WO2021143013A1 - 锰铝合金及其制备方法 - Google Patents

锰铝合金及其制备方法 Download PDF

Info

Publication number
WO2021143013A1
WO2021143013A1 PCT/CN2020/092953 CN2020092953W WO2021143013A1 WO 2021143013 A1 WO2021143013 A1 WO 2021143013A1 CN 2020092953 W CN2020092953 W CN 2020092953W WO 2021143013 A1 WO2021143013 A1 WO 2021143013A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
aluminum
aluminum alloy
powder
metal
Prior art date
Application number
PCT/CN2020/092953
Other languages
English (en)
French (fr)
Inventor
陈学敏
达克沃斯•罗纳德•雷
余跃明
王庆超
Original Assignee
深圳市新星轻合金材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市新星轻合金材料股份有限公司 filed Critical 深圳市新星轻合金材料股份有限公司
Priority to EP20914305.6A priority Critical patent/EP4092148A4/en
Priority to US17/793,416 priority patent/US20230043273A1/en
Publication of WO2021143013A1 publication Critical patent/WO2021143013A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Definitions

  • the invention relates to the technical field of manganese aluminum alloy and its preparation, in particular to a manganese aluminum alloy and a preparation method thereof.
  • the metal manganese element makes the metal manganese and aluminum form an aluminum-manganese alloy intermetallic compound with a densely linked network structure to significantly improve the strength of the aluminum material.
  • the first method is to add a calculated amount of manganese additive to the aluminum melt.
  • This manganese additive is composed of manganese powder crushed by mechanical processing and potassium fluoroaluminate (KAlF 4 , commonly known as PAF) crushed by mechanical processing. After the physical method is uniformly mixed, it is pressed into a cake by mechanical pressure (oil pressure, air pressure, etc.). The specific gravity of the cake is greater than that of the molten aluminum liquid. These cakes are put into the molten aluminum because of PAF The fluxing effect of the metal manganese can quickly melt into the aluminum liquid and form an intermetallic compound (alloy) with aluminum.
  • the main component of PAF contains fluorine (F), resulting in the production process due to fluorine ( F)
  • the volatilization and cleaning (refining) cause environmental pollution.
  • the second way is to replace the fluxing agent potassium fluoroaluminate (KAlF 4 , commonly known as PAF) with aluminum powder.
  • KAF potassium fluoroaluminate
  • the aluminum powder will burn at 740°C to generate alumina and simultaneously generate a large amount of heat energy, this aluminum powder is produced when burned
  • the heat can promote the rapid melting of manganese powder into the aluminum melt, and make the metal manganese and aluminum melted into the aluminum melt form an alloy (intermetallic compound), but due to the heat release of the aluminum powder during the whole process Completely oxidized into alumina, this alumina will partly enter the molten aluminum, which has a negative effect on the purification of the aluminum melt.
  • the completely burned alumina can only become a smelting process. Removal of the slag in the slag increases production costs.
  • manganese agent to improve the strength of the aluminum produced.
  • the commonly used specifications of manganese agents currently in popular use are 70 manganese agent (manganese content 70%, weight ratio), 75 manganese agent (manganese content 75%, weight ratio), 80 manganese agent (manganese content 80%, weight ratio), 85 Manganese agent (manganese content 85%, weight ratio), etc.
  • the following two methods are usually used to produce manganese agent:
  • the production methods of these two manganese agents are a physical mixture of manganese and aluminum or manganese and PAF.
  • This physical mixture is added to the molten aluminum as an additive of manganese, the strength of the produced aluminum must be increased. It takes two steps to completely form the intermetallic compound (aluminum-manganese alloy). The first step is the dissolution process of elemental manganese in molten aluminum; the second step is the dissolution of metallic manganese and aluminum alloy (forming metal The process of inter-compound); the completion of these two processes has the following defects:
  • elemental manganese may be oxidized by oxygen in the air to form manganese oxide and float on the surface of the molten aluminum to affect the absorption rate of metallic manganese in the smelting process;
  • the main purpose of the present invention is to propose a manganese aluminum alloy and its preparation method, aiming to realize the full alloying of manganese and aluminum in the manganese aluminum alloy, and then use it as an additive of manganese to replace the currently popular manganese agent.
  • it is added as a manganese element additive to the molten aluminum.
  • this product has better absolute absorption rate and absorption speed of element manganese, and can eliminate the environmental impact caused by fluorine. Pollution and beneficial to the purification of aluminum melt.
  • the present invention proposes a manganese aluminum alloy, the manganese aluminum alloy is composed of metallic manganese and aluminum, the manganese aluminum alloy includes 55-90% manganese by weight percentage, and the balance is aluminum.
  • the manganese aluminum alloy is an intermetallic compound formed by metallic manganese and metallic aluminum at a high temperature.
  • the manganese-aluminum alloy can be in the form of blocks, flakes, and powders with indefinite shapes. Regardless of whether it is a block, flake or powder product, its specifications can be regulated by corresponding standards.
  • the present invention also provides a method for preparing manganese aluminum alloy.
  • the method includes the following steps:
  • Step S1 adding metallic aluminum or molten aluminum into a container, wherein the temperature of the molten aluminum is 700-800°C;
  • Step S2 adding metal manganese raw materials (manganese flakes or manganese powder or a mixture of manganese flakes and manganese powder) into the molten aluminum, adding a furnace cover, vacuuming, argon gas, temperature measurement, and pressure measurement to make a magnetic induction electric furnace
  • the inside is under positive pressure, and it is stirred with a graphite stirring head;
