WO2021140869A1 - 有機亜鉛触媒の製造方法 - Google Patents

有機亜鉛触媒の製造方法 Download PDF

Info

Publication number
WO2021140869A1
WO2021140869A1 PCT/JP2020/047342 JP2020047342W WO2021140869A1 WO 2021140869 A1 WO2021140869 A1 WO 2021140869A1 JP 2020047342 W JP2020047342 W JP 2020047342W WO 2021140869 A1 WO2021140869 A1 WO 2021140869A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
reaction
catalyst
mass
organozinc
Prior art date
Application number
PCT/JP2020/047342
Other languages
English (en)
French (fr)
Inventor
匠 藤野
直久 早水
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to KR1020227015128A priority Critical patent/KR20220122599A/ko
Priority to JP2021569803A priority patent/JPWO2021140869A1/ja
Publication of WO2021140869A1 publication Critical patent/WO2021140869A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates

Definitions

  • the present disclosure relates to a method for producing an organozinc catalyst, an organozinc catalyst produced by the production method, and the like.
  • the contents of all documents described herein are incorporated herein by reference.
  • an organozinc compound obtained by reacting an inorganic zinc compound with an aliphatic dicarboxylic acid and an aliphatic monocarboxylic acid is used as an organozinc catalyst for catalyzing a reaction for obtaining a polyalkylene carbonate from carbon dioxide and epoxide.
  • the present inventors studied for the purpose of efficiently obtaining the organozinc catalyst.
  • the present inventors In producing an organozinc catalyst, the present inventors have found that the amount of water in the reaction system when reacting an inorganic zinc compound with an aliphatic carboxylic acid may affect the yield of the obtained organozinc catalyst. , Further examination was repeated.
  • Item 1 Including reacting inorganic zinc compounds and aliphatic carboxylic acids The water content of the reaction system at the start of the reaction is 0.05 to 10% by mass with respect to the inorganic zinc compound.
  • Method for producing organozinc compound Item 2.
  • Item 2. The production method according to Item 1, wherein the inorganic zinc compound is at least one selected from the group consisting of zinc oxide and zinc hydroxide.
  • Item 3. Item 2. The production method according to Item 1 or 2, wherein the aliphatic carboxylic acid is at least one selected from the group consisting of an aliphatic dicarboxylic acid and an aliphatic monocarboxylic acid.
  • Item 8. An organozinc compound obtained by the production method according to any one of Items 1 to 7.
  • Item 9. Item 8.
  • an inorganic zinc compound is reacted with an aliphatic carboxylic acid in producing an organozinc compound which can be preferably used as a catalyst (particularly, a catalyst in a reaction for obtaining a polyalkylene carbonate from carbon dioxide and epoxide).
  • an organozinc compound which can be preferably used as a catalyst (particularly, a catalyst in a reaction for obtaining a polyalkylene carbonate from carbon dioxide and epoxide).
  • the yield of the obtained polypropylene carbonate can be improved.
  • the present disclosure preferably includes, but is not limited to, a method for producing a specific organozinc compound, an organozinc compound produced by the method, and the use of the organozinc compound as a catalyst.
  • the present disclosure includes everything disclosed herein and recognizable to those skilled in the art.
  • the method for producing an organozinc compound included in the present disclosure includes reacting an inorganic zinc compound with an aliphatic carboxylic acid, and the water content of the reaction system at the start of the reaction is 0 with respect to the zinc compound. It is a manufacturing method of .05 to 10% by mass.
  • the production method included in the present disclosure may be referred to as "the organic zinc compound production method of the present disclosure”.
  • the organozinc compound may be referred to as "organozinc compound of the present disclosure”.
  • the organozinc compound of the present disclosure can be used as a catalyst (particularly, a catalyst in a reaction for obtaining a polyalkylene carbonate from carbon dioxide and an epoxide).
  • the catalyst may be referred to as "the catalyst of the present disclosure”.
  • the organozinc compound of the present disclosure is obtained by reacting an inorganic zinc compound with an aliphatic carboxylic acid.
  • the organozinc compound of the present disclosure can be said to be a reaction product of an inorganic zinc compound and an aliphatic carboxylic acid.
  • Examples of the inorganic zinc compound include zinc oxide, zinc sulfate, zinc chlorate, zinc nitrate, zinc acetate, and zinc hydroxide, and zinc oxide and zinc hydroxide are more preferable.
  • the inorganic zinc compound may be used alone or in combination of two or more.
  • an aliphatic carboxylic acid for example, an aliphatic monocarboxylic acid, an aliphatic dicarboxylic acid, an aliphatic tricarboxylic acid and the like can be used. Of these, it is preferable to use an aliphatic dicarboxylic acid.
  • the aliphatic carboxylic acid can be used alone or in combination of two or more. Of these, it is preferable to use an aliphatic dicarboxylic acid, or to use an aliphatic dicarboxylic acid and an aliphatic monocarboxylic acid.
  • the molar ratio of the aliphatic monocarboxylic acid to the aliphatic dicarboxylic acid is about 0.0001 to 0.1 or 0.001 to 0.05. It is preferable to use it so as to be a degree.
  • an aliphatic dicarboxylic acid having 2 to 15 carbon atoms (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15) is preferable. More specifically, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid and the like can be mentioned.
  • the aliphatic monocarboxylic acid has 1 to 15 carbon atoms (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15).
  • Monocarboxylic acids are preferred, and more specific examples include formic acid, acetic acid, propionic acid, trifluoroacetic acid and the like.
  • an aliphatic tricarboxylic acid having 3 to 15 carbon atoms is preferable, and more specific.
  • examples thereof include tricarbaryl acid and 3,3', 3''-nitrilotripropionic acid.
  • malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, formic acid, acetic acid, and propionic acid are particularly preferable.
  • the water content of the reaction system at the start of the reaction is 0.05 to 10% by mass with respect to the inorganic zinc compound.
  • the lower limit of the range may be, for example, about 0.1, 0.15, 0.2, or 0.25% by mass.
