WO2021143129A1 - 检测电路及其控制方法 - Google Patents

检测电路及其控制方法 Download PDF

Info

Publication number
WO2021143129A1
WO2021143129A1 PCT/CN2020/109982 CN2020109982W WO2021143129A1 WO 2021143129 A1 WO2021143129 A1 WO 2021143129A1 CN 2020109982 W CN2020109982 W CN 2020109982W WO 2021143129 A1 WO2021143129 A1 WO 2021143129A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
detection
signal
capacitor
terminal
Prior art date
Application number
PCT/CN2020/109982
Other languages
English (en)
French (fr)
Inventor
王仲益
林郁轩
洪自立
Original Assignee
神盾股份有限公司
神亚科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司, 神亚科技股份有限公司 filed Critical 神盾股份有限公司
Priority to US17/792,410 priority Critical patent/US20230043448A1/en
Publication of WO2021143129A1 publication Critical patent/WO2021143129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/960725Charge-transfer

Definitions

  • the invention relates to a detection circuit and a control method thereof, in particular to a detection circuit that can be used for fingerprint detection and touch detection and a control method thereof.
  • touch detection applications have also been widely adopted.
  • smart phones or tablets can often execute commands or text input through touch.
  • machines such as automated teller machines can also be touched to save physical keyboards.
  • Common scenarios can include a screen or a specific interface that allows users to touch the device and perform fingerprint detection.
  • two sets of exclusive detection circuits must be used to detect fingerprints and touch respectively. Therefore, it is difficult to reduce the complexity and size of the circuit, the control process is complicated, and even the interface integration is difficult. .
  • the embodiment provides a detection circuit including a first detection terminal, a second detection terminal, a first switch, a second switch, a first capacitor, a second capacitor, and an amplifier.
  • the first detection terminal is used for receiving a first signal.
  • the second detection terminal is used for receiving a second signal.
  • the first switch is coupled to the first detection terminal.
  • the second switch is coupled to the second detection terminal.
  • the first capacitor is coupled between the first switch and the second switch.
  • the amplifier includes a first input terminal coupled to the first capacitor, a second input terminal for receiving an operation signal, and an output terminal for outputting an output signal.
  • the second capacitor is coupled between the first input terminal of the amplifier and the output terminal of the amplifier.
  • the detection circuit includes a first detection terminal, a second detection terminal, a first switch, a second switch, a first capacitor, a second capacitor, and an amplifier.
  • the first switch is coupled between the first detection terminal and the first capacitor.
  • the second switch is coupled between the second detection terminal and the first capacitor.
  • the first capacitor is coupled between the first switch and a first input terminal of the amplifier.
  • the second capacitor is coupled between the first input terminal and an output terminal of the amplifier.
  • a second input terminal of the amplifier is used to receive an operating signal.
  • the control method includes turning on the first switch and turning off the second switch in a first period of time, so as to pass the first detection terminal and the first switch Receiving a first signal; and in a second time period, turning off the first switch and turning on the second switch, thereby receiving a second signal through the second detection terminal and the second switch.
  • Fig. 1 is a schematic diagram of the detection circuit when performing fingerprint detection in the embodiment.
  • FIG. 2 is a schematic diagram of the detection circuit of FIG. 1 when performing touch detection.
  • FIG. 3 is a schematic diagram of the detection circuit of FIG. 1 when the panel performs a display function.
  • FIG. 4 is an operation mode of the detection circuit of FIG. 1 to FIG. 3, and a waveform timing diagram of the operation signal.
  • Fig. 5 is a flowchart of a control method of the detection circuit of Figs. 1 to 3.
  • T1 The first period
  • FIG. 1 is a schematic diagram of the detection circuit 100 in the embodiment.
  • the detection circuit 100 includes a first detection terminal 110, a second detection terminal 120, a first switch 131, a second switch 132, a first capacitor C1, a second capacitor C2 and an amplifier 140.
  • the first detection terminal 110 is used for receiving the first signal S1.
  • the second detection terminal 120 is used for receiving the second signal S2.
  • the first switch 131 is coupled to the first detection terminal 110.
  • the second switch 132 is coupled to the second detection terminal 120.
  • the first capacitor C1 is coupled between the first switch 131 and the second switch 132.
  • the amplifier 140 includes a first input terminal, a second input terminal, and an output terminal.
  • the first input terminal is coupled to the first capacitor C1
  • the second input terminal is used to receive the operation signal VX
  • the output terminal is used to output the output signal Vout.
  • the second capacitor C2 is coupled between the first input terminal of the amplifier 140 and the output terminal of the amplifier 140.
  • the first switch 131, the second switch 132, the first capacitor C1, the second capacitor C2, and the amplifier 140 can be (but not limited to) integrated in an integrated circuit IC; and the first detection terminal 110 and the second detection The terminal 120 may be coupled to the panel P.
  • the first switch 131 and the second switch 132 are turned on alternately, that is, when one is turned on, the other is turned off.
  • the first signal S1 may be a fingerprint detection signal
  • the second signal S2 may be a touch detection signal.
  • the first switch 131 is turned on, the second switch 132 is turned off, and the detection circuit 100 can perform fingerprint detection.