  • Step S3 heating and heating with electricity, so that the metal aluminum or aluminum liquid is heated to above 1000°C, melted, and maintained at a temperature between 1000 and 1500°C.
  • the metal aluminum and manganese form an intermetallic compound, and the alloying process takes time Between 30 minutes and 2 hours;
  • Step S4 after the alloying is completed, cool to below 850°C, open the furnace cover, and take out the manganese aluminum alloy.
  • a further technical solution of the present invention is that the container is a crucible placed in a vacuum magnetic induction furnace, or a crucible placed in a vacuum resistance furnace, or a non-vacuum container filled with a protective flux.
  • a further technical solution of the present invention is that the frequency of the induction electric furnace is 800-1200HZ.
  • the metal manganese raw material is manganese powder, or manganese flakes, or a mixture of manganese powder and manganese flakes.
  • a further technical solution of the present invention is that the manganese powder is 30-300 mesh powder.
  • a further technical solution of the present invention is that in the step S3, the stirring time with a graphite stirring head is 30 minutes to 2 hours.
  • a further technical solution of the present invention is that the production method of the manganese-aluminum alloy includes but is not limited to production in a vacuum magnetic induction furnace, or a vacuum resistance furnace lined with crucibles of different materials, or it can be selected in a non-vacuum manner.
  • the protective flux is produced by other heating methods that isolate the air.
  • a further technical solution of the present invention is that after the step S4, the method further includes:
  • the manganese aluminum alloy is poured into various types of blocks, flakes, or powders with different diameters as required by regulations, and added as a manganese element additive to the aluminum alloy material smelting preparation process to increase the strength of the manufactured aluminum material .
  • the manganese and aluminum in the manganese aluminum alloy prepared by the present invention are fully alloyed.
  • This fully alloyed manganese aluminum alloy and the existing manganese additives used to produce aluminum materials to increase the strength of aluminum materials are fully alloyed.
  • PAF potassium fluoroaluminate
  • Manganese aluminum alloy is a kind of manganese element additive that has basically formed intermetallic compounds. When it is added to the aluminum melt, its role in the aluminum melt is a diffusion and dense network alloying of intermetallic compounds. The formation process is not to first form intermetallic compounds and then implement diffusion to form a network. Therefore, this type of manganese aluminum alloy is used as an additive of manganese element within the same manganese additive smelting time. The strength and quality of the aluminum material produced and the purity of the aluminum material are far Higher than the quality of aluminum produced by the first and second manganese additives mentioned above;
  • Figure 1 is a diffraction pattern of AlMn55
  • Figure 2 is a diffraction pattern of AlMn60
  • Figure 3 is a diffraction pattern of AlMn65
  • Figure 4 is a diffraction pattern of AlMn70
  • Figure 5 is a diffraction pattern of AlMn75
  • Figure 6 is a diffraction pattern of AlMn80
  • Figure 7 is a diffraction pattern of AlMn85
  • Fig. 8 is a schematic flow diagram of a preferred embodiment of the preparation method of manganese-aluminum alloy according to the present invention.
  • Figure 9 is a schematic diagram of the structure of a magnetic induction electric furnace.
  • the manganese-aluminum alloy is composed of aluminum and manganese, and the manganese-aluminum alloy includes 55-90% manganese by weight percentage, and the balance is aluminum.
  • the weight percentage of manganese can be, for example, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, and the corresponding manganese aluminum alloy can be expressed as AlMn55, AlMn60, AlMn65, AlMn70, AlMn75, AlMn80, AlMn85, AlMn90.
  • the manganese-aluminum alloy proposed in the present invention is mainly used as an additive of element manganese in the production process of aluminum alloy profiles. It should be particularly pointed out that the impurities of this manganese aluminum alloy product should be limited, for example, the content of iron and silicon should not be greater than 0.5%, and the combined content of alumina and manganese oxide should not be greater than 0.5%.
  • the manganese aluminum alloy is an intermetallic compound formed by metallic manganese and metallic aluminum at a high temperature.
  • the manganese-aluminum alloy can be in the form of blocks, flakes, and powders with indefinite shapes. Regardless of whether it is a block, flake or powder product, its specifications can be regulated by corresponding standards.
  • metallic manganese and metallic aluminum generate intermetallic compounds Al 8 Mn 5 and simple Mn when they are melted at a high temperature. Please refer to FIGS. 1 to 7 for the phase diagram of manganese and aluminum.
  • Figure 1 is a diffraction pattern of AlMn55, where the main phase is Al 8 Mn 5 and elemental manganese;
  • Figure 2 is a diffraction pattern of AlMn60, where the main phases are Al 77 Mn 23 , Al 8 Mn 5 , and elemental manganese;
  • Figure 3 is a diffraction pattern of AlMn65, where the main phase is Al 8 Mn 5 and elemental manganese;
  • Figure 4 is a diffraction pattern of AlMn70, where the main phase is Al 8 Mn 5 and elemental manganese;
  • Figure 5 is a diffraction pattern of AlMn75, where the main phase is Al 2 Mn 3 ;
  • Figure 6 is a diffraction pattern of AlMn80, where the main phase is Al 0.43 Mn 0.47 and elemental manganese;
  • Fig. 7 is a diffraction pattern of AlMn85, in which the main phase is Al 0.43 Mn 0.47 and elemental manganese.
  • the manganese-aluminum alloy proposed in the present invention has better absolute absorption rate and absorption rate of manganese during the melting and processing of aluminum alloy materials, especially AlMn80, which has the most outstanding absorption rate and absorption rate. .
  • the present invention also provides a method for preparing the above-mentioned manganese aluminum alloy.
