WO2021135992A1 - 一种高晶体含量的微晶玻璃及其制备方法 - Google Patents

一种高晶体含量的微晶玻璃及其制备方法 Download PDF

Info

Publication number
WO2021135992A1
WO2021135992A1 PCT/CN2020/137731 CN2020137731W WO2021135992A1 WO 2021135992 A1 WO2021135992 A1 WO 2021135992A1 CN 2020137731 W CN2020137731 W CN 2020137731W WO 2021135992 A1 WO2021135992 A1 WO 2021135992A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mol
ceramics
high crystal
crystal content
Prior art date
Application number
PCT/CN2020/137731
Other languages
English (en)
French (fr)
Inventor
胡伟
谈宝权
黄昊
陈芳华
Original Assignee
重庆鑫景特种玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆鑫景特种玻璃有限公司 filed Critical 重庆鑫景特种玻璃有限公司
Publication of WO2021135992A1 publication Critical patent/WO2021135992A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the invention relates to the technical field of glass production and manufacturing, in particular to a glass-ceramic with high crystal content and a preparation method thereof.
  • Glass-ceramic refers to the basic glass of specific composition with nucleating agent (or without nucleating agent). It undergoes crystallization heat treatment under a certain temperature system to uniformly precipitate a large number of tiny crystals in the glass to form dense microcrystals. Multiphase composite of crystalline phase and glass phase.
  • the preparation methods of glass-ceramics include integral crystallization method (melting method), sintering method, sol-gel method, etc.
  • the integral crystallization method is usually used to prepare glass-ceramics. The steps are: (1) Use of adding crystal nuclei The crystal nucleus is formed in the glass by methods such as chemical or ultraviolet radiation; (2) The crystal nucleus is grown by heat treatment.
  • the other production processes are the same as ordinary glass; that is, the glass is first melted and shaped, and processed before crystallization. After the crystallization heat treatment, the glass-ceramics are finally processed to complete the preparation of the glass-ceramics.
  • the heat treatment process in the preparation of glass-ceramics by the overall crystallization method is a key process for producing predetermined crystalline phases and glass phases in the glass-ceramics.
  • the structure and performance of the glass-ceramics mainly depend on the heat treatment system (heat treatment temperature and holding time).
  • the heat treatment process phase separation, crystal nucleation, crystal growth, and secondary crystal formation may occur in the glass.
  • the heat treatment process can be divided into two stages: the first stage is the fine-tuning of the glass structure and the formation of crystal nuclei, and the second stage is the crystal growth.
  • the nucleation and crystal growth of glass-ceramics are usually greatly affected by heat treatment temperature and holding time, and the performance of glass-ceramics largely depends on the ratio of crystal phase to glass phase, the size and distribution of crystal grains.
  • the number of crystal nuclei and the ratio of the number of crystals in the produced glass-ceramics are relatively low, which affects various properties of the glass-ceramics (for example, tensile strength, breaking strength, tensile strength). Bending strength, etc.), cannot meet actual requirements, and reduce the practicality of glass-ceramics.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, provide a high crystal content glass-ceramic and a preparation method thereof, and solve the problem that in the prior art, the crystal phase in the glass-ceramics is relatively low, and the glass-ceramics are reduced. Various properties reduce the practicality of glass-ceramics.
