WO2021138821A1 - 适配器和控制方法 - Google Patents

适配器和控制方法 Download PDF

Info

Publication number
WO2021138821A1
WO2021138821A1 PCT/CN2020/070776 CN2020070776W WO2021138821A1 WO 2021138821 A1 WO2021138821 A1 WO 2021138821A1 CN 2020070776 W CN2020070776 W CN 2020070776W WO 2021138821 A1 WO2021138821 A1 WO 2021138821A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
microwave
signal
unit
control signal
Prior art date
Application number
PCT/CN2020/070776
Other languages
English (en)
French (fr)
Inventor
田晨
张加亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20912661.4A priority Critical patent/EP4084314A4/en
Priority to PCT/CN2020/070776 priority patent/WO2021138821A1/zh
Priority to CN202080083923.1A priority patent/CN114747127A/zh
Publication of WO2021138821A1 publication Critical patent/WO2021138821A1/zh
Priority to US17/858,453 priority patent/US20220337169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer

Definitions

  • the embodiments of the present application relate to the field of charging technology, and more specifically, to an adapter and a control method.
  • the charger is generally composed of a transformer, a control unit, a drive unit, and a MOS tube.
  • the drive control of the MOS tube is performed by the control unit, there is a limitation in the dead time setting of the control signal, which results in a decrease in efficiency.
  • the parasitic interference generated by the MOS transistor connected to the secondary side may be transmitted to other circuit modules, thereby causing circuit crosstalk.
  • the embodiment of the application provides an adapter and a control method. Under high output frequencies, the dead time of the control signal can be set to be shorter, thereby improving efficiency without affecting the crosstalk of the circuit.
  • the first microwave is used The unit controls the turning on and off of the first switching tube, and the distance between the first transmitting end and the first receiving end can be set far, which can avoid the transmission of parasitic capacitance generated by the first switching tube, thereby avoiding the circuit Crosstalk.
  • an adapter which is characterized by comprising: a transformer; at least one first switch tube connected to the primary of the transformer and used for chopping and modulating the voltage input to the transformer; and a control unit with To output a first control signal; a first microwave unit, the first microwave unit includes a first transmitting end and a first receiving end, the first transmitting end is used to convert the first control signal into a first microwave signal And sent to the first receiving end, and the first receiving end is used to convert the first microwave signal into the first control signal to control the at least one first switch tube to be turned on or off.
  • a control method is provided, the method is applied to an adapter, the adapter includes a transformer, at least one first switch tube, a control unit, and a first microwave unit, including: the control unit outputs a first control signal; The control unit controls the first transmitting end of the first microwave unit to convert the first control signal into a first microwave signal and sends it to the first receiving end of the first microwave unit; the control unit controls the The first receiving end converts the first microwave signal into the first control signal to control the on or off of the at least one first switch tube.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method described in the above-mentioned second aspect or any one of its implementation manners.
  • a computer program product which is characterized by including computer program instructions that cause a computer to execute the method described in the second aspect or any one of its implementation manners.
  • the first transmitting end of the first microwave unit in the process of transmitting the control signal, can convert the first control signal into the first microwave signal, and transmit the first microwave signal to the first microwave signal.
  • the first receiving end of the unit After receiving the first microwave signal, the first receiving end can convert the first microwave signal into a first control signal, so that the converted first control signal can be used to control the first switch tube. Turn on and turn off.
  • its first transmitting end can convert the first control signal into the first microwave signal and quickly transmit it to the first receiving end.
  • the first switching tube can also be quickly turned on or off, which can improve efficiency without causing crosstalk of the circuit; on the other hand, because the transmission of microwaves does not rely on medium transmission, the first microwave
  • the distance between the first transmitting end and the first receiving end of the unit can be set farther, and further, the crosstalk of the circuit can be avoided, and the misconduction of other switching tubes can also be avoided.
  • FIG. 1 is a schematic structural diagram of an adapter provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of an adapter provided by another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an adapter provided by still another embodiment of the present application.
  • Figure 4a is a schematic structural diagram of an adapter provided by another embodiment of the present application.
  • Figure 4b is a schematic structural diagram of an adapter provided by another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an adapter provided by another embodiment of the present application.
  • Fig. 6 is a schematic diagram of a control signal output by a control unit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an adapter provided by another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • Small portable electronic equipment and power supply conversion equipment for electronic appliances are generally composed of shells, transformers, inductors, capacitors, control ICs, PCB boards and other components for AC input Converted to DC output.
  • the adapter may include a primary control logic module 111, a secondary control logic module 112, an isolation module 121, an isolation module 122, a primary side MOS transistor 131, and at least one secondary side metal oxide
  • the semiconductor field effect transistor 132 Metal Oxide Semiconductor Field Effect Transistor, MOSFET
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the isolation module 121 or the isolation module 122 in the embodiment of the present application may be a signal transformer, a capacitor, or an optocoupler.
  • the transformer 140 may be an energy transformer.
  • the rectifying unit 150 in the embodiment of the present application can rectify the AC current of the input adapter, and the filtering unit 160 can filter the rectified DC current.
  • the primary side MOS tube 131 is turned on, the secondary side MOS tube 132 is turned off, and the primary side of the transformer 140 stores energy;
  • the primary logic control module 111 and the secondary control logic module 112 output low level, the secondary side MOS tube 132 is turned on, the primary side MOS tube 131 is turned off, and the primary side of the transformer 140 releases energy to the secondary side for The electronic device connected with the adapter is charged.
  • the electronic devices in the embodiments of the present application may include, but are not limited to satellites or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; may include radio phones , Pager, Internet/Intranet access, Web browser, notebook, calendar, and/or Personal Digital Assistant (PDA) with Global Positioning System (GPS) receiver; and regular laptop And/or palm-sized receivers or other electronic devices including radio telephone transceivers.
  • the device to be charged may refer to the mobile terminal being a device or a handheld terminal device, such as a mobile phone, a pad, and so on.
  • the device to be charged mentioned in the embodiments of the present application may refer to a chip system. In this embodiment, the battery of the device to be charged may or may not belong to the chip system.
  • electronic devices can also include other devices to be charged that require charging, such as mobile phones, mobile power sources (such as power banks, travel chargers, etc.), electric cars, laptops, drones, tablets, e-books, e-cigarettes, Smart standby charging equipment and small electronic products, etc.
  • Smart devices to be charged can include, for example, watches, bracelets, smart glasses, and sweeping robots.
  • Small electronic products may include, for example, wireless headsets, Bluetooth speakers, electric toothbrushes, and rechargeable wireless mice.
  • the MOS transistor when the control logic module (the primary control logic module 111 and the secondary control logic module 112) is used to control the turn-on and turn-off of the MOS transistor, the MOS transistor will generate parasitic capacitance. If the frequency of the control signal output by the control logic module is low, for example, when the frequency is 100KHz and the period is 10us, the dead time can be set to 1.2us. If the primary control logic module 111 controls the primary side MOS transistor 131 to switch from the on state to the off state, during this dead time, the primary MOS transistor 131 can be completely turned off, the dead time ends, and then the secondary control logic module 112 is used. Turn on the secondary side MOS tube 132. Therefore, the parasitic capacitance generated by the primary-side MOS transistor 131 will not be transmitted to other circuit modules, for example, the secondary-side MOS transistor 132, and thus will not cause circuit crosstalk.
  • the frequency of the control signal output by the control logic module is high, for example, when the frequency is 250KHz and the period is 4us
  • the dead time is set to 1.2us
  • the primary-side MOS transistor 131 or the secondary-side MOS transistor 132 is turned on for 0.8 us in the cycle, which leads to a decrease in efficiency.
  • the dead time is set to 0.4us, when the primary control logic module 111 controls the primary side MOS transistor 131 to switch from the on state to the off state, during this dead time, the primary side MOS transistor 131 has not been completely turned off.
  • the isolation between the primary-side MOS tube 131 and the secondary-side MOS tube 132 may be a signal transformer, a capacitor, or an optocoupler (also called a photocoupler or an opto-isolator) for isolation.
  • an optocoupler also called a photocoupler or an opto-isolator
  • the location setting has limitations. For example, for a signal transformer, since the transformer implements voltage transformation based on the principle of electromagnetic induction, the distance between the primary side and the secondary side of the signal transformer cannot be set too large.
  • the primary control logic module 111 when the distance between the primary side and the secondary side of the signal transformer is small, if the primary control logic module 111 outputs a high level, the parasitic capacitance generated by the primary side MOS transistor 131 at high frequency will be transmitted to the other through the signal transformer 122 The circuit module, for example, is transmitted to the secondary side MOS transistor 132, thereby causing circuit crosstalk.
  • the capacity of the capacitor is inversely proportional to the distance between the two plates, that is, the greater the distance between the two plates, the smaller the capacity of the capacitor; between the two plates The smaller the distance, the larger the capacitance of the capacitor. Therefore, the distance between the two plates of the capacitor cannot be set too large.
  • the primary-side control logic module 111 outputs a high level, the parasitic capacitance generated by the primary-side MOS transistor 131 at high frequency will be transmitted to other circuit modules through the capacitor 122 For example, it is transmitted to the secondary side MOS transistor 132, thereby causing circuit crosstalk.
  • optocouplers because optocouplers use light as a medium to transmit electrical signals, and the transmission of light waves is related to distance, that is, the greater the distance of light wave transmission, the greater the energy loss; the smaller the distance of light wave transmission , The smaller the energy loss. Therefore, the distance between the light-emitting device and the light-receiving device of the optocoupler cannot be set too large.
  • the primary-side control logic module 111 outputs a high level, the parasitic capacitance generated by the primary-side MOS transistor 131 at high frequency will be transmitted to the other through the optocoupler 122
  • the circuit module for example, is transmitted to the secondary side MOS transistor 132, thereby causing circuit crosstalk.
  • the adapter provided in the embodiment of the application uses a microwave unit to transmit control signals. Under high output frequencies, the dead time of the control signal can be set to be shorter, which can improve efficiency without affecting the crosstalk of the circuit.
  • the first microwave unit is used to control the on and off of the first switching tube, and the distance between the first transmitting end and the first receiving end can be set far, which can avoid the transmission of parasitic capacitance generated by the first switching tube. In this way, the crosstalk of the circuit can also be avoided.
  • the adapter 200 may include a control unit 210 and a first microwave unit 221, at least one first switch tube 231, a transformer 240, a rectification unit 250 and a filter unit 260.
  • the rectifying unit 250 in the embodiment of the present application can rectify the AC current of the input adapter, and the filtering unit 260 can filter the rectified AC current.
  • At least one first switch tube 231 is connected to the primary side of the transformer 240 and is used to chop and modulate the voltage input to the transformer 240.
  • the at least one first switching tube 231 in the embodiment of the present application can be used to chop and modulate the voltage of the input transformer 240.
  • the output of the secondary side of the transformer 240 can be changed by controlling and adjusting the duty ratio of the first switching tube 231.
  • the voltage magnitude of the DC current can be used to chop and modulate the voltage of the input transformer 240.
  • the control unit 210 is configured to output a first control signal.
  • the control unit in the embodiment of the present application may be used to output the first control signal.
  • the first control signal may be a pulse signal with a period of 4 us or a pulse signal with a period of 0.02 ns, which is not specifically limited in this application.
  • the first microwave unit 221, the first microwave unit 221 includes a first transmitting end and a first receiving end, the first transmitting end is connected to the control unit 210, and the first receiving end is connected to the at least one first receiving end.
  • a switch tube 231 is connected.
  • the first transmitting end is used to convert the first control signal into a first microwave signal and send it to the first receiving end.
  • the first receiving end is used to transfer the first microwave signal to the first receiving end.
  • the microwave signal is converted into the first control signal to control the on or off of the at least one first switch tube 231.
  • the first transmitting end of the first microwave unit 221 in the embodiment of the present application may convert the first control signal into a first microwave signal, and convert the first microwave signal The signal is transmitted to the first receiving end.
  • the first receiving end After receiving the first microwave signal, the first receiving end can convert the first microwave signal into a first control signal, so that the converted first control signal can be used to control at least one second microwave signal.
  • a switch tube 231 is turned on or off.
  • the first transmitting end of the first microwave unit in the process of transmitting the control signal, can convert the first control signal into the first microwave signal and transmit the first microwave signal to the first microwave unit After receiving the first microwave signal, the first receiving end can convert the first microwave signal into a first control signal, so that the converted first control signal can be used to control at least one first switch tube Turn on and turn off.
  • its first transmitting end can convert the first control signal into the first microwave signal and quickly transmit it to the first receiving end.
  • the first switch tube can also be quickly turned on or off without causing crosstalk in the circuit; on the other hand, because the transmission of microwaves does not rely on medium transmission, therefore, the first transmitting end of the first microwave unit
  • the distance between the first receiving end and the first receiving end can be set far, which can isolate the transmission of the parasitic capacitance generated by the first switch tube, thereby also avoiding the crosstalk of the circuit.
  • the adapter 200 may further include a second microwave unit 222 and at least one second switch tube 232.
