WO2021138984A1 - 同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳 - Google Patents

同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳 Download PDF

Info

Publication number
WO2021138984A1
WO2021138984A1 PCT/CN2020/077105 CN2020077105W WO2021138984A1 WO 2021138984 A1 WO2021138984 A1 WO 2021138984A1 CN 2020077105 W CN2020077105 W CN 2020077105W WO 2021138984 A1 WO2021138984 A1 WO 2021138984A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
auxetic
compression
axial
swelling
Prior art date
Application number
PCT/CN2020/077105
Other languages
English (en)
French (fr)
Inventor
亢战
吴文俊
刘湃
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/047,872 priority Critical patent/US11174911B2/en
Publication of WO2021138984A1 publication Critical patent/WO2021138984A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence

Definitions

  • the invention belongs to the field of new structure design and lattice material design, and relates to a structure with both auxetic and swelling properties, lattice materials and lattice cylindrical shells.
  • This type of lattice material has negative porosity when compressed in a specific direction. Loose ratio effect, with positive Poisson's ratio effect during stretching.
  • the present invention provides a novel structure with both auxetic and swelling properties and a lattice material and a lattice cylindrical shell composed of a unit cell.
  • This type of lattice material has different characteristics from traditional materials and negative Poisson's ratio materials. Poisson ratio.
  • the present invention proposes a new design principle and deformation mechanism.
  • the extension spring module is introduced into the structure, so that half of the extension spring is always in a stretched state when the structure is stretched and compressed, and the other half is stretched.
  • the tension spring is in a compressed contact state, and the non-linear contact of the structure is used to generate local tension and compression asymmetry, so as to achieve simultaneous expansion of the structure in tension and compression.
  • the invention provides two two-dimensional configurations for realizing the functional characteristics, one is a symmetric structure and the other is an asymmetric structure.
  • the present invention also provides a three-dimensional configuration for realizing this function.
  • the three-dimensional auxetic-swelling structure can be composed of two two-dimensional structures intersecting, or can be composed of four two-dimensional structures enclosing a rectangular parallelepiped.
  • the present invention also provides a type of two-dimensional and three-dimensional lattice materials. This type of lattice material is composed of the above-mentioned two-dimensional and three-dimensional structure as a unit cell in a spatial array. Abnormal mechanical characteristics of lateral expansion can occur under compression.
  • a structure with both auxetic-compression-expanding properties including two forms of two-dimensional auxetic-compression-expanding structure and three-dimensional auxetic-compression-expanding structure, as follows:
  • Two-dimensional auxetic-compression expansion structure including two forms:
  • the first type of two-dimensional auxetic-compression-expansion structure with symmetrical up and down, left and right consists of four axial ribs and eight identical tension springs, of which four axial ribs include two identical long ribs Same as two short ribs; eight springs are divided into two groups, each group of four springs form a square structure, a diagonal of the square is connected by a short rib; the long ribs and short ribs are placed parallel to each other, The short rib is located between the two long ribs; the two ends of the long rib are connected to the opposite corners of the square formed by two tension springs, and the length of the long rib is twice the length of the short rib; all tension springs
  • the included angle with the axial ribs is 45°, and the gap, size and parameters of the tension spring can be adjusted according to actual conditions.
  • the second, symmetrical, up-and-down asymmetric two-dimensional expansion-compression expansion structure consisting of four axial ribs and eight identical tension springs; the tension springs are divided into two groups, each of which is stretched The springs form a square and a cross respectively; a square structure composed of extension springs, one of the diagonals is connected by an axial rib; a cross structure composed of extension springs, one of its corners is connected to a shaft
