WO2021142657A1 - 一种油漆废渣热相分离处理工艺及其装置 - Google Patents

一种油漆废渣热相分离处理工艺及其装置 Download PDF

Info

Publication number
WO2021142657A1
WO2021142657A1 PCT/CN2020/072220 CN2020072220W WO2021142657A1 WO 2021142657 A1 WO2021142657 A1 WO 2021142657A1 CN 2020072220 W CN2020072220 W CN 2020072220W WO 2021142657 A1 WO2021142657 A1 WO 2021142657A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
gas
outlet
treatment
paint waste
Prior art date
Application number
PCT/CN2020/072220
Other languages
English (en)
French (fr)
Inventor
金兆迪
梁仁刚
方基垒
孙英钦
张哲娜
李国政
闫亚丽
Original Assignee
杰瑞环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杰瑞环保科技有限公司 filed Critical 杰瑞环保科技有限公司
Priority to PCT/CN2020/072220 priority Critical patent/WO2021142657A1/zh
Publication of WO2021142657A1 publication Critical patent/WO2021142657A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal

Definitions

  • the invention relates to the technical field of waste treatment, in particular to a thermal phase separation treatment process and a device for paint waste residue.
  • the main treatment method of paint waste residue is landfill or incineration.
  • Landfill is to simply treat or solidify the paint residue and then take certain isolation measures to bury it underground.
  • the landfill treatment may produce leachate, which will affect the soil or Groundwater is becoming a serious secondary pollution.
  • the incineration technology obtains heat energy through incineration is an effective way to treat paint waste in a harmless and resourceful way.
  • the direct incineration of paint waste has high energy consumption, large heat value loss, low utilization rate, and the generated harmful gas is likely to cause more serious problems. Of secondary pollution.
  • the purpose of the present invention overcomes the shortcomings of the prior art and provides a process and device for thermal phase separation of paint waste residues. Continuously fed paint waste residues receive heat indirectly, and the moisture and organic matter in the paint waste residues vaporize, and the solid residues of the paint waste and organic matter are vaporized.
  • the separated solid slag can be recycled as a functional material after cooling and dust removal;
  • the organic vapor is pre-cooled to liquefy and separate the macromolecular lipids in the gas phase to prevent the macromolecular lipids from the subsequent cooling process
  • the cooling device is blocked, and at the same time, part of the water-soluble organic matter is removed, reducing the amount of organic matter entering the water phase, and reducing the subsequent water treatment load; through the cooling process, the water vapor and most of the organic matter in the gas phase are liquefied into the liquid phase and passed through the gas.
  • the liquid separation process separates the gas phase and the liquid phase, and the separated gas phase undergoes a deep cooling treatment to condense and liquefy the organics with lower boiling points in the gas phase, and realize the dehydration and purification of the non-condensable gas.
  • the non-condensable gas can be used as a fuel recovery for the thermal phase separation process. Utilize, through continuous cooling treatment, liquefaction and separation of most of the organic matter in the gas phase, improve the recovery rate of organic matter, and reduce the combustion load; the liquid phase of gas-liquid separation and the liquid phase of deep cooling separation are subjected to oil-water separation treatment, and the oil phase is stored Oil tank collection can be recycled as fuel for thermal phase separation treatment, and the water phase is subjected to sewage treatment. After treatment, it meets the emission standards and reduces environmental pollution. Through the thermal phase separation treatment process and device of the paint waste residue, the paint waste residue is reduced, harmless, and recycled.
  • a thermal phase separation treatment process for paint waste residue includes the following steps:
  • the gas phase is subjected to a deep cooling treatment. After the deep cooling, part of the organic gas phase is liquefied into a liquid phase, and the non-condensable gas can be used as the fuel for the thermal phase separation treatment in step (2);
  • the particle size of the broken paint waste residue in the step (1) is less than 50 mm.
  • the temperature of the thermal phase separation in the thermal phase separation treatment in the step (2) is 300-600°C.
  • the pressure of the thermal phase separation in the thermal phase separation treatment in the step (2) is slightly negative pressure, and the pressure range is -50 to -200 Pa.
  • the temperature of the gas phase and the liquid phase after the pre-cooling treatment in the step (4) is lowered to 150-250°C.
  • the temperature of the gas phase and the liquid phase after the temperature reduction treatment is reduced to 60-80°C.
  • the temperature of the gas phase and the liquid phase after the deep cooling treatment in the step (6) is reduced to 20-40°C.
  • a thermal phase separation treatment device for paint waste residue which includes a crushing device, a feeding device, a thermal phase separation device, a discharging device, a gas separator device, an oil storage tank, a tube condensing device, a gas-liquid separation device, An oil-water separation device, a fan and a deep condensing device, the crushing device is connected with the inlet of the feeding device, the outlet of the feeding device is connected with the inlet of the hot phase separation device, and the outlet of the hot phase separation device It is divided into a solid phase outlet and a first gas phase outlet, the solid phase outlet is connected to the discharging device, the first gas phase outlet is connected to the inlet of the gas separator device, and the outlet of the gas separator device is divided Is a first liquid phase outlet and a second gas phase outlet, the first liquid phase outlet is connected to the oil storage tank, the second gas phase outlet is connected to the inlet of the tube condenser, the tube condenser The outlet of the gas-liquid separation device is connected to the in
  • non-condensable gas discharged from the fourth gas phase outlet of the deep condensation device can be used as fuel for the thermal phase separation device.
  • the processing device further includes a temperature-reducing and dust-removing device, and the temperature-reducing and dust-removing device is connected to the discharging device.
