WO2021136215A1 - 一种摄像方法、摄像模组和电子设备 - Google Patents

一种摄像方法、摄像模组和电子设备 Download PDF

Info

Publication number
WO2021136215A1
WO2021136215A1 PCT/CN2020/140436 CN2020140436W WO2021136215A1 WO 2021136215 A1 WO2021136215 A1 WO 2021136215A1 CN 2020140436 W CN2020140436 W CN 2020140436W WO 2021136215 A1 WO2021136215 A1 WO 2021136215A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
focus lens
light beam
fixed
light
Prior art date
Application number
PCT/CN2020/140436
Other languages
English (en)
French (fr)
Inventor
王庆平
苏忱
郑士胜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20911246.5A priority Critical patent/EP4072118A4/en
Publication of WO2021136215A1 publication Critical patent/WO2021136215A1/zh
Priority to US17/852,585 priority patent/US20220329735A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3514Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along a line so as to translate into and out of the beam path, i.e. across the beam path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3516Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along the beam path, e.g. controllable diffractive effects using multiple micromirrors within the beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/18Motion-picture cameras
    • G03B19/22Double cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/34Means for automatic focusing therefor
    • G03B27/36Means for automatic focusing therefor by mechanical connections, e.g. by cam, by linkage
    • G03B27/40Means for automatic focusing therefor by mechanical connections, e.g. by cam, by linkage adapted for use with lenses of different focal length
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/04Focusing arrangements of general interest for cameras, projectors or printers adjusting position of image plane without moving lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0075Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Definitions

