WO2021139007A1 - 阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用 - Google Patents

阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用 Download PDF

Info

Publication number
WO2021139007A1
WO2021139007A1 PCT/CN2020/081588 CN2020081588W WO2021139007A1 WO 2021139007 A1 WO2021139007 A1 WO 2021139007A1 CN 2020081588 W CN2020081588 W CN 2020081588W WO 2021139007 A1 WO2021139007 A1 WO 2021139007A1
Authority
WO
WIPO (PCT)
Prior art keywords
dopamine
functionalized graphene
cationic
water
graphene material
Prior art date
Application number
PCT/CN2020/081588
Other languages
English (en)
French (fr)
Inventor
***
朱小波
卢光明
赵海超
薛群基
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2021139007A1 publication Critical patent/WO2021139007A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/443Polyepoxides
    • C09D5/4457Polyepoxides containing special additives, e.g. pigments, polymeric particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4407Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained by polymerisation reactions involving only carbon-to-carbon unsaturated bonds
    • C09D5/4411Homopolymers or copolymers of acrylates or methacrylates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/4465Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/4469Phenoplasts; Aminoplasts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires

Definitions

  • the application relates to an anticorrosive coating, in particular to a cationic dopamine functionalized graphene water-based anticorrosive coating and a preparation method thereof, and a preparation method and application of the corresponding coating, belonging to the technical field of anticorrosive coatings.
  • organic protective coatings are one of the most widely used and cost-effective anti-corrosion measures.
  • the water-based cathodic electrophoretic emulsion is a coating with water as the solvent, which is not only environmentally friendly (meeting the requirements of low volatile organic compound emissions), but also has ideal adhesion, and is widely used in mainstream automotive and marine coatings.
  • organic coatings have certain permeability to corrosive media (H 2 O, O 2 and Cl - etc.). Therefore, a lot of work has focused on improving the impermeability of organic coatings to enhance their corrosion resistance.
  • Sheet-shaped nano-fillers with high aspect ratio and capable of inhibiting the penetration and diffusion of corrosive substances, such as graphene, can effectively solve the above problems.
  • Graphene's stable SP 2 hybrid structure makes it form a physical barrier between the metal and the corrosive medium to prevent the diffusion and penetration of the medium. It is considered the thinnest known anti-corrosion layer (0.34nm).
  • graphene can effectively extend the diffusion path of corrosive media, has excellent barrier properties and good chemical stability and oxidation resistance.
  • due to the van der Waals force between the sheet-like nano-fillers it is easy to aggregate in the polymer matrix. Therefore, the preparation of well-dispersed nano-fillers is the key to improving the anti-corrosion performance of the composite coating.
  • the main purpose of this application is to provide a cationic dopamine functionalized graphene water-based anticorrosive coating and a preparation method thereof to overcome the deficiencies in the prior art.
  • Another object of the present application is to provide an anticorrosive coating and a preparation method thereof.
  • Another object of the present application is to provide an application of the cationic dopamine functionalized graphene water-based anticorrosive coating or anticorrosive coating.
  • the embodiment of the application provides a cationic dopamine-functionalized graphene water-based anticorrosive coating, which includes: a cationic dopamine-functionalized graphene material and an aqueous resin emulsion, and the cationic dopamine-functionalized graphene material is uniformly dispersed in the water Resin emulsion.
  • the embodiment of the present application also provides a preparation method of the cationic dopamine functionalized graphene water-based anticorrosive coating, which includes:
  • the graphene material is modified with dopamine to obtain dopamine-functionalized graphene material
  • the graphene oxide is modified with dopamine to obtain dopamine-functionalized graphene materials
  • the cationic dopamine-functionalized graphene material is uniformly dispersed in an aqueous resin emulsion to obtain a cationic dopamine-functionalized graphene water-based anticorrosive coating.
  • the embodiments of the present application also provide the cationic dopamine functionalized graphene water-based anticorrosive coating prepared by the foregoing method.
  • the embodiment of the present application also provides a preparation method of the anticorrosive coating, which includes:
  • At least the cathode substrate, anode, and electrolyte are used to construct an electrochemical reaction system, wherein the electrolyte adopts the aforementioned cationic dopamine functionalized graphene water-based anticorrosive coating;
  • the electrophoretic deposition technology is used to energize the electrochemical reaction system, deposit a dense passivation layer on the surface of the substrate, and then solidify to obtain an anticorrosive coating.
  • the process conditions used in the electrophoretic deposition technique include: a deposition voltage of 10 to 220V, and a deposition time of 1 to 30 minutes.
  • the curing temperature is 60-200°C, and the time is 10-30 min.
  • the embodiments of the present application also provide the anticorrosive coating prepared by the foregoing method.
  • the embodiments of the present application also provide the application of the aforementioned cationic dopamine functionalized graphene water-based anticorrosive coating or anticorrosive coating in the field of corrosion.
  • the dopamine-functionalized graphene material provided in this application greatly improves the dispersion and stability of graphene, and effectively inhibits the electrochemical activity of the graphene surface;
  • the cationic dopamine functionalized graphene material provided by this application can be stably dispersed in the aqueous resin emulsion for 60 days without precipitation due to the presence of ammonium ion (-NH 3 + -);
  • the lamellar structure of the cationic dopamine-functionalized graphene material provided by this application can form a barrier layer in the anticorrosive coating, effectively blocking the penetration of corrosive media such as water, oxygen, and chloride ions, and fully exerting its physical insulation effect;
  • the -NH 3 + -of the cationic dopamine-functionalized graphene material provided by this application can absorb electrons and corrosive anions, cut off local galvanic corrosion, and form a dense passivation layer on the surface of the steel;
  • the cationic dopamine functionalized graphene water-based anticorrosive coating does not contain organic solvents, does not cause organic volatile emissions, and is environmentally friendly;
  • the preparation method of the cationic dopamine functionalized graphene material provided by this application is simple, and has excellent dispersibility and chemical stability in an aqueous emulsion;
  • the electrophoretic deposition technique is simple, low cost, low energy consumption, low pollution, and has a wide range of application prospects.
  • Fig. 1 is a dispersion photograph of the cationic dopamine-functionalized graphene with different contents in the aqueous epoxy emulsion described in Example 1 of the present application.
  • Figures 2a-2c are respectively a scanning view, a transmission electron microscope photo and an atomic force microscope image of the cationic dopamine-functionalized graphene water-based anticorrosive coating described in Example 1 of the present application.
  • 3a to 3d are respectively a surface scan view, a cross-sectional scan view, and a transmission electron microscope photo of the waterborne epoxy anticorrosive coating prepared in Example 1 of the present application.
  • 4a and 4b are optical photographs of the water-based epoxy anticorrosive coating prepared in Example 1 and Comparative Example 1 of the present application after being subjected to salt spray tests at different times.
  • the inventor of this case has been able to propose the technical solution of the application through long-term research and extensive practice, aiming to provide a cationic dopamine functionalized graphene water-based anticorrosive coating and a preparation method of the coating, mainly Including graphene modification, graphene ionization, electrolyte configuration, matrix pretreatment, composite coating preparation and other steps.
  • the technical solution, its implementation process and principles will be further explained as follows.
  • a cationic dopamine-functionalized graphene water-based anticorrosive coating which includes: a cationic dopamine-functionalized graphene material and an aqueous resin emulsion, and the cationic dopamine-functionalized graphene material is uniformly dispersed in In the aqueous resin emulsion.
  • the cationic dopamine-functionalized graphene material is prepared by ionizing a dopamine-functionalized graphene material.
  • the dopamine-functionalized graphene material is obtained by modifying the graphene material with dopamine.
  • the graphene oxide has a diameter of 1-50 ⁇ m and a thickness of 0.5-5 nm.
  • the cationic dopamine-functionalized graphene material can be stably dispersed in an aqueous resin emulsion for 60 days without precipitation due to the presence of ammonium ions (-NH 3 + -).