  • the length of the rib is half of the length of the axial rib in the square structure; the two sets of structures are placed side by side in the vertical direction, and two of the axial ribs are located on the same straight line; A square corner point on the left side of an axial rib and two cross-shaped end points are connected by an axial rib, and a square corner point on the right side of the two axial ribs and two cross-shaped end points are connected by one Axial rib connection, the length of the axial rib is twice the length of the axial rib connecting the
  • the three-dimensional auxetic-compression expansion structure is composed of two-dimensional auxetic-compression expansion structure in three-dimensional space, including two forms:
  • the first one is composed of two two-dimensional auxetic-compression expansion structures.
  • the specific method is: select any one of the two-dimensional auxetic-compression expansion structures in (1) as the basic configuration to make two two-dimensional auxetic expansion-
  • the planes of the swelling structure are perpendicular to each other and the two two-dimensional auxetic-swelling structures are merged at two short ribs, and the two two-dimensional swelling-swelling structures are crossed to form a cross-shaped three-dimensional swelling-swelling structure .
  • the second one is composed of four two-dimensional auxetic-compression expansion structures.
  • the specific method is: select any one of the two-dimensional auxetic-compression expansion structures in (1) as the basic configuration, and combine the four two-dimensional auxetic expansion-
  • the swelling structure is connected end to end at the long ribs and is perpendicular to each other to form a square section to form a cuboid three-dimensional auxetic-swelling structure.
  • a type of lattice material with both auxetic-compression swelling properties is composed of the above-mentioned structure with auxetic-compression swelling properties at the same time as unit cells, including two forms; (1)
  • the two-dimensional auxetic-compression swelling structure is taken as the unit cell
  • the unit cells are periodically arrayed in the plane where they are located, and the long ribs of adjacent unit cell structures can be combined two by two to form a two-dimensional lattice material;
  • the three-dimensional auxetic-compression expansion structure is used as a three-dimensional unit cell in the three-dimensional space.
  • a periodic array is performed to combine the long ribs of adjacent unit cells to form a three-dimensional lattice material.
  • a lattice cylindrical shell with auxetic-compression expansion properties at the same time using a two-dimensional auxetic-compression expansion structure as the unit cell, and taking an axis parallel to the axial ribs of the unit cell as the axis of the cylindrical shell, making the two-dimensional
  • the auxetic-compression-expansion structure forms a ring array around the axial direction of the cylindrical shell and merges the axial ribs of adjacent cells to form a ring structure.
  • the ring-shaped structure is arrayed and combined in the axial direction to form a structure that also has auxetic-compression-expansion properties.
  • the present invention proposes a new type of structure, which will expand in the lateral direction regardless of whether it is uniaxially tensioned or uniaxially compressed.
  • the lattice material composed of this new structure as a unit cell has unusual Poisson's ratio.
  • This new lattice material is stretched in the axial direction, it expands laterally, and its mechanical behavior is consistent with that of a negative Poisson's ratio material.
  • Has a negative Poisson's ratio effect when it is compressed in the axial direction, it will expand in the transverse direction.
  • the mechanical behavior is consistent with that of traditional materials, and it has a positive Poisson's ratio effect.
  • a single material has both a positive Poisson's ratio and a negative Poisson's ratio. Whether it is axially stretched or compressed, it will produce transverse expansion and deformation.