  • FIG. 8 is a schematic flow diagram of a preferred embodiment of the manufacturing method of manganese-aluminum alloy of the present invention.
  • the preparation method of the manganese aluminum alloy includes the following steps:
  • Step S1 adding metallic aluminum or molten aluminum into a container, wherein the temperature of the molten aluminum is 700-800°C.
  • the container can be a crucible 3 placed in a magnetic induction furnace as shown in FIG. 9.
  • the magnetic induction furnace includes a furnace cover 1, a magnetic induction furnace housing 2, a vacuum port 5, a pressure measurement port 6, an argon gas port 7, and a temperature measurement port 8.
  • the magnetic induction furnace housing 2 is made of aluminum material and is placed in the magnetic induction furnace.
  • the crucible 3 in the electric furnace is provided with a copper magnetic induction coil 4 (hollow, with cooling water inside).
  • the crucible 3 can be a silicon carbide crucible, a graphite crucible, a clay crucible or other refractory materials, such as quartz sand, magnesium oxide
  • the frequency of the magnetic induction electric furnace can be selected from 800 to 1200 Hz.
  • the container can also be a vacuum resistance furnace lined with crucibles of different materials, or other heating methods that use non-vacuum to select a suitable protective flux to isolate the air.
  • Step S2 adding metal manganese raw materials to the molten aluminum at 700°C, adding a furnace cover, vacuuming, argon gas, temperature measurement, and pressure measurement, so that the interior of the induction furnace is in a positive pressure state, and the graphite stirring head is used for stirring.
  • Step S3 heating and heating with electricity, so that the metal aluminum or molten aluminum is heated to above 1000°C, melted, and maintained at a temperature between 1000°C and 1500°C, such as 1000°C, or 1250°C, or 1500°C, during the process, the metal aluminum and manganese
  • An intermetallic compound is formed to obtain a manganese aluminum alloy.
  • the alloying process requires a time between 30 minutes and 2 hours.
  • the metal manganese raw material may be manganese powder, or manganese flakes, or a mixture of manganese powder and manganese flakes.
  • the manganese powder can be 30-300 mesh powder.
  • the stirring time for stirring with the graphite stirring head can be set from 30 minutes to 2 hours according to actual needs, for example, 0.5 hours, or 1.25 hours, or 2 hours.
  • the time required for the entire alloying process is generally controlled in the range of 30 minutes to 2 hours, which can ensure that metal manganese and aluminum form an intermetallic compound as much as possible, so as to obtain qualified fully alloyed manganese aluminum Alloy, avoid the production of small amounts of metal oxides (manganese oxide or aluminum oxide).
  • Step S4 after the alloying is completed, cool to below 850°C, open the furnace cover, and take out the manganese aluminum alloy.
  • step S4 it may further include:
  • the manganese-aluminum alloy is poured into an indeterminate block shape, or a sheet shape, or processed into a powder shape by a mechanical crushing method, and is used as a manganese element additive to be accurately added to the smelting and preparation process of the aluminum alloy material in a calculated amount.
  • the manganese-aluminum alloy can be in the form of blocks, flakes, and powders with indefinite shapes. Regardless of whether it is a block, flake or powder product, its specifications can be regulated by corresponding standards.
  • the aluminum alloy profile is, for example, a 3003 aluminum alloy plate, a 3A21 aluminum alloy tube, or a YX65-430 aluminum-magnesium-manganese metal roof panel and the like.
  • the beneficial effects of the manganese-aluminum alloy and the preparation method of the present invention are: compared with the existing products, the manganese and aluminum alloys in the manganese-aluminum alloy prepared by the present invention are fully alloyed, and this fully alloyed manganese-aluminum alloy is comparable to existing products.
  • the manganese additive used to produce aluminum to increase the strength of aluminum it is no longer a physical mixture of aluminum powder and manganese powder, nor is it a physical mixture of manganese powder and potassium fluoroaluminate (commonly known as PAF).
  • This manganese Aluminum alloy is used as the element additive of metal manganese in the aluminum production process to replace the currently popular manganese additives (one type is a cake-like substance formed by a certain proportion of metal manganese powder and potassium fluoroaluminate powder after being physically uniformly mixed by pressure.
  • the other type is a cake-like substance formed by pressure after physical mixing of metal manganese powder and metal aluminum powder)
  • Manganese aluminum alloy is a kind of manganese element additive that has basically formed intermetallic compounds. When it is added to the aluminum melt, its role in the aluminum melt is a diffusion and dense network alloying of intermetallic compounds. The formation process is not to first form intermetallic compounds and then implement diffusion to form a network. Therefore, this type of manganese aluminum alloy is used as an additive of manganese element within the same manganese additive smelting time, and the strength and quality of the aluminum material produced and the purity of the aluminum material are far Higher than the quality of aluminum produced by the first and second manganese additives mentioned above;
  • manganese-aluminum alloy and manganese additives a physical mixture of manganese powder and PAF, manganese powder and aluminum powder formed by pressure processing
  • the absolute absorption rate and absorption rate of metallic manganese during the aluminum smelting addition process are better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开一种锰铝合金及其制备方法,锰铝合金按重量百分比锰占55-90%,余量为铝。该方法包括:将金属铝或者铝液加入到容器中,其中,铝液的温度为700-800℃;将金属锰原材料加入到熔融的铝液中,加炉盖、测压、通氩气使得磁感应电炉内部处于正压状态,用石墨搅拌头搅拌;通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间;合金化完成后,冷却至850℃以下,打开炉盖,取出锰铝合金。相对于现有产品,本发明制得的锰铝合金中锰与铝充分合金化,提升了锰元素添加剂在铝材加工熔炼过程中锰作为合金添加元素在熔融铝液中的吸收率和吸收速度,降低了生产过程的环境污染。