  • the water-based resin emulsion includes any one or a combination of two or more of water-based cathode epoxy resin, water-based cathode acrylic resin, water-based cathode polyurethane resin, and water-based amino resin, but is not limited thereto.
  • the content of the cationic dopamine-functionalized graphene material in the cationic dopamine-functionalized graphene water-based anticorrosive coating is 0.01-5 wt%.
  • the solid content of the aqueous resin emulsion is 5-50 wt%.
  • Another aspect of the embodiments of the present application provides a method for preparing a cationic dopamine functionalized graphene water-based anticorrosive coating, which includes:
  • the graphene oxide is modified with dopamine to obtain dopamine-functionalized graphene materials
  • the cationic dopamine-functionalized graphene material is uniformly dispersed in an aqueous resin emulsion to obtain a cationic dopamine-functionalized graphene water-based anticorrosive coating.
  • the preparation method specifically includes: adding dopamine and graphene oxide to a buffer solution with a pH of 8.5 and stirring at room temperature for 12-24 hours to obtain a dopamine-functionalized graphene material, and then at 20-80°C. Vacuum drying.
  • the mass ratio of the dopamine to the graphene oxide is 1:100-5:1.
  • the preparation method includes: mixing and dispersing the dopamine-functionalized graphene material with a mass ratio of 1:1 to 1:5 and acetic acid in a polar solvent, and stirring at 20 to 30°C for 1 In ⁇ 5h, the graphene material functionalized with cationic dopamine is obtained, and then vacuum-dried at 20-80°C.
  • the mass ratio of the dopamine-functionalized graphene material to the polar solvent is 1:10 to 1:100.
  • the polar solvent may include any one or a combination of two or more of acetone, ethanol, N,N-dimethylformamide, ethyl acetate, chloroform, etc., but is not limited thereto.
  • the dopamine-functionalized graphene material can be stably dispersed in an aqueous resin emulsion for 60 days without precipitation.
  • the preparation method specifically includes: uniformly dispersing the cationic dopamine-functionalized graphene material in an aqueous resin emulsion, and ultrasonically dispersing it for 5 to 120 minutes, to obtain a cationic dopamine-functionalized graphene water-based anticorrosive coating .
  • the water-based resin emulsion includes any one or a combination of two or more of water-based cathode epoxy resin, water-based cathode acrylic resin, water-based cathode polyurethane resin, and water-based amino resin, but is not limited thereto.
  • the solid content of the aqueous resin emulsion is 5-50%.
  • Another aspect of the embodiments of the present application also provides a cationic dopamine functionalized graphene water-based anticorrosive coating prepared by the foregoing method.
  • the content of the cationic dopamine-functionalized graphene material in the cationic dopamine-functionalized graphene water-based anticorrosive coating is 0.01-5 wt%.
  • Another aspect of the embodiments of the present application also provides a method for preparing an anticorrosive coating, which includes:
  • the electrophoretic deposition technology is used to deposit a dopamine-functionalized graphene water-based anticorrosive coating on the surface of the substrate.
  • the preparation method specifically includes:
  • At least the cathode substrate, anode, and electrolyte are used to construct an electrochemical reaction system, wherein the electrolyte adopts the aforementioned cationic dopamine functionalized graphene water-based anticorrosive coating;
  • the electrophoretic deposition technology is used to energize the electrochemical reaction system, deposit a dense passivation layer on the surface of the substrate, and then solidify to obtain an anticorrosive coating.
  • the process conditions used in the electrophoretic deposition technique include: a deposition voltage of 10 to 220V, and a deposition time of 1 to 30 minutes.
  • the curing temperature is 60-200°C, and the time is 10-30 min.
  • the preparation method further includes: pre-treating the substrate before electrophoretic deposition; wherein the pre-processing includes: sanding the substrate with 100-2000 mesh sandpaper, followed by ultrasonic cleaning for 5-30 minutes, and then Dry treatment.
  • the thickness of the anti-corrosion coating is 5-50 ⁇ m.
  • the preparation method of a cationic dopamine functionalized graphene water-based anticorrosive coating of the present application includes the following steps:
  • Graphene modification Add dopamine and graphene oxide with a mass ratio of 1:100 to 5:1 in a buffer solution with a pH of 8.5 and stir at room temperature for 12 to 24 hours to obtain a dopamine-functionalized graphene material. Vacuum dried at 20 ⁇ 80°C to form powder.
  • Electrolyte configuration The graphene material functionalized with cationic dopamine is uniformly dispersed in the water-based resin emulsion, which can be achieved by ultrasonic dispersion for 5 to 120 minutes.
  • Steel sheet pretreatment Grind the steel sheet with a size of (1-10) ⁇ (1-10) cm 2 on 100-2000 grit sandpaper, ultrasonically clean it with ethanol for 5-30 minutes, and finally dry it with nitrogen.
  • Another aspect of the embodiments of the present application also provides an anticorrosive coating prepared by the foregoing method.
  • the thickness of the anti-corrosion coating is 5-50 ⁇ m.
  • Another aspect of the embodiments of the present application also provides the application of the aforementioned cationic dopamine-functionalized graphene water-based anticorrosive coating or anticorrosive coating in the field of corrosion.
  • this application uses steel as a substrate, after being polished and cleaned with ethanol, the dopamine functionalized graphene anticorrosive coating is deposited by electrophoretic deposition technology.
  • Graphene oxide functionalized with dopamine greatly improves the dispersion and stability of graphene, and effectively inhibits the electrochemical activity of the graphene surface.
  • Cationic dopamine functionalized graphene can be stably dispersed in an aqueous emulsion for 60 days without precipitation due to the presence of ammonium ions (-NH 3 + -).
  • the lamellar structure of graphene can form a barrier layer in the coating, which effectively prevents the penetration of corrosive media such as water, oxygen, and chloride ions, and gives full play to its physical insulation effect.
  • the uniform dispersion of graphene in the coating can significantly extend the diffusion path of the corrosive medium.
  • the -NH 3 + -in the cationic dopamine-functionalized graphene can adsorb electrons and corrosive anions, cut off local galvanic corrosion, and form a dense passivation layer on the surface of the steel substrate.
  • the water-based dopamine-modified graphene/resin does not contain organic solvents, does not cause organic volatile emissions, and is environmentally friendly.
  • the preparation method of the dopamine-modified graphene material provided by the present application is simple, and has excellent dispersibility and chemical stability in an aqueous emulsion.
  • the electrophoretic deposition technique adopted in this application has simple methods, low cost, low energy consumption, and low pollution, and has a wide range of application prospects.
  • the embodiments of the present application also provide the application of the aforementioned cationic dopamine functionalized graphene water-based anticorrosive coating in the field of corrosion.
  • a cationic dopamine functionalized graphene waterborne epoxy anticorrosive coating and a preparation method of the coating thereof include the following steps:
  • Graphene ionization Disperse 0.5g of dried dopamine-reduced graphene oxide and 1.35g of acetic acid in 20mL acetone solution, stir at 28°C for 3h to obtain cationic dopamine functionalized graphene, and then vacuum dry it at 40°C. powder.
  • Electrolyte configuration Disperse 0.5 g of ionized dopamine-reduced graphene oxide in 100 g of an aqueous cathode epoxy resin emulsion with a solid content of 15%, and ultrasonically disperse for 30 minutes.
  • Steel sheet pretreatment Grind steel sheets with a size of 3 ⁇ 3cm 2 on 400, 800, and 1200 grit sandpaper respectively, and ultrasonically clean them with ethanol for 20 minutes, and finally dry them with nitrogen.
  • Preparation of anti-corrosion coating curing the coating obtained by electrodeposition in a drying oven for 20 minutes, wherein the curing temperature is 150° C. to remove the water solvent in the emulsion on the substrate surface; the thickness of the prepared anti-corrosion coating is 25 ⁇ m.
  • Figure 1 is a dispersion photograph of cationic dopamine-functionalized graphene with different contents in an aqueous epoxy emulsion in this example. It can be seen from Figure 1 that the cationic dopamine functionalized graphene is stably dispersed in the aqueous epoxy emulsion without precipitation. It shows that graphene oxide modified by dopamine greatly improves the dispersion and stability of graphene.
  • Figures 2a to 2c are respectively a scanning view, a transmission electron microscope photo and an atomic force microscope image of the cationic dopamine functionalized graphene water-based anticorrosive coating in this embodiment.
  • the dopamine-modified graphene oxide still has a good sheet structure, which is conducive to maintaining the high aspect ratio of graphene, so as to give full play to its physical isolation effect and effectively hinder corrosive media.
  • Figures 3a to 3d are respectively a surface scan view, a cross-sectional scan view, and a transmission electron microscope photo of the interior of the water-based epoxy anticorrosive coating prepared in this embodiment. It shows that graphene is arranged inside the coating parallel to the substrate, which is conducive to give full play to the interaction between graphene and electrolyte, forming a "labyrinth effect", and has better physical barrier effect and corrosion resistance.