  • the processing device further includes a rotary sealing device, the rotary sealing device is divided into a first rotary sealing device and a second rotary sealing device, the feeding device and the thermal phase separation device pass through the first rotary sealing device Connected, the discharging device and the thermal phase separation device are connected through a second rotary sealing device.
  • a hopper or a chute is provided between the crushing device and the feeding device.
  • the beneficial effects of the present invention are: the thermal phase separation treatment process and device of the paint waste residue, the continuously fed paint waste residue receives heat indirectly, the moisture and organic matter in the paint waste residue vaporizes, and the solid residue of the waste paint is mixed with Organic gas separation, the separated solid residue can be recycled as a functional material after cooling and dust removal; the organic vapor is pre-cooled to liquefy and separate the macromolecular lipids in the gas phase to prevent the macromolecular lipids from being subsequently cooled During the process, the cooling device is blocked, and at the same time, part of the water-soluble organic matter is removed, the amount of organic matter entering the water phase is reduced, and the subsequent water treatment load is reduced; the water vapor in the gas phase and most of the organic matter are liquefied into the liquid phase through the cooling process, and passed The gas-liquid separation process separates the gas phase and the liquid phase, and the separated gas phase undergoes a deep cooling process to condense and liquefy the organics with lower boiling
  • the non-condensable gas can be used as the fuel for the thermal phase separation process. Recycling, through continuous cooling treatment, most of the organic matter in the gas phase is liquefied and separated, the recovery rate of organic matter is improved, and the combustion load is reduced; the liquid phase of gas-liquid separation and the liquid phase of deep cooling separation are subjected to oil-water separation treatment, and the oil phase passes through
  • the oil storage tank can be used as the fuel for thermal phase separation treatment to be recycled.
  • the water phase is subjected to sewage treatment, and after treatment, it meets the discharge standard and reduces environmental pollution. Through the thermal phase separation treatment process and device of the paint waste residue, the paint waste residue is reduced, harmless, and recycled.
  • Figure 1 is a schematic diagram of the structure of the thermal phase separation treatment device for paint waste residue.
  • crushing device 1. crushing device, 2. feeding device, 3. thermal phase separation device, 4. discharging device, 5. cooling and dust removal device, 6. air bag device, 7. oil storage tank, 8. tube condensation Device, 9. Gas-liquid separation device, 10. Oil-water separation device, 11. Deep condensing device, 12. Fan.
  • a thermal phase separation treatment process for paint waste residue includes the following steps:
  • the paint waste residue is crushed, and the particle size of the paint waste residue after crushing is less than 50mm.
  • the crushing treatment of paint waste slag increases the specific surface area of paint waste slag, and the paint waste slag is evenly heated, which reduces the time for thermal phase separation treatment. Continuous feeding can also meet the processing requirements.
  • the paint waste residue after crushing is subjected to thermal phase separation treatment, and the paint waste residue is subjected to thermal phase separation treatment by indirect heating.
  • the processing temperature is 300-600°C
  • the pressure is micro-negative pressure
  • the pressure range is -50 to -200Pa.
  • the thermal phase separation process uses micro-negative pressure to avoid organic vapor leakage, prevent environmental pollution, and improve equipment safety.
  • the moisture and some organics in the paint waste slag vaporize into the gas phase, and the solid paint waste slag can be cooled and dust removed after being discharged, and the solid slag after cooling and dust removal can be recycled as a functional material.
  • the gas phase produced by the thermal phase separation treatment of the paint waste is pre-cooled, and the macromolecular lipids are liquefied into a liquid phase after the pre-cooling treatment. More preferably, the temperature of the gas phase and the liquid phase after the pre-cooling treatment is reduced to 150-250°C.
  • the temperature drops to 250°C the macromolecular lipids with a boiling point above 250°C are liquefied into a liquid.
  • the temperature drops to 150°C the macromolecular lipids with a boiling point above 150°C are liquefied into a liquid, that is, the boiling point is in the pre-cooling treatment.
  • the macromolecular lipids that fall above the lowest temperature later are liquefied into liquid.
  • the macromolecular lipids are liquefied into a liquid phase and separated from the gas phase, and the separated macromolecular lipids enter the oil storage tank for storage. Due to the high viscosity of macromolecular lipids, the pre-cooling treatment will liquefy and separate the macromolecular lipids, which can greatly reduce the risk of subsequent tube condensing devices being blocked, and at the same time, it can remove part of the water-soluble organic matter and reduce the organic matter entering the water phase. To reduce the burden of subsequent sewage treatment.
  • the gas phase after the pre-cooling treatment is subjected to cooling treatment, and most of the organic gas in the gas phase after the cooling treatment is liquefied into a liquid phase. More preferably, the temperature of the gas phase and the liquid phase after the cooling treatment is reduced to 60-80°C. When the temperature drops to 80°C, the organic gas with a boiling point above 80°C in the gas phase after the pre-cooling treatment is liquefied into liquid.
  • the gas with the boiling point above 60°C in the gas phase after the pre-cooling treatment The organic gas is liquefied into a liquid, that is, the organic gas whose boiling point in the gas phase after the pre-cooling treatment drops to a minimum temperature above the minimum temperature after the cooling treatment is liquefied into a liquid.
  • the cooling treatment can recover most of the organic matter in the gas phase after the pre-cooling treatment.