  • the upper limit of the range may be, for example, about 9.5, 9, 8.5, 8, 7.5, 7, 6.5, or 6% by mass.
  • the water content of the reaction system at the start of the reaction is measured as follows. That is, after charging the raw materials (inorganic zinc compound, aliphatic carboxylic acid and other components (for example, solvent)) into the reaction vessel, the mixture is stirred, and 0.5 g of the mixture is sampled within 1 minute from the start of stirring. 5 g of methanol is added to the mixture and mixed. After filtering the mixed solution with a 0.45 ⁇ m filter, the filtrate is introduced into a Karl Fischer moisture meter to measure the water content.
  • the raw materials inorganic zinc compound, aliphatic carboxylic acid and other components (for example, solvent)
  • the ratio of the inorganic zinc compound and the aliphatic carboxylic acid used is preferably about 0.1 to 1.5 mol, preferably about 0.5 to 1.2 mol, with respect to 1 mol of the inorganic zinc compound. Is more preferable, and about 0.8 to 1.0 mol is further preferable.
  • the reaction between the inorganic zinc compound and the aliphatic carboxylic acid a known reaction can be used, and for example, the reaction conditions described in Patent Document 1 or 2 can be used. More specifically, for example, the reaction solvent is not particularly limited, and various organic solvents can be used. Specific examples of such an organic solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene, aliphatic solvent such as hexane, heptane and cyclohexane, dichloromethane, chloroform, 1 and 2.
  • aromatic hydrocarbon solvents such as benzene, toluene and xylene
  • aliphatic solvent such as hexane, heptane and cyclohexane
  • dichloromethane chloroform
  • -Halogen-based hydrocarbon solvents such as dichloroethane, alcohol-based solvents such as methanol, ethanol and isopropanol, ether-based solvents such as diethyl ether, tetrahydrofuran and dioxane, ester-based solvents such as ethyl acetate and butyl acetate, acetone and methylethiel ketone.
  • Ketone-based solvents such as methyl isobutyl ketone
  • carbonate-based solvents such as dimethyl carbonate, diethyl carbonate and propylene carbonate
  • acetonitrile dimethylformamide, dimethylsulfoxide, hexamethylphosphotriamide and the like.
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene are preferable from the viewpoint of facilitating the reaction.
  • the amount of the reaction solvent used is not particularly limited, but from the viewpoint of facilitating the reaction and obtaining an effect commensurate with the amount used, for example, 500 to 10000 parts by mass with respect to 100 parts by mass of the inorganic zinc compound. Is preferable.
  • the reaction temperature is not particularly limited, but is preferably 0 to 110 ° C, more preferably 20 to 100 ° C, and even more preferably 50 to 80 ° C.
  • the reaction temperature is 0 ° C. or higher, the reaction can proceed more efficiently. Further, when the reaction temperature is 110 ° C. or lower, side reactions are less likely to occur, and a decrease in yield can be suppressed.
  • the reaction time varies depending on the reaction temperature and cannot be unequivocally determined, but is, for example, about 1 to 50 hours.
  • reaction is preferably carried out in an atmosphere of an inert gas (for example, nitrogen).
  • an inert gas for example, nitrogen
  • an organozinc compound obtained by reacting at least zinc oxide and glutaric acid can be mentioned as a particularly preferable form of the organozinc compound of the present disclosure.
  • the organozinc compound was reacted with only zinc oxide as the inorganic zinc compound, reacted with only glutaric acid as the aliphatic carboxylic acid, or reacted with only zinc oxide and glutaric acid. Those are preferably included.
  • the organozinc compound of the present disclosure is particularly preferably used for catalyzing a reaction (copolymerization reaction) for obtaining a polyalkylene carbonate from carbon dioxide and an epoxide.
  • the present disclosure also preferably includes a method for producing a polyalkylene carbonate by reacting carbon dioxide and an epoxide in the presence of the organozinc compound of the present disclosure (copolymerization reaction).
  • the epoxide is not particularly limited, but for example, ethylene oxide, propylene oxide, 1-butane oxide, 2-butane oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide, 1-hexene oxide, 1-.
  • the working pressure of carbon dioxide is not particularly limited, but is usually preferably 0.1 to 20 MPa, more preferably 0.1 to 10 MPa, and even more preferably 0.1 to 5 MPa. Carbon dioxide may be supplied in a lump sum, intermittently, or continuously.
  • the amount of the organozinc catalyst used is, for example, preferably 0.001 to 50 parts by mass, more preferably 0.01 to 40 parts by mass, and 0.1 to 30 parts by mass with respect to 100 parts by mass of the epoxide. It is more preferably a part.
  • the solvent used in the copolymerization reaction is not particularly limited, and various organic solvents can be used.
  • organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; dichloromethane and chloroform.
  • 1,2-Dichloroethane chlorobenzene, bromobenzene and other halogenated hydrocarbon solvents
  • ethyl acetate isopropyl acetate, butyl acetate and other ester solvents
  • tetrahydrofuran, 1,4-dioxane and other ether solvents dimethyl carbonate
  • carbonate solvents such as diethyl carbonate and propylene carbonate.
  • the amount of the solvent used is not particularly limited, but is, for example, 100 to 10000 parts by mass with respect to 100 parts by mass of the epoxide from the viewpoint of smoothing the reaction and obtaining an effect commensurate with the amount used. Is preferable. Moreover, it is not necessary to use a solvent.
  • the method for producing the polyalkylene carbonate has different polymerization forms such as solution polymerization and precipitation polymerization depending on the type and amount of the solvent used, but the copolymerization reaction proceeds without any problem in any of the polymerization forms. , Their reaction efficiency is very high.
  • the reaction temperature of the copolymerization reaction is not particularly limited, but is preferably, for example, 20 to 100 ° C, more preferably 40 to 80 ° C.
  • the reaction time cannot be unequivocally determined because it varies depending on the reaction temperature, but is, for example, 2 to 40 hours.
  • the method for mixing the organozinc catalyst with carbon dioxide and epoxide is not particularly limited, but for ease of mixing, for example, there is a method of adding carbon dioxide after mixing the organozinc catalyst with epoxide. ..