  • a cationic dopamine functionalized graphene water-based acrylic anticorrosive coating and a preparation method of the coating thereof include the following steps:
  • Graphene ionization Take 0.5g of dried dopamine-reduced graphene oxide and 0.5g of acetic acid and disperse it in 12.5mL ethanol solution, stir at 20°C for 1h to obtain cationic dopamine functionalized graphene, and then vacuum dry it at 20°C Into a powder.
  • Electrolyte configuration Disperse 0.01 g of ionized dopamine-reduced graphene oxide in 100 g of aqueous cathodic acrylic resin emulsion with a solid content of 5%, and ultrasonically disperse for 5 minutes.
  • Steel sheet pretreatment Grind steel sheets with a size of 1 ⁇ 1cm 2 on 100, 600, and 1600 grit sandpaper respectively, and ultrasonically clean them with ethanol for 5 minutes, and finally dry them with nitrogen.
  • Preparation of anti-corrosion coating curing the coating obtained by electrodeposition in a drying oven for 10 minutes, wherein the curing temperature is 200° C. to remove the water solvent in the emulsion on the substrate surface; the thickness of the prepared anti-corrosion coating is 5 ⁇ m.
  • a cationic dopamine functionalized graphene waterborne polyurethane anticorrosive coating and a preparation method of the coating thereof include the following steps:
  • Graphene ionization Take 0.5g of dried dopamine-reduced graphene oxide and 2.5g of acetic acid and disperse it in 125mL ethyl acetate solution, stir at 30°C for 5h to obtain cationic dopamine functionalized graphene, then vacuum at 80°C Dried into powder.
  • Electrolyte configuration Take 5g of ionized dopamine-reduced graphene oxide and disperse it in 100g of an aqueous cathode polyurethane resin emulsion with a solid content of 50%, and ultrasonically disperse for 120 minutes.
  • steel sheet pretreatment the steel sheet with a size of 10 ⁇ 10cm 2 is polished on 200, 800, and 1000 grit sandpaper respectively, and then ultrasonically cleaned with ethanol for 30 minutes, and finally dried with nitrogen.
  • Preparation of anti-corrosion coating curing the coating obtained by electrodeposition in a drying oven for 30 minutes, wherein the curing temperature is 60°C to remove the water solvent in the emulsion on the substrate surface; the thickness of the prepared anti-corrosion coating is 50 ⁇ m.
  • a cationic dopamine functionalized graphene water-based amino anticorrosive coating and a preparation method of the coating thereof include the following steps:
  • Graphene ionization Take 0.5g of dried dopamine-reduced graphene oxide and 1g of acetic acid solution and disperse it in 50mL N,N-dimethylformamide solution, stir for 2h at 24°C to obtain cationic dopamine functionalized graphene. It was then vacuum dried at 40°C into a powder.
  • Electrolyte configuration Disperse 1 g of ionized dopamine-reduced graphene oxide in 100 g of water-based amino resin emulsion with a solid content of 20%, and ultrasonically disperse for 60 minutes.
  • Steel sheet pretreatment Grind the steel sheet with a size of 5 ⁇ 5cm 2 on 100, 600, and 2000 grit sandpaper respectively, and ultrasonically clean it with ethanol for 15 minutes, and finally dry it with nitrogen.
  • Preparation of anti-corrosion coating curing the coating obtained by electrodeposition in a drying oven for 15 minutes, wherein the curing temperature is 100°C to remove the water solvent in the emulsion on the substrate surface; the thickness of the prepared anti-corrosion coating is 30 ⁇ m.
  • An anticorrosive coating and a preparation method thereof including the following steps:
  • Steel sheet pretreatment Grind steel sheets with a size of 3 ⁇ 3cm 2 on 400, 800, and 1200 grit sandpaper respectively, and ultrasonically clean them with ethanol for 20 minutes, and finally dry them with nitrogen.
  • FIGS. 4a and 4b are optical photographs of the water-based epoxy anticorrosive coatings prepared in Example 1 and Comparative Example 1 after salt spray tests at different times. From the picture after 240 hours of salt spray test, it can be seen that the pure EP coating was covered by rust around the scratches, and some rust spots appeared in the undamaged area. The surface of the graphene anti-corrosion coating after dopamine functionalization is intact, except that there is rust around the scratches. After 480 hours of salt spray test, the pure EP coating was almost completely covered by rust, while the dopamine-functionalized graphene anticorrosive coating showed black spots around the scratches, but the surface remained intact. The results show that the addition of dopamine functionalized graphene helps to improve the corrosion resistance of the epoxy coating.
  • the initial low-frequency impedance modulus of the pure EP coating is 4.07 ⁇ 10 9 ⁇ cm 2
  • after 35 days of immersion it drops sharply to 9.1 ⁇ 10 7 ⁇ cm 2 , a decrease of two orders of magnitude. This indicates that the corrosive medium has penetrated into the coated substrate through the defect, resulting in a decrease in the corrosion resistance of the coating.
  • the initial low-frequency impedance modulus of the graphene anticorrosive coating after dopamine functionalization is 4.79 ⁇ 10 10 ⁇ cm 2 , which is still as high as 7.08 ⁇ 10 9 ⁇ cm 2 after being immersed for 35 days.
  • This is due to the layer structure of graphene that can form a barrier layer in the coating, which effectively prevents the penetration of corrosive media such as water, oxygen, and chloride ions, and gives full play to its physical isolation effect.
  • the uniform dispersion of graphene in the coating can significantly extend the diffusion path of the corrosive medium.
  • -NH 3 + -in the dopamine-modified graphene can adsorb electrons and corrosive anions, cut off local galvanic corrosion, and form a dense passivation layer on the surface of the steel.
  • a dopamine-functionalized graphene waterborne epoxy anticorrosive coating and a preparation method of the coating thereof include the following steps:
  • Electrolyte configuration Disperse 0.5 g of dopamine-reduced graphene oxide in 100 g of water-based epoxy resin emulsion with a solid content of 15%, and ultrasonically disperse for 30 minutes.
  • Steel sheet pretreatment Grind steel sheets with a size of 3 ⁇ 3cm 2 on 400, 800, and 1200 grit sandpaper respectively, and ultrasonically clean them with ethanol for 20 minutes, and finally dry them with nitrogen.
  • the steel sheet is used as the cathode, the copper sheet of the same size is used as the anode, and immersed in the electrolyte.
  • the dopamine modified graphene/resin composite coating is deposited on the surface of the substrate by controlling the deposition voltage and deposition time. The voltage is 60V, and the deposition time is 5 minutes.
  • Preparation of anti-corrosion coating curing the coating obtained by electrodeposition in a drying oven for 20 minutes, wherein the curing temperature is 150°C to remove the water solvent in the emulsion on the substrate surface; the thickness of the prepared anti-corrosion coating is 24.8 ⁇ m.
  • This comparative example is basically the same as Example 1, but in step 5, the electrolyte configured in step 3 is directly spin-coated on the surface of the steel sheet; then, the operation of step (6) is performed.
  • the present application uses steel as a substrate, after being polished and cleaned with ethanol, the dopamine-modified graphene/resin composite coating is deposited by electrophoretic deposition technology.
  • Graphene oxide modified by dopamine greatly improves the dispersion and stability of graphene, and effectively inhibits the electrochemical activity of the graphene surface.
  • Cationic dopamine-modified graphene can be stably dispersed in an aqueous emulsion for 60 days without precipitation due to the presence of ammonium ions (-NH 3 + -).
  • the lamellar structure of graphene can form a barrier layer in the coating, which can effectively prevent the penetration of corrosive media such as water, oxygen, and chloride ions, and give full play to its physical insulation effect.
  • the uniform dispersion of graphene in the coating can significantly extend the diffusion path of the corrosive medium.
  • the -NH 3 + -in the cationic dopamine modified graphene can absorb electrons and corrosive anions, cut off local galvanic corrosion, and form a dense passivation layer on the surface of the steel.
  • the water-based dopamine-modified graphene/resin does not contain organic solvents, does not cause organic volatile emissions, and is environmentally friendly.
  • the preparation method of the dopamine-modified graphene provided by the present application is simple, and has excellent dispersibility and chemical stability in an aqueous emulsion.
  • the electrophoretic deposition technique is simple, low cost, low energy consumption, low pollution, and has a wide range of application prospects.
  • composition taught in the present application is also basically The above is composed of or consists of the described components, and the process taught in this application is basically composed of the described process steps or a set of described process steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本申请公开了一种阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用。所述阳离子多巴胺功能化石墨烯水性防腐涂料包括:阳离子多巴胺功能化的石墨烯材料及水性树脂乳液,所述阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中。所述水性防腐涂料的制法包括:将阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中。所述防腐涂料形成的涂层的制法包括:采用电泳沉积技术,在基体表面沉积形成防腐涂层。本申请经多巴胺改性的石墨烯极大地提高了其分散性和稳定性,且能够在涂层中能形成阻隔层,显著延长腐蚀介质扩散路径,且在基体表面形成致密钝化层;同时,本申请采用电泳沉积技术方法简便、成本低廉、污染性小,具有广泛应用前景。