  • This abnormal mechanical property can be used as a specific functional material, which has application prospects in the fields of energy absorption, vibration reduction, medical treatment, wave propagation, and smart components.
  • Figure 1 (a) and Figure 1 (b) are schematic diagrams of two two-dimensional auxetic-compression expansion structures.
  • Figure 1 (a) is a top and bottom symmetric structure
  • Figure 1 (b) is a top and bottom asymmetric structure.
  • Figures 2(a) ⁇ 2(c) are schematic diagrams of the first two-dimensional auxetic-compression-expanding structure in tension and compression.
  • Figure 2(a) is the original configuration of the structure
  • Figure 2(b) is the single
  • Figure 2(c) is a schematic diagram of its uniaxial compression deformation.
  • Figure 3 (a) ⁇ Figure 3 (c) is a schematic diagram of the second two-dimensional auxetic-compression expansion structure tension and compression deformation, of which, Figure 3 (a) is the original configuration of the structure, Figure 3 (b) is the single A schematic diagram of axial tension deformation, Figure 3(c) is a schematic diagram of its uniaxial compression deformation.
  • Fig. 4(a) and Fig. 4(b) are two-dimensional lattice materials composed of two two-dimensional auxetic-compression swelling structures as unit cells, respectively.
  • Figure 5 (a) and Figure 5 (b), Figure 6 (a) and Figure 6 (b) are the tensile expansion and compression of the two two-dimensional lattice materials in Figure 4 (a) and Figure 4 (b), respectively Expansion deformation schematic diagram, among which, Figure 5 (a) and Figure 6 (a) are compression expansion deformation, and Figure 5 (b) and Figure 6 (b) are compression expansion deformation.
  • Figure 7(a) shows a schematic diagram of an auxetic-compression-expansion lattice cylindrical shell
  • Figure 7(b) is the deformation mode of its axial tensile expansion
  • Figure 7(c) is the deformation mode of its axial compression expansion .
  • Figure 8 (a) ⁇ Figure 8 (d) are four three-dimensional auxetic-swelling structures constructed by two two-dimensional auxetic-swelling structures as basic units.
  • Figure 9 (a) ⁇ Figure 9 (c) are schematic diagrams of the deformation mode of the first three-dimensional expansion-compression expansion structure in Figure 8, Figure 9 (a) is its initial configuration, Figure 9 (b) is its axial tension Figure 9(c) shows the deformation mode after stretching. Figure 9(c) shows the deformation mode after axial compression.
  • Fig. 10 shows a schematic diagram of a three-dimensional auxetic-compressive swelling lattice material structure composed of the first three-dimensional auxetic-compressive swelling structure in Fig. 8 as a unit cell.
  • Fig. 1(a) and Fig. 1(b) are schematic diagrams of the two-dimensional up-down symmetrical auxetic-swelling structure and the two-dimensional up-down asymmetrical auxetic-swelling structure.
  • Figure 2 (a) ⁇ Figure 2 (c) and Figure 3 (a) ⁇ Figure 3 (c) show the deformation diagrams of the two two-dimensional auxetic-compression swelling structures under axial tension and axial pressure, respectively.
  • FIG. 7(a) A cylindrical shell composed of a two-dimensional auxetic-compression expansion structure is shown in Figure 7(c). Once the cylindrical shell is subjected to axial force, its diameter will expand. This functional material can be used as a new type of Vascular stents have great application value.
  • a three-dimensional auxetic-compression expansion structure By combining the two-dimensional auxetic-compression expansion structure in a three-dimensional space, a three-dimensional auxetic-compression expansion structure can also be constructed.
  • Figure 8(a) ⁇ Figure 8(d) show that they are composed of two two-dimensional structures.
  • Figure 9 (a) ⁇ Figure 9 (c) are schematic diagrams of axial tension and compression deformation of one of the four auxetic-compressive three-dimensional structure configurations.
  • the three-dimensional auxetic-compression expansion structure is periodically arrayed in a three-dimensional space to form a three-dimensional auxetic-compression-expanding lattice material as shown in Figure 10.
  • This material can simultaneously achieve tensile and compressive loads in a specific direction.
  • the structure expands uniformly in a plane perpendicular to the load. All these structures and lattice materials can be prepared using 3D printing technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)
  • Springs (AREA)

