WO2021136355A1 - 低硅低碳当量吉帕级复相钢板/钢带及其制造方法 - Google Patents

低硅低碳当量吉帕级复相钢板/钢带及其制造方法 Download PDF

Info

Publication number
WO2021136355A1
WO2021136355A1 PCT/CN2020/141310 CN2020141310W WO2021136355A1 WO 2021136355 A1 WO2021136355 A1 WO 2021136355A1 CN 2020141310 W CN2020141310 W CN 2020141310W WO 2021136355 A1 WO2021136355 A1 WO 2021136355A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
steel
silicon
steel sheet
carbon equivalent
Prior art date
Application number
PCT/CN2020/141310
Other languages
English (en)
French (fr)
Inventor
张瀚龙
孙宜强
毛新平
王成
张玉龙
金鑫焱
汪水泽
王利
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to EP20910379.5A priority Critical patent/EP4086362A4/en
Priority to BR112022011028A priority patent/BR112022011028A2/pt
Priority to KR1020227023484A priority patent/KR20220119639A/ko
Priority to US17/789,204 priority patent/US20230049380A1/en
Priority to JP2022539208A priority patent/JP7439265B2/ja
Priority to AU2020418007A priority patent/AU2020418007A1/en
Publication of WO2021136355A1 publication Critical patent/WO2021136355A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention belongs to the field of metal materials, and specifically relates to a low-carbon equivalent gigapascal grade composite steel plate/steel belt and a manufacturing method thereof, and is mainly applied to the manufacture of automobile chassis, suspension parts and other products.
  • the "lightweight” of automobiles can directly reduce emissions and reduce fuel consumption, which is the goal of today's automobile manufacturing industry.
  • An important measure for the "lightweight” of automobiles is to use high-strength and ultra-high-strength steel plates to replace low-strength steel plates.
  • the concept of "lightweight” is further applied to automobile chassis and suspension systems. Increasingly stringent environmental requirements and market demands also require the use of high-strength steel for automobile chassis materials to achieve "lightweight”.
  • Chinese Patent CN101400816A adds a large amount of expensive alloying elements such as Ni and Cu to make the steel reach the strength level of gigapascals.
  • this method not only makes the alloy cost of the steel greatly increased, but also increases the carbon equivalent level of the steel.
  • most of the embodiments in this patent have added more than 0.50% silicon.
  • the silicon content in the steel is high, defects such as red scales (red iron skin, tiger skin texture, etc.) can be formed, which will lead to the deterioration of the surface quality of the steel.
  • the surface of the steel strip with 0.5% silicon content is found to have equal spacing on the surface of the steel. Defects such as strip-shaped iron sheet, red iron sheet, tiger skin pattern, etc. account for about 30% of the surface of the strip. This surface condition cannot be used to prepare automotive parts products that are extremely harsh on the appearance and color of the surface.
  • the carbon equivalent is as high as 0.73 or more, not to mention the high alloy costs brought about by the addition of high Cu and Ni. Therefore, the product involved in the invention patent cannot be used to manufacture the low-cost and low-carbon equivalent Gigapa-class complex phase steel products for automobile chassis that are urgently needed in the market.
  • the existing technology cannot solve the contradiction between the gigapascal tensile strength and the low silicon and low carbon equivalent (namely surface quality and weldability) of the complex phase steel products for automobile chassis.
  • How to obtain a giga-level composite steel plate/steel with giga-level strength, high hole expandability, and high weldability to meet the production and manufacturing needs of automobile chassis structural components is a difficult problem in the steel industry today, and it is also current Urgent needs of the automotive industry.
  • the purpose of the present invention is to provide a low-silicon, low-carbon equivalent Gigapa-grade composite steel sheet/steel strip and a manufacturing method thereof.
  • the tensile strength of the steel sheet is ⁇ 980MPa, the yield strength is ⁇ 780MPa, and the hole expansion ratio satisfies: if the original hole is Punching hole: reaming rate> 50%; if the original hole is reamed: reaming rate> 60%, suitable for the preparation of automobile chassis and suspension system parts.
  • Low-silicon low-carbon equivalent Gigapa-grade composite steel sheet/steel strip the weight percentage of its composition is: C: 0.03 ⁇ 0.07%, Si: 0.1 ⁇ 0.5%, Mn: 1.7 ⁇ 2.0%, P ⁇ 0.02%, S ⁇ 0.01 %, N ⁇ 0.01%, Al: 0.01 ⁇ 0.05%, Cr: 0.4 ⁇ 0.7%, B: 0.001 ⁇ 0.005%, Ti: 0.07 ⁇ 0.15%, also containing Mo: 0.15 ⁇ 0.4% or Nb: 0.02 ⁇ 0.08% One or two of them, and the rest are Fe and other unavoidable impurities; and at the same time meet:
  • CE ⁇ 0.58, CE C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15.
  • the C content is 0.045 to 0.06%, calculated as a percentage by weight.
  • the Si content is 0.15 to 0.27%, calculated as a percentage by weight.
  • the B content is 0.002 to 0.004%, calculated as a percentage by weight.
  • the microstructure of the steel sheet/steel strip is ferrite and lower bainite, as well as a small amount of carbide precipitation phase, other inclusion phases and/or trace martensite phase, wherein the ferrite is calculated as a percentage by volume.
  • the content of ferrite is less than or equal to 20%, and the content of ferrite + lower bainite is greater than or equal to 95%.
  • the microstructure of the steel sheet/steel strip further contains TiN particles, and the longest side length of a single particle is less than 8 ⁇ m or the area is less than 50 ⁇ m 2 .
  • the average diameter of the ferrite grains is less than 6 ⁇ m, or the ferrite grain size ASTM rating is greater than 11.8.
  • the manufacturing method of the low-silicon low-carbon equivalent Gigapa-level complex phase steel sheet/steel strip of the present invention includes the following steps:
  • the slab enters the heating furnace at a temperature not lower than 700°C to heat the slab at a heating temperature of 1100 ⁇ 1250°C; during the hot rolling of the slab, the reduction rate of the first two passes is ⁇ 55%; the finishing temperature of the finishing rolling 850 ⁇ 950°C;
  • step 3 a hot-dip galvanizing annealing process is also included to obtain a finished hot-rolled hot-dip galvanized steel sheet.
  • the thickness of the steel plate/steel strip is 0.7-4.0 mm.
  • Carbon directly affects the strength, weldability and formability of the steel sheet/steel strip. The higher the carbon content, the more beneficial it is to increase the strength of the steel plate. If the carbon content is less than 0.03%, the strength of the steel plate/strip will not meet the target requirements; if the carbon content is higher than 0.07%, the carbon equivalent is likely to be too high, thereby deteriorating the steel plate. The solderability. Therefore, the present invention controls the carbon content in a range of 0.03 to 0.07%.
  • Silicon has a certain solid solution strengthening effect. The higher the Si content, the more beneficial it is to increase the strength of the steel sheet/strip. However, when the silicon content is higher than 0.5%, the hot-rolled steel sheet/steel strip is prone to form serious hot-rolled iron scale, which not only deteriorates the surface quality of the steel sheet/steel strip, is not conducive to the production of hot-dip galvanized steel sheet/steel strip, but also damages the steel sheet. /The platability of steel strip. Therefore, the present invention limits the silicon content to the range of 0.1% to 0.5%.