Description

阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用 技术领域
本申请涉及一种防腐涂层,尤其涉及一种阳离子多巴胺功能化石墨烯水性防腐涂料及其制备方法,以及相应涂层的制备方法与应用,属于防腐涂料技术领域。
背景技术
随着海洋产业的快速发展及其对海洋资源的强烈需求,各种海洋设施、船舶和金属部件在海洋资源开发中必须面临严峻的腐蚀问题。研究表明,除合理选材外,有机防护涂层是应用最广泛、性价比最高的防腐措施之一。其中,水性阴极电泳乳液是以水为溶剂的涂料,不仅绿色环保(满足低挥发性有机化合物排放的要求),而且具有理想的附着力,广泛用于主流汽车和船舶涂料中。然而,有机涂层对腐蚀性介质(H 2O、O 2和Cl -等)有一定的渗透性。因此,大量工作集中在改善有机涂层的不渗透性以增强其耐腐蚀性。
具有高纵横比和能抑制腐蚀性物质渗透和扩散的片状纳米填料,如石墨烯可以有效解决上述问题。石墨烯稳定的SP 2杂化结构使其在金属与腐蚀介质间形成物理阻隔层,阻止介质扩散和渗透,被认为是已知最薄的防腐层(0.34nm)。此外,石墨烯能有效延长腐蚀介质的扩散路径,具有优异的阻隔性能和良好的化学稳定性和抗氧化性能。然而,由于片状纳米填料之间的范德华力,它很容易在聚合物基质中聚集,因此,制备分散良好的纳米填料是提高复合涂层防腐性能的关键。
发明内容
本申请的主要目的在于提供一种阳离子多巴胺功能化石墨烯水性防腐涂料及其制备方法,以克服现有技术中的不足。
本申请的另一目的在于提供一种防腐涂层及其制备方法。
本申请的另一目的在于提供所述阳离子多巴胺功能化石墨烯水性防腐涂料或防腐涂层的应用。
为实现上述发明目的,本申请采用了如下技术方案:
本申请实施例提供了一种阳离子多巴胺功能化石墨烯水性防腐涂料,其包括:阳离子多巴胺功能化的石墨烯材料及水性树脂乳液,所述阳离子多巴胺功能化的石墨烯材料均匀分散于所述水性树脂乳液中。
本申请实施例还提供了一种阳离子多巴胺功能化石墨烯水性防腐涂料的制备方法,其包括:
以多巴胺对石墨烯材料进行改性处理,获得多巴胺功能化的石墨烯材料;
以多巴胺对氧化石墨烯进行改性处理,获得多巴胺功能化的石墨烯材料;
对所述多巴胺功能化的石墨烯材料进行离子化处理,获得阳离子多巴胺功能化的石墨烯材料;
将所述阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中,获得阳离子多巴胺功能化石墨烯水性防腐涂料。
本申请实施例还提供了由前述方法制备的阳离子多巴胺功能化石墨烯水性防腐涂料。
本申请实施例还提供了一种防腐涂层的制备方法,其包括:
至少使作为阴极的基体、阳极、电解液共同构建电化学反应体系,其中,所述电解液采用前述的阳离子多巴胺功能化石墨烯水性防腐涂料;
采用电泳沉积技术,向所述电化学反应体系通电,在所述基体表面沉积形成致密钝化层,之后固化,从而获得防腐涂层。
在一些实施例中,所述电泳沉积技术采用的工艺条件包括:沉积电压为10~220V,沉积时间为1~30min。
进一步地,所述固化的温度为60~200℃,时间为10~30min。
本申请实施例还提供了由前述方法制备的防腐涂层。
本申请实施例还提供了前述阳离子多巴胺功能化石墨烯水性防腐涂料或防腐涂层在腐蚀领域中的应用。
与现有技术相比,本申请的有益效果至少在于:
1)本申请提供的多巴胺功能化的石墨烯材料极大地提高了石墨烯的分散性和稳定性,有效地抑制了石墨烯表面的电化学活性;
2)本申请提供的阳离子多巴胺功能化石墨烯材料由于铵根离子(-NH 3 +-)的存在能稳定分散在水性树脂乳液中60天而不产生沉淀;
3)本申请提供的阳离子多巴胺功能化石墨烯材料的片层结构在防腐涂层中能形成阻隔 层,有效阻碍腐蚀性介质如水、氧气、氯离子等渗透,充分发挥其物理隔绝作用;
4)本申请提供的阳离子多巴胺功能化石墨烯材料在防腐涂层中的均匀分散能显著延长腐蚀介质扩散路径;
5)本申请提供的阳离子多巴胺功能化石墨烯材料的-NH 3 +-能吸附电子和腐蚀性阴离子,切断局部电偶腐蚀,在钢表面形成致密钝化层;
6)本申请提供的阳离子多巴胺功能化石墨烯水性防腐涂料不含有机溶剂,不会带来有机挥发物排放,绿色环保;
7)本申请提供的阳离子多巴胺功能化石墨烯材料的制备方法简单,在水性乳液中具有优异的分散性和化学稳定性;
8)本申请提供的防腐涂层的制备方法中电泳沉积技术方法简便、成本低廉、能耗低、污染性小,有广泛的应用前景。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1中所述不同含量阳离子多巴胺功能化石墨烯在水性环氧乳液中的分散照片。
图2a-图2c分别是本申请实施例1中所述阳离子多巴胺功能化石墨烯水性防腐涂料的扫面图、透射电镜照片以及原子力显微镜图。
图3a-图3d分别是本申请实施例1所制备的水性环氧防腐涂层表面扫面图、截面扫面图以及涂层内部透射电镜照片。
图4a和图4b分别是本申请实施例1和对比例1所制备的水性环氧防腐涂层经不同时间盐雾试验后的光学照片。
图5a和图5b分别是本申请实施例1和对比例1所制备的水性环氧防腐涂层在3.5wt%NaCl(pH值=7)中浸泡不同时间的电化学交流阻抗图。
图6a和图6b分别是本申请实施例1和对比例1所制备的水性环氧防腐涂层在3.5wt%NaCl(pH值=7)中浸泡90天后去除碳钢表面环氧涂层得到的碳钢表面腐蚀产物形貌图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案,旨在提供一种阳离子多巴胺功能化的石墨烯水性防腐涂料及其涂层的制备方法,主要包括石墨烯改性、石墨烯离子化、电解液配置、基体预处理、复合涂层制备等步骤。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例的一个方面提供的一种阳离子多巴胺功能化石墨烯水性防腐涂料,其包括:阳离子多巴胺功能化的石墨烯材料及水性树脂乳液,所述阳离子多巴胺功能化的石墨烯材料均匀分散于所述水性树脂乳液中。
在一些优选实施例中,所述阳离子多巴胺功能化的石墨烯材料是由多巴胺功能化的石墨烯材料经离子化处理制得的。
在一些优选实施例中,所述多巴胺功能化的石墨烯材料是石墨烯材料经多巴胺改性处理制得的。
在一些优选实施例中,所述氧化石墨烯的直径为1~50μm,厚度为0.5~5nm。
在一些优选实施例中,所述阳离子多巴胺功能化的石墨烯材料由于铵根离子(-NH 3 +-)的存在能够稳定分散在水性树脂乳液中60天而不产生沉淀。
在一些优选实施例中,所述水性树脂乳液包括水性阴极环氧树脂、水性阴极丙烯酸树脂、水性阴极聚氨酯树脂、水性氨基树脂等中的任意一种或两种以上的组合,但不限于此。
在一些优选实施例中,所述阳离子多巴胺功能化石墨烯水性防腐涂料中阳离子多巴胺功能化的石墨烯材料的含量为0.01~5wt%。
进一步地,所述水性树脂乳液的固含量为5~50wt%。
本申请实施例的另一个方面提供的一种阳离子多巴胺功能化石墨烯水性防腐涂料的制备方法,其包括:
以多巴胺对氧化石墨烯进行改性处理,获得多巴胺功能化的石墨烯材料;
对所述多巴胺功能化的石墨烯材料进行离子化处理,获得阳离子多巴胺功能化的石墨烯材料;
将所述阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中,获得阳离子多巴胺功能化石墨烯水性防腐涂料。
在一些优选实施例中,所述制备方法具体包括:将多巴胺、氧化石墨烯加入pH值为8.5 的缓冲溶液中室温搅拌12~24h,获得多巴胺功能化的石墨烯材料,之后于20~80℃真空干燥。
进一步地,所述多巴胺与氧化石墨烯的质量比为1:100~5:1。
在一些优选实施例中,所述制备方法包括:将质量比为1:1~1:5的多巴胺功能化的石墨烯材料与乙酸混合分散于极性溶剂中,并于20~30℃搅拌1~5h,获得阳离子多巴胺功能化的石墨烯材料,之后于20~80℃真空干燥。
进一步地,所述多巴胺功能化的石墨烯材料与极性溶剂的质量比为1:10~1:100。
进一步地,所述极性溶剂可以包括丙酮、乙醇、N,N-二甲基甲酰胺、乙酸乙酯、三氯甲烷等中的任意一种或两种以上的组合,但不限于此。
进一步地,所述多巴胺功能化的石墨烯材料能够稳定分散在水性树脂乳液中60天而不产生沉淀。
在一些优选实施例中,所述制备方法具体包括:将所述阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中,并超声分散5~120min,获得阳离子多巴胺功能化石墨烯水性防腐涂料。
在一些优选实施例中,所述水性树脂乳液包括水性阴极环氧树脂、水性阴极丙烯酸树脂、水性阴极聚氨酯树脂、水性氨基树脂等中的任意一种或两种以上的组合,但不限于此。
