WO2021142638A1 - 显示器下部的传感器 - Google Patents

显示器下部的传感器 Download PDF

Info

Publication number
WO2021142638A1
WO2021142638A1 PCT/CN2020/072107 CN2020072107W WO2021142638A1 WO 2021142638 A1 WO2021142638 A1 WO 2021142638A1 CN 2020072107 W CN2020072107 W CN 2020072107W WO 2021142638 A1 WO2021142638 A1 WO 2021142638A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
light
display
layer
polarization
Prior art date
Application number
PCT/CN2020/072107
Other languages
English (en)
French (fr)
Inventor
闵丙日
Original Assignee
杭州芯格微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州芯格微电子有限公司 filed Critical 杭州芯格微电子有限公司
Priority to DE112020006525.1T priority Critical patent/DE112020006525T5/de
Priority to PCT/CN2020/072107 priority patent/WO2021142638A1/zh
Priority to CN202080001874.2A priority patent/CN112292583B/zh
Priority to US17/056,770 priority patent/US11867538B2/en
Priority to US17/150,435 priority patent/US20210285764A1/en
Publication of WO2021142638A1 publication Critical patent/WO2021142638A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/344Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using polarisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/968Switches controlled by moving an element forming part of the switch using opto-electronic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality

Definitions

  • the present invention relates to a light sensor arranged in the lower part of a display.
  • Light sensors are not only used in mobile electronic devices such as mobile phones and tablet computers, but also in video electronic devices such as televisions and monitors.
  • the light sensor includes, for example, an illuminance sensor, a proximity sensor, and a proximity illuminance sensor.
  • the proximity sensor is a light sensor that measures the distance between the user and the electronic device
  • the illuminance sensor is a light sensor that senses the brightness of the periphery of the electronic device.
  • the proximity illuminance sensor that combines an optical proximity sensor and an illuminance sensor realizes two sensors in a single package.
  • the object of the present invention is to provide an optical sensor that can be applied to an electronic device with a design that the display occupies the entire front surface.
  • a lower display sensor arranged at the lower part of a display including a pixel that generates light, a display retardation layer arranged on the upper part of the pixel, and a display polarizing layer.
  • the sensor at the lower part of the display may include: a light sensor, including a light irradiating part and a light receiving part, the light irradiating part irradiates sensing light for sensing an object located outside the display, and the light receiving part detects that the sensing light is from The reflected light reflected by the object; a first sensor polarizing layer, which is arranged on the upper part of the light sensor and having a polarization axis inclined at a first angle; and a first sensor retardation layer, which is arranged on the sensor polarizing layer
  • the upper part has a slow axis inclined at a first angle with respect to the polarization axis.
  • the first sensor polarization layer and the first sensor delay layer can convert the induced light into the sensor circularly polarized light so that the circularly polarized light of the sensor can pass through the display through the display polarizing layer.
  • the retardation layer is converted into linearly polarized light of the sensor application display having the same polarization axis as that of the display polarization layer.
  • the slow axis of the retardation layer of the first sensor is parallel to the slow axis of the display retardation layer, and the polarization axis of the display polarizing layer is at a second angle relative to the slow axis of the display retardation layer. tilt.
  • the difference between the second angle and the first angle may be 90 degrees.
  • the senor at the lower part of the display may further include a second sensor polarizing layer.
  • the second sensor polarizing layer and the first sensor polarizing layer are arranged on the same plane and have a polarization axis inclined at a second angle.
  • the light-receiving part may include: a first light-receiving part, which is disposed under the polarizing layer of the first sensor, and detects linearly polarized light of the first sensor generated from external light and light generated from inside the display. Generated linearly polarized light of the second sensor; and a second light-receiving part arranged at the lower part of the polarizing layer of the second sensor to detect linearly polarized light of the third sensor generated from the light generated inside the display. .
  • the senor at the lower part of the display may further include a second sensor delay layer.
  • the second sensor delay layer is arranged on the same plane as the first sensor delay layer and has a slower speed than that of the first sensor delay layer. Slow axis with orthogonal axis.
  • the light-receiving part may include: a first light-receiving part, which is disposed at a lower part of the first sensor polarization layer corresponding to the first sensor delay layer, and detects the linearity of the first sensor generated from external light. Polarized light and the second sensor linearly polarized light generated from the light generated inside the display; and a second light-receiving part, corresponding to the second sensor retardation layer, arranged at the lower part of the first sensor polarizing layer, and detecting from The third sensor linearly polarized light generated by the light generated inside the display.
  • the brightness of the external light may be an established ratio between the brightness of the linear polarization of the second sensor and the linear polarization of the third sensor under an environment that is not affected by the external light. Relationship to amend.
  • the illuminance sensor according to the embodiment of the present invention can be applied to an electronic device designed such that the display occupies the entire front surface.
  • FIG. 1 is a diagram for schematically explaining an embodiment of the sensor at the lower part of the display.
  • FIG. 2 is a diagram for schematically explaining another embodiment of the sensor at the lower part of the display.
  • FIG. 3 is a diagram for schematically explaining how light irradiated from a sensor at the lower part of the display is reflected inside the display.
  • FIG. 4 is a diagram for schematically explaining the working principle of the sensor in the lower part of the display.
  • Fig. 5 is a diagram for schematically explaining an embodiment of a sensor in the lower part of the display.
  • FIG. 6 is a diagram for schematically explaining another embodiment of the sensor in the lower part of the display.
  • the same or similar parts are referred to by using the same reference numerals.
  • the hatching shown in the retardation layer indicates the direction of the slow axis
  • the hatching shown in the polarizing layer schematically indicates the direction of the polarization axis with respect to the slow axis extending in the horizontal direction.
  • FIG. 1 is a diagram for schematically explaining an embodiment of a sensor in the lower part of a display.
  • the sensor 100 at the lower part of the display includes a sensor polarizing layer 110, a sensor retardation layer 120, and a light sensor 300.
  • the light sensor 300 functions as a proximity sensor, and for this purpose, it includes a light irradiating part 310 and a light receiving part 320.
  • the light irradiating part 310 may be a light emitting diode that generates induced light belonging to visible light, near infrared, and infrared frequency bands.
  • the light receiving unit 320 can detect reflected light belonging to visible light, near infrared, and infrared bands.
  • the light receiving unit 320 may be composed of a single photodiode, or may be composed of a plurality of photodiodes.
  • the light irradiating part 310 and the light receiving part 320 may be optically separated.
  • a collimator lens for improving the straightness of the induced light may be disposed on the upper part of the light irradiation unit 310, and a condenser lens for condensing reflected light may be disposed on the upper part of the light receiving unit 320.
  • the sensor polarization layer 110 is disposed on the upper part of the photosensor 300 and has a polarization axis inclined at a first angle, for example, +45 degrees with respect to the slow axis of the sensor delay layer 120.
  • the sensor delay layer 120 is disposed on the upper part of the sensor polarizing layer 110, and has, for example, a slow axis extending in the horizontal direction and a fast axis extending in the vertical direction.
  • the slow axis of the sensor retardation layer 120 may be substantially parallel to the slow axis of the display retardation layer 12.
  • the sensor polarizing layer 110 and the sensor retardation layer 120 enable the induced light generated by the light irradiation unit 310 to pass through the display 10 to be emitted to the outside.
  • the sensor polarization layer 110 and the sensor delay layer 120 allow the reflected light reflected by an external object to pass through the display 10 and reach the light receiving unit 320.
  • the light irradiating part 310 generates the induced light 20 which is non-polarized light.
  • the generated induced light 20 becomes the sensor linearly polarized light 21 having a polarization axis inclined at a first angle as it passes through the sensor polarization layer 110. Since the polarization axis of the sensor linear polarization 21 is inclined at +45 degrees with respect to the slow axis of the sensor delay layer 120, the sensor linear polarization 21 becomes a clockwise rotation as it passes through the sensor delay layer 120.
  • the sensor is circularly polarized 22.
  • the sensor circularly polarized light 22 passes through the bottom surface of the display 10 and enters the inside of the display.
  • the sensor circularly polarized light 22 passes through the display retardation layer 12 and becomes the sensor linearly polarized light 23 of the display. Since the slow axis of the display retardation layer 12 is substantially parallel to the slow axis of the sensor retardation layer 120, the first and second polarized parts of the sensor circularly polarized light 22 are increased by a ⁇ /4 phase difference, so that the phase difference between each other is increased. The difference becomes ⁇ /2. Thus, the polarization axis of the linear polarizer 23 of the sensor is rotated from the first angle by about 90 degrees and is inclined at a second angle, for example -45 degrees, with respect to the slow axis of the display retardation layer 12.
