间,LEO卫星相对地面是移动的,随着卫星的移动,其覆盖到的地面区域也是变化的。LEO卫星的信号传播距离短,链路损耗少,对终端设备的发射功率要求不高。GEO卫星的轨道高度通常为35786km,轨道周期为24小时。用户间单跳通信的信号传播延迟约为250ms。为了保证卫星的覆盖以及提升通信网络的***容量,卫星可以采用多波束覆盖地面,例如,一颗卫星可以形成几十或者几百个波束来覆盖地面,一个波束可以覆盖直径几十至几百公里的地面区域。当然,网络设备还可以为设置在陆地、水域等位置的基站,例如,网络设备可以是下一代基站(next generation NodeB,gNB)或者下一代演进型基站(next generation-evolved NodeB,ng-eNB)。其中,gNB为UE提供新空口(new radio,NR)的用户面功能和控制面功能,ng-eNB为UE提供演进型通用陆地无线接入(evolved universal terrestrial radio access,E-UTRA)的用户面功能和控制面功能,需要说明的是,gNB和ng-eNB仅是一种名称,用于表示支持5G网络***的基站,并不具有限制意义。网络设备还可以为GSM***或CDMA***中的基站(base transceiver station,BTS),也可以是WCDMA***中的基站(nodeB,NB),还可以是LTE***中的演进型基站(evolutional node B,eNB或eNodeB)。或者,网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备、路边站点单元(road site unit,RSU)等。
无线链路控制(radio link control,RLC)实体:终端设备的每个逻辑信道对应一个RLC实体。RLC实体可以被配置为不同的RLC模式,RLC模式可以为如下三种模式中的任意一种:透传模式(transparent mode,TM)、非确认模式(unacknowledged mode UM)、确认模式(acknowledged mode,AM)。下面,对该三种模式进行说明:
透传模式:被配置为透传模式的RLC实体还可以称为TM RLC实体,在透传模式下,TM RLC实体只提供数据的透传功能。
非确认模式:被配置为非确认模式的RLC实体还可以称为UM RLC实体,在非确认模式下,UM RLC实体可以提供除重传、重分段、重复包检测、协议错误检测外的所有RLC功能,因此,UM RLC实体提供的传输服务的可靠性较差。
确认模式:被配置为确认模式的RLC实体还可以称为AM RLC实体,AM RLC实体可以提供所有RLC功能,由于AM RLC实体可以提供出错检测、重传等功能,因此,AM RLC实体提供的传输服务的可靠性较强。
分段和重组:在非确认模式和确认模式下,可以支持RLC业务数据单元(service data unit,SDU)的分段和重组功能。由于数据传输所使用的资源大小通常是由媒介接入控制(medium access control,MAC)调度器确定的,但是,MAC调度器确定的资源大小可能无法与MAC协议数据单元(protocol data unit,PDU)的大小完全匹配,因此,发送端需要对RLC SDU进行分段以使其匹配MAC层指示的资源大小。相应地,在接收端接收到分段的RLC SDU之后,对分段的RLC SDU进行重组,以便恢复出原来的RLC SDU并递交给上层,例如,上层可以为分组数据汇聚协议(packet data convergence protocol,PDCP)层。
对于上行(down link,DL)AM RLC和DL UM RLC,网络设备可以为终端设备配置RLC重组定时器(t-Reassembly),并通过RLC重组定时器来控制终端设备重组RLC SDU的时间。例如,在从MAC层收到一个PDU分段之后,若在位于该PDU分段之前的至少一个字节(byte)还没有 被接收到,若RLC重组定时器当前没有运行,则启动RLC重组定时器。如果RLC重组定时器超时,则说明等待的这些字节中至少还有一个字节还没有接收到,在该种情况下,对于DL UM RLC,终端设备触发丢弃相应的已接受到的UMD PDU,对于DL AM RLC,终端设备向网络设备发送RLC状态报告,向网络设备告知哪些RLC SDU没有正确接收,网络设备在接收到RLC状态报告后向终端设备重传RLC SDU。
自动重传请求(automatic repeat request,ARQ):ARQ自动重发请求的过程可以适用于确认模式。在如下条件下,第一设备向第二设备进行数据重传:
第一设备接收到第二设备发送的状态报告之后,第一设备向第二设备进行数据重传,其中,该状态报告中可以包括未接收成功的数据的指示和/或指示信息,未接收成功的数据的指示可以为未接收成功的数据的标识,该指示信息用于指示存在未成功接收的数据,该指示信息可以为NACK。未成功接收到的数据可以为RLC SDU、RLC SDU分段等。
需要说明的是,第一设备可以为终端设备,第二设备为网络设备,或者,第一设备为网络设备,第二设备为终端设备。或者,第一设备可以称为RLC发送实体,第二设备可以称为RLC接收实体。
在如下条件下,第二设备向第一设备发送上述状态报告:
条件一:第二设备接收到第一设备发送的探寻指示信息(还可以称为polling指示)后,第二设备向第一设备发送上述状态报告。
例如,可以通过如下方式实现发送polling指示:将AMD PDU中预设域(例如,P域(P field))的值设置为预设值(例如1),并发送AMD PDU。即,将AMD PDU中P field的值设置为1,并发送该AMD PDU,则可以实现发送polling指示。
可选的,第二设备可以在如下任意情况下,向第一设备发送polling指示:
情况1、第二设备发送的不包括polling指示的AMD PDU的个数大于或等于探寻PDU的个数阈值。不包括polling指示的AMD PDU的个数还可以称为PDU_WITHOUT_POLL,探寻PDU的个数阈值可以称为pollPDU,相应的,情况1可以记为:PDU_WITHOUT_POLL≥pollPDU。
情况2、第二设备发送的不包括polling指示的字节的个数大于或等于字节个数阈值。不包括polling指示的字节的个数可以称为BYTE_WITHOUT_POLL,字节个数阈值可以称为pollByte,相应的,情况2还可以记为:BYTE_WITHOUT_POLL≥pollByte。
情况3、在发送该即将组包的确认模式数据(AM Data,AMD)PDU之后,传输缓存(buffer)和重传缓存都为空,或者,没有待发送的新的RLC SDU。例如,在时间窗阻塞(window stalling)时,没有待发送的新的RLC SDU。
情况4、探寻指示信息重传定时器(还可以称为poll重传定时器或者t-PollRetransmit)超时,且在发送该即将组包的AMD PDU之后,传输缓存(buffer)和重传缓存都为空,或者,没有待发送的新的RLC SDU。
poll重传定时器的启动或者重启条件可以为:在提交(submit)包含polling指示的AMD PDU到低层时。在发送了一次状态报告之后,在该定时器超时后,才能发送下一次状态报告。
条件二:第二设备检测到AMD PDU接收失败时,第二设备向第一设备发送上述状态报告。
例如,在第二设备检测到RLC重组定时器超时后,第二设备确定AMD PDU接收失败,则第二设备向第一设备发送上述状态报告。
下面,结合图1-图2,对本申请中的通信***的架构进行说明。
图1为本申请实施例提供的一种通信***的架构示意图。请参见图1,包括终端设备101和卫星102,终端设备101和卫星102之间可以进行无线通信。终端设备101和卫星102之间所形成的网络还可以称为NTN。在图1所示的通信***的架构中,卫星102具有基站的功能,终端设备101和卫星102之间可以直接通信。在***架构下,可以将卫星102称为网络设备。
图2为本申请实施例提供的另一种通信***的架构示意图。请参见图2,包括终端设备201、卫星202和基站203,终端设备201和卫星202之间可以进行无线通信,卫星202与基站203之间可以通信。终端设备201、卫星202和基站203之间所形成的网络还可以称为NTN。在图2所示的通信***的架构中,卫星202不具有基站的功能,终端设备101和基站203之间的通信需要通过卫星202的中转。在该种***架构下,可以将基站103称为网络设备。
在本申请实施例中,在终端设备和网络设备通信的过程中,第一设备(网络设备或者终端设备)均可以获取配置信息,配置信息用于指示对第一信息进行重复发送,相应的,第一设备在发送第一信息时,可以根据配置信息对第一信息进行重复发送,这样,第一设备无需在接收到第二设备的失败响应消息(指示未成功接收到数据)之后,再向第二设备重发第二设备未成功接收到的数据,降低了终端设备和网络设备之间重传数据的时延,提高了终端设备和网络设备之间的通信性能。
下面,通过具体实施例对本申请所示的技术方案进行详细说明。需要说明的,下面几个实施例可以单独存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
图3为本申请实施例提供的一种通信方法的流程示意图。请参见图3,该方法可以包括:
S301、第一设备获取配置信息。
在图3所示的实施例中,第一设备可以为终端设备,第二设备为网络设备,或者,第一设备为网络设备,第二设备为终端设备。或者,第一设备可以称为RLC发送实体,第二设备可以称为RLC接收实体。
可选的,第一信息为如下信息中的任意一种:RLC数据、探寻指示信息、状态报告信息。
其中,配置信息用于指示重复发送第一信息。可选的,当第一信息为探寻指示信息时,配置信息还可以指示按照第一探寻参数发送第一信息。
当第一信息不同时,配置信息可能不同,在图4-图11所示的实施例中对不同的第一信息对应的配置信息进行说明,此处不再进行赘述。
可选的,当第一设备不同时,第一设备获取配置信息的方式也不同,下面,对第一设备获取配置信息的方式进行说明。
当第一设备为终端设备时,第一设备可以通过如下方式获取配置信息:
方式1、接收网络设备发送的配置信息。
可选的,终端设备可以接收网络设备发送的第二信息,第二信息中包括该配置信息。例如,第二信息可以为如下消息中的任意一种:RRC配置信息、MAC控制单元(control element,CE)信息、下行控制信息(downlink control information,DCI)。
在该种方式中,配置信息为网络设备确定得到的。
可选的,网络设备可以假设终端设备与网络设备之间的传输时延为一较大时延(即,假设终端设备与卫星之间的距离为一较大距离),并根据该较大时延生成上述配置信息。例如,在网络设备无法获取得到终端设备的位置信息时,可以采用该种方式生成配置信息。
可选的,网络设备还可以获取终端设备的位置信息、以及卫星的运动轨迹,并根据终端设备的位置信息和卫星的运动轨迹,确定终端设备与卫星之间的距离(或者传输时延),并根据终端设备与卫星之间的距离(或者传输时延)生成配置信息。在该种情况下,网络设备可以生成准确的配置信息。在实际应用过程中,网络设备可以周期性更新终端设备的配置信息,或者,在网络设备确定终端设备与卫星之间的距离发生变化(或者变化幅值大于预设幅值)时,网络设备更新配置信息。网络设备更新配置信息之后,可以向终端设备发送更新后的配置信息。在该种情况下,终端设备可以向网络设备发送其位置信息,例如,若终端设备未向网络设备发送过其位置信息,则终端设备向网络设备发送其位置信息,或者,终端设备的位置信息发生变化(或者变化幅值大于预设幅值)之后,终端设备向网络设备发送其位置信息。
方式2、终端设备预定义该配置信息。
该预定义的配置信息可以为预先设置的,也可以为协议约定的。
该预定义的配置信息可以存储至终端设备本地,当终端设备获取该配置信息时,则终端设备可以在本地获取该配置信息。
当第一设备为网络设备时,第一设备可以通过如下方式获取配置信息:网络设备可以预定义该配置信息。该预定义的配置信息可以为预先设置的,也可以为协议约定的。
方式3、配置信息中的一个部分由网络设备确定,配置信息中的另一部分由终端设备确定。
例如,假设配置信息中包括指示信息、重传次数、时间信息、重传条件等,配置信息中的重传次数和时间信息可以由终端设备确定,指示信息和重传条件可以由网络设备确定。
当然,在实际应用过程中,可以而根据实际需要设置网络设备确定的一部分,以及终端设备确定的一部分。本申请实施例对此不作具体限定。
当然,在实际应用过程中,配置信息还可以全部由网络设备确定,或者全部由终端设备确定。例如,在上述方式1中,配置信息可以全部是由网络设备确定,在上述方式2中,配置信息可以全部是由终端设备确定。
S302、第一设备根据配置信息,向第二设备重复发送第一信息。