  • the first switch 131 is turned off, the second switch 132 is turned on, and the detection circuit 100 can perform touch detection.
  • the first switch 131 and the second switch 132 are turned off, and the panel P can perform a display function.
  • the detection circuit 100 when the first switch 131 is turned on, the detection circuit 100 performs fingerprint detection.
  • the first signal S1 may correspond to the user's fingerprint
  • the output signal Vout may correspond to the ratio of the capacitance value of the first capacitor C1 to the capacitance value of the second capacitor C2, and the ratio may be expressed as (C1/C2).
  • the amplifier 140 can generate the output signal Vout according to the ratio (C1/C2).
  • the ratio (C1/C2) may be between 0.1 and 10, for example.
  • the touch electrode of the panel P may have an inductive capacitance value CT.
  • the change of the second signal S2 may correspond to the change of the sensing capacitance value CT caused by the user's touch.
  • the output signal vout may correspond to the change of the sensing capacitance value CT.
  • Figures 1 to 3 The architecture of Figures 1 to 3 is used to describe the concept of the invention. According to the embodiment, if the components are based on the requirements of circuit optimization, electrostatic protection, or improved reliability, additional passive components are coupled, or the switches are coupled to The driving force is improved by multiple switches, etc., and such reasonable modification also belongs to the scope of the embodiment.
  • the first switch 131 and the second switch 132 can be transistor switches. When an n-type transistor switch is used, a high voltage can be applied to turn on the switch, and a low voltage can be applied to turn off the switch; when a P-type transistor switch is used, a low voltage can be applied to Turn on the switch, and apply a high voltage to turn off the switch.
  • FIG. 4 is an operation mode of the detection circuit 100 in FIG. 1 to FIG. 3, and a waveform temporal diagram of the operation signal VX.
  • the detection circuit 100 can perform touch detection, the second switch 132 is turned on, and the operation signal VX may have an AC waveform substantially.
  • the AC waveform can be a square wave, a sine wave, a triangle wave, a sawtooth wave, or other AC waveforms.
  • the detection circuit 100 can perform fingerprint detection, the first switch 131 is turned on, and the operation signal VX can be substantially fixed at a predetermined level.
  • the detection circuit 100 may not perform fingerprint detection or touch detection, and enable the panel P to perform a display function.
  • the panel P performs a display function
  • at least the first switch 131 can be turned off, and the operation signal VX can be substantially fixed at a predetermined level.
  • the aforementioned predetermined level may be a DC reference level.
  • FIG. 3 is an example in which the detection circuit 100 is applied to a TDDI module, and FIG. 3 is only an example, and is not used to limit the scope of the embodiment.
  • the detection circuit 100 is not applied to the TDDI module, since the display function can detect touch at the same time, in the third time period T3, the first switch 131 for fingerprint detection can be turned off, but the second switch for touch detection can be turned off.
  • the switch 132 can be turned on.
  • the AC waveform of the operating signal VX is a square wave waveform as an example, but the embodiment is not limited to this, and other AC waveforms can also be used.
  • the AC waveform of the operation signal vx can be regarded as being added to the sensing capacitance value CT of the panel P.
  • the sensing capacitance value CT will have a small amplitude
  • the change causes the ratio of the sensing capacitance value CT to the capacitance value of the second capacitor c2 to change. Therefore, by detecting the signal magnitude of the output signal vout in the first time period T1, it can be determined whether the panel p is touched.
  • FIG. 5 is a flowchart of a control method 500 of the detection circuit 100 of FIGS. 1 to 3.
  • the control method 500 may include the following steps:
  • Step 510 In the first time period T1, the detection circuit 100 performs touch detection, the operation signal VX substantially has an AC waveform, the first switch 131 is turned off and the second switch 132 is turned on, so as to pass through the second detection terminal 120 and the second switch 132 receiving the second signal S2;
  • Step 520 In the second time period T2, the detection circuit 100 performs fingerprint detection, the operation signal VX is substantially fixed at a predetermined level, the first switch 131 is turned on and the second switch 132 is turned off, so as to pass the first detection terminal 110 and the first The switch 131 receives the first signal S1; and
  • Step 530 In the third time period T3, the panel P performs a display function, the operation signal VX is substantially fixed at a predetermined level, and at least the first switch 131 is turned off.
  • Steps 510, 520, and 530 in FIG. 5 can be (but not limited to) cyclically executed; in other words, after step 530 is executed, step 510 can be executed again.
  • the predetermined level of the operation signal VX may be the same, or may be adjusted to be different as required.
  • the detection circuit 100 and the control method 500 can provide a solution to integrate the detection circuit and control method of touch detection and fingerprint detection. Therefore, it is effective in reducing circuit complexity, reducing circuit area, saving design resources, integrating the use of interfaces, and Improving design flexibility is really helpful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electronic Switches (AREA)
  • Burglar Alarm Systems (AREA)
  • Electrotherapy Devices (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