  • Manganese can effectively increase the strength of the steel plate/steel strip, and the cost is relatively low compared to other alloying elements. Therefore, the present invention uses manganese as the main additive element. However, when the manganese content is higher than 2.0%, martensite is formed in the structure, which impairs the hole expansion performance; when the manganese content is lower than 1.7%, the strength of the steel plate/strip is insufficient. Therefore, the present invention limits the manganese content to 1.7-2.0%.
  • Aluminum is added as the main deoxidizer in the steelmaking process, but when the aluminum content is less than 0.01%, the deoxidizing effect is insufficient: when the aluminum content exceeds 0.05%, it affects the viscosity of molten steel and may cause nozzle nodules and damage Welding performance of steel plate/steel strip. Therefore, the present invention limits the aluminum content to 0.01 to 0.05%.
  • Chromium is conducive to expanding the bainite phase region, ensuring that the steel plate/steel can get bainite structure during cooling after rolling, and is conducive to improving the strength and hole expansion rate.
  • the addition amount exceeds 0.7%, the increase in strength will no longer be significant, but it will be detrimental to the weldability of the steel sheet/steel strip.
  • the content is less than 0.4%, the expansion of the bainite phase region is not significant. Therefore, the present invention limits both the chromium and molybdenum content to 0.4 to 0.7%.
  • Titanium, niobium and molybdenum are the microalloying elements in the complex phase steel of the present invention.
  • the strength of the complex phase steel is improved by the second phase strengthening after the formation of fine carbides.
  • the carbide forming ability of Nb element is stronger. If the addition of microalloying elements is insufficient, the strength of the steel plate cannot meet the design requirements.
  • Ti element will also form TiN particles with the N element in the steel, and TiN that is too large will have an adverse effect on hole expansion.
  • Ti element also forms titanium boride with B element in steel, reducing the effective boron content in steel.
  • the size of TiN particles must be controlled to ensure that the longest side length of a single particle is less than 8 ⁇ m or the area is less than 50 ⁇ m 2 . In order to avoid the coarse TiN particles from damaging the hole expandability of the steel plate.
  • B Boron is conducive to expanding the bainite phase region, ensuring that the bainite structure of the steel plate/steel strip can be obtained during cooling after rolling, and it significantly improves the strength and hardness of the steel.
  • too much B element will cause too much martensite structure in the steel plate, resulting in a decrease in steel hole expansion and elongation.
  • the B element in steel that is really beneficial to expand the bainite phase region is the effective B element that does not combine with Ti, N and other elements to form borides.
  • the upper limit of impurity elements in steel is controlled at P: ⁇ 0.02%, S: ⁇ 0.01%, and N ⁇ 0.01%. The purer the steel, the better the effect.
  • the microstructure of the steel plate/strip of the present invention is the microstructure of ferrite + lower bainite, and the ferrite content is less than or equal to 20%.
  • the content of ferrite + lower bainite is ⁇ 95%. If the ferrite structure is higher than 20%, the steel plate/strip will not reach the required strength; if the ferrite + lower bainite content is less than 95%, the hole expansion performance of the steel plate/strip will not meet the requirements .
  • the microstructure of the steel sheet/strip may also include a small amount (such as 5% or less) carbide precipitation phase, a trace amount (such as 0.5% or less) martensite phase or a very small amount (0.01% or less, occasionally in the field of view) Found) other inclusion phases.
  • the other inclusion phases may be common inclusions in steel such as MnS, TiN, and AlN.
  • the average ferrite grain diameter is less than 6 ⁇ m, or the grain size ASTM rating is greater than 11.8. If the average grain diameter is not less than 6 ⁇ m or the grain size rating is not more than 11.8, the steel plate/strip will not be able to achieve the required strength.
  • CE C + Mn/6 + (Cr + Mo + V) / 5 + (Si + Ni + Cu) / 15 ⁇ 0.58 Ensure that the complex phase steel has a low carbon equivalent level and good weldability.
  • the cooling rate of the slab during continuous casting will affect the grain size in the final structure of the steel sheet/strip, the size of inclusions formed in the liquid phase, and the ratio of columnar crystals in the slab structure. If the cooling rate is lower than 5°C/s, on the one hand, the thickness or proportion of the columnar crystals of the slab will be higher than the design requirements, which will easily form a band-like structure in the subsequent finished product structure, which will affect the bending performance of the steel plate/strip; on the other hand, On the other hand, the decrease in the cooling rate of the slab during continuous casting will cause the grain size in the final structure to be out of design requirements, and will cause the size of the inclusions (typically TiN) generated in the liquid phase in the steel to be coarse, which is very important for hole expansion and bending. Performance is adversely affected.
  • the minimum temperature of the slab before it is fed into the furnace will affect the final performance of the product.
  • the lowest temperature of the slab before entering the furnace is less than 700°C, titanium carbide will precipitate in the slab in large quantities, and in the subsequent reheating process, the titanium carbide that has been precipitated in the slab cannot be completely re-dissolved into the slab. In this case, the solid solution titanium and titanium carbide in the matrix after hot rolling are both less, resulting in insufficient product strength.
  • the finishing temperature of finishing rolling is less than 850°C, ferrite will precipitate before finishing rolling, resulting in low bainite content in the final structure and making the steel plate/strip unable to reach the set strength.
  • the final rolling temperature of the finishing rolling should not exceed 950°C.
  • the reduction rate per pass of the first and second hot rolling passes is ⁇ 55%; when the reduction rate is insufficient, the fineness cannot be obtained.
  • the uniform structure of the structure leads to insufficient strength of the steel plate/steel strip.
  • the high pressure reduction rate in the above step 2) must match the high cooling rate of the slab during continuous casting in step 1). If the continuous casting cooling rate cannot reach 5°C/s or more, it will cause the liquid phase in the slab The size of the generated inclusions (mainly TiN) is too large.
  • step 2 if a large reduction ratio of ⁇ 55% is used in step 2), it will cause the coarse TiN to crack, as shown in Figure 1, and become a steel plate/