  • the gas phase is subjected to a deep cooling treatment, and after the deep cooling, part of the organic gas phase is liquefied into a liquid phase. More preferably, the temperature of the gas phase and the liquid phase after the deep cooling treatment is reduced to 20-40°C. When the temperature drops to 40°C, the organic gas with a boiling point above 40°C in the gas phase after gas and liquid separation is liquefied into liquid. When the temperature drops to 20°C, the boiling point in the gas phase after gas and liquid separation is 20°C. The above organic gas is liquefied into liquid, that is, the organic gas whose boiling point in the gas phase after the gas and liquid separation drops to above the minimum temperature after the deep cooling treatment is liquefied into liquid.
  • Non-condensable gas can be used as the fuel for thermal phase separation treatment in step (2).
  • the deep cooling treatment makes the organic matter with lower boiling point in the gas phase after gas and liquid separation condensate and liquefy, and realize the dehydration and purification of non-condensable gas.
  • pre-cooling treatment, cooling treatment and deep cooling treatment most of the organic matter in the thermal phase separation steam can be recovered, with high recovery efficiency and lower combustion load.
  • the liquid phase in steps (5) and (6) is subjected to oil-water separation treatment, the separated oil phase enters the oil storage tank for storage, and the water phase is subjected to sewage treatment.
  • the oil phase is collected by the oil storage tank and can be recycled as a fuel for thermal phase separation treatment.
  • the water phase is subjected to sewage treatment, and after treatment, it meets the discharge standard and reduces environmental pollution. Through the thermal phase separation treatment process and device of the paint waste residue, the paint waste residue is reduced, harmless, and recycled.
  • a thermal phase separation treatment device for paint waste residue includes a crushing device 1, a feeding device 2, a thermal phase separation device 3, a discharging device 4, an air bag device 6, an oil storage tank 7, and a tube condensing device 8. Gas-liquid separation device 9, oil-water separation device 10, fan 12, and deep condensing device 11.
  • the crushing device 1 is connected to the inlet of the feeding device 2, and the outlet of the feeding device 2 is connected to the hot phase
  • the inlet of the separation device 3 is connected.
  • the outlet of the thermal phase separation device 3 is divided into a solid phase outlet and a first gas phase outlet.
  • the solid phase outlet is connected to the discharging device 4, and the first gas phase outlet is connected to the The inlet of the gas distribution bag device 6 is connected.
  • the outlet of the gas distribution bag device 6 is divided into a first liquid phase outlet and a second gas phase outlet.
  • the first liquid phase outlet is connected to the oil storage tank 7, and the first liquid phase outlet is connected to the oil storage tank 7.
  • the two gas phase outlets are connected to the inlet of the tube condenser device 8, the outlet of the tube condenser device 8 is connected to the inlet of the gas-liquid separation device 9, and the outlet of the gas-liquid separation device 9 is divided into a second liquid A phase outlet and a third gas phase outlet.
  • the second liquid phase outlet is connected to the inlet of the oil-water separation device 10.
  • the outlet of the oil-water separation device 10 is divided into an oil phase outlet and a water phase outlet.
  • the oil storage tank 7 is connected, the third gas phase outlet is connected with the inlet of the fan 12, and the outlet of the fan 12 is connected with the inlet of the deep condensing device 11.
  • the gas in the gas-liquid separation device 9 is transported to the deep condensing device 11 through the fan 12, and a slight negative pressure is formed in the gas-liquid separation device 9, so that the gas in the tube condenser 8 flows into the gas-liquid separation device 9.
  • a slight negative pressure is formed in the tube condensing device 8, so that the gas in the gas distribution bag device 6 flows into the tube condensing device 8, and a slight negative pressure is formed in the gas distribution bag device 6, so that the gas in the thermal phase separation device 3 Flow into the air bag device 6 to realize the formation of negative pressure in the thermal phase separation device 3, so as to realize the micro-negative pressure formed in the thermal phase separation device 3 controlled by the fan 12.
  • the outlet of the deep condensation device 11 is divided into a fourth gas phase outlet and a third liquid phase outlet, and the third liquid phase outlet is connected to the inlet of the oil-water separation device 10.
  • the non-condensable gas discharged from the fourth gas phase outlet of the deep condensing device 11 can be used as the fuel of the thermal phase separation device 3.
  • the processing device further includes a temperature-reducing and dust-removing device 5, and the temperature-reducing and dust-removing device 5 is connected to the discharging device 4.
  • the processing device also includes a rotary sealing device, the rotary sealing device is divided into a first rotary sealing device and a second rotary sealing device, the feed device 2 and the thermal phase separation device 3 are connected by the first rotary sealing device , The discharging device 4 and the thermal phase separation device 3 are connected by a second rotary sealing device.
  • the sealing of the feeding device 2-the thermal phase separation device 3-the discharging device 4 is realized by the rotary sealing device, which ensures the sealing performance of the device during the continuous feeding of the thermal phase separation process, further avoids organic vapor leakage and prevents environmental pollution.
  • a hopper or a chute is provided between the crushing device 1 and the feeding device 2.
  • the setting of hopper or chute can increase the stability of continuous feeding and ensure the continuous and stable process of thermal phase separation of paint waste residue.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种油漆废渣热相分离处理工艺及其装置,连续进料的油漆废渣经过间接受热,油漆废渣中的水分和有机物汽化,分离的固渣可作为功能性材料回收利用;对有机蒸汽进行预降温处理,将气相中的大分子脂类物质液化分离,防止大分子脂类在后续降温处理过程中将降温装置堵塞,同时脱除部分水溶性有机物,减少进入水相的有机物的量,降低后续水处理负荷;经过降温处理后分离的气相进行深度降温处理,进一步液化气相中的有机物,液化后的不凝气可作为燃料回收利用,通过连续降温处理,将气相中的绝大部分有机物液化分离,提高回收率,降低燃烧负荷;分离的液相进行油水分离处理,油相可作为燃料回收利用,水相进行污水处理减少对环境的污染。

