WO2021136342A1 - 指纹识别器件、指纹识别显示基板及其制作方法 - Google Patents

指纹识别器件、指纹识别显示基板及其制作方法 Download PDF

Info

Publication number
WO2021136342A1
WO2021136342A1 PCT/CN2020/141239 CN2020141239W WO2021136342A1 WO 2021136342 A1 WO2021136342 A1 WO 2021136342A1 CN 2020141239 W CN2020141239 W CN 2020141239W WO 2021136342 A1 WO2021136342 A1 WO 2021136342A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
substrate
fingerprint identification
point light
Prior art date
Application number
PCT/CN2020/141239
Other languages
English (en)
French (fr)
Inventor
王海生
董学
丁小梁
刘英明
王雷
李亚鹏
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021136342A1 publication Critical patent/WO2021136342A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing

Definitions

  • the present disclosure relates to the technical field of manufacturing touch products, and in particular to a fingerprint identification device, a fingerprint identification display substrate and a manufacturing method thereof.
  • the formed image includes image areas and invalid areas, resulting in inaccurate fingerprints collected and reducing the effect of fingerprint identification.
  • the present disclosure provides a fingerprint identification device, which includes:
  • a substrate wherein a plurality of photosensitive response units are provided on the first surface of the substrate;
  • a plurality of point light sources are located on a side away from the first surface of the substrate and have a light emitting direction away from the substrate.
  • the light-sensitive response unit includes a sensing electrode, a photodiode, and a light-shielding layer that are sequentially arranged on the first surface of the substrate along a direction away from the point light source.
  • the effective radiation area of each of the point light sources on the finger touch interface is a circular area
  • the diameter of the circular area is a preset value
  • the fingerprint collection area is an inscribed square of the circular area, adjacent The point light source is located at the center point of one side of the inscribed square.
  • it further includes a driving unit for driving the plurality of point light sources to turn on sequentially according to a preset timing.
  • the point light source is an electroluminescent diode, which includes an anode, a light-emitting layer, and a cathode sequentially arranged on the substrate along the thickness direction of the substrate.
  • the present disclosure also provides a fingerprint identification display device, which includes a base substrate and a plurality of sub-pixels arranged on the base substrate, and further includes the above-mentioned fingerprint identification device arranged on a side of the base substrate away from the sub-pixels.
  • the fingerprint identification display device includes a plurality of sub-pixels, and the point light source of the fingerprint identification device is a light-emitting unit of at least one of the sub-pixels.
  • the point light source is an electroluminescent diode arranged in the same layer as the sub-pixels, and the point light source is located between two adjacent pixel units, and each of the pixel units includes a red sub-pixel and a green sub-pixel. Sub-pixel and blue sub-pixel.
  • the sub-pixels include red sub-pixels, green sub-pixels, and blue sub-pixels
  • the fingerprint recognition display substrate further includes a color filter located between the sub-pixels and the finger touch interface.
  • the filter includes a red filter unit, a green filter unit, and a blue filter unit corresponding to the red sub-pixel, the green sub-pixel, and the blue sub-pixel, respectively.
  • the present disclosure provides a method for manufacturing the above fingerprint identification display substrate, including:
  • the fingerprint identification device is attached to the second side of the base substrate opposite to the first side.
  • attaching the fingerprint identification device to the second side of the base substrate opposite to the first side specifically includes:
  • the second surface of the substrate opposite to the first surface is attached to the second side of the base substrate.
  • the point light source of the fingerprint identification device is multiplexed into at least one light-emitting unit of the sub-pixel.
  • the base substrate includes a plurality of pixel units, each pixel unit includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel, and the manufacturing method of the fingerprint recognition display substrate further includes:
  • An electroluminescent diode arranged on the same layer as the sub-pixel is formed between two adjacent pixel units, and the electroluminescent diode is the point light source.
  • Figure 1 shows a schematic diagram of a fingerprint identification device
  • Figure 2 shows a schematic diagram of the image area and the invalid area
  • FIG. 3 shows a schematic diagram of the structure of a fingerprint recognition display substrate in an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of the imaging characteristics of a point light source in an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of the relationship between magnification ratios in an embodiment of the present disclosure
  • Fig. 6 shows a schematic diagram of a fingerprint identification device in an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of the distribution of light-sensitive response units in an embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of an effective coverage area of a point light source in an embodiment of the present disclosure
  • FIG. 9 shows a schematic diagram of the effective coverage area of a point light source and a fingerprint collection area in an embodiment of the present disclosure
  • FIG. 10 shows an exploded schematic diagram of the fingerprint identification display device in an embodiment of the present disclosure.
  • the point light source 112 when a point light source emits light, when fingerprint collection is performed, the point light source 112 emits light and illuminates the protective glass 200. Due to the effect of total reflection, the incident angle of the light emitted by the point light source 112 is greater than When it is equal to or equal to the critical angle ⁇ of total reflection, total reflection will occur, causing all the light rays L2 to L4 to fail to exit, so as to produce a ring-shaped total reflection area QB. When the incident angle of the light L1 is smaller than the critical angle ⁇ of total reflection, it can be emitted to form a light-transmitting area TG surrounded by the total reflection area QB.
  • the finger touches the protective glass 200 there may be a total reflection area QB and a light transmission area TG in the finger touch interface S2. Since the light in the area where the light L1 in the light-transmitting area TG is located will be reflected by the protective glass 200, and the light in this area will also be reflected by the finger touch interface S2, after the two kinds of reflections The light will be incident on the light sensitive response unit. However, since the two kinds of reflected light have a low degree of discrimination, the valley ridges cannot be distinguished.
  • the angle between the light L1 and the normal is relatively small, which makes the light intensity strong, so that when the light in the area where the light L1 is reflected and incident on the light sensitive response unit, it may exceed the light sensitive response unit 120
  • the photosensitive detection range will also cause the valley ridges to be indistinguishable.
  • an ineffective area WX is formed on the plane S1 where the photosensitive unit 120 is located.
  • the photosensitive unit 120 also receives light reflected from the ineffective area WX, the degree of discrimination of light is low, which causes the photosensitive unit to respond to the light from the ineffective area.
