WO2021142589A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021142589A1
WO2021142589A1 PCT/CN2020/071847 CN2020071847W WO2021142589A1 WO 2021142589 A1 WO2021142589 A1 WO 2021142589A1 CN 2020071847 W CN2020071847 W CN 2020071847W WO 2021142589 A1 WO2021142589 A1 WO 2021142589A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
terminal device
bwp
dci
indication information
Prior art date
Application number
PCT/CN2020/071847
Other languages
English (en)
French (fr)
Inventor
酉春华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080092684.6A priority Critical patent/CN114946256A/zh
Priority to PCT/CN2020/071847 priority patent/WO2021142589A1/zh
Priority to EP20913142.4A priority patent/EP4080972A4/en
Publication of WO2021142589A1 publication Critical patent/WO2021142589A1/zh
Priority to US17/863,150 priority patent/US20220353921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • the basis of wireless communication is spectrum resources, which can be divided into two types according to their types, licensed spectrum and unlicensed spectrum.
  • Licensed spectrum can only be used by a specific operator in a certain place, while unlicensed spectrum can be used by any operator and is a shared spectrum resource.
  • unlicensed spectrum because it is a shared spectrum, there may be many different air interface technologies.
  • the network device or terminal device needs to complete channel access before using the unlicensed spectrum for service transmission.
  • Each search space group can include one or more search spaces.
  • the search space can also be called It is the search space set.
  • the present application provides a communication method and device to determine which search space in the search space group to select to monitor the DCI.
  • the embodiments of the present application provide a communication method, which may be applied to a terminal device, or may also be applied to a chip inside the terminal device. Take the application of this method to a terminal device as an example.
  • the terminal device can receive first configuration information from a network device.
  • the first configuration information is used to configure the first search space and the second search space of the first frequency domain resource.
  • the first search space and the second search space of the first frequency domain resource are used for the monitoring of DCI of the same format; and the terminal device activates the first frequency domain resource, and uses the first frequency domain resource on the first frequency domain resource according to the first frequency domain.
  • the first search space of the resource monitors the DCI.
  • the terminal device when the terminal device is configured to monitor the first search space and the second search space of the DCI of the same format, if the terminal device activates the first frequency domain resource, it can use the first search of the first frequency domain resource Space for monitoring, that is, the terminal device can select the first search space for monitoring.
  • the period of the first search space is smaller than the period of the second search space.
  • the terminal device activates the first frequency domain resource, it uses the first search space to monitor, so that it can receive the DCI as soon as possible, that is, realize the communication with the network device as soon as possible, and improve the utilization rate of resources.
  • the first frequency domain resource is the first BWP.
  • the terminal device activating the first frequency domain resource includes: the terminal device switches the activated BWP from the second BWP to the first BWP.
  • the terminal device switches the activated BWP from the second BWP to the first BWP, including: the terminal device determines that random access needs to be initiated, the second BWP is not configured with random access resources, and the first BWP is configured with Random access resources, the activated BWP is switched from the second BWP to the first BWP; or the terminal device determines that the number of consecutive failed channel accesses on the second BWP is greater than or equal to the first threshold, and the activated BWP is changed from the second BWP to the first BWP.
  • the second BWP is switched to the first BWP.
  • the method further includes: the terminal device receives second configuration information from the network device, the second configuration information is used to configure the first search space and the second search space of the second BWP, and the second BWP The first search space and the second search space are used to monitor the DCI of the same format; before the terminal device switches the activated BWP from the second BWP to the first BWP, it also includes: the terminal determines that the second BWP is based on the second BWP The second search space monitors the DCI and starts the timer; and, in response to the switch, the timer is stopped.
  • the first BWP and the second BWP are located in the main carrier unit of the terminal device.
  • the first frequency domain resource is a secondary carrier unit of the terminal device.
  • the method further includes: the terminal device determines to monitor on the secondary carrier unit according to the second search space group, and starts a timer; the terminal device should deactivate the secondary carrier unit and stop the timer.
  • the embodiments of the present application provide a communication method, which may be applied to a terminal device, or may also be applied to a chip inside the terminal device. Take the application of this method to a terminal device as an example.
  • the terminal device receives configuration information from a network device.
  • the configuration information is used to configure the first search space and the second search space.
  • the terminal device monitors the DCI according to the first search space, and according to the uplink transmission of the terminal device, monitors the DCI according to the second search space group.
  • the terminal device After the terminal device performs uplink transmission, it can switch from monitoring based on the first search space to monitoring based on the second search space, thereby more effectively switching between search space group one and search space group two.
  • the uplink transmission includes at least one of the following: sending a random access request; sending information on the configured authorized resource; sending a scheduling request.
  • the method further includes: in response to the uplink transmission of the terminal device, starting a timer.
  • the method further includes: if the timer expires, the terminal device monitors according to the first search space group.
  • the embodiments of the present application provide a communication method, which may be applied to a terminal device, or may also be applied to a chip inside the terminal device.
  • the terminal device sends a random access request to the network device and receives a response to the random access request.
  • the response includes first indication information, for example, the first indication information is used for Indicate the uplink transmission mode; and then send an uplink message to the network device according to the first indication information, and the uplink message is carried on the PUSCH or PUCCH.
  • the terminal device can send the uplink message based on the uplink transmission mode indicated by the network device, thereby increasing the flexibility of network device regulation and facilitating the network device to share the transmission opportunity acquired by the competing channel to the terminal device for use.
  • the first indication information is used to indicate that channel access is not performed.
  • the first indication information is used to indicate that the channel access type is channel access without random back-off or channel access with random back-off with a variable contention window size;
  • the terminal device according to the first indication Information, sending an uplink message to the network device includes: the terminal device performs channel access according to the channel access type indicated by the first indication information, and after the channel access is successful, sends the uplink message to the network device.
  • the first indication information is also used to indicate the first duration or the second duration.
  • the first symbol of the time domain resource where the uplink message is located includes the extended part of the cyclic prefix, thereby effectively preventing the terminal equipment from not using the channel in time after successful channel access and causing the channel to be occupied by other equipment.
  • the method further includes: the terminal device receives second indication information from the network device, where the second indication information is used to indicate the duration of the extended part.
  • the random access response includes an uplink grant and a timing advance command
  • the uplink grant is used to indicate uplink resources
  • the timing advance command is used to indicate the timing advance
  • T is the duration of the extended part
  • T1 is the length of one symbol
  • T2 is the first duration or the second duration
  • T3 is the timing advance.
  • the embodiments of the present application provide a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device. Take this method applied to a network device as an example.
  • the network device receives a random access request from a terminal device and sends a response to the random access request to the terminal device.
  • the response includes first indication information.
  • the information is used by the terminal equipment to send uplink messages.
  • the first indication information is used to indicate that channel access is not performed; or, the first indication information is used to indicate that the channel access type is channel access without random backoff; or, the first indication The information is used to indicate that the channel access type is random backoff channel access with a variable contention window size.
  • the first indication information is also used to indicate the first duration or the second duration.
  • the extension part of the cyclic prefix is included before the first symbol of the time domain resource where the uplink message is located.
  • the method further includes: sending second indication information to the terminal device, where the second indication information is used to indicate the duration of the extended part.
  • the random access response includes an uplink grant and a timing advance command
  • the uplink grant is used to indicate uplink resources
  • the timing advance command is used to indicate the timing advance
  • T is the duration of the extended part
  • T1 is the length of one symbol
  • T2 is the first duration or the second duration
  • T3 is the timing advance.
  • the present application provides a communication device.
  • the communication device may be a terminal device or a chip set inside the terminal device.
  • the communication device has the function of implementing the first aspect to the third aspect.
  • the communication device includes a module or unit or means corresponding to the steps related to the first aspect to the third aspect.
  • the function Or the unit or means can be realized by software, or by hardware, and can also be realized by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to receive Configuration information of the network device; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the first to third aspects described above.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any of the first to third aspects above.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may store necessary computer programs or instructions to realize the functions related to the first to third aspects.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations of the first aspect to the third aspect. method.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions related to the first aspect to the third aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes any of the possible designs or implementations of the first aspect to the third aspect. method.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit, and perform any of the above-mentioned first to third aspects.
  • the present application provides a communication device.
  • the communication device may be a network device or a chip set inside the network device.
  • the communication device is capable of implementing the functions involved in the fourth aspect.
  • the communication device includes modules or units or means corresponding to the steps involved in the fourth aspect.
  • the functions or units or means can be implemented by software, or It is realized by hardware, and it can also be realized by hardware executing corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to communicate with the terminal.
  • the device sends system information; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the fourth aspect.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or design in the fourth aspect.
  • the communication device may further include one or more memories, and the memories are used for coupling with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store necessary computer programs or instructions to realize the functions involved in the fourth aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes the method in any possible design or implementation manner of the fourth aspect.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the fourth aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes the method in any possible design or implementation manner of the fourth aspect.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit, and execute any possible design or implementation of the fourth aspect above.
  • the method in the way.
  • the present application provides a computer-readable storage medium in which computer-readable instructions are stored.
  • the computer reads and executes the computer-readable instructions, the computer executes the first aspects to Any possible design method of the fourth aspect.
  • the present application provides a computer program product.
  • the computer reads and executes the computer program product, the computer executes any one of the possible design methods of the first to fourth aspects.
  • the present application provides a chip including a processor coupled to a memory, and configured to read and execute a software program stored in the memory, so as to implement the first to fourth aspects described above. Any one of the possible design methods.
  • FIG. 1 is a schematic diagram of a possible system architecture to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of another network architecture to which the embodiments of this application are applicable;
  • FIG. 3 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • FIG. 4a is an example of parameters of the search space provided by an embodiment of this application.
  • FIG. 4b is an example of the periods of search space group one and search space group two provided by an embodiment of this application;
  • FIG. 5 is a schematic diagram of a flow corresponding to the communication method provided in Embodiment 1 of this application;
  • FIG. 6 is a schematic diagram of another flow corresponding to the communication method provided in Embodiment 1 of this application;
  • FIG. 7 is a schematic diagram of another flow corresponding to the communication method provided in Embodiment 1 of this application.
  • FIG. 8 is a schematic diagram of a flow corresponding to the communication method provided in the second embodiment of this application.
  • FIG. 9 is a schematic diagram of a flow corresponding to the communication method provided in the third embodiment of this application.
  • FIG. 10a is a schematic diagram of a network device provided by an embodiment of the application that can share transmission opportunities with terminal devices;
  • FIG. 10b is a schematic diagram of a network device provided by an embodiment of the application without remaining available transmission opportunities
  • FIG. 10c is a schematic diagram of the start time when the terminal device performs channel access according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of another flow corresponding to the communication method provided in Embodiment 3 of this application.
  • FIG. 12a is an example of a possible format of fallbackRAR provided by an embodiment of this application.
  • FIG. 12b is an example of a possible format of successRAR provided by an embodiment of this application.
  • FIG. 12c is an example of another possible format of successRAR provided by an embodiment of this application.
  • FIG. 13 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Terminal device It can be a wireless terminal device that can receive network device scheduling and instruction information.
  • a wireless terminal device can be a device that provides voice and/or data connectivity to users, or a handheld device with wireless connection function, or Other processing equipment connected to the wireless modem.
  • a terminal device can communicate with one or more core networks or the Internet via a radio access network (RAN).
  • the terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone). phone)), computers and data cards, for example, can be portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station (MS), remote station (remote station), access point ( access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G communication system or a terminal device in a public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • Network equipment It can be a device in a wireless network.
  • a network device can be a radio access network (RAN) node (or device) that connects terminal equipment to the wireless network, and it can also be called a base station.
  • RAN equipment are: new generation Node B (gNodeB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), wireless network in 5G communication system Controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B) , Or home Node B, HNB, baseband unit (BBU), or wireless fidelity (Wi-Fi) access point (AP), etc.
  • gNodeB new generation Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • eNB evolved Node B
  • wireless network in 5G communication system Controller radio network controller
  • RNC radio
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the network device may be another device that provides wireless communication functions for the terminal device.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • At least one of A, B, and C includes A, B, C, AB, AC, BC, or ABC.
  • the ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. degree.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of this application is applicable.
  • the terminal device 130 can access a wireless network to obtain services from an external network (such as the Internet) through the wireless network, or communicate with other devices through the wireless network, for example, it can communicate with other terminal devices.
  • the wireless network includes a radio access network (RAN) device 110 and a core network (core network, CN) device 120.
  • the RAN device 110 is used to connect the terminal device 130 to the wireless network
  • the CN device 120 is used to Manage terminal equipment and provide a gateway for communication with the external network.
  • the number of devices in the communication system shown in FIG. 1 is only for illustration, and the embodiment of the present application is not limited to this. In actual applications, the communication system may also include more terminal devices 130 and more RAN devices. 110, may also include other devices.
  • the CN may include multiple CN devices 120.
  • the CN device 120 may be an access and mobility management function (AMF) entity, session management A function (session management function, SMF) entity or a user plane function (UPF) entity, etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the CN device 120 may be a mobility management entity (mobility management entity). entity, MME) and serving gateway (serving gateway, S-GW), etc.
  • MME mobility management entity
  • serving gateway serving gateway
  • FIG. 2 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • the network architecture includes CN equipment, RAN equipment and terminal equipment.
  • the RAN equipment includes a baseband device and a radio frequency device.
  • the baseband device can be implemented by one node or by multiple nodes.
  • the radio frequency device can be implemented remotely from the baseband device, or integrated in the baseband device, or part of its functions. Independent integration, part of the functions are integrated in the baseband device.
  • the RAN equipment includes a baseband device and a radio frequency device, where the radio frequency device can be arranged remotely relative to the baseband device, for example, a remote radio unit (RRU) is arranged relative to the BBU Remote wireless unit.
  • RRU remote radio unit
  • the control plane protocol layer structure can include the radio resource control (radio resource control, RRC) layer and the packet data convergence protocol (packet data convergence protocol, PDCP) layer. , Radio link control (RLC) layer, media access control (MAC) layer and physical layer and other protocol layer functions; user plane protocol layer structure can include PDCP layer, RLC layer, MAC layer And the function of the protocol layer such as the physical layer; in a possible implementation, the PDCP layer may also include a service data adaptation protocol (SDAP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC Radio link control
  • MAC media access control
  • user plane protocol layer structure can include PDCP layer, RLC layer, MAC layer And the function of the protocol layer such as the physical layer
  • the PDCP layer may also include a service data adaptation protocol (SDAP) layer.
  • SDAP service data adaptation protocol
  • the RAN equipment can be implemented by one node to implement the functions of the RRC, PDCP, RLC, and MAC protocol layers, or multiple nodes can implement the functions of these protocol layers.
  • RAN equipment may include CUs and DUs, and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer of the wireless network. For example, the functions of the PDCP layer and the above protocol layers are set in the CU, and the protocol layers below the PDCP, such as the RLC layer and MAC layer, are set in the DU.
  • This type of protocol layer division is just an example, it can also be divided in other protocol layers, for example, in the RLC layer, the functions of the RLC layer and above protocol layers are set in the CU, and the functions of the protocol layers below the RLC layer are set in the DU; Or, in a certain protocol layer, for example, part of the functions of the RLC layer and the functions of the protocol layer above the RLC layer are set in the CU, and the remaining functions of the RLC layer and the functions of the protocol layer below the RLC layer are set in the DU. In addition, it can also be divided in other ways, for example, by time delay. The functions that need to meet the time delay requirements for processing time are set in the DU, and the functions that do not need to meet the delay requirements are set in the CU.
  • the radio frequency device can be integrated independently, not placed in the DU, can also be integrated in the DU, or partly remote and partly integrated in the DU, and there is no restriction here.
  • FIG. 3 is a schematic diagram of another network architecture to which the embodiments of this application are applicable.
  • the control plane (CP) and the user plane (UP) of the CU can also be separated and implemented by dividing them into different entities, namely the control plane (CP) CU entity ( That is, the CU-CP entity) and the user plane (UP) CU entity (ie, the CU-UP entity).
  • CP control plane
  • UP user plane
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the terminal device can be sent to the CU through the DU.
  • the DU can directly pass the protocol layer encapsulation without analyzing the signaling and transparently transmit it to the terminal device or CU.
  • the sending or receiving of the signaling by the DU includes this scenario.
  • RRC or PDCP layer signaling will eventually be processed as PHY layer signaling and sent to the terminal device, or converted from received PHY layer signaling.
  • the RRC or PDCP layer signaling can also be considered to be sent by the DU, or sent by the DU and radio frequency load.
  • the network architecture shown in Fig. 1, Fig. 2 or Fig. 3 can be applied to various radio access technology (RAT) communication systems, such as LTE communication system or 5G (or called The new radio (NR) communication system may also be a transitional system between an LTE communication system and a 5G communication system.
  • RAT radio access technology
  • the transitional system may also be referred to as a 4.5G communication system, and of course it may also be a future communication system.
  • the network architecture and business scenarios described in the embodiments of this application are intended to more clearly illustrate the technical solutions of the embodiments of this application, and do not constitute a limitation on the technical solutions provided in the embodiments of this application.
  • the devices in the following embodiments of the present application may be located in terminal equipment or network equipment according to their realized functions.
  • the network device may be a CU, or DU, or a RAN device including CU and DU.
  • the network device and the terminal device can communicate through a licensed spectrum (licensed spectrum), or through an unlicensed spectrum (also known as an unlicensed spectrum).
  • Licensed spectrum for communication, and it is also possible to communicate through licensed spectrum and unlicensed spectrum at the same time.
  • the channel access process can also be called The process of listening first and speaking later is collectively referred to as the channel access process in the embodiments of this application.
  • 3GPP provides 4 channel access types for channel access, namely:
  • Type 1 Channel access is not performed, or LBT (No LBT) is not performed. That is, communication equipment (such as network equipment or terminal equipment) may not perform channel access before using the unlicensed spectrum for service transmission.
  • LBT No LBT
  • Type 2 Channel access without random backoff, or channel access based on a fixed duration, or energy detection based on a fixed duration, or LBT (LBT without random back) -off). That is, the communication device can detect the energy of the signal on the unlicensed spectrum resource within a certain spectrum range (such as the average signal strength). If the energy of the signal within a fixed time period is lower than the preset threshold, the channel is considered to be in an idle state. Occupy the channel, otherwise it is considered that the channel is busy and need to compete for the channel again.
  • LBT LBT without random back
  • Type 3 Channel access with random back-off with fixed contention window size, or LBT with random back-off with fixed size of contention window (LBT with random back-off with fixed size of contention window).
  • Type 4 Channel access with random back-off with variable contention window size, or LBT (LBT with random back-off with variable size of contention window) ), or energy detection based on the fallback mechanism. That is, the communication device randomly selects a value A in a contention window. After detecting at least A free time slots, it can be determined that the channel is in an idle state, so that the channel can be occupied, otherwise it needs to compete for the channel again.