Description

锰铝合金及其制备方法 技术领域
本发明涉及锰铝合金及其制备技术领域,尤其涉及一种锰铝合金及其制备方法。
背景技术
在铝合金材料(例如航空用铝板、罐料用铝板及PS版基用铝板等)的生产加工过程中,通常需要向熔融的铝熔体(温度一般控制在740-750℃之间)中加入金属锰元素,使得金属锰和铝形成密集链接状网状结构的铝锰合金金属间化合物,以显著提高铝材的强度。但是,由于金属锰的熔点为1246℃,而铝熔体的熔炼过程温度控制一般是740-750℃之间,为了将金属锰快速溶入到铝熔体中并使其和铝形成金属间化合物(铝锰金属间化合物),目前主要有如下几种方式:
第一种方式是向铝熔体中加入计算量的锰添加剂,这种锰添加剂是由经过机械加工方式破碎的锰粉和经过机械加工方式破碎的氟铝酸钾(KAlF 4,俗称PAF)经物理方法均匀混合后通过机械压力(油压、气压等)方式压成饼状物,该饼状物的比重因大于熔融的金属铝液,将这些饼状物投入到金属铝液中,由于PAF的助熔作用,使得金属锰能够快速的熔解进入到铝液中并和铝形成金属间化合物(合金),但由于PAF的主要成分含氟元素(F),导致在生产过程中由于氟元素(F)的挥发和清理(精炼)造成环境污染。
第二种方式是将助熔剂氟铝酸钾(KAlF 4,俗称PAF)替换成铝粉,由于铝粉在740℃时会燃烧生成氧化铝并同步产生大量的热能,这种铝粉燃烧时产生的热量能够促使锰粉快速的熔入到铝熔体中,并使熔入铝熔体中的金属锰和铝形成合金(金属间化合物),但是由于在整个过程中铝粉的燃烧放热后完全氧化成为氧化铝,这种氧化铝会部分进入熔融的铝液中,对铝熔体的净化构成了负面作用,同时由于铝粉的成本较高,完全燃烧后的氧化铝只能成为熔炼过程中的渣加以清除增加了生产成本。
为了解决这些技术问题,目前在铝合金材料(各类型材、各类板材、各 类棒材等)的加工过程中通常在740-750℃的熔融铝液中加入计算量的锰元素添加剂,俗称锰剂,以提高所生产铝材的强度。目前流行使用的锰剂常用的规格有70锰剂(锰含量70%,重量比)、75锰剂(锰含量75%,重量比)、80锰剂(锰含量80%,重量比)、85锰剂(锰含量85%,重量比)等,目前通常采用以下两种方式生产锰剂:
1、将锰片破碎成一定目数的锰粉,将锰粉和一定目数的氟铝酸钾(俗称PAF)粉末均匀混合后用机械方式通过压力和模具结合压成饼状,其比重应大于铝熔体的比重,以保证该饼状物添加过程中可以沉入铝熔体中,尽量避免被空气氧化。
2、将一定目数的铝粉和一定目数的锰粉混合均匀,然后用机械方式通过压力和模具结合压成饼状物,其比重应大于铝熔体的比重,以保证该饼状物添加过程中可以沉入铝熔体中,尽量避免被空气氧化,其中,锰粉按重量占比70%或者75%、80%、85%等,铝粉按重量占比30%、25%、20%、15%。在商业上也通称为70锰剂、75锰、80锰剂、85锰剂等。
这两种锰剂的生产方式,其产品是锰和铝或者锰和PAF的物理混合物,这种物理混合物作为锰元素的添加剂在加入到熔融的铝液中时,所生产铝材强度的增加必须经历两个步骤才能完全形成金属间化合物(铝锰合金),第一步是元素锰在熔融铝液中的溶解过程;第二步是溶解进入铝液后的金属锰和铝合金化(形成金属间化合物)的过程;这两个过程的完成存在有如下缺陷:
1.过程中元素锰可能被空气中的氧气氧化形成氧化锰而漂浮在铝液的表面影响金属锰在冶炼过程中的吸收率;
2.成功溶解进入铝液后的金属锰和铝形成金属间化合物并织构成密集网状强化相的过程需要时间,这个过程的完整性由于冶炼过程的时间控制不当或者不够会影响铝材的强度质量。
发明内容
本发明的主要目的在于提出一种锰铝合金及其制备方法,旨在实现锰铝合金中的锰和铝的先行充分合金化,然后将其作为锰元素的添加剂替代目前流行的锰剂,在冶炼过程中作为锰元素添加剂加入到融熔的铝液中,这种产品和目前流行的锰添加剂相比,其元素锰的绝对吸收率和吸收速度更优,并能完成消除氟对环境造成的污染并对铝熔体的净化有益。
为实现上述目的,本发明提出一种锰铝合金,所述锰铝合金由金属锰和铝组成,所述锰铝合金按重量百分比包括锰55-90%,余量为铝。
该锰铝合金是由金属锰和金属铝在高温状态下形成的金属间化合物。
该锰铝合金可以是不定形状的块状的、片状的、粉状的,无论是块状的、片状的、粉状的产品,其规格都可以制定相应的标准加以限制。
为实现上述目的,本发明还提出一种锰铝合金的制备方法,所述方法包括以下步骤:
步骤S1,将金属铝或者铝液加入到容器中,其中,所述铝液的温度为700-800℃;
步骤S2,将金属锰原材料(锰片或者锰粉或者锰片与锰粉的混合物)加入到熔融的铝液中,加炉盖、抽真空、通氩气、测温、测压,使得磁感应电炉内部处于正压状态,用石墨搅拌头搅拌;