一种检测电路(100)及其控制方法,其中检测电路(100)包含第一检测端(110)、第二检测端(120)、第一开关(131)、第二开关(132)、第一电容(C1)、第二电容(C2)及放大器(140)。该第一开关(131)耦接于该第一检测端(110)。该第二开关(132)耦接于该第二检测端(120)。该第一电容(C1)耦接于该第一开关(131)及该第二开关(132)之间。该放大器(140)包含第一输入端,耦接于该第二开关(132),第二输入端,用以接收操作信号(VX),及输出端,用以输出输出信号(VOUT)。该第二电容(C2)耦接于该放大器(140)的该第一输入端及该输出端之间。该第一开关(131)及该第二开关(132)系交互导通。

Description

检测电路及其控制方法 技术领域
本发明涉及一种检测电路及其控制方法,特别涉及一种可用于指纹检测及触控检测的检测电路及其控制方法。
背景技术
随着消费型电子产品日渐普及,检测触控的应用也被广泛采用,举例而言,智能手机或平板常可通过触控方式,执行指令或文字输入。又,如自动柜员机等机器,也可用触控方式,以节省实体的键盘。
同时,随着使用者对于安全性的需求持续提升,指纹检测的相关应用也不断增加。举例而言,当使用者欲操作装置时,可将手指置放于特定接口,从而执行指纹检测,以确认使用者的身份。
常见的场景,可包含通过屏幕或特定接口,让使用者可触控装置,及执行指纹检测。当前为了达到触控检测与指纹检测,必须使用两套专属的检测电路,从而分别检测指纹及触控,因此,造成电路的复杂度与尺寸难以降低,控制流程复杂,甚至也导致接口整合的困难。
发明内容
实施例提供一种检测电路,包含一第一检测端、一第二检测端、一第一开关、一第二开关、一第一电容、一第二电容及一放大器。该第一检测端用以接收一第一信号。该第二检测端用以接收一第二信号。该第一开关耦接于该第一检测端。该第二开关耦接于该第二检测端。该第一电容耦接于该第一开关及该第二开关之间。该放大器包含一第一输入端,耦接于该第一电容,一第二输入端,用以接收一操作信号,及一输出端,用以输出一输出信号。该第二电容耦接于该放大器的该第一输入端及该放大器的该输出端之间。当该第一开关及该第二开关系交互导通。
另一实施例提供用于一检测电路的一控制方法。该检测电路包含一第一检测端、一第二检测端、一第一开关、一第二开关、一第一电容、一第二电容及一放大器。该第一开关耦接于该第一检测端及该第一电容之间。该第二开关耦接于该第二检测端及该第一电容之间。该第一电容耦接于该第一开关及该放大器的一第一输入端之间。该第二电容耦接于该放大器的该第一输入端及一输出端之间。该放大器的一第二输入端用以接收一操作信号,该控制方法包含于一第一时段,导通该第一开关且截止该第二开关,从而通过该第一检测端及该第一开关接收一第一信号;及于一第二时段,截止该第一开关且导通该第二开关, 从而通过该第二检测端及该第二开关接收一第二信号。
附图说明
图1是实施例中,检测电路执行指纹检测时的示意图。
图2是图1的检测电路执行触控检测时的示意图。
图3是图1的检测电路于面板执行显示功能时的示意图。
图4是图1至图3的检测电路的操作模式,及操作信号的波形时态图。
图5是图1至图3的检测电路的控制方法的流程图。
其中,附图标记说明如下:
100:检测电路
110:第一检测端
120:第二检测端
131:第一开关
132:第二开关
140:放大器
500:控制方法
510,520,530:步骤
C1:第一电容
C2:第二电容
CT:感应电容值
IC:集成电路
P:面板
S1:第一信号
S2:第二信号
T1:第一时段
T2:第二时段
T3:第三时段
VOUT:输出信号
VX:操作信号
具体实施方式
图1是实施例中,检测电路100的示意图。检测电路100包含第一检测端110、第二检测端120、第一开关131、第二开关132、第一电容C1、第二电容C2及放大器140。
第一检测端110用以接收第一信号S1。第二检测端120用以接收第二信号S2。第一 开关131耦接于第一检测端110。第二开关132耦接于第二检测端120。
第一电容C1耦接于第一开关131及第二开关132之间。放大器140包含第一输入端、第二输入端及输出端,其中第一输入端耦接于第一电容C1,第二输入端用以接收操作信号VX,且输出端用以输出输出信号Vout。第二电容C2耦接于放大器140的第一输入端及放大器140的输出端之间。
如图1所示,第一开关131、第二开关132、第一电容C1、第二电容C2及放大器140可(但不限于)整合于集成电路IC;且第一检测端110及第二检测端120可耦接于面板P。
根据实施例,当第一开关131及第二开关132是交互导通,亦即当一者导通,另一者截止。