  • the linearly polarized light 23 of the sensor applied to the display passes through the display polarizing layer 11 substantially without loss and travels to the outside.
  • the display polarizing layer 11 has a polarizing axis inclined at a second angle, for example -45 degrees, with respect to the slow axis of the display retardation layer 12. Therefore, the linearly polarized light 23 of the sensory application display having the polarization axis inclined at the same angle as the polarization axis of the display polarization layer 11 can pass through the display polarization layer 11.
  • the linearly polarized light 23 emitted to the outside of the display 10 is reflected by the object and enters the display 10 again.
  • the reflected light incident on the display 10 is referred to as the reflected display linearly polarized light 30.
  • the reflected display linear polarizer 30 may have a polarization axis inclined at a second angle, for example -45 degrees. Therefore, the reflected display linearly polarized light 30 having the polarization axis inclined at the same angle as the polarization axis of the display polarization layer 11 can pass through the display polarization layer 11.
  • the reflected display linearly polarized light 30 passes through the display retardation layer 12 and becomes the reflected display circularly polarized light 31 that rotates in a counterclockwise direction.
  • ⁇ / is generated between the first and second polarization portions of the reflected display linear polarization 30. 4Phase difference.
  • the reflected display circularly polarized light 31 passes through the bottom surface of the display 10 and is incident on the sensor 100 at the lower part of the display.
  • the reflected display circularly polarized light 31 passes through the sensor delay layer 120 to become the reflected sensor linearly polarized light 32.
  • the slow axis of the display retardation layer 12 is substantially parallel to the slow axis of the sensor retardation layer 120, the first and second polarized portions of the reflected display circularly polarized light 31 are increased by a ⁇ /4 phase difference, Therefore, the phase difference between each other becomes ⁇ /2.
  • the polarization axis of the reflected sensor linear polarization 32 is rotated from the second angle by about 90 degrees and is inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor delay layer 120.
  • the reflected sensor linear polarization 32 passes through the sensor polarization layer 110 to the light receiving portion 320 substantially without loss.
  • the sensor polarizing layer 110 may have a polarizing axis inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor retardation layer 120. Therefore, the reflected sensor linearly polarized light 32 having the polarization axis inclined at the same angle as the polarization axis of the sensor polarization layer 110 can pass through the sensor polarization layer 110.
  • FIG. 2 is a diagram for schematically explaining another embodiment of the sensor at the lower part of the display.
  • the sensor 100 at the bottom of the display includes a sensor polarizing layer 115, a sensor retardation layer 120, and a light sensor 300.
  • the light sensor 300 functions as a proximity sensor, and for this purpose, it includes a light irradiating part 310 and a light receiving part 320.
  • the light irradiation unit 310 may be a light emitting diode that generates induced light belonging to visible light, near infrared, and infrared bands.
  • the light receiving unit 320 can detect reflected light belonging to visible light, near infrared, and infrared bands.
  • the sensor polarization layer 115 is disposed on the upper portion of the photosensor 300 and has a polarization axis inclined at a second angle, for example, -45 degrees with respect to the slow axis of the sensor retardation layer 120.
  • the sensor delay layer 120 is disposed on the upper part of the sensor polarizing layer 115, and has, for example, a slow axis extending in the horizontal direction and a fast axis extending in the vertical direction.
  • the slow axis of the sensor retardation layer 120 may be substantially parallel to the slow axis of the display retardation layer 12.
  • the sensor polarizing layer 115 and the sensor retardation layer 120 can cause the induced light generated by the light irradiating part 310 to be emitted to the outside through the display 10.
  • the sensor polarization layer 115 and the sensor delay layer 120 can allow light reflected by an external object to pass through the display 10 and reach the light receiving part 320.
  • the light irradiation unit 310 generates non-polarized induced light 40.
  • the generated induced light 40 becomes the sensor linearly polarized light 41 having a polarization axis inclined at a second angle as it passes through the sensor polarization layer 115. Since the polarization axis of the linear polarization 41 of the sensing application sensor is inclined at -45 degrees with respect to the slow axis of the sensor delay layer 120, the linear polarization 41 of the sensing application sensor rotates counterclockwise as it passes through the sensor delay layer 120.
  • the sensor is circularly polarized 42.
  • the first polarized part of the linear polarized light 41 of the sensing application sensor transmitted along the fast axis and the second polarized part of the linear polarized light 41 of the sensing application sensor transmitted along the slow axis have passed through the sensor retardation layer 120, and ⁇ / will be generated between each other. Phase difference of 4.
  • the sensor circularly polarized light 42 passes through the bottom surface of the display 10 and enters the inside of the display.
  • the sensor circularly polarized light 42 becomes the linearly polarized light 43 of the sensor as it passes through the display retardation layer 12. Since the slow axis of the display retardation layer 12 and the slow axis of the sensor retardation layer 120 are substantially parallel, a ⁇ /4 phase difference is added to the first and second polarized parts of the sensor circularly polarized light 42. , And the phase difference between each other becomes ⁇ /2. Thus, the polarization axis of the linear polarizer 43 of the sensory display is rotated by about 90 degrees from the second angle and tilted at the first angle, for example, tilted at +45 degrees with respect to the slow axis of the retardation layer 12 of the display.
  • the linearly polarized light 43 applied to the display passes through the display polarizing layer 11 and travels to the outside substantially without loss.
  • the display polarizing layer 11 may have a polarizing axis inclined at a first angle, for example +45 degrees, with respect to the slow axis of the display retardation layer 12. Therefore, the linearly polarized light 43 of the sensory application display having the polarization axis inclined at the same angle as the polarization axis of the display polarization layer 11 can pass through the display polarization layer 11.
  • the linearly polarized light 43 of the sensory application display emitted to the outside of the display 10 is reflected by the object and enters the display 10 again.
  • the reflected display linear polarizer 50 may have a polarization axis inclined at a first angle, for example +45 degrees. Therefore, the reflected display linearly polarized light 50 having the polarization axis inclined at the same angle as the polarization axis of the display polarization layer 11 can pass through the display polarization layer 11.
  • the reflected display linearly polarized light 50 passes through the display retardation layer 12 and becomes the reflected display circularly polarized light 51 that rotates in the clockwise direction.
  • will be generated between the first polarized part and the second polarized part of the reflected linear polarized light 50 of the display.
  • the reflected display circularly polarized light 51 passes through the bottom surface of the display 10 and enters the sensor 100 at the lower part of the display.
  • the reflected display circularly polarized light 51 passes through the sensor delay layer 120 to become the reflected sensor linearly polarized light 52.
  • the slow axis of the display retardation layer 12 and the slow axis of the sensor retardation layer 120 are substantially parallel, they will be added to the first and second polarization portions of the reflected display circularly polarized light 51. ⁇ /4 phase difference, so the phase difference between each other becomes ⁇ /2.
  • the polarization axis of the reflected sensor linear polarization 52 is rotated about 90 degrees from the first angle and tilted at the second angle, for example, tilted at -45 degrees with respect to the slow axis of the sensor retardation layer 120.
  • the reflected sensor linearly polarized light 52 passes through the sensor polarizing layer 115 and travels to the light receiving portion 320 substantially without loss.
  • the sensor polarizing layer 115 may have a polarizing axis inclined at a second angle, for example, ⁇ 45 degrees with respect to the slow axis of the sensor retardation layer 120. Therefore, the reflected sensor linearly polarized light 52 having the polarization axis inclined at the same angle as the polarization axis of the sensor polarization layer 115 can pass through the sensor polarization layer 115.
  • FIG. 3 is a diagram for schematically explaining how light irradiated from a sensor at the lower part of the display is reflected inside the display.
  • the sensor circularly polarized light 21 generated by the sensor 100 at the lower part of the display can be reflected inside the display 10 and enter the sensor 100 at the lower part of the display again.
  • various structures formed by elements that transmit or reflect light are mixed.
  • a part of the circularly polarized light 21 of the sensor application sensor can be internally reflected to return to the sensor 100 at the lower part of the display. Since a part of the circularly polarized light 21 of the sensor application sensor reflected internally may cause an error in determining the presence or absence of an external object or the distance to an external object, it should be prevented from advancing to the light receiving unit 320.
  • the internally reflected sensor circularly polarized light 60 passes through the sensor delay layer 120 to become the internally reflected sensor linearly polarized light 61.
  • the polarization axis of the internally reflected sensor linear polarization 61 is rotated by about 90 degrees from the polarization axis of the sensor linear polarization 20.