  • the crack source inside the steel strip causes the deterioration of the hole expansion performance of the steel plate/steel strip; and if the continuous casting cooling rate can reach more than 5°C/s, the size of the inclusions (mainly TiN) generated in the liquid phase in the slab is small As shown in FIG. 2, it will not break during the large hot rolling reduction in step 2), so that it will not adversely affect the hole expansion performance of the steel plate/steel strip.
  • Coiling temperature is one of the most critical process parameters to obtain high strength and high hole expansion rate.
  • the coiling temperature is greater than 630°C, the alloy carbides are strongly precipitated and coarsened, which will have a negative effect on the hole expansion rate of the steel plate.
  • the coiling temperature is less than 550°C, the precipitation of carbides will be severely inhibited, resulting in The strength of the steel plate cannot meet the set requirements, therefore.
  • the present invention limits the coiling temperature to 550 to 630°C.
  • the performance of the ultra-high-strength hot-rolled steel sheet/steel strip meets the following indicators:
  • Hole expansion rate performance if the original hole is a punched hole: the hole expansion rate is greater than 50%, preferably ⁇ 55%; if the original hole is a reamed hole: the hole expansion rate is greater than 60%, preferably ⁇ 65%.
  • the ultra-high-strength hot-rolled steel sheet/steel provided by the present invention has a tensile strength of 980-1100MPa and a yield strength of 780-900MPa; hole expansion performance: if the original hole is a punched hole, the hole expansion rate 55% to 70%; if the original hole is reamed: the reaming rate is 65% to 80%.
  • the present invention adopts low silicon and low carbon equivalent component design to meet the surface quality requirements and weldability requirements of the multiphase steel for automobile chassis.
  • the silicon content Si is designed to be 0.1-0.5%, preferably 0.1-0.4%, and more
  • the micro-alloying elements B, Ti, and Nb are also further optimized. distribution.
  • B element can greatly increase the strength and hardness of steel sheets, there is still no clear study on how much B element is added for multiphase steel products.
  • the B element added to the steel will react with a variety of alloying elements. The most active reaction is to produce BN with the N element in the steel, but the formation of BN will greatly damage the manufacturability of the steel plate and the performance of the final product.
  • the content of effective boron in steel depends on the content of Ti and N elements on the one hand, and on the other hand, it is also affected by the effective carbon element, and the latter is also affected by the content of strong carbide forming elements and even bainite. Therefore, The content of effective B element in steel will be affected by complex factors.
  • the ultra-high-strength hot-rolled steel sheet/steel strip manufactured by the present invention has both low silicon and low-carbon equivalent, high strength of gigapascals and high hole expandability.
  • the ultra-high-strength hot-rolled steel sheet/steel strip product is hot-rolled by hot-dip galvanizing.
  • Galvanized steel sheet products, the ultra-high-strength hot-rolled steel sheet products, steel strip products, and hot-dip galvanized steel sheet products can be used to prepare automobile chassis and suspension system components to realize the “lightweight” of automobiles.
  • Figure 1 shows the size of TiN particles when the continuous casting cooling rate reaches more than 5°C/s and their morphology after hot rolling (hot-rolled microstructure photo).
  • Figure 2 shows the size of TiN particles when the continuous casting cooling rate is less than 5°C/s and their morphology after hot rolling (hot-rolled microstructure photo).
  • Figure 3 is a photo of hot-rolled red iron (tiger skin) defects on the surface of the strip steel when the Si element exceeds 0.5% (the figure shows the Si content of 0.55%, comparative example L).
  • Fig. 4 is a photo of the surface of the strip steel when the Si element is less than 0.5% (the figure shows the Si content is 0.25%, Example C).
  • Figure 5 shows that in the microstructure of the steel sheet/strip of the embodiment of the present invention, the content of ferrite + lower bainite is ⁇ 95%.
  • punching and reaming are used to prepare the original hole in the center of the test piece, and the subsequent tests and test methods are in accordance with the ISO/DIS 16630 standard.
  • the reaming rate test method is executed.
  • Examples A to I are steels of the present invention
  • Comparative Examples J to M are designed comparative steel grades, in which the content of carbon or manganese or other alloying elements exceeds the composition range of the present invention, and O and P are disclosed
  • Comparative Example O is the embodiment in CN201380022062.6, in which the alloy composition is different from the present invention, and the carbon equivalent is higher than the present invention
  • Comparative Example P is the embodiment in CN201180067938.X, in which the alloy composition is also different from the present invention, and the carbon equivalent The equivalent is higher than the present invention.
  • Table 2 shows the different manufacturing processes of each steel grade in Table 1, which are also divided into two categories: embodiment and comparative example.
  • Comparative Example O and Comparative Example P are the processes mentioned in the published patent applications, but because Comparative Example O is a cold rolled product, the hot rolling process is not specifically involved, and the product performance is the product performance after cold rolling and annealing; Some parameters in the comparative example P are not mentioned, and other parameters are partly different from the present invention.
  • Table 3 shows the measured values of the mechanical properties of the above-mentioned examples and comparative examples.
  • the strength will not meet the design standard of the present invention
  • the coiling temperature is too high, such as the comparative example D-2
  • a large amount of Coarse carbide particles deteriorate elongation and hole expansion performance.
  • the reduction rate of the first two passes of hot rolling is not enough, the band structure of the steel plate cannot be completely eliminated, and the grains cannot be sufficiently refined to achieve the uniformity of the structure, which will lead to the deterioration of the expansion rate of the steel plate elongation, as in the comparative example.
  • the present invention adopts low silicon and low carbon equivalent design ideas, and optimizes the ratio of each element by rationally designing the effective B element content range, and on the basis of the automotive steel production line, Further improve the continuous casting cooling rate, hot rolling reduction rate and coiling temperature, and produce giga-level ultra-high-strength hot-rolled steel plates/strips with high strength, high hole expansion performance, excellent surface quality and weldability.
  • the yield strength is not less than 780MPa
  • the tensile strength is not less than 980MPa
  • the hole expansion rate is greater than 50% (the original hole is punched) or greater than 60% (the original hole is reamed) to make up for the market in the automotive industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