  • the electrical signal of WX has a low degree of discrimination, which causes the valley ridges to be indistinguishable.
  • the fingerprint image obtained when the finger touches the total reflection area QB is obtained by simulation.
  • the image area of the formed fingerprint image is ring-shaped (corresponding to the TX area in Figure 1), and a part is missing in the middle. It is located in the invalid area WX, and the missing fingerprint corresponds to the fingerprint in the light-transmitting area TG. Due to the existence of the invalid area WX, the fingerprint information collection is inaccurate and the fingerprint recognition effect is reduced.
  • this embodiment provides a fingerprint identification device, as shown in FIG. 3 and FIG. 6, including:
  • a plurality of point light sources 3 are located on a side away from the first surface of the substrate 1 and have a light emitting direction away from the substrate.
  • the light-sensitive response unit 2 is used to receive the light reflected by the fingerprint of the finger to identify the fingerprint.
  • the light-sensitive response unit 2 includes a sensing electrode 4 and a photosensitive electrode 4 arranged on the first surface of the substrate in a direction away from the point light source.
  • the diode 5 and the light shielding layer 6, the sensing electrode 4 is arranged on the side of the substrate 1 away from the point light source 3, refer to FIG. 3 and FIG. 6.
  • S1 represents the plane where the light sensitive response unit 3 is located
  • S1' represents the mirror plane of S1
  • S2 represents the plane where the finger touch interface is located
  • S3 represents the plane where the point light source 3 is located.
  • d represents the distance between the plane S2 where the finger touches the interface and the plane S3 where the multiple point light sources are illuminated
  • t represents the distance between the plane S2 where the finger touches the interface and the plane S1 where the light-sensitive response unit is located. Since t>d, it can be seen that the fingerprint image formed on the photosensitive response unit 2 is an enlarged image compared to the original fingerprint.
  • the light-sensitive response unit is located on the side of the substrate facing the point light source.
  • the sensing unit 2 is arranged on the first surface of the substrate 1 facing away from the point light source 3 to increase the distance t between the plane S2 where the finger touch interface is located and the plane S1 where the light sensitive response unit 2 is located, that is, the reflection of the finger touch interface The light must pass through the substrate first, and then reach the light-sensitive response unit.
  • the distance between the plane S2 where the finger touches the interface and the plane S1 where the light-sensitive response unit 2 is located increases the distance of the substrate
  • the thickness of the fingerprint image can increase the magnification of the fingerprint image, and ensure that the inner ring (invalid area WX) and the outer ring (image area TX) of the fingerprint image are enlarged, so that the invalid area WX, the fingerprint image formed when a point light source is lit It can be covered by the image area TX of the fingerprint image formed when the adjacent point light source is lit, which improves the accuracy of fingerprint information collection and enhances the effect of fingerprint recognition.
  • the optimized thickness of the OLED display device (generally including an array backplane, light-emitting layer, encapsulation layer, optical glue, touch film, polarizer, cover plate, etc.) is about 0.5 -2mm, that is, the range of the d value is between 0.5-1.5mm, and the backplane distance of the light-sensitive response unit, that is, the t value is between 0.55-2mm, but it is not limited to this.
  • the position of the sensing electrode 4 and the light shielding layer 6 is reversed relative to the setting of the conventional light-sensitive response unit, and the sensing electrode 4 is used to receive reflections from a finger touch interface.
  • the sensing electrode 4 is arranged on the side of the substrate 1 away from the point light source 3 to further increase the distance t between the plane S2 where the finger touch interface is located and the plane S1 where the light-sensitive response unit 2 is located. Therefore, the magnification ratio of the fingerprint image can be further increased, and the inner ring (invalid area WX) and the outer ring (image area TX) of the fingerprint image can be enlarged.
  • the substrate is made of a transparent material (preferably, the transmittance of the substrate is 100%), and is generally a glass substrate, but it is not limited thereto.
  • the photosensitive response unit 2 includes a sensing electrode, a photodiode 121, a switching transistor 122, a plurality of scanning signal lines 123 and a plurality of reading signal lines 124,
  • the sensing electrode is used to receive the light reflected from the interface touched by the finger;
  • the photodiode 121 is used to sense the change in light intensity caused by fingerprint pressing, and the switch transistor 122 is used to control the photodiode 121 to convert the change in light intensity into different electrical signals for output;
  • each switch transistor 122 is connected to the corresponding scan signal line 123, the source of each switch transistor 122 is connected to the first electrode of the corresponding photodiode 121, and each switch The drain of the transistor 122 is connected to the corresponding read signal line 124; the second electrode of the photodiode 121 is connected to the sensing electrode.
  • Each photodiode (PIN) 121 is turned on or off by a switching transistor (TFT) 122, and the other electrode of the photodiode 121 is controlled by V0, which is a direct current signal, and the voltage is about -5 to 1V.
  • Each row of gate (scanning signal line 123) starts scanning row by row according to a given timing, and Data (reading signal line 124) reads the photocurrent information generated by the photodiodes 121 of each row.
  • the switch transistor 122 is turned on, and the reading signal line 124 collects different strengths. Signal to realize the fingerprint recognition function.
  • the effective radiation area of each of the point light sources 3 on the finger touch interface is a circular area with a preset diameter
  • the fingerprint collection area is an inscribed square of the circular area
  • the adjacent point light sources 3 Located at the center point of one side of the inscribed square, as shown in Figures 8 and 9.
  • the valley ridge of the fingerprint will have a very strong reflection contrast of the valley ridge of the fingerprint at about 30-60 angle of the point light source. Therefore, when the point light source is used to realize fingerprint recognition, the reflection information of the light source at the angle of 30-60 degrees is mainly used. In the range of 0-30 angles, the reflection contrast of the fingerprint valley ridges is rather small.
  • the divergence angle of the point light source is 70 degrees as an example for description.
  • the effective coverage area of the point light source 3 is a circle, and its diameter is a set specific value ⁇ , and the effective collection area of the fingerprint is an inscribed square of this circle.
  • the position of the other point light source 3 is at the center point of the side of the square, as shown in FIG. 9, so that the pitch (position) of the point light source can be accurately determined.
  • the distance P between two adjacent point light sources 3 is set according to the effective coverage area of the point light source in practical applications.