  • This application relates to the field of camera technology, and in particular to a camera method, camera module and electronic equipment.
  • multiple ( ⁇ 2) vertical fixed-focus cameras can be implanted in current electronic devices, and different fixed-focus cameras have different focal lengths.
  • the field of view of the first fixed-focus camera is 85°, which can achieve the first focal length
  • the field of view of the second fixed-focus camera is 45°, which can achieve the second focal length.
  • the focal length is different.
  • the electronic device can switch the fixed focus camera according to the actual shooting needs of the user to realize the zoom function.
  • the embodiments of the present application provide a camera method, a camera module, and an electronic device, which can implement a zoom function and can reduce hardware costs.
  • an embodiment of the present application provides a camera module, including: a first optical path switching element, a first light steering element, a first fixed focus lens group, a second fixed focus lens group, and an image sensor.
  • the lens group and the first optical path switching element are arranged along the first optical axis.
  • the first optical axis is the optical axis of the first fixed focus lens group.
  • the second fixed focus lens group and the first light turning element are arranged along the second optical axis.
  • the second optical axis is the optical axis of the second fixed focus lens group, the first optical axis and the second optical axis are parallel to each other;
  • the first fixed focus lens group is used to receive the first light beam from the outside of the camera module;
  • the second fixed focus lens group The lens group is used to receive the second light beam from the outside of the camera module;
  • the first light turning element is used to change the optical path of the second light beam from the second fixed-focus lens group, so that the second light beam after the changed optical path is directed to the first Optical path switching element and image sensor;
  • the position or working state of the first optical path switching element is variable, and is used to change the optical path of the first light beam from the first fixed-focus lens group so that the first light beam after the changed optical path is directed to the image sensor, or ,
  • the second light beam after changing the light path is directed to the image sensor;
  • the image sensor is used to receive the first light beam after the light path is changed or the second light beam after the light path is changed, and generate
  • the camera module provided by the embodiment of the application may include at least two fixed-focus lens groups (for example, including a first fixed-focus lens group and a second fixed-focus lens group) and a set of image sensors.
  • the focal lengths of multiple fixed-focus lens groups Different, so the total length of the optical path is different.
  • the camera module can project light beams from different fixed-focus lens groups to the same set of image sensors, so that multi-focal segment switching can be realized on the basis of a set of image sensors, which can reduce hardware costs.
  • an embodiment of the present application provides a camera module, including: a first light path switching element, a first light turning element, a first fixed focus lens group, a second fixed focus lens group, an image sensor, and a third light turning element
  • the first fixed-focus lens group and the first optical path switching element are arranged along the first optical axis
  • the first optical axis is the optical axis of the first fixed-focus lens group
  • the second fixed-focus lens group and the first light turning element are arranged along the first optical axis.
  • the second optical axis is the optical axis of the second fixed-focus lens group, the first optical axis and the second optical axis are parallel to each other, the third light turning element is clamped between the image sensor and the first optical path switching element
  • the angles are 45°; the first fixed-focus lens group is used to receive the first light beam from outside the camera module; the second fixed-focus lens group is used to receive the second light beam from outside the camera module; the first light steering The element is used to change the optical path of the second light beam from the second fixed focus lens group, so that the second light beam after the changed optical path is directed to the first light path switching element and the third light redirecting element; the position or working state of the first light path switching element Variable, used to change the optical path of the first light beam from the first fixed-focus lens group, so that the first light beam after the changed optical path is directed to the third light turning element, or the second light beam after the changed optical path is directed to the third light turning element Element; the third light turning element is used to change the
  • the camera module provided by the embodiment of the application may include at least two fixed-focus lens groups (for example, including a first fixed-focus lens group and a second fixed-focus lens group) and a set of image sensors.
  • the focal lengths of multiple fixed-focus lens groups Different, so the total length of the optical path is different.
  • the camera module can project light beams from different fixed-focus lens groups to the same set of image sensors, so that multi-focal segment switching can be realized on the basis of a set of image sensors, which can reduce hardware costs.
  • the structure of the camera module is made more compact, thereby reducing the size of the space occupied by the camera device in the electronic device, and making the camera module easier to integrate On small electronic devices such as mobile phones.
  • the camera module further includes a motor, and the motor is used to control the first light turning element, the first light path switching element, and the third light turning element along the first optical axis or the first optical axis.
  • the second optical axis moves in the direction; or, the motor is used to control the third light turning element and the image sensor to move in a direction parallel to the horizontal plane and perpendicular to the first optical axis or the second optical axis.
  • the first optical path switching element is a plane mirror or a prism, and the plane mirror or prism is between the plane where the first fixed-focus lens group is located
  • the included angle is 45°, so that the first light beam from the first fixed-focus lens group can be reflected by the plane mirror to reach the image sensor for imaging.
  • the first optical path switching element can also block the light beam from the second fixed focus lens group (for example, by providing an opaque coating on the back of the reflective surface of the plane mirror) or reflect it to other directions to prevent
  • the light beam from the second fixed-focus lens group reaches the image sensor for imaging, thereby preventing the light beam from the second fixed-focus lens group from interfering with the light beam from the first fixed-focus lens group.
  • the plane reflecting mirror or prism and the plane of the first fixed-focus lens group are parallel to each other. In this way, the second light beam can directly reach the image sensor for imaging without passing through (avoiding) the plane mirror.
  • the first optical path switching element can also block or reflect the light beam from the first fixed-focus lens group to other directions, preventing the first light beam from reaching the image sensor for imaging, so as to prevent the light beam from the first fixed-focus lens group from pairing with the second light beam.
  • the light beams of the two fixed-focus lens groups interfere.
  • the first optical path switching element is formed by bonding two sets of prisms, and the bonding surfaces of the two sets of prisms are provided with first empty grooves.
  • the angle between the plane where the first cavity is located and the plane where the first fixed-focus lens group is located is 45°, and the first cavity is filled with a substance of the first refractive index, or the first cavity is filled with a material of the second refractive index. Substance, the first refractive index is greater than the second refractive index.
  • the first cavity can be filled with the first refractive index material (low refractive index material), prism and low refractive index material
  • the interface constitutes a total reflection interface, so that the first light beam from the first fixed-focus lens group is reflected by the total reflection interface and reaches the image sensor.
  • the first cavity can be filled with the second refractive index material (high refractive index material), and the interface between the prism and the high refractive index material
  • the transmission interface allows the first light beam from the first fixed-focus lens group to pass through the transmission interface and reach the image sensor.
  • the camera module provided based on the first aspect or the second aspect further includes a second optical path switching element, and the second optical path switching element is arranged in the first fixed focus lens group or the second fixed focus lens group The front.
  • the position or working state of the second optical path switching element is variable, and is used to make the first light beam enter the first fixed-focus lens group and prevent the second light beam from entering the second fixed-focus lens group, or to make the second light beam enter the second fixed-focus lens group.
  • the fixed-focus lens group and prevent the first light beam from entering the first fixed-focus lens group.
  • the second light path switching element is a shutter, and the shutter is located directly in front of the second fixed-focus lens group, or the shutter is located in the first Directly in front of a certain focal lens group.
  • the shutter when the shutter is located directly in front of the second fixed focus lens group, the shutter can block the second light beam and not the first light beam.
  • the first light beam can enter the first fixed focus lens group and the second light beam cannot enter the second light beam.
  • the fixed focus lens group, the first light beam entering the first fixed focus lens group can reach the image sensor along the first optical path to participate in imaging.
  • the shutter when the shutter is located directly in front of the first fixed focus lens group, the shutter can block the first beam and not the second beam, the second beam can enter the second fixed focus lens group and the first beam cannot enter the first fixed focus
  • the second light beam entering the second fixed-focus lens group can reach the image sensor along the second light path to participate in imaging, so as to avoid interference between different light beams.
  • the second optical path switching element is composed of two parallel flat plates, and a second empty slot is left between the two parallel flat plates.
  • the groove includes a first area and a second area. The first area is located directly in front of the first fixed focus lens group, the second area is located directly in front of the second fixed focus lens group, and the first area of the second empty groove is filled with light-transmitting The second area is filled with a light-shielding material, or the first area of the second cavity is filled with a light-shielding material and the second area is filled with a light-transmitting material.
  • the light beam can enter the second fixed focus lens group but cannot enter the first fixed focus lens group and enters the second fixed focus lens group
  • the second light beam can reach the image sensor along the second light path to participate in imaging.
  • the light beam can enter the first fixed-focus lens group but cannot enter the second fixed-focus lens group, and enters the first fixed-focus lens group.
  • a light beam can reach the image sensor along the first light path to participate in imaging, avoiding interference between different light beams.
  • the camera module provided based on the first aspect or the second aspect further includes a second light turning element, and the second light turning element is arranged in the first fixed focus lens group and the second fixed focus lens group
  • the second light turning element is arranged obliquely with respect to the plane of the first fixed focus lens group or the plane of the second fixed focus lens group, and the second light turning element is used to reflect a light beam and a second light beam from the outside of the camera module. Two light beams, the light path before the first light beam enters the first fixed focus lens group bends, or the light path before the second light beam enters the second fixed focus lens group bends.
  • the light beam projected by the object can be reflected by the second light turning element to the first fixed focus lens group or the second fixed focus lens group, that is, the second light turning element and the first fixed focus lens group or the second fixed focus lens group can be Form a periscope structure.
  • the setting method of the camera module in the electronic device can be more flexible and compact.
  • the optical axis of the fixed focus lens group of the camera module (for example, the first optical axis of the first fixed focus lens group, or the second optical axis of the second fixed focus lens group) may be parallel to the height direction of the electronic device, In this way, the thickness of the electronic device can be reduced, and the camera module can be more easily integrated on small electronic devices such as mobile phones.
  • the camera module provided based on the first aspect or the second aspect further includes a motor for controlling the second light turning element to be parallel to the first optical axis or parallel to the horizontal plane and perpendicular to the first optical axis.
  • the rotation axis of an optical axis rotates.
  • the motor can control the second light turning element along the rotation axis parallel to the first optical axis or parallel to the horizontal plane and perpendicular to the first optical axis
  • the angle at which the incident light enters the second light turning element after being reflected can be adjusted, and the effective path of the light beam when it passes through the second light turning element can be changed.
  • the camera module provided in the first aspect or the second aspect, it further includes a motor, and the motor is used to control the first fixed focus lens group or the second fixed focus lens group in a direction perpendicular to the horizontal plane or Translation in a direction parallel to the horizontal plane and parallel to the first optical axis.
  • the motor can control the first fixed focus lens group or the second fixed focus lens group to translate in the direction perpendicular to the horizontal plane or parallel to the horizontal plane and parallel to the first optical axis to adjust the first
  • the light path of the light beam or the second light beam in the camera module is used to realize the anti-shake function of the camera module to reduce the blur degree of imaging.
  • the camera module provided based on the first aspect or the second aspect further includes a motor, and the motor is used to control the first light turning element, the first optical path switching element, and the image sensor along the first optical axis or The direction of the second optical axis moves.
  • the motor can control the first light turning element, the first light path switching element and the image sensor to move along the first optical axis or the second optical axis to adjust the first light beam or the second light beam
  • the light path in the camera module is used to realize the focusing function.
  • the first focal length or the second focal length is 2-20 times the focal length of a standard lens.
  • an embodiment of the present application provides a camera method applied to a camera module.
  • the camera module includes a first light path switching element, a first light steering element, a first fixed focus lens group, a second fixed focus lens group, and
  • the first fixed-focus lens group and the first optical path switching element are arranged along the first optical axis
  • the first optical axis is the optical axis of the first fixed-focus lens group
  • the second fixed-focus lens group and the first light turning element are arranged along the
  • the second optical axis is set, the second optical axis is the optical axis of the second fixed-focus lens group, the first optical axis and the second optical axis are parallel to each other;
  • the first fixed-focus lens group is used to receive the second optical axis from the outside of the camera module A light beam;
  • the second fixed-focus lens group is used to receive the second light beam from the outside of the camera module;
  • the first light turning element is used to change the optical path of the second light beam from the second fixed-
  • a light beam is directed to the image sensor, or the second light beam after the light path is changed to the image sensor; the image sensor is used to receive the first light beam after the light path is changed or the second light beam after the light path is changed, and generate an image;
  • the fixed-focus lens group has a first focal length, and the second fixed-focus lens group has a second focal length.
  • the first focal length is different from the second focal length; the method includes: when the first control signal is received, the first optical path switching element is located in the first focal length.
  • the optical path of the first beam from the first fixed-focus lens group is changed, so that the first beam after the changed optical path reaches the image sensor for imaging; when the second control signal is received, the first optical path switching element In the second position or in the second state, the second light beam from the first light turning element is controlled to reach the image sensor for imaging.
  • the camera module used in the camera method provided by the embodiment of the application may include at least two fixed-focus lens groups (for example, including a first fixed-focus lens group and a second fixed-focus lens group) and a set of image sensors.
  • the focal length of the focal lens group is different, so the total length of the optical path is different.
  • the camera module can project light beams from different fixed-focus lens groups to the same set of image sensors based on different signals, so that a set of image sensors can be used to switch between multiple focal lengths, which can reduce hardware costs.
  • an embodiment of the present application provides a camera method applied to a camera module.
  • the camera module includes: a first light path switching element, a first light turning element, a first fixed-focus lens group, and a second fixed-focus lens group ,
  • the image sensor and the third light turning element, the first fixed-focus lens group and the first optical path switching element are arranged along the first optical axis, the first optical axis is the optical axis of the first fixed-focus lens group, and the second fixed-focus lens group
  • the first light turning element are arranged along the second optical axis, the second optical axis is the optical axis of the second fixed-focus lens group, the first optical axis and the second optical axis are parallel to each other, and the third light turning element is connected to the image sensor and the second optical axis.
  • the angles between one optical path switching element are 45°; the first fixed-focus lens group is used to receive the first light beam from the outside of the camera module; the second fixed-focus lens group is used to receive the external light from the camera module The second light beam; the first light turning element is used to change the light path of the second light beam from the second fixed focus lens group, so that the second light beam after the changed light path is directed to the first light path switching element and the third light turning element;
  • the position or working state of the optical path switching element is variable, and is used to change the optical path of the first light beam from the first fixed-focus lens group, so that the first light beam after the changed optical path is directed to the third light turning element, or the light path after the changed optical path is changed.
  • the second light beam is directed to the third light turning element;
  • the third light turning element is used to change the light path of the first light beam after the light path is changed again, so that the first light beam after the light path is changed again to point to the image sensor, or to change the above change again
  • the light path of the second light beam after the light path makes the second light beam after the light path change again point to the image sensor;
  • the image sensor is used to receive the first light beam after the light path is changed again or the second light beam after the light path is changed again, and generate an image ;
  • the first fixed-focus lens group has a first focal length
  • the second fixed-focus lens group has a second focal length
  • the first focal length is different from the second focal length;
  • the method includes: when the first control signal is received, the first optical path The switching element is located in the first position or in the first state, and changes the optical path of the first light beam from the first fixed focus lens group, so that the first light beam after the changed optical path passes through the third light turning element and reaches the
  • the camera module further includes a motor.
  • the motor controls the first light turning element, the first light path switching element, and the third light turning element Move along the direction of the first optical axis or the second optical axis to adjust the optical path of the first light beam or the second light beam in the camera module; or, when the camera module is out of focus, the motor controls the third light steering element and the image
  • the sensor moves in a direction parallel to the horizontal plane and perpendicular to the first optical axis or the second optical axis to adjust the optical path of the first light beam or the second light beam in the camera module.
  • the first optical path switching element is a plane mirror or a prism, and the first optical path switching element is located at the first position, and the change comes from the first fixed focus lens group.
  • the optical path of the first beam of light to make the first beam of light after changing the optical path reach the image sensor for imaging, including: the angle between the plane mirror or prism and the plane where the first fixed focus lens group is located is 45°, and the reflection comes from the first fixed focus
  • the first light beam of the mirror group reaches the image sensor for imaging, and blocks or reflects the second light beam from the second fixed-focus lens group and reflected by the first light turning element to prevent the second light beam from reaching the image sensor for imaging;
  • first light path switching element Located in the second position, controlling the second light beam from the first light turning element to reach the image sensor for imaging, including: the plane mirror or prism and the plane of the first fixed focus lens group are parallel to each other, and controlling the second light beam from the first light turning element The light beam does not pass
  • the first optical path switching element is formed by bonding two sets of prisms, and the bonding surfaces of the two sets of prisms are provided with first empty grooves.
  • the angle between the plane of the empty slot and the plane of the first fixed focus lens group is 45°, the first optical path switching element is in the first state, and the optical path of the first beam from the first fixed focus lens group is changed to change the optical path
  • the latter first light beam reaches the image sensor for imaging, including: filling the first empty groove with a substance of the first refractive index, and reflecting the first light beam from the first fixed-focus lens group to the image sensor for imaging on the plane where the first empty groove is located;
  • An optical path switching element is in the second state, controlling the second light beam from the first light turning element to reach the image sensor for imaging, including: filling the material with the second refractive index in the first cavity, and controlling the second light beam from the first light turning element The light beam transmits through the first empty slot to reach the image
  • it further includes a second optical path switching element, and the second optical path switching element is arranged in front of the first fixed focus lens group or the second fixed focus lens group
  • the position or working state of the second optical path switching element is variable.
  • the second optical path switching element is located at the third position or in the third state, preventing the second light beam from entering the second fixed focus lens group and Make the first light beam enter the first fixed-focus lens group;
  • the second optical path switching element is located at the fourth position or in the fourth state, preventing the first light beam from entering the first fixed-focus lens group and causes the The two light beams enter the second fixed-focus lens group.
  • the second optical path switching element is a shutter, and the second optical path switching element is located at the third position to prevent the second light beam from entering the second fixed focus lens group
  • allowing the first light beam to enter the first fixed focus lens group includes: a shutter is located directly in front of the second fixed focus lens group, blocking the second light beam and not blocking the first light beam, so that the first light beam enters the first fixed focus lens group ;
  • the second optical path switching element is located in the fourth position to prevent the first light beam from entering the first fixed focus lens group and make the second light beam enter the second fixed focus lens group includes: the shutter is located directly in front of the first fixed focus lens group, blocking the first One beam does not block the second beam, so that the second beam enters the second fixed-focus lens group.