步骤S3,通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间,过程中金属铝和锰形成金属间的化合物,合金化过程所需时间为30分钟至2小时之间;
步骤S4,合金化完成后,冷却至850℃以下,打开炉盖,取出锰铝合金。
本发明进一步的技术方案是,所述容器为置于真空磁感应电炉中的坩锅,或者置于真空电阻炉的坩锅,或者加入有保护熔剂的非真空容器。
本发明进一步的技术方案是,所述感应电炉的频率为800~1200HZ。
本发明进一步的技术方案是,所述金属锰原材料为锰粉、或者锰片、或者锰粉和锰片的混合物。
本发明进一步的技术方案是,所述锰粉为30~300目粉末。
本发明进一步的技术方案是,所述步骤S3中,用石墨搅拌头搅拌时间为30分钟至2小时。
本发明进一步的技术方案是,所述锰铝合金的生产方法包括但不限于用真空磁感应电炉的方式生产,亦可以用真空电阻炉内衬不同材料的坩埚,亦可以用非真空的方式选择合适的保护熔剂以隔绝空气的其它加热方式生产。
本发明进一步的技术方案是,所述步骤S4之后还包括:
将所述锰铝合金浇筑成各种类型的块状、片状、或者按规定要求不同直径的粉状,作为锰元素添加剂添加到铝合金材料熔炼制备过程中,以增加所制造铝材的强度。
本发明锰铝合金及其制备方法的有益效果是:
相对于现有产品,采用本发明制备得到的锰铝合金中锰与铝充分完全合金化,这种完全合金化的锰铝合金与现有的用作生产铝材以增加铝材强度的锰添加剂比较,不再是铝粉和锰粉的物理混合物,也不再是锰粉和氟铝酸钾(俗称PAF)的物理混合物,这种锰铝合金作为铝材生产过程中金属锰的元素添加剂替换目前流行的锰添加剂(一类是金属锰粉与氟铝酸钾粉末按一定比例经物理均匀混合后通过压力方式压成的饼状物质,另一类是金属锰粉和金属铝粉经物理混合后通过压力方式压成的饼状物质)相比较具备以下四个重大优点:
1.解决了氟铝酸钾作为金属锰进入铝熔体与金属铝形成金属间化合物的助熔剂,在熔炼溶解过程完成后对环境造成的污染问题(氟的污染);
2.解决了铝粉作为金属锰进入铝熔体与金属铝形成金属间化合物的发热剂(铝粉氧化过程产生的高热作用助熔锰的合金化),在熔炼溶解完成后对铝合金熔体的污染问题(氧化铝夹杂);
3.锰铝合金作为一种已经基本形成金属间化合物的锰元素添加剂,当其加入到铝熔体中后其在铝熔体中的作用是一种扩散和密集网状合金化金属间化合物的形成过程而不是先形成金属间化合物再实施扩散成网,所以在同等的锰剂添加冶炼时间内这一类锰铝合金作为锰元素的添加剂其生产的铝材强度质量和铝材的纯净度远高于上述第一种和第二种锰添加剂所生产的铝材质量;
4.锰铝合金与锰添加剂(锰粉与PAF、锰粉与铝粉所形成的经压力加工的物理混合物)比较,其在铝冶炼添加过程中金属锰的绝对吸收率和吸收速度更优。
附图说明
图1是AlMn55的衍射图;
图2是AlMn60的衍射图;
图3是AlMn65的衍射图;
图4是AlMn70的衍射图;
图5是AlMn75的衍射图;
图6是AlMn80的衍射图;
图7是AlMn85的衍射图;
图8是本发明锰铝合金的制备方法较佳实施例的流程示意图;
图9是磁感应电炉的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为实现锰铝合金中的锰和铝充分合金化,提升锰铝合金添加剂在锰铝合金型材加工过程中锰的吸收率和吸收速度,并降低环境污染,本发明提出一种锰铝合金,所述锰铝合金由铝、锰组成,所述锰铝合金按重量百分比包括锰55-90%,余量为铝。
其中,所述锰所占重量百分比例如可以为55%、60%、65%、70%、75%、80%、85%、90%,对应的锰铝合金可以表示为AlMn55、AlMn60、AlMn65、AlMn70、AlMn75、AlMn80、AlMn85、AlMn90。
可以理解的是,本发明所提出的锰铝合金主要用于铝合金型材生产过程中的元素锰的添加剂使用。需要特别指出的是,这种锰铝合金产品其杂质应该有所限制,比如铁和硅含量不应该大于0.5%,并且氧化铝和氧化锰的合量不应该大于0.5%。
该锰铝合金是由金属锰和金属铝在高温状态下形成的金属间化合物。
该锰铝合金可以是不定形状的块状的、片状的、粉状的,无论是块状的、片状的、粉状的产品,其规格都可以制定相应的标准加以限制。
本实施例中,金属锰和金属铝在高温熔融时生成金属间化合物Al 8Mn 5和Mn单质,其中,锰铝物相图请参照图1至7。
图1是AlMn55的衍射图,其中,主物相是Al 8Mn 5、单质锰;
图2是AlMn60的衍射图,其中,主物相是Al 77Mn 23、Al 8Mn 5、单质锰;
图3是AlMn65的衍射图,其中,主物相是Al 8Mn 5、单质锰;
图4是AlMn70的衍射图,其中,主物相是Al 8Mn 5、单质锰;