  • the polarization axis of the sensor linear polarization 61 that is internally reflected is perpendicular to the polarization axis of the sensor polarization layer 110 and can be blocked by the sensor polarization layer 110.
  • Fig. 4 is a diagram for schematically explaining the operating principle of the illuminance sensor at the lower part of the display. With reference to Figs. 4-6, the structure and principle of the sensor 100' at the lower part of the display operating as an illuminance sensor will be described.
  • the sensor 100' at the lower part of the display is arranged at the lower part of the display 10.
  • the display 10 includes a pixel layer 13 in which a plurality of pixels P that generate light are formed, a display polarizing layer 11 and a display retardation layer 12 stacked on top of the pixel layer 13.
  • a protective layer formed of an opaque material such as metal or synthetic resin may be disposed on the bottom surface of the display 10.
  • the sensor 100' at the lower part of the display composed of the light selective layer 200 and the light sensor 300 may be arranged in a region where a part of the protective layer is removed (hereinafter referred to as a completed structure).
  • the light selection layer 200 of the sensor 100' at the lower part of the display may be manufactured into a film shape and laminated on the bottom surface of the display 10.
  • the illuminance sensor at the lower part of the display can also be realized by attaching the light sensor 300 to the bottom surface of the light selection layer 200 (hereinafter referred to as an assembled structure). In the following, in order to avoid repetitive description, the description will be centered on the completed structure.
  • the display polarizing layer 11 and the display retardation layer 12 improve the visibility of the display 10.
  • the external light incident through the upper surface of the display 10 is unpolarized light. If external light is incident on the upper surface of the display polarizing layer 11, only the linearly polarized light 70 of the display substantially consistent with the polarization axis of the display polarizing layer 11 will pass through the display polarizing layer 11.
  • the display linearly polarized light 70 passes through the display retardation layer 12, it becomes the display circularly polarized light (or elliptical polarized light) 71 that rotates in the clockwise direction or the counterclockwise direction.
  • the display circularly polarized light 71 is reflected by the pixel layer 13 and enters the display retardation layer 12 again, it becomes the second linearly polarized light.
  • the polarization axis of the display retardation layer 12 is inclined by about 45 degrees with respect to the slow axis, the polarization axis of the display linear polarization 70 and the polarization axis of the second linear polarization will be orthogonal to each other.
  • the second linearly polarized light that is, the external light reflected by the pixel layer 13 is blocked by the display polarizing layer 11 and cannot be emitted to the outside of the display.
  • the visibility of the display 10 can be improved.
  • the unpolarized light 80 generated by the pixel P advances not only toward the upper surface of the display 10 but also toward the bottom surface.
  • a part of the non-polarized light 80 advancing toward the upper surface is reflected inside the display 10 and travels toward the bottom surface again.
  • the non-polarized light 80 directly passes through the display retardation layer 12, and becomes linearly polarized light through the display polarizing layer 11 and is emitted to the outside.
  • the sensor 100' at the lower part of the display includes a light selection layer 200 having two light paths and a light sensor 300 that detects light passing through each light path.
  • the light incident on the sensor 100' at the lower part of the display is the circularly polarized light 71 of the display generated from external light and the unpolarized light 80 generated inside the display.
  • the effects of the first light path and the second light path in the light selection layer 200 on the circularly polarized light 71 and the non-polarized light 80 of the display are different from each other.
  • the first light path allows both the circularly polarized light 71 and the non-polarized light 80 of the display to pass.
  • the second light path passes the non-polarized light 80 and substantially blocks the circularly polarized light 71 of the display.
  • the display circularly polarized light 71 after passing through the first light path becomes the first sensor linearly polarized light 73
  • the unpolarized light 80 after passing through the first light path and the second light path becomes the second sensor linearly polarized light 81 and the third sensor linearly polarized light 82.
  • the photosensor 300 includes a first light receiving portion 321 corresponding to the first light path and a second light receiving portion 322 corresponding to the second light path.
  • the first light receiving section 321 generates a first pixel current that is substantially proportional to the brightness of the circularly polarized light 71 and the non-polarized light 80 of the display
  • the second light receiving section 322 generates a second pixel current that is substantially proportional to the brightness of the non-polarized light 80.
  • the first light receiving section 321 or the second light receiving section 322 may be composed of, for example, one photodiode or a plurality of photodiodes (hereinafter referred to as PD array).
  • PD array photodiodes
  • one or two photodiodes may correspond to one pixel P.
  • the PD array may correspond to one pixel P.
  • one or two photodiodes may correspond to multiple pixels P.
  • the PD array may correspond to a plurality of pixels P.
  • the first light receiving unit 321 and the second light receiving unit 322 may jointly detect light belonging to a specific wavelength range, or may respectively detect light belonging to different wavelength ranges, such as red light, green light, blue light, and near infrared rays.
  • the illuminance sensor is a device used to measure the brightness of external light.
  • the illuminance sensor is arranged in the lower part of the display, not only the external light passing through the display, but also the light generated inside the display enters the illuminance sensor. Therefore, in order to accurately measure the brightness of external light, it is necessary to measure the brightness of light generated inside the display. If only the brightness of the light generated inside the display can be measured, this can be used to correct the measured brightness of the external light.
  • the second sensor linearly polarized light 81 and the third sensor linearly polarized light 82 generated from the non-polarized light 80 can be detected by the first light receiving section 321 and the second light receiving section 322, respectively.
  • the linearly polarized light inside the sensor generated from the circularly polarized light 71 of the display through the light selection layer 200 cannot substantially enter the second light receiving section 322, so the second light receiving section 322 can only measure the linearly polarized light of the third sensor generated from the non-polarized light 80 82 brightness.
  • the brightness of the second sensor linear polarization 81 and the third sensor linear polarization 82 may be substantially the same, but the opposite may also be different.
  • the linear proportional relationship or the nonlinear proportional relationship is established in the brightness between the two .
  • the non-linear proportional relationship may be caused by various reasons such as the structural feature of the display 10, the difference in the pixel regions corresponding to each light receiving unit, and the wavelength range of the non-polarized light 80.
  • the proportional relationship between the linear polarization of the second sensor 81 and the linear polarization of the third sensor 82 can be measured in an environment that is not affected by external light.
  • the degree to which the second sensor linear polarization 81 contributes to the brightness measured by the first light receiving unit 321 can be calculated from the brightness of the third sensor linear polarization 82 measured by the second light receiving unit 322. As a result, the brightness of external light can be accurately measured.
  • Fig. 5 is a diagram for schematically explaining an embodiment of a sensor in the lower part of the display.
  • FIG. 5 and FIG. 6 in order to simplify the diagram, for the unpolarized light emitted from the pixel P, only the light emitted through the light selection layer is shown.
  • the light selection layer 200 includes a sensor retardation layer 120, a first sensor polarizing layer 110 and a second sensor polarizing layer 115.
  • the sensor delay layer 120 is arranged on the upper part of the first sensor polarizing layer 110 and the second sensor polarizing layer 115, and the photosensor 300 is arranged on the lower part of the first sensor polarizing layer 110 and the second sensor polarizing layer 115.
  • the light sensor 300 includes a light irradiating part 310 and a light receiving part 320.
  • the light receiving unit 320 of the photosensor 300 includes a first light receiving unit 321 arranged under the first sensor polarizing layer 110 and a second light receiving unit 322 arranged under the second sensor polarizing layer 115.
  • the light irradiation unit 310 may be turned off.
  • the light selection layer 200 may be manufactured by laminating (laminating) the sensor delay layer 120 on the upper surfaces of the first sensor polarizing layer 110 and the second sensor polarizing layer 115.
  • the light selection layer 200 may be attached to the bottom surface of the display 10.
  • the light sensor 300 may be attached to the bottom surface of the light selection layer 200.
  • a thin film transistor may be used to implement the photosensor 300.
  • the sensor 100' at the lower part of the display can be manufactured by laminating the film-shaped sensor retardation layer 120, the first and second sensor polarizing layers 110, 115, and the photosensor 300.
  • the polarization axis of the first sensor polarization layer 110 and the polarization axis of the second sensor polarization layer 115 are inclined at different angles with respect to the slow axis of the sensor delay layer 120.