  • the effective coverage area of the point light sources shown in FIG. 9 is the same. In practical applications, it is not limited to this.
  • the currently lit point light source may be a small light source, that is, the effective coverage area is smaller.
  • the point light source that is lit once can be a large light source, that is, the effective coverage area is larger than the effective coverage area of the current point light source, so as to ensure that the image area of the fingerprint image formed during the next point of the bright light source can cover the current point light source. The invalid area in the fingerprint image.
  • the fingerprint identification device further includes a driving unit for driving the plurality of point light sources to sequentially light up according to a preset timing.
  • the radiation range of a point light source (effective coverage area, refer to the QB area in Figure 1) must cover the central area of the adjacent point light source (refer to the TG area in Figure 1), that is, the fingerprint image formed when a point light source is lit
  • the image area covers the invalid area in the fingerprint image formed when the adjacent point light sources are turned on, and multiple point light sources are time-divisionally lit, so as to realize the fingerprint recognition of the full screen of the display device.
  • Figure 4 shows a partial schematic diagram of a fingerprint image formed when a point light source is lit.
  • the image area of the fingerprint image is a ring.
  • the inner edge of the ring area is incident on the finger touch interface by the light from the corresponding point light source and the critical angle for total reflection. ⁇ c is determined, and the outer edge of the ring area (that is, the maximum incident angle ⁇ ) is determined by the performance of the light sensitive response unit and the light intensity of the point light source. As the light intensity increases and the performance of the light sensitive response unit improves, the outer edge diameter of the ring area expands .
  • the specific structure of the point light source can be in multiple forms.
  • the point light source is an electroluminescent diode, which is arranged on the substrate in sequence along the thickness direction of the substrate.
  • the anode, light-emitting layer and cathode are arranged on the substrate in sequence along the thickness direction of the substrate.
  • This embodiment also provides a fingerprint identification display substrate, which includes a base substrate and a plurality of sub-pixels arranged on the base substrate, and also includes the above-mentioned fingerprint identification device, as shown in FIG. 3.
  • the point light source can be set independently of the original structure of the display substrate, or can be multiplexed as the light emitting unit of the pixels of the display substrate itself.
  • the point light source is an electroluminescent diode arranged in the same layer as the sub-pixel, and the point light source is located between two adjacent pixel units, and each pixel unit Including red sub-pixels, green sub-pixels and blue sub-pixels.
  • the fingerprint recognition display substrate includes a plurality of sub-pixels, and the point light source is multiplexed into at least one light-emitting unit of the sub-pixel.
  • the light-emitting unit of each sub-pixel includes a cathode, a light-emitting layer, and an anode arranged in sequence, and the sub-pixel further includes a driving circuit for driving the light-emitting unit to emit light, as shown in FIG. 3.
  • the number of at least one sub-pixel forming a point light source can be set according to actual needs, and the number of sub-pixels included in two adjacent point light sources can be the same or different.
  • one The sub-pixels of the point light source are 7*7 sub-pixels gathered, but it is not limited to this.
  • the fingerprint identification substrate includes an array substrate and a plurality of sub-pixels arranged on the array substrate, the fingerprint identification device is arranged on the array substrate, and the substrate with the photosensitive response unit is attached and arranged on the array substrate.
  • the side of the array substrate away from the light-emitting side of the sub-pixels increases the distance between the light-sensitive response unit and the finger touch interface, increases the magnification of fingerprint imaging, and effectively ensures that the next point light source is turned on.
  • the image area of the fingerprint image can cover the invalid area of the fingerprint image formed by the current point light source lighting, enhancing the fingerprint recognition effect.
  • the array can be made
  • the substrate is multiplexed as the substrate in the fingerprint identification device.
  • the sub-pixel 100 includes a red sub-pixel 101, a green sub-pixel 102, and a blue sub-pixel 103
  • the fingerprint recognition display substrate further includes a color filter located between the sub-pixel 100 and the finger touch interface.
  • the light sheet 200, the color filter 200 includes a red filter unit 201 and a green filter unit 202 corresponding to the red sub-pixel 101, the green sub-pixel 102, and the blue sub-pixel 103, respectively
  • the blue filter unit 203 refer to FIG. 10.
  • the light information reflected by fingerprints has to pass through various film structures on the display substrate, such as POL (polarizer), array substrate, backplane, etc.
  • POL polarizer
  • the light intensity of the reflected light from the fingerprint will be greatly reduced.
  • the light information reaching the photosensitive response unit is very small, which affects the generation of photocurrent.
  • a color filter 200 is used instead of a polarizer. As shown in FIG. 10, the transmittance of reflected light can be increased from 40% to 70% by using a color filter. %about.
  • the switching transistor of the light-sensitive response unit may include a double-layer source/drain SD (SD: Source/Drain).
  • SD Source/Drain
  • the present disclosure provides a method for manufacturing a fingerprint identification display substrate, including:
  • the substrate with the photosensitive response unit is attached to the second side of the base substrate opposite to the first side.
  • attaching the substrate with the light-sensitive response unit to the second side of the base substrate opposite to the first side specifically includes:
  • the second surface of the substrate opposite to the first surface is attached to the second side of the base substrate.
  • the light sensitive response unit further includes a switch transistor, and the step of forming the fingerprint identification device further includes forming the switch transistor, which specifically includes:
  • An active layer, a source electrode and a drain electrode are formed on the gate insulating layer.
  • the point light source is multiplexed into at least one light-emitting unit of the sub-pixel, there is no need to separately provide a point light source.
  • the point light source if the point light source is not multiplexed as a light-emitting unit of at least one of the sub-pixels, the point light source needs to be separately provided.
  • the base substrate includes a plurality of pixel units, and each pixel The unit includes a red sub-pixel, a green sub-pixel and a blue sub-pixel, and the manufacturing method of the fingerprint identification display substrate also includes:
  • An electroluminescent diode arranged in the same layer as the sub-pixel is formed between two adjacent pixel units, and the electroluminescent diode is the point light source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种指纹识别器件,包括:基板(1),其中在所述基板(1)的第一表面上设置有多个光敏感应单元(2);和多个点光源(3),位于背离所述基板(1)第一表面的一侧,并且具有远离所述基板(1)的发光方向。