  • the second optical path switching element is composed of two parallel flat plates, and a second empty slot is left between the two parallel flat plates, and the second empty slot includes The first area and the second area, the first area is located directly in front of the first fixed focus lens group, the second area is located directly in front of the second fixed focus lens group, and the second optical path switching element is in the third state, blocking the second light beam Entering the second fixed-focus lens group and allowing the first light beam to enter the first fixed-focus lens group includes: the first area of the second cavity is filled with light-transmitting material, and the second area is filled with light-shielding material, which transmits the first light beam and blocks the second light beam ;
  • the second optical path switching element is in the fourth state, preventing the first light beam from entering the first fixed-focus lens group and allowing the second light beam to enter the second fixed-focus lens group including: the first area of the second empty slot is filled with light-shielding material, and the second The area
  • the method further includes a second light turning element, and the second light turning element is arranged in front of the first fixed focus lens group and the second fixed focus lens group , And the second light turning element is arranged obliquely with respect to the plane of the first fixed focus lens group or the plane of the second fixed focus lens group, and the second light turning element reflects a light beam and a second light beam from the outside of the camera module, so that The light path before the first light beam enters the first fixed focus lens group is bent, or the light path before the second light beam enters the second fixed focus lens group is bent.
  • it further includes a motor.
  • the motor controls the second light turning element to be parallel to the first optical axis or parallel to the horizontal plane and The rotation axis perpendicular to the first optical axis rotates to adjust the angle at which the first light beam or the second light beam enters the second light turning element.
  • it further includes a motor.
  • the motor controls the first fixed focus lens group or the second fixed focus lens group to be perpendicular to the horizontal plane Translate in the direction parallel to the horizontal plane and parallel to the first optical axis to adjust the optical path of the first light beam or the second light beam in the camera module.
  • it further includes a motor.
  • the motor controls the first light turning element, the first light path switching element, and the image sensor along the first The direction of one optical axis or the second optical axis is moved to adjust the optical path of the first light beam or the second light beam in the camera module.
  • the first focal length or the second focal length is 2-20 times the focal length of a standard lens.
  • an embodiment of the present application provides an electronic device, including a processor, a memory, a bus, and a camera module.
  • the processor, the memory, and the camera module are connected to each other through a bus, and the memory is used to store programs.
  • the processor is used to call the programs and instructions stored in the memory to control the camera module;
  • the camera module includes: a first optical path switching element, a first light turning element, a first fixed focus lens group, and a second fixed focus
  • the lens group and the image sensor, the first fixed focus lens group and the first optical path switching element are arranged along the first optical axis, the first optical axis is the optical axis of the first fixed focus lens group, the second fixed focus lens group and the first light
  • the steering element is arranged along the second optical axis, the second optical axis is the optical axis of the second fixed-focus lens group, the first optical axis and the second optical axis are parallel to each other;
  • the first fixed-focus lens group is used to receive from the camera module The first external light beam;
  • the second fixed-focus lens group is used to receive the second light beam from the outside of the camera module;
  • the first light turning element is used to change the optical path of the second light beam from the second fixed-focus lens group to make The
  • a light beam is directed to the image sensor, or the second light beam after the light path is changed to the image sensor; the image sensor is used to receive the first light beam after the light path is changed or the second light beam after the light path is changed, and generate an image;
  • the fixed focus lens group has a first focal length, the second fixed focus lens group has a second focal length, and the first focal length is different from the second focal length.
  • an embodiment of the present application provides an electronic device, including a processor, a memory, a bus, and a camera module.
  • the processor, the memory, and the camera module are connected to each other through a bus, and the memory is used to store programs And instructions, the processor is used to call the programs and instructions stored in the memory to control the camera module;
  • the camera module includes: a first optical path switching element, a first light turning element, a first fixed focus lens group, and a second fixed focus
  • the lens group, the image sensor and the third light turning element, the first fixed focus lens group and the first optical path switching element are arranged along the first optical axis, the first optical axis is the optical axis of the first fixed focus lens group, and the second fixed focus lens group
  • the mirror group and the first light turning element are arranged along the second optical axis, the second optical axis is the optical axis of the second fixed focus lens group, the first optical axis and the second optical axis are parallel to each other, the third light turning element and the
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any one of the methods provided in the third aspect or the fourth aspect.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any one of the methods provided in the third aspect or the fourth aspect.
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, configured to implement any one of the methods provided in the third aspect or the fourth aspect.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • Fig. 1 is a schematic structural diagram of a multi-focus camera in the prior art
  • FIG. 2a is a schematic structural diagram of a camera module provided by an embodiment of the application.
  • 2b is a schematic diagram of signal interaction of a camera method provided by an embodiment of this application.
  • 3a is a schematic structural diagram of another camera module provided by an embodiment of the application.
  • FIG. 3b is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 4a is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • 4b is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • 4c is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 5a is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 5b is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 6a is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 6b is a schematic flowchart of yet another imaging method provided by an embodiment of this application.
  • FIG. 7a is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 7b is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 8a is a schematic structural diagram of still another camera module provided by an embodiment of this application.
  • FIG. 8b is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 9a is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 9b is a schematic diagram of an electronic device provided by an embodiment of this application.
  • FIG. 10a is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • 10b is a schematic diagram of another electronic device provided by an embodiment of this application.
  • FIG. 11a is a schematic diagram of rotation of a second light turning element according to an embodiment of the application.
  • FIG. 11b is a schematic diagram of rotation of a first fixed-focus lens group according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the movement of a back focus optical system provided by an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of still another camera module provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram of the hardware structure of an electronic device provided by an embodiment of the application.
  • the term “element” may also be referred to as “device”, “component”, “member” or “mechanism”, which is not specifically limited in this application.
  • the first optical path switching element may also be referred to as a first optical path switching device, a first optical path switching member (first optical path switching section), a first optical path switching member, a first optical path switching mechanism, or the like.
  • the most widely used optical zoom hardware solution on a mobile phone is a dual camera module structure composed of a main camera with a standard focal length and a secondary camera with a long focal length.
  • This structure has poor scalability.
  • OIS motor Optical image stabilization
  • the embodiments of the present application provide a camera module (also referred to as a camera or a camera module (module), which is not limited in this application), and the camera module may include multiple (two or more) fixed focus lenses
  • the focal length and the total length of the optical path of multiple fixed-focus lens groups are different from that of a set of image sensors.
  • the camera module can project light beams from different fixed-focus lens groups (beams projected by objects on the fixed-focus lens group) to the same set of image sensors based on different signals, thereby realizing the switching of multiple focal lengths based on a set of image sensors. , Can reduce hardware costs.
  • the camera module provided by the embodiment of the present application is a single camera module, and a set of focus motors and anti-shake motors can be used to achieve optical anti-shake and autofocus functions, which further reduces hardware costs.
  • an embodiment of the present application provides a camera module, including an image sensor, at least two fixed focus lens groups (for example, may include a first fixed focus lens group and a second fixed focus lens group), a first optical path
  • the switching element and the first light turning element may also be referred to as the first light path turning element or the first reflecting element).
  • the first light path switching element is arranged directly behind the first fixed focus lens group and the side rear of the second fixed focus lens group, and the first light turning element is arranged directly behind the second fixed focus lens group.
  • the first fixed-focus lens group and the first optical path switching element are arranged along the first optical axis.
  • the first optical axis is the optical axis of the first fixed-focus lens group.
  • the second fixed-focus lens group and the first light turning element are arranged along the second light axis.
  • Axis setting the second optical axis is the optical axis of the second fixed-focus lens group, and the first optical axis and the second optical axis are parallel to each other (it is understandable that there may be slight processing errors in the manufacturing process that may cause the first The optical axis and the second optical axis are not completely parallel to each other).
  • the image sensor is arranged on one side of the first optical path switching element, and the plane where the first fixed focus lens group (or the second fixed focus lens group) is located and the plane where the image sensor is located may be perpendicular to each other.
  • the first fixed-focus lens group is used to receive the first light beam from outside the camera module;
  • the second fixed-focus lens group is used to receive the second light beam from outside the camera module;
  • the first light steering element is used to, Change the optical path of the second light beam from the second fixed-focus lens group so that the second light beam after the changed optical path is directed to the first optical path switching element and the image sensor;
  • the position or working state of the first optical path switching element is variable to change the optical path from
  • the optical path of the first beam of the first fixed focal lens group makes the first beam after the changed optical path point to the image sensor, or the second beam after the changed optical path points to the image sensor;
  • the image sensor is used to receive the first beam after the optical path is changed A light beam or a second light beam after changing the light path is received, and an image is generated;
  • the first fixed-focus lens group has a first focal length
  • the second fixed-focus lens group has a second focal length
  • the first focal length is different from the second focal length.
  • the fixed-focus lens group can also be called a fixed-focus lens, which can be used to refract the light beam (light/ray beam) projected from an object outside the camera module.
  • the fixed focus lens group can be composed of multiple lenses, and the multiple lenses can be parallel to each other.
  • the first fixed-focus lens group and the second fixed-focus lens group may be composed of the same number of lenses (for example, the first fixed-focus lens group or the second fixed-focus lens group may include two lenses), or different numbers of lenses respectively Composition (for example, the first fixed-focus lens group may include two lenses, and the second fixed-focus lens group may include three lenses).
  • the first fixed focus lens group and the second fixed focus lens group may be composed of plastic materials.
  • first fixed-focus lens group and the second fixed-focus lens group may be composed of materials with different optical characteristics (for example, different dispersion coefficients and/or different refractive indexes).
  • the first fixed-focus lens group may be composed of It is made of plastic material
  • the second fixed focus lens group can be made of glass material.
  • the first fixed focus lens group and the second fixed focus lens group may be circular lenses, or may have other shapes, such as an ellipse, a rectangle, or a rectangle with rounded corners, which are not specifically limited here.
  • the image sensor can also be called an image chip or a sensor element or a photosensitive element. It can be used to photoelectrically convert the acquired light beam (light) to generate a digital image.
  • the image sensor can be a charge coupled device (CCD) or It is a complementary metal-oxide semiconductor (CMOS), which is not specifically limited here.
  • CMOS complementary metal-oxide semiconductor
  • the image sensor may be a Blue Glass sensor.
  • the above-mentioned camera module can be installed in an electronic device.
  • the central processing unit may send a first control signal to the first optical path switching element.
  • the first optical path switching element is used to change the first light beam from the first fixed focus lens group when the first control signal is received, the first optical path switching element is located at the first position or in the first state
  • the central processing unit can send the first light path switching element to the first light path switching element when the user needs to shoot the object at the second focal length.
  • the second control signal when the second control signal is received, the first light path switching element is located in the second position or in the second state, and controls the second light beam from the first light turning element to reach the image sensor for imaging.
  • the first light beam in the embodiment of the present application refers to the light beam passing through the first fixed-focus lens group (that is, the light beam received or refracted by the first fixed-focus lens group).
  • the first light beam may also pass through one or more optical elements before or after passing through the first fixed-focus lens group. It can be understood that, after passing through each optical element (for example, by the optical element, During refraction, reflection or transmission), the first light beam may be partially lost (that is, the electromagnetic waves that make up the first light beam may be lost).
  • the light beams before and after passing through an optical element are the same light beam, and the optical path may be changed, but the electromagnetic waves constituting the light beam can be regarded as the same.
  • the second light beam in the embodiment of the present application refers to the light beam passing through the second fixed-focus lens group.
  • the second light beam may also pass through one or more optical elements before or after passing through the second fixed-focus lens group. It is understandable that when passing through each optical element, the second light beam may have Partial loss (that is, the electromagnetic waves that make up the second beam may be lost).
  • Partial loss that is, the electromagnetic waves that make up the second beam may be lost.
  • the light beams before and after passing through an optical element are the same light beam, and the optical path may be changed, but the electromagnetic waves constituting the light beam can be regarded as the same.
  • the first optical path switching element when it receives the first control signal sent by the central processing unit, it can work in the reflection mode, reflecting the first light beam from the first fixed-focus lens group (that is, the first fixed-focus lens group The refracted light beam) reaches the image sensor; when it receives the second control signal sent by the central processing unit, it can work in transmission mode to control the second light beam from the second fixed focus lens group and reflected by the first light turning element to avoid Open or transmit through the first optical path switching element to reach the image sensor.
  • the first focal length or the second focal length is 2-20 times the focal length of the standard lens.
  • the first focal length may be 5 times (5X lens) of the focal length of a standard lens
  • the second focal length may be 10 times (10X lens) of the focal length of the standard lens.
  • the standard lens is a general term for lenses whose angle of view (field angle) is 45°-50°
  • the focal length of the standard lens is approximately the same as the diagonal length of the photographed frame.
  • the focal length of the standard lens may be 28 mm
  • the first focal length and the second focal length may be different values between 56 mm and 560 mm.
  • the equivalent focal lengths of the first fixed focus lens group and the second fixed focus lens group are different values between 56 mm and 560 mm.
  • the equivalent focal length is the focal length corresponding to the fixed focal lens group when the diagonal of the image sensor is scaled equally to 43.27mm based on the angle of view.
  • the first light path switching element is arranged behind the second fixed focus lens group, it is necessary to provide the first light turning element directly behind the second fixed focus lens group, and the first light turning element is along the second fixed focus lens group.
  • the direction of the optical axis is set, and the first light turning element can reflect the second light beam from the second fixed-focus lens group to the direction where the first optical path switching element is located.
  • the first light turning element may be arranged obliquely with respect to the second fixed focus lens group.
  • the angle between the plane where the first light turning element is located and the plane where the second fixed focus lens group is located may be 45°.
  • the first light redirecting element may be a flat mirror or other forms, such as a prism.
  • the inclined surface of the prism may be used as a reflecting surface.
  • the specific form of the first light path switching element is not limited here.
  • the first optical path switching element can reflect the light beam from the first fixed-focus lens group, that is, realize the deflection of the light beam from the first fixed-focus lens group The role of light direction.
  • the first light path switching element controls the second light beam from the second fixed focus lens group and reflected by the first light turning element to avoid or transmit
  • the first light path switching element reaches the image sensor, that is, there is no deflection effect on the light direction of the second light beam from the second fixed focus lens group and reflected by the first light turning element.
  • optical paths (optical paths) of the light beams reaching the image sensor through the fixed focus lens groups of different focal lengths are different.
  • the optical path of the first light beam reaching the image sensor through the first fixed focus lens group is different from the light path of the second light beam reaching the image sensor through the second fixed focus lens group.
  • the path of the first light path may be defined as: the light path where the first light beam passes through the first fixed-focus lens group and is reflected at the first light path switching element, and finally forms an image on the image sensor.
  • the path of the second light path is defined as the light path where the second light beam passes through the second fixed focus lens group, is reflected by the first light turning element and then transmits through the first light path switching element, and finally forms an image on the image sensor.
  • the first light path and the second light path respectively pass through different fixed-focus modules to achieve different focal lengths and have different optical path lengths.
  • the first optical path switching element when the first control signal is received, the first optical path switching element may be located in the first position or in the first state, reflecting the first light beam from the first fixed-focus lens group to the image sensor; when When the second control signal is received, the first light path switching element can be in the second position or in the second state, and control the second light beam from the second fixed focus lens group and reflected by the first light turning element to avoid or pass through The first optical path switching element reaches the image sensor.
  • the first optical path switching element may be a mechanical element or an electronically controlled element, which functions to guide the first light beam of the first light path or the second light beam of the second light path to the image sensor, which is equivalent to a light path switching shutter (shutter) .
  • the mechanical element may be a movable or rotatable plane mirror.
  • the plane mirror can be switched between a first position and a second position to respectively guide the first light beam of the first optical path and the second light beam of the second optical path to the image sensor.
  • a movement control device or a rotation control device for example, a motor
  • the plane mirror for example, the front side, the rear side, the left side or the right side
  • the plane mirror when the first focal length needs to be realized, that is, when the first light beam of the first optical path is required to participate in imaging, the plane mirror may be located at the first position. At this time, the plane where the plane mirror is located and The angle between the planes where the first fixed-focus lens group is located may be 45°, and the first light beam from the first fixed-focus lens group can be reflected by the plane mirror to reach the image sensor for imaging.
  • the first optical path switching element can also block the light beam from the second fixed focus lens group (for example, by providing an opaque coating on the back of the reflective surface of the plane mirror) or reflect it to other directions to prevent
  • the light beam from the second fixed-focus lens group reaches the image sensor for imaging, thereby preventing the light beam from the second fixed-focus lens group from interfering with the light beam from the first fixed-focus lens group.
  • the plane mirror when the second focal length needs to be achieved, that is, when the second light beam of the second optical path is required to participate in imaging, the plane mirror can be located in the second position, and the plane mirror in the first position can be aligned along the a-axis.
  • the hour hand rotates 45° to reach the second position.
  • the plane where the plane mirror is located and the plane where the first fixed-focus lens group is located are parallel to each other, and the second light beam can directly reach the image sensor without passing through (avoiding) the plane mirror. .
  • the first optical path switching element can also block or reflect the light beam from the first fixed-focus lens group to other directions, preventing the first light beam from reaching the image sensor for imaging, so as to prevent the light beam from the first fixed-focus lens group from pairing with the second light beam.
  • the light beams of the two fixed-focus lens groups interfere.
  • the plane mirror when the second focal length needs to be achieved, that is, when the second beam of the second optical path is required to participate in imaging, the plane mirror can be located in the second position, and the plane mirror in the first position can be positioned along the b axis.
  • the hour hand rotates 45° to reach the second position.
  • the plane where the plane mirror is located and the plane where the first fixed-focus lens group is located are parallel to each other, and the second light beam can avoid the plane mirror and reach the image sensor directly.
  • the mechanical element may also be a movable or rotatable prism, which is not limited in this application.
  • the electronically controlled element can be formed by bonding two sets of prisms (for example, triangular prisms), wherein the bonding surface has a first empty slot (void).
  • the plane on which the first empty slot is located is inclinedly arranged with respect to the plane on which the second fixed-focus lens group is located.
  • the angle between the plane where the first cavity is located and the plane where the first fixed focus lens group is located may be 45°.
  • the first cavity can be filled with a substance with a first refractive index, that is, a high refractive index substance (for example, a substance with a refractive index greater than that of a prism, such as oil droplets); or, the first cavity can be filled with a second refractive index.