可选的,第一设备可以通过如下方式向第二设备重复发送第一信息:第一设备同时向第二设备发送多个第一信息,或者,第一设备按照预设顺序依次向第二设备发送多个第一信息,或者,第一设备可以周期性的向第二设备发送多个第一信息。
当配置信息中包括的内容不同时,第一设备根据配置信息向第二设备重复发送第一信息的方式也不同。在图4-图11实施例中对第一设备根据配置信息向第二设备重复发送第一信息的过程进行说明,此处不再进行赘述。
S303、第二设备对多个第一信息进行处理。
当第一信息不同时,第二设备对第一信息的处理方式也不同。需要说明的是,在图4-图11所示的实施例中对第一信息的处理方法进行说明,此处不再进行赘述。
本申请实施例提供的通信方法,第一设备均可以获取配置信息,配置信息用于指示对第一信息进行重复发送,相应的,第一设备在发送第一信息时,可以根据配置信息对第一信息进行重复发送,这样,第一设备无需在接收到第二设备的失败响应消息(指示未成功接收到数据)之后,再向第二设备重发第二设备未成功接收到的数据,降低了终端设备和网络设备之间重传数据的时延,提高了终端设备和网络设备之间的通信性能。
在上述任意一个实施例的基础上,当第一信息不同时,第一设备和第二设备之间的通信过程也不同,下面,通过图4-图11所示的实施例,对在第一信息不同时,第一设备和第二设备的通信过程进行说明。
下面,通过图4所示的实施例,以第一信息为RLC数据为例,对上述通信方法进行说明。
图4为本申请实施例提供的另一种通信方法的流程示意图。请参见图4,该方法可以包括:
S401、第一设备获取配置信息。
其中,配置信息用于指示对RLC数据进行重复发送。
RLC数据可以包括如下数据中的一种或多种:RLC SDU数据、RLC SDU分段数据、RLC PDU数据、RLC PDU分段数据。
可选的,可以对第一设备中的某对象(RLC实体、RLC模式、无线承载等)配置该配置信息,即,配置信息为第一设备中某对象对应的配置信息。可以包括如下情况:
情况1、配置信息为预设RLC实体对应的配置信息。该预设RLC实体为第一设备中的RLC发送实体。预设RLC实体可以为任意一个或多个RLC实体、或者特定的RLC实体。换句话说, 配置信息为对第一设备的预设RLC实体配置的配置信息。
情况2、配置信息为第一RLC模式对应配置信息。第一RLC模式包括如下模式中的至少一种:确认模式、非确认模式或透传模式。换句话说,配置信息为对第一设备的第一RLC模式配置的配置信息。
情况3、配置信息为第一RLC模式下的预设RLC实体对应配置信息。第一RLC模式包括如下模式中的至少一种:确认模式、非确认模式或透传模式。换句话说,配置信息为对第一设备的第一RLC模式下的预设RLC实体配置的配置信息。
情况4、配置信息为预设无线承载对应的配置信息。预设无线承载可以为数据无线承载(data radio bearer,DRB)。换句话说,配置信息为对第一设备的预设无线承载配置的配置信息。
可选的,配置信息可以包括如下信息中的至少一种:
信息1、第一指示信息。
第一指示信息指示重复发送RLC数据。第一指示信息可以为指示数据重复发送的指示信息,或者,第一指示信息可以为指示激活数据重复发送的指示信息。例如,当第一指示信息指示激活数据重复发送,且第一设备接收到第一指示信息之后,第一设备的数据重复发送功能被激活,使得第一设备对RLC数据进行重复发送。
信息2、重复发送RLC数据的次数。
重复发送RLC数据的次数为大于或等于2的整数。例如,重复发送次数可以为2、3、4等。
信息3、重复发送RLC数据的第一时间信息。
可选的,第一时间信息中包括时段,该时段可以为第一设备进行数据重复发送的时段。例如,时段可以包括起始时刻和结束时刻,例如,第一时间信息中包括的时段可以为2019年1月1号10点0分至2019年1月1号10点10分。
可选的,第一时间信息中包括起始时刻和/或时长,该起始时刻为第一设备开始进行数据重复发送的时刻,时长为第一设备进行数据重复发送的时长。
可选的,第一时间信息中可以包括起始时刻和结束时刻,该起始时刻为第一设备开始进行数据重复发送的时刻,结束时刻为第一设备结束数据重复发送的时刻。
第一时间信息可以包括第一重复发送时间信息和第一激活时间信息。第一重复发送时间信息用于指示重复发送RLC数据的时间信息。第一激活时间信息用于指示第一设备的重复发送功能被激活的时间信息。第一重复发送时间信息和第一激活时间信息均可以包括时段,或者包括起始时刻和/或时长,或者包括起始时刻和结束时刻,此处不再进行赘述。
信息4、重复发送RLC数据的第一条件。
第一条件可以包括如下至少一种:第一设备的信道质量小于或等于第一阈值,第一设备和第二设备之间的传输时延大于或等于第二阈值。
需要说明的是,第一设备获取配置信息的方式可以参见图3所示的实施例,此处不再进行赘述。
S402、第一设备根据配置信息向第二设备重复发送RLC数据。
当配置信息中包括的内容不同时,第一设备根据配置信息向第二设备重复发送RLC数据的方式也不同。下面,介绍几种不同配置信息下,第一设备向第二设备发送RLC数据的方式,可以包括如下多种情况:
情况1、配置信息中包括第一指示信息。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备本地预定义的,则第一设备在通过第一RLC发送实体发送RLC数据时,第一设备根据第一指示信息重复发送RLC数据,重复发送次数可以为预设次数。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备(假设为终端设备)从第二设备接收到的,则在第一设备接收到该配置信息之后,第一设备在通过第一RLC发送实体发送RLC数据时,第一设备根据第一指示信息重复发送RLC数据,重复发送次数可以为预设次数。
当然,在配置信息与其它(例如,RLC模式或者无线承载)对应时,第一设备发送RLC数据的方式类似,此处不再进行赘述。
情况2、配置信息中包括重复发送RLC数据的次数。
若配置信息与第一无线承载对应,且该配置信息为第一设备本地预定义的,则第一设备在通过第一无线承载发送RLC数据时,第一设备按照该配置信息中包括的次数重复发送RLC数据。例如,假设配置信息中包括的重复发送RLC数据的次数为3,则第一设备在发送RLC数据时,第一设备重复发送RLC数据3遍。
若配置信息与第一无线承载对应,且该配置信息为第一设备(假设为终端设备)从第二设备接收到的,则在第一设备接收到该配置信息之后,第一设备在通过第一无线承载发送RLC数据时,按照该配置信息中包括的次数重复发送RLC数据。例如,假设配置信息中包括的重复发送RLC数据的次数为3,则第一设备在发送RLC数据时,第一设备重复发送RLC数据3遍。
当然,在配置信息与其它(例如,RLC实体或者RLC模式)对应时,第一设备发送RLC数据的方式类似,此处不再进行赘述。
情况3、配置信息中包括重复发送RLC数据的第一时间信息。
若配置信息与第一RLC模式对应,且该配置信息为第一设备本地预定义的,则第一设备在通过第一RLC模式的RLC发送实体发送RLC数据时,第一设备在第一时间信息所指示的时间(例如时段)内重复发送RLC数据。第一设备可以按照预设次数重复发送RLC数据。
若配置信息与第一RLC模式对应,且该配置信息为第一设备(假设为终端设备)从第二设备接收到的,则在第一设备接收到该配置信息之后,则第一设备在通过第一RLC模式的RLC发送 实体发送RLC数据时,第一设备在第一时间信息所指示的时间(例如时段)内重复发送RLC数据。第一设备可以按照预设次数重复发送RLC数据。
当然,在配置信息与其它(例如,RLC实体或者无线承载)对应时,第一设备发送RLC数据的方式类似,此处不再进行赘述。
情况4、配置信息中包括发送RLC数据的第一条件。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备本地预定义的,则第一设备在通过第一RLC发送实体发送RLC数据时,若第一设备满足第一条件,则第一设备重复发送RLC数据,重复发送次数可以为预设次数。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备(假设为终端设备)从第二设备接收到的,则在第一设备接收到该配置信息之后,第一设备在通过第一RLC发送实体发送RLC数据时,若第一设备满足第一条件,则第一设备重复发送RLC数据,重复发送次数可以为预设次数。
当然,在配置信息与其它(例如,RLC模式或者无线承载)对应时,第一设备发送RLC数据的方式类似,此处不再进行赘述。
针对上述情况1-情况4,配置信息中还可以包括上述信息中的任意两个或多个,在该种情况下,第一设备可以按照上述4种情况所对应的方式的组合发送RLC数据。例如,假设配置信息包括重复发送RLC数据的次数和第一条件,则在第一设备满足第一条件时,第一设备按照上述次数发送RLC数据。例如,假设配置信息包括重复发送RLC数据的次数和第一时间信息,则第一设备在第一时间信息所指示的时间内,按照上述次数发送RLC数据。此处不再对其它信息的组合方式进行一一赘述。
可选的,第一设备可以通过如下方式向第二设备重复发送RLC数据:
方式1、第一设备同时向第二设备发送多个RLC数据。
方式2、第一设备按照预设顺序向第二设备发送多个RLC数据。
方式3、第一设备周期性向第二设备发送多个RLC数据。
可选的,第一设备可以按照时间间隔发送RLC数据。该时间间隔可以为预设时间间隔,也可以为终端设备根据配置信息计算得到的时间间隔。例如,假设配置信息中包括重复发送RLC数据的次数和时长,则第一设备可以根据该次数和时长计算得到时间间隔。第一设备每相邻两次发送RLC数据的时间间隔可以相同,也可以不同。
例如,假设第一设备需要重复发送3次RLC数据,预设时间间隔为t,则在第一设备第一次发送RLC数据之后,第一设备等待时长t,并发送第二次RLC数据,并在第二次发送RLC数据之后,第一设备等待时长t,并发送第三次RLC数据。
需要说明的是,上述只是以示意的形式示例第一设备重复发送RLC数据的方式,并非对第一设备重复发送RLC数据的方式的限定。
需要说明的是,若第一设备收到第二设备发送的ACK确认,则对于第一设备中可重复发送但还未向第二设备发送的数据,第一设备可以不再继续向第二设备发送。
S403、第二设备对多个RLC数据进行重复数据检测处理和/或重复数据丢弃处理。
第二设备可以通过如下方式对多个RLC数据进行重复数据检测处理:第二设备根据多个RLC数据的标识,确定该多个RLC数据为重复数据。RLC数据的标识可以为序列号(serial number,SN)。
第二设备可以通过如下方式对多个RLC数据进行重复数据丢弃处理:第二设备丢弃重复数据。例如,假设该多个重复的RLC数据的个数为N(N为大于或等于2的整数)个,则第二设备可以丢弃该N个RLC数据中N-1个。
可选的,第二设备中包括PDCP实体和RLC实体。相应的,第二设备中的PDCP实体对RLC数据中的RLC SDU数据和/或RLC SDU分段数据进行重复数据检测处理和/或重复数据丢弃处理。第二设备中的RLC实体对RLC数据中的RLC PDU数据和/或RLC PDU分段数据进行重复数据检测处理和/或重复数据丢弃处理。
在图4所示的实施例中,第一设备根据配置信息可以向第二设备重复的发送RLC数据,无需在接收到第二设备发送的失败响应消息(指示未成功接收到RLC数据)之后再向第二设备重传RLC数据,降低了第一设备向第二设备重传RLC数据的时延,提高了第一设备和第二和设备之间的通信性能。
下面,结合图5,通过具体示例对图4实施例所示的通信过程进行说明。
图5为本申请实施例提供的一种通信过程示意图。请参见图5,假设第一设备为终端设备,第二设备为网络设备。其中,P是指RLC数据。
在t1时刻之前,终端设备未接收到网络设备发送的配置信息,则终端设备在向网络设备发送RLC数据时,均不重复发送RLC数据。例如,请参见图5,终端设备向网络设备发送RLC数据P1、P2和P3时,均不重复发送。
在t1时刻,终端设备接收到了网络设备发送的配置信息,配置信息中包括重复发送RLC数据的次数(2)。该配置信息用于指示终端设备重复发送两次RLC数据。
在t1时刻之后,终端设备在发送RLC数据时,终端设备均重复发送两次RLC数据。例如,请参见图5,终端设备发送RLC数据P4时,终端设备发送两次该RLC数据P4。终端设备发送RLC数据P5时,终端设备发送两次该RLC数据P5。
在图5所示的实施例中,由于终端设备在发送RLC数据P4和P5时,终端设备重复发送两次,使得网络设备接收到P4和P5的成功概率较大,且终端设备无需接收到网络设备反馈的未接收到P4和P5的失败响应消息后再向网络设备重传P4和P5,降低了终端设备向网络设备重传P4和P5 的时延,提高了终端设备和网络设备的通信性能。
下面,通过图6所示的实施例,以第一信息为探寻指示信息为例,对上述通信方法进行说明。