Abstract

本发明属于新型结构设计和点阵材料设计领域,涉及一种同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳。首先利用拉伸弹簧的接触非线性产生的局部拉压不对称机理,形成一类在特定方向上单轴拉伸和单轴压缩下均可以产生横向膨胀的二维结构与点阵材料。通过将该类二维结构在两个方向上进行组合,形成拉伸和压缩同时膨胀的三维结构与点阵材料;同时可以利用二维拉胀-压胀结构作为单胞形成点阵圆柱壳。本发明的结构和材料可以作为特定功能材料,在吸能、减振、医疗、波传播、智能元器件等领域具有应用前景。

Description

同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳 技术领域
本发明属于新型结构设计和点阵材料设计领域,涉及一种同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳,该类点阵材料在特定方向下压缩时具有负泊松比效应,拉伸时具有正泊松比效应。
背景技术
泊松比是指材料在轴向拉伸或轴向压缩时,横向线应变和轴向线应变比值的相反数,因此泊松比是反映材料横向变形的弹性常数,也叫横向弹性系数。
传统材料在沿载荷方向产生伸长(或缩短)变形的同时,在垂直于载荷的方向会产生缩短(或膨胀)的变形。根据泊松比的定义,绝大多数传统材料都具有正的泊松比。也有一些人工设计的材料具有负泊松比,这类材料具有与传统材料相反的力学行为,其在轴向受拉时会发生横向膨胀,轴向受压时会发生横向收缩。
技术问题
本发明提供了一种同时具有拉胀-压胀性质的新型结构及其作为单胞构成的点阵材料与点阵圆柱壳,该类点阵材料具有异于传统材料和负泊松比材料的泊松比特性。
技术解决方案
本发明提出了一种新型的设计原理和变形机制,在结构中引入拉伸弹簧模块,使结构在受拉和受压时总是有一半的拉伸弹簧处于受拉伸长状态,另一半的拉伸弹簧处于受压接触状态,利用结构的接触非线性产生局部的拉压不对称,从而实现结构的拉伸和压缩同时膨胀。本发明提供了实现该功能特性的两种二维构型,一种为对称结构,一种为非对称结构。本发明还提供了实现该功能的三维构型,三维拉胀-压胀结构可以由两个二维结构交叉构成,也可以由四个二维结构围成一个长方体构成。同时,本发明还提供一类二维及三维点阵材料,这类点阵材料是由上述二维及三维结构作为单胞在空间阵列构成,该类点阵材料具备在轴向拉伸和轴向压缩下均能发生横向膨胀的异常力学特性。
本发明的技术方案:
一种同时具有拉胀-压胀性质的结构,包括二维拉胀-压胀结构和三维拉胀-压胀结构两种形式,具体如下:
(1)二维拉胀-压胀结构,包括两种形式:
第一种、上下左右均对称的二维拉胀-压胀结构:由四根轴向肋板和八个相同的拉伸弹簧构成,其中四根轴向肋板包括两根相同的长肋板和两根相同的短肋板;八个弹簧分成两组,每组四个弹簧组成一个正方形结构,正方形的一条对角线由一个短肋板连接;长肋板和短肋板相互平行放置,短肋板位于两个长肋板之间;长肋板两端分别连接两个拉伸弹簧组成的正方形的相对角点,长肋板的长度为短肋板长度的两倍;所有拉伸弹簧与轴向肋板的夹角均为45°,拉伸弹簧的间隙、尺寸、参数等可以根据实际条件进行调整。
第二种、左右对称、上下不对称的二维拉胀-压胀结构:由四根轴向肋板和八个相同的拉伸弹簧构成;拉伸弹簧分为两组,每四个拉伸弹簧分别构成一个正方形和一个十字形;由拉伸弹簧构成的正方形结构,其中一条对角线由一条轴向肋板连接;由拉伸弹簧构成的十字结构,其一个夹角处连接一根轴向肋板,并且该肋板长度为正方形结构中轴向肋板长度的一半;将两组结构在竖直方向并排放置,并使其中的两根轴向肋板位于同一条直线上;将两根轴向肋板左侧的一个正方形角点和两个十字形端点通过一根轴向肋板连接,将两根轴向肋板右侧的一个正方形角点和两个十字形端点通过一根轴向肋板连接,该轴向肋板的长度为连接正方形弹簧模块对角线的轴向肋板长度的两倍;所有拉伸弹簧与轴向肋板的夹角均为45°,拉伸弹簧的间隙、尺寸、参数等可以根据实际条件调整。
(2)三维拉胀-压胀结构,通过二维拉胀-压胀结构在三维空间中组合构成,包括两种形式:
第一种、由两个二维拉胀-压胀结构构成,具体方式为:选取(1)中任意一种二维拉胀-压胀结构作为基本构型,使两个二维拉胀-压胀结构所在平面相互垂直并且将两个二维拉胀-压胀结构在两根短肋板处合并,两个二维拉胀-压胀结构交叉构成十字形的三维拉胀-压胀结构。
第二种、由四个二维拉胀-压胀结构构成,具体方式为:选取(1)中任意一种二维拉胀-压胀结构作为基本构型,将四个二维拉胀-压胀结构在长肋板处首尾相连并使两两垂直,围成一个正方形截面,构成一个长方体的三维拉胀-压胀结构。