  • the polyalkylene carbonate thus obtained is dried by using a vacuum drying method or the like after removing the catalyst or the like by filtration or washing with a dilute acid aqueous solution or a dilute alkaline aqueous solution, if necessary, and then reprecipitating.
  • a vacuum drying method or the like after removing the catalyst or the like by filtration or washing with a dilute acid aqueous solution or a dilute alkaline aqueous solution, if necessary, and then reprecipitating.
  • ⁇ Analyzer TG / DTA 7220 (manufactured by Hitachi High-Tech Science Corporation) -Sample pretreatment: 1 g of slurry is collected and dried at 70 ° C. under reduced pressure (1 kPa ⁇ abs) for 1 Hr.
  • ⁇ Analytical conditions 30 to 300 ° C. 10 ° C./min Atmosphere N 2 200 mL / min, Sample 5 mg ⁇ 1 mg -Analysis conditions: Since the catalyst using zinc oxide and glutaric acid is described in this example, the case of zinc oxide and glutaric acid is also shown as an example for the analysis conditions such as the calculation method.
  • the tangent at 100 ° C was T 1
  • the tangent at 250 ° C was T 2
  • the tangent at the inflection point between 100 and 250 ° C was T 3 .
  • the mass W 1 at the intersection of the tangents T 1 and T 3 was obtained.
  • the mass W 2 at the intersection of the tangents T 2 and T 3 was obtained.
  • the mass difference between the intersections (W 1- W 2 ) is defined as the glutaric acid (aliphatic carboxylic acid) content, and the value obtained by dividing the glutaric acid (aliphatic carboxylic acid) content by the mass W 1 of the intersection on the low temperature side is calculated.
  • the content of glutaric acid (aliphatic carboxylic acid) was used (see FIG. 1 and Formula 1).
  • R CA glutaric acid (aliphatic carboxylic acids) according to Equation 2.
  • R CA [%] (1-C CA / C 0 ) x 100 (Equation 2)
  • R CA Glutaric acid (aliphatic carboxylic acid) reaction rate [%]
  • C CA Glutaric acid (aliphatic carboxylic acid) content [%]
  • C 0 Glutaric acid (aliphatic carboxylic acid) content at the time of preparation [%]
  • C 0 (glutaric acid (aliphatic carboxylic acid) content at the time of preparation) was calculated from the following formula 3.
  • C 0 [%] ⁇ W CA / (W CA + W Zn ) ⁇ ⁇ 100 (Equation 3)
  • C 0 Glutaric acid (aliphatic carboxylic acid) content at the time of preparation [%]
  • W CA Amount of charged glutaric acid (aliphatic carboxylic acid) [g]
  • W Zn Amount of zinc oxide (zinc compound) charged [g]
  • Example 1 Production of Organozinc Compound 81 g (1.00 mol) of zinc oxide, 132 g (1.00 mol) of glutaric acid, and 1000 g of toluene were charged into a 1.5 L volume separable flask equipped with a cooling tube / thermometer and a stirrer. When the mixed solution was sampled and the water content was measured, the water content with respect to zinc oxide (100% by mass) was 0.1% by mass. Then, the temperature was raised to 60 ° C. under a nitrogen atmosphere, and the mixture was stirred and reacted at the same temperature for 6 hours. The mixed solution after the reaction was sampled, the amount of residual glutaric acid was measured, and the reaction rate was calculated.
  • the powder was used as an organozinc catalyst in the production of polypropylene carbonate.
  • the powder is also referred to as a catalytic dry powder.
  • Example 2 In the production of the catalyst of Example 1, 195 g of dry catalyst powder was obtained in the same manner as in Example 1 except that 0.20 g of water was added at the time of preparation. The water content at the initial stage of the reaction was 0.26% by mass with respect to zinc oxide, and the reaction rate of the reaction 6Hr was 98.0% by mass. Using this catalyst, polymerization was carried out in the same manner as in Example 1 to obtain 87 g of polypropylene carbonate (yield 85% by mass, molecular weight Mw 351,000).
  • Example 3 In the production of the catalyst of Example 1, 195 g of dry catalyst powder was obtained in the same manner as in Example 1 except that 0.4 g of water was added at the time of preparation. The water content at the initial stage of the reaction was 0.42% by mass with respect to zinc oxide, and the reaction rate of the reaction 6 hours was 98.0% by mass. Using this catalyst, polymerization was carried out in the same manner as in Example 1 to obtain 84 g of polypropylene carbonate (yield 82% by mass, molecular weight Mw 336,000).
  • Example 4 In the production of the catalyst of Example 1, 195 g of dry catalyst powder was obtained in the same manner as in Example 1 except that 4.00 g of water was added at the time of preparation. The water content at the initial stage of the reaction was 5.12% by mass with respect to zinc oxide, and the reaction rate of the reaction 6Hr was 97.5% by mass. Using this catalyst, polymerization was carried out in the same manner as in Example 1 to obtain 86 g of polypropylene carbonate (yield 84% by mass, molecular weight Mw 317,000).
  • Example 5 In the production of the catalyst of Example 1, 196 g of dry catalyst powder was obtained in the same manner as in Example 1 except that 7.00 g of water was added at the time of preparation. The water content at the initial stage of the reaction was 8.55% by mass with respect to zinc oxide, and the reaction rate of the reaction 6Hr was 95.6% by mass. Using this catalyst, polymerization was carried out in the same manner as in Example 1 to obtain 84 g of polypropylene carbonate (yield 82% by mass, molecular weight Mw 326,000).
  • Example 2 In the production of the catalyst of Example 1, 197 g of dry catalyst powder was obtained in the same manner as in Example 1 except that 9.00 g of water was added at the time of preparation. The water content at the initial stage of the reaction was 11.50% by mass with respect to zinc oxide, and the reaction rate of the reaction 6 hours was 90.9% by mass. Using this catalyst, polymerization was carried out in the same manner as in Example 1 to obtain 78 g of polypropylene carbonate (yield 76% by mass, molecular weight Mw 289,000).
  • the water content of the reaction system at the start of the reaction is 0.05 with respect to the inorganic zinc compound. It was found that the reaction occurred with high efficiency when the content was ⁇ 10% by mass. Furthermore, it was found that a polyalkylene carbonate having a relatively large molecular weight can be obtained in a high yield by using an organozinc compound produced under these conditions as a catalyst when reacting carbon dioxide with an epoxide.