Description

一种油漆废渣热相分离处理工艺及其装置 技术领域
本发明涉及废弃物处理技术领域,具体涉及一种油漆废渣热相分离处理工艺及其装置。
背景技术
随着电子和汽车等行业的快速发展,油漆的使用总量越来越大,随之也产生大量的油漆废渣,据不完全统计,每年我国至少产生18万吨油漆废渣,环境隐患巨大。目前油漆废渣主要处理方式为填埋或焚烧,填埋是对漆渣进行简单的处理或固化后,再采取一定的隔离措施埋入地下,但填埋处理可能会产生渗滤液,会对土壤或地下水在成严重的二次污染。焚烧技术通过焚烧获取热能是油漆废渣无害化、资源化的有效处理方式,然而油漆废渣直接焚烧运行能耗高,热值损耗较大,利用率较低,且产生的有害气体容易引起较严重的二次污染。
发明内容
本发明的目的克服现有技术的不足,提供一种油漆废渣热相分离处理工艺及其装置,连续进料的油漆废渣经过间接受热,油漆废渣中的水分和有机物汽化,废漆固渣与有机气体分离,分离的固渣进行降温除尘处理后可作为功能性材料回收利用;对有机蒸汽进行预降温处理,将气相中的大分子脂类物质液化分离,防止大分子脂类在后续降温处理过程中将降温装置堵塞,同时脱除部分水溶性有机物,减少进入水相的有机物的量,降低后续水处理负荷;通过降温处理将气相中的水蒸汽和大部分有机物液化成液相,并通过气 液分离处理将气相和液相分离,分离的气相进行深度降温处理,使气相中沸点较低的有机物冷凝液化分离,并实现不凝气脱水净化,不凝气可作为热相分离处理的燃料回收利用,通过连续降温处理,将气相中的绝大部分有机物液化分离,提高有机物的回收率,降低燃烧负荷;气液分离的液相和深度降温分离的液相进行油水分离处理,油相通过储油罐收集可作为热相分离处理的燃料回收利用,水相进行污水处理,处理后满足排放标准,减少对环境的污染。通过油漆废渣热相分离处理工艺及其装置对油漆废渣进行减量化、无害化、资源化处理。
本发明的目的是通过以下技术措施达到的:一种油漆废渣热相分离处理工艺,所述工艺包括如下步骤:
(1)油漆废渣进行破碎处理;
(2)经破碎处理后的油漆废渣进行热相分离处理,油漆废渣中的水分和部分有机物汽化为气相,固相的油漆废渣排出后可进行降温除尘处理;
(3)油漆废渣经热相分离处理后产生的气相进行预降温处理,经预降温处理后大分子脂类液化成液相并与气相分离,分离后的大分子脂类进入储油罐进行储存;
(4)经预降温处理后的气相进行降温处理,降温处理后气相中的水蒸汽和大部分有机气体液化成液相;
(5)经降温处理后的液相和气相进行气、液分离处理,将气相和液相进行分离;
(6)气、液分离后的气相进行深度降温处理,深度降温后部分有机气相液化成液相,不凝气可作为步骤(2)中热相分离处理的燃料;
(7)步骤(5)和(6)中的液相进行油水分离处理,分离的油相进入储油罐进行储存,水相进行污水处理。
进一步地,所述步骤(1)中经破碎后的油漆废渣的粒径<50mm。
进一步地,所述步骤(2)中热相分离处理中热相分离的温度为300-600℃。
进一步地,所述步骤(2)中热相分离处理中热相分离的压力为微负压,压力范围为-50至-200Pa。
进一步地,所述步骤(4)中经预降温处理后的气相和液相的温度降至150-250℃。
进一步地,所述步骤(5)中经降温处理后的气相和液相的温度降至60-80℃。
进一步地,所述步骤(6)中经深度降温处理后的气相和液相的温度降至20-40℃。
一种油漆废渣热相分离处理装置,所述处理装置包括破碎装置、进料装置、热相分离装置、出料装置、分气包装置、储油罐、列管冷凝装置、气液分离装置、油水分离装置、风机和深度冷凝装置,所述破碎装置与所述进料装置的进口连接,所述进料装置的出口与所述热相分离装置的进口连接,所述热相分离装置的出口分为固相出口和第一气相出口,所述固相出口与所述出料装置连接,所述第一气相出口与所述分气包装置的进口连接,所述分气包装置的出口分为第一液相出口和第二气相出口,所述第一液相出口与所述储油罐连接,所述第二气相出口与所述列管冷凝装置的进口连接,所述列管冷凝装置的出口与所述气液分离装置的进口连接,所述气液分离装置的出口分为第二液相出口和第三气相出口,所述第二液相出口与所述油水分离装置 的进口连接,所述油水分离装置的出口分为油相出口和水相出口,所述油相出口与所述储油罐连接,所述第三气相出口与所述风机的进口连接,所述风机的出口与所述深度冷凝装置的进口连接,所述深度冷凝装置的出口分为第四气相出口和第三液相出口,所述第三液相出口与所述油水分离装置的进口连接。