  • the idle time slot may mean that the energy of the signal detected in a time slot (for example, the average signal strength) is lower than a preset threshold.
  • the length of the time slot may be 9 microseconds (us), and at least A free time slots (A 9 us) may be continuous or non-continuous.
  • the communication device can receive signals in all directions, and then measure these signals to obtain the average signal strength; in this case, Since it is based on detection in all directions, it can also be called an omnidirectional channel access process.
  • the communication device can also receive signals in partial directions, and then measure the signals in these partial directions to obtain the average signal strength in some directions; in this case, since it is based on detection of partial directions, it can also be called based on the detection of partial directions.
  • Channel access process in partial directions since it is based on detection of partial directions.
  • the communication device performs channel access based on the channel access process described in Type 2 or Type 4 above. After the channel access is successful, data transmission can be performed within a certain period of time.
  • the certain duration here can be understood as the channel occupation time, and the channel occupation time is related to the channel access priority class (CAPC).
  • CAPC can be used to determine channel access parameters.
  • channel access parameters include the size of the contention window and the longest time occupied by the channel (or the longest time occupied by the channel).
  • the channel occupancy time can be less than or equal to the longest time the channel occupies.
  • the network device can send configuration information to the terminal device, and the configuration information is used to configure the search space and the control-resource set (CORESET) associated with the search space; Then, the downlink control channel is sent to the terminal device according to the time-frequency resource corresponding to the set of control resources associated with the search space and the search space; accordingly, after the terminal device receives the configuration information, it can use the control resource associated with the search space and the search space.
  • the DCI is monitored on the time-frequency resource corresponding to the set; that is, the search space and the control resource set associated with the search space can be used to monitor the DCI.
  • control resource set determines the frequency domain resource for transmitting the DCI, that is, the DCI can be transmitted on the frequency domain resource corresponding to the control resource set, and the frequency domain resource corresponding to the control resource set may include multiple RBs.
  • the search space determines the time domain resources for transmitting DCI.
  • the search space can be configured with some time domain information, such as: period (that is, the time interval for detecting the search space, and the unit can be time slot); time slot offset (that is, the detection period starts to Actually detect the time slot offset between the search spaces, and the time slot offset is less than the value of the detection period; the first duration (configured by the duration parameter, that is, the time for continuously detecting the search space, which can include multiple Time slot, and the number of time slots included is less than the value of the detection period); the time domain start position (that is, the time domain start position corresponding to the control resource set associated with the search space in each time slot).
  • the period of the search space is 10 slots
  • the slot offset is 3 slots
  • the first duration is 2 slots
  • the start position of the time domain is a symbol in a slot 0 and symbol 7
  • the second duration of the control resource set associated with the search space is 2 symbols.
  • the terminal device can detect DCI on symbol 0, symbol 1, and symbol 7, and symbol 8 in slot 3 and slot 4 in the detection period of every 10 slots.
  • DCI formats There are many types of DCI formats (format), such as DCI format 0_0, DCI format 0_1, DCI format 1_0, DCI format 1_1, DCI format 2_0, DCI format 2_1, DCI format 2_2, DCI format 2_3, and other possible options
  • the format is not limited.
  • DCI format 0_0/0_1/1_0/1_1 is the DCI used for uplink and downlink scheduling.
  • DCI format 0_0 is used to schedule uplink data, or to schedule physical uplink shared channel (PUSCH);
  • DCI format 1_0 is used For scheduling downlink data, or scheduling physical downlink shared channel (PDSCH).
  • PUSCH physical uplink shared channel
  • PDSCH physical downlink shared channel
  • DCI format 2_0/2_1/2_2/2_3 is DCI used for other purposes, for example, DCI format 2_0 is used to indicate the time slot format of a group of terminal side devices. Further, in the DCI used for uplink and downlink scheduling (ie DCI format 0_0/0_1/1_0/1_1), the first number indicates uplink and downlink, "0" indicates uplink, and “1” indicates downlink; and the second number indicates Fallback or non-fallback, “0” means fallback, and "1” means non-fallback. For example, DCI format 1_0 indicates the fallback DCI used to schedule PDSCH.
  • DCI format 0_0 can be scrambled by any of the following RNTIs: cell wireless Network Temporary Identifier (cell radio network temporary identifier, C-RNTI); Configured scheduling radio network temporary identifier (CS-RNTI); Modulation and coding scheme (MCS) cell wireless network temporary Identification (MCS-C-RNTI).
  • RNTI radio network temporary identifiers
  • C-RNTI cell wireless Network Temporary Identifier
  • CS-RNTI Configured scheduling radio network temporary identifier
  • MCS-RNTI Modulation and coding scheme
  • MCS-C-RNTI Modulation and coding scheme
  • DCI format 1_0 can use any of the following RNTI scrambling: system information (system information radio network temporary identifier, SI-RNTI); paging radio network temporary identity (P-RNTI); random Access wireless network identifier (random access radio network temporary identifier, RA-RNTI); temporary cell radio network temporary identifier (TC-RNTI); C-RNTI; CS-RNTI; MCS-C-RNTI .
  • SI-RNTI system information radio network temporary identifier
  • P-RNTI paging radio network temporary identity
  • random Access wireless network identifier random access radio network temporary identifier, RA-RNTI
  • TC-RNTI temporary cell radio network temporary identifier
  • C-RNTI C-RNTI
  • CS-RNTI CS-RNTI
  • MCS-C-RNTI MCS-C-RNTI
  • 3GPP has introduced two search space groups, which can be called search space group one (group1) and search space group two (group2).
  • search space group one can include one or more search spaces (referred to as search space A for easy distinction), and one or more search spaces A can be used to monitor DCI in one or more formats, for example, search space Group one may include at least one of the following search spaces: search space for monitoring DCI format 0_0; search space for monitoring DCI format 1_0; search space for monitoring DCI format 0_1; search space for monitoring DCI format 1_1 ; Used to monitor the DCI format 2_0 search space.
  • one or more search spaces A can be used to monitor one or more RNTI scrambled DCIs, for example, in search space group one It may include at least one of the following search spaces: a search space for monitoring SI-RNTI scrambled DCI; a search space for monitoring RA-RNTI scrambled DCI; a search space for monitoring P-RNTI scrambled DCI; The search space for monitoring DCI scrambled by C-RNTI.
  • search space group two can also include one or more search spaces (referred to as search space B for easy distinction), one or more search spaces B can be used to monitor one or more formats DCI, or in other words, one or more search spaces B can be used to monitor one or more RNTI scrambled DCI.
  • the search space in search space group one is used for the terminal device to monitor DCI when it does not know the channel occupation time of the network device; that is, if the terminal device determines that the network device has not acquired the channel occupation time, it can use the search space group
  • the search space in No. 1 monitors DCI.
  • the search space in the search space group 2 is used for the terminal device to monitor the DCI when it knows the channel occupation time of the network device; that is, if the terminal device determines that the network device obtains the channel occupation time, it can use the search space in the search space group 1 to monitor the DCI .
  • the terminal device may determine that the network device has acquired the channel occupation time in multiple ways, which is not limited in the embodiment of the present application.
  • the network device For network devices, the network device performs channel access, and after obtaining the channel occupation time, it can send DCI to the terminal device through the search space in the search space group 1, and can subsequently switch to the search space group 2, in the channel of the network device In the occupied time, the DCI is sent to the terminal device according to the search space in the search space group two.
  • search space in the search space group one and the search space in the search space group two can be used to monitor DCI of the same format.
  • search space group one includes search space A1, search space A2, and search space A3, and search space group two includes search space B1, search space B2, and search space B3.
  • search space A1 and search space B1 can be used to monitor DCI of the same format (such as DCI format 0_0)
  • search space A2 and search space B2 can be used to monitor DCI of the same format (such as DCI format 0_1).
  • Search space A3 and search space B3 can be used to monitor DCI of the same format (for example, DCI format 1_0).
  • search space in the search space group 1 and the search space in the search space group 2 can also be used to monitor the same Or DCI scrambled by different RNTIs.
  • search space A1 is used for monitoring of DCI format 0_0 (called DCI-1)
  • search space B1 is also used for monitoring of DCI format 0_0 (called DCI-2)
  • DCI-1 and DCI-2 It can be DCI scrambled by the same RNTI, or it can be DCI scrambled by different RNTIs.
  • the period of the search space in the search space group one and the search space in the search space group two for listening to the DCI of the same format may be different.
  • the search space A1 and the search space B1 are used to monitor DCI of the same format, and the period of the search space A1 may be less than the period of the search space B1.
  • FIG. 4b which is a schematic diagram of the period of the search space A1 may be smaller than the period of the search space B1.
  • the terminal device can switch between the search space group one and the search space group two based on the DCI and the timer.
  • the network device configures search space 1 and search space 2 for monitoring DCI format 2_0 for the terminal device, where search space 1 is a search space in search space group 1, and search space 2 is search space group A search space in the second.
  • the network device is further configured to carry a monitoring group flag in the DCI format 2_0, and the monitoring group flag may include 1 bit. If the value of this bit is 1, it instructs the terminal device to switch (or keep) to monitor according to the search space in search space group two; further, when the terminal device switches to monitor according to the search space in search space group two.
  • the timer can be started, and if the timer expires, it can be switched to monitor according to the search space in the search space group one. If the value of this bit is 0, it instructs the terminal device to switch (or keep) listening according to the search space in the search space group one.
  • the network device is not configured with DCI format 2_0 to carry the monitoring group identifier.
  • the terminal device monitors according to the search space in the search space group 1, if any DCI is monitored, Then you can switch to monitoring based on the search space in search space group two and start the timer, if the timer expires, you can switch to monitoring based on the search space in search space group one.
  • the network device does not configure search space 1 and search space 2 for monitoring DCI format 2_0 for the terminal device.
  • the terminal device performs monitoring according to the search space in the search space group 1
  • If any DCI is monitored you can switch to monitoring based on the search space in search space group two and start the timer, and if the timer expires, you can switch to monitoring based on the search space in search space group one.
  • the network device can configure search space group one and search space group two for the terminal device, and there can be multiple specific configuration methods. The following describes in combination with different scenarios.
  • Scenario 1 The network device configures multiple bandwidth parts (BWP) for the terminal device
  • the network device can configure the BWP for the terminal device within the bandwidth supported by a carrier unit (which can be called the carrier bandwidth, and the value can be 10MHz, 15MHz, 20MHz, 50MHz, 100MHz or 400MHz, etc.). Multiple BWPs can be configured in one carrier unit.
  • a carrier unit which can be called the carrier bandwidth, and the value can be 10MHz, 15MHz, 20MHz, 50MHz, 100MHz or 400MHz, etc.
  • the network device can configure search space group one and search space group two for each BWP, for example, can configure the search of BWP1 Space group one and search space group two, BWP2 search space group one and search space group two, BWP3 search space group one and search space group two; in this case, the terminal device can be based on the BWP1 search space group One or the search space in the search space group two listens, on BWP2 according to the search space in the BWP2 search space group one or the search space in the search space group two, listens on the BWP3 according to the search space group one or the search space group two of the BWP3 In the search space for monitoring.
  • the network device can configure search space group one and search space group two uniformly.
  • the terminal device can use search space group one or search space group two on BWP1 or BWP2 or BWP3. Search space for monitoring.
  • Scenario 2 Carrier aggregation scenario
  • the aggregated multiple cells include a primary cell.
  • the primary cell can be the cell where the terminal device performs the initial connection establishment, or the primary cell can be the cell where the terminal device performs the RRC connection reestablishment, or the primary cell can be handover (handover)
  • the primary cell is mainly used for RRC communication with terminal equipment.
  • the carrier unit corresponding to the primary cell is called the primary component carrier (PCC).
  • the aggregated multiple cells include one or more secondary cells.
  • the secondary cell may be a cell that does not have RRC communication with the terminal device, and is mainly used to provide additional radio resources.
  • the secondary cell may be added during RRC reconfiguration.
  • the carrier unit corresponding to the secondary cell becomes a secondary component carrier (SCC).
  • SCC secondary component carrier
  • the carrier units serving the terminal equipment include carrier unit 1, carrier unit 2, and carrier unit 3.
  • the network device can configure search space group one and search space group two for each carrier unit.
  • the network device can configure search space group one and search space group for multiple BWPs, respectively Second, alternatively, search space group one and search space group two can also be configured uniformly.
  • the embodiments of this application will further study some implementations of terminal equipment communication on unlicensed spectrum, for example, in some possible scenarios (such as activating frequency domain resources), which terminal equipment uses The search space in the search space group is monitored. For example, how the terminal device can more effectively switch between the search space group 1 and the search space group 2. For example, in the random access process, the terminal device sends a random access request. , How to send uplink messages to network devices.
  • the terminal device may receive configuration information from the network device, the configuration information is used to configure the first search space and the second search space of the first frequency domain resource, and the first search space and the second search space of the first frequency domain resource.
  • the second search space is used to monitor the DCI of the same format; after the terminal device activates the first frequency domain resource, it can monitor the DCI on the first frequency domain resource according to the first search space of the first frequency domain resource.
  • the first search space can be a search space in search space group one
  • the second search space can be a search space in search space group two, or vice versa.
  • Embodiment 1 provides a specific method, that is, the terminal device can use the first search space of the first frequency domain resource to perform monitoring.
  • the period of the first search space may be less than the period of the second search space.
  • the terminal device uses the first search space to monitor, so that the DCI can be received as early as possible, that is, as soon as possible. Realize communication with network equipment and improve resource utilization.
  • the period of the first search space may be greater than the period of the second search space. In this way, after the terminal device activates the first frequency domain resource, the first search space is used for monitoring, which can effectively reduce the complexity of blind detection or monitoring of the terminal device , Thereby reducing the power consumption of terminal equipment.
  • the terminal device can start a timer after activating the first frequency domain resource, and if the timer expires, it can switch to the search space according to the second search space. Monitor. That is to say, after the terminal device activates the first frequency domain resource, it can use the first search space of the first frequency domain resource to monitor, and subsequently can also realize the connection between the first search space and the second search space based on DCI and timers. Switch.
  • the first frequency domain resource may be a BWP or a carrier unit (or cell), which will be described below in case one and case two respectively.
  • Case 1 The first frequency domain resource is the first BWP.
  • Fig. 5 is a schematic diagram of a process corresponding to the communication method provided in the first embodiment of the application, as shown in Fig. 5, including:
  • Step 501 The network device sends first configuration information to the terminal device.
  • the first configuration information is used to configure search space 1 and search space 2 of the first BWP, or in other words, the first configuration information is used to configure search space 1 for the first BWP. And search space 2.
  • the first configuration information can be used to configure search space group one and search space group two for the first BWP.
  • search space 1 is a search space in search space group one
  • search space 2 is a search in search space group two. space.
  • search space 1 and search space 2 can be used to monitor DCI of the same format, for example, search space 1 and search space 2 are used to monitor DCI format 1.
  • step 502 the terminal device receives the first configuration information.
  • Step 503 The network device sends second configuration information to the terminal device, where the second configuration information is used to configure search space 3 and search space 4 of the second BWP.
  • the second configuration information can be used to configure search space group one and search space group two for the second BWP.
  • search space 3 is a search space in search space group one
  • search space 4 is a search in search space group two. space.
  • search space 3 and search space 4 may be used to monitor DCI of the same format, for example, search space 3 and search space 4 are used to monitor DCI format 2.
  • DCI format 2 and DCI format 1 may be the same DCI format.
  • step 504 the terminal device receives the second configuration information.
  • Step 505 The terminal device monitors the DCI according to the search space 4 on the activated second BWP.
  • the terminal device can also start a timer.
  • the terminal device listens to DCI according to search space 3 on the second BWP, and detects DCI format 2_0. If the value of the monitoring group identifier in DCI format 2_0 is 1, it can switch to listen to DCI according to search space 4 and start the timer . Understandably, "switch to listen to DCI according to search space 4" and "start timer" can be performed at the same time.
  • Step 506 The terminal device switches the activated BWP from the second BWP to the first BWP.
  • the terminal device can switch the activated BWP from the second BWP to the first BWP in a variety of possible situations. For example, if the terminal device determines that random access needs to be initiated, the second BWP is not configured with random access resources, and the first BWP is configured with random access resources, the activated BWP can be switched from the second BWP to the first BWP to facilitate Random access is initiated on the first BWP.
  • the first BWP can be the initial BWP of the terminal device, that is, the BWP that initiates the initial access or other dedicated BWP;
  • the random access resource can be the random access resource in the four-step random access process or can also be Random access resources in the two-step random access process.
  • the terminal device determines that a continuous LBT failure (consistent LBT failure) occurs on the second BWP. For example, the number of consecutive channel access failures is greater than or equal to the first threshold, and the activated BWP can be switched from the second BWP to the first threshold.
  • the first threshold may be specified by a protocol, or configured by the network device for the terminal device.
  • the component carrier serving the terminal device includes a primary carrier component and a secondary carrier component
  • the first BWP and the second BWP may both be located on the primary carrier unit, or both may be located on the secondary carrier unit.
  • Step 507 The terminal device monitors the DCI according to the search space 1 on the first BWP.
  • the terminal device can also stop the timer.
  • the terminal device switches the activated BWP from the second BWP to the first BWP, it switches from the search space monitoring DCI in the search space group two according to the second BWP to the first BWP.
  • the search space in the search space group one listens to DCI.
  • step 505 the terminal device listens to the DCI according to the search space in the search space group 1 of the second BWP on the second BWP, then the activated BWP is switched from the second BWP to the first BWP Thereafter, the terminal device may switch from monitoring the DCI according to the search space in the search space group 1 of the second BWP to monitoring the DCI according to the search space in the search space group 1 of the first BWP.
  • the network equipment configures search space group one and search space group two for each BWP. Since different BWPs correspond to different frequency ranges, the channel access conditions of different frequency ranges are independent and do not affect each other. Therefore, after the terminal device switches the second BWP to the first BWP, it can receive the corresponding DCI on the first BWP according to the search space in the search space group 1 with a shorter period, thereby improving the DCI transmission success rate.
  • Fig. 6 is a schematic diagram of another process corresponding to the communication method provided in the first embodiment of the application, as shown in Fig. 6, including:
  • Step 601 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure search space 1 and search space 2, and search space 1 and search space 2 can be used to monitor DCI of the same format.
  • the configuration information can be used to uniformly configure search space group one and search space group two for multiple BWPs.
  • search space 1 is the search space in search space group one
  • search space 2 is the search space in search space group two.
  • the multiple BWPs may include a first BWP and a second BWP.
  • step 602 the terminal device receives configuration information.
  • Step 603 The terminal device monitors the DCI according to the search space 2 on the activated second BWP.
  • the terminal device can also start a timer.
  • Step 604 The terminal device switches the activated BWP from the second BWP to the first BWP.
  • Step 605 The terminal device monitors the DCI according to the search space 1 on the first BWP.
  • the terminal device can also stop the timer.