  • the polarization axis of the first sensor polarizing layer 110 may be inclined at a first angle, for example +45 degrees, with respect to the slow axis of the sensor retardation layer 120, and the polarization axis of the second sensor polarizing layer 115 may be tilted at a first angle with respect to the slow axis of the sensor retardation layer 120. Two angles such as -45 degrees inclination.
  • the first light receiving unit 321 of the photosensor 300 detects the first sensor linearly polarized light 73 and the second sensor linearly polarized light 81 emitted from the first sensor polarizing layer 110, and the second light receiving unit 322 detects the third light emitting from the second sensor polarizing layer 115
  • the sensor is linearly polarized 82.
  • the first light receiving unit 321 and the second light receiving unit 322 can generate a pixel current having a magnitude corresponding to the brightness of the detected light.
  • the first light receiving portion 321 and the second light receiving portion 322 may be photodiodes, for example, but are not limited thereto.
  • the display circularly polarized light 71 and unpolarized light (not shown; 80 in FIG. 4) are incident on the upper surface of the light selection layer 200, that is, the upper surface of the sensor retardation layer 120.
  • the display circularly polarized light 71 is light after external light has passed through the display polarizing layer 11 and the display retardation layer 12, and the unpolarized light 80 is light traveling downward from the pixel P toward the light selection layer 200.
  • the display polarizing layer 11 may have a polarizing axis inclined at a second angle, for example -45 degrees, with respect to the slow axis of the display retardation layer 12. Therefore, the linearly polarized light 70 of the display after passing through the display polarizing layer 11 can be incident at the second angle with respect to the slow axis of the display retardation layer 12. If the first polarized part of the linear polarized light 70 of the display transmitted along the fast axis and the second polarized part of the linear polarized light 70 of the display transmitted along the slow axis pass through the display retardation layer 12, a phase of ⁇ /4 will be generated between each other. Difference. Thereby, the display linearly polarized light 70 after passing through the display retardation layer 12 can become the display circularly polarized light 71 rotating in the counterclockwise direction.
  • the display circularly polarized light 71 having a phase difference of ⁇ /4 between the fast axis and the slow axis becomes the sensor internal linearly polarized light 72a through the sensor delay layer 120.
  • the polarization axis of the linear polarization 72a inside the sensor and the polarization axis of the display linear polarization 70 are orthogonal to each other.
  • the non-polarized light 80 will directly pass through the sensor retardation layer 120.
  • the polarization axis of the first sensor polarization layer 110 is substantially parallel to the polarization axis of the sensor internal linear polarization 72a, the sensor internal linear polarization 72a emitted from the sensor delay layer 120 can pass through the first sensor polarization layer 110.
  • the polarization axis of the second sensor polarization layer 115 is substantially perpendicular to the polarization axis of the internal linear polarization 72a of the sensor, the internal linear polarization 72a of the sensor can be blocked by the second sensor polarization layer 115.
  • the unpolarized light 80 emitted from the sensor delay layer 120 passes through the first sensor polarizing layer 110 and the second sensor polarizing layer 115 to become the second sensor linearly polarized light 81 and the third sensor linearly polarized light 82. That is, the first light receiving unit 321 can detect the first sensor linearly polarized light 73 and the second sensor linearly polarized light 81 through the first light path composed of the sensor delay layer 120-the first sensor polarizing layer 110, and the sensor delay layer 120- The second light path formed by the second sensor polarizing layer 115, and the second light receiving portion 322 can detect the third sensor linearly polarized light 82.
  • FIG. 6 is a diagram for schematically explaining another embodiment of the sensor in the lower part of the display.
  • the light selection layer 201 includes a first sensor retardation layer 120, a second sensor retardation layer 125, and a sensor polarization layer 110.
  • the first sensor retardation layer 120 and the second sensor retardation layer 125 are arranged on the upper part of the sensor polarizing layer 110, and the photosensor 300 is arranged on the lower part of the sensor polarizing layer 110.
  • the light sensor 300 includes a light irradiating part 310 and a light receiving part 320.
  • the light receiving unit 320 includes: a first light receiving unit 321 arranged at a position where light emitted from the first sensor retardation layer 120 passes through the sensor polarizing layer 110; and a first light receiving unit 321 arranged at a position where the light emitted from the second sensor retardation layer 125 passes through the sensor.
  • the second light receiving portion 322 at the position reached after the polarizing layer 110.
  • the light irradiation unit 310 may be turned off.
  • the light selective layer 201 may be manufactured by laminating the first sensor retardation layer 120 and the second sensor retardation layer 125 on the upper surface of the sensor polarizing layer 110.
  • the light selection layer 201 may be attached to the bottom surface of the display 10.
  • the light sensor 300 may be attached to the bottom surface of the light selection layer 201.
  • a thin film transistor may be used to implement the photosensor 300.
  • the sensor 100' at the lower part of the display can be manufactured by laminating the film-like first and second sensor retardation layers 120 and 125, the sensor polarizing layer 110, and the photosensor 300.
  • the slow axis of the first sensor delay layer 120 and the slow axis of the second sensor delay layer 125 are substantially orthogonal.
  • the polarization axis of the sensor polarizing layer 110 may be inclined at a first angle, such as +45 degrees, with respect to the slow axis of the first sensor retardation layer 120, or may be inclined at a second angle, such as ⁇ 45 degrees, with respect to the slow axis of the second sensor retardation layer 125. tilt.
  • the first light receiving part 321 of the photosensor 300 is located at the vertical lower part of the first sensor delay layer 120, and detects the first sensor linearly polarized light 73 and the second sensor linearly polarized light 73 and the second sensor emitted by the display circularly polarized light 71 passing through the first sensor delay layer 120 and the sensor polarizing layer 110.
  • the sensor is linearly polarized 81.
  • the second light receiving part 322 of the light sensor 300 is located at the vertical lower part of the second sensor delay layer 125 and detects the linear polarization 82 of the third sensor.
  • the light receiving units 321 and 322 can generate pixel currents having a magnitude corresponding to the brightness of the detected light.
  • the light receiving parts 321 and 322 may be photodiodes, for example, but are not limited to this.
  • the display circularly polarized light 71 and unpolarized light are incident on the upper surface of the light selection layer 201, that is, the upper surfaces of the first sensor retardation layer 120 and the second sensor retardation layer 125.
  • the display circularly polarized light 71 with a phase difference of ⁇ /4 between the fast axis and the slow axis becomes the first sensor internal linear polarization 72b through the first sensor delay layer 120, and becomes the second sensor internal linear light through the second sensor delay layer 125 Polarized light 72c.
  • the polarization axis of the linear polarization 72b inside the first sensor and the polarization axis of the linear polarization 72c inside the second sensor may also be orthogonal.
  • the display circularly polarized light 71 having a phase difference of ⁇ /4 between the first polarized part and the second polarized part passes through the first sensor retardation layer 120 and adds a phase difference of ⁇ /4, thereby being able to have a phase difference of ⁇ /4.
  • the internal linear polarization 72b of the first sensor is a polarization axis substantially perpendicular to the polarization axis of the display linear polarization 70.
  • the phase difference of the display circularly polarized light 71 is eliminated by the second sensor retardation layer 125, and can become the second sensor internal linear polarized light 72c having a polarization axis substantially parallel to the polarization axis of the display linearly polarized light 70.
  • the unpolarized light 80 directly passes through the first and second sensor retardation layers 120 and 125.
  • the sensor polarization layer 110 has a polarization axis inclined at a first angle, for example +45 degrees, with respect to the slow axis of the first sensor retardation layer 120, or has a second angle, such as -45 degrees, with respect to the slow axis of the second sensor delay layer 125. Tilted polarization axis.
  • the internal linear polarization 72b of the first sensor can pass through the sensor polarization layer 110 almost without loss.
  • the polarization axis of the internal linear polarization 72c of the second sensor is substantially perpendicular to the polarization axis of the sensor polarization layer 110, the internal linear polarization 72c of the second sensor can be blocked by the sensor polarization layer 110.
  • the unpolarized light 80 after passing through the first and second sensor retardation layers 120 and 125 passes through the sensor polarizing layer 110 to become the second sensor linearly polarized light 81 and the third sensor linearly polarized light 82. That is, the first light receiving unit 321 can detect the first sensor linear polarization 73 and the second sensor linear polarization 81 through the first light path constituted by the first sensor delay layer 120 and the sensor polarization layer 110. On the other hand, the second light receiving unit 322 can detect the third sensor linear polarization 82 through the second light path constituted by the second sensor delay layer 125 and the sensor polarization layer 110.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Polarising Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示器下部的传感器(100),包括:光传感器(300),包括光照射部(310)和受光部(320),光照射部(310)照射用于感应位于显示器的外部的物体的感应光,受光部(320)检测感应用光从物体反射回来的反射光;第一传感器偏光层(110),配置在光传感器(300)的上部,并具有以第一角度倾斜的偏光轴;以及第一传感器延迟层(120),配置在传感器偏光层(110)的上部,并具有相对于偏光轴以第一角度倾斜的慢轴。