Description

指纹识别器件、指纹识别显示基板及其制作方法
相关申请的交叉引用
本申请主张在2020年1月2日在中国提交的中国专利申请号No.202010000875.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及触控产品制作技术领域,尤其涉及一种指纹识别器件、指纹识别显示基板及其制作方法。
背景技术
在指纹识别装置进行指纹采集时,由于感光元件的特性,形成的图像包括图像区域和无效区域,从而导致采集到的指纹不准确,降低指纹识别效果。
发明内容
本公开提供一种指纹识别器件,该指纹识别器件包括:
基板,其中在所述基板的第一表面上设置有多个光敏感应单元;
多个点光源,位于背离所述基板第一表面的一侧,并且具有远离所述基板的发光方向。
可选的,所述光敏感应单元包括沿着远离所述点光源的方向依次设置于所述基板的第一表面的感应电极、光敏二极管以及遮光层。
可选的,所述光敏感应单元形成的图像相比原指纹图像的放大倍率m满足公式:m=(t+d)/d,其中,t为手指触摸界面所在平面与光敏感应单元所在平面之间的距离,d为手指触摸界面所在平面与发光的多个点光源所在的平面之间的距离。
可选的,每个所述点光源在手指触摸界面的有效辐射区域为圆形区域,该圆形区域的直径为预设值,指纹采集区域为该圆形区域的内接正方形,相邻的点光源位于该内接正方形的一条边的中心点。
可选的,还包括驱动单元,用于按照预设时序驱动所述多个点光源依次 点亮。
可选的,所述点光源为电致发光二极管,包括沿着所述基板的厚度方向、依次设置于所述基板上的阳极、发光层和阴极。
本公开还提供一种指纹识别显示装置,包括衬底基板和设置于衬底基板上的多个子像素,还包括设置于所述衬底基板背离所述子像素的一侧的上述指纹识别器件。
可选的,该指纹识别显示装置包括多个子像素,所述指纹识别器件的点光源为至少一个所述子像素的发光单元。
可选的,所述点光源为与所述子像素同层设置的电致发光二极管,且所述点光源位于相邻两个像素单元之间,每个所述像素单元包括红色子像素、绿色子像素和蓝色子像素。
可选的,所述子像素包括红色子像素、绿色子像素和蓝色子像素,所述指纹识别显示基板还包括位于所述子像素和手指触摸界面之间的彩色滤光片,所述彩色滤光片包括分别与所述红色子像素、所述绿色子像素和所述蓝色子像素对应的红色滤光单元、绿色滤光单元和蓝色滤光单元。
本公开提供一种上述指纹识别显示基板的制作方法,包括:
形成衬底基板;
在衬底基板的第一侧形成多个子像素;
在衬底基板与所述第一侧相背的第二侧上贴合上述指纹识别器件。
可选的,在衬底基板与所述第一侧相背的第二侧上贴合上述指纹识别器件,具体包括:
在所述基板的远离所述衬底基板的第一表面上形成感应电极;
在感应电极上形成光敏二极管;
在光敏二极管上形成遮光层;
将所述基板的与所述第一表面相对的第二表面贴合于所述衬底基板的第二侧上。
可选的,所述指纹识别器件的点光源复用为至少一个所述子像素的发光单元。
可选的,衬底基板上包括多个像素单元,每个像素单元包括红色子像素、 绿色子像素和蓝色子像素,所述的指纹识别显示基板的制作方法还包括:
在相邻两个像素单元之间形成与所述子像素同层设置的电致发光二极管,所述电致发光二极管为所述点光源。
附图说明
图1表示指纹识别器件示意图;
图2表示图像区域和无效区域示意图;
图3表示本公开实施例中指纹识别显示基板结构示意图;
图4表示本公开实施例中点光源成像特性示意图;
图5表示本公开实施例中放大倍率关系示意图;
图6表示本公开实施例中指纹识别器件示意图;
图7表示本公开实施例中光敏感应单元分布示意图;
图8表示本公开实施例中点光源有效覆盖区域示意图;
图9表示本公开实施例中点光源有效覆盖区域、指纹采集区域示意图;
图10表示本公开实施例中指纹识别显示装置分解示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
如图1和图2所示,在一个点光源发光时,在进行指纹采集时,点光源 112发光照射到保护玻璃200上,由于全反射的作用,在点光源112发出的光的入射角大于或等于全反射的临界角θ时,会发生全反射作用,导致光线L2~L4均不能出射,以产生环形的全反射区域QB。而光线L1的入射角小于全反射的临界角θ,则可以出射,以形成全反射区域QB围绕的透光区域TG。在手指触摸到保护玻璃200时,在手指触摸界面S2中可以有全反射区域QB和透光区域TG。由于透光区域TG中的光线L1所在区域中的光线会由于保护玻璃200的作用进行反射,并且,该区域中的光线也会受到手指触摸界面S2的作用也会进行反射,这两种反射后的光均会入射到光敏感应单元上。然而由于这两种反射后的光区分度较低,从而导致谷脊区分不出来。并且,光线L1与法线之间的夹角较小,使得其光强较强,这样在光线L1所在区域中的光线进行反射后入射到光敏感应单元上时,可能会超出光敏感应单元120的感光探测范围,也会导致谷脊区分不出来。这样使得光敏感应单元120所在平面S1上会形成无效区域WX,虽然光敏感应单元120也接收了从无效区域WX反射的光,但是由于光的区分度较低,从而导致光敏感应单元对来自无效区域WX的电信号的区分度较低,从而导致谷脊区分不出来。
对手指触摸到全反射区域QB时得到的指纹图像进行模拟仿真获得,形成的指纹图像的图像区域是环状的)(对应于图1中的TX区域),中间会缺失一部分,该缺失的部分位于无效区域WX,并且该缺失的指纹对应透光区域TG中的指纹,由于无效区域WX的存在,造成了指纹信息采集不准确,降低指纹识别效果。