  • step 603 the terminal device switches the activated BWP from the second BWP to the first BWP, it switches from the search space monitoring DCI in the root search space group 2 to the search space according to the search in the search space group 1. Space monitoring DCI.
  • the terminal device listens to DCI according to the search space in search space group one on the second BWP, then after the activated BWP is switched from the second BWP to the first BWP, the terminal The device may continue to monitor the DCI on the first BWP according to the search space in the search space group one.
  • the network device uniformly configures search space group 1 and search space group 2 for the first BWP and the second BWP. After the terminal device performs BWP switching, it can receive the corresponding search space according to the search space group 1 with a shorter period. DCI, thereby increasing the success rate of DCI transmission.
  • the carrier unit serving the terminal device includes the primary carrier unit and the secondary carrier unit
  • the first BWP and the second BWP can be located in the primary carrier unit, or also Can be located in the secondary carrier unit.
  • the BWP switching in the secondary carrier unit may be instructed by the network device, for example, the network device instructs the BWP switching through the DCI. Therefore, if the network device instructs the BWP switching at the same time, it also instructs the BWP based on the switched BWP. For which search space in the search space group monitors the DCI, the method described in FIG. 6 may no longer be used.
  • the first frequency domain resource is a secondary carrier unit.
  • FIG. 7 is a schematic diagram of another process corresponding to the communication method provided in Embodiment 1 of the application, as shown in FIG. 7, including:
  • Step 701 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure search space 1 and search space 2 of the secondary carrier unit, and search space 1 and search space 2 can be used to monitor DCI of the same format.
  • the configuration information can be used to configure search space group one and search space group two of the secondary carrier unit.
  • search space 1 is a search space in search space group one
  • search space 2 is a search space in search space group two.
  • step 702 the terminal device receives configuration information.
  • Step 703 The terminal device activates the secondary carrier unit.
  • the terminal device may activate the secondary carrier unit in many ways, for example, the terminal device receives the instruction information of the network device, and then activates the secondary carrier unit according to the instruction information.
  • Step 704 The terminal device monitors the DCI according to the search space 1 on the secondary carrier unit.
  • the above method may further include:
  • Step 705 The terminal device switches on the secondary carrier unit to monitor the DCI according to the search space 2 and starts a timer.
  • the terminal device monitors DCI according to search space 1 on the secondary carrier unit, and detects DCI format 2_0.
  • the value of the monitoring group identifier in DCI format 2_0 is 1, and it can switch to monitor DCI according to search space 2 and start the timer .
  • Step 706 The terminal device deactivates the secondary carrier unit and stops the timer.
  • the terminal device after the terminal device activates the secondary carrier unit, it can first receive the corresponding DCI according to the search space in the search space group 1 with a shorter period, so that it can communicate with the network device as soon as possible on the secondary carrier unit. . Further, the terminal device may switch between search space group one and search space group two based on DCI and a timer on the secondary carrier unit. Furthermore, after the terminal device deactivates the auxiliary carrier unit, the timer can be stopped to save the power consumption of the terminal device.
  • the terminal device receives configuration information from the network device, the configuration information is used to configure the first search space and the second search space, and the first search space and the second search space are used to monitor DCI of the same format;
  • the terminal device monitors according to the first search space, and according to the uplink transmission of the terminal device, monitors according to the second search space.
  • the first search space may be a search space in search space group one
  • the second search space may be a search space in search space group two. Since in the current solution, the terminal device implements switching between the first search space and the second search space based on DCI and timers, in solution 2, the embodiment of the present application also provides another possible switching method. That is, after the terminal device performs uplink transmission, it can switch from monitoring according to the first search space to monitoring according to the second search space, so as to more effectively realize the switching between search space group one and search space group two.
  • the terminal device needs to perform channel access before performing uplink transmission. If the channel access is successful, the channel occupation time can be obtained, and the uplink transmission can be performed within the channel occupation time; the terminal device can also transfer the channel The occupied time is shared with the network device, and the network device can send the DCI through the second search space, and the terminal device can also monitor the DCI according to the second search space.
  • the terminal device uses the second search space for monitoring after uplink transmission, which can effectively reduce the complexity of blind detection or monitoring of the terminal device, thereby reducing the terminal device’s Power consumption.
  • Fig. 8 is a schematic diagram of a process corresponding to the communication method provided in the second embodiment of the application, as shown in Fig. 8, including:
  • Step 801 The network device sends configuration information to the terminal device.
  • the configuration information is used to configure search space 1 and search space 2, and search space 1 and search space 2 can be used to monitor DCI of the same format.
  • the configuration information can be used to configure search space group one and search space group two of the secondary carrier unit.
  • search space 1 is a search space in search space group one
  • search space 2 is a search space in search space group two.
  • the terminal device receives configuration information.
  • Step 803 The terminal device monitors the DCI according to the search space 1.
  • step 804 the terminal device performs uplink transmission.
  • the terminal device performing uplink transmission may be: the terminal device sends a random access request, and the random access request may include a random access preamble.
  • the terminal device performing uplink transmission may be that the terminal device sends information on a configured grant (CG) resource.
  • the configured authorized resource can be a periodic PUSCH resource pre-configured by the network device, and then when the terminal device needs to send a data packet, the data packet can be sent through the pre-configured resource, and the data packet can be a newly transmitted data packet, or it can be To retransmit data packets.
  • the terminal device performing uplink transmission may be that the terminal device sends a scheduling request (scheduling request, SR). For example, if a terminal device determines that it needs to send a data packet, it can first send an SR to the network device on the configured physical uplink control channel (PUCCH) resource, and accordingly, the network device schedules the terminal device after receiving the SR The first resource, and the terminal device can send the data packet on the first resource.
  • SR scheduling request
  • step 805 the terminal device monitors the DCI according to the search space 2.
  • the terminal device can also start a timer.
  • the terminal equipment can start the timer on the symbol next to the last symbol occupied by the uplink transmission.
  • the terminal device can switch to monitor the DCI according to the search space 1.
  • steps 803 to 805 it can be seen that after the terminal device performs uplink transmission, it can switch from listening to DCI in the search space in the root search space group 1 to listening to the DCI in the search space group 2 in the root search space group, and start the timer.
  • the terminal device monitors the DCI according to the search space in the search space group 2, after performing uplink transmission, the terminal device may continue to monitor the DCI according to the search space in the search space group 2. .
  • the terminal device after the terminal device performs uplink transmission, it can switch to receive the corresponding DCI according to the search space in the search space group two with a longer period, thereby effectively reducing the complexity of blind detection of the terminal device and saving the power consumption of the terminal device .
  • the terminal device can send a random access request to the network device and receive a response to the random access request.
  • the response includes indication information.
  • the indication information can be used to indicate the uplink transmission mode; and the terminal device can, according to the indication information, Send an uplink message to the network device.
  • the terminal device can send the uplink message based on the uplink transmission mode indicated by the network device, thereby increasing the flexibility of network device regulation and facilitating the network device to share the transmission opportunity acquired by the competing channel to the terminal device for use.
  • the embodiment of the present application provides two random access procedures, which are a four-step random access procedure and a two-step random access procedure, respectively.
  • the aforementioned random access request can be message 1 of the four-step random access process, or it can be message A of the two-step random access process; the response of the aforementioned random access request can be message 2 of the four-step random access process, Or it can also be the message B of the two-step random access procedure. The following is described in case one and case two respectively.
  • Fig. 9 is a schematic diagram of a flow corresponding to the communication method provided in the third embodiment of the application, as shown in Fig. 9, including:
  • Step 900 The network device sends random access configuration information to the terminal device, and the terminal device can receive the random access configuration information from the network device. This step may be used to perform the preparatory work before the random access process, and is not a step included in the random access process.
  • the random access configuration information may be used to configure random access parameters, and the random access parameters may include a random access preamble set.
  • Step 901 The terminal device sends a random access request to the network device.
  • the random access request may be carried on a physical random access channel (PRACH), and the random access request may include a random access preamble.
  • PRACH physical random access channel
  • the network device receives the random access preamble from the terminal device.
  • the random access request is also called the first message or message 1 (Msg1) in the random access process.
  • the random access preamble sent by the terminal device to the network device may be a random access preamble selected by the terminal device from the random access preamble set for random access acquired in step 900.
  • Step 902 After detecting the random access preamble sent by the terminal device, the network device sends a random access response (RAR) to the terminal device, and the terminal device receives the random access response from the network device.
  • RAR random access response
  • the access response is also called the second message or message 2 (Msg2) in the random access process.
  • the network device when it detects the random access time-frequency resource for sending the preamble, it can calculate the RA-RNTI (the generation of RA-RNTI is related to the time-frequency resource used by the terminal device to send the preamble), and the network device uses RA-RNTI scrambles DCI.
  • the network device sends the response information for the preamble to the terminal device.
  • the terminal device knows the time-frequency resource information for sending the preamble, and can also calculate the RA-RNTI, and then use the RA-RNTI on the PDCCH to monitor the DCI (DCI is used for Schedule the PDSCH carrying Msg2), and then receive the Msg2 carried in the PDSCH according to the monitored DCI.
  • Msg2 may include timing advance command (TAC), uplink (UL) grant, and TC-RNTI.
  • TAC timing advance command
  • UL uplink
  • TC-RNTI TC-RNTI
  • the timing advance command is used to indicate the timing advance
  • the value of the timing advance can be greater than or equal to 0.
  • the uplink authorization is used to indicate the uplink resources allocated by the network device to the terminal device.
  • Msg2 may also include indication information 1.
  • the indication information 1 is used to indicate the uplink transmission mode, or in other words, the indication information 1 is used to indicate the channel access type (for example, the terminal device performs channel access before sending message 3). Access type).
  • indication information 1 may be used to indicate that the channel access type is type 1, or indication information 1 may be used to indicate that the channel access type is type 2, or, indication information 1 may be used to indicate that the channel access type is type 4.
  • the indication information 1 can further indicate a fixed duration, such as the first duration or the second duration, where the first duration can be 16us and the second duration can be 25us.
  • the indication information 1 may be determined by the network device according to the uplink-downlink conversion time between the network device and the terminal device and/or the channel occupation time of the network device.
  • the uplink-downlink conversion time can be understood as the guard interval required when switching from downlink transmission to uplink transmission (or from uplink transmission to downlink transmission) in order to avoid interference between downlink transmission and uplink transmission.
  • the uplink-downlink conversion time between the network device and the terminal device may be determined by the network device according to the distance between the network device and the terminal device, which is not specifically limited.
  • the network device may determine the indication information 1 according to the uplink-downlink conversion time and the channel occupation time of the network device in various ways.
  • the network device may perform channel access before sending the message 2, and after the channel access is successful, it may send the message 2 within the channel occupation time.
  • the network device determines that it can share the transmission opportunity with the terminal device (that is, the end position of the channel occupation time of the network device is after the end position of the uplink resource indicated by the uplink authorization, or the channel occupation time of the network device The end position is the same as the end position of the uplink resource indicated by the uplink grant), the channel access type indicated by the indication information 1 can be determined according to the uplink-downlink conversion time.
  • the network device determines that the uplink-downlink conversion time is less than or equal to the first duration, it can determine that the channel access type indicated by the indication information 1 is type 1; if it is determined that the uplink-downlink conversion time is greater than the first duration and less than or equal to the second duration, Then it can be determined that the channel access type indicated by the indication information 1 is type 2, and the indication information 1 can further indicate that the fixed duration is the first duration; if it is determined that the uplink-downlink conversion time is greater than the second duration, the channel indicated by the indication information 1 can be determined The access type is type 2, and the indication information 1 may further indicate that the fixed duration is the second duration.
  • the channel indicated by the indication information 1 can be determined
  • the access type is type 4.
  • the first symbol of the uplink resource indicated by the uplink grant may also include an extension of a cyclic prefix (CP).
  • Msg2 may also include indication information 2, which is used to indicate the duration of the extended part.
  • the duration of the extended part may be related to the channel access type indicated by the indication information 1.
  • the duration of the extended part indicated by the indication information 2 may conform to the following formula:
  • T is the duration of the extended part
  • C is an integer
  • T1 is the length of one symbol, that is, symbol length
  • T2 is the first duration or the second duration
  • T is the timing advance.
  • the value of C may be predefined by the protocol, or determined by the network device and sent to the terminal device, which is not specifically limited.
  • the units of the above T1, T2, and T3 are the same, for example, both are us.
  • the channel access type and the duration of the extended part may be indicated through the indication information 1 and the indication information 2, respectively.
  • the channel access type and the duration of the extended part can be indicated jointly or simultaneously.
  • the indication information 1 and the indication information 2 can understand the same indication information (for ease of description, It is called indication information 3); in other words, Msg2 may include indication information 3, which may be used to indicate the channel access type, and may also be used to indicate the duration of the extended part.
  • the mapping relationship between the index of the extended part's duration and the channel access type can be preset, so that the network device can pass The duration of the extension part is indicated in an implicit manner.
  • the network device indicates the channel access type to the terminal device, and the terminal device can determine the duration of the extension part according to the channel access type and the mapping relationship.
  • the joint indication of the channel access type and the extended part duration is taken as an example.
  • the indication information 3 may include 2 bits.
  • the indication information 3 indicates the channel access type And a possible example of the duration of the extended part.
  • Table 1 An example of the indication information 3 indicating the channel access type and the duration of the extended part
  • C1, C2, and C3 are all integers.
  • the embodiments of this application do not limit the values of C1, C2, and C3.
  • C1 may be predefined by the protocol, and C2 or C3 may be determined by the network device and sent to the terminal equipment.
  • TA in Table 1 represents the timing advance.
  • Table 2 which is another possible example in which the indication information 3 indicates the channel access type and the duration of the extended part.
  • Table 2 Another example of indication information 3 indicating the channel access type and the duration of the extended part
  • Step 903 The terminal device sends an uplink message to the network device according to the Msg2.
  • the uplink message may be carried on a physical uplink shared channel (PUSCH), and accordingly, the network device receives the uplink message from the terminal device.
  • PUSCH physical uplink shared channel
  • the uplink message is also called the third message or message 3 (Msg3) in the random access process.
  • the terminal device may not perform channel access, and according to C2*symbol length–16us–TA Determine the duration of the extended part, and then send the uplink message on the extended part and the uplink resources.
  • the terminal device determines that the value of the two bits of the indication information 3 in Msg2 is '01', it can determine the duration of the extension part according to C3*symbol length–16us–TA, and according to the fixed duration, the duration of the extension part and the uplink resources Determine the starting time of channel access. For example, as shown in Figure 10c, the fixed time is 25us and the extended part is 60us. Then the start time of channel access (denoted as T0) is the uplink resource 85us before the start time of. After the terminal device determines the starting time to perform channel access, it can perform channel access according to the channel access type and fixed duration indicated by the indication information 3, and then after the channel access is successful, it sends the uplink on the extended part and uplink resources. information.
  • the terminal device determines that the value of the two bits of the indication information 3 in Msg2 is '10', it can determine the duration of the extended part according to C1*symbol length–25us, and according to the fixed duration, the duration of the extended part, and the start of the uplink resource.
  • the start time determines the start time to perform channel access. After the terminal device determines the starting time to perform channel access, it can perform channel access according to the channel access type and fixed duration indicated by the indication information 3, and then after the channel access is successful, it sends the uplink on the extended part and uplink resources. information.
  • the terminal device determines that the value of the two bits of the indication information 3 in Msg2 is '11', it can perform channel access based on type 4.
  • the specific implementation of this method may depend on the terminal device and is not specifically limited.
  • the information carried by the extended part of the cyclic prefix may be the signal at the end of the first symbol of the uplink resource; that is, the signal of the appropriate duration at the end of the first symbol of the uplink resource may be moved to the channel Between the end time of the access completion and the start time of the first symbol of the uplink resource, the extended part of the time is filled, thereby effectively preventing the terminal equipment from not using the channel in time after successful channel access and causing the channel to be occupied by other devices.
  • Step 904 The network device receives Msg3 and sends a contention resolution message (CRM) to the terminal device. Accordingly, the terminal device can receive a contention resolution message from the network device, where the contention resolution message is also called the fourth message Or message 4 (Msg4).
  • CCM contention resolution message
  • Msg4 fourth message Or message 4
  • the TC-RNTI may be used to scramble the DCI for scheduling the contention resolution message.
  • the terminal device can receive a contention resolution message according to the DCI, and combine the contention resolution identifier (CRID) in the contention resolution identifier with part of the information carried in Msg3. Matching, if the matching is successful, the terminal device considers that the contention resolution is successful, that is, the random access is successful; otherwise, the terminal device considers that this random access has failed.
  • CRID contention resolution identifier
  • FIG. 11 is a schematic diagram of another process corresponding to the communication method provided in Embodiment 3 of this application, as shown in FIG. 11, including:
  • Step 1101 The terminal device sends MsgA to the network device.
  • MsgA may also be referred to as message A, including random access preamble and uplink message 1.
  • MsgA is equivalent to Msg1 and Msg3 in the four-step random access process in FIG. 9 above, and it can also be understood as putting Msg1 and Msg3 "together".
  • Step 1102 The network device sends MsgB to the terminal device.
  • Step 1103 The terminal device sends an uplink message 2 to the network device according to the MsgB.
  • the uplink message 2 can be carried on the PUCCH or on the PUSCH.
  • MsgB is the response information for MsgA, which can also be referred to as message B, which is carried in the PDSCH.
  • the MsgB may include a fallback random access response (fallbackRAR) or a successful random access response (successRAR), that is, the network device may send a fallbackRAR or a successRAR to the terminal device. For example, if the network device successfully decodes the random access preamble and uplink message 1, the network device sends successRAR to the terminal device; if the network device successfully decodes the random access preamble, but fails to decode the uplink message 1, the network device sends The fallbackRAR sent by the terminal device.
  • fallbackRAR fallback random access response
  • uccessRAR successful random access response
  • the terminal device can send the HARQ feedback information for the successRAR to the network device, that is, HARQ acknowledgement (acknowledgement, ACK); among them, HARQ ACK is used for notification
  • HARQ acknowledgement acknowledgement
  • the successRAR of the network device has been successfully decoded.
  • the uplink message 2 includes HARQ feedback information, and the uplink message 2 may be carried on the PUCCH.
  • the terminal device can re-send the uplink message 1 to the network device according to the fallbackRAR.
  • the uplink message 2 may be the retransmitted uplink message 1, that is, the uplink message 2 may be the same as the uplink message 1; the uplink message 1 may be carried on the PUSCH.
  • the network device After the network device receives the uplink message 1 re-sent by the terminal device, if it successfully decodes the uplink message 1, it can send the contention resolution identifier to the terminal device, and the terminal device can determine that the random access is complete after receiving the contention resolution identifier; Otherwise, the DCI can be sent to the terminal device, and the DCI is used to schedule the retransmission of the uplink message 1.
  • fallbackRAR may include timing advance command, uplink authorization, and TC-RNTI.