  • Low refractive index materials for example, materials with lower refractive index than the prism, such as air.
  • an electronic control device can be arranged beside the electronic control element (for example, the front side, the back side, the left side or the right side), and the electronic control device can fill the first cavity with a high refractive index material or a low refractive index material. substance.
  • the first optical path switching element when the first focal length needs to be achieved, that is, when the first light beam of the first optical path is required to participate in imaging, the first optical path switching element may be in the first state, and the first empty slot is filled The low-refractive index material, the interface between the prism and the low-refractive index material forms a total reflection interface, so that the first light beam from the first fixed-focus lens group is reflected by the total reflection interface to reach the image sensor.
  • the first optical path switching element when the second focal length needs to be achieved, that is, when the second light beam of the second optical path is required to participate in imaging, the first optical path switching element can be in the second state, and the first cavity is filled with high refractive index material.
  • the interface between the prism and the high refractive index material constitutes a transmission interface, so that the first light beam from the first fixed-focus lens group passes through the transmission interface and reaches the image sensor.
  • the camera module may further include a second optical path switching element.
  • the second optical path switching element is arranged in front of the first fixed focus lens group or the second fixed focus lens group.
  • the position or working state of the second optical path switching element is variable, and is used to make the first light beam enter the first fixed-focus lens group and prevent the second light beam from entering the second fixed-focus lens group, or to make the second light beam enter the second fixed-focus lens group.
  • the second optical path switching element may be arranged in parallel or obliquely relative to the plane where the first fixed focus lens group and the second fixed focus lens group are located, which is not limited in this application.
  • the central processing unit can send a third control signal to the first optical path switching element, and when the third control signal sent by the central processing unit is received
  • the second light path switching element can be in the third position or in the third state, preventing the second light beam from entering the second fixed-focus lens group and controlling the light beam (first light beam) from outside the camera module to enter (inject) The first fixed-focus lens group
  • the central processing unit can send a fourth control signal to the first optical path switching element, and when the central processing unit sends the first
  • the second optical path switching element can be located in the fourth position or in the fourth state, preventing the first light beam from entering the first fixed focus lens group and controlling the light beam (the second light beam) from outside the camera module to enter the second fixed focus lens group.
  • the third control signal and the first control signal may be the same control signal or different control signals
  • the fourth control signal and the second control signal may be the same control signal or different control signals, which is not limited in this application.
  • the second optical path switching element may be a mechanical element or an electronically controlled element, which functions to guide the light beam into the first fixed focus lens group or the second fixed focus lens group, which is equivalent to an optical path switching shutter.
  • the mechanical element may be a shutter.
  • a guide rail and a motion control device can be arranged beside the shutter (for example, the front, rear, left or right), which can drive the shutter to switch between the third position and the fourth position to guide the light beam into The first fixed focus lens group and the second fixed focus lens group.
  • the shutter when the shutter is in the third position, that is, when the shutter is located directly in front of the second fixed-focus lens group, the shutter can block the second light beam and not the first light beam.
  • the light beam can enter the first fixed focus lens group and the second light beam cannot enter the second fixed focus lens group.
  • the first light beam entering the first fixed focus lens group can reach the image sensor along the first light path to participate in imaging.
  • the shutter when the shutter is in the fourth position, that is, when the shutter is located directly in front of the first fixed-focus lens group, the shutter can block the first beam and not the second beam, and the second beam can enter the first beam.
  • Two fixed-focus lens groups and the first light beam cannot enter the first fixed-focus lens group, and the second light beam entering the second fixed-focus lens group can reach the image sensor along the second light path to participate in imaging.
  • the material of the shutter can be various matte materials or frosted plastic or metal with matting treatment, and the shape of the shutter can be round or square, etc., which is not limited in this application.
  • the second optical path switching element is an electronically controlled element.
  • the electronically controlled element can be composed of two parallel flat plates, and a second empty slot is left between the two parallel flat plates. Different areas of the second cavity can be filled with different fillers, such as light-transmitting material (such as air) or light-shielding material (such as dark liquid, such as water-based ink or oily ink) to guide the light beam into the first fixed focus respectively The lens group and the second fixed-focus lens group.
  • light-transmitting material such as air
  • light-shielding material such as dark liquid, such as water-based ink or oily ink
  • the electronically controlled element when the electronically controlled element is in the third state, that is, when the first area of the second cavity is filled with light-transmitting material and the second area is filled with light-shielding material, the light beam can enter the first fixed focus
  • the lens group cannot enter the second fixed-focus lens group, and the first light beam entering the first fixed-focus lens group can reach the image sensor along the first optical path to participate in imaging.
  • the electronically controlled element when the electronically controlled element is in the fourth state, that is, when the first area of the second cavity is filled with light-shielding material and the second area is filled with light-transmitting material, the light beam can enter the second fixed focus lens group but cannot The second light beam entering the first fixed focus lens group and the second fixed focus lens group can reach the image sensor along the second light path to participate in imaging.
  • the material of the flat plate is corrosion-resistant optical plastic or optical glass, and the shape of the flat plate can be square, round, etc., which is not limited in this application.
  • the camera module may also include a second light turning element (also called a second light path turning element or a second reflecting element), and the second light turning element is relative to the first light turning element.
  • the plane of the fixed-focus lens group or the plane of the second fixed-focus lens group is arranged obliquely, so that the optical path before the first beam enters the first fixed-focus lens group or the optical path before the second beam enters the second fixed-focus lens group is bent fold.
  • the light beam projected by the object can be reflected by the second light turning element to the first fixed focus lens group or the second fixed focus lens group, that is, the second light turning element and the first fixed focus lens group or the second fixed focus lens group can be Form a periscope structure.
  • the setting method of the camera module in the electronic device can be more flexible and compact.
  • the optical axis of the fixed focus lens group of the camera module (for example, the first optical axis of the first fixed focus lens group, or the second optical axis of the second fixed focus lens group) may be parallel to the height direction of the electronic device, In this way, the thickness of the electronic device can be reduced, and the camera module can be more easily integrated on small electronic devices such as mobile phones.
  • FIG. 9b a schematic diagram of an electronic device (for example, a mobile phone) provided with a camera module provided by this embodiment of the application
  • the camera module may be provided in the camera opening, and the camera module may include a housing and various Optical elements (for example, a fixed focus lens group, a first optical path exchange element, an image sensor, etc.), each optical element may be arranged in a cavity formed by the housing.
  • the optical axis of the fixed-focus lens group of the camera module (for example, the first optical axis of the first fixed-focus lens group, or the second optical axis of the second fixed-focus lens group) can be connected with the electronic device
  • the height direction is parallel, which can reduce the thickness of the electronic device.
  • the camera module may include a first light path switching element, a first light turning element, a first fixed-focus lens group, a second fixed-focus lens group, an image sensor, and a third
  • the light turning element also called the third light path turning element or the third reflecting element
  • the first fixed focus lens group and the first light path switching element are arranged along the first optical axis
  • the first optical axis is the first fixed focus lens group
  • the second fixed-focus lens group and the first light turning element are arranged along the second optical axis
  • the second optical axis is the optical axis of the second fixed-focus lens group
  • the first optical axis and the second optical axis are parallel to each other
  • the angles between the third light turning element and the image sensor and the first light path switching element are respectively 45°;
  • the first fixed-focus lens group is used to receive the first light beam from the outside of the camera module;
  • the second fixed-focus lens group Used to receive the second light beam from the outside of the camera module;
  • the first light turning element
  • the first optical path switching element When the first control signal is received, the first optical path switching element is located at the first position or in the first state, and changes the optical path of the first light beam from the first fixed-focus lens group so that the first light beam after the changed optical path passes through the third The light turning element reaches the image sensor for imaging; when the second control signal is received, the first light path switching element is in the second position or in the second state, so that the second light beam from the first light turning element passes through the third light turning element After arriving at the image sensor for imaging.
  • the angles between the third light turning element and the first light path switching element and the image sensor can be 45° respectively, at this time, the plane of the first fixed focus lens group (or the second fixed focus lens group) is located It can be parallel to the image sensor. In this way, the width of the camera module can be reduced, making the structure of the camera module more compact.
  • FIG. 10b a schematic diagram of an electronic device (for example, a mobile phone) provided with a camera module provided by this embodiment of the application
  • the camera module may be provided in the camera opening, and the camera module may include a housing and various Optical elements (for example, a fixed focus lens group, a first optical path exchange element, an image sensor, etc.), each optical element may be arranged in a cavity formed by the housing. Since the width of the camera module is reduced after the third light turning element is provided, the structure of the camera module is more compact, thereby reducing the space occupied by the camera equipment in the electronic equipment, and making the camera module easier to integrate in the mobile phone And other small electronic devices.
  • Optical elements for example, a fixed focus lens group, a first optical path exchange element, an image sensor, etc.
  • the camera module may further include a motor.
  • the motor can control the second light turning element to be parallel to the first optical axis or parallel to the first optical axis. Rotate on a horizontal plane and a rotation axis perpendicular to the first optical axis to adjust the angle at which incident light enters the second light turning element after being reflected, thereby changing the effective path of the light beam when it passes through the second light turning element.
  • the motor can drive the second light turning element to rotate along the x-axis and/or y-axis in the three-dimensional space to adjust the light beam after being reflected by the second light turning element. Enter the angle of the imaging system to eliminate the impact of image quality degradation caused by the jitter of the camera module.
  • the x-axis is parallel to the first optical axis of the first fixed focus lens group or the second optical axis of the second fixed focus lens group.
  • the y axis is parallel to the horizontal plane and perpendicular to the first optical axis of the first fixed focus lens group or the second optical axis of the second fixed focus lens group.
  • the motor can be arranged beside the second light turning element, such as the front side, the rear side, the left side or the right side, which is not specifically limited in this application.
  • the motor when the camera module shakes, the motor is used to control the first fixed focus lens group or the second fixed focus lens group in the direction perpendicular to the horizontal plane or parallel to the horizontal plane and parallel to the first optical axis.
  • the direction is shifted to adjust the optical path of the first light beam or the second light beam in the camera module.
  • the motor can drive the first fixed focus lens group (or the second fixed focus lens group) to translate along the y-axis and/or z-axis in the three-dimensional space to Adjust the optical path of the first beam or the second beam in the camera module to correct the position of the beam entering the image sensor after being transmitted by the first fixed focus lens group (or the second fixed focus lens group), thereby eliminating the jitter band of the camera module
  • the motor can drive the first fixed focus lens group (or the second fixed focus lens group) to translate along the y-axis and/or z-axis in the three-dimensional space to Adjust the optical path of the first beam or the second beam in the camera module to correct the position of the beam entering the image sensor after being transmitted by the first fixed focus lens group (or the second fixed focus lens group), thereby eliminating the jitter band of the camera module
  • the first fixed focus lens group or the second fixed focus lens group
  • the y-axis and the z-axis are perpendicular to the first optical axis of the first fixed-focus lens group, and the y-axis is parallel to the horizontal plane, and is parallel to the first optical axis of the first fixed-focus lens group or the second fixed-focus lens group.
  • the second optical axis is perpendicular, and the z-axis is perpendicular to the y-axis.
  • the motor can be arranged beside the first fixed-focus lens group (or the second fixed-focus lens group), such as the front side, the back side, the left side or the right side, which is not specifically limited in this application.
  • the motor when the camera module is out of focus, the motor is used to control the first light turning element, the first light path switching element, and the image sensor along the first optical axis or the second optical axis. Move in the direction of to adjust the optical path of the first beam or the second beam in the camera module to achieve the focusing function.
  • the motor when the camera module is out of focus, can control the first light turning element, the first light path switching element, and the third light turning element to move along the direction of the first optical axis or the second optical axis, The light path of the first light beam or the second light beam in the camera module is adjusted to realize the auto-focus function of the camera module.
  • the first light turning element, the first light path switching element and the third light turning element can form a back focus optical system.
  • the motor can drive the back focus optical system along the x axis. Move to ensure that the beam can converge on the image sensor with high quality to achieve optical autofocus.
  • the x-axis is parallel to the first optical axis of the first fixed focus lens group or the second optical axis of the second fixed focus lens group.
  • the first light turning element and the first light path switching element can also be kept stationary, and the third light turning element and the image sensor can be moved along the y-axis direction under the push of the motor. Therefore, the effective length of the optical path between the first optical path switching element and the image sensor is changed, and the focusing function is realized by this.
  • the y axis is parallel to the horizontal plane and perpendicular to the first optical axis of the first fixed focus lens group or the second optical axis of the second fixed focus lens group.
  • the camera module may be provided with a set of motors, and a set of motors may include one or more motors. If a motor is included, the motor can be controlled to push related optical components to achieve focus and anti-shake functions. If multiple motors are included, for example, a focus motor used to realize the focus function and an anti-shake motor used to realize the anti-shake function, then the camera module can activate the focus motor to push the related optical components when controlling the focus. When controlling the anti-shake, the camera module can start the anti-shake motor to push the related optical components.
  • the camera module includes two fixed-focus lens groups. It is understandable that the camera module may also include more than two fixed-focus lens groups, so that switching of more than two focal lengths can be realized.
  • FIG. 13 it is a schematic diagram of a camera module capable of switching between three focal lengths.
  • the camera module may include three fixed-focus lens groups, including a first fixed-focus lens group, a second fixed-focus lens group, and a third fixed-focus lens group.
  • the optical axes of the three fixed-focus lens groups are parallel to each other.
  • Each fixed-focus lens group corresponds to three different focal lengths.
  • the camera module also includes a third optical path switching element, the third optical path switching element is arranged along the third optical axis of the third fixed focus lens group, and the third optical path switching element is located between the first optical path switching element and the image sensor, FIG.
  • the first light path switching element realizes the direction deflection of the first light beam from the first fixed focus lens group, that is, reflects the first light beam from the first fixed focus lens group, and the third light path switching element pair comes from The first light beam of the first light path switching element has no deflection effect, and finally the first light beam can reach the image sensor.
  • the first light path switching element and the third light path switching element have no deflection effect on the second light beam from the second fixed-focus lens group, and finally the second light beam can reach the image sensor.
  • the third optical path switching element realizes a deflection effect on the third light beam from the third fixed-focus lens group, that is, reflects the third light beam to the image sensor.
  • the above-mentioned camera module including three fixed-focus lens groups may also include a second light path switching element, a second light turning element, and a third light turning element, etc., and its function and arrangement may be Refer to the relevant description above, and will not repeat it here.
  • the camera module provided by the embodiment of the application can control the light beams from different fixed-focus lens groups to reach the image sensor based on different signals, can realize the switching of multi-focal segments, and can achieve high-definition at the level of independent fixed-focus modules.
  • the high-sharpness image quality can enrich the user's use scene.
  • the light beams from different fixed focus lens groups can reach the same image sensor and image on the image sensor, there is no need to set up an image sensor for each fixed focus lens group, so that the hardware can be reduced based on the zoom function. cost.
  • the camera module provided in the embodiment of the present application belongs to a single camera module, and a set of motors can be used for focusing. And anti-shake, further reducing hardware costs.
  • the embodiment of the present application also provides an electronic device.
  • the above-mentioned camera module can be provided in the electronic device.
  • the electronic device can be, for example, a mobile phone, a tablet computer, a desktop computer, a laptop notebook computer, or an ultra-mobile personal computer (ultra-mobile personal computer).
  • computer, UMPC ultra-mobile personal computer
  • handheld computer netbook
  • personal digital assistant personal digital assistant, PDA
  • the electronic device may specifically be a mobile phone 100.
  • the mobile phone 100 may include a processor 110, a camera module 120, a display screen 130, an internal memory 140, and so on.
  • the structure illustrated in the embodiment of the present invention does not constitute a limitation on the mobile phone 100. It may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the camera module 120 may be used to capture still images or videos.
  • the object generates an optical image through the fixed-focus lens group in the camera module and is projected to the image sensor.
  • the image sensor may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (Neural-network Processing Unit, NPU) Wait.
  • AP application processor
  • modem processor modem processor
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor Neural-network Processing Unit, NPU
  • the processor 110 may generate a corresponding signal and send it to the camera module. For example, when it is determined that the first focal length needs to be achieved, the processor may generate a first control signal and send the first control signal to the camera module.
  • the processor 110 can also be used to control the focus motor and the anti-shake motor of the camera module to push related optical elements to realize the functions of focusing and anti-shake of the camera module.
  • the processor 110 may include an interface.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, and a universal asynchronous transceiver (universal asynchronous transceiver) interface.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • asynchronous receiver/transmitter, UART mobile industry processor interface
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the internal memory 140 may be used to store computer executable program code, the executable program code including signals.
  • the processor 110 executes various functional applications and data processing of the mobile phone 100 by running the signals stored in the internal memory 140.
  • the display screen 130 is used to display images, videos, and the like.
  • the display screen includes a display panel.
  • the display panel can adopt liquid crystal display (LCD), organic light-emitting diode (OLED), active matrix organic light-emitting diode or active-matrix organic light-emitting diode (active-matrix organic light-emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • active-matrix organic light-emitting diode active-matrix organic light-emitting diode
  • AMOLED Miniled, MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • the mobile phone 100 may include one or N display screens, and N is a positive integer greater than one.
  • the mobile phone 100 can realize the shooting function through the camera module 120, the display screen 130, the processor 110, and the like.
  • the mobile phone 100 described above may have more or fewer components than those shown in FIG. 15, may combine two or more components, or may have different component configurations.
  • the various components shown in FIG. 15 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing or application specific integrated circuits.
  • This embodiment also provides a computer storage medium in which computer instructions are stored.
  • the computer instructions run on an electronic device, the electronic device executes the above-mentioned related method steps to implement the imaging method in the above-mentioned embodiment.
  • This embodiment also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the above-mentioned related steps, so as to realize the imaging method in the above-mentioned embodiment.
  • the embodiments of the present application also provide a device.
  • the device may specifically be a chip, component or module.
  • the device may include a processor and a memory connected to each other.
  • the memory is used to store computer execution instructions.
  • the processor can execute the computer-executable instructions stored in the memory, so that the chip executes the imaging methods in the foregoing method embodiments.
  • the electronic equipment, computer storage medium, computer program product, or chip provided in this embodiment are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can refer to the corresponding method provided above. The beneficial effects of the method will not be repeated here.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate, and the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read only memory (read only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