针对上述技术问题,本实施例提供一种指纹识别器件,如图3和图6所示,包括:
基板1,其中在基板1的第一表面上设置有多个光敏感应单元2;
多个点光源3,位于背离所述基板1的第一表面的一侧,并且具有远离所述基板的发光方向。
所述光敏感应单元2用于接收手指指纹反射回的光以识别指纹,所述光敏感应单元2包括向远离所述点光源的方向依次设置于所述基板的第一表面的感应电极4、光敏二极管5以及遮光层6,所述感应电极4设置于所述基板1远离所述点光源3的一侧,参考图3和图6。
本实施例中,所述光敏感应单元2形成的图像相比原指纹图像的放大倍率m满足公式:m=(t+d)/d,其中,t为手指触摸界面所在平面与光敏感应单元所在平面之间的距离,d为手指触摸界面所在平面与发光的多个点光源所在的平面之间的距离,参考图5。
结合图5,S1代表光敏感应单元3所在平面,S1’代表S1的镜像平面,S2代表手指指触摸界面所在的平面,S3代表点光源3所在的平面。d代表手指触摸界面所在平面S2与发光的多个点光源所在的平面S3之间的距离,t代表手指触摸界面所在平面S2与光敏感应单元所在平面S1之间的距离。由于t>d,因此可以看出光敏感应单元2上所成的指纹图像相比原指纹是放大的图像。并且,放大倍率m可以满足公式m=(t+d)/d,一般情况下,光敏感应单元位于基板面向点光源的一侧,本实施例中,通过反向设置光敏感应单元2,即将光敏感应单元2设置于基板1上背离所述点光源3的第一表面,增大手指触摸界面所在平面S2与光敏感应单元2所在平面S1之间的距离t,也就是说,手指触摸界面反射的光线要先经过所述基板,然后到达所述光敏感应单元,相对于直接到达光敏感应单元的方案,手指触摸界面所在平面S2与光敏感应单元2所在平面S1之间的距离增加了所述基板的厚度,从而可以增大指纹图像的放大倍率,确保指纹图像的内环(无效区域WX)及外环(图像区域TX)扩大,从而使得一个点光源点亮时形成的指纹图像的无效区域WX、可以被相邻点光源点亮时形成的指纹图像的图像区域TX覆盖,提高指纹信息采集的准确性,增强指纹识别效果。
本实施例指纹识别器件应用于OLED显示器件时,OLED显示器件(一般包括阵列背板,发光层,封装层,光学胶,以及触控薄膜,偏光片,盖板等)优化的厚度约为0.5—2mm之间,即d值的范围在0.5—1.5mm之间,光敏感应单元的背板距离,即t值在0.55—2mm之间,但并不以此为限。
如图6所示,在具体实施时,相对于常规的光敏感应单元的设置,将所述感应电极4和所述遮光层6的位置对调,所述感应电极4是用于接收手指触摸界面反射的光线的,将所述感应电极4设置于所述基板1远离所述点光源3的一侧,进一步的加大手指触摸界面所在平面S2与光敏感应单元2所在平面S1之间的距离t,从而可以进一步的增大指纹图像的放大倍率,确保指 纹图像的内环(无效区域WX)及外环(图像区域TX)扩大。
需要说明的是,所述基板是透明的材质制成(优选的,所述基板的透光度为100%),一般为玻璃基板,但并不以此为限。
具体的,如图7所示,所述光敏感应单元2包括感应电极、光敏二极管121、开关晶体管122、多个扫描信号线123和多个读取信号线124,
所述感应电极,用于接收从手指触摸的界面反射的光线;
所述光敏二极管121用于感测指纹按压时带来的光强变化的光敏二极管121所述开光晶体管122用于控制所述光敏二极管121将光强变化转换为不同电信号输出;
每个所述开关晶体管122的栅极与对应的所述扫描信号线123相连,每个所述开关晶体管122的源极与相应的所述光敏二极管121的第一电极相连,每个所述开关晶体管122的漏极与对应的所述读取信号线124相连;所述光敏二极管121的第二电极与感应电极相连。
每个光电二极管(PIN)121由一个开关晶体管(TFT)122控制开启或者关闭,光敏二极管121的另一个电极有V0控制,为直流信号,电压约为-5~1V左右。每一行gate(扫描信号线123)按照给定的时序逐行开启扫描,Data(读取信号线124)读取每一行的光敏二极管121的产生的光电流信息。当手指触摸界面反射的光,照射到光敏感应单元上时,因为指纹谷脊反射的光强不同,光敏感应单元产生的光电流不同,然后开关晶体管122开启,读取信号线124收集强弱不同的信号,实现指纹识别功能。
本实施例中,每个所述点光源3在手指触摸界面的有效辐射区域为直径为预设值的圆形区域,指纹采集区域为该圆形区域的内接正方形,相邻的点光源3位于该内接正方形的一条边的中心点,如图8和图9所示。
需要说明的是,利用软件进行模拟,发现指纹的谷脊在点光源的30-60角度左右会有非常强的指纹谷脊反射对比度。因此,在利用点光源实现指纹识别时,主要利用点光在30-60度角度方向的光源的反射信息。而在0-30角度范围内,指纹谷脊反射对比度反而比较小。为了解决这个问题,我们需要对点光源的分布进行特殊的设计,来弥补指纹的缺失信息。具体的以点光源的发散角度为70度为例,进行说明。
参考图8和图9,点光源3的有效覆盖区域为圆形,其直径为设定的特定值φ,而指纹的有效采集区域为此圆的内接正方形,为了能够使得指纹图像完整,因此另一个点光源3的位置在此正方形的边的中心点上,如图9所示,从而点光源的pitch(位置)就可以精准的确定出来。
相邻两个点光源3之间的距离P根据实际应用中、点光源的有效覆盖区域设定。