  • Fig. 12a is an example of a possible format of fallbackRAR.
  • the fallbackRAR includes 4 fields, which are called domain 1, domain 2, domain 3, and domain 4, respectively.
  • field 1 is used to carry timing advance commands
  • field 2 is used to carry uplink authorization
  • field 3 is used to carry TC-RNTI
  • field 4 is used to carry reserved bits.
  • fallbackRAR can include 7 bytes (octet, Oct), domain 4 is located in Oct 1, domain 1 is located in Oct 1 and Oct 2, domain 2 is located in Oct 2, Oct 3, Oct 4, and Oct 5, and domain 3 is located in Oct 6.
  • successRAR can include timing advance command, C-RNTI, contention resolution indicator, transmit power control (transmitting power control, TPC), hybrid automatic repeat request (HARQ) feedback timing indicator, PUCCH resource indicator.
  • TPC transmit power control
  • HARQ hybrid automatic repeat request
  • PUCCH resource indicator PUCCH resource indicator.
  • FIG 12b which is an example of a possible format of successRAR.
  • successRAR can include 7 domains, which are called domain 1, domain 2, domain 3, domain 4, domain 5, domain 6, and domain 7. .
  • domain 1 is used to bear the timing advance command
  • domain 2 is used to bear the C-RNTI
  • domain 3 is used to bear the contention resolution identifier
  • domain 4 is used to bear the transmission power control
  • domain 5 is used to bear the HARQ feedback timing indication
  • domain 6 Used to carry PUCCH resource indication
  • field 7 is used to carry reserved bits.
  • successRAR includes 11 Octs. Domain 3 is located in Oct 1, Oct 2, Oct 3, Oct 4, Oct 5, and Oct 6, while domain 7, domain 4, and domain 5 are located in byte 7, domain 6 is located in Oct 8, and domain 1 is located in Oct 8 and Oct 9, and domain 2 is located in Oct 10 and Oct 11.
  • the indication information 3 may also be included in the fallbackRAR or successRAR.
  • the indication information 3 included in the fallbackRAR or successRAR is taken as an example here.
  • the indication information 1 and the indication information 2 may be included in the fallbackRAR or the successRAR, or the indication information 1 may be included in the fallbackRAR or the successRAR.
  • indication information 3 may be carried in at least one of domain 1, domain 2, domain 3, and domain 4.
  • indication information 3 may be carried in domain 2, or indication information 3 may be carried in the uplink authorization .
  • indication information 3 can be carried in at least one of domain 1, domain 2, domain 3, domain 4, domain 5, domain 6, and domain 7.
  • indication information 3 can be carried in domain 7.
  • the field 7 includes 3 bits, and the indication information 3 can occupy 2 bits among them, and the remaining one bit is still a reserved bit.
  • the implementation of the terminal device sending the uplink message 2 to the network device according to MsgB in step 1103 can be referred to the implementation of the terminal device sending the uplink message to the network device according to Msg2 in step 903 above.
  • the terminal device determines that the value of the two bits of the indication information 3 in MsgB is '00', it may not perform channel access, and determine the duration of the extended part according to C2*symbol length–16us–TA, and then expand The uplink message 2 is sent on some and uplink resources, and other situations will not be repeated one by one.
  • the remaining time of the network device's channel occupation time is large, the remaining time of the network device can be shared with the terminal device, and the terminal device can be instructed to use type 1 or type 2 to perform channel access, which can effectively improve non-compliance.
  • the utilization rate of authorized spectrum resources if the remaining time of the channel occupation time of the network device is small, the terminal device can be instructed to use type 4 to perform channel access to obtain the channel occupation time.
  • this solution can be used as an existing solution (based on DCI and timer between search space group 1 and search space group 2) Switch), or it can be implemented separately.
  • step numbers of the flowcharts described in the embodiments of the present application are only an example of the execution process, and do not constitute a pair
  • the order of execution of the steps is limited. In the embodiments of the present application, there is no strict execution order between steps that do not have a time sequence dependency relationship with each other.
  • the network device or the terminal device may include a hardware structure and/or software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal device and the network device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • FIG. 13 shows a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the apparatus 1300 may include: a processing unit 1302 and a communication unit 1303.
  • the processing unit 1302 is used to control and manage the actions of the device 1300.
  • the communication unit 1303 is used to support communication between the apparatus 1300 and other devices.
  • the communication unit 1303 is also called a transceiving unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the apparatus 1300 may further include a storage unit 1301 for storing program codes and/or data of the apparatus 1300.
  • the apparatus 1300 may be the terminal device in any of the foregoing embodiments, or may also be a chip provided in the terminal device.
  • the processing unit 1302 may support the apparatus 1300 to perform the actions of the terminal device in the foregoing method examples.
  • the processing unit 1302 mainly executes the internal actions of the terminal device in the method example, and the communication unit 1303 may support communication between the apparatus 1300 and the network device.
  • the communication unit 1303 may be used to perform step 502 and step 504 in FIG. 5; the processing unit 1302 may be used to perform step 505, step 506, and step 507 in FIG.
  • the communication unit 1303 is configured to: receive first configuration information from the network device, the first configuration information is used to configure the first search space and the second search space of the first frequency domain resource, and the first The first search space and the second search space of the frequency domain resources are used for monitoring DCI of the same format; the processing unit 1302 is used for: activating the first frequency domain resource, and according to the first frequency domain resource on the first frequency domain resource The first search space listens to DCI.
  • the period of the first search space is smaller than the period of the second search space.
  • the first frequency domain resource is the first BWP.
  • the processing unit 1302 is specifically configured to switch the activated BWP from the second BWP to the first BWP.
  • the processing unit 1302 is specifically configured to: determine that random access needs to be initiated, the second BWP is not configured with random access resources, the first BWP is configured with random access resources, and the activated BWP is assigned to the second BWP. Switch to the first BWP; or, determine that the number of consecutive failed channel accesses on the second BWP is greater than or equal to the first threshold, and switch the activated BWP from the second BWP to the first BWP.
  • the communication unit 1303 is further configured to: receive second configuration information from the network device, the second configuration information is used to configure the first search space and the second search space of the second BWP, and the second search space of the second BWP
  • the first search space and the second search space are used to monitor the DCI of the same format; before the processing unit 1302 switches the activated BWP from the second BWP to the first BWP, it is also used to: determine that the second BWP is based on the second BWP.
  • the second search space of the BWP monitors the DCI and starts the timer; and, it should switch and stop the timer.
  • the first BWP and the second BWP are located in the main carrier unit of the terminal device.
  • the first frequency domain resource is a secondary carrier unit of the terminal device.
  • the processing unit 1302 is further configured to: determine to monitor on the secondary carrier unit according to the second search space group, and start the timer; deactivate the secondary carrier unit and stop the timer.
  • the communication unit 1303 is configured to: receive configuration information from the network device, the configuration information is used to configure the first search space and the second search space, and the first search space and the second search space are used in the same format
  • the processing unit 1302 is configured to monitor the DCI according to the first search space, and, according to the uplink transmission of the terminal device, monitor the DCI according to the second search space group.
  • the uplink transmission includes at least one of the following: sending a random access request; sending information on the configured authorized resource; sending a scheduling request.
  • the processing unit 1302 is also used to start a timer in response to the uplink transmission of the terminal device.
  • the processing unit 1302 is further configured to: if the timer expires, perform monitoring according to the first search space group.
  • the communication unit 1303 is configured to: send a random access request to the network device, and receive a response to the random access request, where the response includes first indication information; and, according to the first indication information, send to the network device Uplink messages, uplink messages are carried on PUSCH or PUCCH.
  • the first indication information is used to indicate that channel access is not performed.
  • the first indication information is used to indicate that the channel access type is channel access without random back-off or random back-off channel access with variable contention window size; the processing unit 1302 controls the communication unit 1303 performs channel access according to the channel access type indicated by the first indication information, and after successful channel access, sends an uplink message to the network device.
  • the first indication information is also used to indicate the first duration or the second duration.
  • the extension part of the cyclic prefix is included before the first symbol of the time domain resource where the uplink message is located.
  • the communication unit 1303 is further configured to: receive second indication information from the network device, where the second indication information is used to indicate the duration of the extended part.
  • the random access response includes an uplink grant and a timing advance command
  • the uplink grant is used to indicate uplink resources
  • the timing advance command is used to indicate the timing advance
  • T is the duration of the extended part
  • T1 is the length of one symbol
  • T2 is the first duration or the second duration
  • T3 is the timing advance.
  • the apparatus 1300 may also be the network device in any of the foregoing embodiments, or may also be a chip provided in the network device.
  • the processing unit 1302 may support the apparatus 1300 to execute the actions of the network device in the foregoing method examples. Alternatively, the processing unit 1302 mainly executes the internal actions of the network device in the method example, and the communication unit 1303 may support communication between the apparatus 1300 and the terminal device.
  • the communication unit 1303 is configured to: receive a random access request from a terminal device, and send a response to the random access request to the terminal device, the response includes first indication information, and the first indication information is used for The terminal device sends an uplink message.