Description

显示器下部的传感器 技术领域
本发明涉及配置在显示器下部的光传感器。
背景技术
光传感器不仅用于移动电话、平板电脑等移动电子装置,还用于电视机、监控器这样的影像电子装置。光传感器包括例如照度传感器、接近传感器,接近照度传感器等。接近传感器是测量用户与电子装置之间的距离的光传感器,照度传感器是感应电子装置周边亮度的光传感器。结合了光学方式的接近传感器与照度传感器的接近照度传感器在单个封装体内实现两个传感器。
近来,显示器几乎占据电子装置前表面整体这样的设计有所增加。虽然显示器的大小根据要求大画面的需求而变大,但仍需要确保前表面的至少一部分区域,以配置照相机,特别是接近照度传感器。利用了超声波等的接近传感器能够应用于前表面由显示器覆盖的结构,但难以整合感应照度的功能。另一方面,照度传感器虽然也可以位于前表面以外的区域,但可能会因为用于保护电子装置的壳体而导致其无法感应到周边的光。因此,虽然能够设置接近照度传感器的最理想的位置是电子装置的前表面,但在显示器占据前表面整体的设计中,难以确保配置常用的接近照度传感器的位置。
发明内容
本发明的目的在于,提供一种能够应用于由显示器占据前表面整体这种设计的电子装置的光传感器。
提供一种在包括生成光的像素、配置在所述像素的上部的显示器延迟层以及显示器偏光层的显示器的下部配置的显示器下部的传感器。显示器 下部的传感器可以包括:光传感器,包括光照射部和受光部,所述光照射部照射用于感应位于所述显示器的外部的物体的感应光,所述受光部检测所述感应用光从所述物体反射回来的反射光;第一传感器偏光层,配置在所述光传感器的上部,并具有以第一角度倾斜的偏光轴;以及第一传感器延迟层,配置在所述传感器偏光层的上部,并具有相对于所述偏光轴以第一角度倾斜的慢轴。这里,所述第一传感器偏光层以及所述第一传感器延迟层可以将所述感应光转换为感应用传感器圆偏光使得通过所述显示器偏光层,所述感应用传感器圆偏光可以通过所述显示器延迟层转换为具有与所述显示器偏光层的偏光轴相同的偏光轴的感应用显示器线性偏光。
作为一实施例,可以为所述第一传感器延迟层的慢轴与所述显示器延迟层的慢轴平行,所述显示器偏光层的偏光轴相对于所述显示器延迟层的慢轴以第二角度倾斜。
作为一实施例,所述第二角度与所述第一角度之差可以为90度。
作为一实施例,显示器下部的传感器还可以包括第二传感器偏光层,所述第二传感器偏光层与所述第一传感器偏光层配置在同一平面,并具有以第二角度倾斜的偏光轴。
作为一实施例,所述受光部可以包括:第一受光部,配置在所述第一传感器偏光层的下部,检测从外来光产生的第一传感器线性偏光以及从在所述显示器内部生成的光产生的第二传感器线性偏光;以及第二受光部,配置在所述第二传感器偏光层的下部,检测从在所述显示器内部生成的光产生的第三传感器线性偏光。.
作为一实施例,显示器下部的传感器还可以包括第二传感器延迟层,所述第二传感器延迟层与所述第一传感器延迟层配置在同一平面,并具有与所述第一传感器延迟层的慢轴正交的慢轴。
作为一实施例,所述受光部可以包括:第一受光部,与所述第一传感器延迟层对应地配置在所述第一传感器偏光层的下部,并检测从外来光产生的第一传感器线性偏光以及从在所述显示器内部生成的光产生的第二 传感器线性偏光;以及第二受光部,与所述第二传感器延迟层对应地配置在所述第一传感器偏光层的下部,并检测从在所述显示器内部生成的光产生的第三传感器线性偏光。
作为一实施例,所述外来光的亮度可以是应用在不受到所述外来光的影响的环境下在所述第二传感器线性偏光与所述第三传感器线性偏光的亮度之间的成立的比例关系来修正的。
根据本发明的实施例的照度传感器够应用于由显示器占据前表面整体这种设计的电子装置。
附图说明
下面,参照附图中示出的实施例对本发明进行说明。为便于理解,在所有附图中,对同一构成部分标注同一附图标记。附图中示出的结构只是为了说明本发明而示意性示出的实施例,并不限定本发明的范围。特别是,为了有助于理解发明,在附图中对于一些构成部分多少夸张地表示。由于附图是为了理解发明的手段,因此,需要理解的是附图中所表示的构成部分的宽度、厚度等在实际实现时可能会有变化。
图1用于示意性地说明显示器下部的传感器的一实施例的图。
图2是用于示意性地说明显示器下部的传感器的另一实施例的图。
图3是用于示意性地说明从显示器下部的传感器照射的光在显示器内部反射的情况的图。
图4是用于示意性地说明显示器下部的传感器的工作原理的图。
图5是用于示意性地说明显示器下部的传感器的一实施例的图。
图6是用于示意性地说明显示器下部的传感器的另一实施例的图。
具体实施方式
本发明能够加入多种多样的变形并且能够具有各种实施例,将特定实施例示于附图,并对其进行详细说明。需要理解的是,这并不是将本发明限定于特定的实施方式,而是包括属于本发明的构思及技术范围内的所有 变形、等同方式以及替代方式。特别是,以下将参照附图说明的功能、特征、实施例能够单独地或与另一实施例结合而实现。因此,需要注意的是本发明的范围并不限定于附图所示的方式。
另一方面,关于在本说明书中使用的术语,“实质上”、“几乎”、“约”等表述是考虑到实际实现时允许的差值(margin)或可能发生的误差的表述。例如,对于“实质上为90度”,应当解释为将能够得到与90度时的效果相同的效果的角度也包括在内。又例如,“几乎没有”应当解释为包括到即使存在些许但也是能够忽视的程度。
另一方面,在没有特别提及的情况下,“侧面”或“水平”用于表示附图中的左右方向,而“竖直”用于表示附图中的上下方向。另外,在没有特别定义的情况下,角度、入射角等以垂直于附图中表示的水平面的虚拟直线为基准。
在所有附图中,对相同或类似的部分使用相同的附图标记而被引用。另外,在延迟层示出的阴影线表示慢轴的方向,在偏光层示出的阴影线示意性地表示偏光轴相对于向水平方向延伸的慢轴的方向。
图1是用于示意性地说明显示器下部的传感器的一实施例的图。
显示器下部的传感器100包括传感器偏光层110、传感器延迟层120以及光传感器300。光传感器300作为接近传感器工作,为此,包括光照射部310以及受光部320。光照射部310可以是产生属于可见光、近红外线、红外线频带的感应光的发光二极管。受光部320能够检测属于可见光、近红外线、红外线频带的反射光。例如,受光部320可由单个光电二极管构成,也可以由多个光电二极管构成。在由多个光电二极管构成的情况下,能够划分为两个以上的区域,每个区域的所检测的光的频带可以不同。为避免干涉,光照射部310与受光部320可在光学上分离。虽然未图示,但可以在光照射部310的上部配置用于提高感应光的直进性的准直透镜,且在受光部320的上部配置使反射光聚集的聚光透镜。
传感器偏光层110配置在光传感器300的上部,并且具有相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜的偏光轴。传感器延迟层120配置在传感器偏光层110的上部,例如具有向水平方向延伸的慢轴与向竖直方向延伸的快轴。传感器延迟层120的慢轴可在实质上与显示器延迟层12的慢轴平行。
传感器偏光层110与传感器延迟层120使由光照射部310生成的感应光能够通过显示器10而向外部射出。另外,传感器偏光层110与传感器延迟层120使被外部物体反射后的反射光能够通过显示器10而到达受光部320。
光照射部310生成作为非偏光的感应光20。所生成的感应光20随着通过传感器偏光层110而成为具有以第一角度倾斜的偏光轴的感应用传感器线性偏光21。由于感应用传感器线性偏光21的偏光轴相对于传感器延迟层120的慢轴例如以+45度倾斜,所以感应用传感器线性偏光21随着通过传感器延迟层120而成为向顺时针方向旋转的感应用传感器圆偏光22。沿着快轴透射的感应用传感器线性偏光21的第一偏光部分与沿着慢轴透射的感应用传感器线性偏光21的第二偏光部分若通过了传感器延迟层120,则在相互间产生λ/4的相位差。感应用传感器圆偏光22通过显示器10的底面而入射于显示器内部。
感应用传感器圆偏光22随着通过显示器延迟层12而成为感应用显示器线性偏光23。由于显示器延迟层12的慢轴与传感器延迟层120的慢轴实质上平行,所以使感应用传感器圆偏光22的第一偏光部分与第二偏光部分增加λ/4相位差,从而相互间的相位差成为λ/2。由此,感应用显示器线性偏光23的偏光轴从第一角度旋转约90度而相对于显示器延迟层12的慢轴以第二角度例如-45度倾斜。
感应用显示器线性偏光23实质上无损失地通过显示器偏光层11而向外部前进。显示器偏光层11具有相对于显示器延迟层12的慢轴以第二角度例如-45度倾斜的偏光轴。因此,具有以与显示器偏光层11的偏光轴相 同的角度倾斜的偏光轴的感应用显示器线性偏光23能够通过显示器偏光层11。
射出到显示器10外部的感应用显示器线性偏光23被物体反射而再次入射于显示器10。为了区分,将入射于显示器10的反射光称为经反射的显示器线性偏光30。经反射的显示器线性偏光30可具有以第二角度例如-45度倾斜的偏光轴。因此,具有以与显示器偏光层11的偏光轴相同的角度倾斜的偏光轴的经反射的显示器线性偏光30能够通过显示器偏光层11。
经反射的显示器线性偏光30通过显示器延迟层12而成为向逆时针方向旋转的经反射的显示器圆偏光31。如上所述,由于显示器偏光层11的偏光轴相对于显示器延迟层12的慢轴以-45倾斜,因此在经反射的显示器线性偏光30的第一偏光部分与第二偏光部分之间产生λ/4相位差。经反射的显示器圆偏光31通过显示器10的底面而入射于显示器下部的传感器100。
经反射的显示器圆偏光31通过传感器延迟层120而成为经反射的传感器线性偏光32。如上所述,由于显示器延迟层12的慢轴与传感器延迟层120的慢轴实质上平行,所以使经反射的显示器圆偏光31的第一偏光部分与第二偏光部分增加λ/4相位差,从而相互间的相位差成为λ/2。由此,经反射的传感器线性偏光32的偏光轴从第二角度旋转约90度而相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜。