本申请实施例提供一种摄像方法、摄像模组和电子设备,涉及摄像技术领域,能够实现变焦功能,且能够降低硬件成本。该摄像模组包括第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组和图像传感器;其中,第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向图像传感器,或者,使改变光路后的第二光束指向图像传感器;图像传感器用于,接收改变光路后的第一光束或接收改变光路后的第二光束,并生成图像。其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同。

Description

一种摄像方法、摄像模组和电子设备
本申请要求于2019年12月31日提交国家知识产权局、申请号为201911416612.8、申请名称为“一种摄像方法、摄像模组和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及摄像技术领域,尤其涉及一种摄像方法、摄像模组和电子设备。
背景技术
随着电子设备的不断发展,用户对电子设备的摄像需求越来越高。例如,用户希望可以使用电子设备高质量地拍摄近景和远景。
为了满足用户的摄像需求,当前电子设备中可以植入多个(≥2个)直立式的定焦摄像头,不同定焦摄像头具有不同焦距。如图1所示,第一定焦摄像头的视场角为85°,可以实现第一焦距,第二定焦摄像头的视场角为45°,可以实现第二焦距,第一焦距与第二焦距不同。电子设备可以根据用户实际拍摄需求切换定焦摄像头以实现变焦功能。
当电子设备需要实现多种焦段的时候,需要使用多个定焦摄像头,由于每个定焦摄像头需要有各自的图像芯片和马达等,使得硬件成本相对较高。
发明内容
本申请实施例提供一种摄像方法、摄像模组和电子设备,能够实现变焦功能,且能够降低硬件成本。
第一方面,本申请实施例提供一种摄像模组,包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组和图像传感器,第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行;第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件和图像传感器;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向图像传感器,或者,使改变光路后的第二光束指向图像传感器;图像传感器用于,接收改变光路后的第一光束或接收改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同。
本申请实施例提供的摄像模组可以包括至少两个定焦镜组(例如,包括第一定焦镜组和第二定焦镜组)和一套图像传感器,多个定焦镜组的焦距不同,从而光路总长不同。摄像模组可以将来自不同定焦镜组的光束投射到同一套图像传感器,从而在采用一套图像传感器的基础上实现多焦段的切换,可以降低硬件成本。
第二方面,本申请实施例提供一种摄像模组,包括:第一光路切换元件、第一光转向 元件、第一定焦镜组、第二定焦镜组、图像传感器和第三光转向元件,第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行,第三光转向元件与图像传感器和第一光路切换元件之间的夹角分别为45°;第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件和第三光转向元件;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向第三光转向元件,或者,使改变光路后的第二光束指向第三光转向元件;第三光转向元件用于,再次改变上述改变光路后的第一光束的光路,使再次改变光路后的第一光束指向图像传感器,或者,再次改变上述改变光路后的第二光束的光路,使再次改变光路后的第二光束指向图像传感器;图像传感器用于,接收再次改变光路后的第一光束或接收再次改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同。
本申请实施例提供的摄像模组可以包括至少两个定焦镜组(例如,包括第一定焦镜组和第二定焦镜组)和一套图像传感器,多个定焦镜组的焦距不同,从而光路总长不同。摄像模组可以将来自不同定焦镜组的光束投射到同一套图像传感器,从而在采用一套图像传感器的基础上实现多焦段的切换,可以降低硬件成本。并且,由于设置第三光转向元件后降低了摄像模组的宽度,使得摄像模组的结构更为紧凑,从而降低了摄像设备在电子设备中所占据的空间大小,使摄像模组更易于集成在手机等小型电子设备上。
在一种可能的设计中,基于第二方面提供的摄像模组,还包括马达,马达用于控制第一光转向元件、第一光路切换元件和第三光转向元件沿第一光轴或第二光轴的方向移动;或者,马达用于控制第三光转向元件和图像传感器沿平行于水平面且垂直于第一光轴或第二光轴的方向移动。从而可以调整第一光束或第二光束在摄像模组中的光路,以此来实现对焦功能。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,第一光路切换元件为平面反射镜或棱镜,平面反射镜或棱镜与第一定焦镜组所在平面之间夹角为45°,这样,可以使来自第一定焦镜组的第一光束可以经该平面反射镜反射到达图像传感器成像。同时,第一光路切换元件还可以将来自第二定焦镜组的光束遮挡住(例如,通过在平面反射镜的反射面的背面设置不透光的涂层)或反射至其他方向,以阻止来自第二定焦镜组的光束到达图像传感器成像,从而避免来自第二定焦镜组的光束对来自第一定焦镜组的光束产生干扰。或者,平面反射镜或棱镜与第一定焦镜组所在平面相互平行。这样,第二光束可以不经过(避开)该平面反射镜直接到达图像传感器成像。同时,第一光路切换元件还可以将来自第一定焦镜组的光束遮挡住或反射至其他方向,阻止第一光束到达图像传感器成像,以避免来自第一定焦镜组的光束对来自第二定焦镜组的光束产生干扰。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,第一光路切换元件由两组棱镜贴合而成,两组棱镜的贴合面留有第一空槽,第一空槽所在的平面与第一定焦镜组所在平面之间夹角为45°,第一空槽内填充第一折射率的物质,或者,第一空槽内填充第二折射率的物质,第一折射率大于第二折射率。
这样,当需要实现第一焦距时,即需要第一光路的第一光束参与成像时,可以向第一空槽内填充第一折射率的物质(低折射率物质),棱镜与低折射率物质界面构成全反射界面,使得来自第一定焦镜组的第一光束经全反射界面反射到达图像传感器。当需要实现第二焦距时,即需要第二光路的第二光束参与成像时,可以向第一空槽内填充第二折射率的物质(高折射率物质),棱镜与高折射率物质界面构成透射界面,使得来自第一定焦镜组的第一光束穿过透射界面到达图像传感器。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,还包括第二光路切换元件,第二光路切换元件设置在第一定焦镜组或第二定焦镜组的前方。第二光路切换元件的位置或者工作状态可变,用于使第一光束进入第一定焦镜组并阻止第二光束进入第二定焦镜组,或者,用于使第二光束进入第二定焦镜组并阻止第一光束进入第一定焦镜组。
这样,可以避免不同的光束之间产生干扰,从而可以避免来自不同定焦镜组的光束同时进入图像传感器导致在图像传感器上形成鬼像的问题。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,第二光路切换元件为遮板,遮板位于第二定焦镜组的正前方,或者,遮板位于第一定焦镜组的正前方。
这样,当遮板位于第二定焦镜组的正前方时,遮板可以遮挡第二光束且不遮挡第一光束,第一光束可以进入第一定焦镜组且第二光束无法进入第二定焦镜组,进入第一定焦镜组的第一光束可以沿第一光路到达图像传感器参与成像。当遮板位于第一定焦镜组的正前方时,遮板可以遮挡第一光束且不遮挡第二光束,第二光束可以进入第二定焦镜组且第一光束无法进入第一定焦镜组,进入第二定焦镜组的第二光束可以沿第二光路到达图像传感器参与成像,避免不同的光束之间产生干扰。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,第二光路切换元件由两片平行平板组成,两片平行平板之间留有第二空槽,第二空槽包括第一区域和第二区域,第一区域位于第一定焦镜组的正前方,第二区域位于第二定焦镜组的正前方,第二空槽的第一区域内填充透光物质且第二区域内填充遮光物质,或者,第二空槽的第一区域内填充遮光物质且第二区域填充透光物质。
这样,当第二空槽的第一区域填充遮光物质,第二区域填充透光物质时,光束可以进入第二定焦镜组但无法进入第一定焦镜组,进入第二定焦镜组的第二光束可以沿第二光路到达图像传感器参与成像。当第二空槽的第二区域填充遮光物质,第一区域填充透光物质时,光束可以进入第一定焦镜组但无法进入第二定焦镜组,进入第一定焦镜组的第一光束可以沿第一光路到达图像传感器参与成像,避免不同的光束之间产生干扰。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,还包括第二光转向元件,第二光转向元件设置在第一定焦镜组和第二定焦镜组的前方,且第二光转向元件相对于第一定焦镜组的平面或第二定焦镜组的平面呈倾斜设置,第二光转向元件用于反射来自摄像模组外部的一光束和第二光束,使第一光束进入第一定焦镜组前的光路发生弯折,或者使第二光束进入第二定焦镜组前的光路发生弯折。
这样,物体投射的光束可以经第二光转向元件反射到第一定焦镜组或第二定焦镜组,即第二光转向元件与第一定焦镜组或第二定焦镜组可以构成潜望式结构。通过潜望式设计,摄像模组在电子设备中的设置方式可以更加灵活和紧凑。例如,摄像模组的定焦镜组的光轴(例如,第一定焦镜组的第一光轴,或第二定焦镜组的第二光轴)可以与电子设备的高 度方向平行,这样可以降低电子设备的厚度,使摄像模组更易于集成在手机等小型电子设备上。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,还包括马达,马达用于控制第二光转向元件沿平行于第一光轴或平行于水平面且垂直于第一光轴的旋转轴旋转。
这样,当摄像模组抖动时,即当摄像模组产生微小位移或旋转时,马达可以控制第二光转向元件沿平行于第一光轴或平行于水平面且垂直于第一光轴的旋转轴旋转,可以调整入射光线经反射后进入第二光转向元件的角度,进而可以改变光束经过第二光转向元件时的有效路径。通过上述方式可以对因为抖动而发生改变的光路进行补偿,以此来实现摄像模组的防抖功能,以减少成像的模糊程度。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,还包括马达,马达用于控制第一定焦镜组或第二定焦镜组沿垂直于水平面的方向或平行于水平面且平行于第一光轴的方向平移。
这样,当摄像模组抖动时,马达可以控制第一定焦镜组或第二定焦镜组沿垂直于水平面的方向或平行于水平面且平行于第一光轴的方向平移,以调整第一光束或第二光束在摄像模组中的光路,以此来实现摄像模组的防抖功能,以减少成像的模糊程度。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,还包括马达,马达用于控制第一光转向元件、第一光路切换元件和图像传感器沿第一光轴或第二光轴的方向移动。
这样,当摄像模组失焦时,马达可以控制第一光转向元件、第一光路切换元件和图像传感器沿第一光轴或第二光轴的方向移动,以调整第一光束或第二光束在摄像模组中的光路,以此来实现对焦功能。
在一种可能的设计中,基于第一方面或第二方面提供的摄像模组,第一焦距或第二焦距为标准镜头的焦距的2-20倍。
第三方面,本申请实施例提供一种摄像方法,应用于摄像模组,摄像模组包括第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组和图像传感器,第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行;第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件和图像传感器;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向图像传感器,或者,使改变光路后的第二光束指向图像传感器;图像传感器用于,接收改变光路后的第一光束或接收改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同;该方法包括:当接收到第一控制信号时,第一光路切换元件位于第一位置或处于第一状态,改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束到达图像传感器成像;当接收到第二控制信号时,第一光路切换元件位于第二位置或处于第二状态,控制来自第一光转向元件的第二光束到达图像传感器成像。
本申请实施例提供的摄像方法所应用的摄像模组可以包括至少两个定焦镜组(例如,包括第一定焦镜组和第二定焦镜组)和一套图像传感器,多个定焦镜组的焦距不同,从而光路总长不同。摄像模组可以基于不同的信号将来自不同定焦镜组的光束投射到同一套图像传感器,从而在采用一套图像传感器的基础上实现多焦段的切换,可以降低硬件成本。
第四方面,本申请实施例提供一种摄像方法,应用于摄像模组,摄像模组包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组、图像传感器和第三光转向元件,第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行,第三光转向元件与图像传感器和第一光路切换元件之间的夹角分别为45°;第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件和第三光转向元件;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向第三光转向元件,或者,使改变光路后的第二光束指向第三光转向元件;第三光转向元件用于,再次改变上述改变光路后的第一光束的光路,使再次改变光路后的第一光束指向图像传感器,或者,再次改变上述改变光路后的第二光束的光路,使再次改变光路后的第二光束指向图像传感器;图像传感器用于,接收再次改变光路后的第一光束或接收再次改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同;该方法包括:当接收到第一控制信号时,第一光路切换元件位于第一位置或处于第一状态,改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束经过第三光转向元件后到达图像传感器成像;当接收到第二控制信号时,第一光路切换元件位于第二位置或处于第二状态,使来自第一光转向元件的第二光束经过第三光转向元件后到达图像传感器成像。
在一种可能的设计中,基于第四方面提供的方法,摄像模组还包括马达,当摄像模组失焦时,马达控制第一光转向元件、第一光路切换元件和第三光转向元件沿第一光轴或第二光轴的方向移动,以调整第一光束或第二光束在摄像模组中的光路;或者,当摄像模组失焦时,马达控制第三光转向元件和图像传感器沿平行于水平面且垂直于第一光轴或第二光轴的方向移动,以调整第一光束或第二光束在摄像模组中的光路。
在一种可能的设计中,基于第三方面或第四方面提供的方法,第一光路切换元件为平面反射镜或棱镜,第一光路切换元件位于第一位置,改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束到达图像传感器成像,包括:平面反射镜或棱镜与第一定焦镜组所在平面之间夹角为45°,反射来自第一定焦镜组的第一光束至图像传感器成像,且遮挡或反射来自第二定焦镜组并经过第一光转向元件反射的第二光束,以阻止第二光束到达图像传感器成像;第一光路切换元件位于第二位置,控制来自第一光转向元件的第二光束到达图像传感器成像,包括:平面反射镜或棱镜与第一定焦镜组所在平面相互平行,控制来自第一光转向元件的第二光束不经过第一光路切换元件到达图像传感器成像,且遮挡或反射来自第一定焦镜组的第一光束,以阻止第一光束到达图像传感器成像。
在一种可能的设计中,基于第三方面或第四方面提供的方法,第一光路切换元件由两组棱镜贴合而成,两组棱镜的贴合面留有第一空槽,第一空槽所在的平面与第一定焦镜组 所在平面之间夹角为45°,第一光路切换元件处于第一状态,改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束到达图像传感器成像,包括:第一空槽内填充第一折射率的物质,第一空槽所在的平面反射来自第一定焦镜组的第一光束至图像传感器成像;第一光路切换元件处于第二状态,控制来自第一光转向元件的第二光束到达图像传感器成像,包括:第一空槽内填充第二折射率的物质,控制来自第一光转向元件的第二光束透射第一空槽到达图像传感器成像;其中,第一折射率大于第二折射率。
在一种可能的设计中,基于第三方面或第四方面提供的方法,还包括第二光路切换元件,第二光路切换元件设置在第一定焦镜组或第二定焦镜组的前方,第二光路切换元件的位置或者工作状态可变,当接收到第三控制信号时,第二光路切换元件位于第三位置或处于第三状态,阻止第二光束进入第二定焦镜组并使第一光束进入第一定焦镜组;当接收到第四控制信号时,第二光路切换元件位于第四位置或处于第四状态,阻止第一光束进入第一定焦镜组并使第二光束进入第二定焦镜组。
在一种可能的设计中,基于第三方面或第四方面提供的方法,第二光路切换元件为遮板,第二光路切换元件位于第三位置,阻止第二光束进入第二定焦镜组并使第一光束进入第一定焦镜组包括:遮板位于第二定焦镜组的正前方,遮挡第二光束且不遮挡第一光束,以使第一光束进入第一定焦镜组;第二光路切换元件位于第四位置阻止第一光束进入第一定焦镜组并使第二光束进入第二定焦镜组包括:遮板位于第一定焦镜组的正前方,遮挡第一光束且不遮挡第二光束,以使第二光束进入第二定焦镜组。
在一种可能的设计中,基于第三方面或第四方面提供的方法,第二光路切换元件由两片平行平板组成,两片平行平板之间留有第二空槽,第二空槽包括第一区域和第二区域,第一区域位于第一定焦镜组的正前方,第二区域位于第二定焦镜组的正前方,第二光路切换元件处于第三状态,阻止第二光束进入第二定焦镜组并使第一光束进入第一定焦镜组包括:第二空槽的第一区域填充透光物质,第二区域填充遮光物质,透射第一光束且遮挡第二光束;第二光路切换元件处于第四状态,阻止第一光束进入第一定焦镜组并使第二光束进入第二定焦镜组包括:第二空槽的第一区域填充遮光物质,第二区域填充透光物质,透射第二光束且遮挡第一光束。
在一种可能的设计中,基于第三方面或第四方面提供的方法,还包括第二光转向元件,第二光转向元件设置在第一定焦镜组和第二定焦镜组的前方,且第二光转向元件相对于第一定焦镜组的平面或第二定焦镜组的平面呈倾斜设置,第二光转向元件反射来自摄像模组外部的一光束和第二光束,使第一光束进入第一定焦镜组前的光路发生弯折,或者使第二光束进入第二定焦镜组前的光路发生弯折。
在一种可能的设计中,基于第三方面或第四方面提供的方法,还包括马达,当摄像模组抖动时,马达控制第二光转向元件沿平行于第一光轴或平行于水平面且垂直于第一光轴的旋转轴旋转,以调整第一光束或第二光束进入第二光转向元件的角度。
在一种可能的设计中,基于第三方面或第四方面提供的方法,还包括马达,当摄像模组抖动时,马达控制第一定焦镜组或第二定焦镜组沿垂直于水平面的方向或平行于水平面且平行于第一光轴的方向平移,以调整第一光束或第二光束在摄像模组中的光路。
在一种可能的设计中,基于第三方面或第四方面提供的方法,还包括马达,当摄像模组失焦时,马达控制第一光转向元件、第一光路切换元件和图像传感器沿第一光轴或第二 光轴的方向移动,以调整第一光束或第二光束在摄像模组中的光路。
在一种可能的设计中,基于第三方面或第四方面提供的方法,第一焦距或第二焦距为标准镜头的焦距的2-20倍。
第五方面,本申请实施例提供一种电子设备,包括处理器、存储器、总线及摄像模组,其中,处理器、存储器及摄像模组之间通过总线互相连接,其中,存储器用于存储程序与指令,处理器用于调用存储器中存储的程序与指令实现对摄像模组的控制;摄像模组包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组和图像传感器,第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行;第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向图像传感器,或者,使改变光路后的第二光束指向图像传感器;图像传感器用于,接收改变光路后的第一光束或接收改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同。
第六方面,本申请实施例提供一种电子设备,包括处理器、存储器、总线及摄像模组,其中,处理器、存储器及摄像模组之间通过总线互相连接,其中,存储器用于存储程序与指令,处理器用于调用存储器中存储的程序与指令实现对摄像模组的控制;摄像模组包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组、图像传感器和第三光转向元件,第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行,第三光转向元件与图像传感器和第一光路切换元件之间的夹角分别为45°;第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件和第三光转向元件;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向第三光转向元件,或者,使改变光路后的第二光束指向第三光转向元件;第三光转向元件用于,再次改变上述改变光路后的第一光束的光路,使再次改变光路后的第一光束指向图像传感器,或者,再次改变上述改变光路后的第二光束的光路,使再次改变光路后的第二光束指向图像传感器;图像传感器用于,接收再次改变光路后的第一光束或接收再次改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同。
第七方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第三方面或第四方面提供的任意一种方法。
第八方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面或第四方面提供的任意一种方法。
第九方面,本申请实施例提供了一种芯片***,该芯片***包括处理器,还可以包括存储器,用于实现上述第三方面或第四方面提供的任意一种方法。该芯片***可以由芯片 构成,也可以包含芯片和其他分立器件。
附图说明
图1为现有技术中的一种多定焦摄像头的结构示意图;
图2a为本申请实施例提供的一种摄像模组的结构示意图;
图2b为本申请实施例提供的一种摄像方法的信号交互示意图;
图3a为本申请实施例提供的又一种摄像模组的结构示意图;
图3b为本申请实施例提供的再一种摄像模组的结构示意图;
图4a为本申请实施例提供的再一种摄像模组的结构示意图;
图4b为本申请实施例提供的再一种摄像模组的结构示意图;
图4c为本申请实施例提供的再一种摄像模组的结构示意图;
图5a为本申请实施例提供的再一种摄像模组的结构示意图;
图5b为本申请实施例提供的再一种摄像模组的结构示意图;
图6a为本申请实施例提供的再一种摄像模组的结构示意图;
图6b为本申请实施例提供的又一种摄像方法的流程示意图;
图7a为本申请实施例提供的再一种摄像模组的结构示意图;
图7b为本申请实施例提供的再一种摄像模组的结构示意图;
图8a为本申请实施例提供的再一种摄像模组的结构示意图;
图8b为本申请实施例提供的再一种摄像模组的结构示意图;
图9a为本申请实施例提供的再一种摄像模组的结构示意图;
图9b为本申请实施例提供的一种电子设备的形态示意图;
图10a为本申请实施例提供的再一种摄像模组的结构示意图;
图10b为本申请实施例提供的又一种电子设备的形态示意图;
图11a为本申请实施例提供的一种第二光转向元件的旋转示意图;