  • the first indication information is used to indicate that channel access is not performed; or, the first indication information is used to indicate that the channel access type is channel access without random backoff; or, the first indication The information is used to indicate that the channel access type is random backoff channel access with a variable contention window size.
  • the first indication information is also used to indicate the first duration or the second duration.
  • the extension part of the cyclic prefix is included before the first symbol of the time domain resource where the uplink message is located.
  • the communication unit 1303 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate the duration of the extended part.
  • the random access response includes an uplink grant and a timing advance command.
  • the uplink grant is used to indicate uplink resources, and the timing advance command is used to indicate the timing advance;
  • the length of the extended part conforms to the following formula:
  • T is the duration of the extended part
  • T1 is the length of one symbol
  • T2 is the first duration or the second duration
  • T3 is the timing advance.
  • each unit in the device can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • all or part of these units can be integrated together or implemented independently.
  • the processing element described here can also become a processor, which can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (central processing unit, CPU), or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 1410, a radio frequency part 1420, and a signal processing part 1430.
  • the antenna 1410 is connected to the radio frequency part 1420.
  • the radio frequency part 1420 receives the information sent by the network device through the antenna 1410, and sends the information sent by the network device to the signal processing part 1430 for processing.
  • the signal processing part 1430 processes the information of the terminal equipment and sends it to the radio frequency part 1420
  • the radio frequency part 1420 processes the information of the terminal equipment and sends it to the network equipment via the antenna 1410.
  • the signal processing part 1430 may include a modem subsystem, which is used to process data at various communication protocol layers; it may also include a central processing subsystem, which is used to process terminal equipment operating systems and application layers; in addition, it may also Including other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the modem subsystem may include one or more processing elements 1431, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 1432 and an interface circuit 1433.
  • the storage element 1432 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 1432, but is stored in a memory outside the modem subsystem, When in use, the modem subsystem is loaded and used.
  • the interface circuit 1433 is used to communicate with other subsystems.
  • the modem subsystem can be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any method executed by the above terminal device, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the terminal device in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of an SOC, and the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and a storage element, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for terminal equipment may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal equipment provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the terminal device are executed in a manner; of course, part or all of the steps executed by the terminal device can also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 13.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 13.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 13.
  • the storage element can be a single memory or a collective term for multiple memories.
  • the terminal device shown in FIG. 14 can implement various processes involving the terminal device in the method embodiments illustrated in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9 or FIG. 11.
  • the operations and/or functions of each module in the terminal device shown in FIG. 14 are used to implement the corresponding processes in the foregoing method embodiments.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of this application. It is used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 1501, a radio frequency device 1502, and a baseband device 1503.
  • the antenna 1501 is connected to the radio frequency device 1502.
  • the radio frequency device 1502 receives the information sent by the terminal device through the antenna 1501, and sends the information sent by the terminal device to the baseband device 1503 for processing.
  • the baseband device 1503 processes the information of the terminal device and sends it to the radio frequency device 1502, and the radio frequency device 1502 processes the information of the terminal device and sends it to the terminal device via the antenna 1501.
  • the baseband device 1503 may include one or more processing elements 15031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1503 may also include a storage element 15032 and an interface 15033.
  • the storage element 15032 is used to store programs and data; the interface 15033 is used to exchange information with the radio frequency device 1502.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 1503.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 1503.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network. For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device above can also be executed in combination with the first method and the second method.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 13.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 13.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 13.
  • the storage element can be a single memory or a collective term for multiple memories.
  • the network device shown in FIG. 15 can implement various processes involving the network device in the method embodiment illustrated in FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9 or FIG. 11.
  • the operations and/or functions of the various modules in the network device shown in FIG. 15 are used to implement the corresponding processes in the foregoing method embodiments.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,其中方法包括:终端设备接收来自网络设备的第一配置信息,第一配置信息用于配置第一频域资源的第一搜索空间和第二搜索空间,第一频域资源的第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;以及,终端设备激活第一频域资源,并在第一频域资源上根据第一频域资源的第一搜索空间监听DCI。采用上述方法,当被配置了监听同一种格式的DCI的第一搜索空间和第二搜索空间时,终端设备若激活第一频域资源,则可以使用第一频域资源的第一搜索空间进行监听,也就是说,终端设备可以选择第一搜索空间进行监听。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
无线通信的基础是频谱资源,频谱资源按照类型可以分两类,授权频谱和非授权频谱。授权频谱在某个地方只能由特定运营商使用,而非授权频谱可以由任何运营商使用,是共享的频谱资源。在非授权频谱中,由于是共享的频谱,可能存在很多不同的空口技术。为了保证不同空口技术在非授权频谱上共存,在使用非授权频谱进行业务传输之前,网络设备或终端设备需要完成信道接入。
此外,第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)引入了两个搜索空间(search space,SS)组,每个搜索空间组中可以包括一个或多个搜索空间,搜索空间也可以称为搜索空间集合(search space set)。
因此,终端设备在非授权频谱上通信时,选择哪个搜索空间组中的搜索空间来监听下行控制信息(downlink control information,DCI),目前仍需进一步的研究。
发明内容
有鉴于此,本申请提供了一种通信方法及装置,用以确定选择哪个搜索空间组中的搜索空间来监听DCI。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备可以接收来自网络设备的第一配置信息,第一配置信息用于配置第一频域资源的第一搜索空间和第二搜索空间,第一频域资源的第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;以及,终端设备激活第一频域资源,并在第一频域资源上根据第一频域资源的第一搜索空间监听DCI。
采用上述方法,当终端设备被配置了监听同一种格式的DCI的第一搜索空间和第二搜索空间后,终端设备若激活第一频域资源,则可以使用第一频域资源的第一搜索空间进行监听,也就是说,终端设备可以选择第一搜索空间进行监听。
在一种可能的设计中,第一搜索空间的周期小于第二搜索空间的周期。
如此,终端设备激活第一频域资源后,使用第一搜索空间进行监听,从而能够尽早地接收到DCI,即尽早地实现和网络设备之间的通信,提高资源的利用率。
在一种可能的设计中,第一频域资源为第一BWP。
在一种可能的设计中,终端设备激活第一频域资源,包括:终端设备将激活的BWP由第二BWP切换为第一BWP。
在一种可能的设计中,终端设备将激活的BWP由第二BWP切换为第一BWP,包括:终端设备确定需要发起随机接入,第二BWP未配置随机接入资源,第一BWP配置有随机接入资源,将激活的BWP由第二BWP切换为第一BWP;或者,终端设备确定在第二BWP上连续发生失败的信道接入次数大于或等于第一阈值,将激活的BWP由第二BWP切换为 第一BWP。
在一种可能的设计中,该方法还包括:终端设备接收来自网络设备的第二配置信息,第二配置信息用于配置第二BWP的第一搜索空间和第二搜索空间,第二BWP的第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;终端设备将激活的BWP由第二BWP切换为第一BWP之前,还包括:终端确定在第二BWP上根据第二BWP的第二搜索空间监听DCI,且启动定时器;以及,应所述切换,停止定时器。
采用上述方法,及时停止定时器,能够有效节省终端设备的功耗。
在一种可能的设计中,第一BWP和第二BWP位于终端设备的主载波单元。
在一种可能的设计中,第一频域资源为终端设备的辅载波单元。
在一种可能的设计中,该方法还包括:终端设备确定在辅载波单元上根据第二搜索空间组进行监听,且启动定时器;应终端设备去激活辅载波单元,停止定时器。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备接收来自网络设备的配置信息,配置信息用于配置第一搜索空间和第二搜索空间,第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;终端设备根据第一搜索空间监听DCI,应终端设备的上行传输,根据第二搜索空间组监听DCI。
采用上述方法,终端设备进行上行传输后,可以由根据第一搜索空间进行监听切换为根据第二搜索空间进行监听,从而更加有效地实现搜索空间组一和搜索空间组二之间的切换。
在一种可能的设计中,该上行传输包括以下至少一项:发送随机接入请求;在配置授权资源上发送信息;发送调度请求。
在一种可能的设计中,该方法还包括:应终端设备的上行传输,启动定时器。
在一种可能的设计中,该方法还包括:若定时器超时,则终端设备根据第一搜索空间组进行监听。
第三方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备向网络设备发送随机接入请求,以及接收随机接入请求的响应,该响应包括第一指示信息,比如第一指示信息用于指示上行传输方式;进而根据第一指示信息,向网络设备发送上行消息,上行消息承载于PUSCH或者PUCCH。
采用上述方法,终端设备可以基于网络设备指示的上行传输方式来发送上行消息,从而增加了网络设备调控的灵活性,便于网络设备将竞争信道所获取到的传输机会分享给终端设备使用。
在一种可能的设计中,第一指示信息用于指示不执行信道接入。
在一种可能的设计中,第一指示信息用于指示信道接入类型为无随机回退的信道接入或者具有可变竞争窗口大小的随机回退的信道接入;终端设备根据第一指示信息,向网络设备发送上行消息,包括:终端设备根据第一指示信息指示的信道接入类型执行信道接入,并在信道接入成功后,向网络设备发送上行消息。
在一种可能的设计中,当信道接入类型为无随机回退的信道接入时,第一指示信息还用于指示第一时长或第二时长。
在一种可能的设计中,上行消息所在的时域资源的第一个符号之前包括循环前缀的扩 展部分,从而有效避免终端设备信道接入成功后未及时使用信道而导致信道被其它设备占用。
在一种可能的设计中,该方法还包括:终端设备接收来自网络设备的第二指示信息,第二指示信息用于指示扩展部分的时长。
在一种可能的设计中,随机接入响应包括上行授权和定时提前命令,上行授权用于指示上行资源,定时提前命令用于指示定时提前量;
扩展部分的时长符合如下公式:
T=C*T1–T2–T3或者T=C*T1–T2
其中,T为扩展部分的时长,T1为一个符号的长度,T2为第一时长或第二时长,T3为定时提前量。
第四方面,本申请实施例提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。以该方法应用于网络设备为例,在该方法中,网络设备接收来自终端设备的随机接入请求,并向终端设备发送随机接入请求的响应,该响应包括第一指示信息,第一指示信息用于终端设备发送上行消息。
由于第四方面的通信方法与第三方面相对应,因此其有益效果可以参见第三方面的相关描述。
在一种可能的设计中,第一指示信息用于指示不执行信道接入;或者,第一指示信息用于指示信道接入类型为无随机回退的信道接入;又或者,第一指示信息用于指示信道接入类型为具有可变竞争窗口大小的随机回退的信道接入。
在一种可能的设计中,当信道接入类型为无随机回退的信道接入时,第一指示信息还用于指示第一时长或第二时长。
在一种可能的设计中,上行消息所在的时域资源的第一个符号之前包括循环前缀的扩展部分。
在一种可能的设计中,该方法还包括:向终端设备发送第二指示信息,第二指示信息用于指示扩展部分的时长。
在一种可能的设计中,随机接入响应包括上行授权和定时提前命令,上行授权用于指示上行资源,定时提前命令用于指示定时提前量;
扩展部分的时长符合如下公式:
T=C*T1–T2–T3或者T=C*T1–T2
其中,T为扩展部分的时长,T1为一个符号的长度,T2为第一时长或第二时长,T3为定时提前量。
第五方面,本申请提供一种通信装置,所述通信装置可以为终端设备或者设置在终端设备内部的芯片。所述通信装置具备实现上述第一方面至第三方面的功能,比如,所述通信装置包括执行上述第一方面至第三方面涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于接收来自网络设备的配置信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面至第三方面涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面至第三方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第一方面至第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第三方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面至第三方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面至第三方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面至第三方面任意可能的设计或实现方式中的方法。
第六方面,本申请提供一种通信装置,所述通信装置可以为网络设备或者设置在网络设备内部的芯片。所述通信装置具备实现上述第四方面涉及的功能,比如,所述通信装置包括执行上述第四方面涉及步骤所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向终端设备发送***信息;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第四方面涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第四方面中任意可能的设计或实现方式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第四方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第四方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第四方面任意可能的设计或实现方式中的方法。
第七方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述第一方面至第四方面的任一种可能的设计中的方法。
第八方面,本申请提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述第一方面至第四方面的任一种可能的设计中的方法。
第九方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面至第四方面的任一种可能的设计中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例适用的一种可能的***架构示意图;
图2为本申请实施例适用的又一种网络架构示意图;
图3为本申请实施例适用的又一种网络架构示意图;
图4a为本申请实施例提供的搜索空间的参数示例;
图4b为本申请实施例提供的搜索空间组一和搜索空间组二的周期示例;
图5为本申请实施例一提供的通信方法所对应的一种流程示意图;
图6为本申请实施例一提供的通信方法所对应的又一种流程示意图;
图7为本申请实施例一提供的通信方法所对应的又一种流程示意图;
图8为本申请实施例二提供的通信方法所对应的流程示意图;
图9为本申请实施例三提供的通信方法所对应的一种流程示意图;
图10a为本申请实施例提供的网络设备可以把传输机会分享给终端设备示意图;
图10b为本申请实施例提供的网络设备没有剩余可用的传输机会示意图;
图10c为本申请实施例提供的终端设备执行信道接入的起始时刻示意图;
图11为本申请实施例三提供的通信方法所对应的又一种流程示意图;
图12a为本申请实施例提供的fallbackRAR的一种可能的格式示例;
图12b为本申请实施例提供的successRAR的一种可能的格式示例;
图12c为本申请实施例提供的successRAR的又一种可能的格式示例;
图13为本申请实施例中所涉及的装置的可能的示例性框图;
图14为本申请实施例提供的一种终端设备的结构示意图;
图15为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语 言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为***、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信***,例如,5G通信***中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