一类同时具有拉胀-压胀性质的点阵材料,由上述同时具有拉胀-压胀性质的结构作为单胞构成,包括两种形式;(1)将二维拉胀-压胀结构作为单胞在其所在平面内进行周期阵列,将相邻单胞结构的长肋板两两合并可以构成二维点阵材料;(2)将三维拉胀-压胀结构作为三维单胞在三维空间进行周期阵列,将相邻单胞的长肋板合并,可以构成三维点阵材料。
一种同时具有拉胀-压胀性质的点阵圆柱壳,采用二维拉胀-压胀结构作为单胞,取一条平行于单胞轴向肋板的轴线作为圆柱壳的轴线,使二维拉胀-压胀结构绕圆柱壳的轴向做环向阵列并合并相邻单胞的轴向肋板,构成环形结构,将环形结构在轴线方向阵列合并,构成同时具有拉胀-压胀性质的点阵圆柱壳。该圆柱壳无论是轴向受拉还是轴向受压,圆柱壳直径都会扩大。
有益效果
本发明的有益效果:本发明提出了一类新型的结构,这类新型结构无论是单轴受拉还是单轴受压都会在横向上发生膨胀。由这种新型结构作为单胞构成的点阵材料具有异于寻常的泊松比特性,这种新型点阵材料在轴向受拉时,其横向发生膨胀,力学行为与负泊松比材料一致,具有负泊松比效应;当轴向受压时,其横向也会膨胀,力学行为与传统材料一致,具有正泊松比效应。单一材料同时具备正泊松比和负泊松比,无论是轴向拉伸还是轴向压缩,都会产生横向膨胀的变形。这种反常的力学性能可以作为特定功能材料,在吸能、减振、医疗、波传播、智能元器件等领域具有应用前景。
附图说明
图1(a)和图1(b)是两种二维拉胀-压胀结构示意图,其中,图1(a)为上下对称结构,图1(b)为上下非对称结构。
图2(a)~图2(c)是第一种二维拉胀-压胀结构拉压变形示意图,其中,图2(a)是其结构原始构型,图2(b)是其单轴拉伸变形示意图,图2(c)是其单轴压缩变形示意图。
图3(a)~图3(c)是第二种二维拉胀-压胀结构拉压变形示意图,其中,图3(a)是其结构原始构型,图3(b)是其单轴拉伸变形示意图,图3(c)是其单轴压缩变形示意图。
图4(a)和图4(b)是分别由两种二维拉胀-压胀结构作为单胞构成的二维点阵材料。
图5(a)和图5(b)、图6(a)和图6(b)分别是图4(a)和图4(b)中两种二维点阵材料的拉伸膨胀和压缩膨胀变形示意图,其中,图5(a)和图6(a)为压缩膨胀变形,图5(b)和图6(b)为压缩膨胀变形。
图7(a)给出一种拉胀-压胀点阵圆柱壳示意图,图7(b)是其轴向拉伸膨胀的变形模式,图7(c)是其轴向压缩膨胀的变形模式。
图8(a)~图8(d)是分别由两种二维拉胀-压胀结构作为基本单元构建的四种三维拉胀-压胀结构。
图9(a)~图9(c)是图8中第一种三维拉胀-压胀结构变形模式示意图,图9(a)是其初始构型,图9(b)是其轴向拉伸后的变形模式,图9(c)是其轴向压缩后的变形模式。
图10给出由图8中第一种三维拉胀-压胀结构作为单胞构成的三维拉胀-压胀点阵材料结构示意图。
本发明的实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
本发明提供的结构及点阵材料具有异于寻常的泊松比特性,这种拉胀-压胀的特性在吸能、减振、医疗、波传播、智能元器件等领域具有较大的潜在应用价值。图1(a)和图1(b)分别是二维上下对称的拉胀-压胀结构和二维上下非对称的拉胀-压胀结构构型示意图。图2(a)~图2(c)和图3(a)~图3(c)分别给出了这两种二维拉胀-压胀结构在轴向拉力和轴向压力下的变形示意图,两种结构在受拉和受压时,都分别有一半的弹簧处于拉伸状态,另一半的弹簧处于压紧的接触状态,通过拉伸弹簧模块的受拉伸长和受压接触所提供的拉压不同模量,实现结构在两种载荷下的横向膨胀。两种结构作为单胞在其所在平面内进行周期阵列所构成的二维点阵材料示意图如图4(a)和图4(b)所示。点阵材料在特定方向下拉伸和压缩,材料都会发生横向膨胀,其变形分别如图5(a)和图5(b)、图6(a)和图6(b)所示。在点阵材料的拉伸和压缩变形中,均有一半的弹簧处于拉伸状态,一半的弹簧处于压缩状态。由二维拉胀-压胀结构组成的圆柱壳如图7(a) ~图7(c)所示,这种圆柱壳一旦轴向受力其直径便会扩大,这种功能材料可以作为新型血管支架,具有较大的应用价值。通过将二维拉胀-压胀结构在三维空间进行组合,还可以构建出三维拉胀-压胀结构,图8(a)~图8(d)给出了分别由两种二维结构构成的四种拉胀-压胀三维结构构型示意图,图9(a)~图9(c)是其中一种的轴向拉伸和压缩变形示意图。将三维拉胀压胀结构在三维空间中周期阵列,可以构成如图10所示的三维拉胀-压胀点阵材料,这种材料可以同时实现在特定方向的拉伸载荷和压缩载荷下,结构在垂直于载荷的平面内发生均匀膨胀。所有这些结构和点阵材料均可以采用3D打印技术进行制备。