图11b为本申请实施例提供的一种第一定焦镜组的旋转示意图;
图12为本申请实施例提供的一种后焦光学***的移动示意图;
图13为本申请实施例提供的再一种摄像模组的结构示意图;
图14为本申请实施例提供的再一种摄像模组的结构示意图;
图15为本申请实施例提供的一种电子设备的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“竖向”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;对 于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,术语“元件”也可以称为“装置”、“部件”、“构件”或“机构”,本申请不做具体限定。例如,第一光路切换元件也可以称为第一光路切换装置、第一光路切换部件(第一光路切换部)、第一光路切换构件或第一光路切换机构等。
目前,用户在使用电子设备(例如,手机、平板等)进行拍照的时候,受拍摄距离或者构图设计的影响,用户常常需要对图像进行放大拍摄。然而随着放大倍数增加,单纯的数字变焦会严重地牺牲图像解析力,因此越来越多的电子设备都增加了光学变焦功能,该功能在光学上保证了可以采集到多个固定焦段的图像,再结合数字变焦算法,在覆盖更宽的变焦范围的同时可以维持图像解析力。
以电子设备为手机为例,目前在手机上使用最为广泛的光学变焦硬件方案是由标准焦距的主摄像头结合长焦距的副摄像头所组成的双摄像模组结构。这种结构的扩展性较差,当需要采集更多焦段的图像时,必须在手机配备更多的定焦摄像头,由于每个定焦摄像头需要有各自的图像芯片和马达(对焦马达,光学防抖(optical image stabilization,OIS)马达)等,使得硬件成本相对较高。
本申请实施例提供一种摄像模组(也可以称为摄像头或摄像头模组(模块),本申请不做限定),该摄像模组可以包括多个(两个或两个以上)定焦镜组和一套图像传感器,多个定焦镜组的焦距和光路总长不同。摄像模组可以基于不同的信号将来自不同定焦镜组的光束(物体投射在定焦镜组的光束)投射到同一套图像传感器,从而在采用一套图像传感器的基础上实现多焦段的切换,可以降低硬件成本。
并且,本申请实施例提供的摄像模组属于单摄像模组,可以使用一套对焦马达和防抖马达实现光学防抖以及自动对焦功能,进一步降低了硬件成本。
参阅图2a,本申请实施例提供了一种摄像模组,包括图像传感器、至少两个定焦镜组(例如,可以包括第一定焦镜组和第二定焦镜组)、第一光路切换元件以及第一光转向元件(也可以称为第一光路转向元件或第一反射元件)。第一光路切换元件设置在第一定焦镜组的正后方以及第二定焦镜组的侧后方,第一光转向元件设置在第二定焦镜组的正后方。第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行(可以理解的是,在工艺制造过程中可能会有微小的加工误差导致第一光轴与第二光轴不完全相互平行)。图像传感器设置在第一光路切换元件的一侧,第一定焦镜组(或第二定焦镜组)所在平面与图像传感器所在平面可以相互垂直。
其中,第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件和图像传感器;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向图像传感器,或者,使改变光路后的第二光束指向图像传感器;图像传感器用于,接收改变光路后的第一光束或接收改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同。
其中,定焦镜组也可以称为定焦镜头,可以用于折射来自摄像模组外部的物体投射的 光束(光线/光线束)。定焦镜组可以由多个透镜组成,多个透镜之间可以相互平行。第一定焦镜组和第二定焦镜组可以由相同数量的透镜组成(例如,第一定焦镜组或第二定焦镜组可以包括两个透镜),或者分别由不同数量的透镜组成(例如,第一定焦镜组可以包括两个透镜,第二定焦镜组可以包括三个透镜)。第一定焦镜组和第二定焦镜组可以由塑性材料构成,此外,其它的透明光学材料也可以被使用,例如玻璃材料,具体此处不做限定。并且,第一定焦镜组及第二定焦镜组可以由具有不同的光学特性(例如不同的色散系数和/或不同的折射率)的材料构成,例如,第一定焦镜组可以由塑性材料构成,第二定焦镜组可以由玻璃材料构成。此外,第一定焦镜组及第二定焦镜组可以为圆形的透镜,或者可以是其它的形状,例如椭圆形、矩形或者具有圆角的矩形等,具体此处不做限定。
图像传感器也可以称为图像芯片或传感器元件或感光元件,可以用于将获取到的光束(光线)进行光电转换生成数字图像,图像传感器可以是电荷耦合元件(charge coupled device,CCD),也可以是金属氧化物半导体元件(complementary metal-oxide semiconductor,CMOS),具体此处不做限定。例如,图像传感器可以是Blue Glass sensor。
可以理解的是,上述摄像模组可以设置电子设备中。当用户需要以第一焦距拍摄物体时,响应于用户在电子设备上的相应操作,中央处理器可以向第一光路切换元件发送第一控制信号。如图2b所示,第一光路切换元件用于,当接收到第一控制信号时,第一光路切换元件位于第一位置或处于第一状态,改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束到达图像传感器成像;当用户需要以第二焦距拍摄物体时,响应于用户在电子设备上的相应操作,中央处理器可以向第一光路切换元件发送第二控制信号,当接收到第二控制信号时,第一光路切换元件位于第二位置或处于第二状态,控制来自第一光转向元件的第二光束到达图像传感器成像。
需要说明的是,本申请实施例中的第一光束是指经过第一定焦镜组的光束(即被第一定焦镜组接收或折射的光束)。第一光束在经过第一定焦镜组前或经过第一定焦镜组后还可以再经过一个或多个光学元件,可以理解的是,在经过每个光学元件(例如,被该光学元件折射、反射或透射)时,第一光束可能会有部分损耗(即组成第一光束的电磁波可能会有损耗)。在本申请中,可以认为通过一个光学元件前后的光束为同一光束,其光路可能发生改变,但组成光束的电磁波可以视为是相同的。同样的,本申请实施例中的第二光束是指经过第二定焦镜组的光束。第二光束在经过第二定焦镜组前或经过第二定焦镜组后还可以经过一个或多个光学元件,可以理解的是,在经过每个光学元件时,第二光束可能会有部分损耗(即组成第二光束的电磁波可能会有损耗)。在本申请中,可以认为通过一个光学元件前后的光束为同一光束,其光路可能发生改变,但组成光束的电磁波可以视为是相同的。
示例性的,当第一光路切换元件接收到中央处理器发送的第一控制信号时,可以工作在反射模式,反射来自第一定焦镜组的第一光束(即由第一定焦镜组折射的光束)到达图像传感器;当接收到中央处理器发送的第二控制信号时,可以工作在透射模式,控制来自第二定焦镜组且经第一光转向元件反射后的第二光束避开或透射过第一光路切换元件到达图像传感器。
其中,第一焦距或第二焦距为标准镜头的焦距的2-20倍。例如,第一焦距可以是标准镜头的焦距的5倍(5X lens),第二焦距可以是标准镜头的焦距的10倍(10X lens)。其中, 标准镜头是视角(视场角)为45°~50°的镜头的总称,标准镜头的焦距长度和所摄画幅的对角线长度大致相等。示例性的,标准镜头的焦距可以是28mm,则第一焦距和第二焦距可以是56mm至560mm之间的不同值。也可以认为第一定焦镜组和第二定焦镜组的等效焦距为56mm至560mm之间的不同值。等效焦距是以视场角为基准,将图像传感器的对角线等比例缩放到43.27mm时,定焦镜组所对应的焦距。
可以理解的是,由于第一光路切换元件设置在第二定焦镜组的侧后方,因此需要在第二定焦镜组的正后方设置第一光转向元件,第一光转向元件沿第二光轴的方向设置,第一光转向元件可以将来自第二定焦镜组的第二光束反射到第一光路切换元件所在的方向。第一光转向元件可以相对于第二定焦镜组倾斜设置。示例性的,该第一光转向元件所在平面与第二定焦镜组所在平面之间夹角可以为45°。
其中,第一光转向元件可以是平面镜,也可以是其他形式,例如棱镜,棱镜的斜面可以作为反射面,关于第一光路切换元件的具体形式此处不做限定。
当需要实现第一焦距(例如,5X lens)时,根据第一控制信号,第一光路切换元件可以反射来自第一定焦镜组的光束,即对来自第一定焦镜组的光束实现偏转光线方向的作用。当需要实现第二焦距(例如,10X lens)时,根据第二控制信号,第一光路切换元件控制来自第二定焦镜组且经第一光转向元件反射后的第二光束避开或透射过第一光路切换元件到达图像传感器,即对来自第二定焦镜组且经第一光转向元件反射后的第二光束的光线方向无偏转作用。
可以理解的是,光束通过不同焦距的定焦镜组到达图像传感器的光路(光程)是不同的。例如,第一光束通过第一定焦镜组到达图像传感器的光路与第二光束通过第二定焦镜组到达图像传感器的光路不同。
示例性的,如图3a所示,第一光路的路径定义可以为:第一光束通过第一定焦镜组,并在第一光路切换元件处反射,最终在图像传感器成像的光路。如图3b所示,第二光路的路径定义为:第二光束通过第二定焦镜组,经由第一光转向元件反射后透射通过第一光路切换元件,最终在图像传感器成像的光路。第一光路和第二光路分别经过不同的定焦模组,可以实现不同的焦距,并且具有不同的光程长度。
在一种可能的设计中,当接收到第一控制信号时,第一光路切换元件可以位于第一位置或处于第一状态,反射来自第一定焦镜组的第一光束至图像传感器;当接收到第二控制信号时,第一光路切换元件可以位于第二位置或处于第二状态,控制来自第二定焦镜组且经第一光转向元件反射后的第二光束避开或透射过第一光路切换元件到达图像传感器。
其中,第一光路切换元件可以是机械式元件或电控式元件,其作用为引导第一光路的第一光束或第二光路的第二光束到达图像传感器,相当于一个光路切换快门(shutter)。
若第一光路切换元件为机械式元件,该机械式元件可以为可移动或可旋转的平面反射镜。该平面反射镜可以在第一位置和第二位置之间切换,以分别引导第一光路的第一光束和第二光路的第二光束到达图像传感器。可以理解的是,可以在平面反射镜的旁边(例如,前边、后边、左边或右边)设置移动控制装置或旋转控制装置(例如,马达),以驱动平面反射镜在第一位置和第二位置之间切换。
示例性的,如图4a所示,当需要实现第一焦距时,即需要第一光路的第一光束参与成像时,该平面反射镜可以位于第一位置,此时该平面反射镜所在平面与第一定焦镜组所在 平面之间夹角可以为45°,来自第一定焦镜组的第一光束可以经该平面反射镜反射到达图像传感器成像。同时,第一光路切换元件还可以将来自第二定焦镜组的光束遮挡住(例如,通过在平面反射镜的反射面的背面设置不透光的涂层)或反射至其他方向,以阻止来自第二定焦镜组的光束到达图像传感器成像,从而避免来自第二定焦镜组的光束对来自第一定焦镜组的光束产生干扰。
如图4b所示,当需要实现第二焦距时,即需要第二光路的第二光束参与成像时,该平面反射镜可以位于第二位置,位于第一位置的平面反射镜可以沿a轴顺时针旋转45°到达第二位置,此时该平面反射镜所在平面与第一定焦镜组所在平面之间相互平行,第二光束可以不经过(避开)该平面反射镜直接到达图像传感器成像。同时,第一光路切换元件还可以将来自第一定焦镜组的光束遮挡住或反射至其他方向,阻止第一光束到达图像传感器成像,以避免来自第一定焦镜组的光束对来自第二定焦镜组的光束产生干扰。
如图4c所示,当需要实现第二焦距时,即需要第二光路的第二光束参与成像时,该平面反射镜可以位于第二位置,位于第一位置的平面反射镜可以沿b轴顺时针旋转45°到达第二位置,此时该平面反射镜所在平面与第一定焦镜组所在平面之间相互平行,第二光束可以避开该平面反射镜直接到达图像传感器。
可选的,该机械式元件也可以为可移动或可旋转的棱镜,本申请不做限定。
若第一光路切换元件为电控式元件,该电控式元件可以由两组棱镜(例如,三角棱镜)贴合而成,其中贴合面留有第一空槽(空隙)。该第一空槽所在的平面相对于第二定焦镜组所在平面倾斜设置。示例性的,该第一空槽所在平面与第一定焦镜组所在平面之间夹角可以为45°。该第一空槽内可被填充第一折射率的物质,即高折射率物质(例如,大于棱镜折射率的物质,如油滴);或者,该第一空槽内可被填充第二折射率的物质,即低折射率物质(例如,小于棱镜折射率的物质,如空气)。可以理解的是,可以在该电控式元件的旁边(例如,前边、后边、左边或右边)设置电控装置,该电控装置可以向第一空槽内填充高折射率物质或低折射率物质。
示例性的,如图5a所示,当需要实现第一焦距时,即需要第一光路的第一光束参与成像时,第一光路切换元件可以处于第一状态,此时第一空槽内填充低折射率物质,棱镜与低折射率物质界面构成全反射界面,使得来自第一定焦镜组的第一光束经全反射界面反射到达图像传感器。如图5b所示,当需要实现第二焦距时,即需要第二光路的第二光束参与成像时,第一光路切换元件可以处于第二状态,此时第一空槽内填充高折射率物质,棱镜与高折射率物质界面构成透射界面,使得来自第一定焦镜组的第一光束穿过透射界面到达图像传感器。
在一种可能的设计中,如图6a所示,摄像模组还可以包括第二光路切换元件。第二光路切换元件设置在第一定焦镜组或第二定焦镜组的前方。第二光路切换元件的位置或者工作状态可变,用于使第一光束进入第一定焦镜组并阻止第二光束进入第二定焦镜组,或者,用于使第二光束进入第二定焦镜组并阻止第一光束进入第一定焦镜组。第二光路切换元件可以相对于第一定焦镜组和第二定焦镜组所在的平面平行设置或倾斜设置,本申请不做限定。
如图6b所示,当用户需要以第一焦距拍摄物体时,响应于用户的相应操作,中央处理器可以向第一光路切换元件发送第三控制信号,当接收到中央处理器发送的第三控制信 号时,第二光路切换元件可以位于第三位置或处于第三状态,阻止第二光束进入第二定焦镜组并控制来自摄像模组外部的光束(第一光束)进入(射入)第一定焦镜组;当用户需要以第二焦距拍摄物体时,响应于用户的相应操作,中央处理器可以向第一光路切换元件发送第四控制信号,当接收到中央处理器发送的第四控制信号时,第二光路切换元件可以位于第四位置或处于第四状态,阻止第一光束进入第一定焦镜组并控制来自摄像模组外部的光束(第二光束)进入第二定焦镜组。这样,可以避免不同的光束之间产生干扰,从而可以避免来自不同定焦镜组的光束同时进入图像传感器导致在图像传感器上形成鬼像的问题。其中,第三控制信号与第一控制信号可以为同一个控制信号或不同控制信号,第四控制信号与第二控制信号可以为同一个控制信号或不同控制信号,本申请不做限定。
其中,第二光路切换元件可以是机械式元件或电控式元件,其作用为引导光束进入第一定焦镜组或第二定焦镜组,相当于一个光路切换快门。
若第二光路切换元件为机械式元件,该机械式元件可以为遮板。遮板的旁边(例如,前边、后边、左边或右边)可以设置导轨及运动控制装置,该导轨及运动控制装置可驱动遮板在第三位置和第四位置之间切换,以分别引导光束进入第一定焦镜组和第二定焦镜组。
示例性的,如图7a所示,当遮板位于第三位置时,即遮板位于第二定焦镜组的正前方时,遮板可以遮挡第二光束且不遮挡第一光束,第一光束可以进入第一定焦镜组且第二光束无法进入第二定焦镜组,进入第一定焦镜组的第一光束可以沿第一光路到达图像传感器参与成像。如图7b所示,当遮板位于第四位置时,即遮板位于第一定焦镜组的正前方时,遮板可以遮挡第一光束且不遮挡第二光束,第二光束可以进入第二定焦镜组且第一光束无法进入第一定焦镜组,进入第二定焦镜组的第二光束可以沿第二光路到达图像传感器参与成像。
其中,遮板的材料可以是各类哑光材料或者是磨砂处理的塑料或消光处理的金属,遮板的形状可以是圆形或方形等,本申请不做限定。
若第二光路切换元件为电控式元件。该电控式元件可以由两片平行平板组成,两片平行平板之间留有第二空槽。该第二空槽的不同区域可被注入不同的填充物,例如透光物质(如空气)或遮光物质(如深色液体,如水性墨汁或油性墨汁),以分别引导光束进入第一定焦镜组和第二定焦镜组。
示例性的,如图8a所示,当电控式元件为第三状态时,即第二空槽的第一区域填充透光物质,第二区域填充遮光物质时,光束可以进入第一定焦镜组但无法进入第二定焦镜组,进入第一定焦镜组的第一光束可以沿第一光路到达图像传感器参与成像。如图8b所示,当电控式元件为第四状态时,即第二空槽的第一区域填充遮光物质,第二区域填充透光物质时,光束可以进入第二定焦镜组但无法进入第一定焦镜组,进入第二定焦镜组的第二光束可以沿第二光路到达图像传感器参与成像。
其中,平板的材料为耐腐蚀的光学塑料或光学玻璃,平板的形状可以是方形、圆形等等,本申请不做限定。
在一种可能的设计中,如图9a所示,摄像模组还可以包括第二光转向元件(也可以称为第二光路转向元件或第二反射元件),第二光转向元件相对于第一定焦镜组的平面或第二定焦镜组的平面呈倾斜设置,使第一光束进入第一定焦镜组之前的光路或第二光束进入第二定焦镜组之前的光路发生弯折。这样,物体投射的光束可以经第二光转向元件反射到 第一定焦镜组或第二定焦镜组,即第二光转向元件与第一定焦镜组或第二定焦镜组可以构成潜望式结构。通过潜望式设计,摄像模组在电子设备中的设置方式可以更加灵活和紧凑。例如,摄像模组的定焦镜组的光轴(例如,第一定焦镜组的第一光轴,或第二定焦镜组的第二光轴)可以与电子设备的高度方向平行,这样可以降低电子设备的厚度,使摄像模组更易于集成在手机等小型电子设备上。
如图9b所示,为本申请实施例提供的一种设置有摄像模组的电子设备(例如,手机)的形态示意图,摄像头开孔内可以设置摄像模组,摄像模组可以包括外壳和各光学元件(例如,定焦镜组、第一光路交换元件、图像传感器等),各光学元件可以设置在外壳形成的腔体内。通过潜望式结构设计,摄像模组的定焦镜组的光轴(例如,第一定焦镜组的第一光轴,或第二定焦镜组的第二光轴)可以与电子设备的高度方向平行,从而可以降低电子设备的厚度。
在一种可能的设计中,如图10a所示,摄像模组可以包括第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组、图像传感器和第三光转向元件(也可以称为第三光路转向元件或第三反射元件),第一定焦镜组和第一光路切换元件沿第一光轴设置,第一光轴是第一定焦镜组的光轴,第二定焦镜组和第一光转向元件沿第二光轴设置,第二光轴是第二定焦镜组的光轴,第一光轴与第二光轴相互平行,第三光转向元件与图像传感器和第一光路切换元件之间的夹角分别为45°;第一定焦镜组用于,接收来自摄像模组外部的第一光束;第二定焦镜组用于,接收来自摄像模组外部的第二光束;第一光转向元件用于,改变来自第二定焦镜组的第二光束的光路,使改变光路后的第二光束指向第一光路切换元件和第三光转向元件;第一光路切换元件的位置或者工作状态可变,用于改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束指向第三光转向元件,或者,使改变光路后的第二光束指向第三光转向元件;第三光转向元件用于,再次改变上述改变光路后的第一光束的光路,使再次改变光路后的第一光束指向图像传感器,或者,再次改变上述改变光路后的第二光束的光路,使再次改变光路后的第二光束指向图像传感器;图像传感器用于,接收再次改变光路后的第一光束或接收再次改变光路后的第二光束,并生成图像;其中,第一定焦镜组具有第一焦距,第二定焦镜组具有第二焦距,第一焦距与第二焦距不同。
当接收到第一控制信号时,第一光路切换元件位于第一位置或处于第一状态,改变来自第一定焦镜组的第一光束的光路,使改变光路后的第一光束经过第三光转向元件后到达图像传感器成像;当接收到第二控制信号时,第一光路切换元件位于第二位置或处于第二状态,使来自第一光转向元件的第二光束经过第三光转向元件后到达图像传感器成像。
需要说明的是,由于第三光转向元件与第一光路切换元件和图像传感器之间的角度可以分别为45°,此时,第一定焦镜组(或第二定焦镜组)所在平面可以与图像传感器相互平行。这样,可以降低摄像模组的宽度,使得摄像模组的结构更为紧凑。
如图10b所示,为本申请实施例提供的一种设置有摄像模组的电子设备(例如,手机)的形态示意图,摄像头开孔内可以设置摄像模组,摄像模组可以包括外壳和各光学元件(例如,定焦镜组、第一光路交换元件、图像传感器等),各光学元件可以设置在外壳形成的腔体内。由于设置第三光转向元件后降低了摄像模组的宽度,使得摄像模组的结构更为紧凑,从而降低了摄像设备在电子设备中所占据的空间大小,使摄像模组更易于集成在手机 等小型电子设备上。
在一些实施例中,摄像模组还可以包括马达,当摄像模组抖动时,即当摄像模组产生微小位移或旋转时,马达可以控制第二光转向元件沿平行于第一光轴或平行于水平面且垂直于第一光轴的旋转轴旋转,以调整入射光线经反射后进入第二光转向元件的角度,进而可以改变光束经过第二光转向元件时的有效路径。通过上述方式可以对因为抖动而发生改变的光路进行补偿,以此来实现摄像模组的防抖功能,以减少成像的模糊程度。
示例性的,如图11a所示,当摄像模组抖动时,马达可以驱动第二光转向元件在三维空间内沿x轴和/或y轴旋转,以调整光束经第二光转向元件反射后进入成像***的角度,消解摄像模组的抖动带来的图像质量下降的影响。其中,x轴与第一定焦镜组的第一光轴或第二定焦镜组的第二光轴平行。y轴与水平面平行,且与第一定焦镜组的第一光轴或第二定焦镜组的第二光轴垂直。可以理解的是,马达可以设置在第二光转向元件的旁边,例如前边、后边、左边或右边,本申请不做具体限定。
在一种可能的设计中,当摄像模组抖动时,马达用于控制第一定焦镜组或第二定焦镜组沿垂直于水平面的方向或平行于水平面且平行于第一光轴的方向平移,以调整第一光束或第二光束在摄像模组中的光路。
示例性的,如图11b所示,当摄像模组抖动时,马达可以驱动第一定焦镜组(或第二定焦镜组)在三维空间内沿y轴和/或z轴平移,以调整第一光束或第二光束在摄像模组中的光路,纠正光束经第一定焦镜组(或第二定焦镜组)传输后进入图像传感器的位置,从而消解摄像模组的抖动带来的图像质量下降的影响。其中,y轴与z轴所在平面与第一定焦镜组的第一光轴垂直,y轴与水平面平行,且与第一定焦镜组的第一光轴或第二定焦镜组的第二光轴垂直,z轴与y轴垂直。可以理解的是,马达可以设置在第一定焦镜组(或第二定焦镜组)的旁边,例如前边、后边、左边或右边,本申请不做具体限定。
在一种可能的设计中,如图6a所示,当摄像模组失焦时,马达用于控制第一光转向元件、第一光路切换元件和图像传感器沿第一光轴或第二光轴的方向移动,以调整第一光束或第二光束在摄像模组中的光路,以此来实现对焦功能。
在一种可能的设计中,当摄像模组失焦时,马达可以控制第一光转向元件、第一光路切换元件和第三光转向元件沿第一光轴或第二光轴的方向移动,以调整第一光束或第二光束在摄像模组中的光路,以此来实现摄像模组的自动对焦功能。如图12所示,第一光转向元件、第一光路切换元件和第三光转向元件可以组成后焦光学***,当摄像模组失焦时,马达可以驱动后焦光学***沿x轴的方向移动,保证光束可以高质量会聚到图像传感器上,实现光学自动对焦。其中,x轴与第一定焦镜组的第一光轴或第二定焦镜组的第二光轴平行。
可选的,如图12所示,本方案中也可以保持第一光转向元件、第一光路切换元件不动,在马达的推动下使第三光转向元件和图像传感器沿y轴的方向移动,从而改变第一光路切换元件和图像传感器之间光路的有效长度,并以此来实现对焦功能。其中,y轴与水平面平行,且与第一定焦镜组的第一光轴或第二定焦镜组的第二光轴垂直。
需要说明的是,摄像模组可以设置有一套马达,一套马达可以包括一个或多个马达。若包括一个马达,可以控制该马达来推动相关的光学元件来实现对焦及防抖的功能。若包括多个马达,例如,包括分别用于实现对焦功能的对焦马达以及用于实现防抖功能的防抖 马达,那么,在控制对焦时摄像模组可以启动对焦马达来推动相关的光学元件,在控制防抖时摄像模组可以启动防抖马达来推动相关的光学元件。
以上主要以摄像模组包括两个定焦镜组进行说明,可以理解的是,摄像模组也可以包括两个以上的定焦镜组,从而可以实现两个以上焦距的切换。