(2)网络设备:可以是无线网络中的设备,例如网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN设备的举例为:5G通信***中的新一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
(3)本申请实施例中的术语“***”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
下面结合说明书附图对本申请的技术方案作进一步地详细描述。
图1为本申请实施例适用的一种网络架构示意图。如图1所示,终端设备130可接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它设备通信,如可以与其它终端设备通信。该无线网络包括无线接入网(radio access network,RAN)设备110和核心网(core network,CN)设备120,其中RAN设备110用于将终端设备130接入到无线网络,CN设备120用于对终端设备进行管理并提供与外网通信的网关。应理解,图1所示的通信***中各个设备的数量仅作为示意,本申请实施例并不限于 此,实际应用中在通信***中还可以包括更多的终端设备130、更多的RAN设备110,还可以包括其它设备。
CN中可以包括多个CN设备120,当图1所示的网络架构适用于5G通信***时,CN设备120可以为接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体或用户面功能(user plane function,UPF)实体等,当图1所示的网络架构适用于LTE通信***时,CN设备120可以为移动性管理实体(mobility management entity,MME)和服务网关(serving gateway,S-GW)等。
图2为本申请实施例适用的又一种网络架构示意图。如图2所示,该网络架构包括CN设备、RAN设备和终端设备。其中,RAN设备包括基带装置和射频装置,其中基带装置可以由一个节点实现,也可以由多个节点实现,射频装置可以从基带装置拉远独立实现,也可以集成在基带装置中,或者部分功能独立集成、部分功能集成在基带装置中。例如,在LTE通信***中,RAN设备(eNB)包括基带装置和射频装置,其中射频装置可以相对于基带装置拉远布置,例如射频拉远单元(remote radio unit,RRU)是相对于BBU布置的远端无线单元。
RAN设备和终端设备之间的通信遵循一定的协议层结构,例如控制面协议层结构可以包括无线资源控制(radio resource control,RRC)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理层等协议层的功能;用户面协议层结构可以包括PDCP层、RLC层、MAC层和物理层等协议层的功能;在一种可能的实现中,PDCP层之上还可以包括业务数据适配(service data adaptation protocol,SDAP)层。
RAN设备可以由一个节点实现RRC、PDCP、RLC和MAC等协议层的功能,或者可以由多个节点实现这些协议层的功能。例如,在一种演进结构中,RAN设备可以包括CU)和DU,多个DU可以由一个CU集中控制。如图2所示,CU和DU可以根据无线网络的协议层划分,例如PDCP层及以上协议层的功能设置在CU,PDCP以下的协议层,例如RLC层和MAC层等的功能设置在DU。
这种协议层的划分仅仅是一种举例,还可以在其它协议层划分,例如在RLC层划分,将RLC层及以上协议层的功能设置在CU,RLC层以下协议层的功能设置在DU;或者,在某个协议层中划分,例如将RLC层的部分功能和RLC层以上的协议层的功能设置在CU,将RLC层的剩余功能和RLC层以下的协议层的功能设置在DU。此外,也可以按其它方式划分,例如按时延划分,将处理时间需要满足时延要求的功能设置在DU,不需要满足该时延要求的功能设置在CU。
此外,射频装置可以独立集成,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,在此不作任何限制。
图3为本申请实施例适用的又一种网络架构示意图。相对于图2所示的网络架构,图3中还可以将CU的控制面(CP)和用户面(UP)分离,分成不同实体来实现,分别为控制面(control plane,CP)CU实体(即CU-CP实体)和用户面(user plane,UP)CU实体(即CU-UP实体)。
在以上网络架构中,CU产生的信令可以通过DU发送给终端设备,或者终端设备产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装后 透传给终端设备或CU。以下实施例中如果涉及这种信令在DU和终端设备之间的传输,此时,DU对信令的发送或接收包括这种场景。例如,RRC或PDCP层的信令最终会处理为PHY层的信令发送给终端设备,或者,由接收到的PHY层的信令转变而来。在这种架构下,该RRC或PDCP层的信令,即也可以认为是由DU发送的,或者,由DU和射频装载发送的。
上述图1、图2或图3所示意的网络架构可以适用于各种无线接入技术(radio access technology,RAT)的通信***中,例如可以是LTE通信***,也可以是5G(或者称为新无线(new radio,NR))通信***,也可以是LTE通信***与5G通信***之间的过渡***,该过渡***也可以称为4.5G通信***,当然也可以是未来的通信***。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。本申请以下实施例中的装置,根据其实现的功能,可以位于终端设备或网络设备。当采用以上CU-DU的结构时,网络设备可以为CU、或DU、或包括CU和DU的RAN设备。
下面先对本申请实施例所涉及的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
一、信道接入过程
上述图1、图2或图3所示意的网络架构中,网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)(也可以称为免授权频谱)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。以网络设备和终端设备之间通过非授权频谱通信为例,网络设备或终端设备在使用非授权频谱进行业务传输之前,需要完成信道接入或信道接入过程,信道接入过程也可以称为先听后说过程,本申请实施例中统一称为信道接入过程。
3GPP针对信道接入提供了4种信道接入类型(channel access type),分别为:
类型1(Cat.1):不执行信道接入,或者说不执行LBT(No LBT)。即通信设备(比如网络设备或终端设备)在使用非授权频谱进行业务传输之前,可以不执行信道接入。
类型2(Cat.2):无随机回退的信道接入,或者说基于固定时长的信道接入,或者说基于固定时长的能量检测,又或者说无随机回退的LBT(LBT without random back-off)。即通信设备可以检测一定频谱范围内的非授权频谱资源上的信号的能量(比如平均信号强度),如果在固定时长内的信号的能量低于预设门限,则认为信道处于空闲状态,从而可以占用信道,否则认为信道处于忙碌状态,需要重新竞争信道。
类型3(Cat.3):具有固定竞争窗口大小的随机回退的信道接入,或者说具有固定竞争窗口大小的随机回退的LBT(LBT with random back-off with fixed size of contention window)。
类型4(Cat.4):具有可变竞争窗口大小的随机回退的信道接入,或者说具有可变竞争窗口大小的随机回退的LBT(LBT with random back-off with variable size of contention window),又或者说基于回退机制的能量检测。即通信设备在一个竞争窗口中,随机选择 一个数值A,当检测到至少A个空闲的时隙之后,可以确定信道处于空闲状态,从而可以占用信道,否则需要重新竞争信道。其中,空闲的时隙可以是指在一个时隙内检测到的信号的能量(比如平均信号强度)低于预设门限。示例性地,时隙的长度可以是9微妙(us),至少A个空闲的时隙(A个9us)可以是连续的,也可以是非连续的。
需要说明的是:(1)由于类型3未被标准化,因此本申请实施例不再对类型3进行介绍。(2)在以上类型2和类型4所描述的信道接入过程中的能量检测时,通信设备可以接收所有方向上的信号,然后对这些信号进行测量,得到平均信号强度;此种情形下,由于是基于所有方向的检测,因此也可以称为基于全向的信道接入过程。或者,通信设备也可以接收部分方向上的信号,然后针对这些部分方向的信号进行测量,得到部分方向的平均信号强度;此种情形下,由于是基于部分方向的检测,因此也可以称为基于部分方向的信道接入过程。
通信设备基于上述类型2或类型4所描述的信道接入过程进行信道接入,在信道接入成功后,可以在一定时长内,进行数据传输。此处的一定时长可以理解为信道占用时间,信道占用时间与信道接入优先等级(channel access priority class,CAPC)相关。CAPC可以用于确定信道接入参数,比如信道接入参数包括竞争窗口的大小、信道占用的最长时间(或者说信道占用的最长时长)。信道占用时间可以小于或等于信道占用的最长时间。
二、搜索空间
上述图1、图2或图3所示意的网络架构中,网络设备可以向终端设备发送配置信息,配置信息用于配置搜索空间和搜索空间关联的控制资源集合(control-resource set,CORESET);进而根据在搜索空间和搜索空间关联的控制资源集合所对应的时频资源上向终端设备发送下行控制信道;相应地,终端设备接收到配置信息后,可以在搜索空间和搜索空间关联的控制资源集合所对应的时频资源上监听DCI;也就是说,搜索空间和搜索空间关联的控制资源集合可用于监听DCI。
其中,控制资源集合决定了传输DCI的频域资源,即DCI可以在控制资源集合对应的频域资源上传输,控制资源集合对应的频域资源可以包括多个RB。
搜索空间决定了传输DCI的时域资源,搜索空间可以配置有一些时域信息,比如:周期(即检测搜索空间的时间间隔,单位可以为时隙);时隙偏移(即检测周期开始到实际检测搜索空间之间的时隙偏移量,且该时隙偏移量小于检测周期的取值);第一持续时间(通过duration参数配置,即连续检测搜索空间的时间,可以包括多个时隙,且包括的时隙数量小于检测周期的取值);时域起始位置(即每个时隙内,搜索空间关联的控制资源集合对应的时域起始位置)。
为了方便理解,以具体例子介绍各参数的含义。如图4a所示,其中,搜索空间的周期为10个时隙,时隙偏移为3个时隙,第一持续时间为2个时隙,时域起始位置为一个时隙内的符号0和符号7,搜索空间关联的控制资源集合的第二持续时间为2个符号。在这个示例中,终端设备可以在每10个时隙的检测周期内的时隙3和时隙4内的符号0、符号1以及符号7、符号8上检测DCI。
三、DCI格式
DCI格式(format)可以有多种,比如可以包括DCI format 0_0、DCI format 0_1、DCI format 1_0、DCI format 1_1、DCI format 2_0、DCI format 2_1、DCI format 2_2、DCI format2_3,还可以包括其它可能的格式,具体不做限定。其中,DCI format 0_0/0_1/1_0/1_1是用 于上下行调度的DCI,比如DCI format 0_0用于调度上行数据,或者说调度物理上行共享信道(physical uplink shared channel,PUSCH);DCI format 1_0用于调度下行数据,或者说调度物理下行共享信道(physical downlink shared channel,PDSCH)。DCI format 2_0/2_1/2_2/2_3是用于其他用途的DCI,比如DCI format 2_0用于指示一组终端侧设备的时隙格式。进一步地,在用于上下行调度的DCI(即DCI format 0_0/0_1/1_0/1_1)中,第一个数字表示上下行,“0”表示上行,“1”表示下行;第二个数字表示回退(fallback)或非回退(non-fallback),“0”表示回退,“1”表示非回退。例如DCI format 1_0表示用于调度PDSCH的回退DCI。
上述所描述的每一种格式的DCI均可以采用一种或多种无线网络临时标识(radio network temporary identifier,RNTI)加扰,比如,DCI format 0_0可以采用以下任一种RNTI加扰:小区无线网络临时标识(cell radio network temporary identifier,C-RNTI);配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI);调制和编码方式(modulation and coding scheme,MCS)小区无线网络临时标识(MCS-C-RNTI)。又比如,DCI format 1_0可以采用以下任一种RNTI加扰:***消息(system information radio network temporary identifier,SI-RNTI);寻呼无线网络临时标识(paging radio network tempory identity,P-RNTI);随机接入无线网络标识(random access radio network temporary identifier,RA-RNTI);临时小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI);C-RNTI;CS-RNTI;MCS-C-RNTI。
四、搜索空间组
3GPP引入了两个搜索空间组,可以称为搜索空间组一(group1)和搜索空间组二(group2)。
其中,搜索空间组一中可以包括一个或多个搜索空间(为便于区分称为搜索空间A),一个或多个搜索空间A可以用于监听一种或多种格式的DCI,比如,搜索空间组一中可以包括以下至少一个搜索空间:用于监听DCI format 0_0的搜索空间;用于监听DCI format 1_0的搜索空间;用于监听DCI format 0_1的搜索空间;用于监听DCI format 1_1的搜索空间;用于监听DCI format 2_0的搜索空间。
由于每种格式的DCI可以采用对应的RNTI加扰,因此,也可以理解为,一个或多个搜索空间A可以用于监听一种或多种RNTI加扰的DCI,比如,搜索空间组一中可以包括以下至少一个搜索空间:用于监听SI-RNTI加扰的DCI的搜索空间;用于监听RA-RNTI加扰的DCI的搜索空间;用于监听P-RNTI加扰的DCI的搜索空间;用于监听C-RNTI加扰的DCI的搜索空间。
类似于搜索空间组一,搜索空间组二中也可以包括一个或多个搜索空间(为便于区分称为搜索空间B),一个或多个搜索空间B可以用于监听一种或多种格式的DCI,或者说,一个或多个搜索空间B可以用于监听一种或多种RNTI加扰的DCI。
在一个示例中,搜索空间组一中的搜索空间用于终端设备不知道网络设备的信道占用时间时,监听DCI;即终端设备若确定网络设备尚未获取到信道占用时间,则可以使用搜索空间组一中的搜索空间监听DCI。搜索空间组二中的搜索空间用于终端设备知道网络设备的信道占用时间时,监听DCI;即终端设备若确定网络设备获取到信道占用时间,则可以使用搜索空间组一中的搜索空间监听DCI。其中,终端设备确定网络设备获取到信道占用时间的方式可以有多种,本申请实施例对此不做限定。对于网络设备来说,网络设备执 行信道接入,获取信道占用时间后,可以通过搜索空间组一中的搜索空间向终端设备发送DCI,以及后续可以切换到搜索空间组二,在网络设备的信道占用时间内根据搜索空间组二中的搜索空间来向终端设备发送DCI。
(1)搜索空间组一和搜索空间组二的关系
本申请实施例中,搜索空间组一中的搜索空间和搜索空间组二中的搜索空间可以用于监听相同格式的DCI。举个例子,搜索空间组一中包括搜索空间A1、搜索空间A2、搜索空间A3,搜索空间组二包括搜索空间B1、搜索空间B2、搜索空间B3。其中,搜索空间A1和搜索空间B1可以用于监听同一种格式(比如DCI format 0_0)的DCI,搜索空间A2和搜索空间B2可以用于监听同一种格式(比如DCI format 0_1)的DCI,搜索空间A3和搜索空间B3可以用于监听同一种格式(比如DCI format 1_0)的DCI。
当搜索空间组一中的搜索空间和搜索空间组二中的搜索空间用于监听相同格式的DCI时,搜索空间组一中的搜索空间和搜索空间组二中的搜索空间还可以用于监听相同或不同RNTI加扰的DCI。比如搜索空间A1用于DCI format 0_0的DCI(称为DCI-1)的监听,搜索空间B1也用于DCI format 0_0的DCI(称为DCI-2)的监听,则DCI-1和DCI-2可以为相同RNTI加扰的DCI,或者,也可以为不同RNTI加扰的DCI。
示例性地,用于监听相同格式的DCI的搜索空间组一中的搜索空间和搜索空间组二中的搜索空间的周期可以不同。比如搜索空间A1和搜索空间B1用于监听同一种格式的DCI,搜索空间A1的周期可以小于搜索空间B1的周期。参见图4b所示,为搜索空间A1的周期可以小于搜索空间B1的周期示意图。
(2)搜索空间组一和搜索空间组二的切换
当网络设备为终端设备配置了搜索空间组一和搜索空间组二时,终端设备可以基于DCI和定时器来实现搜索空间组一和搜索空间组二的切换。
在一个示例中,网络设备为终端设备配置了用于监听DCI format 2_0的搜索空间1和搜索空间2,其中,搜索空间1为搜索空间组一中的一个搜索空间,搜索空间2为搜索空间组二中的一个搜索空间。
在该示例的一种情形中,网络设备进一步配置了DCI format 2_0中携带监听组标识(monitoring group flag),监听组标识可以包括1个比特。若该比特的取值为1,则指示终端设备切换为(或者保持)根据搜索空间组二中的搜索空间进行监听;进一步地,当终端设备切换为根据搜索空间组二中的搜索空间进行监听时,可以启动定时器,若定时器超时,则可以切换为根据搜索空间组一中的搜索空间进行监听。若该比特的取值为0,则指示终端设备切换为(或者保持)根据搜索空间组一中的搜索空间进行监听。
在该示例的又一种情形中,网络设备未配置DCI format 2_0中携带监听组标识,则此种情形下,终端设备根据搜索空间组一中的搜索空间进行监听时,若监听到任何DCI,则可以切换为根据搜索空间组二中的搜索空间进行监听,并启动定时器,若定时器超时,则可以切换为根据搜索空间组一中的搜索空间进行监听。
在又一个示例中,网络设备未为终端设备配置了用于监听DCI format 2_0的搜索空间1和搜索空间2,则此种情形下,终端设备根据搜索空间组一中的搜索空间进行监听时,若监听到任何DCI,则可以切换为根据搜索空间组二中的搜索空间进行监听,并启动定时器,若定时器超时,则可以切换为根据搜索空间组一中的搜索空间进行监听。
(3)搜索空间组一和搜索空间组二的配置
示例性地,网络设备可以为终端设备配置搜索空间组一和搜索空间组二,具体的配置方式可以有多种。下面结合不同场景进行说明。
场景1:网络设备为终端设备配置了多个带宽部分(bandwidth part,BWP)
为适配终端设备的带宽能力,网络设备可以在一个载波单元支持的带宽(可称为载波带宽,取值可以为10MHz、15MHz、20MHz、50MHz、100MHz或400MHz等)内为终端设备配置BWP,一个载波单元中可配置多个BWP。
比如,网络设备为终端设备配置了BWP1、BWP2和BWP3,则在一种可能的方式中,网络设备可以针对每个BWP分别配置搜索空间组一和搜索空间组二,比如,可以配置BWP1的搜索空间组一和搜索空间组二,BWP2的搜索空间组一和搜索空间组二,BWP3的搜索空间组一和搜索空间组二;此种情形下,终端设备可以在BWP1上根据BWP1的搜索空间组一或搜索空间组二中的搜索空间进行监听,在BWP2上根据BWP2的搜索空间组一或搜索空间组二中的搜索空间进行监听,在BWP3上根据BWP3的搜索空间组一或搜索空间组二中的搜索空间进行监听。
在又一种可能的方式中,网络设备可以统一配置搜索空间组一和搜索空间组二,此种情形下,终端设备可以在BWP1或BWP2或BWP3上根据搜索空间组一或搜索空间组二中的搜索空间进行监听。
场景2:载波聚合场景
在载波聚合场景中,多个载波单元可以聚合在一起为一个终端设备服务。由于每个下行载波单元对应一个独立的小区,因此可以将一个下行载波单元等同于一个小区,进而载波聚合也可以称为小区的聚合。聚合的多个小区中包含一个主小区,主小区可以是终端设备进行初始连接建立的小区,或者,主小区可以是终端设备进行RRC连接重建的小区,或者,主小区可以是在切换(handover)过程中指定的主小区等。主小区主要用于与终端设备之间的RRC通信。主小区对应的载波单元称为主载波单元(primary component carrier,PCC)。聚合的多个小区中包含一个或多个辅小区,辅小区可以是与终端设备之间不存在RRC通信的小区,主要用于提供额外的无线资源。辅小区可以是在RRC重配置时添加的。辅小区对应的载波单元成为辅载波单元(secondary component carrier,SCC)。
比如,为终端设备服务的载波单元包括载波单元1、载波单元2和载波单元3,则在一种可能的方式中,网络设备可以针对每个载波单元分别配置搜索空间组一和搜索空间组二。进一步地,针对于载波单元1、载波单元2和载波单元3中的任一个载波单元,若该载波单元包括多个BWP,则网络设备可以针对多个BWP分别配置搜索空间组一和搜索空间组二,或者,也可以统一配置搜索空间组一和搜索空间组二。
基于上述对相关技术特征的介绍,本申请实施例将对终端设备在非授权频谱上通信的一些实现进行进一步的研究,比如在一些可能的场景(比如激活频域资源)中,终端设备使用哪个搜索空间组中的搜索空间进行监听,又比如终端设备如何更有效地在搜索空间组一和搜索空间组二之间切换,又比如在随机接入过程中,终端设备在发送随机接入请求后,如何向网络设备发送上行消息。
下面结合实施例一至实施例三进行详细描述。
实施例一
在实施例一中,终端设备可以接收来自网络设备的配置信息,配置信息用于配置第一 频域资源的第一搜索空间和第二搜索空间,第一频域资源的第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;终端设备激活第一频域资源后,可以在第一频域资源上根据第一频域资源的第一搜索空间监听所述DCI。其中,第一搜索空间可以为搜索空间组一中的搜索空间,第二搜索空间可以为搜索空间组二中的搜索空间,或者反之。由于目前的方案中,当终端设备被配置了监听同一种格式的DCI的第一搜索空间和第二搜索空间后,当终端设备激活第一频域资源后,使用哪个搜索空间组中的搜索空间进行监听,并没有具体的方式;基于此,实施例一给出一种具体的方式,即终端设备可以使用第一频域资源的第一搜索空间进行监听。
示例性地,第一搜索空间的周期可以小于第二搜索空间的周期,如此,终端设备激活第一频域资源后,使用第一搜索空间进行监听,从而能够尽早地接收到DCI,即尽早地实现和网络设备之间的通信,提高资源的利用率。或者,第一搜索空间的周期可以大于第二搜索空间的周期,如此,终端设备激活第一频域资源后,使用第一搜索空间进行监听,从而能够有效降低终端设备盲检测或监听的复杂度,进而降低终端设备的功耗。
示例性地,若第一搜索空间为搜索空间组二中的搜索空间,则终端设备激活第一频域资源后,还可以启动定时器,若定时器超时,则可以切换为根据第二搜索空间进行监听。也就是说,终端设备激活第一频域资源后,可以使用第一频域资源的第一搜索空间进行监听,后续还可以基于DCI和定时器来实现第一搜索空间和第二搜索空间之间的切换。
本申请实施例中,第一频域资源可以为BWP或载波单元(或小区),下面分别以情形一和情形二进行描述。
情形一:第一频域资源为第一BWP。
基于情形一,下面结合图5和图6描述两种可能的实现流程。
图5为本申请实施例一提供的通信方法所对应的一种流程示意图,如图5所示,包括:
步骤501,网络设备向终端设备发送第一配置信息,第一配置信息用于配置第一BWP的搜索空间1和搜索空间2,或者说,第一配置信息用于针对第一BWP配置搜索空间1和搜索空间2。
此处,第一配置信息可以用于针对第一BWP配置搜索空间组一和搜索空间组二,比如搜索空间1为搜索空间组一中的搜索空间,搜索空间2为搜索空间组二中的搜索空间。
示例性地,搜索空间1和搜索空间2可以用于监听同一种格式的DCI,比如,搜索空间1和搜索空间2用于监听DCI格式1。
相应地,在步骤502,终端设备接收第一配置信息。
步骤503,网络设备向终端设备发送第二配置信息,第二配置信息用于配置第二BWP的搜索空间3和搜索空间4。
此处,第二配置信息可以用于针对第二BWP配置搜索空间组一和搜索空间组二,比如搜索空间3为搜索空间组一中的搜索空间,搜索空间4为搜索空间组二中的搜索空间。
示例性地,搜索空间3和搜索空间4可以用于监听同一种格式的DCI,比如,搜索空间3和搜索空间4用于监听DCI格式2。
在一个示例中,DCI格式2和DCI格式1可以为同一种DCI格式。
相应地,在步骤504,终端设备接收第二配置信息。
步骤505,终端设备在激活的第二BWP上根据搜索空间4监听DCI。
可选地,终端设备还可以启动定时器。
比如终端设备在第二BWP上根据搜索空间3监听DCI,监听到了DCI format 2_0,DCI format 2_0中的监听组标识的取值为1,则可以切换为根据搜索空间4监听DCI,并启动定时器。可以理解地,“切换为根据搜索空间4监听DCI”以及“启动定时器”可以是同时执行的。
步骤506,终端设备将激活的BWP由第二BWP切换为第一BWP。
其中,终端设备可以在多种可能的情况下,将激活的BWP由第二BWP切换为第一BWP。比如,终端设备确定需要发起随机接入,第二BWP未配置随机接入资源,第一BWP配置有随机接入资源,进而可以将激活的BWP由第二BWP切换为第一BWP,以便于在第一BWP上发起随机接入。此种情形下,第一BWP可以为终端设备的初始BWP,即发起初始接入的BWP或者其它专用BWP;随机接入资源可以为四步随机接入过程中的随机接入资源或者也可以为两步随机接入过程中的随机接入资源。又比如,终端设备确定在第二BWP上发生连续LBT失败(consistent LBT failure),比如连续发生失败的信道接入次数大于或等于第一阈值,进而可以将激活的BWP由第二BWP切换为第一BWP。其中,第一阈值可以是由协议规定的,或者由网络设备为终端设备配置。
示例性地,若为终端设备服务的载波单元包括主载波单元和辅载波单元,则第一BWP和第二BWP可以均位于主载波单元,或者也可以均位于辅载波单元。
步骤507,终端设备在第一BWP上根据搜索空间1监听DCI。
可选地,终端设备还可以停止定时器。
示例性地,“将激活的BWP由第二BWP切换为第一BWP”、“停止定时器”可以是同时执行的。
根据上述步骤505至步骤507可以看出,终端设备将激活的BWP由第二BWP切换为第一BWP后,由根据第二BWP的搜索空间组二中的搜索空间监听DCI切换为根据第一BWP的搜索空间组一中的搜索空间监听DCI。在其它可能的示例中,若在步骤505中,终端设备是第二BWP上根据第二BWP的搜索空间组一中的搜索空间监听DCI,则在激活的BWP由第二BWP切换为第一BWP后,终端设备可以由根据第二BWP的搜索空间组一中的搜索空间监听DCI切换为根据第一BWP的搜索空间组一中的搜索空间监听DCI。
采用上述方法,网络设备针对每个BWP配置搜索空间组一和搜索空间组二,由于不同BWP对应不同的频率范围,而不同的频率范围的信道接入情况是各自独立,彼此之间没有互相影响,因此终端设备将第二BWP切换为第一BWP后,可以在第一BWP上根据周期较短的搜索空间组一中的搜索空间来接收对应的DCI,从而提高DCI的传输成功率。