进一步地,所述水性树脂乳液的固含量为5~50%。
本申请实施例的另一个方面还提供了由前述方法制备的阳离子多巴胺功能化石墨烯水性防腐涂料。
进一步地,所述阳离子多巴胺功能化石墨烯水性防腐涂料中阳离子多巴胺功能化的石墨烯材料的含量为0.01~5wt%。
本申请实施例的另一个方面还提供了一种防腐涂层的制备方法,其包括:
提供基体;
采用电泳沉积技术在所述基体表面沉积多巴胺功能化的石墨烯水性防腐涂层。
在一些优选实施例中,所述制备方法具体包括:
至少使作为阴极的基体、阳极、电解液共同构建电化学反应体系,其中,所述电解液采用前述的阳离子多巴胺功能化石墨烯水性防腐涂料;
采用电泳沉积技术,向所述电化学反应体系通电,在所述基体表面沉积形成致密钝化层,之后固化,从而获得防腐涂层。
在一些优选实施例中,所述电泳沉积技术采用的工艺条件包括:沉积电压为10~220V, 沉积时间为1~30min。
在一些优选实施例中,所述固化的温度为60~200℃,时间为10~30min。
进一步地,所述制备方法还包括:在进行电泳沉积之前,先对基体进行预处理;其中,所述预处理包括:采用100~2000目砂纸对基体进行打磨,之后超声清洗5~30min,再干燥处理。
进一步地,所述防腐涂层的厚度为5~50μm。
在一些更为典型的具体实施案例之中,本申请的一种阳离子多巴胺功能化石墨烯水性防腐涂层的制备方法包括如下步骤:
(1)石墨烯改性:将质量比为1:100~5:1的多巴胺和氧化石墨烯加入pH值为8.5的缓冲溶液中室温搅拌12~24h,获得多巴胺功能化的石墨烯材料,之后于20~80℃真空干燥成粉末。
(2)石墨烯离子化:将质量比为1:1~1:5的多巴胺功能化的石墨烯材料与乙酸混合分散于极性溶剂中,并于20~30℃搅拌1~5h,获得阳离子多巴胺功能化的石墨烯材料,之后于20~80℃真空干燥成粉末;所述多巴胺功能化的石墨烯材料与极性溶剂的质量比为1:10~1:100;所述极性溶剂为丙酮、乙醇、N,N-二甲基甲酰胺、乙酸乙酯、三氯甲烷等中的一种或两种以上的混合物。
(3)电解液配置:将阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中,可通过超声分散5~120min实现。
(4)钢片预处理:将尺寸为(1~10)×(1~10)cm 2的钢片在100~2000目砂纸上打磨后用乙醇超声清洗5~30min,最后用氮气吹干。
(5)复合涂层制备:将钢片作为阴极,相同尺寸的铜片作为阳极,浸入电解液中,通过控制沉积电压和沉积时间在基体表面沉积多巴胺功能化的石墨烯水性防腐涂层,其中沉积电压为10~220V,沉积时间1~30min。
(6)防腐涂层制备:将电沉积得到的涂层在干燥箱中固化10~30min,其中固化温度为60~200℃,以去除基体表面乳液中的水溶剂。
本申请实施例的另一个方面还提供了由前述方法制备的防腐涂层。
进一步地,所述防腐涂层的厚度为5~50μm。
本申请实施例的另一个方面还提供了前述阳离子多巴胺功能化石墨烯水性防腐涂料或防腐涂层于腐蚀领域中的应用。
综上所述,本申请以钢为基体,经打磨处理和乙醇清洗后,通过电泳沉积技术沉积多巴胺功能化石墨烯防腐涂层。经多巴胺功能化后的氧化石墨烯,极大地提高了石墨烯的分散性和稳定性,有效地抑制了石墨烯表面的电化学活性。阳离子多巴胺功能化石墨烯由于铵根离子(-NH 3 +-)的存在能稳定分散在水性乳液中60天而不产生沉淀。石墨烯的片层结构在涂层中能形成阻隔层,有效阻碍腐蚀性介质如水、氧气、氯离子等渗透,充分发挥其物理隔绝作用。石墨烯在涂层中的均匀分散能显著延长腐蚀介质扩散路径。阳离子多巴胺功能化石墨烯中的-NH 3 +-能吸附电子和腐蚀性阴离子,切断局部电偶腐蚀,在钢基体表面形成致密钝化层。水性多巴胺改性石墨烯/树脂不含有机溶剂,不会带来有机挥发物排放,绿色环保。本申请提供的多巴胺改性石墨烯材料制备方法简单,在水性乳液中具有优异的分散性和化学稳定性。本申请采用的电泳沉积技术方法简便、成本低廉、能耗低、污染性小,有广泛的应用前景。
本申请实施例还提供了前述阳离子多巴胺功能化石墨烯水性防腐涂层在腐蚀领域中的应用。
下面通过具体实施例及附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
一种阳离子多巴胺功能化石墨烯水性环氧防腐涂料及其涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量配比为3:1的多巴胺和氧化石墨烯混合在pH值=8.5缓冲溶液中室温搅拌24h,获得多巴胺功能化的石墨烯,然后将得到的多巴胺功能化的石墨烯在40℃下真空干燥成粉末。
2.石墨烯离子化:取0.5g干燥后的多巴胺还原氧化石墨烯和1.35g乙酸分散在20mL丙酮溶液中,28℃搅拌3h,获得阳离子多巴胺功能化石墨烯,然后在40℃下真空干燥成粉末。
3.电解液配置:取0.5g离子化多巴胺还原氧化石墨烯分散在100g固含量为15%的水性阴极环氧树脂乳液中,超声分散30min。
4.钢片预处理:将尺寸为3×3cm 2的钢片分别在400、800、1200目砂纸上打磨后用乙醇超声清洗20min,最后用氮气吹干。
5.复合涂层制备:将钢片作为阴极,相同尺寸的铜片作为阳极,浸入电解液中,通过控制沉积电压和沉积时间在基体表面沉积多巴胺改性石墨烯/树脂复合涂层,其中沉积电压为 60V,沉积时间为5min。
6.防腐涂层制备:将电沉积得到的涂层在干燥箱中固化20min,其中固化温度为150℃,以去除基底表面乳液中的水溶剂;所制备的防腐涂层厚度为25μm。
图1是本实施例中不同含量阳离子多巴胺功能化石墨烯在水性环氧乳液中的分散照片。从图1中可以看出阳离子多巴胺功能化石墨烯稳定分散在水性环氧乳液中而不产生沉淀。表明经多巴胺改性后的氧化石墨烯,极大地提高了石墨烯的分散性和稳定性。图2a-图2c分别是本实施例中所述阳离子多巴胺功能化石墨烯水性防腐涂料的扫面图、透射电镜照片以及原子力显微镜图。从图2a-图2c中可以看出多巴胺改性后的氧化石墨烯仍然具有良好的片层结构,这有利于保持石墨烯的高纵横比,从而充分发挥其物理隔绝作用,有效阻碍腐蚀性介质如水、氧气、氯离子等渗透,显著延长腐蚀介质扩散路径。图3a-图3d分别是本实施例所制备的水性环氧防腐涂层表面扫面图、截面扫面图以及涂层内部透射电镜照片。表明石墨烯平行于基底排列在涂层内部,这有利于充分发挥石墨烯与电解质之间的相互作用,形成“迷宫效应”,具有更好的物理阻隔作用和耐腐蚀性。
实施例2
一种阳离子多巴胺功能化石墨烯水性丙烯酸防腐涂料及其涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量配比为1:100的多巴胺和氧化石墨烯混合在pH值=8.5缓冲溶液中室温搅拌12h,获得多巴胺功能化的石墨烯,然后将得到的多巴胺功能化的石墨烯在20℃下真空干燥成粉末。
2.石墨烯离子化:取0.5g干燥后的多巴胺还原氧化石墨烯和0.5g乙酸分散在12.5mL乙醇溶液中,20℃搅拌1h,获得阳离子多巴胺功能化石墨烯,然后在20℃下真空干燥成粉末。
3.电解液配置:取0.01g离子化多巴胺还原氧化石墨烯分散在100g固含量为5%的水性阴极丙烯酸树脂乳液中,超声分散5min。
4.钢片预处理:将尺寸为1×1cm 2的钢片分别在100、600、1600目砂纸上打磨后用乙醇超声清洗5min,最后用氮气吹干。
5.复合涂层制备:将钢片作为阴极,相同尺寸的铜片作为阳极,浸入电解液中,通过控制沉积电压和沉积时间在基体表面沉积多巴胺改性石墨烯/树脂复合涂层,其中沉积电压为10V,沉积时间为30min。
6.防腐涂层制备:将电沉积得到的涂层在干燥箱中固化10min,其中固化温度为200℃, 以去除基底表面乳液中的水溶剂;所制备的防腐涂层厚度为5μm。
实施例3
一种阳离子多巴胺功能化石墨烯水性聚氨酯防腐涂料及其涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量配比为5:1的多巴胺和氧化石墨烯混合在pH值=8.5缓冲溶液中室温搅拌18h,获得多巴胺功能化的石墨烯,然后将得到的多巴胺功能化的石墨烯在80℃下真空干燥成粉末。
2.石墨烯离子化:取0.5g干燥后的多巴胺还原氧化石墨烯和2.5g乙酸分散在125mL乙酸乙酯溶液中,30℃搅拌5h,获得阳离子多巴胺功能化石墨烯,然后在80℃下真空干燥成粉末。
3.电解液配置:取5g离子化多巴胺还原氧化石墨烯分散在100g固含量为50%的水性阴极聚氨酯树脂乳液中,超声分散120min。
4.钢片预处理:将尺寸为10×10cm 2的钢片分别在200、800、1000目砂纸上打磨后用乙醇超声清洗30min,最后用氮气吹干。