Abstract

有機亜鉛触媒を効率よく得る方法が提供される。より具体的には、無機亜鉛化合物及び脂肪族カルボン酸を反応させることを含み、当該反応開始時における当該反応系の水分含有量が、当該無機亜鉛化合物に対して0.05~10質量%である、有機亜鉛化合物の製造方法が提供される。

Description

有機亜鉛触媒の製造方法
 本開示は、有機亜鉛触媒の製造方法及び当該製造方法で製造された有機亜鉛触媒等に関する。なお、本明細書に記載される全ての文献の内容は参照により本明細書に組み込まれる。
 二酸化炭素とエポキシドとからポリアルキレンカーボネートを得る反応を触媒する有機亜鉛触媒として、無機亜鉛化合物と脂肪族ジカルボン酸と脂肪族モノカルボン酸とを反応させて得られる有機亜鉛化合物を用いることが開示されている(例えば特許文献1、2、及び非特許文献1)。
特開2007-302731号広報 国際公開第2011/142259号
Moonhor Ree a, Yongtaek Hwang a, 1, Jong-Seong Kim a, 1, Hyunchul Kim a, 1, Gahee Kim a, Heesoo Kim / Catalysis Today 2006年 115号 p.134-145
 本発明者らは、当該有機亜鉛触媒を効率よく得ることを目的に検討した。
 本発明者らは、有機亜鉛触媒を製造するにあたり、無機亜鉛化合物と脂肪族カルボン酸を反応させるときの、反応系内の水分量が、得られる有機亜鉛触媒の収量に影響する可能性を見いだし、さらに検討を重ねた。
 本開示は例えば以下の項に記載の主題を包含する。
項1.
無機亜鉛化合物及び脂肪族カルボン酸を反応させることを含み、
当該反応開始時における当該反応系の水分含有量が、当該無機亜鉛化合物に対して0.05~10質量%である、
有機亜鉛化合物の製造方法。
項2.
無機亜鉛化合物が、酸化亜鉛及び水酸化亜鉛からなる群より選択される少なくとも1種である、項1に記載の製造方法。
項3.
脂肪族カルボン酸が、脂肪族ジカルボン酸及び脂肪族モノカルボン酸からなる群より選択される少なくとも1種である、項1又は2に記載の製造方法。
項4.
脂肪族モノカルボン酸が、ギ酸、酢酸、及びプロピオン酸よりなる群より選択される少なくとも1種である、項3に記載の製造方法。
項5.
脂肪族カルボン酸が、少なくとも脂肪族ジカルボン酸を含む、項1~4のいずれかに記載の製造方法。
項6.
脂肪族ジカルボン酸が、マロン酸、コハク酸、グルタル酸、アジピン酸、及びセバシン酸からなる群より選択される少なくとも1種である、項3~5のいずれかに記載の製造方法。
項7.
前記有機亜鉛化合物が有機亜鉛触媒である、項1~6のいずれかに記載の製造方法。
項8.
項1~7のいずれかに記載の製造方法により得られる有機亜鉛化合物。
項9.
項8に記載の有機亜鉛化合物の存在下で、二酸化炭素とエポキシドとを反応させることを含む、ポリアルキレンカーボネートの製造方法。
 触媒(特に、二酸化炭素とエポキシドとからポリアルキレンカーボネートを得る反応における触媒)として好ましく用いることができる、有機亜鉛化合物を製造するにあたり、無機亜鉛化合物と脂肪族カルボン酸を反応させるときの反応系内水分量を適当量とすることによって、得られる有機亜鉛化合物の収量を向上させることができる。
 また、このようにして得られた有機亜鉛化合物を、二酸化炭素とエポキシドとからポリアルキレンカーボネートを得る反応における触媒として用いることで、得られるポリプロピレンカーボネートの収率も改善され得る。
無機亜鉛化合物(具体的には酸化亜鉛)及び脂肪族カルボン酸(具体的にはグルタル酸)を反応させた後、残存スラリー中のグルタル酸をTG/DTA装置により測定した結果の例を示す。
 以下、本開示に包含される各実施形態について、さらに詳細に説明する。本開示は、特定の有機亜鉛化合物の製造方法、当該製造方法で製造される有機亜鉛化合物、及び当該有機亜鉛化合物の触媒としての使用等を好ましく包含するが、これらに限定されるわけではなく、本開示は本明細書に開示され当業者が認識できる全てを包含する。
 本開示に包含される有機亜鉛化合物の製造方法は、無機亜鉛化合物及び脂肪族カルボン酸を反応させることを含み、当該反応開始時における当該反応系の水分含有量が、当該亜鉛化合物に対して0.05~10質量%である、製造方法である。以下、本開示に包含される当該製造方法を「本開示の有機亜鉛化合物製造方法」ということがある。また、当該有機亜鉛化合物を「本開示の有機亜鉛化合物」ということがある。また、本開示の有機亜鉛化合物は、触媒(特に、二酸化炭素とエポキシドとからポリアルキレンカーボネートを得る反応における触媒)として用いることができる。本開示の有機亜鉛化合物を特に触媒として用いる場合、当該触媒を「本開示の触媒」ということがある。
 上記の通り、本開示の有機亜鉛化合物は、無機亜鉛化合物及び脂肪族カルボン酸を反応させて得られる。言い換えれば、本開示の有機亜鉛化合物は、無機亜鉛化合物及び脂肪族カルボン酸の反応物と言うこともできる。
 無機亜鉛化合物としては、例えば、酸化亜鉛、硫酸亜鉛、塩素酸亜鉛、硝酸亜鉛、酢酸亜鉛、または水酸化亜鉛が好ましく挙げられ、酸化亜鉛及び水酸化亜鉛がより好ましい。無機亜鉛化合物は、1種単独で又は2種以上を組み合わせて用いることができる。
 脂肪族カルボン酸としては、例えば脂肪族モノカルボン酸、脂肪族ジカルボン酸、及び脂肪族トリカルボン酸等を用いることができる。中でも脂肪族ジカルボン酸を用いることが好ましい。脂肪族カルボン酸は、1種単独で又は2種以上を組み合わせて用いることができる。中でも、脂肪族ジカルボン酸を用いるか、あるいは脂肪族ジカルボン酸及び脂肪族モノカルボン酸を用いることが好ましい。なお、脂肪族ジカルボン酸及び脂肪族モノカルボン酸を用いる場合には、脂肪族モノカルボン酸は、該脂肪族ジカルボン酸に対するモル比率が0.0001~0.1程度又は0.001~0.05程度となるように用いることが好ましい。
 脂肪族ジカルボン酸としては、炭素数2~15(2、3、4、5、6、7、8、9、10、11、12、13、14、又は15)の脂肪族ジカルボン酸が好ましく、より具体的には、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸及びセバシン酸等が挙げられる。また、脂肪族モノカルボン酸としては、炭素数1~15(1、2、3、4、5、6、7、8、9、10、11、12、13、14、又は15)の脂肪族モノカルボン酸が好ましく、より具体的には、例えば、ギ酸、酢酸、プロピオン酸、およびトリフルオロ酢酸等が挙げられる。脂肪族トリカルボン酸としては、炭素数3~15(3、4、5、6、7、8、9、10、11、12、13、14、又は15)の脂肪族トリカルボン酸が好ましく、より具体的には、例えば、トリカルバリル酸および3,3’,3’’-ニトリロトリプロピオン酸等が挙げられる。脂肪族カルボン酸のなかでも、特にマロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、ギ酸、酢酸、及びプロピオン酸が好ましい。
 上記の通り、本開示の有機亜鉛触媒製造方法においては、当該反応開始時における当該反応系の水分含有量が、当該無機亜鉛化合物に対して0.05~10質量%である。当該範囲の下限は、例えば0.1、0.15、0.2、又は0.25質量%程度であってもよい。また、当該範囲の上限は、例えば9.5、9、8.5、8、7.5、7、6.5、又は6質量%程度であってもよい。
 反応開始時における当該反応系の水分含有量は、次のようにして測定される。すなわち、原料(無機亜鉛化合物及び脂肪族カルボン酸並びにその他の成分(例えば溶媒))を反応容器に仕込んだ後、撹拌し、撹拌開始から1分以内に当該混合物を0.5gサンプリングして、これにメタノール5gを添加して混合する。当該混合液を0.45μmのフィルターでろ過した後、濾液をカール・フィッシャー水分計に導入して水分量を測定する。