  • At least one second switch tube 232 is used to synchronously rectify the DC current output by the transformer 240.
  • the at least one second switch tube 232 in the embodiment of the present application can be used to synchronously rectify the direct current output from the transformer 240, so that the electronic device connected to the adapter can be charged based on the synchronously rectified direct current.
  • the control unit 210 is also used to output a second control signal.
  • the second microwave unit 222 includes a second transmitting end and a second receiving end, the second transmitting end is connected to the control unit 210, and the second receiving end is connected to the at least one first
  • the two switch tubes 232 are connected.
  • the second transmitting end is used to convert the second control signal into a second microwave signal and send it to the second receiving end, and the second receiving end is used to transfer the second microwave signal to the second receiving end.
  • the microwave signal is converted into the second control signal to control the on or off of the at least one second switch tube 232.
  • the second control signal can be converted into a second microwave signal, and the The second microwave signal is transmitted to the second receiving end.
  • the second receiving end can convert the second microwave signal into a second control signal, so that the converted second control signal can be used for control At least one second switch tube 232 is turned on or off.
  • the first microwave unit and/or the second microwave unit includes an integrated circuit (IC) chip, and an extremely high frequency antenna is encapsulated in the IC chip.
  • IC integrated circuit
  • the IC chip in the embodiment of the present application may be packaged with an extremely high frequency (EHF) antenna, including a transmitting antenna and a receiving antenna, that is, the transmitting end and the receiving end in the embodiment of the present application.
  • EHF extremely high frequency
  • the microwave unit can realize high-speed wireless data transmission (for example, a transmission speed of up to 6 GB/s) based on a high carrier frequency (for example, 60 GHz).
  • the first microwave unit 221 since the first transmitting end of the first microwave unit 221 can convert the first control signal output by the control unit 210 into the first microwave signal,
  • the microwave signal can propagate without relying on the medium.
  • the propagation speed in vacuum is equivalent to the speed of light. Therefore, the first transmitting end of the first microwave unit 221 is used to convert the first control signal into the first microwave signal.
  • the first microwave signal can be quickly transmitted to the first receiving end of the first microwave unit 221, and the first receiving end of the first microwave unit 221 converts the first microwave signal into a first control signal, so that at least one The first switch tube 231 quickly receives a response.
  • the first switch tube 231 and/or the second switch tube 232 in the embodiment of the present application may be an insulated gate bipolar transistor (IGBT), a MOS transistor, or a triode, etc., which is not specifically limited in the present application.
  • IGBT insulated gate bipolar transistor
  • MOS transistor MOS transistor
  • triode etc.
  • the transmitting end of the microwave unit in the embodiment of the present application can convert the control signal into a microwave signal and transmit the microwave signal to the receiving end, and the receiving end can convert the microwave signal into a control signal to control the switching tube
  • the switch is turned on or off, so that the transformer connected to the switch tube can continuously store and release energy.
  • the microwave unit in the embodiment of the present application can also be used to isolate the parasitic capacitance generated by the switch tube, which will be described in detail below.
  • the first microwave unit 221 is further configured to: transmit the first control signal to control the on or off of the at least one first switch tube 231, and to isolate the The parasitic capacitance generated by the at least one first switch tube 231 is described.
  • the second microwave unit 222 is further configured to: transmit the second control signal to control the on or off of the at least one second switch tube 232, and to isolate the The parasitic capacitance generated by the at least one second switch tube 232 is described.
  • the control unit 210 may output a high-level signal, and transmit the signal to the first switching tube 231 through the first microwave unit 221 to control
  • the first switch tube 231 is turned on, so that energy can be stored on the primary side of the transformer 240; the control unit 210 can also output a low-level signal, and transmit a signal to the second switch tube 232 through the second microwave unit 222 to control the second switch tube 232.
  • the switch tube 232 is turned on, so that the energy stored in the primary side of the transformer 240 can be released to the secondary side.
  • the primary side of the transformer 240 in the embodiment of the present application may refer to the side connected to the first switching tube 231, and the secondary side of the transformer 240 may refer to the side connected to the second switching tube 232.
  • the first microwave unit 221 in the implementation of this application can also isolate the parasitic capacitance generated by the first switch tube 231 during the process of controlling the on or off of the first switch tube 231, that is, it can isolate the parasitic capacitance generated by the first switch tube 231.
  • the parasitic capacitance is transmitted to other circuit modules, for example, to the second switch tube 232, so as to avoid circuit crosstalk; the second microwave unit 222 can also be isolated during the process of controlling the on or off of the second switch tube 232
  • the parasitic capacitance generated by the second switch tube 232 can isolate the parasitic capacitance generated by the second switch tube 232 from being transmitted to other circuit modules, for example, to the first switch tube 231, thereby avoiding circuit crosstalk.
  • the switch tube is a MOS tube as an example for description.
  • FIG. 4 it is a schematic structural diagram of an adapter provided by still another embodiment of this application.
  • the first switching tube in the adapter in the embodiment of the present application may be a switching tube included in a half-bridge circuit, or may be a switching tube included in a full-bridge circuit, which is not specifically limited in this application. Each will be explained below.
  • the first switch tube 231 in the embodiment of the present application may be an N-channel MOS tube
  • the second switch tube 232 may be an N-channel MOS tube.
  • the control unit 210 outputs a high-level signal
  • the high-level signal can be converted into a first microwave signal through the first transmitting end of the first microwave unit 221, and The first microwave signal is transmitted to the first receiving end of the first microwave unit 221.
  • the first receiving end can convert the first microwave signal into a first control signal, and convert the first microwave signal to a first control signal.
  • the first control signal is transmitted to the N-channel MOS transistor 231.
  • the N-channel MOS transistor 231 can be turned on.
  • the control unit 210 When the control unit 210 outputs a high-level signal, if the pin connected to the MOS tube 232 is turned on, the high-level signal can be converted into a second microwave signal through the transmitting end of the second microwave unit 222, and the The second microwave signal is transmitted to the second receiving end of the second microwave unit 222. After receiving the second microwave signal, the second receiving end can convert the second microwave signal into a second control signal, and convert the control signal It is transmitted to the MOS tube 232. At this time, since the gate voltage of the N-channel MOS tube 232 is higher than the source voltage, the MOS tube 232 can be turned on.
  • the dead time of the control signal can be set to be shorter, assuming a dead time. If the zone time is set to 0.4us, the first transmitting end of the first microwave unit 221 can be used to convert the signal output by the control unit 210 into the first microwave signal and quickly output to the first microwave signal of the first microwave unit 221 within 0.4us.
  • a receiving end after receiving the first microwave signal, the first receiving end can convert the first microwave signal into a first control signal and output it to the MOS tube 231, and use the second transmitting end of the second microwave unit 222 to The signal output by the control unit 210 is converted into a second microwave signal and quickly output to the second receiving end.
  • the second receiving end After receiving the second microwave signal, the second receiving end can convert the second microwave signal into a second control signal and output it to In the MOS tube 232, the turn-on time of the control unit 210 in a half cycle is 1.6 us, which is greater than the dead time of 0.4 us, which can improve the transmission efficiency.
  • microwave units are different from transformers, capacitors, and optocouplers, microwaves do not need to be transmitted through a medium, and almost pass through without being absorbed. Therefore, the distance between the transmitting end and the receiving end of the microwave unit can be set farther. For example, it can be set to 1.5 cm or 2 cm.
  • Light waves are electromagnetic waves in a specific frequency band, and the transmission of light waves is related to distance. In the above-mentioned several transmission modes, the distance between the transmitting end and the receiving end is less than a certain threshold, so that the signal can be transmitted to the switch tube.
  • the distance between the transmitting end and the receiving end of the first microwave unit 221 and the second microwave unit 222 can be set to be farther, for example, it can be set to 1.5 cm or 2 cm as mentioned above.
  • the parasitic capacitance generated by the MOS transistor 231 or the MOS transistor 232 can be isolated to avoid circuit crosstalk.
  • the MOS tube 232 when the MOS transistor 231 is turned on, due to the large distance between the first transmitting end and the first receiving end of the first microwave unit, the parasitic capacitance generated by the MOS transistor 231 cannot be transmitted to other circuit modules.
  • the MOS tube 232 when the MOS tube 232 is turned on, because the distance between the second transmitting end and the second receiving end of the second microwave unit is large, the parasitic capacitance generated by the MOS tube 232 cannot be transmitted to other The circuit module, for example, the MOS tube 231.
  • the parasitic capacitance in the embodiments of the present application may also be referred to as stray capacitance, which is the capacitance characteristic of the switch tube under high frequency conditions.
  • FIG. 4b it is a schematic structural diagram of the adapter provided in this embodiment of the application.
  • the first switch tube in the adapter in the embodiment of the present application may be a switch tube included in the full-bridge circuit.
  • the full bridge circuit in the embodiment of the present application may include an N-channel MOS transistor 231a, an N-channel MOS transistor 231b, an N-channel MOS transistor 231c, and an N-channel MOS transistor 231d.
  • the adapter 200 may further include a first isolation unit and a second isolation unit.
  • the first isolation unit is used to isolate the parasitic capacitance generated by the at least one first switch tube 231; the second isolation unit is used to isolate the parasitic capacitance generated by the at least one second switch tube 232; wherein, the first One end of the isolation unit is connected to the first microwave unit 221, the other end is connected to the at least one first switch tube 231, one end of the second isolation unit is connected to the second microwave unit 222, and the other end is connected to the second microwave unit 222.
  • the at least one second switch tube 232 is connected.
  • the first isolation unit can isolate the parasitic capacitance generated by the first switching tube 231 at a high frequency to other circuit modules, for example, the first switching tube 231.
  • the second isolation unit can isolate the parasitic capacitance generated by the second switching tube 232 at a high frequency from the transmission to other circuit modules, for example, the first switching tube 231.
  • the crosstalk of the circuit can be further avoided.
  • the distance between the first transmitting end and the first receiving end of the first microwave unit 221 can be set farther, for example, can be greater than the first threshold. Therefore, the first A microwave unit 221 itself can isolate the parasitic capacitance generated by the first switch tube 231 to other circuit modules, for example, the transmission of the second switch tube 232.
  • the configuration of the first isolation unit can further isolate the parasitic capacitance generated by the first switch tube 231. Transmission to other circuit modules, for example, the second switch tube 232.
  • the distance between the second transmitting end and the second receiving end of the second microwave unit 222 can also be set farther, for example, it can be greater than the second threshold. Therefore, the second microwave unit 222 itself can isolate the second switch.
  • the parasitic capacitance generated by the tube 232 is transmitted to other circuit modules, for example, the first switch tube 231.
  • the arrangement of the second isolation unit can further isolate the parasitic capacitance generated by the second switch tube 232 to other circuit modules, for example, the first switch tube. Transmission of pipe 231.
  • the control unit 210 includes: a first control unit 211, connected to the first microwave unit 221, and configured to output the first control signal to the The first microwave unit 221 is used to control the output time of the first control signal; the second control unit 212 is connected to the second microwave unit 222 and is used to output the second control signal to the second The microwave unit 222 is used to control the output time of the second control signal.
  • the first microwave unit 221 and the second microwave unit 222 may also be respectively controlled to transmit control signals through two control units.
  • the first control unit 211 may transmit the first control signal to the first microwave unit 221
  • the first transmitting end of the first microwave unit 221 may convert it into a first microwave signal based on the first control signal transmitted by the first control unit 211, and transmit it to the first receiving end of the first microwave unit 221, the first receiving end
  • the first microwave signal can be converted into a first control signal
  • the first control signal can be transmitted to the first switching tube 231 to control the conduction or conduction of the first switching tube 231.
  • the second control unit 212 can transmit a second control signal to the second microwave unit 222, and the second transmitting end of the second microwave unit 222 can convert it to a second control signal based on the second control signal transmitted by the second control unit 212
  • the microwave signal is transmitted to the second receiving end of the second microwave unit 221.
  • the second receiving end can convert the second microwave signal into a second control signal, and convert the second microwave signal to a second control signal.
  • the control signal is transmitted to the second switch tube 232 to control the on or off of the second switch tube 232.
  • first control unit 211 and the second control unit 212 can communicate with each other, so that the first control unit 211 and the second control unit 212 can output control signals more accurately.
  • the high-level and/or low-level output time points of the first control signal and the second control signal are different, so that the at least one first switch tube 231 is completely When turned off, the at least one second switch tube 232 is turned on.
  • the first control unit 211 is further configured to send a first synchronization signal to the second control unit 212, and/or receive a first synchronization signal sent by the second control unit 212 Two synchronization signals; the second control unit 212 is also used to send the second synchronization signal to the first control unit 211, and/or receive the first synchronization signal sent by the first control unit 211 signal.
  • the first control unit 211 can output a high level to control the first The switch tube 231 is in the on state, so that the primary side of the transformer 240 stores energy.
  • the first control unit 221 can output a low level to control the first switch tube 231 to be in the off state.
  • the second control unit 212 does not output a low level instantaneously, but starts to output a low level at a time point of t3.
  • the time period (t2-t3) is called the dead time.