图6为本申请实施例一提供的通信方法所对应的又一种流程示意图,如图6所示,包括:
步骤601,网络设备向终端设备发送配置信息,配置信息用于配置搜索空间1和搜索空间2,搜索空间1和搜索空间2可以用于监听同一种格式的DCI。
此处,配置信息可以用于针对多个BWP统一配置搜索空间组一和搜索空间组二,比如搜索空间1为搜索空间组一中的搜索空间,搜索空间2为搜索空间组二中的搜索空间。其中,多个BWP中可以包括第一BWP和第二BWP。
相应地,在步骤602,终端设备接收配置信息。
步骤603,终端设备在激活的第二BWP上根据搜索空间2监听DCI。
可选地,终端设备还可以启动定时器。
步骤604,终端设备将激活的BWP由第二BWP切换为第一BWP。
步骤605,终端设备在第一BWP上根据搜索空间1监听DCI。
可选地,终端设备还可以停止定时器。
根据上述步骤603至步骤605可以看出,终端设备将激活的BWP由第二BWP切换为第一BWP后,由根搜索空间组二中的搜索空间监听DCI切换为根据搜索空间组一中的搜索空间监听DCI。在其它可能的示例中,若在步骤603中,终端设备是在第二BWP上根据搜索空间组一中的搜索空间监听DCI,则在激活的BWP由第二BWP切换为第一BWP后,终端设备可以继续根据搜索空间组一中的搜索空间在第一BWP上监听DCI。
采用上述方法,网络设备针对第一BWP和第二BWP统一配置搜索空间组一和搜索空间组二,终端设备执行BWP切换后,可以根据周期较短的搜索空间组一中的搜索空间来接收对应的DCI,从而提高DCI的传输成功率。
需要说明的是:(1)在图6所示意的流程中,若为终端设备服务的载波单元包括主载波单元和辅载波单元,则第一BWP和第二BWP可以位于主载波单元,或者也可以位于辅载波单元。进一步地,由于辅载波单元中的BWP切换可以是由网络设备指示的,比如网络设备通过DCI指示BWP切换,因此,若网络设备在指示BWP切换的同时,还指示了在切换后的BWP上根据哪个搜索空间组中的搜索空间监听DCI,则也可以不再采用图6中所描述的方法。(2)图6所示意的流程与图5的差别至于在于:图6中网络设备是统一配置搜索空间组一和搜索空间组二,图5中网络设备是针对每个BWP分别配置搜索空间组一和搜索空间组二,除此差异之外的其它内容,二者可以相互参照。
情形二:第一频域资源为辅载波单元。
基于情形二,下面结合图7描述两种可能的实现流程。
图7为本申请实施例一提供的通信方法所对应的又一种流程示意图,如图7所示,包括:
步骤701,网络设备向终端设备发送配置信息,配置信息用于配置辅载波单元的搜索空间1和搜索空间2,搜索空间1和搜索空间2可以用于监听同一种格式的DCI。
此处,配置信息可以用于配置辅载波单元的搜索空间组一和搜索空间组二,比如搜索空间1为搜索空间组一中的搜索空间,搜索空间2为搜索空间组二中的搜索空间。
相应地,在步骤702中,终端设备接收配置信息。
步骤703,终端设备激活辅载波单元。
此处,终端设备激活辅载波单元的方式可以有多种,比如终端设备接收网络设备的指示信息,进而根据指示信息激活辅载波单元。
步骤704,终端设备在辅载波单元上根据搜索空间1监听DCI。
示例性地,上述方法还可以包括:
步骤705,终端设备在辅载波单元上切换为根据搜索空间2监听DCI,并启动定时器。
比如终端设备在辅载波单元上根据搜索空间1监听DCI,监听到了DCI format 2_0,DCI format 2_0中的监听组标识的取值为1,则可以切换为根据搜索空间2监听DCI,并启动定时器。
步骤706,终端设备去激活辅载波单元,并停止定时器。
采用上述方法,终端设备激活辅载波单元后,可以先根据周期较短的搜索空间组一中的搜索空间来接收对应的DCI,从而能够在辅载波单元上尽早地实现和网络设备之间的通 信。进一步地,终端设备在辅载波单元上可以基于DCI和定时器来实现搜索空间组一和搜索空间组二之间的切换。更进一步地,终端设备去激活辅载波单元后,可以停止定时器,以节省终端设备的功耗。
实施例二
在实施例二中,终端设备接收来自网络设备的配置信息,配置信息用于配置第一搜索空间和第二搜索空间,第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;终端设备根据第一搜索空间进行监听,应终端设备的上行传输,根据第二搜索空间进行监听。其中,第一搜索空间可以为搜索空间组一中的搜索空间,第二搜索空间可以为搜索空间组二中的搜索空间。由于目前的方案中,终端设备是基于DCI和定时器来实现第一搜索空间和第二搜索空间之间的切换,在方案二中,本申请实施例还提供了又一种可能的切换方式,即终端设备进行上行传输后,可以由根据第一搜索空间进行监听切换为根据第二搜索空间进行监听,从而更加有效地实现搜索空间组一和搜索空间组二之间的切换。
上述方案二中,比如终端设备在进行上行传输之前,需要执行信道接入,如果信道接入成功,则可以获取信道占用时间,并可以在信道占用时间内进行上行传输;终端设备还可以将信道占用时间分享给网络设备,进而网络设备可以通过第二搜索空间来发送DCI,终端设备也可以根据第二搜索空间来监听DCI。当第一搜索空间的周期小于第二搜索空间的周期时,终端设备进行上行传输后,使用第二搜索空间进行监听,从而能够有效降低终端设备盲检测或监听的复杂度,进而降低终端设备的功耗。
下面结合图8描述一种可能的实现流程。
图8为本申请实施例二提供的通信方法所对应的流程示意图,如图8所示,包括:
步骤801,网络设备向终端设备发送配置信息,配置信息用于配置搜索空间1和搜索空间2,搜索空间1和搜索空间2可以用于同一种格式的DCI的监听。
此处,配置信息可以用于配置辅载波单元的搜索空间组一和搜索空间组二,比如搜索空间1为搜索空间组一中的搜索空间,搜索空间2为搜索空间组二中的搜索空间。
相应地,在步骤802中,终端设备接收配置信息。
步骤803,终端设备根据搜索空间1监听DCI。
步骤804,终端设备执行上行传输。
在一个示例中,终端设备执行上行传输可以为,终端设备发送随机接入请求,随机接入请求中可以包括随机接入前导码。
在又一个示例中,终端设备执行上行传输可以为,终端设备在配置授权(configured grant,CG)资源上发送信息。其中,配置授权资源可以为网络设备预先配置的周期性PUSCH资源,进而当终端设备需要发送数据包时,可以通过预配置的资源发送数据包,该数据包可以为新传数据包,或者也可以为重传数据包。
在又一个示例中,终端设备执行上行传输可以为,终端设备发送调度请求(scheduling request,SR)。比如,终端设备若确定需要发送数据包,则可以先在配置的物理上行控制信道(physical uplink control channel,PUCCH)资源上向网络设备发送SR,相应地,网络设备接收到SR后向终端设备调度第一资源,进而终端设备可以在第一资源上发送数据包。
步骤805,终端设备根据搜索空间2监听DCI。
可选地,终端设备还可以启动定时器。比如,终端设备可以在上行传输所占用的最后 一个符号的下一个符号启动定时器。
示例性地,定时器超时后,终端设备可以切换为根据搜索空间1监听DCI。
根据上述步骤803至步骤805可以看出,终端设备执行上行传输后,可以由根搜索空间组一中的搜索空间监听DCI切换为根据搜索空间组二中的搜索空间监听DCI,以及启动定时器。在其它可能的示例中,若在步骤803中,终端设备是根据搜索空间组二中的搜索空间监听DCI,则终端设备执行上行传输后,也可以继续根据搜索空间组二中的搜索空间监听DCI。采用上述方法,终端设备执行上行传输后,可以切换为根据周期较长的搜索空间组二中的搜索空间来接收对应的DCI,从而有效降低终端设备的盲检测复杂度,节省终端设备的功耗。
实施例三
在实施例三中,终端设备可以向网络设备发送随机接入请求,并接收随机接入请求的响应,响应包括指示信息,指示信息可以用于指示上行传输方式;进而终端设备可以根据指示信息,向网络设备发送上行消息。采用该种方式,终端设备可以基于网络设备指示的上行传输方式来发送上行消息,从而增加了网络设备调控的灵活性,便于网络设备将竞争信道所获取到的传输机会分享给终端设备使用。
示例性地,本申请实施例提供两种随机接入流程,分别为四步随机接入流程和两步随机接入流程。上述随机接入请求可以为四步随机接入流程的消息1,或者也可以为两步随机接入流程的消息A;上述随机接入请求的响应可以为四步随机接入流程的消息2,或者也可以为两步随机接入流程的消息B。下面分别以情形一和情形二进行描述。
情形一:随机接入流程为四步随机接入流程
下面结合图9描述一种可能的实现流程。
图9为本申请实施例三提供的通信方法所对应的一种流程示意图,如图9所示,包括:
步骤900:网络设备向终端设备发送随机接入配置信息,则终端设备可接收来自网络设备的随机接入配置信息。该步骤可以为用于执行随机接入过程之前的准备工作,不属于随机接入过程包括的步骤。此处,随机接入配置信息可用于配置随机接入参数,随机接入参数可以包括随机接入前导码集合。
步骤901,终端设备向网络设备发送随机接入请求,随机接入请求可以承载于物理随机接入信道(physical random access channel,PRACH),随机接入请求可以包括随机接入前导码,相应地,网络设备从终端设备接收随机接入前导码。其中,该随机接入请求又被称为随机接入过程中的第1消息或消息1(Msg1)。
在一个示例中,终端设备向网络设备发送的随机接入前导码可以为终端设备从步骤900中获取到的用于随机接入的随机接入前导码集合中选择的一个随机接入前导码。
步骤902:网络设备在检测到终端设备发送的随机接入前导码后,向终端设备发送随机接入响应(random access response,RAR),则终端设备从网络设备接收随机接入响应,其中,随机接入响应又被称为随机接入过程中的第2消息或消息2(Msg2)。
示例性地,当网络设备检测到发送前导码的随机接入时频资源后,可计算出RA-RNTI(RA-RNTI的生成与终端设备发送前导码所用的时频资源相关),网络设备使用RA-RNTI对DCI进行加扰。网络设备向终端设备发送针对前导码的响应信息,终端设备知道自己发送前导码的时频资源信息,也可以计算出RA-RNTI,进而可以在PDCCH上使用RA-RNTI 来监听DCI(DCI用于调度承载Msg2的PDSCH),进而根据监听到的DCI来接收承载在PDSCH中的Msg2。
本申请实施例中,Msg2可以包括定时提前命令(timing advance command,TAC)、上行(uplink,UL)授权(grant)、TC-RNTI。其中,定时提前命令用于指示定时提前量,定时提前量的取值可以大于或等于0。上行授权用于指示网络设备为终端设备分配的上行资源。
示例性地,Msg2还可以包括指示信息1,指示信息1用于指示上行传输方式,或者说,指示信息1用于指示信道接入类型(如终端设备在发送消息3之前执行信道接入的信道接入类型)。比如,指示信息1可以用于指示信道接入类型为类型1,或者,指示信息1可以用于指示信道接入类型为类型2,又或者,指示信息1可以用于指示信道接入类型为类型4。当指示信息1可以用于指示信道接入类型为类型2,指示信息1还可以进一步指示一个固定时长,比如第一时长或第二时长,其中,第一时长可以为16us,第二时长可以为25us。
其中,指示信息1可以是由网络设备根据网络设备和终端设备之间的上下行转换时间和/或网络设备的信道占用时间确定。其中,上下行转换时间可以理解为,为避免下行传输和上行传输之间的干扰,由下行传输转换为上行传输(或者由上行传输转换为下行传输)时所需的保护间隔。示例性地,网络设备和终端设备之间的上下行转换时间可以是由网络设备根据网络设备和终端设备之间的距离确定的,具体不做限定。
以网络设备根据上下行转换时间和网络设备的信道占用时间确定指示信息1为例,网络设备根据上下行转换时间和网络设备的信道占用时间确定指示信息1的方式可以有多种。在一种可能的实现方式中,网络设备在发送消息2之前可以先执行信道接入,待信道接入成功后,可以在信道占用时间内发送消息2。参见图10a所示,若网络设备确定可以把传输机会分享给终端设备(即网络设备的信道占用时间的结束位置位于上行授权所指示的上行资源的结束位置之后,或者网络设备的信道占用时间的结束位置与上行授权所指示的上行资源的结束位置相同),则可以根据上下行转换时间来确定指示信息1指示的信道接入类型。比如网络设备若确定上下行转换时间小于或等于第一时长,则可以确定指示信息1指示的信道接入类型为类型1;若确定上下行转换时间大于第一时长且小于或等于第二时长,则可以确定指示信息1指示的信道接入类型为类型2,指示信息1还可以进一步指示固定时长为第一时长;若确定上下行转换时间大于第二时长,则可以确定指示信息1指示的信道接入类型为类型2,指示信息1还可以进一步指示固定时长为第二时长。参见图10b所示,若网络设备确定没有剩余可用的传输机会(即网络设备的信道占用时间的结束位置位于上行授权所指示的上行资源的结束位置之前),则可以确定指示信息1指示的信道接入类型为类型4。
示例性地,上行授权所指示的上行资源的第一个符号之前还可以包括循环前缀(cyclic prefix,CP)的扩展部分(extension)。Msg2还可以包括指示信息2,指示信息2用于指示扩展部分的时长。其中,扩展部分的时长可以和指示信息1所指示的信道接入类型有关。
比如,指示信息2所指示的扩展部分的时长可以符合如下公式:
T=C*T1–T2–T3或者T=C*T1–T2
其中,T为扩展部分的时长,C为整数,T1为一个符号的长度,即符号长度(symbol length),T2为第一时长或第二时长,T为定时提前量。示例性地,C的取值可以由协议预先定义的,或者是由网络设备确定并发送给终端设备的,具体不做限定。上述T1、T2、 T3的单位相同,比如均为us。
需要说明的是,本申请实施例中,可以通过指示信息1和指示信息2分别指示信道接入类型和扩展部分的时长。或者,在一种可选的方案中,信道接入类型和扩展部分的时长可以联合指示或者说同时指示,此种情形下,指示信息1和指示信息2可以理解同一指示信息(为便于描述,称为指示信息3);也就是说,Msg2可以包括指示信息3,指示信息3可以用于指示信道接入类型,还可以用于指示扩展部分的时长。又或者,在又一种可选的方案中,由于扩展部分的时长与信道接入类型有关,因此,可以预先设置扩展部分的时长的索引与信道接入类型的映射关系,进而网络设备可以通过隐式的方式指示扩展部分的时长,比如网络设备向终端设备指示信道接入类型,则终端设备可以根据信道接入类型和映射关系确定扩展部分的时长。
下文中,以信道接入类型和扩展部分的时长联合指示为例,在一个示例中,指示信息3中可以包括2个比特,比如,参见表1所示,为指示信息3指示信道接入类型和扩展部分的时长的一种可能的示例。
表1:指示信息3指示信道接入类型和扩展部分的时长的一种示例
指示信息3 信道接入类型 扩展部分的时长
00 Cat1(16μs) C2*symbol length–16us–TA
01 Cat2(25μs) C3*symbol length–25us–TA
10 Cat2(25μs) C1*symbol length–25us
11 Cat4 0
表1中,当指示信息3所包括的2个比特的取值为‘00’时,表示信道接入的类型为类型1,扩展部分的时长为C2*symbol length–16us–TA;当2个比特的取值为‘01’时,表示信道接入的类型为类型2(且固定时长为第二时长,即25us),扩展部分的时长为C3*symbol length–25us–TA;当2个比特的取值为‘10’时,表示信道接入的类型为类型2(且固定时长为第二时长,即25us),扩展部分的时长为C1*symbol length–25us;当2个比特的取值为‘11’时,表示信道接入的类型为类型4,扩展部分的时长为0。其中,C1、C2、C3都是整数,本申请实施例对C1、C2、C3的取值不做限定,比如C1可以是协议预先定义的,C2或C3可以是由网络设备确定并发送给终端设备的。表1中的TA表示定时提前量。
又比如,参见表2所示,为指示信息3指示信道接入类型和扩展部分的时长的又一种可能的示例。
表2:指示信息3指示信道接入类型和扩展部分的时长的又一种示例
指示信息3 信道接入类型 扩展部分的时长
00 Cat1(16μs) C2*symbol length–16us–TA
01 Cat2(16μs) C3*symbol length–16us–TA
10 Cat2(25μs) C1*symbol length–25us
11 Cat4 0
表2中,当指示信息3所包括的2个比特的取值为‘01’时,表示信道接入的类型为类型2(且固定时长为第一时长,即16us),扩展部分的时长为C3*symbol length–16us–TA;当2个比特的取值为‘00’、‘10’、‘11’时可以参照表1的相关描述。
步骤903:终端设备根据Msg2,向网络设备发送上行消息,上行消息可以承载于物理上行共享信道(physical uplink shared channel,PUSCH),相应地,网络设备从终端设备接收该上行消息。其中,该上行消息又被称为随机接入过程中的第3消息或消息3(Msg3)。
示例性地,以上述表1为例,终端设备若确定Msg2中指示信息3的两个比特的取值为‘00’,则可以不执行信道接入,并根据C2*symbol length–16us–TA确定扩展部分的时长,进而在扩展部分和上行资源上发送上行消息。
终端设备若确定Msg2中指示信息3的两个比特的取值为‘01’,则可以根据C3*symbol length–16us–TA确定扩展部分的时长,并根据固定时长、扩展部分的时长和上行资源的起始时刻确定执行信道接入的起始时刻,比如参见图10c所示,固定时长为25us、扩展部分的时长为60us,则执行信道接入的起始时刻(表示为T0)为上行资源的起始时刻之前的85us处。终端设备确定执行信道接入的起始时刻后,可以根据指示信息3指示的信道接入类型和固定时长,执行信道接入,进而在信道接入成功后,在扩展部分和上行资源上发送上行消息。
终端设备若确定Msg2中指示信息3的两个比特的取值为‘10’,则可以根据C1*symbol length–25us确定扩展部分的时长,并根据固定时长、扩展部分的时长和上行资源的起始时刻确定执行信道接入的起始时刻。终端设备确定执行信道接入的起始时刻后,可以根据指示信息3指示的信道接入类型和固定时长,执行信道接入,进而在信道接入成功后,在扩展部分和上行资源上发送上行消息。
终端设备若确定Msg2中指示信息3的两个比特的取值为‘11’,则可以基于类型4执行信道接入,该方式的具体实现可以取决于终端设备,具体不做限定。
本申请实施例中,循环前缀的扩展部分所承载的信息可以是上行资源的第一个符号尾部的信号;也就是说,可以将上行资源的第一个符号尾部的合适时长的信号搬移到信道接入完成的结束时刻与上行资源的第一个符号起始时刻之间,填满扩展部分的时长,从而有效避免终端设备信道接入成功后未及时使用信道而导致信道被其它设备占用。
步骤904:网络设备接收Msg3,并向终端设备发送竞争解决消息(contention resolution message,CRM),相应地,终端设备可以从网络设备接收竞争解决消息,其中,竞争解决消息又被称为第4消息或消息4(Msg4)。
此处,网络设备在向终端设备发送竞争解决消息时,可采用TC-RNTI对调度竞争解决消息的DCI进行加扰。相应地,终端设备监听到TC-RNTI加扰的DCI后,可以根据该DCI接收竞争解决消息,并将竞争解决消息中的竞争解决标识(contention resolution identifier,CRID)与Msg3中携带的部分信息进行匹配,如果匹配成功,则终端设备认为竞争解决成功,即随机接入成功;否则,终端设备认为此次随机接入失败。
情形二:随机接入流程为两步随机接入流程
下面结合图11描述一种可能的实现流程。
图11为本申请实施例三提供的通信方法所对应的又一种流程示意图,如图11所示,包括:
步骤1101,终端设备向网络设备发送MsgA。
此处,MsgA也可以称为消息A,包括随机接入前导码和上行消息1。示例性地,MsgA相当于上述图9的四步随机接入过程中的Msg1和Msg3,也可以理解为,是将Msg1和Msg3放到“一起发送”。
步骤1102,网络设备向终端设备发送MsgB。
步骤1103,终端设备根据MsgB,向网络设备发送上行消息2,上行消息2可以承载于PUCCH或承载于PUSCH。
此处,MsgB即针对MsgA的响应信息,也可以称为消息B,承载于PDSCH中。MsgB可以包括回退随机接入响应(fallbackRAR)或成功随机接入响应(successRAR),也就是说,网络设备可以向终端设备发送fallbackRAR或successRAR。比如,若网络设备成功解码随机接入前导码和上行消息1,则网络设备向终端设备发送的successRAR;若网络设备成功解码随机接入前导码,但是未成功解码上行消息1,则网络设备向终端设备发送的fallbackRAR。
需要说明的是,(1)若网络设备向终端设备发送successRAR,则终端设备可以向网络设备发送针对该successRAR的HARQ反馈信息,即HARQ确认回答(acknowledgement,ACK);其中,HARQ ACK用于通知网络设备该successRAR已经成功解码。此种情形下,上行消息2中包括HARQ反馈信息,上行消息2可以承载于PUCCH。
(2)若网络设备向终端设备发送fallbackRAR,则终端设备可以根据该fallbackRAR,重新向网络设备发送上行消息1。此种情形下,上行消息2可以为重传的上行消息1,即上行消息2可以与上行消息1相同;上行消息1可以承载于PUSCH。进一步地,网络设备接收到终端设备重新发送的上行消息1后,若成功解码上行消息1,则可以向终端设备发送竞争解决标识,终端设备在接收到竞争解决标识就可以确定随机接入完成;否则,可以向终端设备发送DCI,该DCI用于调度上行消息1的重传。
示例性地,fallbackRAR可以包括定时提前命令、上行授权、TC-RNTI。参见图12a,为fallbackRAR的一种可能的格式示例,如图12a所示,fallbackRAR包括4个域(field),分别称为域1、域2、域3和域4。其中,域1用于承载定时提前命令,域2用于承载上行授权,域3用于承载TC-RNTI,域4用于承载保留(reserved)比特。进一步地,fallbackRAR可以包括7个字节(octet,Oct),域4位于Oct 1,域1位于Oct 1和Oct 2,域2位于Oct2、Oct 3、Oct 4和Oct 5,域3位于Oct 6和Oct 7。
successRAR可以包括定时提前命令、C-RNTI、竞争解决标识、发送功率控制(transmitting power control,TPC)、混合自动重传请求进程(hybrid automatic repeat request,HARQ)反馈时序指示、PUCCH资源指示。参见图12b,为successRAR的一种可能的格式示例,如图12b所示,successRAR可以包括7个域,分别称为域1、域2、域3、域4、域5、域6、域7。其中,域1用于承载定时提前命令,域2用于承载C-RNTI、域3用于承载竞争解决标识,域4用于承载发送功率控制,域5用于承载HARQ反馈时序指示,域6用于承载PUCCH资源指示,域7用于承载保留比特。进一步地,successRAR包括11个Oct,域3位于Oct 1、Oct 2、Oct 3、Oct 4、Oct 5和Oct 6,域7、域4和域5位于字节7,域6位于Oct 8,域1位于Oct 8和Oct 9,域2位于Oct 10和Oct 11。
进一步地,fallbackRAR或successRAR中还可以包括指示信息3,有关指示信息3的描述可以参见前文,可以理解地,此处是以fallbackRAR或successRAR中包括指示信息3为例。在其它可能的示例中,fallbackRAR或successRAR中可以包括指示信息1和指示信息2,或者,fallbackRAR或successRAR中包括指示信息1。示例性地,对于fallbackRAR,指示信息3可以承载在域1、域2、域3、域4的至少一个域,比如指示信息3可以承载在域2,或者说指示信息3可以携带在上行授权中。对于successRAR,指示信息3可以承载 在域1、域2、域3、域4、域5、域6、域7的至少一个域,比如指示信息3可以承载在域7。参见图12c所示,域7中包括3个比特,指示信息3可以占用其中的2个比特,剩余一个比特仍为保留比特。
示例性地,步骤1103中终端设备根据MsgB向网络设备发送上行消息2的实现可以参见上文步骤903中终端设备根据Msg2向网络设备发送上行消息的实现。比如,终端设备若确定MsgB中指示信息3的两个比特的取值为‘00’,则可以不执行信道接入,并根据C2*symbol length–16us–TA确定扩展部分的时长,进而在扩展部分和上行资源上发送上行消息2,其它情形不再一一赘述。
采用上述方法,若网络设备的信道占用时间的剩余时间较多,则可以将网络设备的剩余时间共享给终端设备,并指示终端设备使用类型1或类型2执行信道接入,从而能有效提高非授权频谱资源的利用率;若网络设备的信道占用时间的剩余时间少,则可以指示终端设备使用类型4执行信道接入获取信道占用时间。
针对于上述实施例一至实施例三,需要说明的是:(1)上述实施例一至实施例三中所描述的可能的方案可以分别在不同场景中单独实施,或者也可以在同一场景中结合实施。比如,在载波聚合场景中,涉及终端设备的主载波单元的BWP发生切换时,可以采用实施例一中的图6所描述的方案,涉及终端设备的辅载波单元激活时,可以采用图7所描述的方案。
(2)本申请实施例所提供的方法,比如终端设备执行上行传输后,切换搜索空间组,该方案可以作为现有方案(基于DCI和定时器在搜索空间组一和搜索空间组二之间切换)的补充,或者也可以单独实施。
(3)本申请实施例中所描述的各个流程图(比如图5、图6、图7、图8、图9或图11)的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图13示出了本申请实施例中所涉及的装置的可能的示例性框图。如图13所示,装置1300可以包括:处理单元1302和通信单元1303。处理单元1302用于对装置1300的动作进行控制管理。通信单元1303用于支持装置1300与其他设备的通信。可选地,通信单元1303也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置1300还可以包括存储单元1301,用于存储装置1300 的程序代码和/或数据。
该装置1300可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的芯片。处理单元1302可以支持装置1300执行上文中各方法示例中终端设备的动作。或者,处理单元1302主要执行方法示例中的终端设备的内部动作,通信单元1303可以支持装置1300与网络设备之间的通信。例如,通信单元1303可以用于执行图5的步骤502、步骤504;处理单元1302用于执行图5中的步骤505、步骤506、步骤507。
具体地,在一个实施例中,通信单元1303用于:接收来自网络设备的第一配置信息,第一配置信息用于配置第一频域资源的第一搜索空间和第二搜索空间,第一频域资源的第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;处理单元1302用于:激活第一频域资源,并在第一频域资源上根据第一频域资源的第一搜索空间监听DCI。
在一种可能的设计中,第一搜索空间的周期小于第二搜索空间的周期。
在一种可能的设计中,第一频域资源为第一BWP。
在一种可能的设计中,处理单元1302具体用于:将激活的BWP由第二BWP切换为第一BWP。
在一种可能的设计中,处理单元1302具体用于:确定需要发起随机接入,第二BWP未配置随机接入资源,第一BWP配置有随机接入资源,将激活的BWP由第二BWP切换为第一BWP;或者,确定在第二BWP上连续发生失败的信道接入次数大于或等于第一阈值,将激活的BWP由第二BWP切换为第一BWP。
在一种可能的设计中,通信单元1303还用于:接收来自网络设备的第二配置信息,第二配置信息用于配置第二BWP的第一搜索空间和第二搜索空间,第二BWP的第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;处理单元1302将激活的BWP由第二BWP切换为第一BWP之前,还用于:确定在第二BWP上根据第二BWP的第二搜索空间监听DCI,且启动定时器;以及,应切换,停止定时器。