图2及图3是检测电路100于其他操作模式的示意图。根据实施例,图1至图3中,第一信号S1可为指纹检测信号,且第二信号S2可为触控检测信号。
图1中,第一开关131导通,第二开关132截止,且检测电路100可执行指纹检测。图2中,第一开关131截止,第二开关132导通,且检测电路100可执行触控检测。图3中,第一开关131及第二开关132截止,且面板P可执行显示功能。
根据实施例,如图1所示,当第一开关131导通,检测电路100执行指纹检测。第一信号S1可对应于使用者的指纹,输出信号Vout可对应于第一电容C1的电容值及第二电容C2的电容值的比值,所述比值可表示为(C1/C2)。换言之,放大器140可根据比值(C1/C2),从而产生输出信号Vout。所述比值(C1/C2)可例如为介于0.1至10之间。
根据实施例,面板P的触控电极可具有感应电容值CT。第二信号S2的变化,可对应于使用者的触碰导致的感应电容值CT的变化。如图2所示,当第二开关132导通时,输出信号vout可对应于感应电容值CT的变化。
图1至图3的架构是用以描述发明概念,根据实施例,若各元件之间基于电路优化、静电保护或提升可靠性等需求,另行耦接无源元件,或所述开关以耦接多个开关等方式改善驱动力,这种合理修改亦属于实施例的范围。
第一开关131及第二开关132可为晶体管开关,当使用n型晶体管开关,可施加高电压以导通开关,及施加低电压以截止开关;当使用P型晶体管开关,可施加低电压以导通开关,及施加高电压以截止开关。
图4是图1至图3的检测电路100的操作模式,及操作信号VX的波形时态图。
如图4及图2所示,当于第一时段T1,检测电路100可执行触控检测,第二开关132导通,操作信号VX实质上可具有交流波形。其中,交流波形可为方波波形、弦波波形、三角波波形、锯齿波波形或其他交流波形。
如图4及图1所示,当于第二时段T2,检测电路100可执行指纹检测,第一开关131导通,操作信号VX实质上可被固定于预定位准。
如图4及图3所示,当于第三时段T3,检测电路100可不执行指纹检测,亦不执行触控检测,且使面板P执行显示功能。当面板P执行显示功能,至少第一开关131可截止, 且操作信号VX实质上可被固定于预定位准。上述的预定位准可为直流参考位准。
若检测电路100应用于TDDI(Touch and Display Driver Integration)模块,由于触控检测与显示功能有些信号可共用,故于第三时段T3执行显示功能时,第一开关131及第二开关132可皆截止。图3是以检测电路100应用于TDDI模块为例,图3仅为举例,而非用以限制实施例的范围。
若检测电路100并非应用于TDDI模块,由于执行显示功能时,可同时检测触控,故于第三时段T3,用于指纹检测的第一开关131可截止,但用于触控检测的第二开关132可导通。
图4中,于第一时段T1,操作信号VX的交流波形是以方波波形为例,但实施例不限于此,其他交流波形亦可使用。
于第一时段T1执行触控检测时,操作信号vx的交流波形可视为加挂于面板P的感应电容值CT上,当使用者的手指碰触面板p,感应电容值CT会有小幅度变化,导致感应电容值CT与第二电容c2的电容值的比值改变。因此,于第一时段T1检测输出信号vout的信号大小,可判断面板p是否有被触碰。
图5是图1至图3的检测电路100的控制方法500的流程图。控制方法500可包含以下步骤:
步骤510:于第一时段T1,检测电路100执行触控检测,操作信号VX实质上具有交流波形,截止第一开关131及导通第二开关132,从而通过第二检测端120及第二开关132接收第二信号S2;
步骤520:于第二时段T2,检测电路100执行指纹检测,操作信号VX实质上固定于预定位准,导通第一开关131及截止第二开关132,从而通过第一检测端110及第一开关131接收第一信号S1;及
步骤530:于第三时段T3,面板P执行显示功能,操作信号VX实质上固定于预定位准,至少截止第一开关131。
图5的步骤510、520及530可为(但不限于)循环执行;换言之,步骤530执行后,可再执行步骤510。
图5的步骤510、520及530的顺序仅为举例,实施例不限于此,可根据需求调整顺序。
根据实施例,于第二时段T2及第三时段T3中,操作信号VX的预定位准可为相同,亦可随需求调整为相异。
总上,检测电路100及控制方法500可提供解决方案,以整合触控检测及指纹检测的检测电路及控制方法,因此,对于降低电路复杂度、缩小电路面积、节省设计资源、整合使用接口及改善设计弹性,实有助益。
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (11)