  • the first control unit 211 can output a low level and the second control unit 212 can output a high level.
  • the first switching tube 231 is completely turned off before the second switching tube 232 is controlled to be turned on, so as to prevent the energy stored in the primary side of the transformer 240 from being released to the secondary side due to the early conduction of the second switching tube 232.
  • the parasitic capacitance is transmitted to the first switching tube 231, causing the first switching tube 231 to be turned on incorrectly, and causing crosstalk in the circuit.
  • the first control unit 211 and the second control unit 212 can communicate with each other.
  • the first control unit 211 can notify the first control unit 211 to end the high-level output at the time t2. Start to output low level.
  • the second control unit 212 can start to output low level after the preset dead time, that is, it can output low level at t3. In order to prevent the parasitic capacitance generated by the second switching tube 232 from being turned on in advance to other circuit modules, such as the first switching tube 231, when the energy stored on the primary side of the transformer 240 is released to the secondary side Crosstalk of the circuit.
  • the first control unit 211 ends the high-level output at the time point of t2, and informs the second control unit 212 to output at the time point of t3 at any point in the dead time period (t2-t3) Low level to prevent the parasitic capacitance generated by the early conduction of the second switching tube 232 from being transmitted to other circuit modules, such as the first switching tube 231, when the energy stored on the primary side of the transformer 240 is released to the secondary side. This causes crosstalk in the circuit.
  • the first control unit 211 may also receive the synchronization signal sent by the second control unit 212 to determine the output time for outputting a high level and/or a low level.
  • the second microwave unit is further configured to: feed back the voltage value and/or current value of the direct current output from the secondary side of the transformer to the control unit; the control unit It is also used to control the output time of the high level and/or low level of the control signal according to the feedback voltage value and/or current value.
  • the first switch tube 231 can be used to chop and modulate the voltage of the input transformer, and the second switch tube 232 can be used to synchronously rectify the DC current output from the secondary side of the transformer, which can be based on synchronous rectification.
  • the subsequent DC current charges the electronic device connected to the adapter.
  • the direct current output from the secondary side of the transformer 240 can be fed back to the control unit 210 through the second microwave unit 222, and the control unit 210 outputs the high-level and/or low-level control signal according to the feedback direct current. time.
  • the control unit 210 may control to increase the high-level output duration in one cycle, so that the duration of the first switch tube 231 in the on state is increased. Therefore, the voltage value of the DC current output from the secondary side of the transformer can be increased; if the voltage value of the feedback DC current received by the control unit 210 is relatively large, the control unit 210 can control to reduce the high-level output duration in one cycle, As a result, the length of time that the first switch tube 231 is in the on state is reduced, so that the voltage value of the direct current output from the secondary side of the transformer can be reduced.
  • the conduction time of the first switching tube 231 and the DC current output from the secondary side of the transformer 240 may be correlated, that is, the longer the conduction time of the first switching tube 231 is, the DC output from the secondary side of the transformer 240 The greater the current; the shorter the conduction time of the first switch tube 231, the smaller the direct current output from the secondary side of the transformer 240.
  • the signal output by the first control unit 211 or the second control unit 212 may not be sufficient to control the on or off of the first switch tube 231 or the second switch tube 232. Therefore, the switch can be controlled by the driving unit. Turning on or off of the tube.
  • the driving circuit 200 may further include a first driving unit 271 and a second driving unit 272.
  • the first driving unit 271 can amplify the control signal output from the receiving end of the first microwave unit 221, so that the amplified signal can control the on or off of the first switch tube 231;
  • the second driving unit 272 can The control signal output by the second microwave unit 222 is amplified, so that the amplified signal can control the turn-on or turn-off of the second switch tube 232.
  • first driving unit 271 or/or the second driving unit 272 in the embodiment of the present application can be used to amplify the control signal output by the control unit 210, that is, the control ability of the control signal can be increased to make it possible Control switch tube.
  • the first driving unit 271 and/or the second driving unit 272 can also increase the rising and falling speed of the control signal.
  • the driving unit in the embodiment of the present application may be a charge pump bootstrap control circuit, a control chip, and the like.
  • At least one driving unit may also be included in FIGS. 2 to 5.
  • the driving unit may be located between the first microwave unit 221 and the at least one switch tube 231 to amplify the control signal output by the first microwave unit 221 so that it can control the at least one switch tube 231.
  • it may include two driving units, one of which may be located between the first microwave unit 221 and the first switch tube 231 to amplify the control signal output by the first microwave unit 221, so that It can control the first switch tube 231; another driving unit can be located between the second microwave unit 222 and the at least one second switch tube 232 to amplify the control signal output by the second microwave unit 222 so that it can control at least A second switch tube 232.
  • the dead time of the first control signal and/or the second control signal is less than a first threshold.
  • the first control unit 211 may output a first control signal, for example, output a high level to control the first switch tube 231 to be in the on state.
  • the first control unit 211 may output Low level to start controlling the first switch tube 231 to be in the off state.
  • the first control unit 211 outputs a high level during the time period (t1-t2) to control the first switch tube 231 to be in the on state, and outputs a low level at the time t2 to start controlling the first switch tube 231.
  • a switch tube 231 is turned off.
  • the second control unit 212 when the first control unit 211 outputs a low level at the time point of t2, the second control unit 212 does not output a low level instantaneously, but starts to output a low level at a time point of t3 to control the first control unit 211.
  • the second switch tube 232 starts to turn on.
  • the second control unit 212 can output a second control signal, for example, can output a low level during the period (t3-t4), so that the second switch tube 232 is turned on. At this time, the first switch The tube is in the off state. At time t4, the second control unit 212 can output a high level to control the second switch tube 232 to start turning off. When the second control unit 212 outputs a high level, the first control unit 211 does not output high level instantaneously. Instead, it starts to output a high level at the time point t5 to control the first switch tube 231 to start conducting.
  • the time period (t2-t3) is called the dead time.
  • the microwave unit is used to transmit signals to the switch tube in the embodiment of this application, the transmitting end of the microwave unit can convert the control signal into a microwave signal and transmit it to The receiving end, and the microwave has the characteristics of fast transmission, which can make the microwave signal be quickly transmitted to the receiving end of the microwave unit.
  • the receiving end converts the microwave signal into a control signal, so that the switch tube can be quickly turned on or off. Therefore, the duration of the dead time can be set to be less than the first threshold. If the first threshold is 0.4 us, the dead time in the embodiment of the present application can be set to 0.2 us or 0.3 us, which is not specifically limited in this application.
  • the preset frequency of the first control signal and/or the second control signal is greater than a second threshold.
  • the preset frequency of the first control signal and/or the second control signal in the embodiment of the present application may be greater than the second threshold.
  • the first control signal as an example, for example, if the second threshold value is 200KHz, assuming that the preset frequency of the first control signal is 250KHz, that is, the sum of the turn-on and turn-off time of the two switch tubes can be 4us. Described in conjunction with FIG. 5 and FIG. 6, the first control unit 211 outputs a high level during the time period (t1-t2). If the dead time is 0.4us, the time period (t1-t2) in the figure It is 1.6us, and the time period (t2-t3) in the figure is 0.4us.
  • the first switch tube 231 is turned on for 1.6us in one cycle, and during the dead time of 0.4us during the period (t2-t3), the first control unit 211 can output a low level, so that The first switching tube 231 is completely turned off.
  • the second control unit 212 starts to output a low level, so that the second switching tube 232 is turned on.
  • the first control unit 211 may also output a low level, so that the first switch tube 231 is in the off state. Therefore, the circuit crosstalk caused by the misconduction of the first switch tube 231 can be avoided.
  • the preset frequency of the first control signal and the preset frequency of the second control signal may be different, which is not specifically limited in this application.
  • the distance between the transmitting end and the receiving end of the microwave unit can be set farther, which will be described in detail below.
  • the distance between the first transmitting end and the first receiving end included in the first microwave unit is greater than a third threshold; the second microwave unit includes the second The distance between the transmitting end and the second receiving end is greater than the fourth threshold.
  • the distance between the first transmitting end and the first receiving end of the first microwave unit may be greater than the third threshold.
  • the third threshold is 1 cm
  • the distance between the transmitting end and the receiving end of the microwave unit The distance between them can be 1.5 cm, or 2 cm, etc., which is not specifically limited in this application.
  • the distance between the second transmitting end and the second receiving end of the second microwave unit may be greater than the fourth threshold.
  • the fourth threshold is 0.8 cm
  • the distance from the second receiving end may be 1 cm, or 1.5 cm, etc., which is not specifically limited in this application.
  • the distance between the first transmitting end and the first receiving end of the first microwave unit 221 and the distance between the second transmitting end and the second receiving end of the second microwave unit 222 may be the same, or Different, this application does not specifically limit this.
  • the transmitting end can convert the control signal into a microwave signal and quickly transmit the microwave signal to the receiving end. After receiving the microwave signal, the receiving end can convert the microwave signal into a control signal, which can make The switch tube gets a response quickly, that is, the switch tube can be turned on or off quickly.
  • a control method 800 provided by this embodiment of the application is applied to an adapter, and the adapter includes a transformer, at least one first switch tube, a control unit, and a first microwave unit.
  • the method 800 It may include steps 810-830.
  • the control unit outputs the first control signal.
  • the control unit controls the first transmitting end of the first microwave unit to convert the first control signal into a first microwave signal and send it to the first receiving end of the first microwave unit.
  • the control unit controls the first receiving end to convert the first microwave signal into the first control signal, so as to control the on or off of the at least one first switch tube.
  • control unit controls the first receiving end to convert the first microwave signal into the first control signal to control the conduction of the at least one first switch tube Or turning off, including: the control unit controls the first receiving end to convert the first microwave signal into the first control signal to control the at least one first switch tube to be turned on or off, and Isolate the parasitic capacitance generated by the first switch tube.
  • the adapter further includes at least one second switch tube and a second microwave unit
  • the method 800 further includes: the control unit outputs a second control signal; the control unit controls the The second transmitting end of the second microwave unit converts the second control signal into a second microwave signal and sends it to the second receiving end; the control unit controls the second receiving end to transmit the second microwave signal The signal is converted into the second control signal to control the on or off of the at least one second switch tube.
  • control unit controls the second receiving end to convert the second microwave signal into the second control signal to control the conduction of the at least one second switch tube Or turning off, including: the control unit controls the second receiving end to convert the second microwave signal into the second control signal to control the on or off of the at least one second switch tube, And isolating the parasitic capacitance generated by the at least one second switch tube.
  • control unit includes a first control unit and a second control unit; the control unit outputting a control signal at a preset frequency includes: the first control unit outputting the first control unit A control signal is sent to the first microwave unit and used to control the output time of the first control signal; the second control unit outputs the second control signal to the second microwave unit and is used to control The output time of the second control signal.
  • the high-level and/or low-level output time points of the first control signal and the second control signal are different, so that the at least one first switch tube is completely turned off. When off, the at least one second switch tube is turned on.
  • the method 800 further includes: the first control unit further sends a first synchronization signal to the second control unit, and/or receives a signal sent by the second control unit The second synchronization signal; the second control unit also sends the second synchronization signal to the first control unit, and/or receives the first synchronization signal sent by the first control unit.
  • the method further includes: the second microwave unit feeding back the voltage value and/or current value of the direct current output from the secondary side of the transformer to the control unit;
  • the control unit controls the output time of the high level and/or low level of the control signal according to the feedback voltage value and/or current value.
  • the dead time of the first control signal and/or the second control signal is less than a first threshold.
  • the preset frequency of the first control signal and/or the second control signal is greater than a second threshold.
  • the first microwave unit and/or the second microwave unit includes an IC chip, and an extremely high frequency antenna is encapsulated in the IC chip.
  • the embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute any one of the aforementioned charging methods 800.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program stored on a computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are executed by a computer, the computer program The computer executes any one of the charging methods 800 described above.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)), etc.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • first, second, etc. may be used in this application to describe various devices, these devices should not be limited by these terms. These terms are only used to distinguish one device from another.
  • the first device can be called the second device, and similarly, the second device can be called the first device, as long as all occurrences of the "first device” are renamed consistently and all occurrences
  • the “second device” can be renamed consistently.
  • the first device and the second device are both devices, but they may not be the same device.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electronic Switches (AREA)