示例性的,如图13所示,为一种可以实现三种焦距切换的摄像模组的示意图。该摄像模组可以包括三个定焦镜组,包括第一定焦镜组、第二定焦镜组和第三定焦镜组,该三个定焦镜组的光轴相互平行,该三个定焦镜组分别对应于三种不同的焦距。摄像模组还包括第三光路切换元件,第三光路切换元件沿第三定焦镜组的第三光轴设置,且第三光路切换元件位于第一光路切换元件和图像传感器之间,图13中的其余各元件的作用和设置方式可以参考上文的相关描述,在此不做赘述。当需要实现第一焦距时,第一光路切换元件对来自第一定焦镜组的第一光束实现方向偏转,即反射来自第一定焦镜组的第一光束,第三光路切换元件对来自第一光路切换元件的第一光束无偏转作用,最后第一光束可以到达图像传感器。当需要实现第二焦距时,第一光路切换元件和第三光路切换元件对来自第二定焦镜组的第二光束无偏转作用,最后第二光束可以到达图像传感器。当需要实现第三焦距时,第三光路切换元件对来自第三定焦镜组的第三光束实现偏转作用,即将第三光束反射到图像传感器。
进一步的,如图14所示,上述包括三个定焦镜组的摄像模组还可以包括第二光路切换元件,第二光转向元件以及第三光转向元件等元件,其作用和设置方式可以参考上文的相关描述,在此不做赘述。
本申请实施例提供的摄像模组,可以基于不同的信号控制来自不同的定焦镜组的光束到达图像传感器,能够实现多焦段的切换,既可以实现独立定焦模组级别的高清晰度,高锐利度的图像品质,又可以丰富用户的使用场景。并且,由于来自不同的定焦镜组的光束可以到达同一个图像传感器,并在该图像传感器成像,无需为每个定焦镜组设置一个图像传感器,从而在实现变焦功能的基础,能够降低硬件成本。
并且,相较于现有技术中的双摄像模组结构,需要在每个摄像头中设置一套对焦马达,本申请实施例提供的摄像模组属于单摄像模组,可以使用一套马达进行对焦和防抖,进一步降低了硬件成本。
本申请实施例还提供一种电子设备,该电子设备中可以设置上述摄像模组,电子设备例如可以为手机、平板电脑、桌面型、膝上型笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、手持计算机、上网本、个人数字助理(personal digital assistant,PDA)等设备。
示例性的,如图15所示,电子设备具体可以为手机100。手机100可以包括处理器110,摄像模组120,显示屏130和内部存储器140等。
本发明实施例示意的结构并不构成对手机100的限定。可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
摄像模组120可以用于捕获静态图像或视频。物体通过摄像模组中的定焦镜组生成光学图像投射到图像传感器。图像传感器可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。 图像传感器把光信号转换成电信号,之后可以将电信号传递给处理器转换成数字图像信号。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(Neural-network Processing Unit,NPU)等。处理器110中还可以设置存储器,用于存储信号和数据。
处理器110可以生成相应的信号并发送给摄像模组。例如,当确定需要实现第一焦距时,处理器可以生成第一控制信号,并向摄像模组发送第一控制信号。
处理器110还可用于控制摄像模组的对焦马达和防抖马达来推动相关的光学元件从而实现摄像模组的对焦和防抖的功能。
在一些实施例中,处理器110可以包括接口。其中接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
内部存储器140可以用于存储计算机可执行程序代码,所述可执行程序代码包括信号。处理器110通过运行存储在内部存储器140的信号,从而执行手机100的各种功能应用以及数据处理。
显示屏130用于显示图像,视频等。显示屏包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,手机100可以包括1个或N个显示屏,N为大于1的正整数。
如图15所示,手机100可以通过摄像模组120,显示屏130以及处理器110等实现拍摄功能。
可以理解的是,上述手机100可以具有比图15中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。图15中所示出的各种部件可以在包括一个或多个信号处理或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
本实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的摄像方法。
本实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的摄像方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行 时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的摄像方法。
其中,本实施例提供的电子设备、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
通过以上实施方式的描述,所属领域的技术人员可以了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种摄像模组,其特征在于,包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组和图像传感器,所述第一定焦镜组和所述第一光路切换元件沿第一光轴设置,所述第一光轴是所述第一定焦镜组的光轴,所述第二定焦镜组和所述第一光转向元件沿第二光轴设置,所述第二光轴是所述第二定焦镜组的光轴,所述第一光轴与所述第二光轴相互平行;
    所述第一定焦镜组用于,接收来自所述摄像模组外部的第一光束;
    所述第二定焦镜组用于,接收来自所述摄像模组外部的第二光束;
    所述第一光转向元件用于,改变来自所述第二定焦镜组的所述第二光束的光路,使改变光路后的所述第二光束指向所述第一光路切换元件和所述图像传感器;
    所述第一光路切换元件的位置或者工作状态可变,用于改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束指向所述图像传感器,或者,使所述改变光路后的所述第二光束指向所述图像传感器;
    所述图像传感器用于,接收所述改变光路后的所述第一光束或接收所述改变光路后的所述第二光束,并生成图像;
    其中,所述第一定焦镜组具有第一焦距,所述第二定焦镜组具有第二焦距,所述第一焦距与所述第二焦距不同。
  2. 根据权利要求1所述的摄像模组,其特征在于,所述第一光路切换元件为平面反射镜或棱镜,所述平面反射镜或所述棱镜与所述第一定焦镜组所在平面之间夹角为45°,或者,所述平面反射镜或所述棱镜与所述第一定焦镜组所在平面相互平行。
  3. 根据权利要求1所述的摄像模组,其特征在于,所述第一光路切换元件由两组棱镜贴合而成,所述两组棱镜的贴合面留有第一空槽,所述第一空槽所在的平面与所述第一定焦镜组所在平面之间夹角为45°,所述第一空槽内填充第一折射率的物质,或者,所述第一空槽内填充第二折射率的物质,所述第一折射率大于所述第二折射率。
  4. 根据权利要求1-3任一项所述的摄像模组,其特征在于,还包括第二光路切换元件,所述第二光路切换元件设置在所述第一定焦镜组或所述第二定焦镜组的前方,所述第二光路切换元件的位置或者工作状态可变,用于使所述第一光束进入所述第一定焦镜组并阻止所述第二光束进入所述第二定焦镜组,或者,用于使所述第二光束进入所述第二定焦镜组并阻止所述第一光束进入所述第一定焦镜组。
  5. 根据权利要求4所述的摄像模组,其特征在于,所述第二光路切换元件为遮板,所述遮板位于所述第二定焦镜组的正前方,或者,所述遮板位于所述第一定焦镜组的正前方。
  6. 根据权利要求4所述的摄像模组,其特征在于,所述第二光路切换元件由两片平行平板组成,所述两片平行平板之间留有第二空槽,所述第二空槽包括第一区域和第二区域,所述第一区域位于所述第一定焦镜组的正前方,所述第二区域位于所述第二定焦镜组的正前方,所述第二空槽的第一区域内填充透光物质且所述第二区域内填充遮光物质,或者,所述第二空槽的第一区域内填充遮光物质且所述第二区域填充透光物质。
  7. 根据权利要求1-6任一项所述的摄像模组,其特征在于,还包括第二光转向元件,所述第二光转向元件设置在所述第一定焦镜组和所述第二定焦镜组的前方,且所述第二光 转向元件相对于所述第一定焦镜组的平面或所述第二定焦镜组的平面呈倾斜设置,所述第二光转向元件用于反射来自所述摄像模组外部的所述一光束和所述第二光束,使所述第一光束进入所述第一定焦镜组前的光路发生弯折,或者使所述第二光束进入所述第二定焦镜组前的光路发生弯折。
  8. 根据权利要求7所述的摄像模组,其特征在于,还包括马达,所述马达用于控制所述第二光转向元件沿平行于所述第一光轴或平行于水平面且垂直于所述第一光轴的旋转轴旋转。
  9. 根据权利要求1-8任一项所述的摄像模组,其特征在于,还包括马达,所述马达用于控制所述第一定焦镜组或所述第二定焦镜组沿垂直于水平面的方向或平行于水平面且平行于所述第一光轴的方向平移。
  10. 根据权利要求1-9任一项所述的摄像模组,其特征在于,还包括马达,所述马达用于控制所述第一光转向元件、所述第一光路切换元件和所述图像传感器沿所述第一光轴或所述第二光轴的方向移动。
  11. 一种摄像模组,其特征在于,包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组、图像传感器和第三光转向元件,所述第一定焦镜组和所述第一光路切换元件沿第一光轴设置,所述第一光轴是所述第一定焦镜组的光轴,所述第二定焦镜组和所述第一光转向元件沿第二光轴设置,所述第二光轴是所述第二定焦镜组的光轴,所述第一光轴与所述第二光轴相互平行,所述第三光转向元件与所述图像传感器和所述第一光路切换元件之间的夹角分别为45°;
    所述第一定焦镜组用于,接收来自所述摄像模组外部的第一光束;
    所述第二定焦镜组用于,接收来自所述摄像模组外部的第二光束;
    所述第一光转向元件用于,改变来自所述第二定焦镜组的所述第二光束的光路,使改变光路后的所述第二光束指向所述第一光路切换元件和所述第三光转向元件;
    所述第一光路切换元件的位置或者工作状态可变,用于改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束指向所述第三光转向元件,或者,使所述改变光路后的所述第二光束指向所述第三光转向元件;
    所述第三光转向元件用于,再次改变所述改变光路后的所述第一光束的光路,使所述再次改变光路后的所述第一光束指向所述图像传感器,或者,再次改变所述改变光路后的所述第二光束的光路,使所述再次改变光路后的所述第二光束指向所述图像传感器;
    所述图像传感器用于,接收所述再次改变光路后的所述第一光束或接收所述再次改变光路后的所述第二光束,并生成图像;
    其中,所述第一定焦镜组具有第一焦距,所述第二定焦镜组具有第二焦距,所述第一焦距与所述第二焦距不同。
  12. 根据权利要求11所述的摄像模组,其特征在于,还包括马达,所述马达用于控制所述第一光转向元件、所述第一光路切换元件和所述第三光转向元件沿所述第一光轴或所述第二光轴的方向移动;或者
    所述马达用于控制所述第三光转向元件和所述图像传感器沿平行于水平面且垂直于所述第一光轴或所述第二光轴的方向移动。
  13. 根据权利要求1-12任一项所述的摄像模组,其特征在于,
    所述第一焦距或所述第二焦距为标准镜头的焦距的2-20倍。
  14. 一种摄像方法,其特征在于,应用于摄像模组,所述摄像模组包括第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组和图像传感器,所述第一定焦镜组和所述第一光路切换元件沿第一光轴设置,所述第一光轴是所述第一定焦镜组的光轴,所述第二定焦镜组和所述第一光转向元件沿第二光轴设置,所述第二光轴是所述第二定焦镜组的光轴,所述第一光轴与所述第二光轴相互平行;所述第一定焦镜组用于,接收来自所述摄像模组外部的第一光束;所述第二定焦镜组用于,接收来自所述摄像模组外部的第二光束;所述第一光转向元件用于,改变来自所述第二定焦镜组的所述第二光束的光路,使改变光路后的所述第二光束指向所述第一光路切换元件和所述图像传感器;所述第一光路切换元件的位置或者工作状态可变,用于改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束指向所述图像传感器,或者,使所述改变光路后的所述第二光束指向所述图像传感器;所述图像传感器用于,接收所述改变光路后的所述第一光束或接收所述改变光路后的所述第二光束,并生成图像;其中,所述第一定焦镜组具有第一焦距,所述第二定焦镜组具有第二焦距,所述第一焦距与所述第二焦距不同;所述方法包括:
    当接收到第一控制信号时,所述第一光路切换元件位于第一位置或处于第一状态,改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束到达所述图像传感器成像;当接收到第二控制信号时,所述第一光路切换元件位于第二位置或处于第二状态,控制来自所述第一光转向元件的所述第二光束到达所述图像传感器成像。
  15. 根据权利要求14所述的摄像方法,其特征在于,所述第一光路切换元件为平面反射镜或棱镜,所述第一光路切换元件位于第一位置,改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束到达所述图像传感器成像,包括:
    所述平面反射镜或所述棱镜与所述第一定焦镜组所在平面之间夹角为45°,反射来自所述第一定焦镜组的所述第一光束至所述图像传感器成像,且遮挡或反射来自所述第二定焦镜组并经过所述第一光转向元件反射的所述第二光束,以阻止所述第二光束到达所述图像传感器成像;
    所述第一光路切换元件位于第二位置,控制来自所述第一光转向元件的所述第二光束到达所述图像传感器成像,包括:
    所述平面反射镜或所述棱镜与所述第一定焦镜组所在平面相互平行,控制来自所述第一光转向元件的所述第二光束不经过所述第一光路切换元件到达所述图像传感器成像,且遮挡或反射来自所述第一定焦镜组的所述第一光束,以阻止所述第一光束到达所述图像传感器成像。
  16. 根据权利要求14所述的摄像方法,其特征在于,所述第一光路切换元件由两组棱镜贴合而成,所述两组棱镜的贴合面留有第一空槽,所述第一空槽所在的平面与所述第一定焦镜组所在平面之间夹角为45°,所述第一光路切换元件处于第一状态,改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束到达所述图像传感器成像,包括:
    所述第一空槽内填充第一折射率的物质,所述第一空槽所在的平面反射来自所述第一定焦镜组的所述第一光束至所述图像传感器成像;
    所述第一光路切换元件处于第二状态,控制来自所述第一光转向元件的所述第二光束到达所述图像传感器成像,包括:
    所述第一空槽内填充第二折射率的物质,控制来自所述第一光转向元件的所述第二光束透射所述第一空槽到达所述图像传感器成像;
    其中,所述第一折射率大于所述第二折射率。
  17. 根据权利要求14-16任一项所述的摄像方法,其特征在于,还包括第二光路切换元件,所述第二光路切换元件设置在所述第一定焦镜组或所述第二定焦镜组的前方,所述第二光路切换元件的位置或者工作状态可变,
    当接收到第三控制信号时,所述第二光路切换元件位于第三位置或处于第三状态,阻止所述第二光束进入所述第二定焦镜组并使所述第一光束进入所述第一定焦镜组;当接收到第四控制信号时,所述第二光路切换元件位于第四位置或处于第四状态,阻止所述第一光束进入所述第一定焦镜组并使所述第二光束进入所述第二定焦镜组。
  18. 根据权利要求17所述的摄像方法,其特征在于,所述第二光路切换元件为遮板,所述第二光路切换元件位于第三位置,阻止所述第二光束进入所述第二定焦镜组并使所述第一光束进入所述第一定焦镜组包括:
    所述遮板位于所述第二定焦镜组的正前方,遮挡所述第二光束且不遮挡所述第一光束,以使所述第一光束进入所述第一定焦镜组;
    所述第二光路切换元件位于第四位置阻止所述第一光束进入所述第一定焦镜组并使所述第二光束进入所述第二定焦镜组包括:
    所述遮板位于所述第一定焦镜组的正前方,遮挡所述第一光束且不遮挡所述第二光束,以使所述第二光束进入所述第二定焦镜组。
  19. 根据权利要求17所述的摄像方法,其特征在于,所述第二光路切换元件由两片平行平板组成,所述两片平行平板之间留有第二空槽,所述第二空槽包括第一区域和第二区域,所述第一区域位于所述第一定焦镜组的正前方,所述第二区域位于所述第二定焦镜组的正前方,所述第二光路切换元件处于第三状态,阻止所述第二光束进入所述第二定焦镜组并使所述第一光束进入所述第一定焦镜组包括:
    所述第二空槽的第一区域填充透光物质,所述第二区域填充遮光物质,透射所述第一光束且遮挡所述第二光束;
    所述第二光路切换元件处于第四状态,阻止所述第一光束进入所述第一定焦镜组并使所述第二光束进入所述第二定焦镜组包括:
    所述第二空槽的第一区域填充遮光物质,所述第二区域填充透光物质,透射所述第二光束且遮挡所述第一光束。
  20. 根据权利要求14-19任一项所述的摄像方法,其特征在于,还包括第二光转向元件,所述第二光转向元件设置在所述第一定焦镜组和所述第二定焦镜组的前方,且所述第二光转向元件相对于所述第一定焦镜组的平面或所述第二定焦镜组的平面呈倾斜设置,所述第二光转向元件反射来自所述摄像模组外部的所述一光束和所述第二光束,使所述第一光束进入所述第一定焦镜组前的光路发生弯折,或者使所述第二光束进入所述第二定焦镜组前的光路发生弯折。
  21. 根据权利要求20所述的摄像方法,其特征在于,还包括马达,当所述摄像模组 抖动时,所述马达控制所述第二光转向元件沿平行于所述第一光轴或平行于水平面且垂直于所述第一光轴的旋转轴旋转,以调整所述第一光束或所述第二光束进入所述第二光转向元件的角度。
  22. 根据权利要求14-21任一项所述的摄像方法,其特征在于,还包括马达,当所述摄像模组抖动时,所述马达控制所述第一定焦镜组或所述第二定焦镜组沿垂直于水平面的方向或平行于水平面且平行于所述第一光轴的方向平移,以调整所述第一光束或所述第二光束在所述摄像模组中的光路。
  23. 根据权利要求14-22任一项所述的摄像方法,其特征在于,还包括马达,当所述摄像模组失焦时,所述马达控制所述第一光转向元件、所述第一光路切换元件和所述图像传感器沿所述第一光轴或所述第二光轴的方向移动,以调整所述第一光束或所述第二光束在所述摄像模组中的光路。
  24. 一种摄像方法,其特征在于,应用于摄像模组,所述摄像模组包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组、图像传感器和第三光转向元件,所述第一定焦镜组和所述第一光路切换元件沿第一光轴设置,所述第一光轴是所述第一定焦镜组的光轴,所述第二定焦镜组和所述第一光转向元件沿第二光轴设置,所述第二光轴是所述第二定焦镜组的光轴,所述第一光轴与所述第二光轴相互平行,所述第三光转向元件与所述图像传感器和所述第一光路切换元件之间的夹角分别为45°;所述第一定焦镜组用于,接收来自所述摄像模组外部的第一光束;所述第二定焦镜组用于,接收来自所述摄像模组外部的第二光束;所述第一光转向元件用于,改变来自所述第二定焦镜组的所述第二光束的光路,使改变光路后的所述第二光束指向所述第一光路切换元件和所述第三光转向元件;所述第一光路切换元件的位置或者工作状态可变,用于改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束指向所述第三光转向元件,或者,使所述改变光路后的所述第二光束指向所述第三光转向元件;所述第三光转向元件用于,再次改变所述改变光路后的所述第一光束的光路,使所述再次改变光路后的所述第一光束指向所述图像传感器,或者,再次改变所述改变光路后的所述第二光束的光路,使所述再次改变光路后的所述第二光束指向所述图像传感器;所述图像传感器用于,接收所述再次改变光路后的所述第一光束或接收所述再次改变光路后的所述第二光束,并生成图像;其中,所述第一定焦镜组具有第一焦距,所述第二定焦镜组具有第二焦距,所述第一焦距与所述第二焦距不同;所述方法包括:
    当接收到第一控制信号时,所述第一光路切换元件位于第一位置或处于第一状态,改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束经过所述第三光转向元件后到达所述图像传感器成像;当接收到第二控制信号时,所述第一光路切换元件位于第二位置或处于第二状态,使来自所述第一光转向元件的所述第二光束经过所述第三光转向元件后到达所述图像传感器成像。
  25. 根据权利要求24所述的摄像方法,其特征在于,还包括马达,
    当所述摄像模组失焦时,所述马达控制所述第一光转向元件、所述第一光路切换元件和所述第三光转向元件沿所述第一光轴或所述第二光轴的方向移动,以调整所述第一光束或所述第二光束在所述摄像模组中的光路;或者
    当所述摄像模组失焦时,所述马达控制所述第三光转向元件和所述图像传感器沿平行 于水平面且垂直于所述第一光轴或所述第二光轴的方向移动,以调整所述第一光束或所述第二光束在所述摄像模组中的光路。
  26. 根据权利要求14-25任一项所述的摄像方法,其特征在于,
    所述第一焦距或所述第二焦距为标准镜头的焦距的2-20倍。
  27. 一种电子设备,其特征在于,包括处理器、存储器、总线及摄像模组,其中,所述处理器、所述存储器及所述摄像模组之间通过所述总线互相连接,其中,所述存储器用于存储程序与指令,所述处理器用于调用所述存储器中存储的程序与指令实现对所述摄像模组的控制;
    所述摄像模组包括:第一光路切换元件、第一光转向元件、第一定焦镜组、第二定焦镜组和图像传感器,所述第一定焦镜组和所述第一光路切换元件沿第一光轴设置,所述第一光轴是所述第一定焦镜组的光轴,所述第二定焦镜组和所述第一光转向元件沿第二光轴设置,所述第二光轴是所述第二定焦镜组的光轴,所述第一光轴与所述第二光轴相互平行;
    所述第一定焦镜组用于,接收来自所述摄像模组外部的第一光束;
    所述第二定焦镜组用于,接收来自所述摄像模组外部的第二光束;
    所述第一光转向元件用于,改变来自所述第二定焦镜组的所述第二光束的光路,使改变光路后的所述第二光束指向所述第一光路切换元件;
    所述第一光路切换元件的位置或者工作状态可变,用于改变来自所述第一定焦镜组的所述第一光束的光路,使改变光路后的所述第一光束指向所述图像传感器,或者,使所述改变光路后的所述第二光束指向所述图像传感器;
    所述图像传感器用于,接收所述改变光路后的所述第一光束或接收所述改变光路后的所述第二光束,并生成图像;
    其中,所述第一定焦镜组具有第一焦距,所述第二定焦镜组具有第二焦距,所述第一焦距与所述第二焦距不同。
PCT/CN2020/140436 2019-12-31 2020-12-28 一种摄像方法、摄像模组和电子设备 WO2021136215A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20911246.5A EP4072118A4 (en) 2019-12-31 2020-12-28 PHOTOGRAPHY METHOD, PHOTOGRAPHY MODULE AND ELECTRONIC APPARATUS
US17/852,585 US20220329735A1 (en) 2019-12-31 2022-06-29 Photographing method, camera module, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911416612.8A CN113132576A (zh) 2019-12-31 2019-12-31 一种摄像方法、摄像模组和电子设备
CN201911416612.8 2019-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/852,585 Continuation US20220329735A1 (en) 2019-12-31 2022-06-29 Photographing method, camera module, and electronic device