  1. 一种检测电路,包含:
    一第一检测端,用以接收一第一信号;
    一第二检测端,用以接收一第二信号;
    一第一开关,耦接于该第一检测端;
    一第二开关,耦接于该第二检测端;
    一第一电容,耦接于该第一开关及该第二开关之间;
    一放大器,包含一第一输入端,耦接于该第一电容,一第二输入端,用以接收一操作信号,及一输出端,用以输出一输出信号;及
    一第二电容,耦接于该放大器的该第一输入端及该放大器的该输出端之间;
    其中,当该第一开关及该第二开关系交互导通。
  2. 如权利要求1所述的检测电路,其中该第一信号是一指纹检测信号,且该第二信号是一触控检测信号。
  3. 如权利要求1所述的检测电路,其中当该第一开关导通时,该输出信号对应于该第一电容的一电容值及该第二电容的一电容值的比值。
  4. 如权利要求1所述的检测电路,其中该第二检测端耦接于一面板,且该第二信号的变化对应于该面板的一触控电极的一感应电容值的变化。
  5. 如权利要求4所述的检测电路,其中当该第二开关导通时,该输出信号对应于该感应电容值的变化。
  6. 如权利要求1所述的检测电路,其中当该第一开关导通时,该操作信号实质上被固定于一预定位准。
  7. 如权利要求1所述的检测电路,其中当该第二开关导通时,该操作信号实质上具有一交流波形。
  8. 如权利要求7所述的检测电路,其中该交流波形为一方波波形,一弦波波形,一三角波波形或一锯齿波波形。
  9. 一种用于一检测电路的一控制方法,该电路包含一第一检测端、一第二检测端、一第一开关、一第二开关、一第一电容、一第二电容及一放大器,该第一开关耦接于该第一检测端及该第一电容之间,该第二开关耦接于该第二检测端及该第一电容之间,该第一电容耦接于该第一开关及该放大器的一第一输入端之间,该第二电容耦接于该放大器的该第一输入端及一输出端之间,该放大器的一第二输入端用以接收一操作信号,该控制方法包含:
    于一第一时段,截止该第一开关且导通该第二开关,从而通过该第二检测端及该第二开关接收一第二信号;及
    于一第二时段,导通该第一开关且截止该第二开关,从而通过该第一检测端及该第一开关接收一第一信号。
  10. 如权利要求9所述的控制方法,另包含:
    于该第一时段,使该操作信号实质上具有一交流波形;及
    于该第二时段,使该操作信号实质上固定于一预定位准。
  11. 如权利要求9所述的控制方法,另包含:
    于一第三时段,至少截止该第一开关,及使该操作信号实质上固定于一预定位准。
PCT/CN2020/109982 2020-01-13 2020-08-19 检测电路及其控制方法 WO2021143129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/792,410 US20230043448A1 (en) 2020-01-13 2020-08-19 Detection circuit and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062960152P 2020-01-13 2020-01-13
US62/960,152 2020-01-13