Abstract

本申请提供一种适配器和控制方法,包括:变压器;至少一个第一开关管,与该变压器的初级连接,用于对输入该变压器的电压进行斩波调制;控制单元,用于输出第一控制信号;第一微波单元,该第一微波单元包括的第一发射端用于将该第一控制信号转化为第一微波信号并发送至第一微波单元的第一接收端,该第一接收端用于将第一微波信号转化为第一控制信号,以控制该至少一个第一开关管导通或关断。本申请提供的适配器,在输出高频率下,控制信号的死区时间可以设置的较短,从而可以提高效率,同时也不会影响电路的串扰,此外,第一微波单元的第一发射端和第一接收端之间的距离可以设置的较远,可以隔离第一开关管产生的寄生电容。

Description

适配器和控制方法 技术领域
本申请实施例涉及充电技术领域,并且更具体地,涉及一种适配器和控制方法。
背景技术
充电器一般由变压器、控制单元、驱动单元、MOS管等组成。当通过控制单元进行MOS管的驱动控制时,存在控制信号的死区时间设置有局限,导致效率降低。且次级侧连接的MOS管产生的寄生干扰可能会传输至其它电路模块,由此引起电路的串扰。
发明内容
本申请实施例提供一种适配器和控制方法,在输出高频率下,控制信号的死区时间可以设置的较短,从而可以提高效率,同时也不会影响电路的串扰,此外,采用第一微波单元控制第一开关管的开通和关断,其第一发射端和第一接收端之间的距离可以设置的较远,可以避免第一开关管产生的寄生电容的传输,由此可以避免电路的串扰。
第一方面,提供一种适配器,其特征在于,包括:变压器;至少一个第一开关管,与所述变压器的初级连接,用于对输入所述变压器的电压进行斩波调制;控制单元,用于输出第一控制信号;第一微波单元,所述第一微波单元包括第一发射端和第一接收端,所述第一发射端用于将所述第一控制信号转化为第一微波信号并发送至所述第一接收端,所述第一接收端用于将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管导通或关断。
第二方面,提供一种控制方法,所述方法应用于适配器,所述适配器包括变压器、至少一个第一开关管、控制单元和第一微波单元,包括:所述控制单元输出第一控制信号;所述控制单元控制所述第一微波单元的第一发射端将所述第一控制信号转化为第一微波信号并发送至所述第一微波单元的第一接收端;所述控制单元控制所述第一接收端将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管的导通或关断。
第三方面,提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第二方面或其各实现方式中任一项所述的方法。
第四方面,提供一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行上述第二方面或其各实现方式中任一项所述的方法。
本申请实施例提供的适配器,在传输控制信号的过程中,第一微波单元的第一发射端可以将第一控制信号转化为第一微波信号,并将该第一微波信 号传输至第一微波单元的第一接收端,第一接收端在接收到该第一微波信号后可以将该第一微波信号转化为第一控制信号,从而可以利用转化后的第一控制信号控制第一开关管的开通和关断。一方面,由于第一微波单元的响应速度快,其第一发射端可以将第一控制信号转化为第一微波信号并快速传输至第一接收端,因此,即使第一控制信号的死区时间在较短的情况下,也能快速开通或关断第一开关管,可以提高效率,同时与不会引起电路的串扰;另一方面,由于微波的传输不依靠介质传输,因此,第一微波单元的第一发射端和第一接收端之间的距离可以设置的较远一些,进一步地,可以避免电路的串扰,也可以避免其它开关管的误导通。
附图说明
图1是本申请一实施例提供的适配器的示意性结构图;
图2是本申请另一实施例提供的适配器的示意性结构图;
图3是本申请再一实施例提供的适配器的示意性结构图;
图4a是本申请又一实施例提供的适配器的示意性结构图;
图4b是本申请又一实施例提供的适配器的示意性结构图;
图5是本申请又一实施例提供的适配器的示意性结构图;
图6是本申请实施例提供的控制单元输出的控制信号的示意性图;
图7是本申请又一实施例提供的适配器的示意性结构图;
图8是本申请一实施例提供的控制方法的示意性流程图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本申请保护的范围。
为了更加清楚地理解本申请,以下将结合图1介绍适配器的工作原理和过程,便于后续理解本申请的方案。但应理解,以下介绍的内容仅仅是为了更好的理解本申请,不应对本申请造成特别限定。
小型便携式电子设备及电子电器的供电电源变换设备,例如,适配器、充电器、车载充电器等,一般由外壳、变压器、电感、电容、控制IC、PCB板等元器件组成,用于将交流输入转换为直流输出。
如图1所示,在一实施例中,适配器可以包括初级控制逻辑模块111、次级控制逻辑模块112、隔离模块121、隔离模块122、初级侧MOS管131、至少一个次级侧金属氧化物半导体型场效应管132(Metal Oxide Semiconductor Field Effect Transistor,MOSFET),可简称为MOS管、变压器140、整流单元150和滤波单元160。
本申请实施例中的隔离模块121或隔离模块122可以为信号变压器或电容或光耦等。变压器140可以为能量变压器。
本申请实施例中的整流单元150可以对输入适配器的交流电流进行整流,滤波单元160可以对整流后的直流电流进行滤波。
一般情况下,在初级逻辑控制模块111和次级控制逻辑模块112输出高电平的时候,初级侧MOS管131导通,次级侧MOS管132关断,变压器140的初级侧储存能量;在初级逻辑控制模块111和次级控制逻辑模块112输出低电平的时候,次级侧MOS管132导通,初级侧MOS管131关断,变压器140的初级侧向次级侧释放能量,以对于与适配器连接的电子设备进行充电。
本申请实施例中的电子设备可以包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communication System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的个人数字助理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。在某些实施例中,待充电设备可指移动终端是设备或手持终端设备,如手机、pad等。在某些实施例中,本申请实施例提及的待充电设备可以是指芯片***,在该实施例中,待充电设备的电池可以属于或也可以不属于该芯片***。
另外,电子设备还可以包括其他有充电需求的待充电设备,例如手机、移动电源(如充电宝、旅充等)、电动汽车、笔记本电脑、无人机、平板电脑、电子书、电子烟、智能待充电设备和小型电子产品等。智能待充电设备例如可以包括手表、手环、智能眼镜和扫地机器人等。小型电子产品例如可以包括无线耳机、蓝牙音响、电动牙刷和可充电无线鼠标等。
本申请实施例中,在利用控制逻辑模块(初级控制逻辑模块111和次级控制逻辑模块112)控制MOS管的导通和关断时,MOS管会产生寄生电容。若控制逻辑模块输出的控制信号的频率较低时,例如,频率为100KHz,周期为10us时,死区时间可以设置为1.2us。若初级控制逻辑模块111控制初级侧MOS管131从开通状态向关断状态切换,在这一死区时间内,初级MOS管131可以完全关断,死区时间截止,再利用次级控制逻辑模块112开通次级侧MOS管132。从而初级侧MOS管131产生的寄生电容不会传输至其它电路模块,例如,次级侧MOS管132,由此也不会引起电路串扰。
若控制逻辑模块(初级控制逻辑模块111和次级控制逻辑模块112)输出的控制信号的频率较高时,例如,频率为250KHz,周期为4us时,若死区时间设置为1.2us,在一个周期内初级侧MOS管131或次级侧MOS管132导通的时间0.8us,导致效率降低。若将死区时间设置为0.4us,在初级控制逻辑模块111控制初级侧MOS管131从开通状态向关断状态切换的过程中,在这一死区时间内,初级侧MOS管131还未完全关断次级侧MOS管132已开通,导致次级侧MOS管132产生的寄生电容通过变压器或电容或光耦122传输至其它电路模块,例如初级侧MOS管131,由此引起电路串扰。
在一些实施例中,对于初级侧MOS管131和次级侧MOS管132之间的隔离可以采用信号变压器或者电容或者光耦(也可以称为光电耦合器或光电隔离器)进行隔离。但是采用这几种隔离方式,其位置设置有局限。例如,对于信号变压器而言,由于变压器是根据电磁感应原理来实现变压的,因此,信号变压器的初级侧和次级侧之间的距离不能设置的过大。但是在信号变压器的初级侧和次级侧之间的距离较小时,若初级控制逻辑模块111输出高电平时,初级侧MOS管131在高频率下产生的寄生电容会通过信号变压器122传输至其它电路模块,例如,传输至次级侧MOS管132,由此引起电路的串扰。
类似地,对于电容而言,由于电容的容量是和两个极板之间的距离成反比的,即两个极板之间的距离越大,电容的容量越小;两个极板之间的距离越小,电容的容量越大。因此,电容的两个极板之间的距离不能设置的过大。但是在两个极板之间的距离较小的情况下,若初级侧控制逻辑模块111输出高电平时,初级侧MOS管131在高频率下产生的寄生电容会通过电容122传输至其它电路模块,例如,传输至次级侧MOS管132,由此引起电路的串扰。
类似地,对于光耦来说,由于光耦是以光为媒介传输电信号,而光波的传输是与距离有关的,即光波传输的距离越大,能量损耗越大;光波传输的距离越小,能量损耗越小。因此,光耦的发光器和受光器之间的距离不能设置的过大。但是在光耦的发光器和受光器之间的距离较小时,若初级侧控制逻辑模块111输出高电平时,初级侧MOS管131在高频率下产生的寄生电容会通过光耦122传输至其它电路模块,例如,传输至次级侧MOS管132,由此引起电路的串扰。
本申请实施例提供的适配器,采用微波单元进行控制信号的传输,在输出高频率下,控制信号的死区时间可以设置的较短,从而可以提高效率,同时也不会影响电路的串扰,此外,采用第一微波单元控制第一开关管的开通和关断,其第一发射端和第一接收端之间的距离可以设置的较远,可以避免第一开关管产生的寄生电容的传输,由此也可以避免电路的串扰。
下面结合图2,对本申请实施例提供的适配器进行详细介绍。
如图2所示,本申请实施例提供的适配器200可以包括控制单元210和第一微波单元221、至少一个第一开关管231、变压器240、整流单元250和滤波单元260。
本申请实施例中的整流单元250可以对输入适配器的交流电流进行整流,滤波单元260可以对经过整流后的交流电流进行滤波。
至少一个第一开关管231,与所述变压器240的初级侧连接,用于对输入所述变压器240的电压进行斩波调制。
本申请实施例中的至少一个第一开关管231可以用于对输入变压器240的电压进行斩波调制,例如,可以通过控制调整第一开关管231的占空比改变变压器240的次级侧输出的直流电流的电压大小。
控制单元210,用于输出第一控制信号。
本申请实施例中的控制单元可以用于输出第一控制信号。该第一控制信号可以是周期为4us的脉冲信号,也可以是周期为0.02ns的脉冲信号,本申请对此不作具体限定。
第一微波单元221,所述第一微波单元221包括第一发射端和第一接收端,所述第一发射端与所述控制单元210连接,所述第一接收端与所述至少一个第一开关管231连接,所述第一发射端用于将所述第一控制信号转化为第一微波信号并发送至所述第一接收端,所述第一接收端用于将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管231的导通或关断。
本申请实施例中的第一微波单元221的第一发射端在接收到控制单元210输出的第一控制信号后,可以将该第一控制信号转化为第一微波信号,并将该第一微波信号传输到第一接收端,第一接收端在接收到该第一微波信号后,可以将该第一微波信号转化为第一控制信号,从而可以利用转化后的第一控制信号控制至少一个第一开关管231的导通或关断。