 無機亜鉛化合物及び脂肪族カルボン酸の使用割合としては、例えば、無機亜鉛化合物1モルに対して、脂肪族カルボン酸0.1~1.5モル程度が好ましく、0.5~1.2モル程度がより好ましく、0.8~1.0モル程度がさらに好ましい。
 無機亜鉛化合物及び脂肪族カルボン酸の反応としては、公知の反応を用いることができ、例えば上記特許文献1又は2に記載の反応条件を用いることができる。また、より具体的には、例えば、反応溶媒としては、特に限定されるものではなく、種々の有機溶媒を用いることができる。このような有機溶媒としては、具体的には、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系炭化水素溶媒、メタノール、エタノール、イソプロパノール等のアルコール系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、アセトン、メチルエチエルケトン、メチルイソブチルケトン等のケトン系溶媒、及び、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒、並びに、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホトリアミド等が挙げられる。中でも、反応を円滑に進める観点から、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が好ましい。
 反応溶媒の使用量は、特に制限されるものではないが、反応を円滑にさせる観点および使用量に見合うだけの効果を得る観点から、例えば無機亜鉛化合物100質量部に対して500~10000質量部であることが好ましい。
 反応温度は、特に限定されないが、例えば、0~110℃であるのが好ましく、20~100℃であるのがより好ましく、50~80℃がさらに好ましい。反応温度が0℃以上であることで、反応がより効率よく進行し得る。また、反応温度が110℃以下であることで、副反応がより起こり難くなり、収率の低下が抑制され得る。反応時間は、反応温度により異なるために一概には言えないが、例えば1~50時間程度である。
 また、反応は、不活性ガス(例えば窒素)雰囲気下で行うことが好ましい。
 特に制限される訳ではないが、本開示の有機亜鉛化合物の特に好ましい一形態として、少なくとも酸化亜鉛及びグルタル酸を反応させて得られる有機亜鉛化合物が挙げられる。当該有機亜鉛化合物には、例えば、無機亜鉛化合物としては酸化亜鉛のみを反応させたもの、及び脂肪族カルボン酸としてはグルタル酸のみを反応させたものや、酸化亜鉛およびグルタル酸のみを反応させたものが、好ましく包含される。
 本開示の有機亜鉛化合物は、特に、二酸化炭素とエポキシドとからポリアルキレンカーボネートを得る反応(共重合反応)を触媒するために好ましく用いられる。また、本開示は、本開示の有機亜鉛化合物存在下で、二酸化炭素とエポキシドとを反応(共重合反応)させてポリアルキレンカーボネートを製造する方法も好ましく包含する。
 エポキシドとしては、特に限定されるものではないが、例えば、エチレンオキシド、プロピレンオキシド、1-ブテンオキシド、2-ブテンオキシド、イソブチレンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、1-デセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキサンオキシド、3-フェニルプロピレンオキシド、3,3,3-トリフルオロプロピレンオキシド、3-ナフチルプロピレンオキシド、3-フェノキシプロピレンオキシド、3-ナフトキシプロピレンオキシド、ブタジエンモノオキシド、アリルグリシジルエーテル、3-ビニルオキシプロピレンオキシドおよび3-トリメチルシリルオキシプロピレンオキシド等が挙げられる。中でも、高い反応性を有する観点から、エチレンオキシドおよびプロピレンオキシドが好ましい。これらのエポキシドは、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 二酸化炭素の使用圧力は、特に限定されないが、通常、0.1~20MPaであることが好ましく、0.1~10MPaであることがより好ましく、0.1~5MPaであることがさらに好ましい。二酸化炭素は、一括で供給してもよいし、間欠的に、もしくは、連続的に供給してもよい。
 前記有機亜鉛触媒の使用量は、例えばエポキシド100質量部に対して0.001~50質量部であることが好ましく、0.01~40質量部であることがより好ましく、0.1~30質量部であることがさらに好ましい。
 前記共重合反応に用いられる溶媒としては、特に限定されるものではなく、種々の有機溶媒を用いることができる。このような有機溶媒としては、具体的には、例えば、ペンタン、ヘキサン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル系溶媒;テトラヒドロフラン、1,4-ジオキサン等のエーテル系溶媒;ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等のカーボネート類系溶媒等が挙げられる。
 前記溶媒の使用量は、特に制限されるものではないが、反応を円滑にさせる観点および使用量に見合うだけの効果を得る観点から、例えばエポキシド100質量部に対して100~10000質量部であることが好ましい。また、溶媒を使用しなくてもよい。
 なお、当該ポリアルキレンカーボネートの製造方法は、これら用いる溶媒の種類および使用量により、溶液重合および沈澱重合といった異なる重合形態となるが、いずれの重合形態であっても共重合反応は問題なく進行し、それらの反応効率は非常に高い。
 当該共重合反応の反応温度は、特に限定されないが、例えば20~100℃であるのが好ましく、40~80℃であるのがより好ましい。反応時間は、反応温度により異なるために一概には言えないが、例えば、2~40時間である。
 前記有機亜鉛触媒と二酸化炭素とエポキシドとの混合方法は、特に限定されるものではないが、混合の容易さから、例えば前記有機亜鉛触媒とエポキシドとを混合した後に二酸化炭素を添加する方法がある。
 また、かくして得られるポリアルキレンカーボネートは、例えば、ろ過あるいは希酸水溶液や希アルカリ水溶液を用いた洗浄により触媒等を除去した後、必要に応じて再沈殿した後に、減圧乾燥法等を用いて乾燥することにより単離することができる。
 なお、本明細書において「含む」とは、「本質的にからなる」と、「からなる」をも包含する(The term "comprising" includes "consisting essentially of” and "consisting of.")。また、本開示は、本明細書に説明した構成要件を任意の組み合わせを全て包含する。
 また、上述した本開示の各実施形態について説明した各種特性(性質、構造、機能等)は、本開示に包含される主題を特定するにあたり、どのように組み合わせられてもよい。すなわち、本開示には、本明細書に記載される組み合わせ可能な各特性のあらゆる組み合わせからなる主題が全て包含される。
 以下、例を示して本開示の実施形態をより具体的に説明するが、本開示の実施形態は下記の例に限定されるものではない。
各分析は以下の方法で行った。
<水分量測定>
 各実施例及び比較例に記載する系内水分量(すなわち、反応開始時における当該反応系の水分含有量)については、反応に用いる原料をすべて混合したスラリーをメタノールで希釈して水分を抽出し、カール・フィッシャー水分計(平沼産業製、製品名「AQ-2100」)を用いて測定した。より詳細には、次のようにして行った。原料を反応容器に仕込んだ後撹拌し、当該撹拌開始から1分以内に混合物(スラリー)0.5gを量り取り、メタノール5gと混合した。混合液をフィルター(0.45μm)でろ過し、濾液をカール・フィッシャー水分計に導入した。メタノールのみの測定値(ブランク測定値)を差し引いて有機亜鉛触媒内の水分量を算出した。