低硅低碳当量吉帕级复相钢板/钢带及其制造方法,其成分重量百分比为:C:0.03~0.07%,Si:0.1~0.5%,Mn:1.7~2.0%,P≤0.02%,S≤0.01%,N≤0.01%,Al:0.01~0.05%,Cr:0.4~0.7%,B:0.001~0.005%,Ti:0.07~0.15%,还含有Mo:0.15~0.4%或Nb:0.02~0.08%中的一种或两种,其余为Fe和其他不可避免杂质;且同时满足:有效B*含量≥0.001,有效B*含量=B-[Ti-3.4N-1.2(C-Nb/7.8)]/22;CE<0.58,CE=C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15。所述钢板的抗拉强度≥980MPa、屈服强度≥780MPa,扩孔率满足:若原始孔为冲压孔:扩孔率>50%;若原始孔为铰孔:扩孔率>60%,主要用于汽车底盘、悬挂***零部件的制备。

Description

低硅低碳当量吉帕级复相钢板/钢带及其制造方法 技术领域
本发明属于金属材料领域,具体涉及一种低碳当量吉帕级复相钢板/钢带及其制造方法,主要应用于制造汽车底盘、悬挂件等产品。
背景技术
汽车“轻量化”可直接减少排放,降低油耗,是当今汽车制造业发展的目标。汽车“轻量化”的一个重要的措施就是采用高强度和超高强度的钢板来代替低强度钢板。目前,“轻量化”概念进一步沿用至汽车底盘及悬挂***,日益严苛的环保要求和市场需求也要求汽车底盘材料采用高强钢实现“轻量化”。
然而,除了要求钢板具有更高的强度,汽车底盘及悬挂***的结构件还要求钢板,良好的扩孔性能、表面涂装性能和焊接性能。因此,以铁素体、贝氏体和碳化物析出相为主要组织的复相钢,因具有高强度和良好的扩孔性能而成为目前汽车底盘及悬挂***零件的常用钢种。但是,目前市场上常见的复相钢强度普遍不能达到吉帕级水平,在已公布的专利中,多为屈服强度在600~700MPa,抗拉强度在700~900MPa级别。由于复相钢组织中需要保证一定量的铁素体和贝氏体来获得较高的扩孔性能(这两种组织的强度均低于马氏体),要想进一步提高复相钢的强度达到吉帕级水平,具有较大的难度。
目前提升复相钢抗拉强度达到吉帕级(即抗拉强度≥980MPa)的常见方法有两种,一是向钢中大量引入碳硅锰,尤其是硅元素来改变复相钢组织,引入马氏体或残余奥氏体来提升强度,另一种方法是添加大量其他合金元素来提升强度。但是大量引入硅元素会导致钢板表面质量变差,而大量引入其他合金元素会大幅提升钢板的成本。除此之外,两种方法都会大幅提升了钢板的碳当量水平。但是,相比车身零部件,汽车底盘零部件结构复杂,因而会需求各种类型的焊接工艺,如氩气保护焊接、激光焊接、点焊等,因此对钢材的碳当量水平有较高的要求。因此,研制底盘用吉帕级复相钢与控制钢板低成本低碳当量水平成为相互矛盾的技术矛盾,在 已公开的专利中无法兼得。
例如,中国专利CN101400816A通过大量添加Ni、Cu等昂贵的合金元素,使得钢材达到吉帕级的强度水平,但这种方法不仅使得钢材的合金成本大幅上升,更提高了钢材的碳当量水平。此外,该专利中绝大多数的实施例中都添加了超过0.50%的硅元素。
根据“基于高温氧化特性的含Si钢红铁皮缺陷研究[J]”(《轧钢》,2016,33(2):10-15;于洋、王畅、王林等);及“硅元素对炉生铁皮界面微观结构的影响研究[J]”(《轧钢》,2016,33(5):6-10)中所述:
当钢中硅含量较高时,可形成红鳞等缺陷(红铁皮、虎皮纹等)而导致钢材表面质量降低,其中含0.5%的硅含量的汽车用钢中发现带钢表面存在等间距的条带状铁皮,红铁皮、虎皮纹等缺陷占带钢表面比例约30%。这种表面状态无法用于制备对表面外观及颜色极为苛刻的汽车用零部件产品。该发明专利中公开的唯一一则硅含量能满足汽车用钢产品要求的发明例,碳当量则高达0.73以上,更遑论添加高Cu高Ni带来的高合金成本。因此,该发明专利中涉及的产品无法用于制造市场急需的低成本低碳当量的吉帕级汽车底盘用复相钢产品。
相似地,中国专利CN201710022118.8与CN201180067938.X虽然都设计了一种达到吉帕级的复相钢产品,虽然这两个专利中不添加昂贵的Ni、Cu合金元素,但硅含量均在0.5%以上,且碳当量水平均较高,因此同样无法用于制备对表面外观及颜色和碳当量要求都极为苛刻的汽车用零部件产品,不再赘述。
中国专利CN201380022062.6虽然公开了一种低硅成分设计的不含有表面虎皮斑缺陷(即本发明中提到的表面红铁皮缺陷)的吉帕级复相钢产品,但根据美国金属屑和公开的碳当量公式CE=C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15,该专利中产品的碳当量高于0.60以上,且该专利并未评估产品的扩孔性能。
因此,现有的技术无法在解决汽车底盘用复相钢产品中吉帕级抗拉强度与低硅低碳当量(即表面质量与可焊性)之间的矛盾。如何获得兼具吉帕级强度、高扩孔性、高可焊接性的吉帕级复相钢板/钢带,以满足汽车底盘结构部件的生产制造需要,是现今钢铁工业界的难题,也是当前汽车工业界的迫切需求。
发明内容
本发明的目的在于提供一种低硅低碳当量吉帕级复相钢板/钢带及其制造方法,该钢板的抗拉强度≥980MPa、屈服强度≥780MPa,扩孔率满足:若原始孔为冲压孔:扩孔率>50%;若原始孔为铰孔:扩孔率>60%,适用于汽车底盘、悬挂***零部件的制备。
为达到上述目的,本发明的技术方案是:
低硅低碳当量吉帕级复相钢板/钢带,其成分重量百分比为:C:0.03~0.07%,Si:0.1~0.5%,Mn:1.7~2.0%,P≤0.02%,S≤0.01%,N≤0.01%,Al:0.01~0.05%,Cr:0.4~0.7%,B:0.001~0.005%,Ti:0.07~0.15%,还含有Mo:0.15~0.4%或Nb:0.02~0.08%中的一种或两种,其余为Fe和其他不可避免杂质;且同时满足:
有效B*含量≥0.001,有效B*含量=B-[Ti-3.4N-1.2(C-Nb/7.8)]/22;
CE<0.58,CE=C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15。
优选的,所述C含量为0.045~0.06%,以重量百分比计。
优选的,所述Si含量为0.15~0.27%,以重量百分比计。
优选的,所述B含量为0.002~0.004%,以重量百分比计。
优选的,所述钢板/钢带的微观组织为铁素体和下贝氏体,以及少量碳化物析出相、其他夹杂物相和/或微量马氏体相,其中以体积百分比计,铁素体含量≤20%,铁素体+下贝氏体含量≥95%。
优选的,所述钢板/钢带的微观组织中还含有TiN颗粒,且单个颗粒的最长边长<8μm或面积<50μm 2