图6为本申请实施例提供的再一种通信方法的流程示意图。请参见图6,该方法可以包括:
S601、第一设备获取配置信息。
其中,配置信息用于指示对探寻指示信息(还可以称为polling指示)进行重复发送。
探寻指示信息用于指示第二设备发送状态报告信息,即,在第二设备接收到第一设备发送的探寻指示信息之后,第二设备向第一设备发送状态报告信息。例如,第二设备可以通过如下方式向第一设备发送探寻指示信息:第二设备向第一设备发送AMD PDU,AMD PDU中的预设域的值为预设值,例如,预设域可以为P域(P field),预设值可以为1,即,第二设备向第一设备发送P field的值为1的AMD PDU,则相当于第二设备向第一设备发送探寻指示信息。
可选的,可以对第一设备中的某对象(RLC实体、RLC模式、无线承载等)配置该配置信息,即,配置信息为第一设备中某对象对应的配置信息。可以包括如下情况:
情况1,配置信息为确认模式对应的配置信息。换句话说,配置信息为对第一设备的确认模式配置的配置信息。
情况2,配置信息为预设RLC实体(RLC发送实体)对应的配置信息。该预设RLC实体可以为任意一个或多个RLC实体、或特定的RLC实体。换句话说,配置信息为对第一设备的预设RLC实体配置的配置信息。
情况3,配置信息为预设无线承载对应的配置信息。预设无线承载可以为DRB。换句话说,配置信息为对第一设备的预设无线承载配置的配置信息。
需要说明的是,配置信息中包括的内容可以参见图4所示的实施例,将图4实施例中的RLC数据替换为polling指示即可。
需要说明的是,第一设备获取配置信息的方式可以参见图3所示的实施例,此处不再进行赘述。
S602、第一设备根据配置信息向第二设备重复发送探寻指示信息。
当配置信息中包括的内容不同时,第一设备根据配置信息向第二设备重复发送探寻指示信息的方式也不同。第一设备根据配置信息向第二设备重复发送探寻指示信息的方式可以参见S402中的情况1-情况4,将S402中的第一RLC数据替换为探寻指示信息即可,此处不再进行赘述。
可选的,第一设备可以通过如下方式重复发送探寻指示信息:
方式1、第一设备同时向第二设备发送多个探寻指示信息。
方式2、第一设备按照预设顺序向第二设备发送多个探寻指示信息。
方式3、第一设备周期性向第二设备发送多个探寻指示信息。
可选的,第一设备可以按照时间间隔发送探寻指示信息。该时间间隔可以为预设时间间隔,也可以为终端设备根据配置信息计算得到的时间间隔。例如,假设配置信息中包括重复发送探寻指示信息的次数和时长,则第一设备可以根据该次数和时长计算得到时间间隔。第一设备每相邻两次发送探寻指示信息的时间间隔可以相同,也可以不同。
例如,假设第一设备需要重复发送3次探寻指示信息,预设时间间隔为t,则在第一设备第一次发送探寻指示信息之后,第一设备等待时长t,并发送第二次探寻指示信息,并在第二次发送探寻指示信息之后,第一设备等待时长t,并发送第三次探寻指示信息。
方式3、第一设备向第二设备发送一个探寻指示信息之后,若接收到第二设备的失败响应消息,则第一设备再重复向第二设备发送下一个探寻指示信息。
可选的,失败响应消息用于指示第二设备未成功接收到探寻指示信息。例如,失败响应消息可以为ARQ NACK消息,或者混合自动重复请求(hybrid automatic repeat request,HARQ)NACK消息等。
需要说明的是,上述只是以示意的形式示例第一设备重复发送探寻指示信息的方式,并非对第一设备重复发送探寻指示信息的方式的限定。
需要说明的是,若第一设备收到第二设备发送的ACK确认,则对于第一设备中可重复发送但还未向第二设备发送的数据,第一设备可以不再继续向第二设备发送。
S603、第二设备向第一设备发送探寻指示信息对应的M个状态报告信息。
其中,M可以为1,也可以为大于或等于2的整数。若M为大于或等于2的整数,该M个状态报告信息中包括的内容相同。
状态报告信息中可以包括如下信息中的至少一种:未接收成功的数据的指示、指示存在数据未接收成功的指示信息。未接收成功的数据的指示可以为未接收成功的数据的标识,未接收成功的数据可以为RLC数据。
可选的,探寻指示信息的个数可以为N,N为大于或等于2的整数。
可选的,探寻指示信息和状态报告信息可以一一对应,相应的,M与N相同。
第二设备可以先生成探寻指示信息对应的M个状态报告信息,再向第一设备发送该M个状态报告信息。若探寻指示信息和状态报告信息一一对应,则第二设备每接收到一个探寻指示信息,均可以生成该探寻指示信息对应的状态报告信息。
第二设备可以每生成一个状态报告信息就向第一设备发送该状态报告信息。或者,第二设备可以生成M个状态报告信息以后,同时向第一设备发送该M个状态报告信息。
状态禁止定时器用于控制发送状态报告信息,在状态禁止定时器超时后,发送下一个状态报告信息。例如,在发送一个状态报告信息之后,若开启了状态禁止定时器,则在该状态禁止定时器超时之后,才发送下一个状态报告信息,换句话说,在该状态禁止定时器超时之前,不发送下一个状态报告信息。下面,对开启状态禁止定时器的方式进行说明,可以包括如下方式:
方式1、第二设备向第一设备发送M个状态报告信息中的前K个状态报告信息后,均不开启状态禁止定时器。K为大于或等于1的整数。
在该种方式中,第二设备向第一设备发送M个状态报告信息中的前K个状态报告信息后,状态禁止定时器的状态为关闭状态。
由于第二设备向第一设备发送前K个状态报告信息之后均不开启状态禁止定时器,使得第二设备发送的前K+1个状态报告信息时均无需等待状态禁止定时器超时,使得第二设备可以快速发送前K+1个状态报告信息。
K可以为M减1。这样,可以使得在发送该M个状态报告信息的过程中,无需等待状态禁止定时器超时,使得发送该M个状态报告信息的效率较高。
方式2、第二设备向第一设备发送探寻指示信息对应的L个状态报告信息之后,第二设备开启状态禁止定时器,L为小于或等于M的整数。
换句话说,第二设备向第一设备发送前L-1个状态报告信息之后,均不包括状态禁止定时器。这样,第二设备发送该L个状态报告信息时均无需等待状态禁止定时器超时,使得发送该L个状态报告信息的效率较高。
可选的,L等于M。这样,可以使得在发送该M个状态报告信息的过程中,无需等待状态禁止定时器超时,使得发送该M个状态报告信息的效率较高。
方式3、在第二设备接收到P个探寻指示信息之后,第二设备开启状态禁止定时器。
其中,P为大于或等于1的整数。
可选的,第二设备接收到P个探寻指示信息之后生成并发送该探寻指示信息对应的状态报告信息。在该种情况下,第二设备开启状态禁止定时器。
可选的,第二设备每接收到一个探寻指示信息之后均生成并发送该探寻指示信息对应的状态报告信息。在该种情况下,第二设备接收到P个探寻指示信息之后开启状态禁止定时器,还可以理解为:第二设备发送P个状态报告信息之后开启状态禁止定时器。
可选的,P等于M。
在该种方式中,在上述过程中,第二设备开启的状态禁止定时器的个数可以为L,L为整数,1≤L≤M。
方式4、在第二设备接收到探寻指示信息的预设时长之后,第二设备开启状态禁止定时器。
可选的,在第二设备接收到探寻指示信息的预设时长之后,第二设备向第一设备发送状态报告信息,并开启状态禁止定时器。
可选的,在第二设备接收到Q个探寻指示信息的预设时长之后,第二设备向第一设备发送状态报告信息,并开启状态禁止定时器。
可选的,第二设备可以每收到一个探寻指示信息的预设时长之后均开启状态禁止定时器。这样可以使得第二设备周期性的发送状态报告信息。
在该种方式中,在上述过程中,第二设备开启的状态禁止定时器的个数可以为L,L为整数,1≤L≤M。
当然,上述只是以示例的形式示意第二设备开启状态禁止定时器的方式,并非对此进行的限定。
S604、第一设备根据M个状态报告信息向第二设备重传数据。
第一设备可以在接收到第一个状态报告信息之后,第二设备即可根据该第一个状态报告信息向第二设备重传数据。
可选的,若状态报告信息中包括指示存在数据未接收成功的指示信息,则第一设备可以向第二设备重传预设历史时段内发送的数据,例如,预设历史时段可以为当前时刻之前的预设时长对应的时长。或者,第一设备在接收到状态报告信息之后,向第二设备发送数据时,均重复发送数据。
可选的,若状态报告信息中包括未接收成功的数据的指示,则第一设备向第二设备重传该未接收成功的数据。
在S604之后,若第二设备可以对接收到的数据进行重复数据监测处理和/或重复数据丢弃处理,该过程可以参见S403,此处不再进行赘述。
在图6所示的实施例中,第一设备根据配置信息可以向第二设备重复的发送探寻指示信息,使得第二设备重复向第一设备发送状态指示信息,进而使得第一设备可以根据状态指示信息重复向第二设备发送RLC数据,无需在接收到第二设备发送的失败响应消息(指示未成功接收到RLC数据)之后再向第二设备重传RLC数据,降低了第一设备向第二设备重传RLC数据的时延,提高了第一设备和第二和设备之间的通信性能。
下面,结合图7,通过具体示例对图6实施例所示的通信过程进行说明。
图7为本申请实施例提供的另一种通信过程示意图。请参见图7,假设第一设备为终端设备,第二设备为网络设备。其中,P是指RLC PDU。P1、P4和P8为polling指示,P2、P3、P5-P7为非polling指示。polling指示可以为P域为1的RLC PDU,非polling指示可以为P域为0的RLC PDU。
假设在t1时刻,终端设备接收到配置信息,配置信息中包括第一条件,第一条件用于指示在终端设备和网络设备之间的传播时延大于阈值时进行重传。配置信息中还包括重传polling指示的次数(3)。
在t1时刻与t2时刻之间,终端设备与网络设备之间的传播时延小于阈值,则终端设备不重复传输polling指示。请参见图7,终端设备不重复发送P1(polling指示)。假设探寻PDU的个数阈值(pollPDU)为3,则终端设备在发送P1(polling指示)之后,终端设备发送非polling指示 (P2和P3)。
在t2时刻之后,终端设备与网络设备之间的传播时延大于阈值,则终端设备重复传输polling指示。请参见图7,在终端设备和网络设备之间的传播时延大于阈值之后,终端设备重复传输P4(polling指示)。假设探寻PDU的个数阈值(pollPDU)为3,则终端设备在重复发送P4之后发送非polling指示。终端设备发送了3个P域为0的RLC PDU(P5、P6和P7)之后,终端设备重复发送P8(polling指示)。
在图7所示的实施例中,由于终端设备在发送P4和P8对应的polling指示时,终端设备重复发送3次,使得网络设备接收到polling指示之后可以向终端设备重复发送状态报告信息,进而使得终端设备可以重复向网络设备发送RLC数据,降低了终端设备向网络设备之间的重传时延,提高了终端设备和网络设备的通信性能。
下面,通过图8所示的实施例,以第一信息为探寻指示信息为例,对上述通信方法进行说明。
图8为本申请实施例提供的又一种通信方法的流程示意图。请参见图8,该方法可以包括:
S801、第一设备获取配置信息。
其中,配置信息用于指示对根据第一探寻参数发送探寻指示信息(还可以称为polling指示)。
探寻指示信息用于指示第二设备发送状态报告信息,即,在第二设备接收到第一设备发送的探寻指示信息之后,第二设备向第一设备发送状态报告信息。探寻指示信息还可以称为polling指示。例如,第二设备可以通过如下方式向第一设备发送polling指示:第二设备向第一设备发送AMD PDU,AMD PDU中的预设域的值为预设值,例如,预设域可以为P域(P field),预设值可以为1,即,第二设备向第一设备发送P field的值为1的AMD PDU,则相当于第二设备向第一设备发送polling指示。
可选的,可以对第一设备中的某对象(RLC实体、RLC模式、无线承载等)配置该配置信息,即,配置信息为第一设备中某对象对应的配置信息。可以包括如下情况:
情况1,配置信息为确认模式对应的配置信息。换句话说,配置信息为对第一设备的确认模式配置的配置信息。
情况2,配置信息为预设RLC实体(RLC发送实体)对应的配置信息。该预设RLC实体可以为任意一个或多个RLC实体、或特定的RLC实体。换句话说,配置信息为对第一设备的预设RLC实体配置的配置信息。
情况3,配置信息为预设无线承载对应的配置信息。预设无线承载可以为DRB。换句话说,配置信息为对第一设备的预设无线承载配置的配置信息。
配置信息包括如下信息中的至少一种:
信息1、第二指示信息。
第二指示信息用于指示根据第一探寻参数重复发送探寻指示信息(polling指示)。在实际应用过程中,第一设备通常按照探寻参数发送polling指示,第一设备发送polling指示的情况可以参见上述实施例记载的第二设备发送polling指示的情况,此处不再进行赘述。根据第一探寻参数重复发送探寻指示信息是指,在满足一定的条件时,使用第一探寻参数,发送探寻指示信息。在实际应用过程中,每经历一段时长之后,第一探寻参数通常会满足一定的条件,因此,根据第一探寻参数重复发送探寻指示信息还可以理解为:按照第一探寻参数发送探寻指示信息。