水分計分析条件
・発生液:Sigma-Aldrich製「ハイドラナール クーロマットAK」
・対極液:Sigma-Aldrich製「ハイドラナール クーロマットCG-K」
<反応率測定>
 反応後に残った混合スラリーを70℃減圧下で1時間乾燥させて固形物を得た。得られた固形物約5mgをTG/DTA装置に導入した。窒素雰囲気化で30℃から300℃まで10℃/minで昇温させ、残存グルタル酸に由来する重量減少から、反応率を求めた。
・分析装置:TG/DTA 7220(株式会社 日立ハイテクサイエンス製)
・サンプル前処理:スラリーを1g採取し、70℃減圧(1kPa・abs)1Hr乾燥・分析条件:30から300℃ 10℃/min 雰囲気N 200mL/min、試料5mg±1mg
・解析条件:本実施例においては酸化亜鉛とグルタル酸を用いた触媒について記載しているため、計算方法等の解析条件についても酸化亜鉛とグルタル酸の場合を例に示す。TG(熱重量測定)のデータにおいて、100℃における接線をT、250℃における接線をT、及び100~250℃間の変曲点における接線をTとした。次に接線TとTの交点における質量Wを求めた。また、接線TとTの交点における質量Wを求めた。交点間の質量差(W-W)をグルタル酸(脂肪族カルボン酸)含有量とし、低温側での交点の質量Wでグルタル酸(脂肪族カルボン酸)含有量を割った値をグルタル酸(脂肪族カルボン酸)含有率とした(図1及び式1を参照)。
 CCA [%]=(W-W)/W ×100 (式1)
  CCA:グルタル酸(脂肪族カルボン酸)含有率[%]
  W:低温側質量[mg]
  W:高温側質量[mg]
 次に、式2に従ってグルタル酸(脂肪族カルボン酸)の反応率RCAを計算した。
 RCA [%]=(1-CCA/C )×100 (式2)
  RCA:グルタル酸(脂肪族カルボン酸)反応率[%]
  CCA:グルタル酸(脂肪族カルボン酸)含有率[%]
  C:仕込時グルタル酸(脂肪族カルボン酸)含有率[%]
 C(仕込時グルタル酸(脂肪族カルボン酸)含有率)は、以下の式3から算出した。 C[%]={WCA/(WCA+WZn)}×100 (式3)
  C:仕込時グルタル酸(脂肪族カルボン酸)含有率 [%]
  WCA:仕込みグルタル酸(脂肪族カルボン酸)量 [g]
  WZn:仕込み酸化亜鉛(亜鉛化合物)量 [g]
<ポリアルキレンカーボネートの分子量測定>
 各実施例および製造例に記載するポリアルキレンカーボネートの重量平均分子量についてはゲル・パーミエーション・クロマトグラフ(GPC)測定装置(Waters製、製品名「waters2695」セパレーションモジュール)を用い下記条件にて測定した、標準ポリスチレン換算の質量平均分子量である。サンプルは、ポリマー濃度0.3質量%のN,N-ジメチルホルムアミド溶液として、測定装置へ導入した。
GPC測定条件
  ・カラム   :昭和電工製「Shodex OHpak SB-804 HQ」、「Shodex OHpak SB-805」を順次接続したもの
  ・カラム温度 :40℃
  ・展開溶媒  :5mmol/L LiBr-N,N-ジメチルホルムアミド溶液
  ・流速    :1.0mL/min
  ・検出器   :示差屈折計
  ・標準試料  :ポリスチレン
[実施例1] 
有機亜鉛化合物の製造
 冷却管・温度計および撹拌機を備え付けた1.5L容セパラブルフラスコに、酸化亜鉛81g(1.00mol)、グルタル酸132g(1.00mol)、及びトルエン1000gを仕込んだ。混合液をサンプリングして水分量を測定したところ、酸化亜鉛(100質量%)に対する水分量は0.1質量%であった。次いで、窒素雰囲気下で60℃まで昇温し、同温度で6時間撹拌して反応させた。反応後の混合液をサンプリングして残存グルタル酸量を測定して反応率を計算した結果、96.5質量%であった。その後、室温まで冷却し、吸引濾過を行い、次いで90℃、1.0kPa absで1Hr乾燥させることで、有機亜鉛化合物(グルタル酸亜鉛)196g(粉末)を得た。当該粉末を有機亜鉛触媒としてポリプロピレンカーボネートの製造に用いた。以下、当該粉末を触媒乾粉とも表記する。
ポリアルキレンカーボネートの製造
 撹拌機、ガス導入管および温度計を備えた1L容のオートクレーブの系内をあらかじめ窒素雰囲気に置換した後、有機亜鉛触媒10g(0.05mol)、酢酸エチル500g、プロピレンオキシド58g(1.00mol)を仕込んだ。60℃に昇温し、反応系内が1.0MPaとなるまで二酸化炭素を充填し、消費される二酸化炭素を補給しながら12時間重合反応を行った。その後、オートクレーブを冷却して脱圧し、白色ポリマーの酢酸エチルスラリーを得た。これを濾過し、減圧乾燥してポリプロピレンカーボネート86g(収率84質量%、分子量Mw34.2万)を得た。
[実施例2]
 実施例1の触媒製造において、仕込み時に水を0.20g添加する以外は実施例1と同様にして、触媒乾粉195gを取得した。反応初期の水分量は酸化亜鉛に対して0.26質量%で、反応6Hrの反応率は98.0質量%であった。この触媒を用いて、実施例1と同様の操作で重合を行い、ポリプロピレンカーボネート87g(収率85質量%、分子量Mw35.1万)を得た。
[実施例3]
 実施例1の触媒製造において、仕込み時に水を0.4g添加する以外は実施例1と同様にして、触媒乾粉195gを取得した。反応初期の水分量は酸化亜鉛に対して0.42質量%で、反応6Hrの反応率は98.0質量%であった。この触媒を用いて、実施例1と同様の操作で重合を行い、ポリプロピレンカーボネート84g(収率82質量%、分子量Mw33.6万)を得た。
[実施例4]
 実施例1の触媒製造において、仕込み時に水を4.00g添加する以外は実施例1と同様にして、触媒乾粉195gを取得した。反応初期の水分量は酸化亜鉛に対して5.12質量%で、反応6Hrの反応率は97.5質量%であった。この触媒を用いて、実施例1と同様の操作で重合を行い、ポリプロピレンカーボネート86g(収率84質量%、分子量Mw31.7万)を得た。
[実施例5]
 実施例1の触媒製造において、仕込み時に水を7.00g添加する以外は実施例1と同様にして、触媒乾粉196gを取得した。反応初期の水分量は酸化亜鉛に対して8.55質量%で、反応6Hrの反応率は95.6質量%であった。この触媒を用いて、実施例1と同様の操作で重合を行い、ポリプロピレンカーボネート84g(収率82質量%、分子量Mw32.6万)を得た。
[比較例1]
 実施例1の触媒製造において、酸化亜鉛、グルタル酸をあらかじめ乾燥させて、脱水トルエンを使用して、触媒乾粉200gを取得した。反応初期の水分量は酸化亜鉛に対して0.01質量%で、反応6Hrの反応率は74.1質量%であった。この触媒を用いて、実施例1と同様の操作で重合を行い、ポリプロピレンカーボネート62g(収率61質量%、分子量Mw21.5万)を得た。
[比較例2]
 実施例1の触媒製造において、仕込み時に水を9.00g添加する以外は実施例1と同様にして、触媒乾粉197gを取得した。反応初期の水分量は酸化亜鉛に対して11.50 質量%で、反応6Hrの反応率は90.9質量%であった。この触媒を用いて、実施例1と同様の操作で重合を行い、ポリプロピレンカーボネート78g(収率76質量%、分子量Mw28.9万)を得た。
 以上の結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 当該結果から、無機亜鉛化合物及び脂肪族カルボン酸を反応させて有機亜鉛化合物(触媒)を製造するにあたり、反応開始時における当該反応系の水分含有量が、当該無機亜鉛化合物に対して0.05~10質量%であることにより、高効率で反応が起こることが分かった。さらに、当該条件で製造した有機亜鉛化合物を、二酸化炭素とエポキシドとを反応させる際に触媒として用いることにより、高収率で比較的分子量の大きいポリアルキレンカーボネートを得られること、が分かった。 