Publications (1)

Publication Number Publication Date
WO2021136215A1 true WO2021136215A1 (zh) 2021-07-08

Family

ID=76685860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140436 WO2021136215A1 (zh) 2019-12-31 2020-12-28 一种摄像方法、摄像模组和电子设备

Country Status (4)

Country Link
US (1) US20220329735A1 (zh)
EP (1) EP4072118A4 (zh)
CN (1) CN113132576A (zh)
WO (1) WO2021136215A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117063479A (zh) * 2021-07-19 2023-11-14 Oppo广东移动通信有限公司 成像镜头组件、相机模块和成像设备
KR20230051891A (ko) * 2021-10-12 2023-04-19 삼성전기주식회사 촬상 광학계
CN115278077B (zh) * 2022-07-27 2024-05-10 维沃移动通信有限公司 光学防抖方法、装置、电子设备和可读存储介质
CN116708983B (zh) * 2023-08-03 2023-11-21 荣耀终端有限公司 镜头模组、摄像头模组和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254055A (ja) * 1997-03-10 1998-09-25 Minolta Co Ltd 多焦点カメラ
CN101165586A (zh) * 2006-10-17 2008-04-23 三星Techwin株式会社 双透镜光学***和具有该双透镜光学***的双透镜照像机
CN103513412A (zh) * 2013-09-16 2014-01-15 华为终端有限公司 潜望式镜头和终端设备
CN107483791A (zh) * 2017-09-19 2017-12-15 信利光电股份有限公司 一种多摄像头模组
WO2018026638A1 (en) * 2016-08-05 2018-02-08 Microsoft Technology Licensing, Llc Digital camera focus assembly

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3256656B2 (ja) * 1995-10-16 2002-02-12 シャープ株式会社 偏向素子
US5706066A (en) * 1995-10-16 1998-01-06 Sharp Kabushiki Kaisha Deflecting device and projection-type display unit using same
JP4503933B2 (ja) * 2003-03-13 2010-07-14 オリンパス株式会社 撮像装置
US7023620B1 (en) * 2003-07-03 2006-04-04 Research Electro-Optics, Inc. Beam array pitch controller
JP2006053317A (ja) * 2004-08-11 2006-02-23 Mitsubishi Electric Corp レンズ駆動機構
JP5261805B2 (ja) * 2009-06-16 2013-08-14 インテル・コーポレーション 携帯用機器のカメラアプリケーション
TW201118413A (en) * 2009-11-27 2011-06-01 Ind Tech Res Inst Light path switching apparatus and method and image fetching apparatus of such application
CN105700104A (zh) * 2014-11-28 2016-06-22 鸿富锦精密工业(深圳)有限公司 相机模组
CN105898125B (zh) * 2016-05-31 2018-06-26 维沃移动通信有限公司 一种镜头驱动结构、摄像头结构及电子终端
US11029496B2 (en) * 2017-12-21 2021-06-08 Apple Inc. Folded lens system
WO2019148027A1 (en) * 2018-01-26 2019-08-01 Apple Inc. Folded camera with actuator for moving optics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10254055A (ja) * 1997-03-10 1998-09-25 Minolta Co Ltd 多焦点カメラ
CN101165586A (zh) * 2006-10-17 2008-04-23 三星Techwin株式会社 双透镜光学***和具有该双透镜光学***的双透镜照像机
CN103513412A (zh) * 2013-09-16 2014-01-15 华为终端有限公司 潜望式镜头和终端设备
WO2018026638A1 (en) * 2016-08-05 2018-02-08 Microsoft Technology Licensing, Llc Digital camera focus assembly
CN107483791A (zh) * 2017-09-19 2017-12-15 信利光电股份有限公司 一种多摄像头模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4072118A4

Also Published As

Publication number Publication date
US20220329735A1 (en) 2022-10-13
CN113132576A (zh) 2021-07-16
EP4072118A4 (en) 2023-01-25
EP4072118A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2021136215A1 (zh) 一种摄像方法、摄像模组和电子设备
CN111901503B (zh) 一种摄像模组、终端设备、成像方法及成像装置
KR101278239B1 (ko) 듀얼 렌즈 광학계 및 이를 구비하는 듀얼 렌즈 카메라
KR102589851B1 (ko) 카메라 모듈 및 이를 포함하는 전자 기기
US7643749B2 (en) Camera module
KR100900486B1 (ko) 촬상 장치용 광학 모듈 및 이를 구비한 촬상 장치
EP4030233A1 (en) Periscopic camera module and electronic device
EP3955562B1 (en) Camera module, terminal device, imaging method and imaging apparatus
KR101118972B1 (ko) 촬영 및 투영 모듈 그리고 촬영 및 투영 장치
CN210839790U (zh) 一种摄像模组及电子设备
CN112394536B (zh) 一种光学防抖装置及控制方法
CN107948470B (zh) 摄像头模块和移动设备
WO2022057196A1 (zh) 摄像模组及电子设备
CN112511731A (zh) 摄像模组及电子设备
US8662762B2 (en) Compact lens optical system and digital camera module including the same
WO2021017682A1 (zh) 光学模组
CN112887563B (zh) 镜头装置和电子设备
CN211266963U (zh) 防抖组件、摄像模组及电子装置
CN113329142A (zh) 防抖组件、摄像模组及电子装置
KR101720188B1 (ko) 초소형 렌즈 광학계 및 이를 구비하는 디지털 카메라 모듈
CN220383160U (zh) 摄像模组和终端设备
KR20090123546A (ko) 가동 광경로전환부를 구비하는 촬상 광학계 및 이를 채용한이동 통신 기기
KR200359260Y1 (ko) 광학계 구조를 갖는 휴대용 단말기용 카메라 모듈
CN103916570A (zh) 外接式变焦模块及摄像装置
WO2022021931A1 (zh) 一种摄像模组及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020911246

Country of ref document: EP

Effective date: 20220705

NENP Non-entry into the national phase

Ref country code: DE