WO2021142767A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2021142767A1
WO2021142767A1 PCT/CN2020/072720 CN2020072720W WO2021142767A1 WO 2021142767 A1 WO2021142767 A1 WO 2021142767A1 CN 2020072720 W CN2020072720 W CN 2020072720W WO 2021142767 A1 WO2021142767 A1 WO 2021142767A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
service
path
sequence number
unicast
Prior art date
Application number
PCT/CN2020/072720
Other languages
English (en)
French (fr)
Inventor
葛翠丽
杨艳梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080069313.6A priority Critical patent/CN114467316B/zh
Priority to PCT/CN2020/072720 priority patent/WO2021142767A1/zh
Publication of WO2021142767A1 publication Critical patent/WO2021142767A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • This application relates to the field of communications, and in particular to a communication method and communication device.
  • the terminal device A and the terminal device group B respectively receive multiple data packets of the same service S from the user plane network element through the same base station on the unicast path and the multicast path, because the user plane network element is on the unicast path and the multicast path
  • the speed of sending data packets of service S to the base station is different, and after the base station receives the data packets of service S on the corresponding path, it sends service S to terminal equipment A on the unicast path and to terminal equipment group B on the multicast path.
  • the different speeds and different buffers of data packets will cause the data packets of service S sent by the base station on the two paths to be out of sync.
  • the terminal device A exists because of the two Data packets sent on two paths are out of sync, causing packet loss or business interruption.
  • terminal device A uses the multicast path corresponding to terminal device group B to receive multiple data packets of service S, how does the base station determine that the data packets sent on the unicast path and the multicast path are synchronized, so that terminal device A can receive data packets from
  • the smooth integration of the unicast path into the multicast path of the terminal device group B becomes a problem to be solved urgently.
  • the present application provides a communication method and communication device, which can smoothly merge terminal equipment from a unicast path to a multicast path.
  • a communication method including: an access network device receives synchronization indication information from a user plane network element UPF, the synchronization indication information is used to indicate that a service data packet of a first service is on a multicast path and a first terminal device
  • the unicast path achieves transmission synchronization, the unicast path uses unicast to transmit the service data packet of the first service to the first terminal device, and the multicast path uses the multicast method to transmit the service data of the first service to the first terminal device group Package, the first terminal device group includes at least one terminal device;
  • the access network device sends first instruction information to the first terminal device according to the synchronization instruction information, and the first instruction information is used to instruct the first terminal device to receive the first terminal device through the multicast path A business data package of a business.
  • the access network device determines that the data packet after the synchronization instruction information reaches the transmission synchronization according to the synchronization instruction information sent by the user plane network element, so that the access network device can send the first terminal device to the first terminal device according to the received synchronization instruction information.
  • Send the first instruction information so that the first terminal device starts to receive the data packets of the first service on the multicast path after successfully receiving the first instruction, so as to ensure that the first terminal device can smoothly merge from the unicast path to the access network. Multicast path.
  • the access network device receiving synchronization indication information from the UPF includes: the access network device receiving synchronization indication information from the UPF via a unicast path and/or a multicast path.
  • the access network device may send the first indication information to the first terminal device when receiving synchronization indication information on two paths; or the access network device may only receive synchronization indication information on one path.
  • the indication information the first indication information is sent to the first terminal device, so that the first terminal device can start to receive the data packet of the first service on the multicast path more flexibly.
  • the access network device sends the unicast stop instruction information to the UPF, and the unicast stop instruction information is used to instruct the UPF to stop sending the service of the first service on the unicast path data pack.
  • the access network device sending the unicast stop instruction information to the UPF can cause the UPF to stop on the unicast path and continue to send the data packets of the first service on the unicast path, thereby saving UPF transmission resources.
  • the synchronization indication information includes an empty service data packet, a synchronization data packet, or an end flag packet.
  • a communication method including: the user plane network element UPF determines that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path of the first terminal device, and the unicast path uses unicast
  • the service data packet of the first service is transmitted to the first terminal device in the mode, and the multicast path uses the multicast mode to transmit the service data packet of the first service to the first terminal device group.
  • the first terminal device group includes at least one terminal device;
  • the access network device of the first terminal device sends synchronization indication information, where the synchronization indication information is used to indicate that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path.
  • transmission synchronization means that the user plane network element is on the unicast path and the multicast path at a certain moment.
  • the service data packet in the first data packet to be sent is the same data packet
  • the user plane network element sends synchronization indication information to the access network device, which is used to indicate that the data packets on the two paths achieve transmission synchronization, and the access network
  • the device can then determine when the data packets sent on the two paths reach transmission synchronization according to the synchronization indication information, thereby controlling the first terminal device to smoothly merge from the unicast path to the multicast path according to the synchronization indication information.
  • UPF determines that the service data of the first service achieves transmission synchronization on the multicast path and the unicast path, including: when the UPF is to be sent on the unicast path When a service data packet of the first service is the same as the first service data packet of the first service to be sent by UPF on the multicast path, UPF determines that the service data packet of the first service is on the multicast path and the unicast path The transmission synchronization is achieved; or when the sequence number of the first service data packet of the first service to be sent by the UPF on the unicast path is the same as the sequence number of the first service data packet of the first service to be sent by the UPF on the multicast path At the same time, UPF determines that the service data of the first service has achieved transmission synchronization on the multicast path and the unicast path.
  • the user plane network element can judge that the UPF achieves transmission synchronization on the two paths based on the same service data packet or the same sequence number of the data packet in the first data packet to be sent on the multicast path and the unicast path .
  • the UPF sending synchronization indication information to the access network device of the first terminal device includes: the UPF sending synchronization indication information on a unicast path and a multicast path.
  • the user plane network element simultaneously sends synchronization indication information on two paths, so that the access network device can ensure that the first terminal device can smoothly merge from the unicast path to the access according to the synchronization indication information on the two paths.
  • the multicast path of the network The multicast path of the network.
  • the UPF when the UPF determines that the service data packet of the first service reaches the transmission synchronization on the multicast path and the unicast path, the UPF stops sending the first service on the unicast path.
  • Business data package for business when the UPF determines that the service data packet of the first service reaches the transmission synchronization on the multicast path and the unicast path, the UPF stops sending the first service on the unicast path.
  • the UPF when the UPF reaches the transmission synchronization on the two paths, the UPF stops sending the data packets of the first service on the unicast path, so as to save the transmission resources of the UPF and reduce the energy consumption.
  • the UPF receives the unicast stop instruction information sent by the access network device, which can stop the UPF from sending data packets of the first service on the unicast path, so as to save UPF transmission resources and reduce energy consumption.
  • the synchronization indication information includes an empty service data packet, a synchronization data packet, or an end flag packet.
  • a communication method including: the access network device receives the first data packet of the first service from the user plane network element UPF through the unicast path of the first terminal device, and the unicast path uses the unicast method to transmit the first data packet of the first service.
  • the first terminal device transmits the service data packet of the first service; the access network device receives the second data packet of the first service from the user plane network element through the multicast path, and the multicast path uses the multicast mode to transmit to the first terminal equipment group
  • the first terminal device group includes at least one terminal device; the access network device determines that the service data packet of the first service is in the multicast path and the unicast path according to the first data packet and the second data packet The transmission synchronization is achieved; the access network device sends first indication information to the first terminal device, where the first indication information is used to instruct the first terminal device to receive the service data packet of the first service through the multicast path.
  • the access network device determines that the data packets on the two paths have reached the transmission synchronization according to the first data packet received on the unicast path and the second data packet received on the multicast path. After the packet reaches the transmission synchronization, the access network device sends the first indication information to the first terminal device. After the first terminal device successfully receives the first indication information, the first terminal device starts to receive the service data of the first service through the multicast path Packet, so that the first terminal device can smoothly merge from the unicast path to the multicast path, avoiding the fusion of the unicast path to the multicast path when the access network device does not know when the data packets of the two paths are synchronized Packet loss or business interruption during the path.
  • the first data packet includes the sequence number of the first data packet and a first service data packet
  • the second data packet includes the second data The sequence number of the packet and the second service data packet, where the first service data packet and the second service data packet belong to the service data packet of the first service.
  • the sequence number of the first data packet is the sequence number of the first service data packet
  • the sequence number of the second data packet is the second service data The serial number of the package.
  • the sequence numbers of the same service data packets are the same.
  • the access network device can be based on the first data packet on the two paths.
  • the sequence number of the second data packet and the second data packet determine when the data packets on the two paths reach transmission synchronization, so that the first terminal device smoothly merges from the unicast path to the multicast path.
  • the sequence number of the first data packet includes the absolute sequence number and the first relative offset value of the first data packet
  • the sequence number of the second data packet includes the sequence number of the second data packet.
  • the absolute sequence number and the second relative offset value the absolute sequence number of the first data packet is the transmission sequence number of the first data packet on the unicast path
  • the first relative offset value is the absolute sequence number of the first data packet and the first service data
  • the difference between the sequence numbers of the packets, the absolute sequence number of the second data packet is the sending sequence number of the second data packet on the multicast path
  • the second relative offset value is the absolute sequence number of the second data packet and the second service data packet
  • the difference between the serial numbers of the first data packet; the serial number of the first data packet is the sum of the absolute serial number of the first data packet and the first relative offset
  • the serial number of the second data packet is the absolute serial number of the second data packet and the second relative The sum of the offset values.
  • the second data packet sequence number is the absolute sequence number and the second The sum of the relative offset values (that is, the sequence number of the service data packet in the second data packet). Since the sequence numbers of the same service data packets sent on the two paths are the same, the access network device can be based on the order of the two paths. The sequence numbers of the first data packet and the second data packet determine when the data packets on the two paths reach transmission synchronization, so that the first terminal device smoothly merges from the unicast path to the multicast path.
  • the sequence number of the service data packet is the receiving sequence number of the service data packet for the first service on the UPF.
  • the first data packet is the first data packet to be sent by the access network device on the unicast path
  • the second data packet is the access network device in the multi The first data packet to be sent on the broadcast path
  • the access network device determines that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path, including: When the first service data packet is the same as the second service data packet, the access network device determines that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path; or, when the sequence number of the first data packet is the same as When the sequence numbers of the second data packets are the same, the access network device determines that the service data packets of the first service achieve transmission synchronization on the multicast path and the unicast path.
  • the access network device can determine that the access network device is in the two paths based on the same service data packet or the same sequence number of the service data packet in the first data packet to be sent on the multicast path and the unicast path. The transmission synchronization is reached.
  • the first data packet is the last data packet successfully received by the access network device on the unicast path
  • the second data packet is the access network device in the multicast path.
  • the access network device can determine that the access network device is on the two paths according to the same service data packet or the same sequence number of the service data packet in the last data packet successfully received on the multicast path and the unicast path The transmission synchronization is achieved, so that the first terminal device smoothly merges from the unicast path to the multicast path.
  • the access network device sends the unicast stop instruction information to the UPF, and the unicast stop instruction information is used to instruct the UPF to stop sending the service of the first service on the unicast path data pack.
  • the access network device sends a unicast stop instruction to the UPF after achieving transmission synchronization, so as to reduce the use of UPF transmission resources and reduce energy consumption.
  • the method before the service data of the first service achieves transmission synchronization on the multicast path and the unicast path, the method further includes: the access network device according to the unicast path and the unicast path The sequence number of the data packet of the first service or the number of buffers on the multicast path adjusts the sending rate of the data packet of the first service.
  • the access network device adjusts the sending rate of the data packets on the two paths, which can speed up the data packets on the two paths to achieve synchronization, so that the first terminal device It is possible to stop using the first unicast path to receive the data packets of the first service, and only use the multicast path to receive the data packets of the first service, reducing the use of transmission resources of the access network equipment and reducing energy consumption.
  • a communication method including: a user plane network element UPF receives a service data packet of a first service; and the UPF accesses the first terminal device through the unicast path of the first terminal device according to the service data packet.
  • the network device sends the first data packet of the first service, and the first data packet carries the sequence number of the first data packet and the first service data packet; the UPF sends the first service data packet to the access network device through the multicast path according to the service data packet.
  • a second data packet, the second data packet carrying the sequence number of the second data packet and a second service data packet, the first service data packet and the second service data packet belong to the service data packet of the first service;
  • the unicast path uses the unicast mode to transmit the service data packet of the first service to the first terminal device
  • the multicast path uses the multicast mode to transmit the service data packet of the first service to a group of terminal devices.
  • the data packets sent by the user plane network element to the access network device on the unicast path and the multicast path carry the sequence number of the data packet
  • the access network device can send the data packets on the two paths according to the user plane network element.
  • the data packet sequence number determines when the access network reaches the transmission synchronization on the two paths, so that the first terminal device smoothly merges from the unicast path to the multicast path, and avoids that the access network equipment does not know the two path data packets
  • the packet loss or service interruption is generated during the process.
  • the sequence number of the first data packet is the sequence number of the first service data packet
  • the sequence number of the second data packet is the sequence number of the second service data packet
  • the sequence numbers of the same service data packets are the same, and the access network device can determine when the data packets on the two paths are based on the sequence numbers of the service data packets in the first data packet and the second data packet on the two paths. Achieve transmission synchronization.
  • the sequence number of the first data packet includes the absolute sequence number and the first relative offset value of the first data packet
  • the sequence number of the second data packet includes the sequence number of the second data packet.
  • the absolute sequence number and the second relative offset value where the absolute sequence number of the first data packet is the transmission sequence number of the first data packet on the unicast path, and the first relative offset value is the absolute sequence number of the first data packet and the first
  • the absolute sequence number of the second data packet is the sending sequence number of the second data packet on the multicast path
  • the second relative offset value is the absolute sequence number of the second data packet and the second service The difference between the sequence numbers of the data packets.
  • the first data packet sequence number is the sum of the absolute sequence number and the first relative offset value (that is, the sequence number of the service data packet in the first data packet), and the second data packet sequence number is the absolute sequence number and the second relative offset value.
  • the sum of shift values that is, the sequence number of the service data packet in the second data packet. Since the sequence numbers of the same service data packet are the same, the access network device can be based on the first data packet and the second data packet on the two paths. The sequence number determines when the data packets on the two paths reach transmission synchronization.
  • the sequence number of the service data packet is the receiving sequence number of the service data packet for the first service on the UPF.
  • the UPF receives the unicast stop instruction information from the access network device; the UPF stops sending the service data of the first service on the unicast path according to the unicast stop instruction information Bag.
  • the UPF stops sending the data packets of the first service on the unicast path according to the unicast stop instruction information, so as to save the sending resources of the UPF and reduce the energy consumption.
  • a communication device is provided, and the communication device is configured to execute the communication method provided in the first aspect or the third aspect.
  • the communication device may include a module for executing the communication method provided in the first aspect or the third aspect.
  • a communication device is provided, and the communication device is configured to execute the communication method provided in the second aspect or the fourth aspect.
  • the communication device may include a module for executing the communication method provided in the second aspect or the fourth aspect.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the communication method in any one of the first aspect or the third aspect described above in the first aspect or the third aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the communication device is an access network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in an access network device.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the communication method in any one of the foregoing second aspect or fourth aspect and any possible implementation manner of the second aspect or fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used for inputting and/or outputting information.
  • the information includes at least one of instructions and data.
  • the communication device is a user plane network element.
  • the communication interface may be a transceiver, or an input/output interface.
  • the communication device is a chip or a chip system configured in a user plane network element.
  • the above-mentioned processor can be one or more chips
  • the input circuit can be an input pin
  • the output circuit can be an output pin
  • the processing circuit can be a transistor, a gate circuit, a flip-flop, and various logic circuits, etc.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • processors there are one or more processors, and one or more memories.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes a computer to execute the first aspect to The fourth aspect and the method in any one of the possible implementation manners of the first to fourth aspects.
  • a computer program also called code, or instruction
  • Fig. 6 is a schematic interaction diagram of another communication method provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of the data packets of the first service being transmitted on the unicast path and the multicast path according to relative numbers.
  • wearable devices can also be called wearable smart devices, which are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements part of the functions of gNB, and the DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the data network element may be a data network (DN) network element.
  • DN data network
  • the data network network element may still be a DN network element, or may also have other names, which is not limited in this application.
  • Session management network element 160 Mainly used for session management, Internet Protocol (IP) address allocation and management of user equipment, selection of end points that can manage user plane functions, policy control and charging function interfaces, and downlink Data notification, etc.
  • IP Internet Protocol
  • the application network element may be a network slice selection function (NSSF) network element.
  • NSSF network slice selection function
  • the application network element may still be an NSSF network element, or may also have other names, which is not limited by this application.
  • FIG. 1 is just an example and does not constitute any limitation to the protection scope of the present application.
  • the communication method provided by the embodiment of the present application may also involve a network element not shown in FIG. 1.