第一探寻参数包括如下至少一个:探寻指示信息重传定时器(还可以称为探寻指示信息重传定时器的时长)、包含探寻PDU的个数阈值、字节个数阈值。下面,分别对第一探寻参数中包括的三种参数进行说明:
对于探寻指示信息重传定时器:
可选的,探寻指示信息重传定时器(t-PollRetransmit)的时长小于或等于预设时长。例如,预设时长可以为4ms(毫秒),换句话说,探寻指示信息重传定时器的时长可以为1ms、2ms、3ms或者4ms。当然,可以根据实际需要设置该预设时长,本申请实施例对此不作具体限定。探寻指示信息重传定时器用于控制polling指示的重传,例如,在探寻指示信息重传定时器超时之后,才可以重传polling指示。
第一探寻参数中包括的探寻指示信息重传定时器的时长为预定义的探寻指示信息重传定时器的时长中的一部分。可选的,第一探寻参数中包括的探寻指示信息重传定时器的时长为预定义的探寻指示信息重传定时器的时长中时长最短的X个时长,X可以为大于或等于1的整数。
例如,预定义的探寻指示信息重传定时器的时长可以包括:ms1,ms2,ms3,ms4,ms5,ms10,ms15,ms20,ms25,ms30,ms35,ms40,ms45,ms50,ms55,ms60,ms65,ms70,ms75,ms80,ms85,ms90,ms95,ms100,ms105,ms110,ms115,ms120,ms125,ms130,ms135,ms140,ms145,ms150,ms155,ms160,ms165,ms170,ms175,ms180,ms185,ms190,ms195,ms200,ms205,ms210,ms215,ms220,ms225,ms230,ms235,ms240,ms245,ms250,ms300,ms350,ms400,ms450,ms500,ms800,ms1000,ms2000,ms4000,spare5,spare4,spare3,spare2,spare1。其中,ms指示时间单位毫秒。spare是指备用的参数,还可以称为预留的参数。
当预设时长为4ms时,则第一探寻参数中的探寻指示重传定时器的时长可以为1ms、2ms、3ms或者4ms。即,第一探寻参数中的探寻指示重传定时器的时长为预定义的探寻指示信息重传定时器的时长中时长最短的4个时长。
对于探寻PDU的个数阈值:
可选的,探寻PDU的个数阈值小于或等于第五阈值。探寻PDU的个数阈值还可以记为pollPDU。例如,第五阈值可以为3,换句话说,探寻PDU的个数阈值可以为1、2或3。当然,可以根据实际需要设置该第五阈值,本申请实施例对此不作具体限定。探寻PDU的个数阈值用于控制polling指示的发送,例如,在发送的第一PDU的个数大于或等于所述PDU个数阈值时,则发送探寻指 示信息,第一PDU中不包括所述探寻指示信息。
第一探寻参数中包括的探寻PDU的个数阈值可以为预定义的探寻PDU的个数阈值中的一部分。可选的,第一探寻参数中包括的探寻PDU的个数阈值为预定义的探寻PDU的个数阈值中最小的Y个阈值,Y可以为大于或等于1的整数。
例如,预定义的探寻PDU的个数阈值可以包括:p1,p2,p3,p4,p8,p16,p32,p64,p128,p256,p512,p1024,p2048,p4096,p6144,p8192,p12288,p16384,p20480,p24576,p28672,p32768,p40960,p49152,p57344,p65536,无穷大,spare8,spare7,spare6,spare5,spare4,spare3,spare2,spare1。其中,p是指个数。spare是指备用的参数,还可以称为预留的参数。
当第五阈值为3时,则第一探寻参数中的探寻PDU的个数阈值可以为1或2或3。即,第一探寻参数中的探寻PDU的个数阈值为预定义的探寻PDU的个数阈值中最小的3个阈值。
对于字节个数阈值:
可选的,字节个数阈值小于或等于第六阈值。字节个数阈值还可以记为pollByte。例如,第六阈值可以为500字节(Byte),字节个数阈值可以为1字节、100字节、500字节等。当然,可以根据实际需要设置该第六阈值,本申请实施例对此不作具体限定。字节个数阈值用于控制polling指示的发送,例如,正在发送的第一字节的个数大于或等于字节个数阈值时,则发送探寻指示信息,第一字节中不包括探寻指示信息。
第一探寻参数中包括的字节个数阈值可以为预定义的字节个数阈值中的一部分。可选的,第一探寻参数中包括的字节个数阈值可以为预定义的字节个数阈值中最小的Z个阈值,Z可以为大于或等于1的整数。
例如,预定义的字节个数阈值可以包括:B1,B100,B500,kB1,kB2,kB5,kB8,kB10,kB15,kB25,kB50,kB75,kB100,kB125,kB250,kB375,kB500,kB750,kB1000,kB1250,kB1500,kB2000,kB3000,kB4000,kB4500,kB5000,kB5500,kB6000,kB6500,kB7000,kB7500,mB8,mB9,mB10,mB11,mB12,mB13,mB14,mB15,mB16,mB17,mB18,mB20,mB25,mB30,mB40。其中,B为字节。kB为字节的单位,是指千字节。mB为字节的单元是指兆字节。
当第六阈值为500字节时,则第一探寻参数中包括的字节个数阈值可以为1字节、100字节或500字节。即,第一探寻参数中包括的字节个数阈值为预定义的字节个数阈值中最小的3个阈值。
信息2、根据第一探寻参数重复发送探寻指示信息的第二时间信息,第二时间信息中包括时段,或者,第二时间信息中包括起始时刻和/或时长,或者,第二时间信息中包括起始时刻和/或结束时间。
第二时间信息用于指示第一设备按照第一探寻参数发送探寻指示信息的时间,在其它时间,第一设备按照其它探寻参数发送探寻指示信息。其它探寻参数可以为预定义的探寻参数中除第一探寻参数之外的其它探寻参数。
可选的,第二时间信息中包括时段,该时段可以为第一设备按照第一探寻参数发送探寻指示信息的时段。例如,时段可以包括起始时刻和结束时刻,例如,第一时间信息中包括的时段可以为2019年1月1号10点0分至2019年1月1号10点10分。
可选的,第二时间信息中包括起始时刻和/或时长,该起始时刻为第一设备开始进行数据重复发送的时刻,时长为第一设备进行数据重复发送的时长。
可选的,第二时间信息中可以包括起始时刻和结束时刻,该起始时刻为第一设备开始进行数据重复发送的时刻,结束时刻为第一设备结束数据重复发送的时刻。
信息3、根据第一探寻参数重复发送探寻指示信息的第二条件。
第二条件包括如下至少一种:第一设备的信道质量小于或等于第三阈值,第一设备和第二设备之间的传输时延大于或等于第四阈值。
需要说明的是,第一设备获取配置信息的方式可以参见图3所示的实施例,此处不再进行赘述。
S802、第一设备根据配置信息和第一探寻参数向第二设备重复发送探寻指示信息。
当配置信息中包括的内容不同时,第一设备根据配置信息和第一探寻参数向第二设备重复发送探寻指示信息的方式也不同。下面,介绍几种不同配置信息下,第一设备根据第一探寻参数向第二设备发送探寻指示信息的方式,可以包括如下多种情况:
情况1、配置信息中包括第一指示信息。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备本地预定义的,则第一设备在通过第一RLC发送实体发送探寻指示信息时,第一设备根据第一探寻参数发送探寻指示信息。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备(假设为终端设备)从第二设备接收到的,则在第一设备接收到该配置信息之后,第一设备在通过第一RLC发送实体发送探寻指示信息时,第一设备根据第一探寻参数发送探寻指示信息。
当然,在配置信息与其它(例如,RLC模式或者无线承载)对应时,第一设备根据第一探寻参数发送探寻指示信息的方式类似,此处不再进行赘述。
情况2、配置信息为第二配置信息。配置信息中包括根据第一探寻参数重复发送探寻指示信息的第二时间信息。
若配置信息与第一RLC模式对应,且该配置信息为第一设备本地预定义的,则第一设备在通过第一RLC模式的RLC发送实体发送探寻指示信息时,第一设备在第二时间信息所指示的时间(例如时段)内,第一设备根据第一探寻参数发送探寻指示信息。
若配置信息与第一RLC模式对应,且该配置信息为第一设备(假设为终端设备)从第二设备接收到的,则在第一设备接收到该配置信息之后,则第一设备在通过第一RLC模式的RLC发送 实体发送探寻指示信息时,第一设备在第二时间信息所指示的时间(例如时段)内,第一设备根据第一探寻参数发送探寻指示信息。
当然,在配置信息与其它(例如,RLC实体或者无线承载)对应时,第一设备根据第一探寻参数发送探寻指示信息的方式类似,此处不再进行赘述。
情况3、配置信息第一配置信息。配置信息中包括按照第一探寻参数发送探寻指示信息的第二条件。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备本地预定义的,则第一设备在通过第一RLC发送实体发送探寻指示信息时,若第一设备满足第一条件,则第一设备根据第一探寻参数发送探寻指示信息。
若配置信息与第一RLC发送实体对应,且该配置信息为第一设备(假设为终端设备)从第二设备接收到的,则在第一设备接收到该配置信息之后,第一设备在通过第一RLC发送实体发送探寻指示信息时,若第一设备满足第一条件,则第一设备根据第一探寻参数发送探寻指示信息。
当然,在配置信息与其它(例如,RLC模式或者无线承载)对应时,第一设备根据第一探寻参数发送探寻指示信息的方式类似,此处不再进行赘述。
针对上述情况1-情况3,配置信息中还可以包括上述信息中的任意两个或多个,在该种情况下,第一设备可以按照上述3种情况所对应的方式的组合根据第一探寻参数发送探寻指示信息。例如,假设配置信息包括第二时间信息和第二条件,则在第一设备满足第二条件时,第一设备按照在第二时间信息所指示的时间内,第一设备根据第一探寻参数发送探寻指示信息。此处不再对其它信息的组合方式进行一一赘述。
由S801可知,第一探寻参数中的探寻指示信息重传定时器的时长、探寻PDU的个数阈值、字节个数阈值均较小,因此,第一设备根据第一探寻参数发送探寻指示信息的频率较高,即,第一设备根据第一探寻参数发送的每两个相邻的探寻指示信息之间的时间间隔较小,使得第一设备可以及时的向第二设备发送探寻指示信息。
S803、第二设备向第一设备发送探寻指示信息对应的状态报告信息。
第二设备在接收到第一设备发送的探寻指示信息之后,生成探寻指示信息对应的状态报告信息,并向第一设备发送该状态报告信息。
由于第一设备向第二设备发送探寻指示信息的频率较高,进而使得第二设备向第一设备发送状态报告信息的频率也较高,即,第二设备向第一设备发送的每两个相邻的状态报告信息之间的时间间隔较小,使得第二设备可以及时的向第一设备发送状态报告信息。
S804、第一设备根据状态报告信息向第二设备重传数据。
需要说明的是,S804的执行过程可以参见S604,此次不在进行赘述。S804与S604不同的是,在S804中第一设备收到一个状态报告信息,并根据该一个状态报告信息向第二设备重传数据。
在S804之后,若第二设备可以对接收到的数据进行重复数据监测处理和/或重复数据丢弃处理,该过程可以参见S403,此处不再进行赘述。
在图8所示的实施例中,由于第一探寻参数中的重传定时器的时长、探寻PDU的个数阈值、字节个数阈值均较小,因此,第一设备根据第一探寻参数向第二设备发送探寻指示信息的频率较高,即,第一设备根据第一探寻参数发送的每两个相邻的探寻指示信息之间的时间间隔较小,使得第一设备可以及时的向第二设备发送探寻指示信息。使得第二设备可以及时的向第一设备发送状态报告信息,进而使得第一设备可以及时的向第二设备重传数据,降低了第一设备向第二设备重传数据的时延,提高了第一设备和第二和设备之间的通信性能。
下面,结合图9,通过具体示例对图8实施例所示的通信过程进行说明。
图9为本申请实施例提供的又一种通信过程示意图。请参见图9,假设第一设备为终端设备,第二设备为网络设备。其中,P是指RLC PDU。P1、P5、P6、P8和P10为polling指示,P2-P4、P7、P9为非polling指示。polling指示可以为P域为1的RLC PDU,非polling指示可以为P域为0的RLC PDU。
假设在t1时刻,终端设备接收到配置信息,配置信息中包括第二条件,第二条件用于指示在终端设备和网络设备之间的传播时延大于阈值时采用第一探寻参数传输polling指示。第一探寻参数中包括探寻PDU的个数阈值(pollPDU)为1。