经反射的传感器线性偏光32实质上无损失地通过传感器偏光层110向受光部320前进。传感器偏光层110可具有相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜的偏光轴。因此,具有以与传感器偏光层110的偏光轴相同的角度倾斜的偏光轴的经反射的传感器线性偏光32能够通过传感器偏光层110。
图2是用于示意性地说明显示器下部的传感器的另一实施例的图。
显示器下部的传感器100包括传感器偏光层115、传感器延迟层120以及光传感器300。光传感器300作为接近传感器来工作,为此,包括光照射部310以及受光部320。光照射部310可以为产生属于可见光、近红外线、红外线频带的感应光的发光二极管。受光部320能够检测属于可见光、近红外线、红外线频带的反射光。
传感器偏光层115配置在光传感器300的上部,并且具有相对于传感器延迟层120的慢轴以第二角度例如-45度倾斜的偏光轴。传感器延迟层120配置在传感器偏光层115的上部,并具有例如向水平方向延伸的慢轴和向竖直方向延伸的快轴。传感器延迟层120的慢轴可以与显示器延迟层12的慢轴在实质上平行。
传感器偏光层115和传感器延迟层120能够使得通过光照射部310生成的感应光通过显示器10而射出到外部。另外,传感器偏光层115和传感器延迟层120能够使得被外部物体反射后的光通过显示器10而到达受光部320。
光照射部310生成非偏光的感应光40。所生成的感应光40随着通过传感器偏光层115而成为具有以第二角度倾斜的偏光轴的感应用传感器线性偏光41。感应用传感器线性偏光41的偏光轴由于相对于传感器延迟层120的慢轴例如以-45度倾斜,所以感应用传感器线性偏光41随着通过传感器延迟层120而成为向逆时针方向旋转的感应用传感器圆偏光42。沿着快轴透射的感应用传感器线性偏光41的第一偏光部分和沿着慢轴透射的感应用传感器线性偏光41的第二偏光部分通过了传感器延迟层120,则会在彼此间产生λ/4的相位差。感应用传感器圆偏光42通过显示器10的底面而入射到显示器内部。
感应用传感器圆偏光42随着通过显示器延迟层12而成为感应用显示器线性偏光43。由于显示器延迟层12的慢轴和传感器延迟层120的慢轴在实质上是平行的,所以会在感应用传感器圆偏光42的第一偏光部分和第二偏光部分上加上λ/4相位差,从而彼此间的相位差成为λ/2。由此,感 应用显示器线性偏光43的偏光轴从第二角度旋转约90度而以第一角度倾斜,例如相对于显示器延迟层12的慢轴以+45度倾斜。
感应用显示器线性偏光43实质上无损失地通过显示器偏光层11而向外部前进。显示器偏光层11可以具有相对于显示器延迟层12的慢轴以第一角度例如+45度倾斜的偏光轴。因此,具有以与显示器偏光层11的偏光轴相同的角度倾斜的偏光轴的感应用显示器线性偏光43能够通过显示器偏光层11。
向显示器10外部射出的感应用显示器线性偏光43被物体反射而再次入射到显示器10。经反射的显示器线性偏光50可以具有以第一角度例如+45度倾斜的偏光轴。因此,具有以与显示器偏光层11的偏光轴相同的角度倾斜的偏光轴的经反射的显示器线性偏光50能够通过显示器偏光层11。
经反射的显示器线性偏光50通过显示器延迟层12而成为向顺时针方向旋转的经反射的显示器圆偏光51。如上所述,由于显示器偏光层11的偏光轴相对于显示器延迟层12的慢轴以-45度倾斜,所以经反射的显示器线性偏光50的第一偏光部分与第二偏光部分之间会产生λ/4相位差。经反射的显示器圆偏光51通过显示器10的底面而向显示器下部的传感器100入射。
经反射的显示器圆偏光51通过传感器延迟层120而成为经反射的传感器线性偏光52。如上所述,由于显示器延迟层12的慢轴与传感器延迟层120的慢轴在实质上是平行的,所以会在经反射的显示器圆偏光51的第一偏光部分和第二偏光部分上加上λ/4相位差,从而彼此间的相位差成为λ/2。由此,经反射的传感器线性偏光52的偏光轴从第一角度旋转约90度而以第二角度倾斜,例如相对于传感器延迟层120的慢轴以-45度倾斜。
经反射的传感器线性偏光52实质上无损失地通过传感器偏光层115而向受光部320前进。传感器偏光层115可以具有相对于传感器延迟层120的慢轴以第二角度例如-45度倾斜的偏光轴。因此,具有以与传感器偏光 层115的偏光轴相同的角度倾斜的偏光轴的经反射的传感器线性偏光52能够通过传感器偏光层115。
图3是用于示意性地说明从显示器下部的传感器照射的光在显示器内部反射后的情况的图。
在显示器下部的传感器100生成的感应用传感器圆偏光21能够在显示器10内部反射而再次向显示器下部的传感器100入射。显示器10中混合存在由将光透过或反射的元件形成的多种结构。由此,感应用传感器圆偏光21的一部分能够被内部反射而重新回到显示器下部的传感器100。经内部反射的感应用传感器圆偏光21的一部分由于会在外部物体的有无或者到外部物体的距离判定上导致错误,所以应阻止其向受光部320的前进。
经内部反射的传感器圆偏光60通过传感器延迟层120而成为经内部反射的传感器线性偏光61。经内部反射的传感器线性偏光61的偏光轴从感应用传感器线性偏光20的偏光轴旋转约90度。由此,经内部反射的传感器线性偏光61的偏光轴与传感器偏光层110的偏光轴垂直,从而能够被传感器偏光层110阻隔。
图4是用于示意性地说明显示器下部的照度传感器的工作原理的图,参照图4~图6,对显示器下部的传感器100’用于作为照度传感器工作的结构以及原理进行说明。
显示器下部的传感器100’配置在显示器10下部。显示器10包括:形成有生成光的多个像素P的像素层13、在像素层13上部层叠的显示器偏光层11以及显示器延迟层12。为了保护显示器偏光层11、显示器延迟层12以及像素层13,可以在显示器10的底面配置由不透光材料例如金属或合成树脂形成的保护层。作为一实施例,由光选择层200和光传感器300构成的显示器下部的传感器100’可配置在去除保护层的一部分后的区域(以下称为完成型结构)。作为另一实施例,显示器下部的传感器100’的光选择层200可以被制造成膜状并层压在显示器10的底面。也可以通过使光传感器300附着在光选择层200的底面的方式来实现显示器下部的照 度传感器(以下称为组装型结构)。下文中,为了避免重复说明,以完成型结构为中心进行说明。
显示器偏光层11以及显示器延迟层12提高显示器10的可视性。通过显示器10的上表面入射的外来光是非偏光。若外来光入射到显示器偏光层11的上表面,则只有与显示器偏光层11的偏光轴实质上一致的显示器线性偏光70会通过显示器偏光层11。显示器线性偏光70若通过了显示器延迟层12,则成为向顺时针方向或者逆时针方向旋转的显示器圆偏光(或者椭圆偏光)71。若显示器圆偏光71被像素层13反射而再次入射到显示器延迟层12,则成为第二线性偏光。这里,若显示器延迟层12的偏光轴相对于慢轴倾斜了约45度,则显示器线性偏光70的偏光轴与第二线性偏光的偏光轴会相互正交。由此,第二线性偏光、即被像素层13反射后的外来光被显示器偏光层11阻隔而无法向显示器外部射出。由此,能够提高显示器10的可视性。
像素P所生成的非偏光80不仅朝向显示器10的上表面前进,还朝向底面前进。另外,朝向上表面前进着的非偏光80的一部分在显示器10内部被反射而再次朝向底面前进。不同于显示器圆偏光71,非偏光80是直接通过显示器延迟层12的,通过显示器偏光层11成为线性偏光而向外部射出。
显示器下部的传感器100’包括具有两个光路径的光选择层200以及检测通过各光路径后的光的光传感器300。向显示器下部的传感器100’入射的光是从外来光产生的显示器圆偏光71和在显示器内部生成的非偏光80。光选择层200内的第一光路径和第二光路径对于显示器圆偏光71和非偏光80产生的作用是互不相同的。第一光路径使显示器圆偏光71和非偏光80都通过。相反,第二光路径使非偏光80通过并且实质上阻隔显示器圆偏光71。通过第一光路径后的显示器圆偏光71成为第一传感器线性偏光73,通过第一光路径以及第二光路径后的非偏光80成为第二传感器线性偏光81以及第三传感器线性偏光82。
光传感器300包括与第一光路径对应的第一受光部321以及与第二光路径对应的第二受光部322。例如,第一受光部321生成实质上与显示器圆偏光71和非偏光80的光亮成比例的第一像素电流,第二受光部322生成实质上与非偏光80的光亮成比例的第二像素电流。第一受光部321或第二受光部322可以由例如一个光电二极管或者多个光电二极管(以下称为PD阵列)构成。作为一实施例,一个或者两个光电二极管可以与一个像素P对应。作为另一实施例,PD阵列可以与一个像素P对应。作为又一实施例,一个或者两个光电二极管可以与多个像素P对应。作为又一实施例,PD阵列可以与多个像素P对应。这里,第一受光部321以及第二受光部322可以共同检测属于特定波长范围的光,或者可以分别检测属于不同波长范围的光,例如红色光、绿色光、蓝色光、近红外线等。
照度传感器是用于测量外来光的亮度的装置。在照度传感器配置在显示器下部的情况下,不仅仅是通过显示器后的外来光,在显示器内部生成的光也会入射到照度传感器。因此,为了准确地测量外来光的亮度,需要测量在显示器内部生成的光的亮度。若能够只测量在显示器内部生成的光的亮度,则能够利用此来修正测量到的外来光的亮度。