  • the user equipment is connected to the AMF through the N1 interface
  • the RAN is connected to the AMF through the N2 interface
  • the RAN is connected to the UPF through the N3 interface.
  • the UPF is connected through the N9 interface
  • the UPF is interconnected with the DN through the N6 interface.
  • SMF controls UPF through the N4 interface.
  • AMF is connected to SMF through the N11 interface.
  • Radio network temporary identity an identity of different UEs in the signal information between the UE and the base station.
  • UPF transmits multicast service data packets on the QoS flow of terminal device A.
  • the RAN uses multicast scheduling on the air interface for the multicast service data packets received from this QoS flow (black The method shown by the arrow) is sent to the terminal devices A, B, and C that receive the multicast service.
  • the SMF needs to configure specific packet detection and forwarding rules to the UPF, and send a multicast service data packet to the RAN side through a QoS flow; when the application server sends the multicast service to the UPF
  • the data packet is sent independently to each (per) terminal device, that is, the UPF receives the data packet of the multicast service sent to multiple terminal devices, and selects the data packet of the multicast service of one of the terminal devices.
  • the destination IP address of the data packet of the multicast service is replaced with the IP address used to transmit the multicast service; when the application server sends a copy of the multicast service data to the UPF, the UPF can communicate with the server of the multicast service through the UPF
  • the tunnel receives the data of the multicast service, or the UPF can receive the data of the multicast service in a multicast manner, and the UPF sends the received data packet to the RAN side through a QoS flow.
  • the transmission of multicast service data on the public N3 QoS flow that can transmit the multicast service between the UPF and the RAN can be further understood as the UPF and the RAN N3 in the third scenario above.
  • the data of the multicast service is transmitted on the connection, and the G-RNTI is used on the air interface to schedule the data of the multicast service for multiple terminal devices requesting the multicast service under the base station.
  • the base station uses different G-RNTIs for different groups of UEs.
  • Figure 3 is a schematic diagram of a terminal device switching from the multicast QoS flow of the source base station to the multicast QoS flow of the target base station.
  • Terminal devices A, B, and C receive multicast service data packets from QoS flow 1 on the source base station side.
  • the N3 connection of the multicast QoS flow 1 can be the N3 connection of the unicast QoS flow of terminal device A or the UPF and N3 connection of public QoS flow between AN1.
  • terminal device C uses its own unicast QoS flow 3 to transmit multicast service data packets, and at the same time, uses the dedicated RNTI 2 of the target base station to terminal device C to receive multicast service data packets.
  • the data packet of the multicast service sent by AN2 on the dedicated RNTI 2 of the terminal device C is the 9th packet
  • the data packet of the broadcast service is the 12th packet.
  • the multicast service data packet sent by UPF to terminal device C of AN2 through QoS flow 3 and the multicast data packet sent to AN2 by UPF through QoS flow X will also be out of sync.
  • UPF sends unicast to terminal device C of AN2.
  • the last data packet of the multicast service of QoS flow 3 is the 12th packet
  • the last data packet of the multicast service sent to the multicast QoS flow X of AN2 is the 15th packet.
  • the terminal device C when the terminal device C is added to the multicast QoS flow X on the target base station side, it is impossible to determine whether the data packet reaches the transmission synchronization, which causes the terminal device C to receive too much of the QoS flow X. After the data packet is broadcast, the application service is disturbed, for example, packet loss occurs, which causes service interruption and other problems.
  • this application optimizes the method of converged transmission of unicast path and multicast path, so that the terminal device can smoothly converge to the target multicast path.
  • the context of the multicast path includes: the data packet with the sequence number 1 sent on the unicast path is the data packet with the first service sequence number 3 in the UPF, and the data packet with the first service sequence number 5 is currently sent to the UPF. A total of them are sent 3 data packets, the data packet with the first service sequence number 6 to be sent in the UPF.
  • the unicast path is currently sent to the data packet with the first service sequence number 4 in the UPF, and the multicast path is currently sent to In the UPF, if the first service sequence number is 5, the UPF can speed up the packet sending speed on the unicast path.
  • the user plane network element sends synchronization indication information to the access network device.
  • the user plane network element When the UPF determines that the service data packet of the first service has reached transmission synchronization on the multicast path and the unicast path, the user plane network element sends synchronization indication information to the access network device.
  • the UPF stops sending the service data packet of the first service on the unicast path.
  • S430 The access network device sends first indication information to the first terminal device.
  • the access network device sends the first indication information to the first terminal device according to the received synchronization indication information.
  • the first terminal device receives the first indication information sent by the access network device, where the first indication information is used to instruct the first terminal device to receive the service data packet of the first service through the multicast path.
  • the access network device first receives the second synchronization packet and subsequent data packets on the multicast path, and the access network device has not received the second synchronization packet on the multicast path before The buffered data packets, that is, the data packets before the second synchronization packet on the multicast path of the access network device have been successfully sent.
  • the access network device sends the first indication information to the first terminal device
  • the first indication information includes the G-RNTI of the first terminal device group.
  • the access network device After the first terminal device successfully receives the G-RNTI, the access network device starts to send the data packet after the second synchronization packet on the multicast path, The first terminal device starts to receive the data packet on the multicast path through the G-RNTI, and the access network device stops sending the data packet after the first synchronization packet on the unicast path. It should be understood that at this time, the terminal device that receives the multicast service data packet from the multicast path originally has some buffers, so letting the first terminal device group wait for a limited time will not cause the service interruption of the first terminal device group.
  • the access network device waits until After receiving the second synchronization packet on the multicast path, the access network device sends the first indication information to the first terminal device.
  • the first indication information includes the G-RNTI of the first terminal device group. After receiving the G-RNTI, the first terminal device receives the data packet on the multicast path through the G-RNTI, and the access network device stops sending the data packet after the first synchronization on the unicast path. It should be understood that, at this time, the first terminal device may receive a data packet previously received from the unicast path, and the first terminal device may discard the received duplicate packet without causing service interruption.
  • the access network device receives any one of the first synchronization packet or the second synchronization packet, and the data packet before the synchronization packet on the path corresponding to the synchronization packet has been sent, then The access network device sends first indication information to the first terminal device.
  • the first indication information includes the G-RNTI of the first terminal device group.
  • the first terminal device passes the G-RNTI -RNTI receives data packets on the multicast path.
  • the access network device first receives the second synchronization packet and the data packets before the second synchronization packet on the multicast path have been successfully sent, and the first terminal device starts to receive the multicast through G-RNTI according to the first indication information.
  • the access network device continues to send the data packets on the unicast path to the first terminal device, that is, the first synchronization packet on the unicast path.
  • a terminal device receives the data packets of the first service from the unicast path and the multicast path at the same time. In this way, it is possible that the first terminal device may start to receive the multicast before the data packet before the first synchronization packet has been received.
  • the access network device adjusts the unicast path according to the unicast path and the number of data packets buffered by the multicast path on the access network device
  • the transmission speed of the data packet corresponding to the multicast path as shown in Figure 5, the access network equipment finds that the first data packet on the unicast path has more buffers, it can adjust the air interface transmission resource priority/speed up the scheduling on the unicast path The first packet.
  • the UPF saves the context information of the sequence numbers of the data packets sent on the unicast path and the multicast path, as well as the dual synchronization packet mechanism on the unicast and multicast paths, which can solve the problem of unicast and multi-
  • the problem of non-synchronization of the service data packets of the same service sent on the broadcast path ensures that the first terminal device can smoothly merge from the unicast path to the multicast path of the access network.
  • the user plane network element sets the sequence number of the first data packet as the sequence number of the first service data packet, and sets the sequence number of the second data packet as the sequence number of the second service data packet.
  • the user plane network element sets the sequence number of the first data packet sent on the unicast path to the sequence number of the service data packet (ie, the first service data packet) in the first data packet, and sets the second data packet sent on the multicast path
  • the serial number is the serial number of the business data packet (ie, the second business data packet) in the second data packet.
  • the serial numbers of the first business data packet and the second business data packet can be the corresponding business data packet in the user plane network element Receive serial number, which can be set by UPF.
  • the first data packet carries the sequence number of the first data packet and the first service data packet
  • the second data packet carries the sequence number of the second data packet and the second service data packet.
  • the first data packet and the second data packet may be GTP-U data packet.
  • the unicast path is the path used to transmit the service data packet of the first service between the first terminal device, the access network device and the user plane network
  • the multicast path is the first terminal device group, the access network device and the user A path used to transmit service data packets of the first service between plane network elements, where the first device group includes multiple terminal devices.
  • the first service in UPF includes service data packets with serial numbers 1, 2, 3, 4, 5..., among which 1, 2, 3, 4, 5... are serial numbers
  • the receiving sequence number of a service data packet on the UPF The sequence numbers of the data packets sent by UPF on the unicast path and the multicast path are shown in Figure 7.
  • UPF sets the sequence numbers of the service data packets in the first data packet and the second data packet in the UPF as the first data packet and The sending sequence number of the second data packet.
  • the sequence number 3 is used as the UPF in The sequence number of the second data packet sent on the unicast path.
  • S620 The user plane network element sends the first data packet and the second data packet to the access network device.
  • the access network device receives the first data packet on the unicast path, and receives the second data packet on the multicast path.
  • the access network device determines that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path.
  • the access network device determines that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path according to the sequence number of the first data packet and the sequence number of the second data packet.
  • the network-connected device records the sequence number of the data packet that reaches the transmission synchronization.
  • the access network device determines that the service data of the first service is transmitted synchronously on the multicast path and the unicast path according to the sequence number of the first data packet and the sequence number of the second data packet, and the access network records The sequence number of the data packet that reached the transmission synchronization.
  • sequence numbers of the first data packet and the second data packet are the same, which indicates that the service data packet in the first data packet and the service data packet in the second data packet are the same data packet.
  • the unicast stop instruction information may carry identification information of the unicast path, and may also carry the sequence number of the data packet that achieves transmission synchronization.
  • the UPF receives the unicast stop instruction information, and stops sending the data packet of the first service on the unicast path.
  • S640 The access network device sends first indication information to the first terminal device.
  • the access network device After the access network device determines that the service data packets of the first service are synchronized in transmission on the multicast path and the unicast path, the access network device sends first indication information to the first terminal device, where the first indication information is used to indicate the first The terminal device receives the service data of the first service through the multicast path.
  • the access network device when the transmission synchronization is achieved in the first case, the access network device sends first indication information to the first terminal device; when the transmission synchronization is achieved in the second case, the access network device is waiting on the unicast path.
  • the first data packet sent is the first data packet that reaches transmission synchronization
  • the first data packet to be sent by the access network device on the multicast path is the second data packet that reaches transmission synchronization
  • access The network device sends the first indication information to the first terminal device.
  • the first terminal device receives the first indication information sent by the first terminal device.
  • the first indication information includes the G-RNTI for the first terminal device group to receive the first service.
  • the first terminal device After the first terminal device successfully receives the G-RNTI, the first terminal device receives the first terminal device on the multicast path through the G-RNTI.
  • a business data package of a business When the first terminal device receives the service data packet of the first service through the multicast path, the access network device stops sending the data packets after the sequence number that reaches the transmission synchronization on the unicast path, and only sends it on the multicast path to achieve the transmission synchronization. The data packet after the sequence number.
  • the access network equipment before the access network equipment achieves the transmission synchronization in the first case and the second case on the multicast path and the unicast path, the access network equipment is in the access network according to the unicast path and the multicast path.
  • the size of the sequence number or the number of buffers of the data packets on the device is adjusted to adjust the sending speed of the data packets corresponding to the unicast path and the multicast path.
  • the access network device finds that there are more buffers of data packets on the unicast path.
  • the air interface can be adjusted to send resource priority/speed up the scheduling of data packets on the unicast path.
  • the access network device after the access network device achieves the transmission synchronization in the second case on the multicast path and the unicast path, the access network device performs buffering on the multicast path and the unicast path before reaching the transmission synchronization. According to the size of the sequence number of the data packet or the number of buffers, the sending speed of the data packet corresponding to the unicast path and the multicast path is adjusted.
  • the UPF sets the sequence numbers of the data packets on the two paths as the receiving sequence numbers of the service data packets in the corresponding data packets on the UPF, and the access network equipment can be based on the sequence numbers of the data packets sent on the unicast and multicast paths. It is determined that the service data of the first service on the two paths are synchronized in transmission. After the data packets of the two paths are synchronized in transmission, the first terminal device is added to the first terminal device group, and the first terminal device starts to use the multicast path to receive The data packet of the first service ensures that the terminal device can smoothly merge from the unicast path to the multicast path of the access network.
  • FIG. 8 is a schematic interaction diagram of yet another communication method provided by an embodiment of the present application.
  • the user plane network element sets the absolute sequence number and the first relative offset value of the first data packet on the unicast path, and the user plane network element sets the absolute sequence number and the second relative offset value of the second data packet on the multicast path. value.
  • the user plane network element sets the sequence number of the first data packet sent on the unicast path.
  • the sequence number of the first data packet includes the absolute sequence number and the first relative offset value of the first data packet on the unicast path.
  • the first data packet It carries the sequence number of the first data packet and the first service data packet.
  • the absolute sequence number is that the data packets sent to the access network device on each QoS flow are independently numbered by the user plane network element according to the packet sending sequence.
  • the absolute number of the data packet sent to the access network device on a QoS flow by the UPF is the same as that of the UPF.
  • the absolute number of the data packet sent to the access network device on another QoS flow is not associated.
  • the absolute sequence number of the first data packet on the unicast path is that the user plane network element absolutely numbers the first data packet according to the order in which the first data packet is sent on the unicast path.
  • Figure 5 is an example.
  • UPF sets the unicast path.
  • the absolute sequence number of the first data packet sent is 1
  • the absolute sequence number of the second data packet sent is 2, and so on.
  • the first relative offset value is the difference between the absolute number of the first data packet and the reception sequence number of the service data packet in the first data packet (that is, the first service data packet) in the user plane network element.
  • Figure 5 is an example.
  • the user plane network element sets the sequence number of the second data packet sent on the multicast path.
  • the sequence number of the second data packet includes the absolute sequence number and the second relative offset value of the second data packet on the multicast path.
  • the second data packet carries the sequence number of the first data packet and the second service data packet.
  • Figure 5 is an example.
  • UPF sets the absolute sequence number of the third packet sent on the multicast path to 3.
  • the second relative offset value is the difference between the absolute number of the second data packet and the reception sequence number of the service data packet in the second data packet (that is, the second service data packet) in the user plane network element, then the multicast path
  • S820 The user plane network element sends the first data packet and the second data packet to the access network device.
  • the user plane network element sends the first data packet to the access network device on the unicast path, and sends the second data packet to the access network device on the multicast path.
  • the access network device receives the first data packet on the unicast path, and receives the second data packet on the multicast path.
  • the UPF stops sending the first data packet on the unicast path.
  • Data packet where the first data packet serial number is the sum of the absolute serial number of the first data packet and the first relative offset value, and the second data packet serial number is the sum of the absolute serial number of the second data packet and the second relative offset value .
  • the UPF can be based on the data packets on the unicast path and the multicast path.
  • the sequence number size or the number of buffers can be adjusted to adjust the speed of sending packets on the two paths. As shown in Figure 7, the sequence number of data packets sent by UPF on the unicast path is smaller, and UPF can speed up the packet sending speed on the unicast path.
  • the access network device determines that the service data of the first service achieves transmission synchronization on the multicast path and the unicast path.
  • the second data packet is the first data packet to be sent by the access network device on the multicast path
  • the access network device determines that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path, and the access network can record this The sequence number of the data packet that reached the transmission synchronization.
  • the connection According to the sequence number of the first data packet and the sequence number of the second data packet, the network access device determines that the service data of the first service achieves transmission synchronization on the multicast path and the unicast path, and the access network can use the sequence number as the reach The sequence number of the synchronized data packet.
  • the access network device when the data packet sent by the access network device reaches the transmission synchronization, the access network device sends the unicast stop instruction information to the UPF, and the unicast stop instruction information is used to instruct the UPF to stop sending the first data packet on the unicast path.
  • the access network device sends the unicast stop instruction information to the UPF, and the unicast stop instruction information is used to instruct the UPF to stop sending the first data packet on the unicast path.
  • the unicast stop instruction information may carry the identification information of the unicast path, and may also carry the sequence number of the data packet that achieves transmission synchronization.
  • the UPF receives the unicast stop instruction information, and stops sending the data packet of the first service on the unicast path.
  • S840 The access network device sends first indication information to the first terminal device.
  • the access network device After the access network device determines that the service data of the first service has reached transmission synchronization on the multicast path and the unicast path, the access network device sends first indication information to the first terminal device, where the first indication information is used to instruct the first terminal The device receives the service data of the first service through the multicast path.