本申请实施例提供的适配器,在传输控制信号的过程中,第一微波单元的第一发射端可以将第一控制信号转化为第一微波信号并将该第一微波信号传输至第一微波单元的第一接收端,第一接收端在接收到该第一微波信号后可以将该第一微波信号转化为第一控制信号,从而可以利用转化后的第一控制信号控制至少一个第一开关管的导通和关断。一方面,由于第一微波单元的响应速度快,其第一发射端可以将第一控制信号转化为第一微波信号并快速传输至第一接收端,因此,即使第一控制信号的死区时间在较短的情况下,也能快速开通或关断第一开关管,不会引起电路的串扰;另一方面,由于微波的传输不依靠介质传输,因此,第一微波单元的第一发射端和第一接收端之间的距离可以设置的较远,可以隔离第一开关管产生的寄生电容的传输,由此也可以避免电路的串扰。
可选地,在一些实施例中,如图3所示,所述适配器200还可以包括第二微波单元222和至少一个第二开关管232。
至少一个第二开关管232,用于对所述变压器240输出的直流电流进行同步整流。
本申请实施例中的至少一个第二开关管232可以用于对变压器240输出的直流电进行同步整流,从而可以基于同步整流后的直流电流对与适配器连接的电子设备进行充电。
所述控制单元210,还用于输出第二控制信号。
第二微波单元222,所述第二微波单元222包括第二发射端和第二接收端,所述第二发射端与所述控制单元210连接,所述第二接收端与所述至少一个第二开关管232连接,所述第二发射端用于将所述第二控制信号转化为第二微波信号并发送至所述第二接收端,所述第二接收端用于将所述第二微波信号转化为所述第二控制信号,以控制所述至少一个第二开关管232的导 通或关断。
类似地,本申请实施例中的第二微波单元222的第二发射端在接收到控制单元210输出的第二控制信号后,可以将该第二控制信号转化为第二微波信号,并将该第二微波信号传输到第二接收端,第二接收端在接收到该第二微波信号后,可以将该第二微波信号转化为第二控制信号,从而可以利用转化后的第二控制信号控制至少一个第二开关管232的导通或关断。
可选地,在一些实施例中,所述第一微波单元和/或所述第二微波单元包括集成电路(Integrated Circuit,IC)芯片,所述IC芯片中封装极高频天线。
本申请实施例中的IC芯片中可以封装极高频(Extremely High Frequency,EHF)天线,包括发射天线和接收天线,即本申请实施例中的发射端和接收端。从而,微波单元可以基于高载波频率(例如,60GHz)实现高速的数据无线传输(例如,最高可达6GB/s的传输速度)。
本申请实施例中,可以理解的是,以第一微波单元221为例,由于第一微波单元221的第一发射端可以将控制单元210输出的第一控制信号转换为第一微波信号,而微波信号在传播的过程中可以不依靠介质传播,在真空中的传播速度等同于光速,因此,利用第一微波单元221的第一发射端将第一控制信号转化为第一微波信号后,将该第一微波信号可以快速地传输到第一微波单元221的第一接收端,第一微波单元221的第一接收端再将该第一微波信号转化为第一控制信号,从而可以使得至少一个第一开关管231快速地得到响应。
本申请实施例中的第一开关管231和/或第二开关管232可以为绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor,IGBT)或MOS管或三极管等,本申请对此不作具体限定。
上文说明了本申请实施例中的微波单元的发射端可以将控制信号转化为微波信号,并将该微波信号传输至接收端,接收端可以将该微波信号转化为控制信号,以控制开关管的开通或关断,从而使得与开关管连接的变压器可以不断地储存和释放能量。此外,本申请实施例中的微波单元还可以用于隔离开关管产生的寄生电容,下文将进行具体描述。
可选地,在一些实施例中,所述第一微波单元221进一步用于:传输所述第一控制信号,以控制所述至少一个第一开关管231的导通或关断,以及隔离所述至少一个第一开关管231产生的寄生电容。
可选地,在一些实施例中,所述第二微波单元222进一步用于:传输所述第二控制信号,以控制所述至少一个第二开关管232的导通或关断,以及隔离所述至少一个第二开关管232产生的寄生电容。
本申请实施例中,以一个第一开关管231和一个第二开关管232为例,控制单元210可以输出高电平信号,通过第一微波单元221向第一开关管231传输信号,以控制第一开关管231的导通,从而可以向变压器240的初级侧储存能量;控制单元210也可以输出低电平信号,通过第二微波单元222向第二开关管232传输信号,以控制第二开关管232的导通,从而可以使得变 压器240的初级侧储存的能量向次级侧释放。
本申请实施例中的变压器240的初级侧可以是指与第一开关管231连接的一侧,变压器240的次级侧可以是指与第二开关管232连接的一侧。
本申请实施中的第一微波单元221在控制第一开关管231的导通或关断的过程中,还可以隔离第一开关管231产生的寄生电容,即可以隔离第一开关管231产生的寄生电容传输至其它电路模块,例如,传输至第二开关管232,从而可以避免电路的串扰;第二微波单元222在控制第二开关管232的导通或关断的过程中,还可以隔离第二开关管232产生的寄生电容,即可以隔离第二开关管232产生的寄生电容传输至其它电路模块,例如,传输至第一开关管231,从而可以避免电路的串扰。
下文将以开关管为MOS管为例进行说明,如图4所示,为本申请实施例再一实施例提供的适配器的示意性结构图。
本申请实施例中的适配器中的第一开关管可以为半桥电路所包括的开关管,也可以为全桥电路所包括的开关管,本申请对此不作具体限定。下文将分别进行说明。
如图4a所示,本申请实施例中的第一开关管231可以为N沟道MOS管,第二开关管232可以为N沟道MOS管。在控制单元210输出高电平信号的情况下,若将与MOS管231连接的引脚打开,通过第一微波单元221的第一发射端可以将高电平信号转化为第一微波信号,并将该第一微波信号传输至第一微波单元221的第一接收端,第一接收端在接收到该第一微波信号后,可以将该第一微波信号转化为第一控制信号,并将该第一控制信号传输至N沟道MOS管231,此时由于N沟道MOS管231的栅极电压高于源极电压,因此,可以使得N沟道MOS管231导通。
在控制单元210输出高电平信号的情况下,若将与MOS管232连接的引脚打开,通过第二微波单元222的发射端可以将高电平信号转化为第二微波信号,并将该第二微波信号传输至第二微波单元222的第二接收端,第二接收端在接收到该第二微波信号后,可以将该第二微波信号转化为第二控制信号,并将该控制信号传输至MOS管232,此时,由于N沟道MOS管232的栅极电压高于源极电压,因此,可以使得MOS管232导通。
本申请实施例中,一方面,由于微波的传输速度快,即使在高频率下,例如,在频率为250KHz下,即周期为4us,控制信号的死区时间也可以设置的较短,假设死区时间设置为0.4us,则在这0.4us时间内利用第一微波单元221的第一发射端可以将控制单元210输出的信号转化为第一微波信号并快速输出至第一微波单元221的第一接收端,第一接收端在接收到第一微波信号后可以将该第一微波信号转化为第一控制信号并输出至MOS管231中,以及利用第二微波单元222的第二发射端可以将控制单元210输出的信号转化为第二微波信号并快速输出至第二接收端,第二接收端在接收到第二微波信号后可以将该第二微波信号转化为第二控制信号并输出至MOS管232中,而且半个周期内控制单元210开通的时间为1.6us,大于死区时间0.4us,可 以提高传输效率。
另一方面,由于微波单元不同于变压器、电容和光耦,微波是不需要介质传输,几乎是穿越而不被吸收,因此微波单元的发射端和接收端之间的距离可以设置的较远一些,例如,可以设置为1.5厘米或2厘米等。
而对于变压器和电容以及光耦来说,由于变压器是通过电磁感应原理进行工作的,电容是通过电荷移动而进行工作的,光波是一种特定频段的电磁波,光波的传输是与距离有关的。在上述几种传输方式下,其发射端与接收端的距离小于一定的阈值,才能够使得信号传输至开关管。
然而本申请实施例中的第一微波单元221和第二微波单元222的发射端与接收端之间的距离可以设置的较远一些,例如,可以设置为上文中提到的1.5厘米或2厘米等,进一步地,可以对MOS管231或MOS管232产生的寄生电容进行隔离,以避免电路的串扰。
换句话说,在MOS管231导通的情况下,由于第一微波单元的第一发射端和第一接收端之间的距离较大,MOS管231产生的寄生电容无法传输至其它电路模块,例如,MOS管232;在MOS管232导通的情况下,由于第二微波单元的第二发射端和第二接收端之间的距离较大,MOS管232产生的寄生电容也无法传输至其它电路模块,例如,MOS管231。
本申请实施例中的寄生电容也可以称为杂散电容,是开关管在高频情况下表现出的电容特性。
如图4b所示,为本申请实施例提供的适配器的示意性结构图。本申请实施例中的适配器中的第一开关管可以为全桥电路包括的开关管。如图4b所示,本申请实施例中全桥电路中可以包括N沟道MOS管231a、N沟道MOS管231b、N沟道MOS管231c以及N沟道MOS管231d。
应理解,本申请实施例中的全桥电路图不限于图4b中所示出的,还可以为其他形式的电路图,不应对本申请造成特别限定。
可选地,在一些实施例中,所述适配器200还可以包括第一隔离单元和第二隔离单元。
第一隔离单元,用于隔离所述至少一个第一开关管231产生的寄生电容;第二隔离单元,用于隔离所述至少一个第二开关管232产生的寄生电容;其中,所述第一隔离单元的一端与所述第一微波单元221连接,另一端与所述至少一个第一开关管231连接,所述第二隔离单元的一端与所述第二微波单元222连接,另一端与所述至少一个第二开关管232连接。
本申请实施例中,以一个第一开关管231和一个第二开关管232为例,第一隔离单元可以隔离第一开关管231在高频率下产生的寄生电容向其它电路模块,例如,第二开关管232的传输,第二隔离单元可以隔离第二开关管232在高频率下产生的寄生电容向其它电路模块,例如,第一开关管231的传输。从而可以进一步地避免电路的串扰。
本申请实施例中,由于微波的传输速度较快,第一微波单元221的第一发射端和第一接收端之间的距离可以设置的较远,例如,可以大于第一阈值, 因此,第一微波单元221本身可以隔离第一开关管231产生的寄生电容向其它电路模块,例如,第二开关管232的传输,第一隔离单元的设置可以进一步地隔离第一开关管231产生的寄生电容向其它电路模块,例如,第二开关管232的传输。
类似地,第二微波单元222的第二发射端与第二接收端之间的距离也可以设置的较远,例如,可以大于第二阈值,因此,第二微波单元222本身可以隔离第二开关管232产生的寄生电容向其它电路模块,例如,第一开关管231的传输,第二隔离单元的设置可以进一步地隔离第二开关管232产生的寄生电容向其它电路模块,例如,第一开关管231的传输。
可选地,在一些实施中,如图5所示,所述控制单元210包括:第一控制单元211,与所述第一微波单元221连接,用于输出所述第一控制信号到所述第一微波单元221,以及用于控制所述第一控制信号的输出时间;第二控制单元212,与所述第二微波单元222连接,用于输出所述第二控制信号到所述第二微波单元222,以及用于控制所述第二控制信号的输出时间。
本申请实施例中,第一微波单元221和第二微波单元222也可以通过两个控制单元分别控制传输控制信号,例如,第一控制单元211可以向第一微波单元221传输第一控制信号,第一微波单元221的第一发射端可以基于第一控制单元211传输的第一控制信号将其转化为第一微波信号,并传输至第一微波单元221的第一接收端,第一接收端在接收到该第一微波信号后,可以将该第一微波信号转化为第一控制信号,并将该第一控制信号传输至第一开关管231,以控制第一开关管231的导通或关断;第二控制单元212可以向第二微波单元222传输第二控制信号,第二微波单元222的第二发射端可以基于第二控制单元212传输的第二控制信号将其转换为第二微波信号,并传输至第二微波单元221的第二接收端,第二接收端在接收到该第二微波信号后,可以将该第二微波信号转化为第二控制信号,并将该第二控制信号传输至第二开关管232,以控制第二开关管232的导通或关断。