图9中所示的点光源的有效覆盖区域相同,在实际应用中,并不限于此,在一具体实施例中,当前点亮的点光源可以是小光源,即有效覆盖区域较小,下一次点亮的点光源可以是大光源,即有效覆盖区域比当前的点光源的有效覆盖区域大,这样可以保证下一次点亮点光源时形成的指纹图像的图像区域可以覆盖当前点光源点亮形成的指纹图像中的无效区域。
本实施例中,指纹识别器件还包括驱动单元,用于按照预设时序驱动所述多个点光源依次点亮。
一个点光源的辐射范围(有效覆盖区域,参考图1中的QB区域)须覆盖相邻点光源的中心区域(参考图1中的TG区域),即一个点光源点亮时形成的指纹图像的图像区域、覆盖相邻点光源点亮时形成的指纹图像中的无效区域,将多个点光源进行分时点亮,从而实现显示器件全屏幕的指纹识别。
需要说明的是,一次点亮的点光源的数量可以根据实际需要设定。
图4表示的是一个点光源点亮时形成的指纹图像的部分示意图,指纹图像的图像区域为环形,环形区域的内边缘由相应的点光源的光线入射至手指触摸界面发生全反射的临界角θc决定,而环形区域的外边缘(即最大入射角θ)由光敏感应单元的性能以及点光源的光强决定,光强增大、光敏感应单元的性能提升,则环形区域的外边缘直径扩大。
需要说明的是,所述点光源的具体结构形式可以有多种,本实施例中,所述点光源为电致发光二极管,包括沿着所述基板的厚度方向、依次设置于所述基板上的阳极、发光层和阴极。
本实施例还提供一种指纹识别显示基板,包括衬底基板和设置于衬底基板上的多个子像素,还包括上述指纹识别器件,如图3所示。
所述点光源可以独立于显示基板的原有结构设置,也可以复用为显示基 板本身的像素的发光单元。
本实施例的一具体实施方式中,所述点光源为与所述子像素同层设置的电致发光二极管,且所述点光源位于相邻两个像素单元之间,每个所述像素单元包括红色子像素、绿色子像素和蓝色子像素。
本实施例的一具体实施方式中,指纹识别显示基板包括多个子像素,所述点光源复用为至少一个所述子像素的发光单元。
每个所述子像素的发光单元包括依次设置的阴极、发光层和阳极,所述子像素还包括用于驱动所述发光单元发光的驱动电路,如图3所示。
形成一个点光源的至少一个子像素的数量可以根据实际需要设定,且相邻两个点光源中包括的子像素的数量可以相同,也可以不同,本实施的一具体实施方式中,形成一个点光源的子像素为聚集的7*7个子像素,但并不以此为限。
所述指纹识别基板包括阵列基板以及设置于所述阵列基板上的多个子像素,所述指纹识别器件设置于所述阵列基板上,将具有所述光敏感应单元的所述基板贴合设置于所述阵列基板的背离所述子像素的发光侧的一侧,增大了光敏感应单元与手指触摸界面之间的距离,增大了指纹成像的放大倍率,有效的保证下一次点光源点亮形成的指纹图像的图像区域可以覆盖当前点光源点亮形成的指纹图像的无效区域,增强指纹识别效果。
在保证所述指纹成像的放大倍率的前提下,即下一次点光源点亮形成的指纹图像的图像区域可以覆盖当前点光源点亮形成的指纹图像的无效区域的前提下,可以使得所述阵列基板复用为所述指纹识别器件中的基板。
本实施例中,所述子像素100包括红色子像素101、绿色子像素102和蓝色子像素103,所述指纹识别显示基板还包括位于所述子像素100和手指触摸界面之间的彩色滤光片200,所述彩色滤光片200包括分别与所述红色子像素101、所述绿色子像素102和所述蓝色子像素103一一对应的红色滤光单元201、绿色滤光单元202和蓝色滤光单元203,参考图10。
一般情况下,指纹反射的光信息要经过显示基板上的各种膜层结构,如POL(偏光片),阵列基板、背板等,经过此结构时,会大大降低指纹反射光的光强度,导致到达光敏感应单元上的光信息非常小,影响光电流的产生。 为了解决此问题,根据本公开的一些实施例,采用彩色滤光片200代替偏光片,如图10所示,通过使用彩色滤光片可以提高反射光的透过率,由40%提高到70%左右。
本实施例的一具体实施方式中,为了提高光敏感应单元上的灵敏性,增大光电流,所述光敏感应单元的开关晶体管可以包括双层源漏极SD(SD:Source/Drain)。
本公开提供一种指纹识别显示基板的制作方法,包括:
形成衬底基板;
在衬底基板的第一侧形成多个子像素;
在衬底基板与所述第一侧相背的第二侧上贴合具有所述光敏感应单元的所述基板。
本实施例中,在衬底基板与所述第一侧相背的第二侧上贴合具有所述光敏感应单元的所述基板,具体包括:
在所述基板的第一表面上形成感应电极;
在感应电极上形成光敏二极管;
在光敏二极管上形成遮光层;
将所述基板的与所述第一表面相对的第二表面贴合于所述衬底基板的第二侧上。
所述光敏感应单元还包括开关晶体管,形成所述指纹识别器件的步骤中,还包括形成所述开关晶体管,具体的包括:
通过构图工艺形成栅极和栅极绝缘层;
在栅极绝缘层上形成有源层和源极、漏极。
本实施例的一具体实施方式中,所述点光源复用为至少一个所述子像素的发光单元,则无需再单独设置点光源。
本实施例的一具体实施方式中,所述点光源非复用为至少一个所述子像素的发光单元,则需要单独设置所述点光源,衬底基板上包括多个像素单元,每个像素单元包括红色子像素、绿色子像素和蓝色子像素,指纹识别显示基板的制作方法还包括:
在相邻两个像素单元之间形成与所述子像素同层设置的电致发光二极管, 所述电致发光二极管为所述点光源。
以上所述为本公开较佳实施例,需要说明的是,对于被命令与普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开保护范围。