Publications (1)

Publication Number Publication Date
WO2021143129A1 true WO2021143129A1 (zh) 2021-07-22

Family

ID=72860366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109982 WO2021143129A1 (zh) 2020-01-13 2020-08-19 检测电路及其控制方法

Country Status (4)

Country Link
US (1) US20230043448A1 (zh)
CN (2) CN111814756A (zh)
TW (2) TWI785366B (zh)
WO (1) WO2021143129A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364155A (zh) * 2007-08-08 2009-02-11 广达电脑股份有限公司 具有指纹辨识功能的触控式面板及电子装置
CN201522701U (zh) * 2009-11-23 2010-07-07 威胜集团有限公司 多路模拟信号放大数据采集电路
CN101957698A (zh) * 2009-07-13 2011-01-26 义隆电子股份有限公司 电容式触控板的对象定位检测器及方法
US20150009179A1 (en) * 2012-02-28 2015-01-08 Crucialtec Co., Ltd. Touch detection method and touch detection apparatus having built up linearity
CN104850292A (zh) * 2015-06-01 2015-08-19 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
CN105760014A (zh) * 2015-11-30 2016-07-13 友达光电股份有限公司 具有指纹识别功能的显示装置及其操作方法
CN109325384A (zh) * 2017-07-31 2019-02-12 敦泰电子有限公司 内嵌式光学指纹辨识显示设备
CN109768799A (zh) * 2019-03-28 2019-05-17 苏州神指微电子有限公司 一种电容式指纹采样的模数转换电路及模数转换方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880327B (zh) * 2011-07-12 2016-03-30 宸鸿光电科技股份有限公司 触摸屏触控电路及触压点检测方法
US20150145535A1 (en) * 2013-11-26 2015-05-28 Semtech Corporation Capacitive sensing interface for proximity detection
CN106716444B (zh) * 2015-04-23 2021-03-19 深圳市汇顶科技股份有限公司 多功能指纹传感器
KR102334381B1 (ko) * 2015-08-10 2021-12-02 삼성전자 주식회사 그라운드 모듈레이션을 이용하는 터치 디스플레이 시스템
KR102586120B1 (ko) * 2016-09-23 2023-10-06 엘지디스플레이 주식회사 터치 구동 회로, 터치 디스플레이 장치 및 터치 디스플레이 장치의 구동 방법
CN109255278A (zh) * 2017-07-12 2019-01-22 上海耕岩智能科技有限公司 一种同步采集指纹信息的方法和装置
KR102364855B1 (ko) * 2017-07-26 2022-02-18 삼성전자주식회사 지문/터치 센서 및 이를 포함하는 전자 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101364155A (zh) * 2007-08-08 2009-02-11 广达电脑股份有限公司 具有指纹辨识功能的触控式面板及电子装置
CN101957698A (zh) * 2009-07-13 2011-01-26 义隆电子股份有限公司 电容式触控板的对象定位检测器及方法
CN201522701U (zh) * 2009-11-23 2010-07-07 威胜集团有限公司 多路模拟信号放大数据采集电路
US20150009179A1 (en) * 2012-02-28 2015-01-08 Crucialtec Co., Ltd. Touch detection method and touch detection apparatus having built up linearity
CN104850292A (zh) * 2015-06-01 2015-08-19 京东方科技集团股份有限公司 一种内嵌式触摸屏、其驱动方法及显示装置