图5是AlMn75的衍射图,其中,主物相是Al 2Mn 3
图6是AlMn80的衍射图,其中,主物相是Al 0.43Mn 0.47、单质锰;
图7是AlMn85的衍射图,其中,主物相是Al 0.43Mn 0.47、单质锰。
本发明提出的锰铝合金与目前流行的锰元素添加剂相比较,其在铝合金材熔炼加工过程中锰的绝对吸收率和吸收速度更优,尤其是AlMn80,其吸收速度和吸收率表现最为突出。
为实现上述目的,本发明还提出一种如上所述的锰铝合金的制备方法。
请参照图8,图8是本发明锰铝合金的制备方法较佳实施例的流程示意图。
如图8所示,本实施例中,该锰铝合金的制备方法包括以下步骤:
步骤S1,将金属铝或者铝液加入到容器中,其中,所述铝液的温度为700-800℃。
其中,该容器可以采用如图9所示的置于磁感应电炉内的坩埚3。该磁感应电炉包括有炉盖1、磁感应电炉外壳2、抽真空口5、测压力口6、通氩气口7、测温度口8,其中所述磁感应电炉外壳2为铝材料,置于所述磁感应电炉内的坩锅3的外周设置有铜磁感应线圈4(空心,内部通冷却水),该坩锅3可以是碳化硅坩埚、石墨坩埚、粘土坩埚或者其它耐火材料,比如:石英砂、氧化镁、氧化铝等捣炉料锤打而形成的感应电炉用的盛取金属炉液的坩埚。
其中,该磁感应电炉的频率可以选用800~1200Hz。
在其他实施方式中,该容器也可以用真空电阻炉内衬不同材料的坩埚,亦可以用非真空的选择合适保护熔剂以隔绝空气的其它加热方式。
步骤S2,将金属锰原材料加入到700℃的熔融的铝液中,加炉盖、抽真空、通氩气、测温、测压,使感应电炉内部处于正压状态,用石墨搅拌头搅拌。
步骤S3,通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间,例如1000℃、或者1250℃、或者1500℃,过程中金属铝和锰形成金属间的化合物,得到锰铝合金,合金化过程所需时间为30分钟至2小时之间。
其中,所述金属锰原材料可以为锰粉、或者锰片、或者锰粉和锰片的混合物。
其中,所述锰粉可选用30~300目粉末。
本实施例中,用石墨搅拌头搅拌的搅拌时间可以根据实际需求进行设定为30分钟至2小时,例如0.5小时、或者1.25小时、或者2小时。
可以理解的是,整个合金化过程时间需求一般性的控制在30分钟至2小时的范围,可以保证尽可能的使金属锰和铝形成金属间的化合物,从而得到合格的完全合金化的锰铝合金,避免少量的金属氧化物(氧化锰或氧化铝)产生。
步骤S4,合金化完成后,冷却至850℃以下,打开炉盖,取出锰铝合金。
此外,作为一种实施方式,所述步骤S4之后还可以包括:
将所述锰铝合金浇筑成不定形的块状、或者片状、或者以机械破碎方式加工成粉状,作为锰元素添加剂以计算量方式精确添加到铝合金材料的冶炼制备过程中。该锰铝合金可以是不定形状的块状的、片状的、粉状的,无论是块状的、片状的、粉状的产品,其规格都可以制定相应的标准加以限制。
该铝合金型材例如为3003铝合金板、3A21铝合金管、或者YX65-430铝镁锰金属屋面板等等。
本发明锰铝合金及其制备方法的有益效果是:相对于现有产品,采用本发明制备得到的锰铝合金中锰与铝充分完全合金化,这种完全合金化的锰铝合金与现有的用作生产铝材以增加铝材强度的锰添加剂比较,不再是铝粉和锰粉的物理混合物,也不再是锰粉和氟铝酸钾(俗称PAF)的物理混合物,这种锰铝合金作为铝材生产过程中金属锰的元素添加剂替换目前流行的锰添加剂(一类是金属锰粉与氟铝酸钾粉末按一定比例经物理均匀混合后通过压力方式压成的饼状物质,另一类是金属锰粉和金属铝粉经物理混合后通过压力方式压成的饼状物质)相比较具备以下四个重大优点:
1.解决了氟铝酸钾作为金属锰进入铝熔体与金属铝形成金属间化合物的助熔剂,在熔炼溶解过程完成后对环境造成的污染问题(氟的污染);
2.解决了铝粉作为金属锰进入铝熔体与金属铝形成金属间化合物的发热剂(铝粉氧化过程产生的高热作用助熔锰的合金化),在熔炼溶解完成后对 铝合金熔体的污染问题(氧化铝夹杂);
3.锰铝合金作为一种已经基本形成金属间化合物的锰元素添加剂,当其加入到铝熔体中后其在铝熔体中的作用是一种扩散和密集网状合金化金属间化合物的形成过程而不是先形成金属间化合物再实施扩散成网,所以在同等的锰剂添加冶炼时间内这一类锰铝合金作为锰元素的添加剂其生产的铝材强度质量和铝材的纯净度远高于上述第一种和第二种锰添加剂所生产的铝材质量;
4.锰铝合金与锰添加剂(锰粉与PAF、锰粉与铝粉所形成的经压力加工的物理混合物)比较,其在铝冶炼添加过程中金属锰的绝对吸收率和吸收速度更优。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