Claims (14)

  1. 一种指纹识别器件,包括:
    基板,其中在所述基板的第一表面上设置有多个光敏感应单元;
    多个点光源,位于背离所述基板第一表面的一侧,并且具有远离所述基板的发光方向。
  2. 根据权利要求1所述的指纹识别器件,其中所述光敏感应单元包括沿着远离所述点光源的方向依次设置于所述基板的第一表面的感应电极、光敏二极管以及遮光层。
  3. 根据权利要求1所述的指纹识别器件,其中,
    所述光敏感应单元形成的图像相比原指纹图像的放大倍率m满足公式:m=(t+d)/d,其中,t为手指触摸界面所在平面与光敏感应单元所在平面之间的距离,d为手指触摸界面所在平面与发光的多个点光源所在的平面之间的距离。
  4. 根据权利要求1所述的指纹识别器件,其中,每个所述点光源在手指触摸界面的有效辐射区域为圆形区域,所述圆形区域的直径为预设值,指纹采集区域为该圆形区域的内接正方形,相邻的点光源位于该内接正方形的一条边的中心点。
  5. 根据权利要求3所述的指纹识别器件,还包括驱动单元,用于按照预设时序驱动所述多个点光源依次点亮。
  6. 根据权利要求1所述的指纹识别器件,其中,所述点光源为电致发光二极管,包括沿着所述基板的厚度方向、依次设置于所述基板上的阳极、发光层和阴极。
  7. 一种指纹识别显示基板,包括衬底基板和设置于衬底基板上的多个子像素,还包括设置于所述衬底基板背离所述子像素的一侧、权利要求1-6任一项所述的指纹识别器件。
  8. 根据权利要求7所述的指纹识别显示基板,其中,所述点光源复用为至少一个所述子像素的发光单元。
  9. 根据权利要求7所述的指纹识别显示基板,其特征在于,所述点光源 为与所述子像素同层设置的电致发光二极管,且所述点光源位于相邻两个像素单元之间,每个所述像素单元包括红色子像素、绿色子像素和蓝色子像素。
  10. 根据权利要求8所述的指纹识别显示基板,其特征在于,所述子像素包括红色子像素、绿色子像素和蓝色子像素,所述指纹识别显示基板还包括位于所述子像素和手指触摸界面之间的彩色滤光片,所述彩色滤光片包括分别与所述红色子像素、所述绿色子像素和所述蓝色子像素对应的红色滤光单元、绿色滤光单元和蓝色滤光单元。
  11. 一种权利要求7-10任一项所述的指纹识别显示基板的制作方法,包括:
    形成衬底基板;
    在衬底基板的第一侧形成多个子像素;
    在衬底基板与所述第一侧相背的第二侧上贴合所述指纹识别器件。
  12. 根据权利要求11所述的指纹识别显示基板的制作方法,其中,在衬底基板与所述第一侧相背的第二侧上贴合所述指纹识别器件,包括:
    在所述基板的远离所述衬底基板的第一表面上形成感应电极;
    在感应电极上形成光敏二极管;
    在光敏二极管上形成遮光层;
    将所述基板的与所述第一表面相对的第二表面贴合于所述衬底基板的第二侧上。
  13. 根据权利要求11所述的指纹识别显示基板的制作方法,其中,所述指纹识别器件的点光源复用为至少一个所述子像素的发光单元。
  14. 根据权利要求11所述的指纹识别显示基板的制作方法,其中衬底基板上包括多个像素单元,每个像素单元包括红色子像素、绿色子像素和蓝色子像素,所述方法还包括:
    在相邻两个像素单元之间形成与所述子像素同层设置的电致发光二极管,所述电致发光二极管为所述点光源。
PCT/CN2020/141239 2020-01-02 2020-12-30 指纹识别器件、指纹识别显示基板及其制作方法 WO2021136342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010000875.7A CN111191613A (zh) 2020-01-02 2020-01-02 指纹识别结构、指纹识别显示基板及其制作方法
CN202010000875.7 2020-01-02