值的注意的是,第一控制单元211和第二控制单元212之间可以相互进行通信,以使得第一控制单元211和第二控制单元212可以更加准确地输出控制信号。
可选地,在一些实施例中,所述第一控制信号和所述第二控制信号的高电平和/或低电平输出的时间点不同,以使得所述至少一个第一开关管231完全关断时,所述至少一个第二开关管232导通。
可选地,在一些实施例中,所述第一控制单元211,还用于向所述第二控制单元212发送第一同步信号,和/或,接收所述第二控制单元212发送的第二同步信号;所述第二控制单元212,还用于向所述第一控制单元211发送所述第二同步信号,和/或,接收所述第一控制单元211发送的所述第一同步信号。
结合图6进行说明,以一个第一开关管231和一个第二开关管232为例,在(t1-t2)这一时间段内,第一控制单元211可以输出高电平,以控制第一 开关管231处于开通状态,使得变压器240的初级侧储存能量,在t2这一时间点,第一控制单元221可以输出低电平,以控制第一开关管231处于关断状态。从图6中可以看出,第一控制单元211在t2这一时间点输出低电平时,第二控制单元212并未瞬时输出低电平,而是在t3这一时间点开始输出低电平,以控制第二开关管232的开通,使得变压器240初级侧储存的能量可以向变压器240的次级侧释放。
其中,(t2-t3)这一时间段就称为死区时间,在这一死区时间内,第一控制单元211可以输出低电平,第二控制单元212可以输出高电平,目的是使得第一开关管231完全关断后才控制第二开关管232的导通,以避免变压器240初级侧储存的能量向次级侧释放的时候,由于第二开关管232的提前导通而产生的寄生电容传到第一开关管231,导致第一开关管231的误导通,引起电路的串扰。
本申请实施例中,第一控制单元211和第二控制单元212之间可以进行通信,例如,第一控制单元211可以通知第一控制单元211在t2这一时间点结束高电平的输出,开始输出低电平,第二控制单元212在接收到第一控制单元211的通知后,可以在预设的死区时间后开始输出低电平,即可以在t3这一时间点输出低电平,以避免变压器240初级侧储存的能量向次级侧释放的时候,由于第二开关管232的提前导通而产生的寄生电容传到其它电路模块,例如,第一开关管231,由此引起电路的串扰。
或者,第一控制单元211在t2这一时间点结束高电平的输出,在(t2-t3)这一死区时间段内的任何一个时间点通知第二控制单元212在t3这一时间点输出低电平,以避免变压器240初级侧储存的能量向次级侧释放的时候,由于第二开关管232的提前导通而产生的寄生电容传到其它电路模块,例如,第一开关管231,由此引起电路的串扰。
本申请实施例中,第一控制单元211也可以接收第二控制单元212发送的同步信号,以确定输出高电平和/或低电平的输出时间。
可选地,在一些实施例中,所述第二微波单元还用于:将所述变压器次级侧输出的直流电流的电压值和/或电流值反馈至所述控制单元;所述控制单元,还用于根据反馈的所述电压值和/或电流值,控制所述控制信号的高电平和/或低电平的输出时间。
本申请实施例中,第一开关管231可以用于对输入变压器的电压进行斩波调制,第二开关管232可以用于对变压器次级侧输出的直流电流进行同步整流,从而可以基于同步整流后的直流电流对与适配器连接的电子设备进行充电。
本申请实施例中,变压器240次级侧输出的直流电流可以通过第二微波单元222反馈至控制单元210中,控制单元210根据反馈的直流电流输出控制信号的高电平和/或低电平的时间。
例如,假设控制单元210接收到的反馈的直流电流的电压值较小,控制单元210可以控制增加一个周期内的高电平的输出时长,使得第一开关管 231处于导通状态的时长增加,从而可以增大变压器次级侧输出的直流电流的电压值;若控制单元210接收到的反馈的直流电流的电压值较大,控制单元210可以控制减少一个周期内的高电平的输出时长,使得第一开关管231处于导通状态的时长减少,从而可以减少变压器次级侧输出的直流电流的电压值。
可以理解的是,第一开关管231的导通时间与变压器240次级侧输出的直流电流可以有关联关系,即第一开关管231的导通时间越长,变压器240次级侧输出的直流电流越大;第一开关管231的导通时间越短,变压器240次级侧输出的直流电流越小。
在一些实施例中,第一控制单元211或第二控制单元212输出的信号可能不足以控制第一开关管231或第二开关管232的开通或关断,因此,可以借助于驱动单元控制开关管的开通或关断。
本申请实施例中,如图7所示,驱动电路200还可以包括第一驱动单元271和第二驱动单元272。其中,第一驱动单元271可以对第一微波单元221的接收端输出的控制信号放大,以使得放大后的信号能够控制第一开关管231的开通或关断;第二驱动单元272可以对第二微波单元222输出的控制信放大,以使得放大后的信号能够控制第二开关管232的开通或关断。
可以理解的是,本申请实施例中的第一驱动单元271或/或第二驱动单元272可以用于对控制单元210输出的控制信号进行放大,即可以增加控制信号的控制能力,使其可以控制开关管。
在一些实施例中,第一驱动单元271和/或第二驱动单元272也可以提升控制信号上升和下降的速度。
本申请实施例中的驱动单元可以是电荷泵自举控制电路、控制芯片等。
应理解,本申请实施例中,图2-图5中也可以包括至少一个驱动单元。例如,对于图2,其驱动单元可以位于第一微波单元221和至少一个开关管231之间,以对第一微波单元221输出的控制信号进行放大,使其可以控制至少一个开关管231。
对于图3-图5,其可以包括两个驱动单元,其中一个驱动单元可以位于第一微波单元221和第一开关管231之间,以对第一微波单元221输出的控制信号进行放大,使其可以控制第一开关管231;另一驱动单元可以位于第二微波单元222和至少一个第二开关管232之间,以对第二微波单元222输出的控制信号进行放大,使其可以控制至少一个第二开关管232。
可选地,在一些实施例中,所述第一控制信号和/或所述第二控制信号的死区时间小于第一阈值。
具体地,结合图5和图6进行说明。如图5所示,第一控制单元211可以输出第一控制信号,例如,输出高电平,以控制第一开关管231处于开通状态,在t2这一时间点,第一控制单元211可以输出低电平,以开始控制第一开关管231处于关断状态。参考图6,第一控制单元211在(t1-t2)这一时间段输出高电平,以控制第一开关管231处于开通状态,在t2这一时间点 输出低电平,以开始控制第一开关管231关断。此外,第一控制单元211在t2这一时间点输出低电平的时候,第二控制单元212并未瞬时输出低电平,而是在t3这一时间点开始输出低电平,以控制第二开关管232开始开通。
类似地,第二控制单元212可以输出第二控制信号,例如,在(t3-t4)这一时间段内可以输出低电平,以使得第二开关管232导通,此时,第一开关管处于关断状态。在t4这一时间点,第二控制单元212可以输出高电平,以控制第二开关管232开始断开,在第二控制单元212输出高电平时,第一控制单元211并未瞬时输出高电平,而是在t5这一时间点开始输出高电平,以控制第一开关管231开始导通。
其中,(t2-t3)这一时间段就称为死区时间,由于本申请实施例中利用微波单元向开关管传输信号,而微波单元的发射端可以将控制信号转化为微波信号并传输至接收端,且微波具有快速传输的特性,能够使得微波信号快速地传输至微波单元的接收端,接收端将该微波信号转化为控制信号后,从而可以使得开关管快速导通或关断。因此,死区时间的时长可以设置小于第一阈值,若第一阈值为0.4us,则本申请实施例中的死区时间可以设置为0.2us或0.3us等,本申请对此不作具体限定。
可选地,在一些实施例中,所述第一控制信号和/或所述第二控制信号的预设频率大于第二阈值。
本申请实施例中的第一控制信号和/或第二控制信号的预设频率可以大于第二阈值。以第一控制信号为例,例如,若第二阈值为200KHz,假设第一控制信号的预设频率为250KHz,即两个开关管导通和关断的时间之和可以为4us。结合图5和图6进行说明,第一控制单元211在(t1-t2)这一时间段输出高电平,若死区时间为0.4us,则图中的(t1-t2)这一时间段为1.6us,图中的(t2-t3)这一时间段为0.4us。则第一开关管231在一个周期内导通的时间为1.6us,在(t2-t3)这一时间段为0.4us的死区时间内,第一控制单元211可以输出低电平,以使得第一开关管231完全关断,在第一开关管231完全关断后,第二控制单元212开始输出低电平,使得第二开关管232导通。
可以理解的是,第二控制单元212在(t3-t4)这一时间段输出低电平的时候,第一控制单元211也可以输出低电平,以使得第一开关管231处于断开状态,可以避免由于第一开关管231的误导通而引起的电路串扰。
在一些实现方式下,第一控制信号的预设频率和第二控制信号的预设频率可以不同,本申请对此不作具体限定。
应理解,上述数值仅为举例说明,还可以为其它数值,不应对本申请造成特别限定。
还应理解,本申请实施例中的预设频率越大,即控制单元输出的信号的周期越小,即使死区时间设置的较小,本申请实施例中的微波单元也可以快速地将信号传输至开关管,从而可以使得开关管快速地导通或关断;此外,在频率越大的情况下,开关管产生的寄生电容越明显,而由于微波单元的发射端和接收端的距离可以设置的较远,因此,即使频率较大,开关管产生的 寄生电容也不能传输至其它电路模块或器件,从而可以避免电路的串扰。
上文提到,微波单元的发射端和接收端之间的距离可以设置的较远一些,下文将进行具体描述。
可选地,在一些实施例中,所述第一微波单元包括的第一发射端和所述第一接收端之间的距离大于第三阈值;所述第二微波单元包括的所述第二发射端和所述第二接收端之间的距离大于第四阈值。
本申请实施例中,第一微波单元的第一发射端和第一接收端之间的距离可以大于第三阈值,例如,若第三阈值为1厘米,则微波单元的发射端和接收端之间的距离可以为1.5厘米,或2厘米等,本申请对此不作具体限定。
本申请实施例中,第二微波单元的第二发射端和第二接收端之间的距离可以大于第四阈值,例如,若第四阈值为0.8厘米,则第二微波单元的第二发射端和第二接收端之间的距离可以为1厘米,或1.5厘米等,本申请对此不作具体限定。
本申请实施例中,第一微波单元221的第一发射端和第一接收端之间的距离与第二微波单元222的第二发射端和第二接收端之间的距离可以相同,也可以不同,本申请对此不作具体限定。
可以理解的是,由于微波的传输不依靠介质传输,其传输速度较快,可以减小信号传输的时间。对于微波单元来说,其发射端可以将控制信号转换为微波信号并快速地将该微波信号传输至接收端,接收端在接收到微波信号后,可以将该微波信号转化为控制信号,能够使得开关管快速地得到响应,即能够使得开关管快速地开通或关断。
上文结合图1-图7,详细描述了本申请的装置实施例,下面结合图8,描述本申请的方法实施例,方法实施例与装置实施例相互对应,因此未详细描述的部分可以参见前面各装置实施例。
如图8所示,为本申请实施例提供的一种控制方法800,所述方法应用于适配器,所述适配器包括变压器、至少一个第一开关管、控制单元和第一微波单元,该方法800可以包括步骤810-830。
810,控制单元输出第一控制信号。
820,所述控制单元控制所述第一微波单元的第一发射端将所述第一控制信号转化为第一微波信号并发送至所述第一微波单元的第一接收端。
830,所述控制单元控制所述第一接收端将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管的导通或关断。
可选地,在一些实施例中,所述控制单元控制所述第一接收端将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管的导通或关断,包括:所述控制单元控制所述第一接收端将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管导通或关断,以及隔离所述第一开关管产生的寄生电容。