5.复合涂层制备:将钢片作为阴极,相同尺寸的铜片作为阳极,浸入电解液中,通过控制沉积电压和沉积时间在基体表面沉积多巴胺改性石墨烯/树脂复合涂层,其中沉积电压为220V,沉积时间为1min。
6.防腐涂层制备:将电沉积得到的涂层在干燥箱中固化30min,其中固化温度为60℃,以去除基底表面乳液中的水溶剂;所制备的防腐涂层厚度为50μm。
实施例4
一种阳离子多巴胺功能化石墨烯水性氨基防腐涂料及其涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量配比为1:1的多巴胺和氧化石墨烯混合在pH值=8.5缓冲溶液中室温搅拌20h,获得多巴胺功能化的石墨烯,然后将得到的多巴胺功能化的石墨烯在40℃下真空干燥成粉末。
2.石墨烯离子化:取0.5g干燥后的多巴胺还原氧化石墨烯和1g乙酸溶液分散在50mL N,N-二甲基甲酰胺溶液中,24℃搅拌2h,获得阳离子多巴胺功能化石墨烯,然后在40℃下真空干燥成粉末。
3.电解液配置:取1g离子化多巴胺还原氧化石墨烯分散在100g固含量为20%的水性氨基树脂乳液中,超声分散60min。
4.钢片预处理:将尺寸为5×5cm 2的钢片分别在100、600、2000目砂纸上打磨后用乙醇超声清洗15min,最后用氮气吹干。
5.复合涂层制备:将钢片作为阴极,相同尺寸的铜片作为阳极,浸入电解液中,通过控制沉积电压和沉积时间在基体表面沉积多巴胺改性石墨烯/树脂复合涂层,其中沉积电压为100V,沉积时间为15min。
6.防腐涂层制备:将电沉积得到的涂层在干燥箱中固化15min,其中固化温度为100℃,以去除基底表面乳液中的水溶剂;所制备的防腐涂层厚度为30μm。
实施例1-4所制备涂层在3.5wt%NaCl(pH值=7)中浸泡不同时间的低频阻抗模量值如下:
涂层 浸泡1d后低频阻抗模量(Ωcm 2) 浸泡35d后低频阻抗模量Ωcm 2
实施例1 4.79×10 10 7.08×10 9
实施例2 2.38×10 9 6.45×10 8
实施例3 1.21×10 10 4.33×10 9
实施例4 5.13×10 10 8.32×10 9
对比例1
一种防腐涂层及其制备方法,包括如下步骤:
1.钢片预处理:将尺寸为3×3cm 2的钢片分别在400、800、1200目砂纸上打磨后用乙醇超声清洗20min,最后用氮气吹干。
2.复合涂层制备:将钢片作为阴极,相同尺寸的铜片作为阳极,浸入100g固含量为15%的水性乳液中,通过控制沉积电压和沉积时间在基体表面沉积涂层,其中沉积电压为60V,沉积时间为5min。
3.防腐涂层制备:将电沉积得到的涂层在干燥箱中固化20min,其中固化温度为150℃,以去除基底表面乳液中的水溶剂;所制备的涂层厚度为25μm。
图4a和图4b是实施例1和对比例1所制备的水性环氧防腐涂层经不同时间盐雾试验后的光学照片。从经过240小时的盐雾测试后的图片可以看出,纯EP涂层在划痕周围被锈覆盖,在未损坏的区域出现了一些锈斑。而多巴胺功能化后的石墨烯防腐涂层表面的表面完好无损,只是划痕周围生锈。经过480小时的盐雾测试后,纯EP的涂层几乎完全被锈覆盖,而多巴胺功能化后的石墨烯防腐涂层划痕周围会出现黑点,但表面保持完整。结果表明,添 加多巴胺功能化后的石墨烯有助于提高环氧涂层的耐腐蚀性。
图5a和图5b是实施例1和对比例1所制备的水性环氧防腐涂层在3.5wt%NaCl(pH值=7)中浸泡不同时间的电化学交流阻抗图。同样,从图中可以看出,纯EP涂层的初始低频阻抗模量为4.07×10 9Ωcm 2,浸入35天后,急剧下降至9.1×10 7Ωcm 2,降低了两个数量级。这表明腐蚀性介质已通过缺陷渗透到涂层基材中,导致涂层的耐腐蚀性降低。而多巴胺功能化后的石墨烯防腐涂层的初始低频阻抗模量为4.79×10 10Ωcm 2,在浸入35天后仍高达7.08×10 9Ωcm 2。这归因于石墨烯的片层结构在涂层中能形成阻隔层,有效阻碍腐蚀性介质如水、氧气、氯离子等渗透,充分发挥其物理隔绝作用。而且石墨烯在涂层中的均匀分散能显著延长腐蚀介质扩散路径。此外,多巴胺改性石墨烯中的-NH 3 +-能吸附电子和腐蚀性阴离子,切断局部电偶腐蚀,在钢表面形成致密钝化层。
图6a和图6b分别是本申请实施例1和对比例1所制备的水性环氧防腐涂层在3.5wt%NaCl(pH值=7)中浸泡90天后去除碳钢表面环氧涂层得到的碳钢表面腐蚀产物形貌图。从图中可以看出多巴胺功能化后的石墨烯防腐涂层碳钢表面的腐蚀产物较纯环氧涂层碳钢表面的腐蚀产物大大减少,表现出优异的耐腐蚀性能。
对比例2
一种多巴胺功能化石墨烯水性环氧防腐涂料及其涂层的制备方法,包括如下步骤:
1.石墨烯改性:将质量配比为3:1的多巴胺和氧化石墨烯混合在pH值=8.5缓冲溶液中室温搅拌24h,获得多巴胺功能化的石墨烯,然后将得到的多巴胺功能化的石墨烯在40℃下真空干燥成粉末。
2.电解液配置:取0.5g多巴胺还原氧化石墨烯分散在100g固含量为15%的水性环氧树脂乳液中,超声分散30min。
3.钢片预处理:将尺寸为3×3cm 2的钢片分别在400、800、1200目砂纸上打磨后用乙醇超声清洗20min,最后用氮气吹干。
4.复合涂层制备:将钢片作为阴极,相同尺寸的铜片作为阳极,浸入电解液中,通过控制沉积电压和沉积时间在基体表面沉积多巴胺改性石墨烯/树脂复合涂层,其中沉积电压为60V,沉积时间为5min。
5.防腐涂层制备:将电沉积得到的涂层在干燥箱中固化20min,其中固化温度为150℃,以去除基底表面乳液中的水溶剂;所制备的防腐涂层厚度为24.8μm。
本对比例中由于多巴胺功能化后的石墨烯呈电负性,所以在电场作用下不能沉积在阴极 碳钢表面,所制备的涂层防腐性能与纯环氧树脂涂层接近。
对比例3
该对照例与实施例1基本相同,但步骤5为:将步骤3配置的电解液直接旋涂于钢片表面;之后进行步骤(6)的操作。
本对比例由于旋涂得到的复合涂层较电沉积得到的复合涂层厚度薄且致密性差,故旋涂得到的复合涂层的耐腐蚀性能比电沉积得到的纯环氧涂层性能还要差的多。
综上所述,本申请以钢为基体,经打磨处理和乙醇清洗后,通过电泳沉积技术沉积多巴胺改性石墨烯/树脂复合涂层。经多巴胺改性后的氧化石墨烯,极大地提高了石墨烯的分散性和稳定性,有效地抑制了石墨烯表面的电化学活性。阳离子多巴胺改性石墨烯由于铵根离子(-NH 3 +-)的存在能稳定分散在水性乳液中60天而不产生沉淀。石墨烯的片层结构在涂层中能形成阻隔层,有效阻碍腐蚀性介质如水、氧气、氯离子等渗透,充分发挥其物理隔绝作用。石墨烯在涂层中的均匀分散能显著延长腐蚀介质扩散路径。阳离子多巴胺改性石墨烯中的-NH 3 +-能吸附电子和腐蚀性阴离子,切断局部电偶腐蚀,在钢表面形成致密钝化层。水性多巴胺改性石墨烯/树脂不含有机溶剂,不会带来有机挥发物排放,绿色环保。本申请提供的多巴胺改性石墨烯制备方法简单,在水性乳液中具有优异的分散性和化学稳定性。电泳沉积技术方法简便、成本低廉、能耗低、污染性小,有广泛的应用前景。
本申请的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本申请,本申请的范围仅由权利要求书界定。在不背离所主张的本申请的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
在本申请案中标题及章节的使用不意味着限制本申请;每一章节可应用于本申请的任何方面、实施例或特征。
在本申请案通篇中,在将组合物描述为具有、包含或包括特定组份之处或者在将过程描述为具有、包含或包括特定过程步骤之处,预期本申请教示的组合物也基本上由所叙述组份组成或由所叙述组份组成,且本申请教示的过程也基本上由所叙述过程步骤组成或由所叙述过程步骤组组成。
除非另外具体陈述,否则术语“包含(include、includes、including)”、“具有(have、has或having)”的使用通常应理解为开放式的且不具限制性。
应理解,各步骤的次序或执行特定动作的次序并非十分重要,只要本申请教示保持可操作即可。此外,可同时进行两个或两个以上步骤或动作。
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,并均获得了较为理想的结果。
尽管已参考说明性实施例描述了本申请,但所属领域的技术人员将理解,在不背离本申请的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实施例的元件。另外,可在不背离本申请的范围的情况下做出许多修改以使特定情形或材料适应本申请的教示。因此,本文并不打算将本申请限制于用于执行本申请的所揭示特定实施例,而是打算使本申请将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。