Claims (3)

  1. 一种同时具有拉胀-压胀性质的结构,包括二维拉胀-压胀结构和三维拉胀-压胀结构两种形式,其特征在于,具体如下:
    (1)二维拉胀-压胀结构,包括两种形式:
    第一种、上下左右均对称的二维拉胀-压胀结构:由四根轴向肋板和八个相同的拉伸弹簧构成,其中四根轴向肋板包括两根相同的长肋板和两根相同的短肋板;八个弹簧分成两组,每组四个弹簧组成一个正方形结构,正方形的一条对角线由一个短肋板连接;长肋板和短肋板相互平行放置,短肋板位于两个长肋板之间;长肋板两端分别连接两个拉伸弹簧组成的正方形的相对角点,长肋板的长度为短肋板长度的两倍;所有拉伸弹簧与轴向肋板的夹角均为45°,拉伸弹簧的间隙、尺寸和参数根据实际条件进行调整;
    第二种、左右对称、上下不对称的二维拉胀-压胀结构:由四根轴向肋板和八个相同的拉伸弹簧构成;拉伸弹簧分为两组,每四个拉伸弹簧分别构成一个正方形和一个十字形;由拉伸弹簧构成的正方形结构,其中一条对角线由一条轴向肋板连接;由拉伸弹簧构成的十字结构,其一个夹角处连接一根轴向肋板,并且该肋板长度为正方形结构中轴向肋板长度的一半;将两组结构在竖直方向并排放置,并使其中的两根轴向肋板位于同一条直线上;将两根轴向肋板左侧的一个正方形角点和两个十字形端点通过一根轴向肋板连接,将两根轴向肋板右侧的一个正方形角点和两个十字形端点通过一根轴向肋板连接,该轴向肋板的长度为连接正方形弹簧模块对角线的轴向肋板长度的两倍;所有拉伸弹簧与轴向肋板的夹角均为45°,拉伸弹簧的间隙、尺寸和参数根据实际条件调整;
    (2)三维拉胀-压胀结构,通过二维拉胀-压胀结构在三维空间中组合构成,包括两种形式:
    第一种、由两个二维拉胀-压胀结构构成,具体方式为:选取(1)中任意一种二维拉胀-压胀结构作为基本构型,使两个二维拉胀-压胀结构所在平面相互垂直并且将两个二维拉胀-压胀结构在两根短肋板处合并,两个二维拉胀-压胀结构交叉构成十字形的三维拉胀-压胀结构;
    第二种、由四个二维拉胀-压胀结构构成,具体方式为:选取(1)中任意一种二维拉胀-压胀结构作为基本构型,将四个二维拉胀-压胀结构在长肋板处首尾相连并使两两垂直,围成一个正方形截面,构成一个长方体的三维拉胀-压胀结构。
  2. 一类同时具有拉胀-压胀性质的点阵材料,由权利要求1中的所述的同时具有拉胀-压胀性质的结构作为单胞构成,其特征在于,包括两种形式;(1)将二维拉胀-压胀结构作为单胞在其所在平面内进行周期阵列,将相邻单胞结构的长肋板两两合并构成二维点阵材料;(2)将三维拉胀-压胀结构作为三维单胞在三维空间进行周期阵列,将相邻单胞的长肋板合并,构成三维点阵材料。
  3. 一种同时具有拉胀-压胀性质的点阵圆柱壳,由权利要求1中所述的二维拉胀-压胀结构作为单胞,其特征在于,取一条平行于单胞轴向肋板的轴线作为圆柱壳的轴线,使二维拉胀-压胀结构绕圆柱壳的轴向做环向阵列并合并相邻单胞的轴向肋板,构成环形结构,将环形结构在轴线方向阵列合并,构成同时具有拉胀-压胀性质的点阵圆柱壳。
PCT/CN2020/077105 2020-01-11 2020-02-28 同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳 WO2021138984A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/047,872 US11174911B2 (en) 2020-01-11 2020-02-28 Structures, lattice materials and lattice cylindrical shells with simultaneous stretch- and compression-expanding property