Claims (9)

  1. 無機亜鉛化合物及び脂肪族カルボン酸を反応させることを含み、
    当該反応開始時における当該反応系の水分含有量が、当該無機亜鉛化合物に対して0.05~10質量%である、
    有機亜鉛化合物の製造方法。
  2. 無機亜鉛化合物が、酸化亜鉛及び水酸化亜鉛からなる群より選択される少なくとも1種である、請求項1に記載の製造方法。
  3. 脂肪族カルボン酸が、脂肪族ジカルボン酸及び脂肪族モノカルボン酸からなる群より選択される少なくとも1種である、請求項1又は2に記載の製造方法。
  4. 脂肪族モノカルボン酸が、ギ酸、酢酸、及びプロピオン酸よりなる群より選択される少なくとも1種である、請求項3に記載の製造方法。
  5. 脂肪族カルボン酸が、少なくとも脂肪族ジカルボン酸を含む、請求項1~4のいずれかに記載の製造方法。
  6. 脂肪族ジカルボン酸が、マロン酸、コハク酸、グルタル酸、アジピン酸、及びセバシン酸からなる群より選択される少なくとも1種である、請求項3~5のいずれかに記載の製造方法。
  7. 前記有機亜鉛化合物が有機亜鉛触媒である、請求項1~6のいずれかに記載の製造方法。
  8. 請求項1~7のいずれかに記載の製造方法により得られる有機亜鉛化合物。
  9. 請求項8に記載の有機亜鉛化合物の存在下で、二酸化炭素とエポキシドとを反応させることを含む、ポリアルキレンカーボネートの製造方法。 
PCT/JP2020/047342 2020-01-08 2020-12-18 有機亜鉛触媒の製造方法 WO2021140869A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227015128A KR20220122599A (ko) 2020-01-08 2020-12-18 유기 아연 촉매의 제조 방법
JP2021569803A JPWO2021140869A1 (ja) 2020-01-08 2020-12-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-001549 2020-01-08
JP2020001549 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021140869A1 true WO2021140869A1 (ja) 2021-07-15