  • the access network device when the transmission synchronization is achieved in the first case, the access network device sends first indication information to the first terminal device; when the transmission synchronization is achieved in the second case, the access network device is waiting on the unicast path.
  • the first data packet sent is the first data packet that reaches transmission synchronization
  • the first data packet to be sent by the access network device on the multicast path is the second data packet that reaches transmission synchronization
  • access The network device sends the first indication information to the first terminal device.
  • the first terminal device receives the first indication information sent by the first terminal device.
  • the first indication information includes the G-RNTI for the first terminal device group to receive the first service.
  • the first terminal device After the first terminal device successfully receives the G-RNTI, the first terminal device receives the first terminal device on the multicast path through the G-RNTI.
  • Business data of a business When the first terminal device receives the service data packet of the first service through the multicast path, the access network device stops sending the data packets after the sequence number that reaches the transmission synchronization on the unicast path, and only sends it on the multicast path to achieve the transmission synchronization. The data packet after the sequence number.
  • the access network equipment before the access network equipment achieves the transmission synchronization in the first case and the second case on the multicast path and the unicast path, the access network equipment is in the access network according to the unicast path and the multicast path.
  • the size of the sequence number or the number of buffers of the data packets on the device adjust the transmission speed of the data packets corresponding to the unicast path and the multicast path, as shown in Figure 7, the access network device finds that the first data packet on the unicast path has more buffers , You can adjust the air interface to send resources preferentially/speed up the scheduling of the first data packet on the unicast path.
  • the access network device after the access network device achieves the transmission synchronization in the second case on the multicast path and the unicast path, the access network device performs the buffering before the transmission synchronization on the multicast path and the unicast path. For data packets, adjust the sending speed of data packets corresponding to the unicast path and the multicast path according to the size of the sequence number of the data packet or the number of buffers.
  • UPF sets the absolute sequence numbers and relative offset values of the data packets sent on the two paths, and the access network equipment can resolve the two according to the absolute sequence numbers and relative offset values of the data packets on the unicast and multicast paths.
  • the first terminal device is added to the first terminal device group, and the multicast path is used to receive the data packet of the first service to ensure The first terminal device can smoothly merge from the unicast path to the multicast path of the access network.
  • the methods and operations implemented by the access network equipment can also be implemented by components (such as chips or circuits) that can be used for the access network equipment, and the methods implemented by user plane network elements
  • the sum operation can also be implemented by components (such as chips or circuits) that can be used for user plane network elements.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • FIG. 9 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 includes a transceiving unit 910 and a processing unit 920.
  • the transceiving unit 910 can communicate with the outside, and the processing unit 920 is used for data processing.
  • the transceiving unit 910 may also be referred to as a communication interface or a communication unit.
  • the communication device 900 may further include a storage unit, and the storage unit may be used to store instructions and/or data, and the processing unit 920 may read the instructions and/or data in the storage unit.
  • the communication device 900 may be an access network device
  • the transceiving unit 910 is used to perform the receiving or sending operation of the access network device in the above method embodiment
  • the processing unit 920 is used to perform the above method implementation.
  • the internal processing operation of the access network equipment In the example, the internal processing operation of the access network equipment.
  • the communication device 900 may be an access network device.
  • the transceiver unit 910 and the processing unit 920 may perform the following operations.
  • the transceiver unit 910 is configured to: receive synchronization indication information from the user plane network element UPF, and the synchronization indication information is used to indicate that the service data packet of the first service is on the multicast path and the first terminal device
  • the unicast path achieves transmission synchronization, the unicast path uses unicast to transmit the service data packet of the first service to the first terminal device, and the multicast path uses the multicast method to transmit the service data of the first service to the first terminal device group Package, the first terminal device group includes at least one terminal device;
  • the processing unit 920 is configured to: according to the synchronization instruction information, control the transceiver unit to send first instruction information to the first terminal device, and the first instruction information is used to instruct the first terminal device to pass
  • the multicast path receives the service data packet of the first service.
  • the transceiver unit 910 is specifically configured to receive synchronization indication information from the UPF through a unicast path and/or a multicast path.
  • the transceiver unit 910 is further configured to send unicast stop instruction information to the UPF, and the unicast stop instruction information is used to instruct the UPF to stop sending the service data packet of the first service on the unicast path.
  • the synchronization indication information is a null service data packet, a synchronization data packet, or an end flag packet.
  • the transceiver unit 910 is configured to: receive the first data packet of the first service from the user plane network element UPF through the unicast path of the first terminal device, and the unicast path The service data packet of the first service is transmitted to the first terminal device in a unicast mode; the transceiver unit 910 is further configured to: receive the second data packet of the first service from the UPF through a multicast path, and the multicast path uses a multicast mode to send the second data packet of the first service to the first terminal device.
  • a terminal device group transmits service data packets of the first service, and the terminal device group includes at least one terminal device; the processing unit 920 is configured to: according to the first data packet and the second data packet, determine that the service data packet of the first service is in the multicast The path and the unicast path achieve transmission synchronization; the transceiver unit 910 is further configured to: send first indication information to the first terminal device, where the first indication information is used to instruct the first terminal device to receive the service data of the first service through the multicast path .
  • the first data packet includes the sequence number of the first data packet and the first service data packet
  • the second data packet includes the sequence number of the second data packet and the second service data packet
  • the first service data packet and the second service data The packet belongs to the service data packet of the first service.
  • sequence number of the first data packet is the sequence number of the first service data packet
  • sequence number of the second data packet is the sequence number of the second service data packet
  • the sequence number of the first data packet includes the absolute sequence number and the first relative offset value of the first data packet
  • the sequence number of the second data packet includes the absolute sequence number and the second relative offset value of the second data packet
  • the first The absolute sequence number of the data packet is the transmission sequence number of the first data packet on the unicast path
  • the first relative offset value is the difference between the absolute sequence number of the first data packet and the sequence number of the first service data packet
  • the absolute sequence number of the packet is the sending sequence number of the second data packet on the multicast path
  • the second relative offset value is the difference between the absolute sequence number of the second data packet and the sequence number of the second service data packet
  • the first data packet The sequence number of is the sum of the absolute sequence number of the first data packet and the first relative offset value
  • the sequence number of the second data packet is the sum of the absolute sequence number of the second data packet and the second relative offset value.
  • the sequence number of the service data packet is the receiving sequence number of the service data packet for the first service on the UPF.
  • the first data packet is the first data packet to be sent by the transceiver unit 910 on the unicast path
  • the second data packet is the first data packet to be sent by the transceiver unit 910 on the multicast path
  • the processing unit 920 is specifically used to: when the first service data packet is the same as the second service data packet, determine that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path; or, when the sequence number of the first data packet When the sequence number of the second data packet is the same, it is determined that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path.
  • the first data packet is the last data packet successfully received by the transceiver unit 910 on the unicast path
  • the second data packet is the last data packet successfully received by the access network device on the multicast path
  • the processing unit 920 It is specifically used for: when the first service data packet is the same as the second service data packet, it is determined that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path; or, when the sequence number of the first data packet is the same as When the sequence numbers of the second data packets are the same, it is determined that the service data packets of the first service achieve transmission synchronization on the multicast path and the unicast path.
  • the transceiver unit 910 is further configured to send unicast stop instruction information to the UPF, and the unicast stop instruction information is used to instruct the UPF to stop sending the service data packet of the first service on the unicast path.
  • the processing unit 920 is further configured to: according to the sequence number of the data packet of the first service on the unicast path and the multicast path Or the number of buffers to adjust the sending rate of the data packet of the first service.
  • the communication device 900 may be a component configured in an access network device, for example, a chip in the access network device.
  • the transceiver unit 910 may be an interface circuit, a pin, and the like.
  • the interface circuit may include an input circuit and an output circuit
  • the processing unit 920 may include a processing circuit.
  • the transceiver unit 910 may also be a radio frequency module.
  • the processing unit 920 may be a baseband module.
  • the radio frequency module is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the baseband module is mainly used for baseband processing and control of base stations.
  • FIG. 10 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1000 includes a transceiver unit 1010 and a processing unit 1020.
  • the transceiver unit 1010 can communicate with the outside, and the processing unit 1020 is used for data processing.
  • the transceiver unit 1010 may also be referred to as a communication interface or a communication unit.
  • the communication device 1000 may further include a storage unit, and the storage unit may be used to store instructions and/or data, and the processing unit 1020 may read the instructions and/or data in the storage unit.
  • the communication device 1000 may be a user plane network element
  • the transceiving unit 1010 is used to perform the receiving or sending operation of the user plane network element in the above method embodiment
  • the processing unit 1020 is used to perform the above method implementation In the example, the internal processing operation of the user plane network element.
  • the communication device 1000 may be a user plane network element.
  • the transceiver unit 1010 and the processing unit 1020 may perform the following operations.
  • the processing unit 1020 is used to determine that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path of the first terminal device, and the unicast path uses The unicast mode transmits the service data packet of the first service to the first terminal device, and the multicast path uses the multicast mode to transmit the service data packet of the first service to the first terminal device group, and the first terminal device group includes at least one terminal device;
  • the transceiver unit 1010 is configured to send synchronization indication information to the access network device of the first terminal device, where the synchronization indication information is used to indicate that the service data packet of the first service achieves transmission synchronization on the multicast path and the unicast path.
  • the processing unit 1020 is specifically configured to: when the transceiver unit is to send the first service data packet of the first service on the unicast path, and the transceiver unit is to send the first service data packet of the first service to be sent on the multicast path.
  • the processing unit determines that the service data of the first service has reached transmission synchronization on the multicast path and the unicast path; or the first service data packet of the first service to be sent by the transceiver unit on the unicast path
  • the processing unit determines that the service data of the first service achieves transmission synchronization on the multicast path and the unicast path.
  • the transceiver unit 1010 is specifically configured to send synchronization indication information on the unicast path and the multicast path.
  • the transceiving unit 1010 is further configured to: when the processing unit determines that the service data packet of the first service reaches transmission synchronization on the multicast path and the unicast path, the transceiver unit stops sending the service of the first service on the unicast path. data pack.
  • the transceiving unit 1010 is further configured to: receive the unicast stop instruction information from the access network device; the processing unit 1020 is further configured to: according to the unicast stop instruction information, control the transceiving unit 1010 to stop sending the first unicast path on the unicast path.
  • Business data package for business is further configured to: according to the unicast stop instruction information, control the transceiving unit 1010 to stop sending the first unicast path on the unicast path.
  • the synchronization indication information includes an empty service data packet, a synchronization data packet, or an end flag packet.
  • the transceiving unit 1010 is configured to: receive service data packets of the first service; the transceiving unit 1010 is further configured to: transmit to the first terminal device through the unicast path of the first terminal device.
  • the access network device of the terminal device sends the first data packet of the first service, the first data packet carries the sequence number of the first data packet and the first service data packet; the transceiver unit 1010 is also used to: send the first data packet to the access network through the multicast path
  • the device sends a second data packet of the first service, the second data packet carrying the sequence number of the second data packet and the second service data packet, and the first service data packet and the second service data packet belong to the service data packet of the first service;
  • the unicast path uses the unicast mode to transmit the service data packet of the first service to the first terminal device
  • the multicast path uses the multicast mode to transmit the service data packet of the first service to a group of terminal devices.
  • sequence number of the first data packet is the sequence number of the first service data packet
  • sequence number of the second data packet is the sequence number of the second service data packet
  • the sequence number of the first data packet includes the absolute sequence number and the first relative offset value of the first data packet
  • the sequence number of the second data packet includes the absolute sequence number and the second relative offset value of the second data packet
  • the absolute sequence number of the first data packet is the sending sequence number of the first data packet on the unicast path
  • the first relative offset value is the difference between the absolute sequence number of the first data packet and the sequence number of the first service data packet
  • the absolute sequence number of the second data packet is the sending sequence number of the second data packet on the multicast path
  • the second relative offset value is the difference between the absolute sequence number of the second data packet and the sequence number of the second service data packet.
  • the sequence number of the service data packet is the receiving sequence number of the service data packet for the first service on the transceiver unit 1010.
  • the transceiver unit 1010 is configured to: receive unicast stop instruction information from the access network device; the processing unit 1020 is configured to: according to the unicast stop instruction information, control the transceiver unit 1010 to stop sending the first service on the unicast path Business data package.
  • the first data packet is the first data packet to be sent by the transceiver unit 1010 on the unicast path
  • the second data packet is the first data packet to be sent by the transceiver unit 1010 on the multicast path
  • the processing unit 1020 is configured to: when it is determined that the sequence number of the first data packet is the same as the sequence number of the second data packet, control the transceiver unit 1010 to stop sending the service data packet of the first service on the unicast path.
  • the communication device 900 may be a component configured in a user plane network element, for example, a chip in a user plane network element.
  • the transceiver unit 1010 may be an interface circuit, a pin, and the like.
  • the interface circuit may include an input circuit and an output circuit
  • the processing unit 1020 may include a processing circuit.
  • the transceiver unit 1010 may also be a radio frequency module.
  • the processing unit 1020 may be a baseband module.
  • the radio frequency module is mainly used for transmitting and receiving radio frequency signals and the conversion between radio frequency signals and baseband signals; the baseband module is mainly used for baseband processing and controlling the base station.
  • an embodiment of the present application also provides a communication device 1100.
  • the communication device 1000 includes a processor 1110, the processor 1110 is coupled with a memory 1020, the memory 1020 is used to store computer programs or instructions or and/or data, and the processor 1110 is used to execute the computer programs or instructions and/or data stored in the memory 1120 , So that the method in the above method embodiment is executed.
  • the communication device 1100 includes one or more processors 1110.
  • the communication device 1100 may further include a memory 1120.
  • the communication device 1100 includes one or more memories 1120.
  • the memory 1120 may be integrated with the processor 1110 or provided separately.
  • the communication device 1100 may further include a transceiver 1130, and the transceiver 1130 is used for receiving and/or sending signals.
  • the processor 1110 is configured to control the transceiver 1130 to receive and/or send signals.
  • the communication device 1100 is used to implement the operations performed by the access network device in the foregoing method embodiments.
  • the processor 1110 is used to implement the operations performed by the access network device in the foregoing method embodiment
  • the transceiver 1130 is used to implement the receiving or sending operations performed by the access network device in the foregoing method embodiment.
  • the processing unit 920 in the device 900 may be the processor in FIG. 11, and the transceiving unit 910 may be the transceiver in FIG. 11.
  • the processor 1110 refer to the description of the processing unit 920 above, and refer to the description of the transceiving unit 910 for the operations performed by the transceiver 1130, which will not be repeated here.
  • an embodiment of the present application also provides a communication device 1200.
  • the communication device 1000 includes a processor 1210, the processor 1210 is coupled with a memory 1020, the memory 1020 is used to store computer programs or instructions or and/or data, and the processor 1210 is used to execute the computer programs or instructions and/or data stored in the memory 1220 , So that the method in the above method embodiment is executed.
  • the communication device 1200 includes one or more processors 1210.
  • the communication device 1200 may further include a memory 1220.
  • the memory 1220 included in the communication device 1200 may be one or more.
  • the memory 1220 may be integrated with the processor 1210 or provided separately.
  • the communication device 1200 may further include a transceiver 1230, and the transceiver 1230 is used for receiving and/or sending signals.
  • the processor 1210 is configured to control the transceiver 1230 to receive and/or send signals.
  • the communication device 1200 is used to implement the operations performed by the user plane network element in the above method embodiment.
  • the processor 1210 is used to implement the operations performed by the user plane network element in the above method embodiment
  • the transceiver 1230 is used to implement the receiving or sending operations performed by the user plane network element in the above method embodiment.
  • the processing unit 1020 in the device 1000 may be the processor in FIG. 12, and the transceiving unit 1010 may be the transceiver in FIG. 12.
  • the processor 1210 refer to the description of the processing unit 1020 above, and for the operations performed by the transceiver 1230, refer to the description of the transceiver unit 1010, which will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the access network device in the foregoing method embodiment or the method executed by the user plane network element.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the access network device in the foregoing method embodiment or the method executed by the user plane network element.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method executed by the access network device in the foregoing method embodiments or the method executed by the user plane network element.
  • An embodiment of the present application also provides a communication system, which includes the user plane network element and the access network device in the above embodiment.
  • the communication system includes: the user plane network element and the access network device in the embodiments described above with reference to FIG. 4, FIG. 6 and FIG. 8.
  • the access network device or user plane network element may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system at the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application, according to the method provided in the embodiment of this application.