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010028682.2A CN111237365B (zh) 2020-01-11 2020-01-11 同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳
CN202010028682.2 2020-01-11

Publications (1)

Publication Number Publication Date
WO2021138984A1 true WO2021138984A1 (zh) 2021-07-15

Family

ID=70872493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077105 WO2021138984A1 (zh) 2020-01-11 2020-02-28 同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳

Country Status (2)

Country Link
CN (1) CN111237365B (zh)
WO (1) WO2021138984A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761503B2 (en) * 2021-07-13 2023-09-19 Honeywell Federal Manufacturing & Technologies, Llc Lattice design for energy absorption and vibration damping applications
CN115213635A (zh) * 2022-06-28 2022-10-21 山西柴油机工业有限责任公司 一种气缸盖快速封堵密封的工艺方法
CN116416878B (zh) * 2023-03-22 2023-09-26 大连理工大学 一种大拉伸量下无图像失真的柔性led点阵屏

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017422A1 (en) * 2012-07-12 2014-01-16 Mkp Structural Design Associates, Inc. Bushings and bumpers based upon npr (negative poisson's ratio) structures
CN204066527U (zh) * 2014-07-30 2014-12-31 华南理工大学 一种具有零泊松比的网格结构
CN108591335A (zh) * 2018-03-25 2018-09-28 哈尔滨工程大学 一种具有拉胀特性的金属编织网缓冲结构及其制备方法
CN109365787A (zh) * 2018-11-22 2019-02-22 中国科学院合肥物质科学研究院 一种负泊松比铝基点阵结构及其制备方法
CN109519691A (zh) * 2018-11-02 2019-03-26 常州大学 一种基于负曲率桁架模型的负泊松比材料
CN109551755A (zh) * 2018-12-29 2019-04-02 五邑大学 一种具有各向同性的三维拉胀结构
CN109858167A (zh) * 2019-02-13 2019-06-07 五邑大学 一种具有零泊松比的三维超材料结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2028967B (en) * 1978-08-30 1982-11-17 Dunlop Ltd Spring
US8769748B2 (en) * 2010-06-23 2014-07-08 L&P Property Management Company Spring core having border wire with generally rectangular cross-section
JP6461156B2 (ja) * 2013-09-03 2019-01-30 インチューン テクノロジーズ, リミテッド ライアビリティー カンパニーIntune Technologies, LLC 定張力装置
CN205154997U (zh) * 2015-11-18 2016-04-13 嘉善兴亚有色金属铸造有限公司 一种弹簧
CN105673754A (zh) * 2016-04-02 2016-06-15 长葛市吉庆机械厂 一种纵横弹性部件
CN107165962B (zh) * 2017-06-29 2019-11-15 太仓市惠得利弹簧有限公司 一种蛇形弹簧组
CN206977356U (zh) * 2017-07-28 2018-02-06 江苏博亚照明电器有限公司 一种密闭式可移动光伏支架
CN109914636A (zh) * 2019-04-12 2019-06-21 西安建筑科技大学 一种对角加劲肋阻尼器耗能钢板剪力墙