进一步地,所述深度冷凝装置第四气相出口排出的不凝气可作为所述热相分离装置的燃料。
进一步地,所述处理装置还包括降温除尘装置,所述降温除尘装置与所述出料装置连接。
进一步地,所述处理装置还包括旋转密封装置,所述旋转密封装置分为第一旋转密封装置和第二旋转密封装置,所述进料装置与所述热相分离装置通过第一旋转密封装置连接,所述出料装置与所述热相分离装置通过第二旋转密封装置连接。
进一步地,所述破碎装置与所述进料装置之间设有料斗或溜槽。
与现有技术相比,本发明的有益效果是:本油漆废渣热相分离处理工艺及其装置,连续进料的油漆废渣经过间接受热,油漆废渣中的水分和有机物汽化,废漆固渣与有机气体分离,分离的固渣进行降温除尘处理后可作为功能性材料回收利用;对有机蒸汽进行预降温处理,将气相中的大分子脂类物质液化分离,防止大分子脂类在后续降温处理过程中将降温装置堵塞,同时脱除部分水溶性有机物,减少进入水相的有机物的量,降低后续水处理负荷;通过降温处理将气相中的水蒸汽和大部分有机物液化成液相,并通过气液分离处理将气相和液相分离,分离的气相进行深度降温处理,使气相中沸点较 低的有机物冷凝液化分离,并实现不凝气脱水净化,不凝气可作为热相分离处理的燃料回收利用,通过连续降温处理,将气相中的绝大部分有机物液化分离,提高有机物的回收率,降低燃烧负荷;气液分离的液相和深度降温分离的液相进行油水分离处理,油相通过储油罐收集可作为热相分离处理的燃料回收利用,水相进行污水处理,处理后满足排放标准,减少对环境的污染。通过油漆废渣热相分离处理工艺及其装置对油漆废渣进行减量化、无害化、资源化处理。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本油漆废渣热相分离处理装置的结构示意图。
其中,1.破碎装置,2.进料装置,3.热相分离装置,4.出料装置,5.降温除尘装置,6.分气包装置,7.储油罐,8.列管冷凝装置,9.气液分离装置,10.油水分离装置,11.深度冷凝装置,12.风机。
具体实施方式
如图1所示,一种油漆废渣热相分离处理工艺,所述工艺包括如下步骤:
(1)油漆废渣进行破碎处理,经破碎后的油漆废渣的粒径<50mm。对油漆废渣进行破碎处理增加了油漆废渣的比表面积,油漆废渣受热均匀,降低了热相分离处理的时间,实现连续进料亦可满足处理要求。
(2)经破碎处理后的油漆废渣进行热相分离处理,采用间接加热的方式对油漆废渣进行热相分离处理。处理温度为300-600℃,压力为微负压,压力范围为-50至-200Pa,热相分离处理采用微负压,可避免有机蒸汽泄漏,防止污染环境,提高设备安全性。油漆废渣中的水分和部分有机物汽化为气相, 固相的油漆废渣排出后可进行降温除尘处理,降温除尘后的固渣可作为功能性材料回收利用。
(3)油漆废渣经热相分离处理后产生的气相进行预降温处理,经预降温处理后大分子脂类液化成液相。进一步优选,经预降温处理后的气相和液相的温度降至150-250℃。当温度降至250℃时,沸点在250℃以上的大分子脂类液化成液体,当温度降至150℃时,沸点在150℃以上的大分子脂类液化成液体,即沸点在预降温处理后降至的最低温度以上的大分子脂类均液化成液体。经预降温处理后大分子脂类液化成液相并与气相分离,分离后的大分子脂类进入储油罐进行储存。由于大分子脂类的粘度较大,预降温处理将大分子脂类液化分离出去,可大大降低后续列管冷凝装置被堵塞的风险,同时可除去部分水溶性有机物,减少进入水相中的有机物的量,减轻后续污水处理的负荷。