在t1时刻与t2时刻之间,终端设备与网络设备之间的传播时延小于阈值,则终端设备根据第二探寻参数传输polling指示,假设第二探寻参数中的探寻PDU的个数阈值(pollPDU)为3,则终端设备每间隔3个P域为0的RLC PDU传输一个polling指示。例如,请参见图9,终端设备在传输P1(polling指示)之后,传输了3个P域为0的RLC PDU(P2、P3和P4),再传输P5(polling指示)。
在t2时刻之后,终端设备与网络设备之间的传播时延大于阈值,则终端设备根据第一探寻参数传输polling指示。由于第一探寻参数中包括探寻PDU的个数阈值(pollPDU)为1,则终端设备每间隔1个P域为0的RLC PDU传输一个polling指示。请参见图9,终端设备传输的P6、P8和P9为polling指示,P7和P9为非polling指示。
在图9所示的实施例中,由于第一探寻参数中的探寻PDU的个数阈值较小,因此,终端设备根据第一探寻参数向网络设备发送探寻指示信息的频率较高,即,终端设备根据第一探寻参数发送的每两个相邻的探寻指示信息之间的时间间隔较小,使得终端设备可以及时的向网络设备发送探寻指示信息。使得网络设备可以及时的向终端设备发送状态报告信息,进而使得终端设备可以及时的向网络设备重传数据,降低了终端设备向网络设备重传数据的时延,提高了终端设备和网络和设备之间的通信性能。
下面,通过图10所示的实施例,以第一信息为状态报告信息为例,对上述通信方法进行说明。
图10为本申请实施例提供的再一种通信方法的流程示意图。请参见图10,该方法可以包括:
S1001、第一设备获取配置信息。
其中,配置信息用于指示对状态报告信息进行重复发送。
状态报告信息用于指示第二设备的RLC数据传输状态,或指示第二设备重传RLC数据。第二设备的RLC数据传输状态可以为传输成功或者传输失败。当状态报告信息中包括未接收成功的数据的指示和/或指示存在数据未接收成功的指示信息时,则状态报告信息可以指示第二设备重传数据,第二设备重传的数据为第一设备未接收成功的数据。
可选的,可以对第一设备中的某对象(RLC实体、RLC模式、无线承载等)配置该配置信息,即,配置信息为第一设备中某对象对应的配置信息。可以包括如下情况:
情况1,配置信息为确认模式对应的配置信息。换句话说,配置信息为对第一设备的确认模式配置的配置信息。
情况2,配置信息为预设RLC实体(RLC发送实体)对应的配置信息。该预设RLC实体可以为任意一个或多个RLC实体、或特定的RLC实体。换句话说,配置信息为对第一设备的预设RLC实体配置的配置信息。
情况3,配置信息为预设无线承载对应的配置信息。预设无线承载可以为DRB。换句话说,配置信息为对第一设备的预设无线承载配置的配置信息。
需要说明的是,配置信息中包括的内容可以参见图4所示的实施例,将图4实施例中的RLC数据替换为状态报告信息即可。
需要说明的是,第一设备获取配置信息的方式可以参见图3所示的实施例,此处不再进行赘述。
S1002、第一设备根据配置信息向第二设备重复发送状态报告信息。
需要说明的是,S1002的执行过程可以参见S402的执行过程,将图4实施例中的RLC数据替换为状态报告信息即可。
S1003、第二设备根据状态报告信息向第一设备重传数据。
需要说明的是,S1004的执行过程可以参见S604,此次不在进行赘述。S1004与S604不同的是,在S1004中第二设备收到一个状态报告信息,并根据该一个状态报告信息向第一设备重传数据。
在S1003之后,若第一设备可以对接收到的数据进行重复数据监测处理和/或重复数据丢弃处理,该过程可以参见S403,此处不再进行赘述。
在图10所示的实施例中,第一设备根据配置信息可以向第二设备重复的状态报告信息,使得第二设备重复向第一设备发送RLC数据,无需在接收到第一设备发送的失败响应消息(指示未成功接收到RLC数据)之后再向第一设备重传RLC数据,降低了第一设备向第二设备重传RLC数据的时延,提高了第一设备和第二和设备之间的通信性能。
下面,结合图11,通过具体示例对图10实施例所示的通信过程进行说明。
图11为本申请实施例提供的再一种通信过程示意图。请参见图11,假设第一设备为终端设备,第二设备为网络设备。其中,P是指状态报告信息。
在t1时刻之前,终端设备未接收到网络设备发送的配置信息,则终端设备在向网络设备发送状态报告信息时,均不重复发送状态报告信息。例如,请参见图11,终端设备向网络设备发送状态报告信息P1、P2和P3时,均不重复发送。
在t1时刻,终端设备接收到了网络设备发送的配置信息,配置信息中包括重复发送状态报告信息的次数(2)。该配置信息用于指示终端设备重复发送两次状态报告信息。
在t1时刻之后,终端设备在发送状态报告信息时,终端设备均重复发送两次状态报告信息。例如,请参见图5,终端设备发送状态报告信息P4时,终端设备发送两次该状态报告信息P4。终端设备发送状态报告信息P5时,终端设备发送两次该状态报告信息P5。
在图11所示的实施例中,由于终端设备在发送状态报告信息P4和P5时,终端设备重复发送两次,使得网络设备可以重复向终端设备发送RLC数据,降低了终端设备向网络设备之间的重传时延,提高了终端设备和网络设备的通信性能。
图12为本申请实施例提供的一种通信装置的结构示意图。该通信装置10可以设置在第一设备中,第一设备可以为终端设备,也可以为网络设备。请参见图12,该通信装置10包括处理模块11和发送模块12,其中,
所述处理模块11用于,获取配置信息,所述配置信息用于指示重复发送第一信息;
所述发送模块12用于,根据所述配置信息,向第二设备重复发送第一信息。
本申请实施例提供的通信装置可以执行上述方法实施例所述的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述第一信息为如下信息中的任意一种:
无线链路控制RLC数据;
探寻指示信息,所述探寻指示信息用于指示所述第二设备发送状态报告信息;
状态报告信息,所述状态报告信息用于指示所述第一设备的RLC数据传输状态,或指示所述第二设备重传RLC数据。
在一种可能的实施方式中,所述RLC数据包括如下数据中的一种或多种:RLC业务数据单元SDU数据、RLC SDU分段数据、RLC协议数据单元PDU数据、RLC PDU分段数据。
在一种可能的实施方式中,所述配置信息包括如下信息中的至少一种:
第一指示信息,所述第一指示信息指示重复发送所述第一信息;
重复发送所述第一信息的次数;
重复发送所述第一信息的第一时间信息,所述第一时间信息中包括时段,或者,所述第一时间信息中包括起始时刻和/或时长,或者,所述第一时间信息中包括起始时刻和结束时刻;
重复发送所述第一信息的第一条件,所述第一条件包括如下至少一种:所述第一设备的信道质量小于或等于第一阈值,所述第一设备和所述第二设备之间的传输时延大于或等于第二阈值。
在一种可能的实施方式中,所述第一信息为探寻指示信息;所述配置信息包括如下信息中的至少一种:
第二指示信息,所述第二指示信息用于指示根据第一探寻参数重复发送所述第一信息;
根据所述第一探寻参数重复发送所述第一信息的第二时间信息,所述第二时间信息中包括时段,或者,所述第二时间信息中包括起始时刻和/或时长,或者,所述第二时间信息中包括起始时刻和/或结束时间;
根据所述第一探寻参数重复发送所述第一信息的第二条件,所述第二条件包括如下至少一种:所述第一设备的信道质量小于或等于第三阈值,所述第一设备和所述第二设备之间的传输时延大于或等于第四阈值。
在一种可能的实施方式中,所述第一探寻参数包括如下至少一个:探寻指示信息重传定时器、包含探寻PDU的个数阈值、字节个数阈值。
在一种可能的实施方式中,所述探寻指示信息重传定时器的时长小于或等于预设时长,所述探寻PDU的个数阈值小于或等于第五阈值,所述字节个数阈值小于或等于第六阈值。
在一种可能的实施方式中,发送模块12具体用于:
在发送的第一PDU的个数大于或等于所述PDU个数阈值时,发送所述探寻指示信息,所述第一PDU中不包括所述探寻指示信息;和/或,
在发送的第一字节的个数大于或等于所述字节个数阈值时,发送所述探寻指示信息,所述第一字节中不包括所述探寻指示信息。
在一种可能的实施方式中,所述第一信息为RLC数据;
所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为第一RLC模式对应配置信息,或者,所述配置信息为所述第一RLC模式下的预设RLC实体对应配置信息,或者,所述配置信息为预设无线承载对应的配置信息;其中,所述第一RLC模式包括如下模式中的至少一种:确认模式、非确认模式或透传模式。
在一种可能的实施方式中,所述第一信息为探寻指示信息;
所述配置信息为确认模式对应的配置信息,或者,所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为预设无线承载对应的配置信息。
在一种可能的实施方式中,所述第一信息为状态报告信息;
所述配置信息为确认模式对应的配置信息,或者,所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为预设无线承载对应的配置信息。
在一种可能的实施方式中,所述预设无线承载为数据无线承载DRB。
在一种可能的实施方式中,所述第一设备为终端设备,所述第二设备为网络设备;或者,
所述第一设备为网络设备,所述第二设备为终端设备;或者,
所述第一设备为RLC发送实体,所述第二设备为RLC接收实体。
图13为本申请实施例提供的另一种通信装置的结构示意图。在图12所示实施例的基础上,请参见图13,该通信装置10还包括接收模块13,其中,
所述接收模块13用于,从所述第二设备接收所述配置信息。
在一种可能的实施方式中,所述接收模块13具体用于:
从所述第二设备接收第二信息,所述第二信息中包括所述配置信息。
在一种可能的实施方式中,所述第二信息为如下消息中的任意一种:RRC配置信息、媒质接入控制MAC控制单元CE信息、下行控制信息DCI。
在一种可能的实施方式中,所述发送模块12还用于:
向所述第二设备发送所述第一设备的位置信息。
在一种可能的实施方式中,所述发送模块12具体用于:
若所述发送模块未向所述第二设备发送所述位置信息,或者,所述第一设备的位置信息发生变化时,所述第一设备向所述第二设备发送所述第一设备的位置信息。
在一种可能的实施方式中,所述第一设备为网络设备,所述第二设备为终端设备;
接收模块13还用于,接收所述第二设备发送的所述第二设备的位置信息;
所述处理模块11还用于,根据所述第二设备的位置信息,确定所述配置信息。
在一种可能的实施方式中,所述处理模块11具体用于:
获取卫星的运动轨迹;
根据所述第二设备的位置信息和所述卫星的运动轨迹,确定所述配置信息。
本申请实施例提供的通信装置可以执行上述方法实施例所述的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图14为本申请实施例提供的又一种通信装置的结构示意图。该通信装置20可以设置在第二设备中,第二设备可以为终端设备,也可以为网络设备。当图12-图13所示的第一设备为终端设备时,第二设备为网络设备,当第一设备为网络设备时,第二设备为终端设备。请参见图14,该通信装置20包括接收模块21和处理模块22,其中,
所述接收模块21用于,接收第一设备重复发送的多个第一信息,所述多个第一信息的标识相同;
所述处理模块22用于,对所述多个第一信息进行处理。
本申请实施例提供的通信装置可以执行上述方法实施例所述的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
在一种可能的实施方式中,所述第一信息为如下信息中的任意一种:
无线链路控制RLC数据;
探寻指示信息,所述探寻指示信息用于指示所述第二设备发送状态报告信息;
状态报告信息,所述状态报告信息用于指示所述第一设备RLC数据传输状态,或指示所述第二设备重传RLC数据。
在一种可能的实施方式中,所述RLC数据包括如下数据中的一种或多种:RLC业务数据单元SDU数据、RLC SDU分段数据、RLC协议数据单元PDU数据、RLC PDU分段数据。
在一种可能的实施方式中,所述第一信息为RLC数据;所述处理模块22具体用于:
对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
在一种可能的实施方式中,所述处理模块22具体用于:
根据所述多个第一信息的标识,确定所述多个第一信息为重复数据。
在一种可能的实施方式中,所述处理模块22具体用于:
丢弃所述重复数据。
在一种可能的实施方式中,所述RLC数据包括RLC SDU数据或者RLC SDU分段数据中的至少一种;所述处理模块22具体用于:
通过所述第二设备中的分组数据汇聚协议PDCP实体对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
在一种可能的实施方式中,所述RLC数据包括RLC PDU数据或者RLC PDU分段数据中的至少一种;所述处理模块22具体用于:
通过所述第二设备中的RLC实体对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
图15为本申请实施例提供的再一种通信装置的结构示意图。在图14所示实施例的基础上,请参见图15,该通信装置20还包括发送模块23,其中,
所述发送模块23用于,向所述第一设备发送第一信息对应的M个状态报告信息,所述M为大于或等于2的整数。
在一种可能的实施方式中,所述M个状态报告信息中包括的内容相同。
在一种可能的实施方式中,所述第二设备向所述第一设备发送所述M个状态报告信息中的前K个状态报告信息后,状态禁止定时器的状态为关闭状态,其中,状态禁止定时器用于控制发送状态报告信息,在状态禁止定时器超时后,发送下一个状态报告信息,所述K为大于或等于1的整数。
在一种可能的实施方式中,所述K为所述M减1。
在一种可能的实施方式中,所述处理模块22还用于:
开启状态禁止定时器,所述L为小于或等于所述M的整数。
在一种可能的实施方式中,所述第一信息为探寻指示信息;所述处理模块22还用于:
在所述接收模块接收到P个所述第一信息之后,开启状态禁止定时器,所述P为大于或等于1的整数。
在一种可能的实施方式中,所述第一信息为探寻指示信息;所述处理模块22还用于:
在所述接收模块接收到所述第一信息的预设时长之后,开启状态禁止定时器。
在一种可能的实施方式中,所述探寻指示信息为AM协议数据单元PDU,所述AMD PDU中的预设域的值为预设值。
在一种可能的实施方式中,所述第一信息为状态报告信息;所述发送模块23还用于:
根据所述第一信息向所述第一设备重传未发送成功的数据。
在一种可能的实施方式中,所述第一信息中包括如下信息中的至少一种:所述未接收成功的数据的指示、指示存在数据未接收成功的指示信息。
在一种可能的实施方式中,所述第一设备为终端设备,所述第二设备为网络设备;或者,
所述第一设备为网络设备,所述第二设备为终端设备;或者,
所述第一设备为RLC发送实体,所述第二设备为RLC接收实体。
本申请实施例提供的通信装置可以执行上述方法实施例所述的技术方案,其实现原理以及有益效果类似,此处不再进行赘述。
图16为本申请实施例提供的终端设备的结构示意图。请参见图16,终端设备30可以包括:收发器31、存储器32、处理器33。收发器31可包括:发射器和/或接收器。该发射器还可称为发送器、发射机、发送端口或发送接口等类似描述,接收器还可称为接收器、接收机、接收端口或接收接口等类似描述。示例性地,收发器31、存储器32、处理器33,各部分之间通过总线34相互连接。
存储器32用于存储程序指令;
处理器33用于执行该存储器所存储的程序指令,用以使得终端设备30执行上述任一所示的通信方法。
其中,收发器31的接收器,可用于执行上述通信方法中终端设备的接收功能。收发器31的发送器,可用于执行上述通信方法中终端设备的发送功能。
图17为本申请实施例提供的网络设备的结构示意图。请参见图17,网络设备40可以包括:收发器41、存储器42、处理器43。收发器41可包括:发射器和/或接收器。该发射器还可称为发送器、发射机、发送端口或发送接口等类似描述,接收器还可称为接收器、接收机、接收端口或 接收接口等类似描述。示例性地,收发器41、存储器42、处理器43,各部分之间通过总线44相互连接。
存储器42用于存储程序指令;
处理器43用于执行该存储器所存储的程序指令,用以使得终端设备30执行上述任一所示的通信方法。
其中,收发器41的发送器,可用于执行上述通信方法中网络设备的发送功能。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现上述通信方法。
本申请实施例还可提供一种计算机程序产品,该计算机程序产品可以由处理器执行,在计算机程序产品被执行时,可实现上述任一所示的终端设备执行的通信方法。
本申请实施例还可提供一种计算机程序产品,该计算机程序产品可以由处理器执行,在计算机程序产品被执行时,可实现上述任一所示的网络设备执行的通信方法。
本申请实施例的终端设备、计算机可读存储介质及计算机程序产品,可执行上述终端设备执行的通信方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
本申请实施例的网络设备、计算机可读存储介质及计算机程序产品,可执行上述网络设备执行的通信方法,其具体的实现过程及有益效果参见上述,在此不再赘述。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
本申请实施例是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理单元以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理单元执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
在本申请中,术语“包括”及其变形可以指非限制性的包括;术语“或”及其变形可以指“和/或”。本本申请中术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。

Claims (81)

  1. 一种通信方法,其特征在于,包括:
    第一设备获取配置信息,所述配置信息用于指示重复发送第一信息;
    所述第一设备根据所述配置信息,向第二设备重复发送第一信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息为如下信息中的任意一种:
    无线链路控制RLC数据;
    探寻指示信息,所述探寻指示信息用于指示所述第二设备发送状态报告信息;
    状态报告信息,所述状态报告信息用于指示所述第一设备的RLC数据传输状态,或指示所述第二设备重传RLC数据。
  3. 根据权利要求2所述的方法,其特征在于,所述RLC数据包括如下数据中的一种或多种:RLC业务数据单元SDU数据、RLC SDU分段数据、RLC协议数据单元PDU数据、RLC PDU分段数据。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述配置信息包括如下信息中的至少一种:
    第一指示信息,所述第一指示信息指示重复发送所述第一信息;
    重复发送所述第一信息的次数;
    重复发送所述第一信息的第一时间信息,所述第一时间信息中包括时段,或者,所述第一时间信息中包括起始时刻和/或时长,或者,所述第一时间信息中包括起始时刻和结束时刻;
    重复发送所述第一信息的第一条件,所述第一条件包括如下至少一种:所述第一设备的信道质量小于或等于第一阈值,所述第一设备和所述第二设备之间的传输时延大于或等于第二阈值。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一信息为探寻指示信息;所述配置信息包括如下信息中的至少一种:
    第二指示信息,所述第二指示信息用于指示根据第一探寻参数重复发送所述第一信息;
    根据所述第一探寻参数重复发送所述第一信息的第二时间信息,所述第二时间信息中包括时段,或者,所述第二时间信息中包括起始时刻和/或时长,或者,所述第二时间信息中包括起始时刻和/或结束时间;
    根据所述第一探寻参数重复发送所述第一信息的第二条件,所述第二条件包括如下至少一种:所述第一设备的信道质量小于或等于第三阈值,所述第一设备和所述第二设备之间的传输时延大于或等于第四阈值。
  6. 根据权利要求5所述的方法,其特征在于,所述第一探寻参数包括如下至少一个:探寻指示信息重传定时器、包含探寻PDU的个数阈值、字节个数阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述探寻指示信息重传定时器的时长小于或等于预设时长,所述探寻PDU的个数阈值小于或等于第五阈值,所述字节个数阈值小于或等于第六阈值。
  8. 根据权利要求7所述的方法,其特征在于,根据所述第一探寻参数重复发送所述第一信息,包括:
    在发送的第一PDU的个数大于或等于所述PDU个数阈值时,发送所述探寻指示信息,所述第一PDU中不包括所述探寻指示信息;和/或,
    在发送的第一字节的个数大于或等于所述字节个数阈值时,发送所述探寻指示信息,所述第一字节中不包括所述探寻指示信息。
  9. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一信息为RLC数据;
    所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为第一RLC模式对应配置信息,或者,所述配置信息为所述第一RLC模式下的预设RLC实体对应配置信息,或者,所述配置信息为预设无线承载对应的配置信息;其中,所述第一RLC模式包括如下模式中的至少一种:确认模式、非确认模式或透传模式。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一信息为探寻指示信息;
    所述配置信息为确认模式对应的配置信息,或者,所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为预设无线承载对应的配置信息。
  11. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一信息为状态报告信息;
    所述配置信息为确认模式对应的配置信息,或者,所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为预设无线承载对应的配置信息。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述预设无线承载为数据无线承载DRB。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,
    所述第一设备为终端设备,所述第二设备为网络设备;或者,
    所述第一设备为网络设备,所述第二设备为终端设备;或者,
    所述第一设备为RLC发送实体,所述第二设备为RLC接收实体。
  14. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备;所述第一设备获取配置信息,包括:
    所述第一设备从所述第二设备接收所述配置信息。
  15. 根据权利要求14所述的方法,其特征在于,所述第一设备从所述第二设备接收所述配置信息,包括:
    所述第一设备从所述第二设备接收第二信息,所述第二信息中包括所述配置信息。
  16. 根据权利要求15所述的方法,其特征在于,所述第二信息为如下消息中的任意一种:RRC配置信息、媒质接入控制MAC控制单元CE信息、下行控制信息DCI。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送所述第一设备的位置信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第一设备向所述第二设备发送所述第一设备的位置信息,包括:
    若所述第一设备未向所述第二设备发送所述位置信息,或者,所述第一设备的位置信息发生变化时,所述第一设备向所述第二设备发送所述第一设备的位置信息。
  19. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备;所述方法还包括:
    所述第一设备接收所述第二设备发送的所述第二设备的位置信息;
    所述第一设备根据所述第二设备的位置信息,确定所述配置信息。
  20. 根据权利要求19所述的方法,其特征在于,所述第一设备根据所述第二设备的位置信息,确定所述配置信息,包括:
    所述第一设备获取卫星的运动轨迹;
    所述第一设备根据所述第二设备的位置信息和所述卫星的运动轨迹,确定所述配置信息。
  21. 一种通信方法,其特征在于,包括:
    第二设备接收第一设备重复发送的多个第一信息,所述多个第一信息的标识相同;
    所述第二设备对所述多个第一信息进行处理。
  22. 根据权利要求21所述的方法,其特征在于,所述第一信息为如下信息中的任意一种:
    无线链路控制RLC数据;
    探寻指示信息,所述探寻指示信息用于指示所述第二设备发送状态报告信息;