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017422A1 (en) * 2012-07-12 2014-01-16 Mkp Structural Design Associates, Inc. Bushings and bumpers based upon npr (negative poisson's ratio) structures
CN204066527U (zh) * 2014-07-30 2014-12-31 华南理工大学 一种具有零泊松比的网格结构
CN108591335A (zh) * 2018-03-25 2018-09-28 哈尔滨工程大学 一种具有拉胀特性的金属编织网缓冲结构及其制备方法
CN109519691A (zh) * 2018-11-02 2019-03-26 常州大学 一种基于负曲率桁架模型的负泊松比材料
CN109365787A (zh) * 2018-11-22 2019-02-22 中国科学院合肥物质科学研究院 一种负泊松比铝基点阵结构及其制备方法
CN109551755A (zh) * 2018-12-29 2019-04-02 五邑大学 一种具有各向同性的三维拉胀结构
CN109858167A (zh) * 2019-02-13 2019-06-07 五邑大学 一种具有零泊松比的三维超材料结构

Also Published As

Publication number Publication date
CN111237365B (zh) 2021-04-20
CN111237365A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021138984A1 (zh) 同时具有拉胀-压胀性质的结构、点阵材料与点阵圆柱壳
US11174911B2 (en) Structures, lattice materials and lattice cylindrical shells with simultaneous stretch- and compression-expanding property
Tan et al. Reusable metamaterial via inelastic instability for energy absorption
CN111063403B (zh) 一种新型三维负泊松比蜂窝结构
CN112582035B (zh) 一种可回复六向缓冲吸能超材料及其设计方法
CN111950095B (zh) 一种具有可调泊松比和热膨胀系数的三维多胞结构
CN108386467A (zh) 多面内凹金字塔型负泊松比空间点阵结构及其承压板架
CN109944891B (zh) 一种负泊松比结构的缓冲器
CN110851951B (zh) 在三个主方向具有等效弹性性能的三维零泊松比蜂窝结构
Geng et al. Defect coupling behavior and flexural wave energy harvesting of phononic crystal beams with double defects in thermal environments
Lim Auxetic and negative thermal expansion structure based on interconnected array of rings and sliding rods
CN111969327B (zh) 一种形变可设计且可非接触控制的二维机械超材料
CN208734770U (zh) 多面内凹金字塔型负泊松比空间点阵结构及其承压板架
CN209959779U (zh) 一种具有负泊松比特性的二维周期性材料
CN214838069U (zh) 一种单胞交叉堆叠形成的缓冲吸能减振负泊松比结构
CN113669401B (zh) 一种具有回转特性的负泊松比单胞结构和蜂窝结构
CN111559735A (zh) 一种基于旋转杆单元的负泊松比结构
CN112693108B (zh) 一种空间手性压扭超结构材料
CN220248773U (zh) 一种杆件增强星形负泊松比蜂窝结构
CN114658782B (zh) 一种性能增强的双向缓冲吸能超材料
CN115163717A (zh) 一种能够实现泊松比正负转换的新型复合超材料及其设计方法
CN116816844A (zh) 一种基于网格状的能量吸收点阵超材料结构
CN118181872A (zh) 一种负泊松比和负热膨胀材料结构
CN214226520U (zh) 一种z形压扭超材料结构
CN111723501B (zh) 基于正方形单元多晶型微桁架结构的复合吸能结构及其3d打印方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912828

Country of ref document: EP

Kind code of ref document: A1