  • the execution subject of the method provided in the embodiments of the present application may be an access network device or a user plane network element, or a functional module in the access network device or user plane network element that can call and execute the program.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium, or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the foregoing usable medium may include but not Limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,能够使基站确定单播路径和多播路径上发送的数据包达到同步,从而使终端设备从单播路径平滑地融合到多播路径上。该方法包括:接入网设备从用户面网元UPF接收同步指示信息,同步指示信息用于指示第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包,多播路径使用多播方式向第一终端设备组传输第一业务的业务数据包,第一终端设备组包括至少一个终端设备;接入网设备根据同步指示信息,向第一终端设备发送第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据包。

Description

通信方法和通信装置 技术领域
本申请涉及通信领域,具体涉及一种通信方法和通信装置。
背景技术
终端设备A和终端设备组B分别在单播路径和多播路径上通过同一基站从用户面网元接收同一业务S的多个数据包,由于用户面网元在单播路径和多播路径上向基站发送业务S的数据包的速度不同以及基站在对应路径上接收到业务S的数据包后,在单播路径上向终端设备A和在多播路径上向终端设备组B发送业务S的数据包的速度不同、缓存不同,会造成基站在两条路径上发送的业务S的数据包不同步。当基站停止终端设备A使用单播路径接收业务S的多个数据包,并使终端设备A从终端设备组B对应的多播路径接收业务S的多个数据包时,终端设备A存在因为两条路径上发送的数据包不同步而导致丢包或业务中断的问题。
因此,在终端设备A使用终端设备组B对应的多播路径接收业务S的多个数据包之前,基站如何确定单播路径和多播路径上发送的数据包达到同步,从而使终端设备A从单播路径平滑地融合到终端设备组B的多播路径上成为亟待解决的问题。
发明内容
本申请提供一种通信方法和通信装置,能够使终端设备从单播路径上平滑地融合到多播路径中。
第一方面,提供了一种通信方法,包括:接入网设备从用户面网元UPF接收同步指示信息,同步指示信息用于指示第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包,多播路径使用多播方式向第一终端设备组传输第一业务的业务数据包,第一终端设备组包括至少一个终端设备;接入网设备根据同步指示信息,向第一终端设备发送第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据包。
上述技术方案中,接入网设备根据用户面网元发送的同步指示信息确定该同步指示信息之后的数据包达到传输同步,这样接入网设备就可以根据接收到同步指示信息向第一终端设备发送第一指示信息,使得第一终端设备在成功接收第一指示后,开始在多播路径上接收第一业务的数据包,保证第一终端设备可以从单播路径平滑融合到接入网的多播路径。
结合第一方面,在第一方面的某些实现方式中,接入网设备从UPF接收同步指示信息,包括:接入网设备通过单播路径和/或多播路径从UPF接收同步指示信息。
上述技术方案中,接入网设备可以在接收到两条路径上的同步指示信息的情况下向第一终端设备发送第一指示信息;或者接入网设备可以在只接收到一条路径上的同步指示信 息的情况下向第一终端设备发送第一指示信息,这样,可以更加灵活地使第一终端设备开始在多播路径上接收第一业务的数据包。
结合第一方面,在第一方面的某些实现方式中,接入网设备向UPF发送停止单播指示信息,停止单播指示信息用于指示UPF停止在单播路径上发送第一业务的业务数据包。
上述技术方案中,接入网设备向UPF发送停止单播指示信息可以使UPF停止在单播路径上继续发送单播路径上的第一业务的数据包,从而节省UPF的发送资源。
结合第一方面,在第一方面的某些实现方式中,同步指示信息包括空业务数据包、同步数据包或结束标志包。
第二方面,提供了一种通信方法,包括:用户面网元UPF确定第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包,多播路径使用多播方式向第一终端设备组传输第一业务的业务数据包,第一终端设备组包括至少一个终端设备;UPF向第一终端设备的接入网设备发送同步指示信息,同步指示信息用于指示第一业务的业务数据包在多播路径和单播路径上达到传输同步。
上述技术方案中,用户面网元在多播路径和单播路径上发送第一业务的数据包达到传输同步时(传输同步是指用户面网元在某一时刻单播路径和多播路径上待发送的第一个数据包中的业务数据包为相同的数据包),用户面网元向接入网设备发送同步指示信息,用于指示两条路径上数据包达到传输同步,接入网设备就可以根据该同步指示信息确定两条路径上发送的数据包何时达到传输同步,从而可以控制第一终端设备根据同步指示信息从单播路径平滑地融合到多播路径。
结合第二方面,在第二方面的某些实现方式中,UPF确定第一业务的业务数据在多播路径和单播路径上达到传输同步,包括:当UPF在单播路径上待发送的第一个第一业务的业务数据包与UPF在多播路径上待发送的第一个第一业务的业务数据包相同时,UPF确定第一业务的业务数据包在多播路径和单播路径上达到传输同步;或者当UPF在单播路径上待发送的第一个第一业务的业务数据包的序号与UPF在多播路径上待发送的第一个第一业务的业务数据包的序号相同时,UPF确定第一业务的业务数据在多播路径和单播路径上达到传输同步。
上述技术方案中,用户面网元可以根据在多播路径和单播路径上待发送的第一个数据包中的业务数据包相同或者数据包的序号相同判断UPF在两条路径上达到传输同步。
结合第二方面,在第二方面的某些实现方式中,UPF向第一终端设备的接入网设备发送同步指示信息,包括:UPF在单播路径和多播路径上发送同步指示信息。
上述技术方案中,用户面网元在两条路径上同时发送同步指示信息,可以使接入网设备根据两条路径上的同步指示信息保证第一终端设备可以从单播路径平滑融合到接入网的多播路径。
结合第二方面,在第二方面的某些实现方式中,当UPF确定第一业务的业务数据包在多播路径和单播路径上达到传输同步时,UPF停止在单播路径上发送第一业务的业务数据包。
上述技术方案中,当UPF在两条路径上达到传输同步时,UPF停止在单播路径上继续发送第一业务的数据包,以节省UPF的发送资源,降低能耗。
结合第二方面,在第二方面的某些实现方式中,UPF从接入网设备接收停止单播指示信息;UPF根据停止单播指示信息,停止在单播路径上发送第一业务的数据包。
上述技术方案中,UPF接收接入网设备发送的停止单播指示信息,可以使UPF停止在单播路径上发送第一业务的数据包,以节省UPF的发送资源,降低能耗。
结合第二方面,在第二方面的某些实现方式中,同步指示信息包括空业务数据包、同步数据包或结束标志包。
第三方面,提供了一种通信方法,包括:接入网设备通过第一终端设备的单播路径从用户面网元UPF接收第一业务的第一数据包,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包;接入网设备通过多播路径从用户面网元接收第一业务的第二数据包,多播路径使用多播方式向第一终端设备组传输第一业务的业务数据包,第一终端设备组包括至少一个终端设备;接入网设备根据第一数据包和第二数据包,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步;接入网设备向第一终端设备发送第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据包。
上述技术方案中,接入网设备根据单播路径上接收的第一数据包和多播路径上接收的第二数据包确定两条路径上的数据包达到传输同步,当两条路径上的数据包达到传输同步后,接入网设备向第一终端设备发送第一指示信息,在第一终端设备成功接收第一指示信息后,第一终端设备开始通过多播路径接收第一业务的业务数据包,这样可以使第一终端设备从单播路径平滑地融合到多播路径上,避免在接入网设备不知道两条路径的数据包何时同步的情况下将单播路径融合到多播路径过程中产生的丢包或业务中断问题。
结合第三方面,在第三方面的某些实现方式中,所述第一数据包包括所述第一数据包的序号和第一业务数据包,所述第二数据包包括所述第二数据包的序号和第二业务数据包,所述第一业务数据包和所述第二业务数据包属于所述第一业务的业务数据包。
结合第三方面,在第三方面的某些实现方式中,所述第一数据包的序号为所述第一业务数据包的序号,所述第二数据包的序号为所述第二业务数据包的序号。
上述技术方案中,相同的业务数据包的序号相同,通过设置第一数据包和第二数据包的序号为其业务数据包的序号,接入网设备可以根据两条路径上的第一数据包和第二数据包的序号确定两条路径上的数据包何时达到传输同步,从而使第一终端设备从单播路径平滑地融合到多播路径上。
结合第三方面,在第三方面的某些实现方式中,第一数据包的序号包括第一数据包的绝对序号和第一相对偏移值,第二数据包的序号包括第二数据包的绝对序号和第二相对偏移值,第一数据包的绝对序号为第一数据包在单播路径上的发送序号,第一相对偏移值为第一数据包的绝对序号与第一业务数据包的序号之间的差值,第二数据包的绝对序号为第二数据包在多播路径上的发送序号,第二相对偏移值为第二数据包的绝对序号与第二业务数据包的序号之间的差值;第一数据包的序号为第一数据包的绝对序号和第一相对偏移值之和,第二数据包的序号为第二数据包的绝对序号和第二相对偏移值之和。
上述技术方案中,通过设置第一数据包序号为绝对序号和第一相对偏移值之和(即第一数据包中的业务数据包的序号),第二数据包序号为绝对序号和第二相对偏移值之和(即第二数据包中的业务数据包的序号),由于两条路径上发送的相同的业务数据包的序号相 同,所以接入网设备可以根据两条路径上的第一数据包和第二数据包的序号确定两条路径上的数据包何时达到传输同步,从而使第一终端设备从单播路径平滑地融合到多播路径上。
结合第三方面,在第三方面的某些实现方式中,业务数据包的序号为针对第一业务的业务数据包在UPF上的接收序号。
结合第三方面,在第三方面的某些实现方式中,第一数据包为接入网设备在单播路径上待发送的第一个数据包,第二数据包为接入网设备在多播路径上待发送的第一个数据包;接入网设备根据第一数据包和第二数据包,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步,包括:当第一业务数据包与第二业务数据包相同时,接入网设备确定第一业务的业务数据包在多播路径和单播路径上达到传输同步;或者,当第一数据包的序号与第二数据包的序号相同时,接入网设备确定第一业务的业务数据包在多播路径和单播路径上达到传输同步。
上述技术方案中,接入网设备可以根据在多播路径和单播路径上待发送的第一个数据包中的业务数据包相同或者业务数据包的序号相同确定接入网设备在两条路径上达到传输同步。
结合第三方面,在第三方面的某些实现方式中,第一数据包为接入网设备在单播路径上接收成功的最后一个数据包,第二数据包为接入网设备在多播路径上接收成功的最后一个数据包;接入网设备根据第一数据包和第二数据包,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步,包括:当第一业务数据包与第二业务数据包相同时,接入网设备确定第一业务的业务数据包在多播路径和单播路径上达到传输同步;或者,当第一数据包的序号与第二数据包的序号相同时,接入网设备确定第一业务的业务数据包在多播路径和单播路径上达到传输同步。
上述技术方案中,接入网设备可以根据在多播路径和单播路径上接收成功的最后一个数据包中的业务数据包相同或者业务数据包的序号相同确定接入网设备在两条路径上达到传输同步,从而使第一终端设备从单播路径平滑地融合到多播路径上。
结合第三方面,在第三方面的某些实现方式中,接入网设备向UPF发送停止单播指示信息,停止单播指示信息用于指示UPF停止在单播路径上发送第一业务的业务数据包。
上述技术方案中,接入网设备在达到传输同步后,向UPF发送单播停播指示,以减少UPF的发送资源的使用,降低能耗。
结合第三方面,在第三方面的某些实现方式中,第一业务的业务数据在多播路径和单播路径上达到传输同步之前,方法还包括:接入网设备根据在单播路径和多播路径上的第一业务的数据包的序号或缓存的数量,调整第一业务的数据包的发送速率。
上述技术方案中,在接入网设备达到传输同步之前,接入网设备调整两条路径上的数据包的发送速率,能够使两条路径上的数据包加快达到同步,这样第一终端设备就可以停止使用第一单播路径接收第一业务的数据包,仅仅使用多播路径接收第一业务的数据包,减少接入网设备的发送资源的使用,降低能耗。
第四方面,提供了一种通信方法,包括:用户面网元UPF接收第一业务的业务数据包;UPF根据业务数据包,通过第一终端设备的单播路径向第一终端设备的接入网设备发送第一业务的第一数据包,第一数据包携带第一数据包的序号和第一业务数据包;UPF根 据业务数据包,通过多播路径向接入网设备发送第一业务的第二数据包,第二数据包包携带第二数据包的序号和第二业务数据包,所述第一业务数据包和所述第二业务数据包属于所述第一业务的业务数据包;其中,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包,多播路径使用多播方式向一组终端设备传输第一业务的业务数据包。
上述技术方案中,用户面网元在单播路径和多播路径上向接入网设备发送的数据包携带有数据包的序号,接入网设备可以根据用户面网元发送两条路径上的数据包序号确定接入网在两条路径上何时达到传输同步,从而使第一终端设备从单播路径平滑地融合到多播路径上,避免在接入网设备不知道两条路径数据包何时同步的情况下将单播路径融合到多播路径过程中产生的丢包或业务中断问题。
结合第四方面,在第四方面的某些实现方式中,第一数据包的序号为第一业务数据包的序号,第二数据包的序号为第二业务数据包的序号。
上述技术方案中,相同的业务数据包的序号相同,接入网设备可以根据两条路径上的第一数据包和第二数据包中业务数据包的序号确定两条路径上的数据包何时达到传输同步。
结合第四方面,在第四方面的某些实现方式中,第一数据包的序号包括第一数据包的绝对序号和第一相对偏移值,第二数据包的序号包括第二数据包的绝对序号和第二相对偏移值;其中,第一数据包的绝对序号为第一数据包在单播路径上的发送序号,第一相对偏移值为第一数据包的绝对序号与第一业务数据包的序号之间的差值,第二数据包的绝对序号为第二数据包在多播路径上的发送序号,第二相对偏移值为第二数据包的绝对序号与第二业务数据包的序号之间的差值。
上述技术方案中,第一数据包序号为绝对序号和第一相对偏移值之和(即第一数据包中的业务数据包的序号),第二数据包序号为绝对序号和第二相对偏移值之和(即第二数据包中的业务数据包的序号),由于相同的业务数据包的序号相同,所以接入网设备可以根据两条路径上的第一数据包和第二数据包的序号确定两条路径上的数据包何时达到传输同步。
结合第四方面,在第四方面的某些实现方式中,业务数据包的序号为针对第一业务的业务数据包在UPF上的接收序号。
结合第四方面,在第四方面的某些实现方式中,UPF从接入网设备接收停止单播指示信息;UPF根据停止单播指示信息,停止在单播路径上发送第一业务的业务数据包。
上述技术方案中,UPF根据停止单播指示信息停止在单播路径上继续发送第一业务的数据包,以节省UPF的发送资源,降低能耗。
结合第四方面,在第四方面的某些实现方式中,第一数据包为UPF在单播路径上待发送的第一个数据包,第二数据包为UPF在多播路径上待发送的第一个数据包;当第一数据包的序号和第二数据包的序号相同时,UPF停止在单播路径上发送第一业务的业务数据包。
上述技术方案中,当UPF在两条路径上待发送的第一个数据包相同时,UPF停止在单播路径上继续发送第一业务的数据包,以节省UPF的发送资源,降低能耗。
第五方面,提供一种通信装置,通信装置用于执行上述第一方面或第三方面提供的通信方法。具体地,通信装置可以包括用于执行第一方面或第三方面提供的通信方法的模块。
第六方面,提供一种通信装置,所述通信装置用于执行上述第二方面或第四方面提供的通信方法。具体地,所述通信装置可以包括用于执行第二方面或第四方面提供的通信方法的模块。
第七方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第三方面以第一方面或第三方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为接入网设备。当该通信装置为接入网设备时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片***。当该通信装置为芯片或芯片***时,所述通信接口可以是输入/输出接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于接入网设备中的芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面或第四方面以及第二方面或第四方面中任一种可能实现方式中的通信方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为用户面网元。当该通信装置为用户面网元时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该通信装置为芯片或芯片***。当该通信装置为芯片或芯片***时,所述通信接口可以是该芯片或芯片***上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于用户面网元中的芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。所述处理电路用于通过所述输入电路接收信号,并通过所述输出电路发射信号,使得所述处理器执行第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
在具体实现过程中,上述处理器可以为一个或多个芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第十方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理器输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第十方面中的处理装置可以是一个或多个芯片。该处理装置中的处理器可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十一方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第四方面以及第一方面至第四方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信***,包括上述的接入网设备和用户面网元。
附图说明
图1是本申请实施例提供的一种网络架构的示意图。
图2是目前5G多播和单播融合传输机制的示意图。
图3是终端设备从源基站的多播QoS flow切换到目标基站的多播QoS flow示意图。
图4是本申请实施例提供的一种通信方法的示意***互图。
图5是第一业务的数据包在单播路径和多播路径按绝对编号传输的示意图。
图6是本申请实施例提供的另一种通信方法的示意***互图。