    状态报告信息,所述状态报告信息用于指示所述第一设备RLC数据传输状态,或指示所述第二设备重传RLC数据。
  23. 根据权利要求22所述的方法,其特征在于,所述RLC数据包括如下数据中的一种或多种:RLC业务数据单元SDU数据、RLC SDU分段数据、RLC协议数据单元PDU数据、RLC PDU分段数据。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,所述第一信息为RLC数据;所述第二设备对所述多个第一信息进行处理,包括:
    所述第二设备对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
  25. 根据权利要求24所述的方法,其特征在于,所述第二设备对所述多个第一信息进行重复数据检测处理,包括:
    所述第二设备根据所述多个第一信息的标识,确定所述多个第一信息为重复数据。
  26. 根据权利要求24所述的方法,其特征在于,所述第二设备对所述多个第一信息进行重复数据丢弃处理,包括:
    所述第二设备丢弃所述重复数据。
  27. 根据权利要求24-26任一项所述的方法,其特征在于,所述RLC数据包括RLC SDU数据或者RLC SDU分段数据中的至少一种;所述第二设备对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理,包括:
    所述第二设备中的分组数据汇聚协议PDCP实体对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
  28. 根据权利要求24-26任一项所述的方法,其特征在于,所述RLC数据包括RLC PDU数据或者RLC PDU分段数据中的至少一种;所述第二设备对所述多个第一信息进行重复数据检测处理和重复数据丢弃处理,包括:
    所述第二设备中的RLC实体对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
  29. 根据权利要求21-23任一项所述的方法,其特征在于,所述第一信息为探寻指示信息;所述方法还包括:
    所述第二设备向所述第一设备发送第一信息对应的M个状态报告信息,所述M为大于或等于2的整数。
  30. 根据权利要求29所述的方法,其特征在于,所述M个状态报告信息中包括的内容相同。
  31. 根据权利要求29或30所述的方法,其特征在于,所述第二设备向所述第一设备发送所述M个状态报告信息中的前K个状态报告信息后,状态禁止定时器的状态为关闭状态,其中,状态禁止定时器用于控制发送状态报告信息,在状态禁止定时器超时后,发送下一个状态报告信息,所述K为大于或等于1的整数。
  32. 根据权利要求31所述的方法,其特征在于,所述K为所述M减1。
  33. 根据权利要求29-32任一项所述的方法,其特征在于,所述第二设备向所述第一设备发送第一信息对应的L个状态报告信息之后,还包括:
    所述第二设备开启状态禁止定时器,所述L为小于或等于所述M的整数。
  34. 根据权利要求21-23、或29-32任一项所述的方法,其特征在于,所述第一信息为探寻指示信息;所述方法还包括:
    在所述第二设备接收到P个所述第一信息之后,所述第二设备开启状态禁止定时器,所述P为大于或等于1的整数。
  35. 根据权利要求21-23、或29-32任一项所述的方法,其特征在于,所述第一信息为探寻指示信息;所述方法还包括:
    在所述第二设备接收到所述第一信息的预设时长之后,所述第二设备开启状态禁止定时器。
  36. 根据权利要求22-35任一项所述的方法,其特征在于,所述探寻指示信息为确认模式数据AMD协议数据单元PDU,所述AMD PDU中的预设域的值为预设值。
  37. 根据权利要求21-23任一项所述的方法,其特征在于,所述第一信息为状态报告信息;所述方法还包括:
    所述第二设备根据所述第一信息向所述第一设备重传未发送成功的数据。
  38. 根据权利要求37所述的方法,其特征在于,所述第一信息中包括如下信息中的至少一种:未接收成功的数据的指示、指示存在数据未接收成功的指示信息。
  39. 根据权利要求21-38任一项所述的方法,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备;或者,
    所述第一设备为网络设备,所述第二设备为终端设备;或者,
    所述第一设备为RLC发送实体,所述第二设备为RLC接收实体。
  40. 一种通信装置,其特征在于,应用于第一设备,所述装置包括处理模块和发送模块,其中,
    所述处理模块用于,获取配置信息,所述配置信息用于指示重复发送第一信息;
    所述发送模块用于,根据所述配置信息,向第二设备重复发送第一信息。
  41. 根据权利要求40所述的装置,其特征在于,所述第一信息为如下信息中的任意一种:
    无线链路控制RLC数据;
    探寻指示信息,所述探寻指示信息用于指示所述第二设备发送状态报告信息;
    状态报告信息,所述状态报告信息用于指示所述第一设备的RLC数据传输状态,或指示所述第二设备重传RLC数据。
  42. 根据权利要求41所述的装置,其特征在于,所述RLC数据包括如下数据中的一种或多种:RLC业务数据单元SDU数据、RLC SDU分段数据、RLC协议数据单元PDU数据、RLC PDU分段数据。
  43. 根据权利要求40-42任一项所述的装置,其特征在于,所述配置信息包括如下信息中的至少一种:
    第一指示信息,所述第一指示信息指示重复发送所述第一信息;
    重复发送所述第一信息的次数;
    重复发送所述第一信息的第一时间信息,所述第一时间信息中包括时段,或者,所述第一时间信息中包括起始时刻和/或时长,或者,所述第一时间信息中包括起始时刻和结束时刻;
    重复发送所述第一信息的第一条件,所述第一条件包括如下至少一种:所述第一设备的信道质量小于或等于第一阈值,所述第一设备和所述第二设备之间的传输时延大于或等于第二阈值。
  44. 根据权利要求40-42任一项所述的装置,其特征在于,所述第一信息为探寻指示信息;所述配置信息包括如下信息中的至少一种:
    第二指示信息,所述第二指示信息用于指示根据第一探寻参数重复发送所述第一信息;
    根据所述第一探寻参数重复发送所述第一信息的第二时间信息,所述第二时间信息中包括时段,或者,所述第二时间信息中包括起始时刻和/或时长,或者,所述第二时间信息中包括起始时刻和/或结束时间;
    根据所述第一探寻参数重复发送所述第一信息的第二条件,所述第二条件包括如下至少一种:所述第一设备的信道质量小于或等于第三阈值,所述第一设备和所述第二设备之间的传输时延大于或等于第四阈值。
  45. 根据权利要求44所述的装置,其特征在于,所述第一探寻参数包括如下至少一个:探寻指示信息重传定时器、包含探寻PDU的个数阈值、字节个数阈值。
  46. 根据权利要求45所述的装置,其特征在于,所述探寻指示信息重传定时器的时长小于或等于预设时长,所述探寻PDU的个数阈值小于或等于第五阈值,所述字节个数阈值小于或等于第六阈值。
  47. 根据权利要求46所述的装置,其特征在于,所述发送模块具体用于:
    在发送的第一PDU的个数大于或等于所述PDU个数阈值时,发送所述探寻指示信息,所述第一PDU中不包括所述探寻指示信息;和/或,
    在发送的第一字节的个数大于或等于所述字节个数阈值时,发送所述探寻指示信息,所述第一字节中不包括所述探寻指示信息。
  48. 根据权利要求40-43任一项所述的装置,其特征在于,所述第一信息为RLC数据;
    所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为第一RLC模式对应配置信息,或者,所述配置信息为所述第一RLC模式下的预设RLC实体对应配置信息,或者,所述配置信息为预设无线承载对应的配置信息;其中,所述第一RLC模式包括如下模式中的至少一种:确认模式、非确认模式或透传模式。
  49. 根据权利要求40-47任一项所述的装置,其特征在于,所述第一信息为探寻指示信息;
    所述配置信息为确认模式对应的配置信息,或者,所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为预设无线承载对应的配置信息。
  50. 根据权利要求40-43任一项所述的装置,其特征在于,所述第一信息为状态报告信息;
    所述配置信息为确认模式对应的配置信息,或者,所述配置信息为预设RLC实体对应的配置信息,或者,所述配置信息为预设无线承载对应的配置信息。
  51. 根据权利要求48-50任一项所述的装置,其特征在于,所述预设无线承载为数据无线承载DRB。
  52. 根据权利要求40-51任一项所述的装置,其特征在于,
    所述第一设备为终端设备,所述第二设备为网络设备;或者,
    所述第一设备为网络设备,所述第二设备为终端设备;或者,
    所述第一设备为RLC发送实体,所述第二设备为RLC接收实体。
  53. 根据权利要求40-52任一项所述的装置,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备;所述装置还包括接收模块,其中,
    所述接收模块用于,从所述第二设备接收所述配置信息。
  54. 根据权利要求53所述的装置,其特征在于,所述接收模块具体用于:
    从所述第二设备接收第二信息,所述第二信息中包括所述配置信息。
  55. 根据权利要求54所述的装置,其特征在于,所述第二信息为如下消息中的任意一种:RRC配置信息、媒质接入控制MAC控制单元CE信息、下行控制信息DCI。
  56. 根据权利要求53-55任一项所述的装置,其特征在于,所述发送模块还用于:
    向所述第二设备发送所述第一设备的位置信息。
  57. 根据权利要求56所述的装置,其特征在于,所述发送模块具体用于:
    若所述发送模块未向所述第二设备发送所述位置信息,或者,所述第一设备的位置信息发生变化时,所述第一设备向所述第二设备发送所述第一设备的位置信息。
  58. 根据权利要求40-52任一项所述的装置,其特征在于,所述第一设备为网络设备,所述第二设备为终端设备;
    接收模块还用于,接收所述第二设备发送的所述第二设备的位置信息;
    所述处理模块还用于,根据所述第二设备的位置信息,确定所述配置信息。
  59. 根据权利要求58所述的装置,其特征在于,所述处理模块具体用于:
    获取卫星的运动轨迹;
    根据所述第二设备的位置信息和所述卫星的运动轨迹,确定所述配置信息。
  60. 一种通信装置,其特征在于,应用于第二设备,所述装置包括接收模块和处理模块,其中,
    所述接收模块用于,接收第一设备重复发送的多个第一信息,所述多个第一信息的标识相同;
    所述处理模块用于,对所述多个第一信息进行处理。
  61. 根据权利要求60所述的装置,其特征在于,所述第一信息为如下信息中的任意一种:
    无线链路控制RLC数据;
    探寻指示信息,所述探寻指示信息用于指示所述第二设备发送状态报告信息;
    状态报告信息,所述状态报告信息用于指示所述第一设备RLC数据传输状态,或指示所述第二设备重传RLC数据。
  62. 根据权利要求61所述的装置,其特征在于,所述RLC数据包括如下数据中的一种或多种:RLC业务数据单元SDU数据、RLC SDU分段数据、RLC协议数据单元PDU数据、RLC PDU分段数据。
  63. 根据权利要求60-62任一项所述的装置,其特征在于,所述第一信息为RLC数据;所述处理模块具体用于:
    对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
  64. 根据权利要求63所述的装置,其特征在于,所述处理模块具体用于:
    根据所述多个第一信息的标识,确定所述多个第一信息为重复数据。
  65. 根据权利要求63所述的装置,其特征在于,所述处理模块具体用于:
    丢弃所述重复数据。
  66. 根据权利要求63-65任一项所述装置法,其特征在于,所述RLC数据包括RLC SDU数据或者RLC SDU分段数据中的至少一种;所述处理模块具体用于:
    通过所述第二设备中的分组数据汇聚协议PDCP实体对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
  67. 根据权利要求63-65任一项所述的装置,其特征在于,所述RLC数据包括RLC PDU数据或者RLC PDU分段数据中的至少一种;所述处理模块具体用于:
    通过所述第二设备中的RLC实体对所述多个第一信息进行重复数据检测处理和/或重复数据丢弃处理。
  68. 根据权利要求60-62任一项所述的装置,其特征在于,所述第一信息为探寻指示信息;所述装置还包括发送模块,其中,
    所述发送模块用于,向所述第一设备发送第一信息对应的M个状态报告信息,所述M为大于或等于2的整数。
  69. 根据权利要求68所述的装置,其特征在于,所述M个状态报告信息中包括的内容相同。
  70. 根据权利要求68或69所述的装置,其特征在于,所述第二设备向所述第一设备发送所述M个状态报告信息中的前K个状态报告信息后,状态禁止定时器的状态为关闭状态,其中,状态禁止定时器用于控制发送状态报告信息,在状态禁止定时器超时后,发送下一个状态报告信息,所述K为大于或等于1的整数。
  71. 根据权利要求70所述的装置,其特征在于,所述K为所述M减1。
  72. 根据权利要求68-71任一项所述的装置,其特征在于,所述处理模块还用于:
    开启状态禁止定时器,所述L为小于或等于所述M的整数。
  73. 根据权利要求60-62、或68-71任一项所述的装置,其特征在于,所述第一信息为探寻指示信息;所述处理模块还用于:
    在所述接收模块接收到P个所述第一信息之后,开启状态禁止定时器,所述P为大于或等于1的整数。
  74. 根据权利要求60-62、或68-71任一项所述的装置,其特征在于,所述第一信息为探寻指示信息;所述处理模块还用于:
    在所述接收模块接收到所述第一信息的预设时长之后,开启状态禁止定时器。
  75. 根据权利要求61-74任一项所述的装置,其特征在于,所述探寻指示信息为确认模式数据AMD协议数据单元PDU,所述AMD PDU中的预设域的值为预设值。
  76. 根据权利要求60-62任一项所述的装置,其特征在于,所述第一信息为状态报告信息;所述发送模块还用于:
    根据所述第一信息向所述第一设备重传未发送成功的数据。
  77. 根据权利要求76所述的装置,其特征在于,所述第一信息中包括如下信息中的至少一种:未接收成功的数据的指示、指示存在数据未接收成功的指示信息。
  78. 根据权利要求60-77任一项所述的装置,其特征在于,所述第一设备为终端设备,所述第二设备为网络设备;或者,
    所述第一设备为网络设备,所述第二设备为终端设备;或者,
    所述第一设备为RLC发送实体,所述第二设备为RLC接收实体。
  79. 一种终端设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至39任一项所述的通信方法。
  80. 一种网络设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至39任一项所述的通信方法。
  81. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现权利要求1至20任一项所述的通信方法,或者权利要求21至39任一项所述的通信方法。
PCT/CN2020/073308 2020-01-20 2020-01-20 通信方法、装置及设备 WO2021146863A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080077071.5A CN114642060B (zh) 2020-01-20 2020-01-20 通信方法、装置及设备
PCT/CN2020/073308 WO2021146863A1 (zh) 2020-01-20 2020-01-20 通信方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/073308 WO2021146863A1 (zh) 2020-01-20 2020-01-20 通信方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2021146863A1 true WO2021146863A1 (zh) 2021-07-29

Family

ID=76991893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073308 WO2021146863A1 (zh) 2020-01-20 2020-01-20 通信方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114642060B (zh)
WO (1) WO2021146863A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023011329A1 (zh) * 2021-07-31 2023-02-09 华为技术有限公司 一种北斗通信***中数据传输控制方法、***及相关装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065456A1 (zh) * 2022-09-29 2024-04-04 Oppo广东移动通信有限公司 信息传输方法、定时器配置方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686691A (zh) * 2012-09-18 2014-03-26 电信科学技术研究院 信号及配置信息发送和终端发现方法与设备
CN104812084A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 配置信息的发送、获取方法、接入方法、通信节点及***
CN108811122A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 控制信息的传输方法和网络设备
CN109937587A (zh) * 2017-03-10 2019-06-25 株式会社Kt 缓冲区状态报告传输方法及其设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101237270B (zh) * 2007-02-01 2012-11-28 中兴通讯股份有限公司 一种节点b获得重传间隔控制信息的方法
US10263734B2 (en) * 2013-11-12 2019-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Devices and methods for handling blind (re) transmissions in a network
CN107708209B (zh) * 2016-08-09 2023-10-27 北京三星通信技术研究有限公司 用于非正交多址接入的重传数据接收、发送方法及装置
WO2018188121A1 (zh) * 2017-04-12 2018-10-18 华为技术有限公司 传输方法与设备
CN110401963A (zh) * 2019-08-26 2019-11-01 展讯通信(上海)有限公司 传输控制方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686691A (zh) * 2012-09-18 2014-03-26 电信科学技术研究院 信号及配置信息发送和终端发现方法与设备
CN104812084A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 配置信息的发送、获取方法、接入方法、通信节点及***
CN109937587A (zh) * 2017-03-10 2019-06-25 株式会社Kt 缓冲区状态报告传输方法及其设备
CN108811122A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 控制信息的传输方法和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Time and Frequency Relationship for MPDSCH and PDSCH", 3GPP DRAFT; R1-153320 M-PDCCH-PDSCH FOR LC-MTC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Fukuoka, Japan; 20150525 - 20150529, 24 May 2015 (2015-05-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050973747 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023011329A1 (zh) * 2021-07-31 2023-02-09 华为技术有限公司 一种北斗通信***中数据传输控制方法、***及相关装置

Also Published As

Publication number Publication date
CN114642060A (zh) 2022-06-17
CN114642060B (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
CA2681049C (en) Method and apparatus for reordering data in an evolved high speed packet access system
CN107257271B (zh) 数据通信的方法和装置
JP4991011B2 (ja) 無線装置とネットワーク間のデータユニットのシーケンスの送信のための無線通信方法
KR101276841B1 (ko) 이동통신 시스템에서의 상태 보고 메시지 전송 방법 및이를 지원하는 송수신기
ES2536071T3 (es) Procedimiento para mover una ventana de recepción en una red de acceso de radio
US20070266292A1 (en) Method and apparatus for reduced data block transmission in an automatic repeat request system
KR20110081027A (ko) 무선 통신 시스템에서 mac 프로토콜 데이터 유닛 처리 방법
CN108322936B (zh) 数据重传的方法及装置
US9820307B2 (en) Data transmission method, base station, and user equipment
US20100122136A1 (en) Method and apparatus for reduced data block transmission in an automatic repeat request system
WO2021146863A1 (zh) 通信方法、装置及设备
KR102637660B1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN102740353A (zh) 上行状态报告上报方法、无线链路控制数据发送方法及装置
JP6607587B2 (ja) 通信方法および通信装置
WO2021155590A1 (zh) 数据传输方法、装置及设备
EP3718231B1 (en) Enhanced harq algorithm for large round trip delay links
US20230396368A1 (en) Methods, apparatuses, and media for operating point-to-multipoint radio bearer
WO2021184244A1 (zh) 通信方法及装置
WO2021063241A1 (zh) 数据发送、接收方法、设备及介质
US20240188111A1 (en) Duplicate Transmission of Protocol Data Units
CN111464269A (zh) 一种重复传输确认的方法及设备
CN111294874A (zh) 切换方法及装置、存储介质、用户终端
KR20190017311A (ko) 패킷 재전송 및 복원을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914834

Country of ref document: EP

Kind code of ref document: A1