可选地,在一些实施例中,所述适配器还包括至少一个第二开关管和第二微波单元,所述方法800还包括:所述控制单元输出第二控制信号;所述 控制单元控制所述第二微波单元的第二发射端将所述第二控制信号转化为第二微波信号并发送至所述第二接收端;所述控制单元控制所述第二接收端将所述第二微波信号转化为所述第二控制信号,以控制所述至少一个第二开关管的导通或关断。
可选地,在一些实施例中,所述控制单元控制所述第二接收端将所述第二微波信号转化为所述第二控制信号,以控制所述至少一个第二开关管的导通或关断,包括:所述控制单元控制所述第二接收端将所述第二微波信号转化为所述第二控制信号,以控制所述至少一个第二开关管的导通或关断,以及隔离所述至少一个第二开关管产生的寄生电容。
可选地,在一些实施例中,所述控制单元包括第一控制单元和第二控制单元;所述控制单元输出预设频率下的控制信号,包括:所述第一控制单元输出所述第一控制信号到所述第一微波单元,以及用于控制所述第一控制信号的输出时间;所述第二控制单元输出所述第二控制信号到所述第二微波单元,以及用于控制所述第二控制信号的输出时间。
可选地,在一些实施例中,所述第一控制信号和所述第二控制信号的高电平和/或低电平输出的时间点不同,以使得所述至少一个第一开关管完全关断时,所述至少一个第二开关管导通。
可选地,在一些实施例中,所述方法800还包括:所述第一控制单元,还向所述第二控制单元发送第一同步信号,和/或,接收所述第二控制单元发送的第二同步信号;所述第二控制单元,还向所述第一控制单元发送所述第二同步信号,和/或,接收所述第一控制单元发送的所述第一同步信号。
可选地,在一些实施例中,所述方法还包括:所述第二微波单元将所述变压器次级侧输出的直流电流的电压值和/或电流值反馈至所述控制单元;所述控制单元根据反馈的所述电压值和/或电流值,控制所述控制信号的高电平和/或低电平的输出时间。
可选地,在一些实施例中,所述第一控制信号和/或所述第二控制信号的死区时间小于第一阈值。
可选地,在一些实施例中,所述第一控制信号和/或所述第二控制信号的预设频率大于第二阈值。
可选地,在一些实施例中,所述第一微波单元和/或所述第二微波单元包括IC芯片,所述IC芯片中封装极高频天线。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述充电方法800中的任何一种方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述充电方法800中的任何一种方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任 意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各设备,但这些设备不应受到这些术语的限制。这些术语仅用于将一个设备与另一个设备区别开。比如,在不改变描述的含义的情况下,第一设备可以叫做第二设备,并且同样地,第二设备可以叫做第一设备,只要所有出现的“第一设备”一致重命名并且所有出现的“第二设备”一致重命名即可。第一设备和第二设备都是设备,但可以不是相同的设备。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种适配器,其特征在于,包括:
    变压器;
    至少一个第一开关管,与所述变压器的初级侧连接,用于对输入所述变压器的电压进行斩波调制;
    控制单元,用于输出第一控制信号;
    第一微波单元,所述第一微波单元包括第一发射端和第一接收端,所述第一发射端与所述控制单元连接,所述第一接收端与所述至少一个第一开关管连接,所述第一发射端用于将所述第一控制信号转化为第一微波信号并发送至所述第一接收端,所述第一接收端用于将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管的导通或关断。
  2. 根据权利要求1所述的适配器,其特征在于,所述第一微波单元进一步用于:传输所述第一控制信号,以控制所述至少一个第一开关管的导通或关断,以及隔离所述至少一个第一开关管产生的寄生电容。
  3. 根据权利要求1或2所述的适配器,其特征在于,所述适配器还包括:
    至少一个第二开关管,用于对所述变压器输出的直流电流进行同步整流;
    所述控制单元,还用于输出第二控制信号;
    第二微波单元,所述第二微波单元包括第二发射端和第二接收端,所述第二发射端与所述控制单元连接,所述第二接收端与所述至少一个第二开关管连接,所述第二发射端用于将所述第二控制信号转化为第二微波信号并发送至所述第二接收端,所述第二接收端用于将所述第二微波信号转化为所述第二控制信号,以控制所述至少一个第二开关管的导通或关断。
  4. 根据权利要求3所述的适配器,其特征在于,所述第二微波单元进一步用于:传输所述第二控制信号,以控制所述至少一个第二开关管的导通或关断,以及隔离所述至少一个第二开关管产生的寄生电容。
  5. 根据权利要求3或4所述的适配器,其特征在于,所述控制单元包括:
    第一控制单元,与所述第一微波单元连接,用于输出所述第一控制信号到所述第一微波单元,以及用于控制所述第一控制信号的输出时间;
    第二控制单元,与所述第二微波单元连接,用于输出所述第二控制信号到所述第二微波单元,以及用于控制所述第二控制信号的输出时间。
  6. 根据权利要求3至5中任一项所述的适配器,其特征在于,所述第一控制信号和所述第二控制信号的高电平和/或低电平输出的时间点不同,以使得所述至少一个第一开关管完全关断时,所述至少一个第二开关管导通。
  7. 根据权利要求5或6所述的适配器,其特征在于,所述第一控制单元,还用于向所述第二控制单元发送第一同步信号,和/或,接收所述第二控 制单元发送的第二同步信号;
    所述第二控制单元,还用于向所述第一控制单元发送所述第二同步信号,和/或,接收所述第一控制单元发送的所述第一同步信号。
  8. 根据权利要求3至7中任一项所述的适配器,其特征在于,所述第二微波单元还用于:将所述变压器次级侧输出的直流电流的电压值和/或电流值反馈至所述控制单元;
    所述控制单元,还用于根据反馈的所述电压值和/或电流值,控制所述控制信号的高电平和/或低电平的输出时间。
  9. 根据权利要求3至8中任一项所述的适配器,其特征在于,所述第一控制信号和/或所述第二控制信号的死区时间小于第一阈值。
  10. 根据权利要求3至9中任一项所述的适配器,其特征在于,所述第一控制信号和/或所述第二控制信号的预设频率大于第二阈值。
  11. 根据权利要求3至10中任一项所述的适配器,其特征在于,所述第一微波单元和/或第二微波单元包括集成电路IC芯片,所述IC芯片中封装极高频天线。
  12. 一种控制方法,其特征在于,所述方法应用于适配器,所述适配器包括变压器、至少一个第一开关管、控制单元和第一微波单元,所述方法包括:
    所述控制单元输出第一控制信号;
    所述控制单元控制所述第一微波单元的第一发射端将所述第一控制信号转化为第一微波信号并发送至所述第一微波单元的第一接收端;
    所述控制单元控制所述第一接收端将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管的导通或关断。
  13. 根据权利要求12所述的方法,其特征在于,所述控制单元控制所述第一接收端将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管的导通或关断,包括:
    所述控制单元控制所述第一接收端将所述第一微波信号转化为所述第一控制信号,以控制所述至少一个第一开关管的导通或关断,以及隔离所述至少一个第一开关管产生的寄生电容。
  14. 根据权利要求12或13所述的方法,其特征在于,所述适配器还包括至少一个第二开关管和第二微波单元,所述方法还包括:
    所述控制单元输出第二控制信号;
    所述控制单元控制所述第二微波单元的第二发射端将所述第二控制信号转化为第二微波信号并发送至第二接收端;
    所述控制单元控制所述第二接收端将所述第二微波信号转化为所述第二控制信号,以控制所述至少一个第二开关管的导通或关断,所述至少一个第二开关管用于对所述变压器输出的直流电流进行同步整流。
  15. 根据权利要求14所述的方法,其特征在于,所述控制单元控制所述第二接收端将所述第二微波信号转化为所述第二控制信号,以控制所述至 少一个第二开关管的导通或关断,包括:
    所述控制单元控制所述第二接收端将所述第二微波信号转化为所述第二控制信号,以控制所述至少一个第二开关管的导通或关断,以及隔离所述至少一个第二开关管产生的寄生电容。
  16. 根据权利要求14或15所述的方法,其特征在于,所述控制单元包括第一控制单元和第二控制单元;
    所述控制单元输出控制信号,包括:
    所述第一控制单元输出所述第一控制信号到所述第一微波单元,以及控制所述第一控制信号的输出时间;
    所述第二控制单元输出所述第二控制信号到所述第二微波单元,以及控制所述第二控制信号的输出时间。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述第一控制信号和所述第二控制信号的高电平和/或低电平输出的时间点不同,以使得所述至少一个第一开关管完全关断时,所述至少一个第二开关管导通。
  18. 根据权利要求16或17所述的方法,其特征在于,所述方法还包括:
    所述第一控制单元,向所述第二控制单元发送第一同步信号,和/或,接收所述第二控制单元发送的第二同步信号;
    所述第二控制单元,向所述第一控制单元发送所述第二同步信号,和/或,接收所述第一控制单元发送的所述第一同步信号。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二微波单元将所述变压器次级侧输出的直流电流的电压值和/或电流值反馈至所述控制单元;
    所述控制单元根据反馈的所述电压值和/或电流值,控制所述控制信号的高电平和/或低电平的输出时间。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述第一控制信号和/或所述第二控制信号的死区时间小于第一阈值。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述第一控制信号和/或所述第二控制信号的预设频率大于第二阈值。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一微波单元和/或第二微波单元包括集成电路IC芯片,所述IC芯片中封装极高频天线。
  23. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行权利要求11至22中任一项所述的方法。
PCT/CN2020/070776 2020-01-07 2020-01-07 适配器和控制方法 WO2021138821A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20912661.4A EP4084314A4 (en) 2020-01-07 2020-01-07 ADAPTER AND CONTROL METHOD
PCT/CN2020/070776 WO2021138821A1 (zh) 2020-01-07 2020-01-07 适配器和控制方法
CN202080083923.1A CN114747127A (zh) 2020-01-07 2020-01-07 适配器和控制方法
US17/858,453 US20220337169A1 (en) 2020-01-07 2022-07-06 Adapter and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070776 WO2021138821A1 (zh) 2020-01-07 2020-01-07 适配器和控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/858,453 Continuation US20220337169A1 (en) 2020-01-07 2022-07-06 Adapter and control method