  1. 一种锰铝合金,其特征在于,所述锰铝合金由金属铝和锰组成,所述锰铝合金按重量百分比包括锰占比55-90%,余量为铝。
  2. 如权利要求1所述的锰铝合金的制备方法,其特征在于,所述方法包括以下步骤:
    步骤S1,将金属铝或者铝液加入到容器中,其中,所述铝液的温度为700-800℃;
    步骤S2,将金属锰原材料加入到熔融的铝液中,加炉盖、抽真空、通氩气、测温、测压,使得磁感应电炉内部处于正压状态,用石墨搅拌头搅拌;
    步骤S3,通电加热升温,使金属铝或铝液升温至1000℃以上,熔融,并保持温度在1000~1500℃之间,过程中金属铝和锰形成金属间的化合物,合金化过程所需时间为30分钟至2小时之间;
    步骤S4,合金化完成后,冷却至850℃以下,打开炉盖,取出锰铝合金。
  3. 根据权利要求2所述的锰铝合金的制备方法,其特征在于,所述容器为置于磁感应电炉中的坩锅,或者置于真空电阻炉中的坩锅,或者加入有保护熔剂的非真空容器。
  4. 根据权利要求3所述的锰铝合金的制备方法,其特征在于,所述感应电炉的频率为800~1200HZ。
  5. 根据权利要求2所述的锰铝合金的制备方法,其特征在于,所述金属锰原材料为锰粉、或者锰片、或者锰粉和锰片的混合物。
  6. 根据权利要求5所述的制备方法,其特征在于,所述锰粉为30~300目粉末。
  7. 根据权利要求2所述的制备方法,其特征在于,所述步骤S3中,用石墨搅拌头搅拌时间为30分钟至2小时。
  8. 根据权利要求1-7任意一项所述的制备方法,其特征在于,所述步骤S4之后还包括:
    将所述锰铝合金浇筑成各种类型的块状、片状、或者按规定要求不同直径的粉状,作为锰元素添加剂添加到铝合金材料熔炼制备过程中,以增加所制造铝材的强度。
PCT/CN2020/092953 2020-01-16 2020-05-28 锰铝合金及其制备方法 WO2021143013A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20914305.6A EP4092148A4 (en) 2020-01-16 2020-05-28 Manganese aluminum alloy and preparation method therefor
US17/793,416 US20230043273A1 (en) 2020-01-16 2020-05-28 Manganese aluminum alloy and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010047967.0 2020-01-16
CN202010047967.0A CN111235445B (zh) 2020-01-16 2020-01-16 锰铝合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2021143013A1 true WO2021143013A1 (zh) 2021-07-22