图7是第一业务的数据包在单播路径和多播路径按相对编号传输的示意图。
图8是本申请实施例提供的又一种通信方法的示意***互图。
图9是本申请实施例提供的通信装置的示意性框图。
图10是本申请实施例提供的另一通信装置的示意性框图。
图11为本申请实施例提供的又一通信装置的示意性框图。
图12为本申请实施例提供的又一通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例提供的一种网络架构的示意图。如图1所示,该网络架构中可以包括用户设备110、(无线)接入网设备120、用户面网元130、数据网络网元140、接入管理网元150、会话管理网元160、策略控制网元170等。下面对该网络架构中涉及的各个网元分别进行说明。
1、用户设备(user equipment,UE)110:用户设备也可以称为终端设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)***中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
应理解,本申请对于终端设备的具体形式不作限定。
2、(无线)接入网设备(radio access network,(R)AN)120:接入网设备也可以称为接入设备,(R)AN能够管理无线资源,为用户设备提供接入服务,完成用户设备数据在用户设备和核心网之间的转发,(R)AN也可以理解为传统网络中的基站。
示例性地,本申请实施例中的接入网设备可以是用于与用户设备通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、 无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,***中的gNB,或,传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。RRC层的信息由CU生成,最终会经过DU的PHY层封装变成PHY层信息,或者,由PHY层的信息转变而来。因而,在这种架构下,高层信令如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
3、用户面网元130:用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。
在5G通信***中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信***中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
4、数据网络网元140:用于提供传输数据的网络。
在5G通信***中,该数据网络网元可以是数据网络(data network,DN)网元。在未来通信***中,数据网络网元仍可以是DN网元,或者,还可以有其它的名称,本申请不做限定。
5、接入管理网元150:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听以及接入授权/鉴权等功能。
在5G通信***中,该接入管理网元可以是接入和移动性管理功能(access and mobility management function,AMF)。在未来通信***中,接入管理网元仍可以是AMF,或者,还可以有其它的名称,本申请不做限定。
6、会话管理网元160:主要用于会话管理、用户设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
在5G通信***中,该会话管理网元可以是会话管理功能(session management function,SMF)网元。在未来通信***中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
7、策略控制网元170:用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
在4G通信***中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信***中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信***中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
在5G通信***中,该应用网元可以是网络切片选择功能(network slice selection function,NSSF)网元。在未来通信***中,应用网元仍可以是NSSF网元,或者,还可以有其它的名称,本申请不做限定。
还应理解,图1只是一种示例对本申请的保护范围不构成任何限定。本申请实施例提供的通信方法还可以涉及图1中未示出的网元。
在图1所示的网络架构中,用户设备通过N1接口与AMF连接,RAN通过N2接口与AMF连接,RAN通过N3接口与UPF连接。UPF之间通过N9接口连接,UPF通过N6接口与DN互联。SMF通过N4接口控制UPF。AMF通过N11接口与SMF连接。
应理解,上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通信(global system formobile communications,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)***或5G以后的通信***,车到其它设备(Vehicle-to-X V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to-Vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(Long Term Evolution-Vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of Things,IoT)、机器间通信长期演进技术(Long Term Evolution-Machine,LTE-M),机器到机器(Machine to Machine,M2M)等。
为便于理解本申请实施例,下面首先对本申请中涉及的几个术语做简单介绍。
多播:一种允许一台或多台主机(多播源)发送单一数据包到多台主机(一次的,同时的)的TCP/IP网络技术。多播的基础概念是“组”。一个多播组就是一组希望接收特定数据流的接收者。
单播:一个单个的发送者和一个接收者之间通过网络进行的通信。
QoS流(flow):移动网络内部传输终端设备数据的一条通道,不同QoS类型的数据一般使用不同的QoS flow传输,即一个终端设备可以有多个QoS flow,一个QoS flow上可以传输一个或者多个应用业务的数据。
空口:即空中接口,空中接口表示基站和移动电话之间的无线传输规范,它定义每个无线信道的使用频率和带宽,或者定义采用的编码方法。
无线网络临时标识(radio network tempory identity,RNTI):在UE和基站之间的信号信息内部的作为不同UE的标识。
图2是目前5G多播和单播融合传输机制的示意图。下面以接收多播业务的终端设备A、B、C为例,每一个终端设备在控制面建立独立的单播PDU会话。终端设备A建立了可以用于访问多播业务的PDU会话a1,终端设备B建立了可以用于访问同一多播业务的PDU会话b1,终端设备C建立了可以用于访问同一多播业务的PDU会话c1。在一个PDU会话中,可以建立至少一个用户面连接的QoS flow用于传输多播业务的数据。在本申请涉及的5G多播和单播融合传输机制中,第一个场景中:每个UE可以在其访问多播业务的PDU会话中建立用于该多播业务的专用QoS flow,该专用QoS flow只能用于该多播业务的数据的传输,不能于其他应用业务数据的传输。例如终端设备A在PDU会话a1中建立专用的QoS flow 1,终端设备B在PDU会话b1中建立专用QoS flow 2,终端设备C在PDU会话c1中建立专用QoS flow 3,但是终端设备的专用QoS flow也可以没有传输数据,例如在同一时刻,仅仅在终端设备A的专用QoS flow1上传输多播业务的数据。这些QoS flow可以在PDU会话建立过程中建立,也可以后续在有多播业务需要传输时建立。在第二种场景中:只有第一个请求多播业务的数据的UE需要在其访问多播业务的PDU会话中建立专用QoS flow,其他位于同一个基站下的其他请求该多播业务的UE可以共享该UE的专用QoS flow的N3隧道,在空口通过组无线网络临时标识(group-radio network tempory identity,G-RNTI)接收基站调度发送的来自第一个请求多播业务的数据的UE的专用QoS flow的多播业务的数据。在第三种场景中:为请求多播业务的UE服务的基站与传输多播业务的UPF之间建立公共N3隧道用于传输多播业务的数据,这个公共N3隧道不属于任何一个UE的PDU会话,可能属于一个独立的多播会话,此时,该基站下面请求该多播业务的数据的UE在空口通过G-RNTI接收基站发送的来自公共(common)N3隧道的多播业务的数据。QoS flow的N3隧道也可以理解为该QoS flow的UPF到AN之间的那一部分,可以称为QoS flow的N3部分,或QoS flow的N3连接。
对于单播场景,应用业务的数据是在每个终端设备各自的QoS flow上独立发送,在空口上基站为每个终端设备独立调度其各自QoS flow上的数据。而多播与单播传输不同的地方在于,在移动网络内部对于终端设备A、B、C传输该多播业务的用户面只有一个QoS flow路径,在空口上,基站为所有终端设备一起调度该QoS flow路径上的数据。应用业务的数据从UPF到RAN传输只仅在一个QoS flow的N3连接上传输多播业务,然后在空口通过G-RNTI进行多播调度,该QoS flow可以称作多播QoS flow,该多播QoS flow可以是终端设备A、B、C中任意一个可以传输该多播业务的QoS flow,也可以是UPF和RAN之间的可以传输该多播业务的common N3 QoS flow。应理解,该多播QoS flow的N3连接可以是终端设备A、B、C中任意一个可以传输该多播业务的QoS flow的N3连接,也可以是UPF和RAN之间的可以传输该多播业务的公共(common)N3连接。
由图2可知,UPF在终端设备A的QoS flow上传输多播业务的数据包,在RAN节点,RAN将从该QoS flow上接收到的多播业务的数据包在空口使用多播调度(黑色箭头所示)的方式发给接收该多播业务的终端设备A、B、C。
对于多播场景UPF侧,SMF需要向UPF配置特定的数据包检测和转发规则,将一份多播业务的数据包通过一个QoS flow发送至RAN侧;当应用服务器向UPF发的多播业务的数据包是向每个(per)终端设备独立发送的,即UPF接收到向多个终端设备发送的该多播业务的数据包,选择其中一个终端设备的多播业务的数据包,将选择的多播业务的数据包的目的IP地址替换为用于传输多播业务的IP地址;当应用服务器向UPF发送一份该多播业务的数据时,UPF可以通过UPF与多播业务的服务器之间的隧道接收该多播业务的数据,或者UPF可以通过组播方式接收到该多播业务的数据,UPF将接收到的数据包通过一个QoS flow发送至RAN侧。
对于多播场景RAN侧,SMF需要向AN配置多播业务对应的一组终端设备的信息,可以是将多个终端设备的用于接收该多播业务的数据的QoS flow都标记为该多播业务对应的QoS flow,例如可以用index或contentID等表示该多播业务,还可以将多个终端设备绑定到下行传输多播业务的一个QoS flow。则RAN可以知道从QoS flow上接收的数据包是属于一组终端设备的,则AN可以使用对应的无线网络临时标识组(group-radio network tempory identity,G-RNTI为这一组终端设备调度无线资源发送数据。
应理解,在本申请中,在终端设备A的QoS flow上传输多播业务的数据,可以进一步理解为在上述第一场景中在终端设备A的专用QoS flow中传输多播业务的数据,在空口使用G-RNTI为该基站下请求该多播业务的多个终端设备调度多播业务的数据,也可以理解为上述第二场景中的在终端设备A的QoS flow的N3连接传输多播业务的数据,而在空口使用G-RNTI为该基站下请求该多播业务的多个终端设备调度多播业务的数据。
应理解,在本申请中,在UPF和RAN之间的可以传输该多播业务的公共N3 QoS flow上传输多播业务的数据,可以进一步理解为在上述第三场景中的UPF和RAN的N3连接上传输该多播业务的数据,而在空口使用G-RNTI为该基站下请求该多播业务的多个终端设备调度多播业务的数据。
如果一个基站下向不同组的UE传输不同的内容,基站对不同的UE组使用不同的G-RNTI。
图3是终端设备从源基站的多播QoS flow切换到目标基站的多播QoS flow示意图。
终端设备A、B、C在源基站侧从QoS flow 1上接收多播业务的数据包,例如该多播QoS flow 1的N3连接可以是终端设备A的单播QoS flow的N3连接或UPF和AN1之间的公共QoS flow的N3连接。当终端设备C需要从源基站(AN1)的多播QoS flow 1切换到目标基站的多播QoS flow X时,先从源基站(AN1)的多播QoS flow 1分离出终端设备C的单播Qos flow 2,即在源基站侧,原来终端设备C从源基站的多播QoS flow 1通过源基站侧的G-RNTI 1接收多播业务的数据包,分离出终端设备C的单播后,终端设备C通过源基站对终端设备C专用的RNTI 1接收多播业务的数据包。然后按现有机制切换到目标基站侧(AN2),源基站的缓存数据包会通过AN1和AN2之间的切换转发隧道发给目标基站,待终端设备C的单播用户面完全切换到目标基站侧,终端设备C使用自己的单播QoS flow 3传输多播业务的数据包,同时使用目标基站对终端设备C的专用RNTI 2接收多播业务数据包。然后根据图2中的融合传输机制,将终端设备C加入到目标基站侧的多播QoS flow X,最终终端设备C在目标基站侧通过目标基站侧的G-RNTI 2接收该多播业务的数据,例如该多播QoS flow X的N3连接可以是终端设备X的单播QoS flow 的N3连接或UPF和AN2之间的公共QoS flow的N3连接。
由上可知,终端设备C切换到目标基站AN2时,对移动的终端设备C先单播传输,然后在合并到目标基站的多播传输中的情况,当终端设备C切换到AN2后,由于切换时延,以及AN2在单播QoS flow 3和多播QoS flow X上发送该多播业务的数据包的速度不同、缓存情况也不同,造成移动终端设备C的在目标基站单播传输的数据包和目标基站多播传输的数据包不同步,例如AN2在终端设备C的专用RNTI 2上发送的该多播业务的数据包为第9个包,而AN2在G-RNTI 2上发送的该多播业务的数据包为第12个包。并且,UPF通过QoS flow 3发给AN2的终端设备C的多播业务数据包和UPF通过QoS flow X发给AN2的多播数据包也会不同步,例如UPF发给AN2的终端设备C单播QoS flow 3的该多播业务的最后一个数据包为第12个包,而发给AN2的多播QoS flow X的该多播业务的最后一个数据包为第15个包。
另外,由于当前UPF对于QoS flow的隧道上传输的多播业务的数据包序号是绝对序号,即UPF对每一个QoS flow上传输的数据包是独立编号的,与其他Qos flow上传输的数据包的编号没有关系。即对于多播业务的数据包在每一个QoS flow都是从1(或者0)开始按数据包的发送顺序编号的,这就导致AN2无法判断终端设备C的单播路径上的数据包与多播路径上的数据包的先后顺序,因而在将终端设备C加入到目标基站侧的多播QoS flow X时,无法确定数据包是否达到传输同步,造成终端设备C在接收QoS flow X中的多播数据包后应用业务受到干扰,例如发生丢包,导致业务中断等问题。
有鉴于此,本申请对单播路径和多播路径融合传输的方法进行优化,使终端设备可以平滑融合到目标多播路径。
下面将结合附图详细说明本申请提供的各个实施例。
图4是本申请实施例提供的一种通信方法的示意***互图。
S410,用户面网元确定第一业务的业务数据在多播路径和单播路径上达到传输同步。
在单播路径QoS flow和多播路径QoS flow上,UPF采用现有数据包编号机制,例如按照第一业务的数据包在单播路径和多播路径上的发包顺序从1开始按自然数从小到大对发送的数据包开始编号。其中,单播路径为第一终端设备、接入网设备和用户面网元之间用于传输第一业务的业务数据的路径,多播路径为第一终端设备组、接入网设备和用户面网元之间用于传输第一业务的业务数据的路径,其中第一终端设备组包括多个终端设备。
应理解,本申请实施例中的绝对编号可以从1开始进行编号,也可以从0或者其或从其他预配置的起始编号X开始进行编号,本申请对此不做具体限定。
用户面网元可以记录第一业务的数据包在单播路径上的发包上下文和在多播路径上的发包上下文,即UPF需要记录在单播路径和多播路径上是从第一业务的第几个数据包开始在对应路径上发送,已经发送了多少个数据包。
以图5为例,对UPF在单播路径上的发包上下文和在多播路径上的发包上下文进行解释。UPF中第一业务包括序号为1、2、3、4、5...的业务数据包,其中,1、2、3、4、5...序号为第一业务的业务数据包在UPF上的接收序号。
单播路径的上下文包括:单播路径上发送的序号为1的数据包为UPF中第一业务序号为2的数据包,当前发送到UPF中第一业务序号为4的数据包,一共发送了3个数据 包,UPF中待发送第一业务序号为5的数据包。
多播路径的上下文包括:单播路径上发送的序号为1的数据包为UPF中第一业务序号为3的数据包,当前发送到UPF中第一业务序号为5的数据包,一共发送了3个数据包,UPF中待发送第一业务序号为6的数据包。
当UPF根据两条路径上的发包上下文确定在单播路径上待发送的第一个数据包中的业务数据包与UPF在多播路径上待发送的第一个数据包中的业务数据包相同时,UPF确定第一业务的业务数据包在多播路径和单播路径上达到传输同步。可选的,在UPF确定第一业务的业务数据包在多播路径和单播路径上达到传输同步前,UPF可以根据单播路径和多播路径上发送的第一业务的数据包的序号大小以及缓存的数据包的数量,调整在两个路径上发包的速度,如图5所示,单播路径上当前发送到UPF中第一业务序号为4的数据包,而多播路径当前发送到UPF中第一业务序号为5的数据包,则UPF可以加快在单播路径上的发包速度。
S420,用户面网元向接入网设备发送同步指示信息。
当UPF确定第一业务的业务数据包在多播路径和单播路径上达到传输同步时,用户面网元向接入网设备发送同步指示信息。
对应的,接入网设备接收用户面网元发送的同步指示信息。
可选的,当用户面网元确定第一业务的业务数据包在多播路径和单播路径上达到传输同步时,用户面网元在单播路径上向接入网设备发送第一同步包,第一同步包包括同步指示信息,同时用户面网元在多播路径上向接入网设备发送第二同步包,第二同步包也包括同步指示信息。
可选的,第一同步包和第二同步包可以为空业务数据包、同步数据包或结束标志(end marker)包,例如可以在GPRS隧道协议用户面(GPRS tunnelling protocol user plane,GTP-U)头部的消息类型中增加一个消息类型,表示同步包。
可选的,当UPF在单播路径上发送第一同步包后,UPF停止在单播路径上发送第一业务的业务数据包。
S430,接入网设备向第一终端设备发送第一指示信息。
接入网设备根据接收到的同步指示信息,向第一终端设备发送第一指示信息。
对应的,第一终端设备接收接入网设备发送的第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据包。
下面以第一同步包和第二同步包括同步指示信息为例进行说明。