优选的,所述铁素体晶粒平均直径<6μm,或铁素体晶粒度ASTM评级>11.8。
本发明所述的低硅低碳当量吉帕级复相钢板/钢带的制造方法,包括如下步骤:
1)冶炼、连铸
按上述化学成分冶炼并通过连铸铸造成板坯,连铸时冷速≥5℃/s;
2)板坯热送、轧制
板坯在不低于700℃的温度下进加热炉,对板坯加热,加热温度为1100~1250℃;板坯热轧时前两道次压下率均≥55%;精轧终轧温度为850~950℃;
3)轧后冷却、卷取
轧后采用水冷,卷取温度为550~630℃;
4)酸洗。
进一步,在步骤3)酸洗后,还包括热镀锌退火工艺,获得热轧热镀锌钢板成品。
优选的,所述钢板/钢带厚度为0.7~4.0mm。
在本发明钢的成分设计中:
碳(C):碳直接影响钢板/钢带的强度、焊接性和成形性。碳含量越高,越有利于提高钢板的强度,若碳含量低于0.03%,钢板/钢带的强度达不到目标要求;碳含量高于0.07%,容易造成碳当量过高,从而恶化钢板的可焊性能。因此,本发明控制碳含量的范围为0.03~0.07%。
硅(Si):硅具有一定的固溶强化作用,Si含量越高越有利于提升钢板/钢带的强度。但当硅含量高于0.5%时,热轧钢板/钢带表面易生成严重的热轧氧化铁皮,不仅恶化钢板/钢带的表面质量,不利于生产热镀锌钢板/钢带,同时损害钢板/钢带的可镀性。因此,本发明将硅含量限定在0.1~0.5%的范围内。
锰(Mn):锰可以有效地提升钢板/钢带的强度,而且成本相对其他合金元素较低,因此本发明将锰作为主要添加元素。但是当锰含量高于2.0%时,组织中会生成马氏体,损害扩孔性能;当锰含量低于1.7%时,钢板/钢带的强度不足。因此本发明将锰含量限定在1.7~2.0%。
铝(Al):铝是作为炼钢过程的主要脱氧剂而加入,但铝含量小于0.01%时,脱氧效果不足:铝含量超过0.05%时,影响钢水粘度,可能会造成水口结瘤,并损害钢板/钢带的焊接性能。因此,本发明将铝含量限定在0.01~0.05%。
铬(Cr):铬有利于扩大贝氏体相区,保证钢板/钢带在轧后冷却中可以得到贝氏体组织,有利于提高强度和扩孔率。但添加量超过0.7%时,强度提升不再显著,反而会不利于钢板/钢带的可焊性。但当含量小于0.4%时,对贝氏体相区的扩大并不显著。因此,本发明将铬和钼含量都限定在0.4~0.7%。
钛、铌和钼(Ti、Nb、Mo):钛、铌和钼是本发明复相钢中的微合金元素,通过形成细小的碳化物之后的第二相强化来提升复相钢的强度,三者中Nb元素的碳化物形成能力更强。若微合金元素添加不足,则钢板的强度无法达到设计要求。此外,Ti元素还会与钢中的N元素形成TiN颗粒,尺寸过大的TiN将对扩孔产生不利影响。Ti元素还会与钢中的B元素形成钛硼化物,降低钢中有效硼含量。当微合金含量较低时,钢板/钢带的强度不足。此外,还要控制TiN颗粒尺寸,保证单 个颗粒的最长边长<8μm或面积<50μm 2。以避免粗大的TiN颗粒损害钢板的扩孔性。
硼(B):硼有利于扩大贝氏体相区,保证钢板/钢带在轧后冷却中可以得到贝氏体组织,对钢材的强度和硬度提升明显。但是过多的B元素会导致钢板中出现过多的马氏体组织,导致钢材扩孔率延伸率下降。此外,钢中真正有利于扩大贝氏体相区的B元素为不与Ti、N等元素结合形成硼化物的有效B元素,有效B元素的影响按如下公式计算:B*=B-[Ti-3.4N-1.2(C-Nb/7.8)]/22≥0.001。
钢中的杂质元素的上限控制在P:≤0.02%,S:≤0.01%,N≤0.01%,钢质越纯净效果更佳。
本发明所述钢板/钢带的微观组织为铁素体+下贝氏体的微观组织,铁素体含量≤20%。铁素体+下贝氏体含量≥95%。若铁素体组织高于20%,钢板/钢带将无法达到所要求的强度;若铁素体+下贝氏体含量低于95%,则钢板/钢带的扩孔性能达不到要求。所述钢板/钢带的微观组织中还可包括少量(如5%以下)碳化物析出相,微量(如0.5%以下)马氏体相或极微量(0.01%以下,偶尔可在视场中发现的)其他夹杂物相。所述其他夹杂物相可以是MnS,TiN,AlN等钢中常见夹杂物。
本发明所述的钢板/钢带的微观组织中,铁素体晶粒平均直径<6μm,或晶粒度ASTM评级>11.8。若晶粒平均直径不低于6μm或晶粒度评级不大于11.8,则钢板/钢带将无法达到所要求的强度。
此外,上述合金元素与碳元素的计量关系还应满足如下碳当量计算公式:CE=C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15<0.58以确保复相钢具备较低的碳当量水平与良好的可焊接性能。
在本发明制造方法中:
连铸时的板坯冷却速率将影响钢板/钢带最终组织中的晶粒尺寸、液相中形成的夹杂物尺寸和板坯组织中柱状晶的比例。若冷却速度低于5℃/s时,一方面板坯柱状晶的厚度或比例会高于设计要求,从而容易在后续成品组织中形成带状组织,影响钢板/钢带的弯曲性能;另一方面,连铸时板坯冷速的下降会导致最终组织中的晶粒尺寸将无法设计要求,而且会导致钢中液相生成的夹杂物(典型如TiN)的尺寸粗大,对扩孔和弯曲性能产生不利影响。
板坯进加入炉之前的最低温度将影响产品最终的性能。当板坯进加入炉之前的最低温度小于700℃时,碳化钛会在板坯中大量析出,而在后续的再加热过程中, 板坯中已析出的碳化钛无法再完全重溶进板坯中,造成热轧后基体中的固溶钛和碳化钛均较少,导致产品强度不足。而当精轧终轧温度小于850℃时,在精轧前就会有铁素体析出,造成最终组织中贝氏体含量偏低,使钢板/钢带无法达到设定强度。但考虑到板坯加热温度,精轧终轧温度不超过950℃。此外,上述步骤2)中,为保证钢板/钢带具有细小和高度均匀的组织,热轧第一、第二道次每道次压下率≥55%;压下率不足时,无法获得细小的组织均匀的组织,导致钢板/钢带强度不够。不仅如此,上述步骤2)中的高压下率必须与步骤1)中连铸时板坯的高冷速相配合,若连铸冷速无法达到5℃/s以上,会导致板坯中液相生成的夹杂物(以TiN为主)尺寸过大,此时若在步骤2)中采用≥55%的大压下率,会导致粗大的TiN开裂,如附图1所示,从而成为钢板/钢带内部的裂纹源,造成钢板/钢带扩孔性能的恶化;而若连铸冷速可以达到5℃/s以上时,板坯中液相生成的夹杂物(以TiN为主)尺寸细小,如附图2所示,不会在步骤2)中的大热轧压下时破裂,从而不会对钢板/钢带的扩孔性能产生不利影响。
卷取温度是获得高强度、高扩孔率的最为关键的工艺参数之一。当卷取温度大于630℃时,由于合金碳化物的强烈析出和粗化,对钢板扩孔率有负面作用,另一方面,当卷取温度小于550℃时会严重抑制碳化物的析出,造成钢板强度无法达到设定要求,因此。本发明将卷取温度限定为550~630℃。
经检测,本发明提供的超高强热轧钢板/钢带性能满足如下指标:
常温力学性能:抗拉强度≥980MPa,优选≥1000MPa;屈服强度≥780MPa,优选≥800MPa;
扩孔率性能:若原始孔为冲压孔:则扩孔率大于50%,优选≥55%;若原始孔为铰孔:则扩孔率大于60%,优选≥65%。
在一些实施方案中,本发明提供的超高强热轧钢板/钢带抗拉强度为980-1100MPa,屈服强度为780-900MPa;扩孔率性能:若原始孔为冲压孔,则扩孔率为55%到70%;若原始孔为铰孔:则扩孔率为65%到80%。
本发明采用低硅和低碳当量的成分设计以满足汽车底盘用复相钢来满足表面质量要求和可焊性要求,首先设计硅元素含量Si:0.1~0.5%、优选0.1~0.4%,更优选硅元素含量Si:0.15~0.27%,其次碳当量满足CE=C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15<0.7(美国金属协会建议的碳当量公 式),优选<0.58。
在低硅和低碳当量设计的前提下,为保证钢板达到吉帕级强度水平,除向钢中添加一定量的Mn、Cr等合金元素以外,还进一步优化微量合金元素B、Ti、Nb的分配。虽然根据公知,微量的B元素可以大幅提升钢板强度与硬度,但是针对复相钢产品,究竟添加多少B元素始终未有明确的研究。实际上,添加进钢中的B元素会与多种合金元素发生反应,其中最活跃的反应是与钢中N元素生产BN,但是BN的生成会大幅损害钢板的可制造性和最终产品性能,因此含B钢中还会添加部分Ti元素,通过优先形成TiN来避免N与B的反应。但是钢中剩余的Ti元素同样也是强硼化物形成元素,会与B元素发生反应生成钛硼化物,而另一方面,这些Ti元素也会与有效C元素形成TiC。因此,钢中有效硼元素的含量一方面取决于Ti元素、N元素含量,另一方面还受到有效碳元素的影响、而后者还会受到强碳化物形成元素甚至贝氏体含量的影响,因此钢中有效B元素的含量是会受到非常复杂的各方面因素综合影响。针对钢中有效B元素(以B*表示),本发明综合考虑各方因素,提出为保证钢板达到吉帕级强度水平,有效硼元素应满足有效B*=B-[Ti-3.4N-1.2(C-Nb/7.8)]/22≥0.001。
通过工艺优化,实现细小的高均匀的组织及尺寸细小的夹杂物,从而获得优良的扩孔性能。一方面在连铸中采用高冷速设计,一方面降低板坯中柱状晶比例提升细小等轴晶的比例,另一方面降低液相中生成的夹杂物的尺寸(以TiN为代表);另一方面在热轧的第一、二道次,采用大压下的轧制工艺设计,在进一步破坏柱状晶的同时,获得细小的组织,实现高强度与高扩孔率的兼得。
本发明制造的超高强热轧钢板/钢带同时兼备低硅低碳当量,吉帕级高强度与高扩孔性,所述超高强热轧钢板/钢带产品经热镀锌获得热轧热镀锌钢板成品,该超高强热轧钢板产品和钢带产品及热镀锌钢板成品可用于制备汽车底盘、悬挂***零部件,实现汽车“轻量化”。
附图说明
图1为连铸冷速达到5℃/s以上时TiN颗粒的尺寸及其在热轧大压下之后的形貌(热轧态组织照片)。
图2为连铸冷速不足5℃/s时TiN颗粒的尺寸及其在热轧大压下之后的形貌(热 轧态组织照片)。
图3为Si元素超过0.5%时(图例为Si含量0.55%,对比例L)带钢表面出现的热轧红铁皮(虎皮纹)缺陷照片。
图4为Si元素小于0.5%时(图例为Si含量0.25%,实施例C)带钢表面照片。
图5显示本发明实施例钢板/钢带的微观组织中,铁素体+下贝氏体含量≥95%。
具体实施方式
下面结合实施例和附图对本发明做进一步说明。
将表1中所示的不同成分的钢经冶炼后按表2所示加热+热轧工艺后得到厚度小于4mm的钢板。取沿纵向50mm标距和5mm标距的拉伸试样测定屈服、抗拉强度及延伸率,取钢板中部区域测定扩孔率和180°弯曲性能;试验数据如表2所示。其中,扩孔率采用扩孔试验测定,用凸模把中心带孔的试件压入凹模,使试件中心孔扩大,直到板孔边缘出现颈缩或贯穿裂纹为止。由于试件中心原始孔的制备方式对扩孔率测试结果存在较大影响,因此,分别采用冲孔和铰孔制备试件中心原始孔,后续试验及测试方法按ISO/DIS 16630标准中规定的扩孔率测试方法执行。
表1中,实施例A~I为本发明的钢,对比例J~M为设计的对比钢种,其中碳或锰或其他合金元素含量超出本发明成分的范围,O和P是已公开的发明专利中的成分和工艺。其中对比例O为CN201380022062.6中的实施例,其中合金成分不同于本发明,碳当量高于本发明;对比例P为CN201180067938.X中的实施例,其中合金成分亦不同于本发明,碳当量高于本发明。
表2为表1中各钢种的不同制造工艺,同样分为实施例和比较例两大类。其中对比例O和对比例P为已公开的专利申请中述及的工艺,但对比例O因为是冷轧产品,热轧工艺并未具体涉及,且产品性能为冷轧退火之后的产品性能;对比例P中的部分参数并未述及,其他参数则部分不同于本发明。表3则为上述实施例和比较例的力学性能检测值。
可见,当C、Mn、Ti、Nb、B或B*等含量值偏离本发明范围时,如Mn、Ti与Nb、或B*含量较低时,如对比例K、L和N,会导致钢板的强度均小于设计要求;而当C或B含量高出本发明的成分范围时,如对比例J和M,会导致组织中生产大量的马氏体,恶化材料的扩孔性能,均不符合本发明的目的。
而当Si元素含量高于本发明范围时,如对比例L,钢板表面在热轧酸洗后出现严重的红铁皮(虎皮纹)缺陷,如图3所示;而当Si元素处于本发明范围时,钢板表面在热轧酸洗后色泽正常,如实施例C图4所示。
当板坯进炉温度过低时,如对比钢A-2,会导致强度不满足本发明设计标准;当卷取温度过高时,如对比例D-2,卷取后钢板内会产生大量粗大的碳化物颗粒,恶化延伸率和扩孔性能。当热轧前两道次压下率不够时,无法彻底消除钢板的带状组织,且不能充分细化晶粒,实现组织均匀性,会导致钢板延伸率的扩孔率变差,如对比例B-2;而当连铸冷却速度不够,但热轧却追求大压下率时,会导致钢中粗大的TiN颗粒破碎,形成潜在裂纹源,大幅恶化材料的延伸率和扩孔性能,如对比例C-2。
综上所述,本发明在碳锰钢的基础上,采用低硅和低碳当量设计思路,通过合理设计有效B元素的含量范围,优化各元素配比,并在汽车用钢生产线基础上,进一步提高连铸冷却速度,热轧压下率和卷取温度,生产出兼具高强度、高扩孔性能与优良表面质量和可焊接性能的吉帕级超高强热轧钢板/钢带,其屈服强度不小于780MPa,抗拉强度不小于980MPa,扩孔率大于50%(原始孔为冲孔)或大于60%(原始孔为铰孔),以弥补汽车行业市场对兼超高强高扩孔性能与低碳当量的汽车用底盘、悬挂件用材的迫切需求。
Figure PCTCN2020141310-appb-000001
Figure PCTCN2020141310-appb-000002
Figure PCTCN2020141310-appb-000003