Publications (1)

Publication Number Publication Date
WO2021138821A1 true WO2021138821A1 (zh) 2021-07-15

Family

ID=76787652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070776 WO2021138821A1 (zh) 2020-01-07 2020-01-07 适配器和控制方法

Country Status (4)

Country Link
US (1) US20220337169A1 (zh)
EP (1) EP4084314A4 (zh)
CN (1) CN114747127A (zh)
WO (1) WO2021138821A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178595A (zh) * 2013-03-14 2013-06-26 广东欧珀移动通信有限公司 手机适配器
CN106026705A (zh) * 2016-06-24 2016-10-12 深圳创维-Rgb电子有限公司 适配器
CN205882810U (zh) * 2016-02-05 2017-01-11 广东欧珀移动通信有限公司 用于终端的充电***以及电源适配器
WO2019039488A1 (ja) * 2017-08-22 2019-02-28 ダイヤモンド電機株式会社 コンバータ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647198A (zh) * 2006-11-16 2010-02-10 恒星射频公司 分布式多级放大器
GB2446622A (en) * 2007-02-14 2008-08-20 Sharp Kk Wireless interface
CN101261764A (zh) * 2008-04-24 2008-09-10 上海交通大学 功率开关器件的无线驱动***
JP6374261B2 (ja) * 2014-08-01 2018-08-15 ローム株式会社 絶縁同期整流型dc/dcコンバータおよびその同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
US9899925B2 (en) * 2015-12-15 2018-02-20 Google Llc Two stage structure for power delivery adapter
US10410814B2 (en) * 2017-04-03 2019-09-10 United Technologies Corporation Systems and methods for sending a power signal to a power switching device with galvanic isolation
US9917525B1 (en) * 2017-08-16 2018-03-13 Nxp B.V. SMPS with synchronous rectification having deadtime responsive to peak voltage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178595A (zh) * 2013-03-14 2013-06-26 广东欧珀移动通信有限公司 手机适配器
CN205882810U (zh) * 2016-02-05 2017-01-11 广东欧珀移动通信有限公司 用于终端的充电***以及电源适配器
CN106026705A (zh) * 2016-06-24 2016-10-12 深圳创维-Rgb电子有限公司 适配器
WO2019039488A1 (ja) * 2017-08-22 2019-02-28 ダイヤモンド電機株式会社 コンバータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4084314A4 *

Also Published As

Publication number Publication date
EP4084314A4 (en) 2022-12-28
US20220337169A1 (en) 2022-10-20
EP4084314A1 (en) 2022-11-02
CN114747127A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2020169010A1 (zh) 充电***和电子设备
US10763707B2 (en) Method and apparatus for providing wireless charging power to a wireless power receiver
WO2018184584A1 (zh) 无线充电装置、方法及待充电设备
US20120313445A1 (en) Wireless power transmission apparatus and system
WO2021227652A1 (zh) 无线充电设备和待充电设备
KR20150050027A (ko) 무선 충전 장치 및 그 제어방법
US10148127B2 (en) Wireless power transmitting apparatus and method thereof
WO2015035924A1 (zh) 无线充电装置与方法以及使用该装置的移动终端
EP3557747A1 (en) Power supply circuit, power supply device, and control method
WO2020124582A1 (zh) 接收装置和无线充电方法
WO2020134672A1 (zh) 一种acf变换器、电压变换方法及电子设备
US20200204003A1 (en) Power relay device and system
WO2023138322A1 (zh) 一种无线充电的发射端、充电底座及***
WO2024051086A1 (zh) 一种电力接收装置、电力发送装置及电力传输方法
EP4283832A1 (en) Charging control method, electronic device, and wireless charging system
WO2021138821A1 (zh) 适配器和控制方法
CN220544989U (zh) 一种基于毫米波隔离和远程通断的电路
WO2021138820A1 (zh) 充电器和控制方法
TWI794795B (zh) 感應諧振式無線充電系統、諧振式無線充電發射裝置、無線充電中繼裝置及感應式無線充電接收裝置
US11133698B2 (en) Wireless charging systems and methods for controlling the same
WO2021138819A1 (zh) 控制电路和开关管的控制方法
KR20120077449A (ko) 자기공진유도 방식을 이용한 멀티노드 무선 전력 전송 시스템 및 그 충전 방법
CN216390606U (zh) 一种带有无线通信装置的无线电能传输***
CN109038837B (zh) 无线充电装置和无线充电***
CN116470656A (zh) 电子装置、建立高速通信的方法及无线功率传输***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020912661

Country of ref document: EP

Effective date: 20220726

NENP Non-entry into the national phase

Ref country code: DE