可选的,第一种情况,如果接入网设备先收到多播路径上的第二同步包及其后续数据包,并且接入网设备在多播路径上的第二同步包之前已经没有缓存的数据包,即接入网设备在多播路径上在第二同步包之前的数据包都已经发送成功,此时如果接入网设备在单播路径上也没有缓存的数据包,则接入网设备暂时不发送(即缓存)多播路径上的同步包之后的数据包,直到收到了单播路径上的第一同步包之后,接入网设备向第一终端设备发送第一指示信息,例如第一指示信息包括第一终端设备组的G-RNTI,在第一终端设备成功接收到G-RNTI后,接入网设备开始在多播路径上发送第二同步包之后的数据包,第一终端设备开始通过G-RNTI接收多播路径上的数据包,且接入网设备停止在单播路径上发送第一同步包之后数据包。应理解,此时从多播路径上接收多播业务数据包的终端设备原本 会有一些缓存,所以让第一终端设备组等待有限的时间,并不会造成第一终端设备组的业务中断。
可选的,第二种情况,如果接入网设备先收到了单播路径上的第一同步包并且该路径上的第一同步包之前的数据包已经发送成功,则接入网设备一直等到收到多播路径上的第二同步包之后,接入网设备向第一终端设备发送第一指示信息,例如第一指示信息包括第一终端设备组的G-RNTI,在第一终端设备成功接收到G-RNTI后,第一终端设备通过G-RNTI接收多播路径上的数据包,且接入网设备停止在单播路径上发送第一同步之后的数据包。应理解,此时第一终端设备可能会收到之前从单播路径上收到过的数据包,则第一终端设备可以将收到重复的包丢弃,不会造成业务的中断。
可选的,第三种情况,接入网设备在收到第一同步包或第二同步包中的任意一个同步包,并且该同步包对应路径上同步包之前的数据包已经发送出去,则接入网设备向第一终端设备发送第一指示信息,例如第一指示信息包括第一终端设备组的G-RNTI,在第一终端设备成功接收到G-RNTI后,第一终端设备通过G-RNTI接收多播路径上的数据包。例如,接入网设备首先收到第二个同步包并且多播路径上第二个同步包之前的数据包都已经发送成功,第一终端设备根据第一指示信息开始通过G-RNTI接收多播路径上的数据包,此时,如果接入网设备还未收到单播路径上的第一同步包,则接入网设备继续向第一终端设备发送单播路径上的数据包,即第一终端设备同时从单播路径上和多播路径上接收第一业务的数据包,这种方式下,可能存在第一终端设备还没有接收完第一同步包之前的数据包就开始接收多播路径上第二同步包之后的数据包,当接入网设备发送完第一同步包之后,停止在单播路径上发送第一同步包之后的数据包,仅仅在多播路径上继续发送数据包。此时,可能会造成第一终端设备跳过一些数据包先接收到多播路径上发送的第二同步包后面的序号大的数据包然后接收到单播路径上发送的第一同步包前面的序号小的数据包,如视频业务产生短暂花屏。
可选的,在第一终端设备通过多播路径接收第一业务的业务数据之前,接入网设备根据单播路径和多播路径在接入网设备上数据包的缓存数量,调整单播路径和多播路径对应的数据包的发送速度,如图5所示,接入网设备发现单播路径上第一数据包的缓存比较多,则可以调整空口发送资源优先/加快调度单播路径上的第一数据包。
上述技术方案中,通过UPF保存单播路径和多播路径上发送的数据包序号的上下文信息,以及单播和多播路径上的双同步包机制,可以解决接入网设备在单播和多播路径上发送的同一业务的业务数据包不同步的问题,保证第一终端设备可以从单播路径平滑融合到接入网的多播路径。
图6是本申请实施例提供的另一种通信方法的示意***互图。
S610,用户面网元设置第一数据包序号为第一业务数据包的序号,设置第二数据包序号为第二业务数据包的序号。
用户面网元设置在单播路径上发送的第一数据包序号为第一数据包中的业务数据包(即第一业务数据包)的序号,设置在多播路径上发送的第二数据包序号为第二数据包中的业务数据包(即第二业务数据包)的序号,例如第一业务数据包和第二业务数据包的序号可以为对应的业务数据包在用户面网元内的接收序号,该序号可以由UPF设置。第一数据包中携带第一数据包的序号和第一业务数据包,第二数据包中携带第二数据包的序号 和第二业务数据包,例如第一数据包和第二数据包可以为GTP-U数据包。其中,单播路径为第一终端设备、接入网设备和用户面网之间用于传输第一业务的业务数据包的路径,多播路径为第一终端设备组、接入网设备和用户面网元之间用于传输第一业务的业务数据包的路径,其中第一设备组包括多个终端设备。
以图7为例进行说明,UPF中第一业务包括序号为1、2、3、4、5...的业务数据包,其中,1、2、3、4、5...序号为第一业务的业务数据包在UPF上的接收序号。UPF在单播路径和多播路径上发送的数据包的序号如图7所示,UPF将第一数据包和第二数据包中的业务数据包在UPF中的序号设置为第一数据包和第二数据包的发送序号,例如,UPF在单播路径上发送的第2个数据包中的业务数据包为UPF中第一业务序号为3的业务数据包,那么就以序号3作为UPF在单播路径上发送的第2个数据包的序号。
S620,用户面网元向接入网设备发送第一数据包和第二数据包。
用户面网元在单播路径上向接入网设备发送第一数据包,在多播路径上向接入网设备发送第二数据包。
对应的,接入网设备在单播路径上接收第一数据包,在多播路径上接收第二数据包。
可选的,当UPF在单播路径上待发送的第一个数据包的序号和在多播路径上待发送的第一个数据包的序号为相同序号时,UPF停止在单播路径上发送第一业务的第一数据包。
可选的,在UPF在单播路径上待发送的第一个数据包的序号和在多播路径上待发送的第一个数据包的序号为相同序号之前,UPF可以根据单播路径和多播路径上数据包的序号大小或缓存数量,调整在两个路径上发包的速度,如图7所示,单播路径上的数据包的序号较小,UPF可以加快在单播路径上的发包速度。
S630,接入网设备确定第一业务的业务数据包在多播路径和单播路径上达到传输同步。
可选的,第一种情况,当第一数据包为接入网设备在单播路径上待发送的第一个数据包,第二数据包为接入网设备在多播路径上待发送的第一个数据包,接入网设备根据第一数据包的序号和第二数据包的序号为相同序号,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步,接入网设备记录达到传输同步的数据包的序号。
可选的,第二种情况,当第一数据包为接入网设备在单播路径上接收成功的最后一个数据包,第二数据包为接入网设备在多播路径上接收成功的最后一个数据包,接入网设备根据第一数据包的序号和第二数据包的序号为相同序号,确定第一业务的业务数据在多播路径和单播路径上达到传输同步,接入网记录达到传输同步的数据包的序号。
应理解,第一数据包与第二数据包的序号相同,表示第一数据包中的业务数据包和第二数据包中的业务数据包为相同的数据包。
可选的,当接入网设备达到传输同步后,接入网设备向UPF发送单播停播指示信息,单播停播指示信息用于指示UPF停止在单播路径上发送第一业务。
可选的,单播停播指示信息可以携带单播路径的标识信息,还可以携带达到传输同步的数据包的序号。
对应的,UPF接收单播停播指示信息,停止在单播路径上发送第一业务的数据包。
S640,接入网设备向第一终端设备发送第一指示信息。
接入网设备确定第一业务的业务数据包在多播路径和单播路径上达到传输同步后,接入网设备向第一终端设备发送第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据。
具体地:上述第一种情况下达到传输同步时,接入网设备向第一终端设备发送第一指示信息;上述第二种情况达到传输同步时,当接入网设备在单播路径上待发送的第一个数据包为该达到传输同步的第一数据包,且接入网设备在多播路径上待发送的第一个数据包为该达到传输同步的第二数据包时,接入网设备向第一终端设备发送第一指示信息。
对应的,第一终端设备接收第一终端设备发送的第一指示信息。
可选的,第一指示信息包括第一终端设备组接收第一业务的G-RNTI,第一终端设备成功接收到G-RNTI后,第一终端设备通过G-RNTI接收多播路径上的第一业务的业务数据包。在第一终端设备通过多播路径接收第一业务的业务数据包时,接入网设备在单播路径上停止发送达到传输同步的序号之后的数据包,仅仅在多播路径上发送达到传输同步的序号之后的数据包。
可选的,接入网设备在多播路径和单播路径上达到上述第一种情况和第二种情况下的传输同步前,接入网设备根据单播路径和多播路径在接入网设备上数据包的序号大小或缓存数量,调整单播路径和多播路径对应的数据包的发送速度,如图7所示,接入网设备发现单播路径上数据包的缓存比较多,则可以调整空口发送资源优先/加快调度单播路径上的数据包。
可选的,接入网设备在多播路径和单播路径上达到上述第二种情况下的传输同步后,,接入网设备在多播路径和单播路径上对于达到传输同步前的缓存的数据包,根据数据包的序号大小或缓存数量,调整单播路径和多播路径对应的数据包的发送速度。
上述技术方案中,UPF设置两条路径上的数据包序号为对应数据包中的业务数据包在UPF上的接收序号,接入网设备可以根据单播和多播路径上发送的数据包的序号确定两条路径上的第一业务的业务数据达到传输同步,在两条路径的数据包达到传输同步后,将第一终端设备加入第一终端设备组,第一终端设备开始使用多播路径接收第一业务的数据包,从而保证终端设备可以从单播路径平滑融合到接入网的多播路径。
图8是本申请实施例提供的又一种通信方法的示意***互图。
S810,用户面网元设置第一数据包在单播路径上的绝对序号和第一相对偏移值,用户面网元设置第二数据包在多播路径上的绝对序号和第二相对偏移值。
用户面网元设置在单播路径上发送的第一数据包的序号,第一数据包的序号包括第一数据包在单播路径上的绝对序号和第一相对偏移值,第一数据包中携带第一数据包的序号和第一业务数据包。
绝对序号为用户面网元对于每个QoS flow上发送给接入网设备的数据包按照发包顺序独立进行编号,UPF在一个QoS flow上发给接入网设备的数据包的绝对编号与UPF在另一个QoS flow上发给接入网设备的数据包的绝对编号没有关联。
第一数据包在单播路径上的绝对序号为用户面网元按照第一数据包在单播路径上的发包顺序对第一数据包进行绝对编号,图5为例,UPF设置单播路径上发送的第一个数据包的绝对序号为1,发送的第二个数据包的绝对序号为2,依次类推。第一相对偏移值为第一数据包的绝对编号和第一数据包中的业务数据包(即第一业务数据包)在用户面网元 内的接收序号的差值,图5为例,单播路径上发送的第一个数据包的绝对序号为1,该数据包中的业务数据包在UPF内对应的的接收序号为2,则该数据包第一相对偏移值为2-1=1。因此,UPF设置单播路径上发送的第一个数据包的绝对序号为1,第一相对偏移值为1,本申请实施例中第一数据包的绝对序号加上第一相对偏移值得到的序号等于S610中第一数据包的序号。
应理解,本申请实施例中的绝对编号可以从1开始进行编号,也可以从0或者从其他预配置的起始编号X开始进行编号,本申请对此不做具体限定。
同理,用户面网元设置在多播路径上发送的第二数据包的序号,第二数据包的序号包括第二数据包在多播路径上的绝对序号和第二相对偏移值,第二数据包中携带第一数据包的序号和第二业务数据包。图5为例,UPF设置多播路径上发送的第三个数据包的绝对序号为3。第二相对偏移值为第二数据包的绝对编号和第二数据包中的业务数据包(即第二业务数据包)在用户面网元内的接收序号的差值,则多播路径上发送的第三个数据包的第二相对偏移值为5-3=2。
S820,用户面网元向接入网设备发送第一数据包和第二数据包。
用户面网元在单播路径上向接入网设备发送第一数据包,在多播路径上向接入网设备发送第二数据包。
对应的,接入网设备在单播路径上接收第一数据包,在多播路径上接收第二数据包。
可选的,当UPF在单播路径上待发送的第一个数据包的序号和在多播路径上待发送的第一个数据包的序号相同时,UPF停止在单播路径上发送第一数据包,这里的第一数据包序号为第一数据包的绝对序号和第一相对偏移值之和,第二数据包序号为第二数据包的绝对序号和第二相对偏移值之和。
可选的,当UPF在两条路径上发送的数据包序号相同或在两条路径上发送的数据包的序号差值小于特定的阈值之前,UPF可以根据单播路径和多播路径上数据包的序号大小或缓存个数,调整在两个路径上发包的速度,如图7所示,UPF在单播路径上发送的数据包序号较小,UPF可以加快在单播路径上的发包速度。
S830,接入网设备确定第一业务的业务数据在多播路径和单播路径上达到传输同步。
可选的,当第一数据包为接入网设备在单播路径上待发送的第一个数据包,第二数据包为接入网设备在多播路径上待发送的第一个数据包,接入网设备根据第一数据包的序号和第二数据包的序号为相同序号,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步,接入网可以记录该达到传输同步的数据包的序号。
可选的,当第一数据包为接入网设备在单播路径上接收成功的最后一个数据包,第二数据包为接入网设备在多播路径上接收成功的最后一个数据包,接入网设备根据第一数据包的序号和第二数据包的序号为相同序号,确定第一业务的业务数据在多播路径和单播路径上达到传输同步,接入网可以将该序号作为达到传输同步的数据包的序号。
应理解,第一数据包与第二数据包的序号相同,表示第一数据包中的业务数据包和第二数据包中的业务数据包为相同的数据包。
可选的,当接入网设备发送的数据包达到传输同步后,接入网设备向UPF发送单播停播指示信息,单播停播指示信息用于指示UPF停止在单播路径上发送第一业务。
可选的,单播停播指示信息可以携带单播路径的标识信息,还可以携带达到传输同步 的数据包的序号。
对应的,UPF接收单播停播指示信息,停止在单播路径上发送第一业务的数据包。
S840,接入网设备向第一终端设备发送第一指示信息。
接入网设备确定第一业务的业务数据在多播路径和单播路径上达到传输同步后,接入网设备向第一终端设备发送第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据。
具体地:上述第一种情况下达到传输同步时,接入网设备向第一终端设备发送第一指示信息;上述第二种情况达到传输同步时,当接入网设备在单播路径上待发送的第一个数据包为该达到传输同步的第一数据包,且接入网设备在多播路径上待发送的第一个数据包为该达到传输同步的第二数据包时,接入网设备向第一终端设备发送第一指示信息。对应的,第一终端设备接收第一终端设备发送的第一指示信息。
可选的,第一指示信息包括第一终端设备组接收第一业务的G-RNTI,第一终端设备成功接收到G-RNTI后,第一终端设备通过G-RNTI接收多播路径上的第一业务的业务数据。当第一终端设备通过多播路径接收第一业务的业务数据包时,接入网设备在单播路径上停止发送达到传输同步的序号之后的数据包,仅仅在多播路径上发送达到传输同步的序号之后的数据包。
可选的,接入网设备在多播路径和单播路径上达到上述第一种情况和第二种情况下的传输同步前,接入网设备根据单播路径和多播路径在接入网设备上数据包的序号大小或缓存数量,调整单播路径和多播路径对应的数据包的发送速度,如图7所示,接入网设备发现单播路径上第一数据包的缓存比较多,则可以调整空口发送资源优先/加快调度单播路径上的第一数据包。
可选的,接入网设备在多播路径和单播路径上达到上述第二种情况下的传输同步后,接入网设备在多播路径和单播路径上对于达到传输同步前的缓存的数据包,根据数据包的序号大小或缓存数量,调整单播路径和多播路径对应的数据包的发送速度。
上述技术方案中,UPF设置两条路径上发送的数据包的绝对序号和相对偏移值,接入网设备可以根据单播和多播路径上数据包的绝对序号和相对偏移值解决两条路径上发送的同一业务数据包不同步的问题,在两条路径的数据包达到传输同步后,将第一终端设备加入第一终端设备组,使用多播路径接收第一业务的数据包,保证第一终端设备可以从单播路径平滑融合到接入网的多播路径。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请实施例的装置实施例。应理解,方法实施例的描述与装置实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
可以理解的是,上述各个方法实施例中,由接入网设备实现的方法和操作,也可以由可用于接入网设备的部件(例如芯片或者电路)实现,由用户面网元实现的方法和操作,也可以由可用于用户面网元的部件(例如芯片或者电路)实现。
上文描述了本申请提供的方法实施例,下文将描述本申请提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文 方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9是本申请实施例提供的通信装置的示意性框图。该通信装置900包括收发单元910和处理单元920。收发单元910可以与外部进行通信,处理单元920用于进行数据处理。收发单元910还可以称为通信接口或通信单元。
可选地,该通信装置900还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元920可以读取存储单元中的指令或者和/或数据。
在一种情况下,该通信装置900可以为接入网设备,收发单元910用于执行上文方法实施例中接入网设备的接收或发送的操作,处理单元920用于执行上文方法实施例中接入网设备内部处理的操作。
作为一种设计,通信装置900可以为接入网设备,这种情况下,收发单元910和处理单元920可以执行如下操作。
在一个实施例中,例如图4中,收发单元910用于:从用户面网元UPF接收同步指示信息,同步指示信息用于指示第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包,多播路径使用多播方式向第一终端设备组传输第一业务的业务数据包,第一终端设备组包括至少一个终端设备;处理单元920用于:根据同步指示信息,控制收发单元向第一终端设备发送第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据包。
可选地,收发单元910具体用于:通过单播路径和/或多播路径从UPF接收同步指示信息。
可选地,收发单元910还用于:向UPF发送停止单播指示信息,停止单播指示信息用于指示UPF停止在单播路径上发送第一业务的业务数据包。
可选地,同步指示信息为空业务数据包、同步数据包或结束标志包。
在另一个实施例中,例如图6或图8中,,收发单元910用于:通过第一终端设备的单播路径从用户面网元UPF接收第一业务的第一数据包,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包;收发单元910还用于:通过多播路径从UPF接收 第一业务的第二数据包,多播路径使用多播方式向第一终端设备组传输第一业务的业务数据包,终端设备组包括至少一个终端设备;处理单元920用于:根据第一数据包和第二数据包,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步;收发单元910还用于:向第一终端设备发送第一指示信息,第一指示信息用于指示第一终端设备通过多播路径接收第一业务的业务数据。
可选地,第一数据包包括第一数据包的序号和第一业务数据包,第二数据包包括第二数据包的序号和第二业务数据包,第一业务数据包和第二业务数据包属于第一业务的业务数据包。
可选地,第一数据包的序号为第一业务数据包的序号,第二数据包的序号为第二业务数据包的序号。
可选地,第一数据包的序号包括第一数据包的绝对序号和第一相对偏移值,第二数据包的序号包括第二数据包的绝对序号和第二相对偏移值,第一数据包的绝对序号为第一数据包在单播路径上的发送序号,第一相对偏移值为第一数据包的绝对序号与第一业务数据包的序号之间的差值,第二数据包的绝对序号为第二数据包在多播路径上的发送序号,第二相对偏移值为第二数据包的绝对序号与第二业务数据包的序号之间的差值;第一数据包的序号为第一数据包的绝对序号和第一相对偏移值之和,第二数据包的序号为第二数据包的绝对序号和第二相对偏移值之和。
可选地,业务数据包的序号为针对第一业务的业务数据包在UPF上的接收序号。
可选地,第一数据包为收发单元910在单播路径上待发送的第一个数据包,第二数据包为收发单元910在多播路径上待发送的第一个数据包;处理单元920具体用于:当第一业务数据包与第二业务数据包相同时,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步;或者,当第一数据包的序号与第二数据包的序号相同时,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步。