Claims (10)

  1. 一种阳离子多巴胺功能化石墨烯水性防腐涂料,其特征在于包括:阳离子多巴胺功能化的石墨烯材料及水性树脂乳液,所述阳离子多巴胺功能化的石墨烯材料均匀分散于所述水性树脂乳液中。
  2. 根据权利要求1所述的阳离子多巴胺功能化石墨烯水性防腐涂料,其特征在于:所述阳离子多巴胺功能化的石墨烯材料是由多巴胺功能化的石墨烯材料经离子化处理制得的;优选的,所述多巴胺功能化的石墨烯材料是氧化石墨烯经多巴胺改性处理制得的;优选的,所述氧化石墨烯的直径为1~50μm,厚度为0.5~5nm;
    优选的,所述阳离子多巴胺功能化的石墨烯材料能够稳定分散在水性树脂乳液中60天而不产生沉淀;
    和/或,所述水性树脂乳液包括水性阴极环氧树脂、水性阴极丙烯酸树脂、水性阴极聚氨酯树脂、水性氨基树脂中的任意一种或两种以上的组合;
    和/或,所述水性防腐涂料中阳离子多巴胺功能化的石墨烯材料的含量为0.01~5wt%;
    和/或,所述水性树脂乳液的固含量为5~50wt%。
  3. 一种阳离子多巴胺功能化石墨烯水性防腐涂料的制备方法,其特征在于包括:
    以多巴胺对氧化石墨烯进行改性处理,获得多巴胺功能化的石墨烯材料;
    对所述多巴胺功能化的石墨烯材料进行离子化处理,获得阳离子多巴胺功能化的石墨烯材料;
    将所述阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中,获得阳离子多巴胺功能化石墨烯水性防腐涂料。
  4. 根据权利要求3所述的制备方法,其特征在于包括:将多巴胺、氧化石墨烯加入pH值为8.5的缓冲溶液中室温搅拌12~24h,获得多巴胺功能化的石墨烯材料,之后于20~80℃真空干燥;优选的,所述多巴胺与氧化石墨烯的质量比为1:100~5:1;
    优选的,所述多巴胺功能化的石墨烯材料能够稳定分散在水性树脂乳液中60天而不产生沉淀;
    和/或,所述制备方法包括:将质量比为1:1~1:5的多巴胺功能化的石墨烯材料与乙酸混合分散于极性溶剂中,并于20~30℃搅拌1~5h,获得阳离子多巴胺功能化的石墨烯材料, 之后于20~80℃真空干燥;优选的,所述多巴胺功能化的石墨烯材料与极性溶剂的质量比为1:10~1:100;优选的,所述极性溶剂包括丙酮、乙醇、N,N-二甲基甲酰胺、乙酸乙酯、三氯甲烷中的任意一种或两种以上的组合。
  5. 根据权利要求3所述的制备方法,其特征在于包括:将所述阳离子多巴胺功能化的石墨烯材料均匀分散于水性树脂乳液中,并超声分散5~120min,获得阳离子多巴胺功能化石墨烯水性防腐涂料;优选的,所述水性树脂乳液包括水性阴极环氧树脂、水性阴极丙烯酸树脂、水性阴极聚氨酯树脂、水性氨基树脂中的任意一种或两种以上的组合;优选的,所述水性树脂乳液的固含量为5~50%。
  6. 由权利要求3-5中任一项所述方法制备的阳离子多巴胺功能化石墨烯水性防腐涂料;优选的,所述水性防腐涂料中阳离子多巴胺功能化的石墨烯材料的含量为0.01~5wt%。
  7. 一种防腐涂层的制备方法,其特征在于包括:
    至少使作为阴极的基体、阳极、电解液共同构建电化学反应体系,其中,所述电解液采用权利要求1-2、6中任一项所述的阳离子多巴胺功能化石墨烯水性防腐涂料;
    采用电泳沉积技术,向所述电化学反应体系通电,在所述基体表面沉积形成致密钝化层,之后固化,从而获得防腐涂层。
  8. 根据权利要求7所述的制备方法,其特征在于,所述电泳沉积技术采用的工艺条件包括:沉积电压为10~220V,沉积时间为1~30min;
    和/或,所述固化的温度为60~200℃,时间为10~30min;
    和/或,所述制备方法还包括:在进行电泳沉积之前,先对基体进行预处理;优选的,所述预处理包括:采用100~2000目砂纸对基体进行打磨,之后超声清洗5~30min,再干燥处理。
  9. 由权利要求7-8中任一项所述方法制备的防腐涂层;优选的,所述防腐涂层的厚度为5~50μm。
  10. 权利要求1-2、6中任一项所述的阳离子多巴胺功能化石墨烯水性防腐涂料或权利要求9所述的防腐涂层于腐蚀领域中的应用。
PCT/CN2020/081588 2020-01-10 2020-03-27 阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用 WO2021139007A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010024899.6 2020-01-10
CN202010024899 2020-01-10
CN202010212604.8A CN113122044B (zh) 2020-01-10 2020-03-24 阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用
CN202010212604.8 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021139007A1 true WO2021139007A1 (zh) 2021-07-15

Family

ID=73894688

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/081588 WO2021139007A1 (zh) 2020-01-10 2020-03-27 阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用
PCT/CN2020/117977 WO2021139227A1 (zh) 2020-01-10 2020-09-27 仿生三明治防腐涂层及其制备方法与应用

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117977 WO2021139227A1 (zh) 2020-01-10 2020-09-27 仿生三明治防腐涂层及其制备方法与应用

Country Status (2)