(4)经预降温处理后的气相进行降温处理,经降温处理之后的气相中的大部分有机气体液化成液相。进一步优选,经降温处理后的气相和液相的温度降至60-80℃。当温度降至80℃时,经预降温处理之后的气相中沸点在80℃以上的有机气体液化成液体,当温度降至60℃时,经预降温处理之后的气相中沸点在60℃以上的有机气体液化成液体,即经预降温处理之后的气相中沸点在降温处理后降至的最低温度以上的有机气体均液化成液体。从而实现降温处理将经预降温处理之后的气相中的大部分有机物进行回收。
(5)经降温处理后的液相和气相进行气、液分离处理,将气相和液相进行分离;
(6)气、液分离后的气相进行深度降温处理,深度降温后部分有机气相 液化成液相。进一步优选,经深度降温处理后的气相和液相的温度降至20-40℃。当温度降至40℃时,经气、液分离后的气相中沸点在40℃以上的有机气体液化成液体,当温度降至20℃时,经气、液分离后的气相中沸点在20℃以上的有机气体液化成液体,即经气、液分离后的气相中沸点在深度降温处理后降至的最低温度以上的有机气体均液化成液体。不凝气可作为步骤(2)中热相分离处理的燃料。深度降温处理使经气、液分离后的气相中沸点较低的有机物冷凝液化分离,并实现不凝气脱水净化。通过预降温处理、降温处理及深度降温处理可回收热相分离蒸汽中绝大部分的有机物,回收效率高,降低燃烧负荷。
(7)步骤(5)和(6)中的液相进行油水分离处理,分离的油相进入储油罐进行储存,水相进行污水处理。油相通过储油罐收集可作为热相分离处理的燃料回收利用,水相进行污水处理,处理后满足排放标准,减少对环境的污染。通过油漆废渣热相分离处理工艺及其装置对油漆废渣进行减量化、无害化、资源化处理。
一种油漆废渣热相分离处理装置,所述处理装置包括破碎装置1、进料装置2、热相分离装置3、出料装置4、分气包装置6、储油罐7、列管冷凝装置8、气液分离装置9、油水分离装置10、风机12和深度冷凝装置11,所述破碎装置1与所述进料装置2的进口连接,所述进料装置2的出口与所述热相分离装置3的进口连接,所述热相分离装置3的出口分为固相出口和第一气相出口,所述固相出口与所述出料装置4连接,所述第一气相出口与所述分气包装置6的进口连接,所述分气包装置6的出口分为第一液相出口和第二气相出口,所述第一液相出口与所述储油罐7连接,所述第二气相出口与所 述列管冷凝装置8的进口连接,所述列管冷凝装置8的出口与所述气液分离装置9的进口连接,所述气液分离装置9的出口分为第二液相出口和第三气相出口,所述第二液相出口与所述油水分离装置10的进口连接,所述油水分离装置10的出口分为油相出口和水相出口,所述油相出口与所述储油罐7连接,所述第三气相出口与所述风机12的进口连接,所述风机12的出口与所述深度冷凝装置11的进口连接。通过风机12将气液分离装置9内的气体输送至深度冷凝装置11内,气液分离装置9内形成微负压,实现列管冷凝装置8内的气体向气液分离装置9内流动,列管冷凝装置8内形成微负压,进而使分气包装置6内的气体向列管冷凝装置8内流动,分气包装置6内形成微负压,从而使热相分离装置3内的气体向分气包装置6内流动,实现热相分离装置3内形成负压,从而实现通过风机12控制热相分离装置3内形成微负压。所述深度冷凝装置11的出口分为第四气相出口和第三液相出口,所述第三液相出口与所述油水分离装置10的进口连接。
所述深度冷凝装置11第四气相出口排出的不凝气可作为所述热相分离装置3的燃料。
所述处理装置还包括降温除尘装置5,所述降温除尘装置5与所述出料装置4连接。
所述处理装置还包括旋转密封装置,所述旋转密封装置分为第一旋转密封装置和第二旋转密封装置,所述进料装置2与所述热相分离装置3通过第一旋转密封装置连接,所述出料装置4与所述热相分离装置3通过第二旋转密封装置连接。通过旋转密封装置实现进料装置2-热相分离装置3-出料装置4的密封,保证在连续进料进行热相分离处理时,装置的密封性,进一步避免 有机蒸汽泄漏,防止污染环境。
所述破碎装置1与所述进料装置2之间设有料斗或溜槽。料斗或溜槽的设置可增加连续进料的稳定性,保证油漆废渣热相分离处理过程的连续稳定进行。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (12)