CN105760014A (zh) * 2015-11-30 2016-07-13 友达光电股份有限公司 具有指纹识别功能的显示装置及其操作方法
CN109325384A (zh) * 2017-07-31 2019-02-12 敦泰电子有限公司 内嵌式光学指纹辨识显示设备
CN109768799A (zh) * 2019-03-28 2019-05-17 苏州神指微电子有限公司 一种电容式指纹采样的模数转换电路及模数转换方法

Also Published As

Publication number Publication date
TW202127281A (zh) 2021-07-16
CN212391804U (zh) 2021-01-22
TWM604431U (zh) 2020-11-21
US20230043448A1 (en) 2023-02-09
CN111814756A (zh) 2020-10-23
TWI785366B (zh) 2022-12-01

Similar Documents

Publication Publication Date Title
TWI434207B (zh) 觸控感測系統、電子觸控裝置及觸控感測方法
US10545614B2 (en) Two-electrode touch button with a multi-phase capacitance measurement process
US10169633B2 (en) Driving circuit, driving method, display apparatus and electronic apparatus
WO2016112848A1 (zh) 电子设备及其触摸感测***、以及触摸感测***的检测方法
US8294678B2 (en) Image display systems
US10768739B2 (en) Touch panel, touch display device and touch pressure detection method
US10379686B2 (en) Touch display panel and method for driving the same
CN107315505B (zh) 显示面板、触控显示装置及触控压力检测方法
US20100177059A1 (en) Sensing circuit and method for a capacitive touch panel
US10761637B2 (en) Pressure sensing detection circuit and driving method thereof, electronic device
US11231811B2 (en) Touch recognition method, touch device
CN105404429B (zh) 触控电路和触控显示器件
US20200073510A1 (en) Touch sensing method, touch chip, electronic device and touch system
US10120487B2 (en) Method and device for hybrid touch sensing
US20210132730A1 (en) Method for device cover opening and closing detection, touch controller, touch pad and electronic device
US20230161435A1 (en) Touch apparatus and touch detection method thereof
TWI439900B (zh) 一種主動式觸控感測電路裝置
US9841855B2 (en) Systems and methods for capacitive touch detection
WO2021143129A1 (zh) 检测电路及其控制方法
US10606386B2 (en) Mixer circuit
TWI737216B (zh) 自電容檢測電路以及具有該電容檢測電路的資訊處理裝置
CN106445220B (zh) 触控侦测方法与电容式感测装置
US9805243B2 (en) Fingerprint identification system, a driving circuit and a fingerprint identification method
US10394386B1 (en) Interference detection
CN104238725B (zh) 触觉反馈方法及应用该方法的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913750

Country of ref document: EP

Kind code of ref document: A1