可选地,第一数据包为收发单元910在单播路径上接收成功的最后一个数据包,第二数据包为接入网设备在多播路径上接收成功的最后一个数据包;处理单元920具体用于:当第一业务数据包与第二业务数据包相同时,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步;或者,当第一数据包的序号与第二数据包的序号相同时,确定第一业务的业务数据包在多播路径和单播路径上达到传输同步。
可选地,收发单元910还用于:向UPF发送停止单播指示信息,停止单播指示信息用于指示UPF停止在单播路径上发送第一业务的业务数据包。
可选地,第一业务的业务数据在多播路径和单播路径上达到传输同步之前,处理单元920还用于:根据在单播路径和多播路径上的第一业务的数据包的序号或缓存的数量,调整第一业务的数据包的发送速率。
在另一种情况下,该通信装置900可以为配置在接入网设备中的部件,例如,接入网设备中的芯片。
这种情况下,收发单元910可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,处理单元920可以包括处理电路。
可选地,收发单元910还可以为射频模块。处理单元920可以为基带模块。其中,射频模块主要用于射频信号的收发以及射频信号与基带信号的转换;基带模块主要用于基带 处理,对基站进行控制等。
图10是本申请实施例提供的通信装置的示意性框图。该通信装置1000包括收发单元1010和处理单元1020。收发单元1010可以与外部进行通信,处理单元1020用于进行数据处理。收发单元1010还可以称为通信接口或通信单元。
可选地,该通信装置1000还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元1020可以读取存储单元中的指令或者和/或数据。
在一种情况下,该通信装置1000可以为用户面网元,收发单元1010用于执行上文方法实施例中用户面网元的接收或发送的操作,处理单元1020用于执行上文方法实施例中用户面网元内部处理的操作。
作为一种设计,通信装置1000可以为用户面网元,这种情况下,收发单元1010和处理单元1020可以执行如下操作。
在一个实施例中,例如,图4中,处理单元1020用于:用于确定第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包,多播路径使用多播方式向第一终端设备组传输第一业务的业务数据包,第一终端设备组包括至少一个终端设备;
收发单元1010用于:向第一终端设备的接入网设备发送同步指示信息,同步指示信息用于指示第一业务的业务数据包在多播路径和单播路径上达到传输同步。
可选地,处理单元1020具体用于:当收发单元在单播路径上待发送的第一个第一业务的业务数据包与收发单元在多播路径上待发送的第一个第一业务的业务数据包相同时,处理单元确定第一业务的业务数据在多播路径和单播路径上达到传输同步;或者当收发单元在单播路径上待发送的第一个第一业务的业务数据包的序号与收发单元在多播路径上待发送的第一个第一业务的业务数据包的序号相同时,处理单元确定第一业务的业务数据在多播路径和单播路径上达到传输同步。
可选地,收发单元1010具体用于:在单播路径和多播路径上发送同步指示信息。
可选地,收发单元1010还用于:当处理单元确定第一业务的业务数据包在多播路径和单播路径上达到传输同步时,收发单元停止在单播路径上发送第一业务的业务数据包。
可选地,收发单元1010还用于:从接入网设备接收停止单播指示信息;处理单元1020还用于:根据停止单播指示信息,控制收发单元1010停止在单播路径上发送第一业务的业务数据包。
可选地,同步指示信息包括空业务数据包、同步数据包、或结束标志包。
在另一个实施例中,例如,图6或图8中,收发单元1010用于:接收第一业务的业务数据包;收发单元1010还用于:通过第一终端设备的单播路径向第一终端设备的接入网设备发送第一业务的第一数据包,第一数据包携带第一数据包的序号和第一业务数据包;收发单元1010还用于:通过多播路径向接入网设备发送第一业务的第二数据包,第二数据包包携带第二数据包的序号和第二业务数据包,第一业务数据包和第二业务数据包属于第一业务的业务数据包;其中,单播路径使用单播方式向第一终端设备传输第一业务的业务数据包,多播路径使用多播方式向一组终端设备传输第一业务的业务数据包。
可选地,第一数据包的序号为第一业务数据包的序号,第二数据包的序号为第二业务数据包的序号。
可选地,第一数据包的序号包括第一数据包的绝对序号和第一相对偏移值,第二数据包的序号包括第二数据包的绝对序号和第二相对偏移值;其中,第一数据包的绝对序号为第一数据包在单播路径上的发送序号,第一相对偏移值为第一数据包的绝对序号与第一业务数据包的序号之间的差值,第二数据包的绝对序号为第二数据包在多播路径上的发送序号,第二相对偏移值为第二数据包的绝对序号与第二业务数据包的序号之间的差值。
可选地,业务数据包的序号为针对第一业务的业务数据包在收发单元1010上的接收序号。
可选地,收发单元1010用于:从接入网设备接收停止单播指示信息;处理单元1020用于:根据停止单播指示信息,控制收发单元1010停止在单播路径上发送第一业务的业务数据包。
可选地,第一数据包为收发单元1010在单播路径上待发送的第一个数据包,第二数据包为收发单元1010在多播路径上待发送的第一个数据包;处理单元1020用于:确定第一数据包的序号和第二数据包的序号相同时,控制收发单元1010停止在单播路径上发送第一业务的业务数据包。
在另一种情况下,该通信装置900可以为配置在用户面网元中的部件,例如,用户面网元中的芯片。
这种情况下,收发单元1010可以为接口电路、管脚等。具体地,接口电路可以包括输入电路和输出电路,处理单元1020可以包括处理电路。
可选地,收发单元1010还可以为射频模块。处理单元1020可以为基带模块。其中,射频模块主要用于射频信号的收发以及射频信号与基带信号的转换;基带模块主要用于基带处理,对基站进行控制等。
如图11所示,本申请实施例还提供一种通信装置1100。该通信装置1000包括处理器1110,处理器1110与存储器1020耦合,存储器1020用于存储计算机程序或指令或者和/或数据,处理器1110用于执行存储器1120存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1100包括的处理器1110为一个或多个。
可选地,如图11所示,该通信装置1100还可以包括存储器1120。
可选地,该通信装置1100包括的存储器1120可以为一个或多个。
可选地,该存储器1120可以与该处理器1110集成在一起,或者分离设置。
可选地,如图11所示,该通信装置1100还可以包括收发器1130,收发器1130用于信号的接收和/或发送。例如,处理器1110用于控制收发器1130进行信号的接收和/或发送。
作为一种方案,该通信装置1100用于实现上文方法实施例中由接入网设备执行的操作。
例如,处理器1110用于实现上文方法实施例中由接入网设备内部执行的操作,收发器1130用于实现上文方法实施例中由接入网设备执行的接收或发送的操作。装置900中的处理单元920可以为图11中的处理器,收发单元910可以为图11中的收发器。处理器1110执行的操作具体可以参见上文对处理单元920的说明,收发器1130执行的操作可以参见对收发单元910的说明,这里不再赘述。
如图12所示,本申请实施例还提供一种通信装置1200。该通信装置1000包括处理器1210,处理器1210与存储器1020耦合,存储器1020用于存储计算机程序或指令或者和/或数据,处理器1210用于执行存储器1220存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1200包括的处理器1210为一个或多个。
可选地,如图12所示,该通信装置1200还可以包括存储器1220。
可选地,该通信装置1200包括的存储器1220可以为一个或多个。
可选地,该存储器1220可以与该处理器1210集成在一起,或者分离设置。
可选地,如图12所示,该通信装置1200还可以包括收发器1230,收发器1230用于信号的接收和/或发送。例如,处理器1210用于控制收发器1230进行信号的接收和/或发送。
作为一种方案,该通信装置1200用于实现上文方法实施例中由用户面网元执行的操作。例如,处理器1210用于实现上文方法实施例中由用户面网元内部执行的操作,收发器1230用于实现上文方法实施例中由用户面网元执行的接收或发送的操作。装置1000中的处理单元1020可以为图12中的处理器,收发单元1010可以为图12中的收发器。处理器1210执行的操作具体可以参见上文对处理单元1020的说明,收发器1230执行的操作可以参见对收发单元1010的说明,这里不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由接入网设备执行的方法,或由用户面网元执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由接入网设备执行的方法,或由用户面网元执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由接入网设备执行的方法,或由用户面网元执行的方法。
本申请实施例还提供一种通信***,该通信***包括上文实施例中的用户面网元与接入网设备。
作为一个示例,该通信***包括:上文结合图4、图6和图8描述的实施例中的用户面网元与接入网设备。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,接入网设备或用户面网元可以包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作***层的操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是接入网设备或 用户面网元,或者,是接入网设备或用户面网元中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质、或者半导体介质(例如固态硬盘(solid state disk,(SSD))等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (53)

  1. 一种通信方法,其特征在于,包括:
    接入网设备从用户面网元UPF接收同步指示信息,所述同步指示信息用于指示第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包,所述多播路径使用多播方式向第一终端设备组传输所述第一业务的业务数据包,所述第一终端设备组包括至少一个终端设备;
    所述接入网设备根据所述同步指示信息,向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示所述第一终端设备通过所述多播路径接收所述第一业务的业务数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述接入网设备从UPF接收同步指示信息,包括:
    所述接入网设备通过所述单播路径和/或所述多播路径从所述UPF接收所述同步指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述UPF发送停止单播指示信息,所述停止单播指示信息用于指示所述UPF停止在所述单播路径上发送第一业务的业务数据包。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述同步指示信息包括空业务数据包、同步数据包或结束标志包。
  5. 一种通信方法,其特征在于,包括:
    用户面网元UPF确定第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包,所述多播路径使用多播方式向第一终端设备组传输所述第一业务的业务数据包,所述第一终端设备组包括至少一个终端设备;
    所述UPF向所述第一终端设备的接入网设备发送同步指示信息,所述同步指示信息用于指示所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步。
  6. 根据权利要求5所述的方法,其特征在于,所述UPF确定第一业务的业务数据在多播路径和所述单播路径上达到传输同步,包括:
    当所述UPF在所述单播路径上待发送的第一个所述第一业务的业务数据包与所述UPF在所述多播路径上待发送的第一个所述第一业务的业务数据包相同时,所述UPF确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步;或者
    当所述UPF在所述单播路径上待发送的第一个所述第一业务的业务数据包的序号与所述UPF在所述多播路径上待发送的第一个所述第一业务的业务数据包的序号相同时,所述UPF确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步。
  7. 根据权利要求5或6所述的方法,其特征在于,所述UPF向所述第一终端设备的接入网设备发送同步指示信息,包括:
    所述UPF在所述单播路径和所述多播路径上发送所述同步指示信息。
  8. 根据权利要求5至7任一项所述的方法,其特征在于,所述方法还包括:
    当所述UPF确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步时,所述UPF停止在所述单播路径上发送所述第一业务的业务数据包。
  9. 根据权利要求5至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述UPF从所述接入网设备接收停止单播指示信息;
    所述UPF根据所述停止单播指示信息,停止在所述单播路径上发送第一业务的业务数据包。
  10. 根据权利要求5至9中任一项所述的方法,其特征在于,所述同步指示信息包括空业务数据包、同步数据包或结束标志包。
  11. 一种通信方法,其特征在于,包括:
    接入网设备通过第一终端设备的单播路径从用户面网元UPF接收第一业务的第一数据包,所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包;
    所述接入网设备通过多播路径从所述用户面网元接收所述第一业务的第二数据包,所述多播路径使用多播方式向第一终端设备组传输所述第一业务的业务数据包,所述终端设备组包括至少一个终端设备;
    所述接入网设备根据所述第一数据包和所述第二数据包,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步;
    所述接入网设备向所述第一终端设备发送所述第一指示信息,所述第一指示信息用于指示所述第一终端设备通过所述多播路径接收所述第一业务的业务数据包。
  12. 根据权利要求11所述的方法,其特征在于,所述第一数据包包括所述第一数据包的序号和第一业务数据包,所述第二数据包包括所述第二数据包的序号和第二业务数据包,所述第一业务数据包和所述第二业务数据包属于所述第一业务的业务数据包。
  13. 根据权利要求12所述的方法,其特征在于,所述第一数据包的序号为所述第一业务数据包的序号,所述第二数据包的序号为所述第二业务数据包的序号。
  14. 根据权利要求12所述的方法,其特征在于,所述第一数据包的序号包括所述第一数据包的绝对序号和所述第一相对偏移值,所述第二数据包的序号包括所述第二数据包的绝对序号和第二相对偏移值,所述第一数据包的绝对序号为所述第一数据包在所述单播路径上的发送序号,所述第一相对偏移值为所述第一数据包的绝对序号与所述第一业务数据包的序号之间的差值,所述第二数据包的绝对序号为所述第二数据包在所述多播路径上的发送序号,所述第二相对偏移值为所述第二数据包的绝对序号与所述第二业务数据包的序号之间的差值;
    所述第一数据包的序号为所述第一数据包的绝对序号和所述第一相对偏移值之和,所述第二数据包的序号为所述第二数据包的绝对序号和第二相对偏移值之和。
  15. 根据权利要求13或14所述的方法,其特征在于,所述业务数据包的序号为针对所述第一业务的业务数据包在所述UPF上的接收序号。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一数据包为所述接入网设备在所述单播路径上待发送的第一个数据包,所述第二数据包为所述接入网设备在所述多播路径上待发送的第一个数据包;
    所述接入网设备根据所述第一数据包和所述第二数据包,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步,包括:
    当所述第一业务数据包与所述第二业务数据包相同时,所述接入网设备确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步;或者,
    当所述第一数据包的序号与所述第二数据包的序号相同时,所述接入网设备确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步。
  17. 根据权利要求13至15中任一项所述的方法,其特征在于,所述第一数据包为所述接入网设备在所述单播路径上接收成功的最后一个数据包,所述第二数据包为所述接入网设备在所述多播路径上接收成功的最后一个数据包;
    所述接入网设备根据所述第一数据包和所述第二数据包,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步,包括:
    当所述第一业务数据包与所述第二业务数据包相同时,所述接入网设备确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步;或者,
    当所述第一数据包的序号与所述第二数据包的序号相同时,所述接入网设备确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步。
  18. 根据权利要求11到17中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述UPF发送停止单播指示信息,所述停止单播指示信息用于指示所述UPF停止在所述单播路径上发送所述第一业务的业务数据包。
  19. 根据权利要求11至18中任一项所述的方法,其特征在于,所述第一业务的业务数据在所述多播路径和所述单播路径上达到传输同步之前,所述方法还包括:
    所述接入网设备根据在所述单播路径和所述多播路径上的所述第一业务的数据包的序号或缓存的数量,调整所述第一业务的数据包的发送速率。
  20. 一种通信方法,其特征在于,包括:
    用户面网元UPF接收第一业务的业务数据包;
    所述UPF根据所述业务数据包,通过第一终端设备的单播路径向所述第一终端设备的接入网设备发送所述第一业务的第一数据包,所述第一数据包携带所述第一数据包的序号和第一业务数据包;
    所述UPF根据所述业务数据包,通过多播路径向所述接入网设备发送所述第一业务的第二数据包,所述第二数据包包携带所述第二数据包的序号和第二业务数据包,所述第一业务数据包和所述第二业务数据包属于所述第一业务的业务数据包;其中,
    所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包,所述多播路径使用多播方式向一组终端设备传输所述第一业务的业务数据包。
  21. 根据权利要求20所述的方法,其特征在于,所述第一数据包的序号为所述第一业务数据包的序号,所述第二数据包的序号为所述第二业务数据包的序号。
  22. 根据权利要求20所述的方法,其特征在于,所述第一数据包的序号包括所述第一数据包的绝对序号和第一相对偏移值,所述第二数据包的序号包括所述第二数据包的绝对序号和第二相对偏移值;