Publications (1)

Publication Number Publication Date
WO2021136342A1 true WO2021136342A1 (zh) 2021-07-08

Family

ID=70709736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141239 WO2021136342A1 (zh) 2020-01-02 2020-12-30 指纹识别器件、指纹识别显示基板及其制作方法

Country Status (2)

Country Link
CN (1) CN111191613A (zh)
WO (1) WO2021136342A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421328A (zh) * 2022-10-08 2022-12-02 厦门天马微电子有限公司 发光面板和显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113743152B (zh) * 2020-05-27 2024-04-16 京东方科技集团股份有限公司 纹路识别装置
CN111552108B (zh) * 2020-06-08 2022-11-25 京东方科技集团股份有限公司 一种显示装置及其指纹识别方法
CN111650769B (zh) * 2020-06-17 2023-05-12 京东方科技集团股份有限公司 一种显示装置及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107480639A (zh) * 2017-08-16 2017-12-15 上海天马微电子有限公司 一种触控显示面板和显示装置
CN107871447A (zh) * 2016-09-26 2018-04-03 三星显示有限公司 显示装置和操作显示装置的方法
CN108122941A (zh) * 2016-11-28 2018-06-05 南昌欧菲生物识别技术有限公司 有机发光二极管显示屏指纹识别装置及电子设备
US20190108382A1 (en) * 2017-10-11 2019-04-11 Idemia Identity & Security France Method for detecting the presence of a body part carrying an imprint on a imprint sensor
CN110534031A (zh) * 2019-08-29 2019-12-03 上海天马微电子有限公司 一种显示装置及指纹识别方法
CN111916130A (zh) * 2019-05-10 2020-11-10 旺宏电子股份有限公司 擦除具有极少编程页面的区块的***与方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108256409A (zh) * 2017-10-27 2018-07-06 京东方科技集团股份有限公司 显示器件及其指纹识别方法
CN108957856A (zh) * 2018-07-31 2018-12-07 固安翌光科技有限公司 具有指纹识别液晶显示屏体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871447A (zh) * 2016-09-26 2018-04-03 三星显示有限公司 显示装置和操作显示装置的方法
CN108122941A (zh) * 2016-11-28 2018-06-05 南昌欧菲生物识别技术有限公司 有机发光二极管显示屏指纹识别装置及电子设备
CN107480639A (zh) * 2017-08-16 2017-12-15 上海天马微电子有限公司 一种触控显示面板和显示装置
US20190108382A1 (en) * 2017-10-11 2019-04-11 Idemia Identity & Security France Method for detecting the presence of a body part carrying an imprint on a imprint sensor
CN111916130A (zh) * 2019-05-10 2020-11-10 旺宏电子股份有限公司 擦除具有极少编程页面的区块的***与方法
CN110534031A (zh) * 2019-08-29 2019-12-03 上海天马微电子有限公司 一种显示装置及指纹识别方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115421328A (zh) * 2022-10-08 2022-12-02 厦门天马微电子有限公司 发光面板和显示装置

Also Published As

Publication number Publication date
CN111191613A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2021136342A1 (zh) 指纹识别器件、指纹识别显示基板及其制作方法
US10585304B2 (en) Array substrate and method for fabricating the same, display apparatus
US11605238B2 (en) Fingerprint identification module, fingerprint identification method, and display apparatus
CN110610990B (zh) 显示屏、显示装置及移动终端
CN110534031B (zh) 一种显示装置及指纹识别方法
US20180053032A1 (en) Organic Light-Emitting Display Panel Manufacturing Method Thereof As Well As Electronic Device
WO2018028303A1 (zh) 一种指纹识别模组、其制作方法及显示装置
WO2019137002A1 (zh) 显示面板和显示装置
US20230123648A1 (en) Display panel and display device
WO2017202180A1 (zh) 一种触控显示装置
CN110175592B (zh) 一种显示面板及其驱动方法以及显示装置
CN112236774B (zh) 纹路识别装置以及纹路识别装置的驱动方法
TWI764062B (zh) 光偵測裝置及生理特徵偵測識別方法
US20220310701A1 (en) Display device and touch controller
US11569290B2 (en) Sensing device and display apparatus including the same
WO2021249178A1 (zh) 显示面板和显示装置
TW201933619A (zh) 光學裝置
WO2019148798A1 (en) Pattern identification device and display apparatus
WO2020232637A1 (zh) 纹路识别装置及其制造方法、彩膜基板及其制造方法
CN114625264A (zh) 显示装置
US20210192171A1 (en) Fingerprint identification assembly, display substrate, display panel and fingerprint identification method
WO2020233601A1 (zh) 成像层、成像装置、电子设备、波带片结构及感光像元
CN111258096A (zh) 指纹识别显示面板、指纹识别方法和显示装置
CN113690271A (zh) 显示基板及显示装置
WO2021258957A1 (zh) 纹路识别装置以及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909170

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20909170

Country of ref document: EP

Kind code of ref document: A1