Claims (11)

  1. 低硅低碳当量吉帕级复相钢板/钢带,其成分重量百分比为:C:0.03~0.07%,Si:0.1~0.5%,Mn:1.7~2.0%,P≤0.02%,S≤0.01%,N≤0.01%,Al:0.01~0.05%,Cr:0.4~0.7%,B:0.001~0.005%,Ti:0.07~0.15%,还含有Mo:0.15~0.4%或Nb:0.02~0.08%中的一种或两种,其余为Fe和其他不可避免杂质;且同时满足:
    有效B*含量≥0.001,有效B*含量=B-[Ti-3.4N-1.2(C-Nb/7.8)]/22;
    CE<0.58,CE=C+Mn/6+(Cr+Mo+V)/5+(Si+Ni+Cu)/15。
  2. 如权利要求1所述的低硅低碳当量吉帕级复相钢板/钢带,其特征在于,所述C含量为0.045~0.06%,以重量百分比计。
  3. 如权利要求1所述的低硅低碳当量吉帕级复相钢板/钢带,其特征在于,所述Si含量为0.15~0.27%,以重量百分比计。
  4. 如权利要求1所述的低硅低碳当量吉帕级复相钢板/钢带,其特征在于,所述B含量为0.002~0.004%,以重量百分比计。
  5. 如权利要求1-4任一项所述的低硅低碳当量吉帕级复相钢板/钢带,其特征在于,所述钢板/钢带的微观组织包含铁素体和下贝氏体,以及少量碳化物析出相、其他夹杂物相和/或微量马氏体相,铁素体含量≤20%,铁素体+下贝氏体含量≥95%。
  6. 如权利要求5所述的低硅低碳当量吉帕级复相钢板/钢带,其特征在于,所述钢板/钢带的微观组织中还含有TiN颗粒,且单个颗粒的最长边长<8μm或面积<50μm 2
  7. 如权利要求5所述的低硅低碳当量吉帕级复相钢板/钢带,其特征在于,所述铁素体晶粒平均直径<6μm,或铁素体晶粒度ASTM评级>11.8。
  8. 如权利要求1所述的低硅低碳当量吉帕级复相钢板/钢带,其特征在于,所述钢板/钢带的抗拉强度≥980MPa,屈服强度≥780MPa;扩孔率满足:若原始孔为冲压孔:扩孔率>50%,若原始孔为铰孔:扩孔率>60%。
  9. 如权利要求1-8任一项所述的低硅低碳当量吉帕级复相钢板/钢带的制造方法,包括如下步骤:
    1)冶炼、连铸
    按权利要求1-4任一项所述的化学成分冶炼并通过连铸铸造成板坯,连铸时冷速≥5℃/s;
    2)板坯热送、轧制
    板坯在不低于700℃的温度下进加热炉,对板坯加热,加热温度为1100~1250℃;板坯热轧时前两道次压下率均≥55%;精轧终轧温度为850~950℃;
    3)轧后冷却、卷取
    轧后采用水冷,卷取温度为550~630℃;
    4)酸洗。
  10. 如权利要求9所述的低硅低碳当量吉帕级复相钢板/钢带的制造方法,其特征在于,在步骤3)酸洗后,还包括热镀锌退火工艺,获得热轧热镀锌钢板成品。
  11. 如权利要求9所述的低硅低碳当量吉帕级复相钢板/钢带的制造方法,其特征在于,所述钢板/钢带厚度为0.7~4.0mm。
PCT/CN2020/141310 2019-12-31 2020-12-30 低硅低碳当量吉帕级复相钢板/钢带及其制造方法 WO2021136355A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20910379.5A EP4086362A4 (en) 2019-12-31 2020-12-30 GPA EQUIVALENT LOW CARBON GPA GRADE MULTI-PHASE STEEL PLATE / STEEL STRIP AND METHOD OF MANUFACTURING THEREOF
BR112022011028A BR112022011028A2 (pt) 2019-12-31 2020-12-30 Placa de aço/tira de aço multifásica de baixo grau de silício e baixo grau de carbono equivalente a gpa, e método de fabricação da mesma
KR1020227023484A KR20220119639A (ko) 2019-12-31 2020-12-30 저규소 저탄소 당량 기가파스칼급 복합조직강판/강대 및 이의 제조 방법
US17/789,204 US20230049380A1 (en) 2019-12-31 2020-12-30 Low-silicon and low-carbon equivalent gpa grade multi-phase steel plate/steel strip and manufacturing method therefor
JP2022539208A JP7439265B2 (ja) 2019-12-31 2020-12-30 低ケイ素低炭素当量ギガパスカル級多相鋼板/鋼帯及びその製造方法
AU2020418007A AU2020418007A1 (en) 2019-12-31 2020-12-30 Low-silicon and low-carbon equivalent GPa grade multi-phase steel plate/steel strip and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911415229.0 2019-12-31
CN201911415229.0A CN113122769B (zh) 2019-12-31 2019-12-31 低硅低碳当量吉帕级复相钢板/钢带及其制造方法

Publications (1)

Publication Number Publication Date
WO2021136355A1 true WO2021136355A1 (zh) 2021-07-08

Family

ID=76685947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141310 WO2021136355A1 (zh) 2019-12-31 2020-12-30 低硅低碳当量吉帕级复相钢板/钢带及其制造方法

Country Status (8)