    其中,所述第一数据包的绝对序号为所述第一数据包在所述单播路径上的发送序号,所述第一相对偏移值为所述第一数据包的绝对序号与所述第一业务数据包的序号之间的 差值,所述第二数据包的绝对序号为所述第二数据包在所述多播路径上的发送序号,所述第二相对偏移值为所述第二数据包的绝对序号与所述第二业务数据包的序号之间的差值。
  23. 根据权利要求21或22所述的方法,所述业务数据包的序号为针对所述第一业务的业务数据包在所述UPF上的接收序号。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述方法还包括:
    所述UPF从所述接入网设备接收停止单播指示信息;
    所述UPF根据所述停止单播指示信息,停止在单播路径上发送第一业务的业务数据包。
  25. 根据权利要求20至23中任一项所述的方法,其特征在于,所述第一数据包为所述UPF在所述单播路径上待发送的第一个数据包,所述第二数据包为所述UPF在所述多播路径上待发送的第一个数据包;
    当所述第一数据包的序号和所述第二数据包的序号相同时,所述UPF停止在所述单播路径上发送第一业务的业务数据包。
  26. 一种通信装置,其特征在于,包括:
    收发单元,用于从用户面网元UPF接收同步指示信息,所述同步指示信息用于指示第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包,所述多播路径使用多播方式向第一终端设备组传输所述第一业务的业务数据包,所述第一终端设备组包括至少一个终端设备;
    处理单元,用于根据所述同步指示信息,控制所述收发单元向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示所述第一终端设备通过所述多播路径接收所述第一业务的业务数据包。
  27. 根据权利要求26所述的装置,其特征在于,所述收发单元具体用于:通过所述单播路径和/或所述多播路径从所述UPF接收所述同步指示信息。
  28. 根据权利要求26或27所述的装置,其特征在于,所述收发单元,还用于向所述UPF发送停止单播指示信息,所述停止单播指示信息用于指示所述UPF停止在所述单播路径上发送第一业务的业务数据包。
  29. 根据权利要求26至28中任一项所述的装置,其特征在于,所述同步指示信息为空业务数据包、同步数据包或结束标志包。
  30. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一业务的业务数据包在多播路径和第一终端设备的单播路径上达到传输同步,所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包,所述多播路径使用多播方式向第一终端设备组传输所述第一业务的业务数据包,所述第一终端设备组包括至少一个终端设备;
    收发单元,用于向所述第一终端设备的接入网设备发送同步指示信息,所述同步指示信息用于指示所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步。
  31. 根据权利要求30所述的装置,其特征在于,所述处理单元具体用于:当所述收发单元在所述单播路径上待发送的第一个所述第一业务的业务数据包与所述收发单元在 所述多播路径上待发送的第一个所述第一业务的业务数据包相同时,所述处理单元确定所述第一业务的业务数据在所述多播路径和所述单播路径上达到传输同步;或者
    当所述收发单元在所述单播路径上待发送的第一个所述第一业务的业务数据包的序号与所述收发单元在所述多播路径上待发送的第一个所述第一业务的业务数据包的序号相同时,所述处理单元确定所述第一业务的业务数据在所述多播路径和所述单播路径上达到传输同步。
  32. 根据权利要求30或31所述的装置,其特征在于,所述收发单元具体用于:在所述单播路径和所述多播路径上发送所述同步指示信息。
  33. 根据权利要求30至32任一项所述的装置,其特征在于,所述收发单元还用于,当所述处理单元确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步时,所述收发单元停止在所述单播路径上发送所述第一业务的业务数据包。
  34. 根据权利要求30至32中任一项所述的装置,其特征在于,所述收发单元,还用于从所述接入网设备接收停止单播指示信息;
    所述处理单元还用于根据所述停止单播指示信息,控制所述收发单元停止在所述单播路径上发送第一业务的业务数据包。
  35. 根据权利要求30至34中任一项所述的装置,其特征在于,所述同步指示信息包括空业务数据包、同步数据包或结束标志包。
  36. 一种通信装置,其特征在于,包括:
    收发单元,用于通过第一终端设备的单播路径从用户面网元UPF接收第一业务的第一数据包,所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包;
    所述收发单元,还用于通过多播路径从所述UPF接收所述第一业务的第二数据包,所述多播路径使用多播方式向第一终端设备组传输所述第一业务的业务数据包,所述终端设备组包括至少一个终端设备;
    处理单元,用于根据所述第一数据包和所述第二数据包,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步;
    所述收发单元,还用于向所述第一终端设备发送所述第一指示信息,所述第一指示信息用于指示第一终端设备通过所述多播路径接收所述第一业务的业务数据。
  37. 根据权利要求36所述的装置,其特征在于,所述第一数据包包括所述第一数据包的序号和第一业务数据包,所述第二数据包包括所述第二数据包的序号和第二业务数据包,所述第一业务数据包和所述第二业务数据包属于所述第一业务的业务数据包。
  38. 根据权利要求37所述的装置,其特征在于,所述第一数据包的序号为所述第一业务数据包的序号,所述第二数据包的序号为所述第二业务数据包的序号。
  39. 根据权利要求37所述的装置,其特征在于,所述第一数据包的序号包括所述第一数据包的绝对序号和第一相对偏移值,所述第二数据包的序号包括所述第二数据包的绝对序号和第二相对偏移值,所述第一数据包的绝对序号为所述第一数据包在所述单播路径上的发送序号,所述第一相对偏移值为所述第一数据包的绝对序号与所述第一业务数据包的序号之间的差值,所述第二数据包的绝对序号为所述第二数据包在所述多播路径上的发送序号,所述第二相对偏移值为所述第二数据包的绝对序号与所述第二业务数据包的序号 之间的差值;
    所述第一数据包的序号为所述第一数据包的绝对序号和所述第一相对偏移值之和,所述第二数据包的序号为所述第二数据包的绝对序号和所述第二相对偏移值之和。
  40. 根据权利要求38或39所述的装置,其特征在于,所述业务数据包的序号为针对所述第一业务的业务数据包在所述UPF上的接收序号。
  41. 根据权利要求38至40中任一项所述的装置,其特征在于,所述第一数据包为所述收发单元在所述单播路径上待发送的第一个数据包,所述第二数据包为所述收发单元在所述多播路径上待发送的第一个数据包;
    所述处理单元具体用于:当所述第一业务数据包与所述第二业务数据包相同时,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步;或者,
    当所述第一数据包的序号与所述第二数据包的序号相同时,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步。
  42. 根据权利要求38至40中任一项所述的装置,其特征在于,所述第一数据包为所述接入网设备在所述单播路径上接收成功的最后一个数据包,所述第二数据包为所述接入网设备在所述多播路径上接收成功的最后一个数据包;
    所述处理单元具体用于:当所述第一业务数据包与所述第二业务数据包相同时,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步;或者,
    当所述第一数据包的序号与所述第二数据包的序号相同时,确定所述第一业务的业务数据包在所述多播路径和所述单播路径上达到传输同步。
  43. 根据权利要求36到42中任一项所述的装置,其特征在于,所述收发单元,还用于向所述UPF发送停止单播指示信息,所述停止单播指示信息用于指示所述UPF停止在所述单播路径上发送所述第一业务的业务数据包。
  44. 根据权利要求36至43中任一项所述的装置,其特征在于,所述第一业务的业务数据在所述多播路径和所述单播路径上达到传输同步之前,所述处理单元,还用于根据在所述单播路径和所述多播路径上的所述第一业务的数据包的序号或缓存的数量,调整所述第一业务的数据包的发送速率。
  45. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一业务的业务数据包;
    所述收发单元,还用于通过第一终端设备的单播路径向所述第一终端设备的接入网设备发送所述第一业务的第一数据包,所述第一数据包携带所述第一数据包的序号和第一业务数据包;
    所述收发单元,还用于通过多播路径向所述接入网设备发送所述第一业务的第二数据包,所述第二数据包包携带所述第二数据包的序号和第二业务数据包,所述第一业务数据包和所述第二业务数据包属于所述第一业务的业务数据包;
    其中,所述单播路径使用单播方式向所述第一终端设备传输所述第一业务的业务数据包,所述多播路径使用多播方式向一组终端设备传输所述第一业务的业务数据包。
  46. 根据权利要求45所述的装置,其特征在于,所述第一数据包的序号为所述第一业务数据包的序号,所述第二数据包的序号为所述第二业务数据包的序号。
  47. 根据权利要求45所述的装置,其特征在于,所述第一数据包的序号包括所述第 一数据包的绝对序号和第一相对偏移值,所述第二数据包的序号包括所述第二数据包的绝对序号和第二相对偏移值;
    其中,所述第一数据包的绝对序号为所述第一数据包在所述单播路径上的发送序号,所述第一相对偏移值为所述第一数据包的绝对序号与所述第一业务数据包的序号之间的差值,所述第二数据包的绝对序号为所述第二数据包在所述多播路径上的发送序号,所述第二相对偏移值为所述第二数据包的绝对序号与所述第二业务数据包的序号之间的差值。
  48. 根据权利要求46或47所述的装置,所述业务数据包的序号为针对所述第一业务的业务数据包在所述收发单元上的接收序号。
  49. 根据权利要求45至48中任一项所述的装置,其特征在于,所述收发单元,用于从所述接入网设备接收停止单播指示信息;
    所述处理单元,用于根据所述停止单播指示信息,控制所述收发单元停止在所述单播路径上发送第一业务的业务数据包。
  50. 根据权利要求45至48中任一项所述的装置,其特征在于,所述第一数据包为所述收发单元在所述单播路径上待发送的第一个数据包,所述第二数据包为所述收发单元在所述多播路径上待发送的第一个数据包;
    所述处理单元,用于确定所述第一数据包的序号和所述第二数据包的序号相同时,控制所述收发单元停止在所述单播路径上发送第一业务的业务数据包。
  51. 一种通信设备,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得所述通信设备执行
    如权利要求1至4中任一项所述的方法,或
    如权利要求5至10中任一项所述的方法,或
    如权利要求11至19中任一项所述的方法,或
    如权利要求20至25中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令被执行时,使得
    如权利要求1至4中任一项所述的方法被实现,或
    权利要求5至10中任一项所述的方法被实现,或
    权利要求11至19中任一项所述的方法被实现,或
    权利要求20至25中任一项所述的方法被实现。
  53. 一种芯片***,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片***的通信设备执行
    权利要求1至4中任一项所述的方法,或
    权利要求5至10中任一项所述的方法,或
    权利要求11至19中任一项所述的方法,或
    权利要求20至25中任一项所述的方法。
PCT/CN2020/072720 2020-01-17 2020-01-17 通信方法和通信装置 WO2021142767A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080069313.6A CN114467316B (zh) 2020-01-17 2020-01-17 通信方法和通信装置
PCT/CN2020/072720 WO2021142767A1 (zh) 2020-01-17 2020-01-17 通信方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072720 WO2021142767A1 (zh) 2020-01-17 2020-01-17 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2021142767A1 true WO2021142767A1 (zh) 2021-07-22

Family

ID=76863208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072720 WO2021142767A1 (zh) 2020-01-17 2020-01-17 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN114467316B (zh)
WO (1) WO2021142767A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169473A1 (zh) * 2022-03-11 2023-09-14 维沃移动通信有限公司 业务处理方法、装置、通信设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018089615A1 (en) * 2016-11-10 2018-05-17 Intel Corporation Radio access network (ran) node, mobile device and methods for configuration of a group-cast mode in a software defined network (sdn)
CN109769150A (zh) * 2017-11-09 2019-05-17 华为技术有限公司 一种传输组播业务的方法和设备
CN109842854A (zh) * 2017-11-29 2019-06-04 华为技术有限公司 一种报文组播、报文广播方法及设备
CN110463231A (zh) * 2017-03-24 2019-11-15 英特尔公司 用于基于组的服务配给的***和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9820259B2 (en) * 2012-05-04 2017-11-14 Qualcomm Incorporated Smooth transition between multimedia broadcast multicast service (MBMS) and unicast service by demand
EP3079400B1 (en) * 2014-01-03 2019-08-14 Huawei Technologies Co., Ltd. User equipment handover method and base station
WO2016201708A1 (zh) * 2015-06-19 2016-12-22 华为技术有限公司 一种集群通信方法、装置及设备
CN110167190B (zh) * 2018-02-14 2021-02-12 华为技术有限公司 会话建立方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018089615A1 (en) * 2016-11-10 2018-05-17 Intel Corporation Radio access network (ran) node, mobile device and methods for configuration of a group-cast mode in a software defined network (sdn)
CN110463231A (zh) * 2017-03-24 2019-11-15 英特尔公司 用于基于组的服务配给的***和方法
CN109769150A (zh) * 2017-11-09 2019-05-17 华为技术有限公司 一种传输组播业务的方法和设备
CN109842854A (zh) * 2017-11-29 2019-06-04 华为技术有限公司 一种报文组播、报文广播方法及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023169473A1 (zh) * 2022-03-11 2023-09-14 维沃移动通信有限公司 业务处理方法、装置、通信设备及可读存储介质

Also Published As

Publication number Publication date
CN114467316B (zh) 2023-04-04
CN114467316A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2021164564A1 (zh) 传输组播业务的方法和装置
JP7467597B2 (ja) 通信方法、slrb確立方法、および通信装置
WO2022012506A1 (zh) 通信方法和通信装置
EP4033799A1 (en) Relay transmission method, relay terminal and remote terminal
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2021004191A1 (zh) 一种支持时间敏感网络的方法及装置
WO2021185350A1 (zh) 一种通信方法、接入网设备、终端设备和核心网设备
WO2019072170A1 (zh) 通信方法和通信装置
TW202013936A (zh) 無線通訊方法和通訊設備
WO2021226937A1 (zh) 一种多路径传输方法及装置、网络设备、终端
WO2022206775A1 (zh) 一种多播广播业务的传输切换方法及装置
WO2021051320A1 (zh) 一种业务数据传输方法及装置、网络设备、终端设备
WO2021218563A1 (zh) 用于传输数据的方法与装置
WO2021142767A1 (zh) 通信方法和通信装置
WO2018145292A1 (zh) 通信方法、装置和***
WO2022170798A1 (zh) 确定策略的方法和通信装置
WO2021163832A1 (zh) 数据传输的方法和装置
WO2018228545A1 (zh) 信息处理方法以及相关装置
WO2014000611A1 (zh) 传输数据的方法和装置
EP4344329A1 (en) Communication method and apparatus
WO2024067194A1 (zh) 通信方法、通信装置、以及通信***
WO2024032451A1 (zh) 通信的方法、装置和***
WO2023220941A1 (zh) 一种数据前转信息的传输方法及其装置
WO2024016143A1 (zh) 一种计算协作方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913402

Country of ref document: EP

Kind code of ref document: A1