Family

ID=70872693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092953 WO2021143013A1 (zh) 2020-01-16 2020-05-28 锰铝合金及其制备方法

Country Status (4)

Country Link
US (1) US20230043273A1 (zh)
EP (1) EP4092148A4 (zh)
CN (1) CN111235445B (zh)
WO (1) WO2021143013A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369273A (zh) * 2022-09-02 2022-11-22 安徽军明机械制造有限公司 一种耐腐蚀铝锰合金桥架的生产工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114985745A (zh) * 2022-06-01 2022-09-02 安徽工业大学 一种铝锰金属间化合物、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342608A (en) * 1980-04-21 1982-08-03 Bell Telephone Laboratories, Incorporated Mn-Al Permanent magnets and their manufacture
CN101481766A (zh) * 2008-12-08 2009-07-15 清华大学 Mn-Al中间合金及其制备方法和用途
CN101509087A (zh) * 2008-12-30 2009-08-19 毕祥玉 一种铝锰中间合金及其制备方法
CN103409669A (zh) * 2013-08-13 2013-11-27 桂林电子科技大学 MnAl合金磁性吸波材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5061698A (zh) * 1973-10-03 1975-05-27
US4171215A (en) * 1978-07-03 1979-10-16 Foote Mineral Company Alloying addition for alloying manganese to aluminum
EE05521B1 (et) * 2007-12-14 2012-02-15 Mihhail@Terehhov Alumiiniumip hine ligatuur metallisulamite mangaaniga legeerimiseks selle saamise meetod ja selle kasutamine
CN105695840A (zh) * 2016-03-01 2016-06-22 桂林电子科技大学 一种稀土RE-Mn-Al合金磁性吸波材料及其制备方法与应用
CN110241342B (zh) * 2019-07-23 2023-04-07 四川兰德高科技产业有限公司 一种高锰含量铝锰中间合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342608A (en) * 1980-04-21 1982-08-03 Bell Telephone Laboratories, Incorporated Mn-Al Permanent magnets and their manufacture
CN101481766A (zh) * 2008-12-08 2009-07-15 清华大学 Mn-Al中间合金及其制备方法和用途
CN101509087A (zh) * 2008-12-30 2009-08-19 毕祥玉 一种铝锰中间合金及其制备方法
CN103409669A (zh) * 2013-08-13 2013-11-27 桂林电子科技大学 MnAl合金磁性吸波材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092148A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115369273A (zh) * 2022-09-02 2022-11-22 安徽军明机械制造有限公司 一种耐腐蚀铝锰合金桥架的生产工艺

Also Published As

Publication number Publication date
CN111235445B (zh) 2021-09-21
US20230043273A1 (en) 2023-02-09
CN111235445A (zh) 2020-06-05
EP4092148A4 (en) 2023-06-28
EP4092148A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
CN108546834B (zh) 一种镍基高温合金母合金纯净化熔炼方法
CN111378848B (zh) 提高gh4169合金返回料纯净度的电渣重熔用预熔渣及制备方法
CN110714156B (zh) 一种轻质高强耐蚀高熵合金及其制备方法
WO2021143013A1 (zh) 锰铝合金及其制备方法
CN108085546A (zh) 一种2024铝合金熔炼铸造方法
CN106755724B (zh) 一种适用于3吨中频炉生产球化剂的熔炼工艺
WO2021169074A1 (zh) 铁铝合金及其制备方法
CN105420524B (zh) 一种使用k417g及dz417g合金返回料制备k424铸造高温合金的方法
CN109825727A (zh) 一种基于铝热反应的Al-Si-Fe中间合金制备方法
CN108950273B (zh) 一种中间合金及其制备方法和应用
CN112410573B (zh) 用于冶炼含Ce的Fe-Ni软磁合金的渣系及其使用方法
CN110564997A (zh) 一种铝钛钼中间合金及其制备方法
CN116607028B (zh) 难熔高熵合金的熔炼方法
CN113528924A (zh) 一种镍铌铬中间合金及其制备方法
CN101338381B (zh) 一种铝钛碳锶合金细化剂的制备方法
WO2021169073A1 (zh) 硅铝合金及其制备方法
CN102069174A (zh) 一种离心电渣熔铸双基复合轧辊的生产方法
CN110592455A (zh) 铜钨合金的制备方法及由该方法制得的铜钨合金
CN112481526A (zh) 铝硅合金棒的生产方法
CN110144501A (zh) 一种长效变质的高硅铝合金及其变质工艺
CN102839292A (zh) 用于铝硅镇静钢脱氧的超低钛超低碳高硅铝铁合金及其制备方法
CN113430398B (zh) 一种含有钒元素的JCr98级金属铬及其制备方法
JPS63273562A (ja) Ti−Al合金鋳物の製造方法
CN115094272B (zh) 一种锆镍铜铝钽中间合金及其制备方法
CN110846527A (zh) 一种基于电磁搅拌的铝合金熔炼、除杂方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020914305

Country of ref document: EP

Effective date: 20220816