  1. 一种油漆废渣热相分离处理工艺,其特征在于,所述工艺包括如下步骤:
    (1)油漆废渣进行破碎处理;
    (2)经破碎处理后的油漆废渣进行热相分离处理,油漆废渣中的水分和部分有机物汽化为气相,固相的油漆废渣排出后可进行降温除尘处理;
    (3)油漆废渣经热相分离处理后产生的气相进行预降温处理,经预降温处理后大分子脂类液化成液相并与气相分离,分离后的大分子脂类进入储油罐进行储存;
    (4)经预降温处理后的气相进行降温处理,降温处理后气相中的水蒸汽和大部分有机气体液化成液相;
    (5)经降温处理后的液相和气相进行气、液分离处理,将气相和液相进行分离;
    (6)气、液分离后的气相进行深度降温处理,深度降温后部分有机气相液化成液相,不凝气可作为步骤(2)中热相分离处理的燃料;
    (7)步骤(5)和(6)中的液相进行油水分离处理,分离的油相进入储油罐进行储存,水相进行污水处理。
  2. 根据权利要求1所述的油漆废渣热相分离处理工艺,其特征在于:所述步骤(1)中经破碎后的油漆废渣的粒径<50mm。
  3. 根据权利要求1所述的油漆废渣热相分离处理工艺,其特征在于:所述步骤(2)中热相分离处理中热相分离的温度为300-600℃。
  4. 根据权利要求1所述的油漆废渣热相分离处理工艺,其特征在于:所述步骤(2)中热相分离处理中热相分离的压力为微负压,压力范围为-50至-200Pa。
  5. 根据权利要求1所述的油漆废渣热相分离处理工艺,其特征在于:所述步骤(4)中经预降温处理后的气相和液相的温度降至150-250℃。
  6. 根据权利要求1所述的油漆废渣热相分离处理工艺,其特征在于:所述步骤(5)中经降温处理后的气相和液相的温度降至60-80℃。
  7. 根据权利要求1所述的油漆废渣热相分离处理工艺,其特征在于:所述步骤(6)中经深度降温处理后的气相和液相的温度降至20-40℃。
  8. 一种油漆废渣热相分离处理装置,其特征在于:所述处理装置包括破碎装置、进料装置、热相分离装置、出料装置、分气包装置、储油罐、列管冷凝装置、气液分离装置、油水分离装置、风机和深度冷凝装置,所述破碎装置与所述进料装置的进口连接,所述进料装置的出口与所述热相分离装置的进口连接,所述热相分离装置的出口分为固相出口和第一气相出口,所述固相出口与所述出料装置连接,所述第一气相出口与所述分气包装置的进口连接,所述分气包装置的出口分为第一液相出口和第二气相出口,所述第一液相出口与所述储油罐连接,所述第二气相出口与所述列管冷凝装置的进口连接,所述列管冷凝装置的出口与所述气液分离装置的进口连接,所述气液分离装置的出口分为第二液相出口和第三气相出口,所述第二液相出口与所述油水分离装置的进口连接,所述油水分离装置的出口分为油相出口和水相出口,所述油相出口与所述储油罐连接,所述第三气相出口与所述风机的进口连接,所述风机的出口与所述深度冷凝装置的进口连接,所述深度冷凝装置的出口分为第四气相出口和第三液相出口,所述第三液相出口与所述油水分离装置的进口连接。
  9. 根据权利要求8所述的油漆废渣热相分离处理装置,其特征在于:所述深度 冷凝装置第四气相出口排出的不凝气可作为所述热相分离装置的燃料。
  10. 根据权利要求8所述的油漆废渣热相分离处理装置,其特征在于:所述处理装置还包括降温除尘装置,所述降温除尘装置与所述出料装置连接。
  11. 根据权利要求8所述的油漆废渣热相分离处理装置,其特征在于:所述处理装置还包括旋转密封装置,所述旋转密封装置分为第一旋转密封装置和第二旋转密封装置,所述进料装置与所述热相分离装置通过第一旋转密封装置连接,所述出料装置与所述热相分离装置通过第二旋转密封装置连接。
  12. 根据权利要求8所述的油漆废渣热相分离处理装置,其特征在于:所述破碎装置与所述进料装置之间设有料斗或溜槽。
PCT/CN2020/072220 2020-01-15 2020-01-15 一种油漆废渣热相分离处理工艺及其装置 WO2021142657A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072220 WO2021142657A1 (zh) 2020-01-15 2020-01-15 一种油漆废渣热相分离处理工艺及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072220 WO2021142657A1 (zh) 2020-01-15 2020-01-15 一种油漆废渣热相分离处理工艺及其装置