Country Link
CN (2) CN113122044B (zh)
WO (2) WO2021139007A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372083A (zh) * 2021-07-19 2021-09-10 福泉环保城发展有限公司 一种基于氧化石墨烯基层状材料改性的自流平砂浆及其制备方法
CN113717615A (zh) * 2021-09-17 2021-11-30 陕西科技大学 一种耐磨防腐的石墨烯/二氧化硅/环氧树脂超滑移复合涂层的制备方法
CN114854311A (zh) * 2022-06-17 2022-08-05 南京信息职业技术学院 一种抗紫外超疏水氟硅涂层及其制备方法与应用
CN115724425A (zh) * 2022-09-30 2023-03-03 浙江铭孚金属涂装科技有限公司 一种用于改性阴极电泳涂料的功能化石墨烯的制备及使用方法
CN116120764A (zh) * 2023-02-20 2023-05-16 诺比侃人工智能科技(成都)股份有限公司 一种氨基改性石墨烯及其制备方法和应用
CN116640493A (zh) * 2023-06-21 2023-08-25 深圳市金木源包装制品有限公司 一种用于运输木箱的防腐防***漆及其制备方法
CN117659807A (zh) * 2023-10-16 2024-03-08 江西省极热科技集团有限公司 一种水性石墨烯防腐涂料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745582B (zh) * 2021-09-07 2022-04-22 烟台东德实业有限公司 一种燃料电池用气水分离器的迷宫结构
CN113832467B (zh) * 2021-09-26 2024-02-13 江西理工大学 聚合物改性多巴胺缓蚀剂、其制备方法与应用
CN114381776B (zh) * 2022-01-21 2023-03-03 中国科学院兰州化学物理研究所 一种镍掺杂硼基复合薄膜及其制备方法和应用
CN115403986B (zh) * 2022-07-07 2023-12-19 桂林理工大学 一种多巴胺改性多孔氧化亚铜/水性环氧树脂复合涂层及其制备方法和应用
CN115820091B (zh) * 2022-11-30 2023-08-25 南昌航空大学 一种制备GO-PDA-CeO2/PU耐磨超疏水长效防腐蚀涂层的方法
CN115838545A (zh) * 2022-12-12 2023-03-24 福州大学 一种多层组装的聚邻氨基苯酚改性石墨烯/水性聚氨酯复合涂层的制备方法
CN116606583B (zh) * 2023-05-23 2024-04-09 中北大学 一种表面织构/软硬交替多层仿生结构耐磨防腐涂层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332678A (zh) * 2013-05-24 2013-10-02 东莞上海大学纳米技术研究院 石墨烯及石墨烯-氧化物复合物的制备方法
CN104231703A (zh) * 2014-08-06 2014-12-24 中国海洋大学 一种石墨烯复合防腐涂层的制备方法
CN106315539A (zh) * 2015-07-07 2017-01-11 宇瑞(上海)化学有限公司 石墨烯复合材料及其制备太阳能电池正极的方法和应用
CN108531029A (zh) * 2018-04-28 2018-09-14 福建宸琦新材料科技有限公司 一种多巴胺包覆三维多孔石墨烯/丙烯酸酯水性防腐涂料的制备方法
CN109082203A (zh) * 2018-07-25 2018-12-25 东北石油大学 一种阻垢防腐功能涂料及其制备方法、使用方法
US20190157675A1 (en) * 2016-04-20 2019-05-23 Dongguk University Industry-Academic Cooperation Foundation Sandwich-type graphene composite structure for anode material of lithium ion secondary battery and manufacturing method thereof
CN110066542A (zh) * 2019-03-15 2019-07-30 河北晨阳工贸集团有限公司 一种有机纳米阴极电泳水性涂料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917066B2 (ja) * 2011-09-28 2016-05-11 Dicグラフィックス株式会社 樹脂組成物
CN104356860A (zh) * 2014-10-29 2015-02-18 中国科学院宁波材料技术与工程研究所 一种环氧树脂-氧化石墨烯复合涂料及其使用方法
CA2994634A1 (en) * 2014-11-19 2016-05-26 Biotectix, LLC Conductive polymer coatings for three dimensional substrates
CN107245297A (zh) * 2017-06-07 2017-10-13 中国科学院海洋研究所 一种在金属表面制备氧化石墨烯防腐蚀性保护膜的制备方法
CN109054475A (zh) * 2018-07-13 2018-12-21 中国科学院海洋研究所 一种环保型高效防腐水性涂料及其合成方法
CN109486264A (zh) * 2018-11-29 2019-03-19 安徽牡东通讯光缆有限公司 一种耐腐蚀光缆用环氧树脂涂层材料
CN109735200B (zh) * 2018-12-10 2020-12-22 华南理工大学 一种环氧防腐涂料组合物及其制备方法和应用
CN110818939A (zh) * 2019-11-19 2020-02-21 电子科技大学 一种水氧阻隔柔性薄膜、制备方法及应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103332678A (zh) * 2013-05-24 2013-10-02 东莞上海大学纳米技术研究院 石墨烯及石墨烯-氧化物复合物的制备方法
CN104231703A (zh) * 2014-08-06 2014-12-24 中国海洋大学 一种石墨烯复合防腐涂层的制备方法
CN106315539A (zh) * 2015-07-07 2017-01-11 宇瑞(上海)化学有限公司 石墨烯复合材料及其制备太阳能电池正极的方法和应用
US20190157675A1 (en) * 2016-04-20 2019-05-23 Dongguk University Industry-Academic Cooperation Foundation Sandwich-type graphene composite structure for anode material of lithium ion secondary battery and manufacturing method thereof
CN108531029A (zh) * 2018-04-28 2018-09-14 福建宸琦新材料科技有限公司 一种多巴胺包覆三维多孔石墨烯/丙烯酸酯水性防腐涂料的制备方法
CN109082203A (zh) * 2018-07-25 2018-12-25 东北石油大学 一种阻垢防腐功能涂料及其制备方法、使用方法
CN110066542A (zh) * 2019-03-15 2019-07-30 河北晨阳工贸集团有限公司 一种有机纳米阴极电泳水性涂料及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113372083A (zh) * 2021-07-19 2021-09-10 福泉环保城发展有限公司 一种基于氧化石墨烯基层状材料改性的自流平砂浆及其制备方法
CN113717615A (zh) * 2021-09-17 2021-11-30 陕西科技大学 一种耐磨防腐的石墨烯/二氧化硅/环氧树脂超滑移复合涂层的制备方法
CN114854311A (zh) * 2022-06-17 2022-08-05 南京信息职业技术学院 一种抗紫外超疏水氟硅涂层及其制备方法与应用
CN114854311B (zh) * 2022-06-17 2023-03-21 南京信息职业技术学院 一种抗紫外超疏水氟硅涂层及其制备方法与应用
CN115724425A (zh) * 2022-09-30 2023-03-03 浙江铭孚金属涂装科技有限公司 一种用于改性阴极电泳涂料的功能化石墨烯的制备及使用方法
CN116120764A (zh) * 2023-02-20 2023-05-16 诺比侃人工智能科技(成都)股份有限公司 一种氨基改性石墨烯及其制备方法和应用
CN116640493A (zh) * 2023-06-21 2023-08-25 深圳市金木源包装制品有限公司 一种用于运输木箱的防腐防***漆及其制备方法
CN116640493B (zh) * 2023-06-21 2024-02-13 深圳市金木源包装制品有限公司 一种用于运输木箱的防腐防***漆及其制备方法
CN117659807A (zh) * 2023-10-16 2024-03-08 江西省极热科技集团有限公司 一种水性石墨烯防腐涂料及其制备方法
CN117659807B (zh) * 2023-10-16 2024-05-03 江西省极热科技集团有限公司 一种水性石墨烯防腐涂料及其制备方法

Also Published As

Publication number Publication date
CN112143338B (zh) 2022-01-11
CN113122044B (zh) 2022-04-08
WO2021139227A1 (zh) 2021-07-15
CN113122044A (zh) 2021-07-16
CN112143338A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2021139007A1 (zh) 阳离子多巴胺功能化石墨烯水性防腐涂料、其制法与应用
WO2020000559A1 (zh) 硅烷/氧化石墨烯复合钝化液及其制备方法与应用
WO2020034141A1 (zh) 基于石墨烯纳米容器的涂料、自修复涂层及其制法与应用
Xia et al. Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating
Hamdy Advanced nano-particles anti-corrosion ceria based sol gel coatings for aluminum alloys
TW200532053A (en) Method of protecting metals from corrosion using thiol compounds
BRPI0921197B1 (pt) Processo para revestimento sem corrente elétrica, particularmente, de superfícies metálicas de objetos, que podem ser opcionalmente pré-revestidas, revestimento e uso dos substratos revestidos
Bai et al. A stable anticorrosion coating with multifunctional linkage against seawater corrosion
CN111117309A (zh) 一种纳米封闭剂及其制备方法
CN113088162B (zh) 一种耐磨环氧树脂涂料及其制备方法
Sang et al. Synthetic polyaniline-boron nitride-aqueous epoxy resin composite coating for improving the corrosion resistance of hot-dip galvanized steel plates
Zeng et al. An eco-friendly nitrogen doped carbon coating derived from chitosan macromolecule with enhanced corrosion inhibition on aluminum alloy
EP1907494A2 (en) Organic-inorganic hybrid coatings
CN114561118A (zh) 一种聚吡咯包裹石墨烯缓蚀剂容器及其制备方法和一种复合涂料及其应用
CN109575801A (zh) 一种稀土/硅烷掺杂复合超疏水功能涂层的制备方法
WO2020147185A1 (zh) 一种石墨烯复合材料的制备方法及一种聚合物涂层
CN112813468A (zh) 一种超疏水双层防腐蚀涂层的制备方法
CN112029314A (zh) 一种纳米填料及其制备方法与应用
Wang et al. Preparation and corrosion resistance of AKT-waterborne polyurethane coating
CN108047792B (zh) 一种石墨烯基环氧树脂防腐涂层的制备方法
CN108948898B (zh) 一种低表面处理冷喷锌涂料及其制备方法
CN115895353A (zh) 一种feve涂料的制备方法
CN110747427B (zh) 一种提升非晶涂层耐蚀性的方法及应用
Liu et al. Effect of crystalline water molecules on the preparation and growth of superhydrophobic films via electrodeposition
CN113930824B (zh) 一种含绢云母的微弧氧化防腐耐磨陶瓷涂层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911406

Country of ref document: EP

Kind code of ref document: A1