如上所述,从非偏光80产生的第二传感器线性偏光81以及第三传感器线性偏光82可以分别被第一受光部321以及第二受光部322检测。尤其是,通过光选择层200从显示器圆偏光71产生的传感器内部线性偏光实质上无法入射到第二受光部322,因此第二受光部322能够只测量从非偏光80产生的第三传感器线性偏光82的亮度。另一方面,虽然会在下文中详细说明,但第二传感器线性偏光81以及第三传感器线性偏光82的亮度实质上可以相同,但相反也可以不同。然而,第二传感器线性偏光81以及第三传感器线性偏光82由于是从一个或者多个像素所生成的非偏光80产生的,所以线性比例关系或者非线性比例关系在两者之间的亮度上成立。非线性比例关系可以是因显示器10的结构特征、与各受光部对应的像素区域的不同、非偏光80的波长范围等多种原因而导致的。第二传感 器线性偏光81与第三传感器线性偏光82间的比例关系可以在不受到外来光的影响的环境下测量。根据比例关系,能够通过由第二受光部322测量的第三传感器线性偏光82的亮度来算出第二传感器线性偏光81对由第一受光部321测量的亮度做贡献的程度。由此,能够精密地测量外来光的亮度。
图5是用于示意性地说明显示器下部的传感器的一实施例的图。在图5以及图6中,为了简化图,对于从像素P射出来的非偏光,仅示出通过光选择层射出来的光。
光选择层200包括传感器延迟层120、第一传感器偏光层110以及第二传感器偏光层115。传感器延迟层120配置在第一传感器偏光层110以及第二传感器偏光层115的上部,光传感器300配置在第一传感器偏光层110以及第二传感器偏光层115的下部。光传感器300包括光照射部310以及受光部320。光传感器300的受光部320包括:配置在第一传感器偏光层110的下部的第一受光部321;以及配置在第二传感器偏光层115的下部的第二受光部322。在作为照度传感器工作的期间,可以将光照射部310关闭。作为一实施例,光选择层200可以通过在第一传感器偏光层110以及第二传感器偏光层115的上表面层叠(层压)传感器延迟层120来制造。光选择层200可以附着在显示器10的底面。光传感器300可以附着在光选择层200的底面。作为另一实施例,可以利用薄膜晶体管来实现光传感器300。由此,显示器下部的传感器100’可以通过层叠膜状的传感器延迟层120、第一以及第二传感器偏光层110、115以及光传感器300来制造。
第一传感器偏光层110的偏光轴和第二传感器偏光层115的偏光轴相对于传感器延迟层120的慢轴以不同角度倾斜。第一传感器偏光层110的偏光轴可以相对于传感器延迟层120的慢轴以第一角度例如+45度倾斜,第二传感器偏光层115的偏光轴可以相对于传感器延迟层120的慢轴以第二角度例如-45度倾斜。
光传感器300的第一受光部321检测从第一传感器偏光层110射出的第一传感器线性偏光73以及第二传感器线性偏光81,第二受光部322检测从第二传感器偏光层115射出的第三传感器线性偏光82。第一受光部321、第二受光部322可以生成具有与检测到的光的光亮相应的大小的像素电流。第一受光部321、第二受光部322例如可以为光电二极管,但不限定于此。
下面,对具有上述结构的光选择层200的显示器下部的传感器100’的工作进行说明。
显示器圆偏光71以及非偏光(未图示;图4中的80)向光选择层200的上表面即传感器延迟层120的上表面入射。显示器圆偏光71是外来光通过显示器偏光层11以及显示器延迟层12后的光,非偏光80是从像素P朝向光选择层200向下方前进的光。
显示器偏光层11可以具有相对于显示器延迟层12的慢轴以第二角度例如-45度倾斜的偏光轴。因此,通过显示器偏光层11后的显示器线性偏光70能够相对于显示器延迟层12的慢轴以第二角度入射。沿着快轴透射的显示器线性偏光70的第一偏光部分和沿着慢轴透射的显示器线性偏光70的第二偏光部分若通过了显示器延迟层12,则会在彼此间产生λ/4的相位差。由此,通过显示器延迟层12后的显示器线性偏光70能够成为向逆时针方向旋转的显示器圆偏光71。
在快轴与慢轴之间具有λ/4的相位差的显示器圆偏光71通过传感器延迟层120成为传感器内部线性偏光72a。传感器内部线性偏光72a的偏光轴与显示器线性偏光70的偏光轴会相互正交。另一方面,非偏光80会直接通过传感器延迟层120。
由于第一传感器偏光层110的偏光轴与传感器内部线性偏光72a的偏光轴在实质上是平行的,所以从传感器延迟层120射出的传感器内部线性偏光72a能够通过第一传感器偏光层110。相反,由于第二传感器偏光层115的偏光轴与传感器内部线性偏光72a的偏光轴实质上是垂直的,所以 传感器内部线性偏光72a能够被第二传感器偏光层115阻隔。另一方面,从传感器延迟层120射出的非偏光80分别通过第一传感器偏光层110以及第二传感器偏光层115而成为第二传感器线性偏光81以及第三传感器线性偏光82。即,通过由传感器延迟层120-第一传感器偏光层110构成的第一光路径,第一受光部321能够检测第一传感器线性偏光73以及第二传感器线性偏光81,通过由传感器延迟层120-第二传感器偏光层115构成的第二光路径,第二受光部322能够检测第三传感器线性偏光82。
图6是用于示意性地说明显示器下部的传感器的另一实施例的图。
光选择层201包括第一传感器延迟层120、第二传感器延迟层125以及传感器偏光层110。第一传感器延迟层120以及第二传感器延迟层125配置在传感器偏光层110的上部,光传感器300配置在传感器偏光层110的下部。光传感器300包括光照射部310以及受光部320。受光部320包括:配置在从第一传感器延迟层120射出的光在通过传感器偏光层110后到达的位置的第一受光部321;以及配置在从第二传感器延迟层125射出的光在通过传感器偏光层110后到达的位置的第二受光部322。在作为照度传感器来工作的期间,可以将光照射部310关闭。作为一实施例,光选择层201可以通过在传感器偏光层110的上表面层叠第一传感器延迟层120以及第二传感器延迟层125来制造。光选择层201可以附着在显示器10的底面。光传感器300可以附着在光选择层201的底面。作为另一实施例,可以利用薄膜晶体管来实现光传感器300。由此,显示器下部的传感器100’可以通过层叠膜状的第一以及第二传感器延迟层120、125、传感器偏光层110以及光传感器300来制造。
第一传感器延迟层120的慢轴与第二传感器延迟层125的慢轴在实质上正交。传感器偏光层110的偏光轴可以相对于第一传感器延迟层120的慢轴以第一角度例如+45度倾斜,或者可以相对于第二传感器延迟层125的慢轴以第二角度例如-45度倾斜。
光传感器300的第一受光部321位于第一传感器延迟层120的竖直下部,检测显示器圆偏光71通过第一传感器延迟层120以及传感器偏光层110而射出的第一传感器线性偏光73以及第二传感器线性偏光81。光传感器300的第二受光部322位于第二传感器延迟层125的竖直下部,检测第三传感器线性偏光82。受光部321、322可以生成具有与检测到的光的光亮相应的大小的像素电流。受光部321、322例如可以为光电二极管,但不限定于此。
下面,对具有上述结构的光选择层201的显示器下部的传感器100’的工作进行说明。由于对于显示器圆偏光71以及非偏光80的说明是与图5相同的,故进行省略。
显示器圆偏光71以及非偏光(未图示;图4中的30)向光选择层201的上表面、即第一传感器延迟层120以及第二传感器延迟层125的上表面入射。在快轴与慢轴之间具有λ/4的相位差的显示器圆偏光71通过第一传感器延迟层120成为第一传感器内部线性偏光72b,并通过第二传感器延迟层125成为第二传感器内部线性偏光72c。由于第一传感器延迟层120的慢轴与第二传感器延迟层125的慢轴正交,所以第一传感器内部线性偏光72b的偏光轴与第二传感器内部线性偏光72c的偏光轴也可以正交。具体而言,在第一偏光部分与第二偏光部分之间具有λ/4的相位差的显示器圆偏光71通过第一传感器延迟层120而再加上λ/4的相位差,从而能够成为具有与显示器线性偏光70的偏光轴实质上垂直的偏光轴的第一传感器内部线性偏光72b。相反,显示器圆偏光71的相位差通过第二传感器延迟层125被消除,从而能够成为具有与显示器线性偏光70的偏光轴实质上平行的偏光轴的第二传感器内部线性偏光72c。另一方面,非偏光80直接通过第一以及第二传感器延迟层120、125。
从第一传感器延迟层120射出的第一传感器内部线性偏光72b虽然会通过传感器偏光层110,但从第二传感器延迟层125射出的第二传感器内部线性偏光72c则无法通过传感器偏光层110。传感器偏光层110具有相 对于第一传感器延迟层120的慢轴以第一角度例如+45度倾斜的偏光轴,或者具有相对于第二传感器延迟层125的慢轴以第二角度例如-45度倾斜的偏光轴。因此,第一传感器内部线性偏光72b的偏光轴由于与传感器偏光层110的偏光轴是在实质上平行的,所以第一传感器内部线性偏光72b能够几乎无损失地通过传感器偏光层110。相反,第二传感器内部线性偏光72c的偏光轴由于与传感器偏光层110的偏光轴是在实质上垂直的,所以第二传感器内部线性偏光72c能够被传感器偏光层110阻隔。另一方面,通过第一以及第二传感器延迟层120、125后的非偏光80通过传感器偏光层110而成为第二传感器线性偏光81以及第三传感器线性偏光82。即,通过由第一传感器延迟层120-传感器偏光层110构成的第一光路径,第一受光部321能够检测第一传感器线性偏光73以及第二传感器线性偏光81。另一方面,通过由第二传感器延迟层125-传感器偏光层110构成的第二光路径,第二受光部322能够检测第三传感器线性偏光82。
上述的本发明的说明是示例性的,对于本发明所属领域的具有常规知识的技术人员而言,可以理解在不改变本发明的技术构思或者必要特征的情况下,能够容易变形成其他的具体方式。因此,应理解以上描述的实施例均是示例性的,并不是用于进行限定的。此外,参照附图说明的本发明的特征并不是限定于特定附图示出的结构,可通过单独的或者与其他的特征结合而实现。
本发明的范围是通过随附的权利要求书来呈现的,而非通过上述的说明来呈现,应当理解,从权利要求书的含义和范围以及其等同的概念得到的所有的变更或变型的方式均包含在本发明的范围内。