Publications (1)

Publication Number Publication Date
WO2021142657A1 true WO2021142657A1 (zh) 2021-07-22

Family

ID=76863483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072220 WO2021142657A1 (zh) 2020-01-15 2020-01-15 一种油漆废渣热相分离处理工艺及其装置

Country Status (1)

Country Link
WO (1) WO2021142657A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732360A (ja) * 1993-07-22 1995-02-03 Saamic Kk Uv塗料廃棄物処理方法及びその処理装置
CN1931928A (zh) * 2006-09-05 2007-03-21 山东建筑大学材料科学研究所 一种油漆废渣再生方法
CN201880728U (zh) * 2010-11-30 2011-06-29 重庆立洋机电工程有限公司 废漆渣资源化再生利用的处理装置
CN202962443U (zh) * 2012-10-31 2013-06-05 都江堰市鸿强建辅材料厂 用于工业废油漆渣制备稀释剂的工艺***
CN103785336A (zh) * 2012-10-31 2014-05-14 都江堰市鸿强建辅材料厂 用于工业废油漆渣制备稀释剂的方法及其装置***
CN105903301A (zh) * 2016-06-07 2016-08-31 四川英诺环保设备有限公司 漆渣废气处理***及方法
CN106007284A (zh) * 2016-05-04 2016-10-12 杰瑞环保科技有限公司 含油废弃物深度处理方法及***
CN206688672U (zh) * 2017-04-19 2017-12-01 杰瑞环保科技有限公司 一种间歇式热相分离实验装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732360A (ja) * 1993-07-22 1995-02-03 Saamic Kk Uv塗料廃棄物処理方法及びその処理装置
CN1931928A (zh) * 2006-09-05 2007-03-21 山东建筑大学材料科学研究所 一种油漆废渣再生方法
CN201880728U (zh) * 2010-11-30 2011-06-29 重庆立洋机电工程有限公司 废漆渣资源化再生利用的处理装置
CN202962443U (zh) * 2012-10-31 2013-06-05 都江堰市鸿强建辅材料厂 用于工业废油漆渣制备稀释剂的工艺***
CN103785336A (zh) * 2012-10-31 2014-05-14 都江堰市鸿强建辅材料厂 用于工业废油漆渣制备稀释剂的方法及其装置***
CN106007284A (zh) * 2016-05-04 2016-10-12 杰瑞环保科技有限公司 含油废弃物深度处理方法及***
CN105903301A (zh) * 2016-06-07 2016-08-31 四川英诺环保设备有限公司 漆渣废气处理***及方法
CN206688672U (zh) * 2017-04-19 2017-12-01 杰瑞环保科技有限公司 一种间歇式热相分离实验装置

Similar Documents

Publication Publication Date Title
WO2020041917A1 (zh) 高浓度石油污泥绿色清洗-热脱附集成技术处理方法与处理***
CN103449701B (zh) 一种炼油厂污泥炭化处理及炭回收的方法及装置
CN105154114B (zh) 利用中药材及中药生产过程废弃物制取生物炭的装置及其方法
CA2663490A1 (en) Waste-tire recycling system
KR100838589B1 (ko) 음식물 쓰레기를 이용한 바이오 에너지 제조장치
WO1992005393A1 (de) Verfahren und vorrichtung zum trocknen von feststoffmaterialien in einem indirekt beheizten wirbelschichtbett
JP4545953B2 (ja) 熱分解ガスからのオイルの凝結及び再生
CN101357289A (zh) 间歇液相本体法聚丙烯生产过程中火炬气回收工艺
KR100593725B1 (ko) 폐타이어의 열분해 및 유화 시스템
CN104788003B (zh) 一种含油污泥真空干燥方法
CN104438297A (zh) 一种处理有机垃圾的方法和装置
CN203018449U (zh) 一种污染土壤的热处理修复设备
CN102679689B (zh) 低耗能低排放且保煤质的化工原料煤安全干燥方法及装置
KR20080047246A (ko) 열전달오일을 이용한 슬러지 건조방법 및 장치
WO2021142657A1 (zh) 一种油漆废渣热相分离处理工艺及其装置
CN201190133Y (zh) 污油泥分离设备
CN111117670A (zh) 一种油漆废渣热相分离处理工艺及其装置
CN106854031A (zh) 一种污泥资源化处理方法及其处理***
CN211688914U (zh) 一种油漆废渣热相分离处理装置
KR200409347Y1 (ko) 폐타이어의 열분해 및 유화 시스템
CN214693804U (zh) 一种含油污泥处理***
JPS62184034A (ja) プラスチツク廃棄物の油化装置
CN111792815A (zh) 一种利用烟道蒸发污泥干化废水的***及方法
CN108751513B (zh) 一种用于热解吸含汞废水处理及其汞资源化回收的***
CN112175743A (zh) 一种用于油脂脱色后的废白土综合处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914288

Country of ref document: EP

Kind code of ref document: A1