在一种可能的设计中,第一BWP和第二BWP位于终端设备的主载波单元。
在一种可能的设计中,第一频域资源为终端设备的辅载波单元。
在一种可能的设计中,处理单元1302还用于:确定在辅载波单元上根据第二搜索空间组进行监听,且启动定时器;应去激活辅载波单元,停止定时器。
在又一个实施例中,通信单元1303用于:接收来自网络设备的配置信息,配置信息用于配置第一搜索空间和第二搜索空间,第一搜索空间和第二搜索空间用于同一种格式的DCI的监听;处理单元1302用于:根据第一搜索空间监听DCI,以及,应终端设备的上行传输,根据第二搜索空间组监听DCI。
在一种可能的设计中,该上行传输包括以下至少一项:发送随机接入请求;在配置授权资源上发送信息;发送调度请求。
在一种可能的设计中,处理单元1302还用于:应终端设备的上行传输,启动定时器。
在一种可能的设计中,处理单元1302还用于:若定时器超时,则根据第一搜索空间组进行监听。
在又一个实施例中,通信单元1303用于:向网络设备发送随机接入请求,并接收随机接入请求的响应,响应包括第一指示信息;以及,根据第一指示信息,向网络设备发送上行消息,上行消息承载于PUSCH或者PUCCH。
在一种可能的设计中,第一指示信息用于指示不执行信道接入。
在一种可能的设计中,第一指示信息用于指示信道接入类型为无随机回退的信道接入或者具有可变竞争窗口大小的随机回退的信道接入;处理单元1302控制通信单元1303根据第一指示信息指示的信道接入类型执行信道接入,并在信道接入成功后,向网络设备发送上行消息。
在一种可能的设计中,当信道接入类型为无随机回退的信道接入时,第一指示信息还用于指示第一时长或第二时长。
在一种可能的设计中,上行消息所在的时域资源的第一个符号之前包括循环前缀的扩展部分。
在一种可能的设计中,通信单元1303还用于:接收来自网络设备的第二指示信息,第二指示信息用于指示扩展部分的时长。
在一种可能的设计中,随机接入响应包括上行授权和定时提前命令,上行授权用于指示上行资源,定时提前命令用于指示定时提前量;
扩展部分的时长符合如下公式:
T=C*T1–T2–T3或者T=C*T1–T2
其中,T为扩展部分的时长,T1为一个符号的长度,T2为第一时长或第二时长,T3为定时提前量。
该装置1300还可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的芯片。处理单元1302可以支持装置1300执行上文中各方法示例中网络设备的动作。或者,处理单元1302主要执行方法示例中的网络设备的内部动作,通信单元1303可以支持装置1300与终端设备之间的通信。
具体地,在一个实施例中,通信单元1303用于:接收来自终端设备的随机接入请求,以及向终端设备发送随机接入请求的响应,响应包括第一指示信息,第一指示信息用于终端设备发送上行消息。
在一种可能的设计中,第一指示信息用于指示不执行信道接入;或者,第一指示信息用于指示信道接入类型为无随机回退的信道接入;又或者,第一指示信息用于指示信道接入类型为具有可变竞争窗口大小的随机回退的信道接入。
在一种可能的设计中,当信道接入类型为无随机回退的信道接入时,第一指示信息还用于指示第一时长或第二时长。
在一种可能的设计中,上行消息所在的时域资源的第一个符号之前包括循环前缀的扩展部分。
在一种可能的设计中,通信单元1303还用于:向终端设备发送第二指示信息,第二指示信息用于指示扩展部分的时长。
在一种可能的设计中,随机接入响应包括上行授权和定时提前命令,上行授权用于指示上行资源,定时提前命令用于指示定时提前量;扩展部分的时长符合如下公式:
T=C*T1–T2–T3或者T=C*T1–T2
其中,T为扩展部分的时长,T1为一个符号的长度,T2为第一时长或第二时长,T3为定时提前量。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元 件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图14,其为本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图14所示,该终端设备包括:天线1410、射频部分1420、信号处理部分1430。天线1410与射频部分1420连接。在下行方向上,射频部分1420通过天线1410接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1430进行处理。在上行方向上,信号处理部分1430对终端设备的信息进行处理,并发送给射频部分1420,射频部分1420对终端设备的信息进行处理后经过天线1410发送给网络设备。
信号处理部分1430可以包括调制解调子***,用于实现对数据各通信协议层的处理;还可以包括中央处理子***,用于实现对终端设备操作***以及应用层的处理;此外,还可以包括其它子***,例如多媒体子***,周边子***等,其中多媒体子***用于实现对终端设备相机,屏幕显示等的控制,周边子***用于实现与其它设备的连接。调制解调子***可以为单独设置的芯片。
调制解调子***可以包括一个或多个处理元件1431,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子***还可以包括存储元件1432和接口电路1433。存储元件1432用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件1432中,而是存储于调制解调子***之外的存储器中,使用时调制解调子***加载使用。接口电路1433用于与其它子***通信。
该调制解调子***可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储 元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子***上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图13中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图13中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图13中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图14所示的终端设备能够实现图5、图6、图7、图8、图9或图11所示意的方法实施例中涉及终端设备的各个过程。图14所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
请参考图15,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图15所示,该网络设备包括:天线1501、射频装置1502、基带装置1503。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收终端设备发送的信息,将终端设备发送的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对终端设备的信息进行处理,并发送给射频装置1502,射频装置1502对终端设备的信息进行处理后经过天线1501发送给终端设备。
基带装置1503可以包括一个或多个处理元件15031,例如,包括一个主控CPU和其 它集成电路。此外,该基带装置1503还可以包括存储元件15032和接口15033,存储元件15032用于存储程序和数据;接口15033用于与射频装置1502交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置1503,例如,以上用于网络设备的装置可以为基带装置1503上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上***(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图13中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图13中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图13中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图15所示的网络设备能够实现图5、图6、图7、图8、图9或图11所示意的方法实施例中涉及网络设备的各个过程。图15所示的网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑 关系可以组合形成新的实施例。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (35)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的第一配置信息,所述第一配置信息用于配置第一频域资源的第一搜索空间和第二搜索空间,所述第一频域资源的第一搜索空间和第二搜索空间用于同一种格式的下行控制信息DCI的监听;
    激活所述第一频域资源,并在所述第一频域资源上根据所述第一频域资源的第一搜索空间监听所述DCI。
  2. 根据权利要求1所述的方法,其特征在于:
    所述第一搜索空间的周期小于所述第二搜索空间的周期。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一频域资源为第一BWP。
  4. 根据权利要求3所述的方法,其特征在于,激活所述第一频域资源,包括:
    将激活的BWP由第二BWP切换为所述第一BWP。
  5. 根据权利要求4所述的方法,其特征在于,将激活的BWP由第二BWP切换为所述第一BWP,包括:
    确定需要发起随机接入,所述第二BWP未配置随机接入资源,所述第一BWP配置有随机接入资源,将所述激活的BWP由所述第二BWP切换为所述第一BWP;或者,
    确定在所述第二BWP上连续发生失败的信道接入次数大于或等于第一阈值,将所述激活的BWP由所述第二BWP切换为所述第一BWP。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:接收来自所述网络设备的第二配置信息,所述第二配置信息用于配置第二BWP的第一搜索空间和第二搜索空间,所述第二BWP的第一搜索空间和第二搜索空间用于同一种格式的所述DCI的监听;
    将激活的BWP由第二BWP切换为所述第一BWP之前,还包括:确定在所述第二BWP上根据所述第二BWP的第二搜索空间监听所述DCI,且启动定时器;
    应所述切换,停止所述定时器。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,所述第一BWP和所述第二BWP位于所述终端设备的主载波单元。
  8. 根据权利要求7所述的方法,其特征在于,所述第一频域资源为终端设备的辅载波单元。
  9. 根据利要求8所述的方法,其特征在于,所述方法还包括:
    确定在所述辅载波单元上根据所述第二搜索空间组进行监听,且启动定时器;
    应去激活所述辅载波单元,停止所述定时器。
  10. 一种通信方法,其特征在于,所述方法包括:
    接收来自网络设备的配置信息,所述配置信息用于配置第一搜索空间和第二搜索空间,所述第一搜索空间和所述第二搜索空间用于同一种格式的DCI的监听;
    根据第一搜索空间监听所述DCI;
    应终端设备的上行传输,根据第二搜索空间组监听所述DCI。
  11. 根据权利要求10所述的方法,其特征在于,所述上行传输包括以下至少一项:
    发送随机接入请求;
    在配置授权资源上发送信息;
    发送调度请求。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    应所述终端设备的上行传输,启动定时器。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    若所述定时器超时,则根据第一搜索空间组进行监听。
  14. 一种通信方法,其特征在于,所述方法包括:
    向网络设备发送随机接入请求;
    接收所述随机接入请求的响应,所述响应包括第一指示信息;
    根据所述第一指示信息,向所述网络设备发送上行消息,所述上行消息承载于物理上行共享信道PUSCH或者物理上行控制信道PUCCH。
  15. 根据权利要求14所述的方法,其特征在于,所述第一指示信息用于指示不执行信道接入。
  16. 根据权利要求14所述的方法,其特征在于,所述第一指示信息用于指示信道接入类型为无随机回退的信道接入或者具有可变竞争窗口大小的随机回退的信道接入;
    根据所述第一指示信息,向所述网络设备发送上行消息,包括:
    根据所述第一指示信息指示的信道接入类型执行信道接入,并在信道接入成功后,向所述网络设备发送所述上行消息。
  17. 根据权利要求16所述的方法,其特征在于,当所述信道接入类型为无随机回退的信道接入时,所述第一指示信息还用于指示第一时长或第二时长。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述上行消息所在的时域资源的第一个符号之前包括循环前缀的扩展部分。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第二指示信息,所述第二指示信息用于指示所述扩展部分的时长。
  20. 根据权利要求18或19所述的方法,其特征在于,所述随机接入响应包括上行授权和定时提前命令,所述上行授权用于指示上行资源,所述定时提前命令用于指示定时提前量;
    所述扩展部分的时长符合如下公式:
    T=C*T1–T2–T3或者T=C*T1–T2
    其中,T为所述扩展部分的时长,T1为一个符号的长度,T2为第一时长或第二时长,T3为所述定时提前量。
  21. 一种通信方法,其特征在于,所述方法包括:
    接收来自终端设备的随机接入请求;
    向所述终端设备发送所述随机接入请求的响应,所述响应包括第一指示信息,所述第一指示信息用于所述终端设备发送上行消息。
  22. 根据权利要求21所述的方法,其特征在于,所述第一指示信息用于指示不执行信道接入;或者,所述第一指示信息用于指示信道接入类型为无随机回退的信道接入;又或者,所述第一指示信息用于指示信道接入类型为具有可变竞争窗口大小的随机回退的信道接入。
  23. 根据权利要求22所述的方法,其特征在于,当所述信道接入类型为无随机回退 的信道接入时,所述第一指示信息还用于指示第一时长或第二时长。
  24. 根据权利要求21至23中任一项所述的方法,其特征在于,所述上行消息所在的时域资源的第一个符号之前包括循环前缀的扩展部分。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述扩展部分的时长。
  26. 根据权利要求24或25所述的方法,其特征在于,所述随机接入响应包括上行授权和定时提前命令,所述上行授权用于指示上行资源,所述定时提前命令用于指示定时提前量;
    所述扩展部分的时长符合如下公式:
    T=C*T1–T2–T3或者T=C*T1–T2
    其中,T为所述扩展部分的时长,T1为一个符号的长度,T2为第一时长或第二时长,T3为所述定时提前量。
  27. 一种通信装置,其特征在于,包括用于执行如权利要求1至20中任一项所述的方法的各步骤的单元。
  28. 一种通信装置,其特征在于,包括用于执行如权利要求21至26中任一项所述的方法的各步骤的单元。
  29. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行如权利要求1至20中任一项所述的方法。
  30. 一种通信装置,其特征在于,包括至少一个处理器和接口电路,其中,所述至少一个处理器用于通过所述接口电路与其它装置通信,并执行如权利要求21至26中任一项所述的方法。
  31. 一种通信装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求1至20中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求21至26中任一项所述的方法。
  33. 一种终端设备,其特征在于,包括如权利要求27或权利要求29或权利要求31所述的装置。
  34. 一种网络设备,其特征在于,包括如权利要求28或权利要求30或权利要求32所述的装置。
  35. 一种计算机可读存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求1至26中任一项所述的方法被执行。
PCT/CN2020/071847 2020-01-13 2020-01-13 一种通信方法及装置 WO2021142589A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080092684.6A CN114946256A (zh) 2020-01-13 2020-01-13 一种通信方法及装置
PCT/CN2020/071847 WO2021142589A1 (zh) 2020-01-13 2020-01-13 一种通信方法及装置
EP20913142.4A EP4080972A4 (en) 2020-01-13 2020-01-13 COMMUNICATION METHOD AND DEVICE
US17/863,150 US20220353921A1 (en) 2020-01-13 2022-07-12 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071847 WO2021142589A1 (zh) 2020-01-13 2020-01-13 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/863,150 Continuation US20220353921A1 (en) 2020-01-13 2022-07-12 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021142589A1 true WO2021142589A1 (zh) 2021-07-22

Family

ID=76864523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071847 WO2021142589A1 (zh) 2020-01-13 2020-01-13 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220353921A1 (zh)
EP (1) EP4080972A4 (zh)
CN (1) CN114946256A (zh)
WO (1) WO2021142589A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219273A1 (en) * 2020-01-14 2021-07-15 Qualcomm Incorporated Feedback techniques for group-common pdcch transmissions
WO2024032418A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 一种通信方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832107B (zh) * 2020-10-22 2024-02-11 香港商鴻穎創新有限公司 下一代網路中的搜索空間群組切換

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548062A (zh) * 2017-08-15 2019-03-29 普天信息技术有限公司 一种离散频谱通信***中dci传输方法及设备
CN110446269A (zh) * 2018-05-04 2019-11-12 华硕电脑股份有限公司 无线通信***中下行链路控制信息内容处理的方法和设备
CN110662228A (zh) * 2018-06-29 2020-01-07 维沃移动通信有限公司 跨载波调度的pdcch候选分配方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018073215A2 (pt) * 2016-05-13 2019-02-19 Huawei Technologies Co., Ltd. método de envio de informações de controle de enlace descendente, método de detecção de informações de controle de enlace descendente, e dispositivo
KR20200140311A (ko) * 2018-04-04 2020-12-15 콘비다 와이어리스, 엘엘씨 엔알 비허가 셀들과의 랜덤 액세스

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548062A (zh) * 2017-08-15 2019-03-29 普天信息技术有限公司 一种离散频谱通信***中dci传输方法及设备
CN110446269A (zh) * 2018-05-04 2019-11-12 华硕电脑股份有限公司 无线通信***中下行链路控制信息内容处理的方法和设备
CN110662228A (zh) * 2018-06-29 2020-01-07 维沃移动通信有限公司 跨载波调度的pdcch候选分配方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA ET AL.: "On DL Signals and Channels", 3GPP TSG RAN WG1 MEETING #99 R1-1912279, 22 November 2019 (2019-11-22), XP051823342 *
QUALCOMM INCORPORATED: "New WID on NR-based Access to Unlicensed Spectrum", 3GPP TSG RAN MEETING #82 RP-182878, 13 December 2018 (2018-12-13), XP051575507 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210219273A1 (en) * 2020-01-14 2021-07-15 Qualcomm Incorporated Feedback techniques for group-common pdcch transmissions
US11540266B2 (en) * 2020-01-14 2022-12-27 Qualcomm Incorporated Feedback techniques for group-common PDCCH transmissions
US11910402B2 (en) 2020-01-14 2024-02-20 Qualcomm Incorporated Feedback techniques for group-common PDCCH transmissions
WO2024032418A1 (zh) * 2022-08-12 2024-02-15 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US20220353921A1 (en) 2022-11-03
CN114946256A (zh) 2022-08-26
EP4080972A1 (en) 2022-10-26
EP4080972A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2018171759A1 (zh) 一种信息传输方法和装置
WO2021016973A1 (zh) 一种信息传输方法、电子设备及存储介质
EP3703455B1 (en) Methods, terminal device and system for data transmission
WO2020164605A1 (zh) 传输方法和通信装置
WO2021142589A1 (zh) 一种通信方法及装置
US12010697B2 (en) Method and apparatus for supporting multiple configuration grants for sidelink data transmission
WO2022028374A1 (en) Method and apparatus for pusch repetition in a random access procedure
JP2018527814A (ja) 共有無線周波数スペクトル帯域中での送信のための競合ウィンドウ調整のための技法
EP3941150A1 (en) Random access method, terminal device and network device
US11871374B2 (en) Method and apparatus for configuring and determining paging opportunities and system
WO2020135105A1 (zh) 上行传输的方法、上行传输的装置、以及终端设备
WO2020191637A1 (zh) 随机接入的方法、终端设备和网络设备
WO2020108384A1 (zh) 随机接入的方法和设备
WO2021170110A1 (zh) 一种通信方法及装置
WO2022027521A1 (zh) 上行信号的发送和接收方法以及装置
TW202027553A (zh) 用於共享通訊通道之方法及設備
US10536936B2 (en) Control information transmission method and apparatus for use in mobile communication system
WO2022017232A1 (zh) 一种信息发送和接收方法及装置
WO2020210963A1 (zh) 消息传输的方法和设备
WO2020142964A1 (zh) 数据发送方法、装置和通信***
WO2020124598A1 (zh) 随机接入的方法和设备
WO2021056702A1 (zh) 上行信号的发送和接收方法以及装置
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2021208819A1 (zh) 一种通信方法及装置
US20240057153A1 (en) System and method for scheduling an uplink transmission assignment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913142

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020913142

Country of ref document: EP

Effective date: 20220720

NENP Non-entry into the national phase

Ref country code: DE