Claims (8)

  1. 一种显示器下部的传感器,该显示器下部的传感器配置在包括生成光的像素、配置在所述像素的上部的显示器延迟层以及显示器偏光层的显示器的下部,其特征在于,
    所述显示器下部的传感器包括:
    光传感器,包括光照射部和受光部,所述光照射部照射用于感应位于所述显示器的外部的物体的感应光,所述受光部检测所述感应用光从所述物体反射回来的反射光;
    第一传感器偏光层,配置在所述光传感器的上部,并具有以第一角度倾斜的偏光轴;以及
    第一传感器延迟层,配置在所述传感器偏光层的上部,并具有相对于所述偏光轴以第一角度倾斜的慢轴,
    所述第一传感器偏光层以及所述第一传感器延迟层将所述感应光转换为感应用传感器圆偏光使得通过所述显示器偏光层,
    所述感应用传感器圆偏光通过所述显示器延迟层转换为具有与所述显示器偏光层的偏光轴相同的偏光轴的感应用显示器线性偏光。
  2. 根据权利要求1所述的显示器下部的传感器,其特征在于,
    所述第一传感器延迟层的慢轴与所述显示器延迟层的慢轴平行,
    所述显示器偏光层的偏光轴相对于所述显示器延迟层的慢轴以第二角度倾斜。
  3. 根据权利要求2所述的显示器下部的传感器,其特征在于,
    所述第二角度与所述第一角度之差为90度。
  4. 根据权利要求1所述的显示器下部的传感器,其特征在于,
    所述显示器下部的传感器还包括第二传感器偏光层,所述第二传感器偏光层与所述第一传感器偏光层配置在同一平面,并具有以第二角度倾斜的偏光轴。
  5. 根据权利要求4所述的显示器下部的传感器,其特征在于,
    所述受光部包括:
    第一受光部,配置在所述第一传感器偏光层的下部,检测从外来光产生的第一传感器线性偏光以及从在所述显示器内部生成的光产生的第二传感器线性偏光;以及
    第二受光部,配置在所述第二传感器偏光层的下部,检测从在所述显示器内部生成的光产生的第三传感器线性偏光。
  6. 根据权利要求1所述的显示器下部的传感器,其特征在于,
    所述显示器下部的传感器还包括第二传感器延迟层,所述第二传感器延迟层与所述第一传感器延迟层配置在同一平面,并具有与所述第一传感器延迟层的慢轴正交的慢轴。
  7. 根据权利要求6所述的显示器下部的传感器,其特征在于,
    所述受光部包括:
    第一受光部,与所述第一传感器延迟层对应地配置在所述第一传感器偏光层的下部,并检测从外来光产生的第一传感器线性偏光以及从在所述显示器内部生成的光产生的第二传感器线性偏光;以及
    第二受光部,与所述第二传感器延迟层对应地配置在所述第一传感器偏光层的下部,并检测从在所述显示器内部生成的光产生的第三传感器线性偏光。
  8. 根据权利要求5或7所述的显示器下部的传感器,其特征在于,
    所述外来光的亮度是应用在不受到所述外来光的影响的环境下在所述第二传感器线性偏光与所述第三传感器线性偏光的亮度之间的成立的比例关系来修正的。
PCT/CN2020/072107 2020-01-15 2020-01-15 显示器下部的传感器 WO2021142638A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112020006525.1T DE112020006525T5 (de) 2020-01-15 2020-01-15 Sensor im unteren Displaybereich
PCT/CN2020/072107 WO2021142638A1 (zh) 2020-01-15 2020-01-15 显示器下部的传感器
CN202080001874.2A CN112292583B (zh) 2020-01-15 2020-01-15 显示器下部的传感器
US17/056,770 US11867538B2 (en) 2020-01-15 2020-01-15 Lower display sensor
US17/150,435 US20210285764A1 (en) 2020-01-15 2021-01-15 Under-display sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072107 WO2021142638A1 (zh) 2020-01-15 2020-01-15 显示器下部的传感器

Publications (1)

Publication Number Publication Date
WO2021142638A1 true WO2021142638A1 (zh) 2021-07-22

Family

ID=74425326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072107 WO2021142638A1 (zh) 2020-01-15 2020-01-15 显示器下部的传感器

Country Status (4)

Country Link
US (1) US11867538B2 (zh)
CN (1) CN112292583B (zh)
DE (1) DE112020006525T5 (zh)
WO (1) WO2021142638A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11474273B2 (en) * 2020-11-29 2022-10-18 Shlomo Reches Detector locator system
CN112924023A (zh) * 2021-02-23 2021-06-08 杭州芯格微电子有限公司 显示屏下方的传感器及利用其来测量外界光的强度的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200928489A (en) * 2007-12-31 2009-07-01 Chunghwa Picture Tubes Ltd Examining device and examining method
JP4559162B2 (ja) * 2004-08-30 2010-10-06 ソフトバンクモバイル株式会社 情報通信端末
CN204155595U (zh) * 2013-11-07 2015-02-11 苹果公司 电子设备和检测落在电子设备上的环境光的装置
CN105974697A (zh) * 2016-07-20 2016-09-28 京东方科技集团股份有限公司 显示面板及显示装置
CN106200094A (zh) * 2016-07-08 2016-12-07 京东方科技集团股份有限公司 一种反射式显示装置及其制作方法
CN108881538A (zh) * 2018-06-22 2018-11-23 北京小米移动软件有限公司 移动终端
CN109036163A (zh) * 2018-08-31 2018-12-18 京东方科技集团股份有限公司 一种显示装置及其环境光检测方法
CN109425427A (zh) * 2017-08-22 2019-03-05 华为技术有限公司 光传感器及终端设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747053B2 (ja) * 2006-08-15 2011-08-10 Nec液晶テクノロジー株式会社 液晶表示素子及びこれを搭載した電子機器
JP5211715B2 (ja) * 2007-03-20 2013-06-12 ソニー株式会社 表示装置
US8198802B2 (en) * 2008-07-25 2012-06-12 Samsung Mobile Display Co., Ltd. Organic light emitting diode display for suppressing reflection of external light
BRPI0919197A2 (pt) * 2008-09-19 2015-12-15 Sharp Kk painel de vídeo alojando sensores óticos
WO2013122214A1 (ja) * 2012-02-15 2013-08-22 シャープ株式会社 光学フィルム
KR101919107B1 (ko) * 2012-05-08 2018-11-16 삼성디스플레이 주식회사 표시 장치
JP6166977B2 (ja) * 2013-06-21 2017-07-19 富士フイルム株式会社 円偏光フィルターおよびその応用
JPWO2015025909A1 (ja) * 2013-08-21 2017-03-02 富士フイルム株式会社 円偏光フィルターおよびその応用
KR102209513B1 (ko) * 2014-07-01 2021-01-29 엘지전자 주식회사 근접조도센서 모듈 및 이를 이용한 이동 단말기
JP6364335B2 (ja) * 2014-12-04 2018-07-25 株式会社ジャパンディスプレイ 表示装置
CN104466024B (zh) * 2014-12-23 2017-08-04 上海天马有机发光显示技术有限公司 一种光学构件及oled显示器
US10664676B2 (en) * 2017-06-12 2020-05-26 Will Semiconductor (Shanghai) Co. Ltd. Systems and methods for reducing unwanted reflections in display systems incorporating an under display biometric sensor
US11163159B1 (en) * 2019-01-25 2021-11-02 Facebook Technologies, Llc Display system with extended display area
GB202008691D0 (en) * 2020-06-09 2020-07-22 Ams Int Ag Ambient light sensing
CN111968602B (zh) * 2020-08-28 2022-03-25 Oppo广东移动通信有限公司 显示装置、电子设备及电子设备的控制方法
CN111968603B (zh) * 2020-08-28 2022-01-07 Oppo广东移动通信有限公司 显示装置、电子设备及电子设备的控制方法
CN114373384A (zh) * 2020-10-18 2022-04-19 胜薪科技股份有限公司 电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559162B2 (ja) * 2004-08-30 2010-10-06 ソフトバンクモバイル株式会社 情報通信端末
TW200928489A (en) * 2007-12-31 2009-07-01 Chunghwa Picture Tubes Ltd Examining device and examining method
CN204155595U (zh) * 2013-11-07 2015-02-11 苹果公司 电子设备和检测落在电子设备上的环境光的装置
CN106200094A (zh) * 2016-07-08 2016-12-07 京东方科技集团股份有限公司 一种反射式显示装置及其制作方法
CN105974697A (zh) * 2016-07-20 2016-09-28 京东方科技集团股份有限公司 显示面板及显示装置
CN109425427A (zh) * 2017-08-22 2019-03-05 华为技术有限公司 光传感器及终端设备
CN108881538A (zh) * 2018-06-22 2018-11-23 北京小米移动软件有限公司 移动终端
CN109036163A (zh) * 2018-08-31 2018-12-18 京东方科技集团股份有限公司 一种显示装置及其环境光检测方法

Also Published As

Publication number Publication date
US11867538B2 (en) 2024-01-09
CN112292583B (zh) 2022-06-03
CN112292583A (zh) 2021-01-29
DE112020006525T5 (de) 2022-12-01
US20220341761A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2021146959A1 (zh) 显示器下部的照度传感器
JP5174962B2 (ja) タッチパネル、液晶パネル、液晶表示装置、及びタッチパネル一体型の液晶表示装置
WO2021072768A1 (zh) 指纹识别装置和电子设备
JP7166100B2 (ja) 画像センサを備えた表示システム
WO2021142639A1 (zh) 显示器下部的传感器
WO2021142638A1 (zh) 显示器下部的传感器
JP7124125B2 (ja) 保護フィルム並びに、保護フィルムを切断するための方法及び装置
US20210174053A1 (en) Display capable of detecting fingerprint
JP2019035955A (ja) 表示・検出システム
WO2010084639A1 (ja) 液晶表示装置
KR20080089115A (ko) 시엠오에스어레이를 이용한 터치스크린
WO2020220298A1 (zh) 指纹识别装置和电子设备
KR20180017304A (ko) 표시 장치
JP6552052B2 (ja) トナー付着量センサ
CN114373384A (zh) 电子装置
CA2857914C (en) Band pass optical touch sensing apparatus and method
CN211180838U (zh) 指纹识别装置和电子设备
JP2004205499A (ja) 回帰反射型光電センサ
CN112364797A (zh) 指纹传感器及利用其提升指纹图像的对比度的方法
WO2021217308A1 (zh) 显示器下部的色彩照度传感器
US11776298B2 (en) Under display fingerprint sensor with improved contrast ratio
WO2021147096A1 (zh) 显示器下部的传感器
CN112924023A (zh) 显示屏下方的传感器及利用其来测量外界光的强度的方法
JPWO2019004242A1 (ja) 液晶表示装置
TW202217405A (zh) 電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913255

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20913255

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.01.2023)