Family

ID=76787487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047342 WO2021140869A1 (ja) 2020-01-08 2020-12-18 有機亜鉛触媒の製造方法

Country Status (4)

Country Link
JP (1) JPWO2021140869A1 (ja)
KR (1) KR20220122599A (ja)
TW (1) TW202135937A (ja)
WO (1) WO2021140869A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138616A (en) * 1975-05-26 1976-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd Process for preparin g zinc acrylate or methacrylate
JP2009526019A (ja) * 2006-02-10 2009-07-16 ビーエーエスエフ ソシエタス・ヨーロピア 多孔質の有機骨格材料の製造方法
WO2011142259A1 (ja) * 2010-05-13 2011-11-17 住友精化株式会社 脂肪族ポリカーボネートの製造方法
US20140200328A1 (en) * 2011-09-09 2014-07-17 Basf Se Method for producing zinc dicarboxylate
KR20160043410A (ko) * 2014-10-13 2016-04-21 주식회사 엘지화학 킬레이트계 화합물 및 이를 포함하는 중합 촉매
JP2016535134A (ja) * 2013-11-18 2016-11-10 エルジー・ケム・リミテッド 有機亜鉛触媒、その製造方法およびこれを用いたポリアルキレンカーボネート樹脂の製造方法
JP2018504489A (ja) * 2015-02-17 2018-02-15 エルジー・ケム・リミテッド 金属錯化合物、これを含む金属ナノ構造体および触媒組成物
JP2018531314A (ja) * 2016-03-11 2018-10-25 エルジー・ケム・リミテッド 熱安定性および加工性が向上したポリアルキレンカーボネートを含む樹脂組成物の経済的製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095954B2 (ja) 2006-05-09 2012-12-12 住友精化株式会社 有機亜鉛触媒およびそれを用いたポリアルキレンカーボネートの製造方法
JP5514557B2 (ja) 2010-01-08 2014-06-04 株式会社アルバック 非晶質Si太陽電池基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138616A (en) * 1975-05-26 1976-11-30 Nippon Shokubai Kagaku Kogyo Co Ltd Process for preparin g zinc acrylate or methacrylate
JP2009526019A (ja) * 2006-02-10 2009-07-16 ビーエーエスエフ ソシエタス・ヨーロピア 多孔質の有機骨格材料の製造方法
WO2011142259A1 (ja) * 2010-05-13 2011-11-17 住友精化株式会社 脂肪族ポリカーボネートの製造方法
US20140200328A1 (en) * 2011-09-09 2014-07-17 Basf Se Method for producing zinc dicarboxylate
JP2016535134A (ja) * 2013-11-18 2016-11-10 エルジー・ケム・リミテッド 有機亜鉛触媒、その製造方法およびこれを用いたポリアルキレンカーボネート樹脂の製造方法
KR20160043410A (ko) * 2014-10-13 2016-04-21 주식회사 엘지화학 킬레이트계 화합물 및 이를 포함하는 중합 촉매
JP2018504489A (ja) * 2015-02-17 2018-02-15 エルジー・ケム・リミテッド 金属錯化合物、これを含む金属ナノ構造体および触媒組成物
JP2018531314A (ja) * 2016-03-11 2018-10-25 エルジー・ケム・リミテッド 熱安定性および加工性が向上したポリアルキレンカーボネートを含む樹脂組成物の経済的製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NACALAI TESQUE, INC., 28 January 2021 (2021-01-28), Retrieved from the Internet <URL:https://www.nacalai.co.jp/information/trivia2/01.html> *
WILLIAMS, D. ET AL.: "Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants", J. ORG. CHEM., vol. 75, 2010, pages 8351 - 8354, XP055840789 *

Also Published As

Publication number Publication date
KR20220122599A (ko) 2022-09-02
TW202135937A (zh) 2021-10-01
JPWO2021140869A1 (ja) 2021-07-15

Similar Documents

Publication Publication Date Title
CN109942814B (zh) 一种含吡啶基的共轭微孔聚合物及其制备方法和应用
Leng et al. A novel heteropolyanion-based amino-containing cross-linked ionic copolymer catalyst for epoxidation of alkenes with H2O2
CN112812045B (zh) 一种鎓盐有机催化剂及其制备方法和应用
JPWO2011004730A1 (ja) 脂肪族ポリカーボネート粒子の製造方法
CN107325284B (zh) 一种超支化聚苯基***甲酸酯及其制备方法与应用
CN114656607B (zh) 咪唑类离子多孔有机聚合物及制备和催化co2与环氧化物耦合制备环状碳酸酯的应用方法
WO2021140869A1 (ja) 有機亜鉛触媒の製造方法
CN110746359A (zh) 硅胶负载咪唑离子液体催化剂、制备方法及在制备碳酸酯的应用
WO2021140870A1 (ja) 有機亜鉛触媒組成物の製造方法
CN106496538B (zh) 一种高分子量聚己内酯的合成方法
JP6449489B2 (ja) カルボン酸イオン架橋の二核鉄硫黄クラスター蛍光プローブ、その製造方法及びその使用
CN108948349B (zh) 一种螺环聚合物材料及其制备方法
EP2491048A1 (fr) Nouveau solide hybride organique-inorganique mil-53-al-n3 pourvu d&#39;une fonction azoture et son procede de préparation
CN112759761B (zh) 一种改性聚乙烯亚胺聚合物及其制备方法
WO2021140868A1 (ja) 有機亜鉛触媒
WO2022209774A1 (ja) 有機亜鉛触媒再生方法
RU2456301C1 (ru) Способ получения эпоксидированных 1,2-полибутадиенов
CN112812079A (zh) 六氟异丙基缩水甘油醚的合成方法
Zhang et al. Preparation of chitosan/cellulose composite copper catalyst for green synthesis in the construction of C–Si bonds in aqueous phase
CN105294406A (zh) 一种以固体碱CaO/ZrO2催化剂催化合成聚甲醛二甲醚的方法
CN114426483B (zh) 一种降解聚对苯二甲酸乙二酯的方法
CN111848361B (zh) 新型环三藜芦烃类似物及其衍生物、制备方法和应用
CN104003971B (zh) 一种催化氧化环己酮制备ε-己内酯的方法
CN111087507B (zh) 高价碘化物试剂氧化还原引发丙烯酰胺的自由基聚合
JP5820171B2 (ja) 包接化合物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912709

Country of ref document: EP

Kind code of ref document: A1