Country Link
US (1) US20230049380A1 (zh)
EP (1) EP4086362A4 (zh)
JP (1) JP7439265B2 (zh)
KR (1) KR20220119639A (zh)
CN (1) CN113122769B (zh)
AU (1) AU2020418007A1 (zh)
BR (1) BR112022011028A2 (zh)
WO (1) WO2021136355A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230069426A (ko) * 2021-11-12 2023-05-19 주식회사 포스코 굽힘성 및 신장 플랜지성이 우수한 초고강도 강판 및 이의 제조 방법
CN117344203A (zh) * 2022-06-27 2024-01-05 宝山钢铁股份有限公司 一种抗拉强度800Mpa级热轧复相钢及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046096A (ja) * 2005-08-09 2007-02-22 Nippon Steel Corp 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
JP2007284712A (ja) * 2006-04-13 2007-11-01 Nippon Steel Corp 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
CN101400816A (zh) 2006-03-24 2009-04-01 株式会社神户制钢所 复合成形性优良的高强度热轧钢板
JP2014051726A (ja) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal 大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法
CN105950998A (zh) * 2016-07-11 2016-09-21 攀钢集团攀枝花钢铁研究院有限公司 一种1000MPa级低碳热镀锌双相钢及其制备方法
CN108642379A (zh) * 2018-05-15 2018-10-12 首钢集团有限公司 一种抗拉强度1200MPa级冷轧双相钢及其制备方法
CN109023036A (zh) * 2017-06-12 2018-12-18 鞍钢股份有限公司 一种超高强热轧复相钢板及生产方法
CN109642292A (zh) * 2016-08-31 2019-04-16 杰富意钢铁株式会社 高强度钢板及其制造方法
CN110506134A (zh) * 2017-03-31 2019-11-26 日本制铁株式会社 热轧钢板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101008066B (zh) * 2006-01-27 2010-05-12 宝山钢铁股份有限公司 抗拉强度高于1000MPa的热轧马氏体钢板及其制造方法
JP5483916B2 (ja) * 2009-03-27 2014-05-07 日新製鋼株式会社 曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板
JP5391801B2 (ja) 2009-04-16 2014-01-15 新日鐵住金株式会社 溶融めっき熱延鋼板およびその製造方法
CN102251170A (zh) * 2010-05-19 2011-11-23 宝山钢铁股份有限公司 一种超高强度贝氏体钢及其制造方法
BR112014002875B1 (pt) 2011-08-09 2018-10-23 Nippon Steel & Sumitomo Metal Corporation chapas de aço laminadas a quente, e métodos para produção das mesmas
CN103305746B (zh) * 2012-03-14 2015-09-23 宝山钢铁股份有限公司 一种时效硬化薄带连铸低碳微合金高强钢带制造方法
KR20130110638A (ko) * 2012-03-29 2013-10-10 현대제철 주식회사 강판 및 그 제조 방법
MX2015006209A (es) 2013-02-26 2015-08-10 Nippon Steel & Sumitomo Metal Corp Hoja de acero laminada en caliente de alta resistencia, que tiene endurecimiento de recocido y dureza a baja temperatura excelentes, con resistencia a la tension maxima de 980 mpa o mas.
JP5967311B2 (ja) 2014-02-27 2016-08-10 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN104513930A (zh) * 2014-12-19 2015-04-15 宝山钢铁股份有限公司 弯曲和扩孔性能良好的超高强热轧复相钢板和钢带及其制造方法
CN106119702B (zh) * 2016-06-21 2018-10-02 宝山钢铁股份有限公司 一种980MPa级热轧高强度高扩孔钢及其制造方法
US11220721B2 (en) * 2017-01-20 2022-01-11 Thyssenkrupp Steel Europe Ag Hot rolled flat steel product consisting of a complex-phase steel with a largely bainitic microstructure and method for manufacturing such a flat steel product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046096A (ja) * 2005-08-09 2007-02-22 Nippon Steel Corp 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
CN101400816A (zh) 2006-03-24 2009-04-01 株式会社神户制钢所 复合成形性优良的高强度热轧钢板
JP2007284712A (ja) * 2006-04-13 2007-11-01 Nippon Steel Corp 靭性に優れた厚手高強度鋼板の製造方法及び靭性に優れた厚手高強度鋼板
JP2014051726A (ja) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal 大入熱溶接熱影響部靭性に優れた鋼板およびその製造方法
CN105950998A (zh) * 2016-07-11 2016-09-21 攀钢集团攀枝花钢铁研究院有限公司 一种1000MPa级低碳热镀锌双相钢及其制备方法
CN109642292A (zh) * 2016-08-31 2019-04-16 杰富意钢铁株式会社 高强度钢板及其制造方法
CN110506134A (zh) * 2017-03-31 2019-11-26 日本制铁株式会社 热轧钢板
CN109023036A (zh) * 2017-06-12 2018-12-18 鞍钢股份有限公司 一种超高强热轧复相钢板及生产方法
CN108642379A (zh) * 2018-05-15 2018-10-12 首钢集团有限公司 一种抗拉强度1200MPa级冷轧双相钢及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Research on the effect of Si element on the interface microstructure of oxide scale forming in the heating furnace", ROLLING STEEL, vol. 33, no. 5, 2016, pages 6 - 10
See also references of EP4086362A4
YANG YUCHANG WANGLIN WANG ET AL.: "Research on defects of red iron scale on Si-containing steel based on high temperature oxidation characteristics", ROLLING STEEL, vol. 33, no. 2, 2016, pages 10 - 15

Also Published As

Publication number Publication date
EP4086362A4 (en) 2023-07-19
CN113122769B (zh) 2022-06-28
CN113122769A (zh) 2021-07-16
KR20220119639A (ko) 2022-08-30
BR112022011028A2 (pt) 2022-08-16
JP2023509410A (ja) 2023-03-08
EP4086362A1 (en) 2022-11-09
JP7439265B2 (ja) 2024-02-27
US20230049380A1 (en) 2023-02-16
AU2020418007A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
CN109097705B (zh) 一种800MPa级冷轧热镀锌双相钢及其生产方法
CN112048681B (zh) 一种980MPa级高成形性冷轧DH钢及其制备方法
CN111996441B (zh) 一种高韧性折弯性能良好的TiC增强型马氏体耐磨钢板及其制造方法
CN113403550B (zh) 高塑性耐疲劳的冷轧热镀锌dh1180钢板及制备方法
CN111424211B (zh) 宽幅700MPa级热轧集装箱用耐候钢及其制造方法
CN113416889B (zh) 焊接性能良好超高强热镀锌dh1470钢及制备方法
WO2022042727A1 (zh) 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法
WO2021136355A1 (zh) 低硅低碳当量吉帕级复相钢板/钢带及其制造方法
WO2021136352A1 (zh) 低碳低成本超高强复相钢板/钢带及其制造方法
CN109097681B (zh) 一种高强度低夹杂汽车钢板及其连铸过程电磁搅拌工艺
CN110846571A (zh) 一种高韧性低合金耐磨钢厚板及其制造方法
CN114480972A (zh) 一种基于CSP流程生产的薄规格无Ni耐候钢及其生产方法
EP4036267A1 (en) Complex-phase steel having high hole expansibility and manufacturing method therefor
CN111270161B (zh) 一种抗拉强度≥1000MPa的高延伸率热轧组织调控钢及生产方法
CN103725956A (zh) 一种高强度轻量化自卸车车厢用钢及其生产方法
JPWO2013061543A1 (ja) 高張力熱延鋼板およびその製造方法
JP3932892B2 (ja) 延性、伸びフランジ性および衝撃吸収特性に優れた高強度鋼板および高強度電気めっき鋼板とそれらの製造方法
JP2019081929A (ja) ニッケル含有鋼板およびその製造方法
JP2004270006A (ja) 形状凍結性に優れた部品の製造方法
CN111979474B (zh) 一种热连轧细晶贝氏体钢板及其制备方法
TW201943868A (zh) 熱軋鋼板
JP3872595B2 (ja) 面内異方性が小さく成形性に優れた冷延鋼板
KR102468036B1 (ko) 성형성이 우수한 고강도 아연계 도금강판 및 그 제조방법
WO2024002043A1 (zh) 一种抗拉强度800MPa级热轧复相钢及其制造方法
CN117070843A (zh) 一种增强成形性能的590MPa级合金化镀层双相钢及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910379

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022011028

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022539208

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227023484

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020418007

Country of ref document: AU

Date of ref document: 20201230

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910379

Country of ref document: EP

Effective date: 20220801

ENP Entry into the national phase

Ref document number: 112022011028

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220606