  • the technical scheme of the present invention is as follows: a glass ceramic with high crystal content, the crystal phase includes at least two of lithium disilicate, spodumene, ⁇ -spodumene, and ⁇ -eucryptite;
  • the surface compressive stress on either side of the crystal glass ranges from 300 MPa to 500 MPa, the tensile stress linear density of the glass ceramics is greater than 30000 Mpa/mm, and the average crystal size of the glass ceramics is 70 nm to 100 nm; the crystals in the glass ceramics The mass percentage is 70%-95%.
  • the formula of the glass ceramics is: SiO 2 : 67mol% to 80mol%, Al 2 O 3 : 2mol% to 5mol%, P 2 O 5 : 1mol% to 4mol%, B 2 O 3 : 0mol% ⁇ 3mol%, ZrO 2: 1.5mol % ⁇ 6mol%, TiO 2: 0mol% ⁇ 1mol%, K 2 O: 0mol% ⁇ 1mol%, Na 2 O: 0mol% ⁇ 3mol%, Li 2 O: 12mol% ⁇ 22mol%, CeO 2: 0mol% ⁇ 0.3mol%, SnO 2: 0mol% ⁇ 0.2mol%, NaCl + Na 2 CO 3 + CaCO 3: 0.5mol% ⁇ 1mol%.
  • the formula of the glass-ceramics is: SiO 2 : 68 mol% to 79 mol%, Al 2 O 3 : 1.8 mol% to 4.9 mol%, P 2 O 5 : 1.5 mol% to 3.9 mol%, B 2 O 3: 0.1mol% ⁇ 2.9mol%, ZrO 2: 1.6mol% ⁇ 5.9mol%, TiO 2: 0.1mol% ⁇ 0.95mol%, K 2 O: 0.1mol% ⁇ 0.99mol%, Na 2 O: 0.1mol % ⁇ 2.9mol%, Li 2 O: 12.5mol% ⁇ 21.5mol%, CeO 2 : 0.01mol% ⁇ 0.3mol%, SnO 2 : 0.01mol% ⁇ 0.2mol%, NaCl+Na 2 CO 3 +CaCO 3 : 0.49mol% ⁇ 1mol%.
  • the formula of the glass-ceramics is: SiO 2 : 69 mol% to 78 mol%, Al 2 O 3 : 1.9 mol% to 4.8 mol%, P 2 O 5 : 1.6 mol% to 3.85 mol%, B 2 O 3 : 0.15mol% to 2.85mol%, ZrO 2 : 1.7mol% to 5.8mol%, TiO 2 : 0.15mol% to 0.95mol%, K 2 O: 0.15mol% to 0.99mol%, Na 2 O: 0.15 mol% ⁇ 2.9mol%, Li 2 O: 13mol% ⁇ 21mol%, CeO 2 : 0.02mol% ⁇ 0.3mol%, SnO 2 : 0.01mol% ⁇ 0.19mol%, NaCl+Na 2 CO 3 +CaCO 3 : 0.5 mol% ⁇ 0.99mol%.
  • the depth of the stress layer of the glass ceramics ranges from 10 um to 100 um, and the crystal mass percentage is greater than or equal to 70%. At this time, the average visible light transmittance of the glass ceramics with a thickness of 1 mm is 85% to 92%.
  • the Vickers hardness of the glass-ceramics is higher than 650kgf/mm 2 .
  • the mass percentage of crystals in the glass-ceramics is 75%-95%.
  • the mass percentage of crystals in the glass-ceramics is 80% to 93%.
  • the crystal phase includes lithium disilicate, laphurite, and ⁇ -eucryptite.
  • the average crystal size of the glass-ceramics is 80nm-100nm; the mass percentage of the crystals in the glass-ceramics is 71%-93%, at this time the average transmittance of visible light of the glass-ceramics of 1mm thickness It is 86% ⁇ 91%.
  • the present invention also provides a method for preparing glass-ceramics with high crystal content, which includes the following steps:
  • S1 Melt glass at a temperature of 1500°C to 1600°C, and obtain plain glass with certain external dimensions.
  • step S2 Put the plain glass obtained in step S1 under the condition of temperature T1 of 500°C ⁇ 550°C, after heating for 1h ⁇ 5h, and then put it under the condition of temperature T2 of 550°C ⁇ 700°C, after heating for 1h ⁇ 6h , And then put it under the condition that the temperature T3 is 700°C ⁇ 800°C, and heat it for 0 ⁇ 4h.
  • Step S2 is cycled at least twice to prepare glass-ceramics.
  • the method further includes step S4: placing the glass-ceramics obtained in step S3 in a solution containing sodium nitrate, potassium nitrate, sodium carbonate, and potassium carbonate At least one strengthened ion exchange is performed in at least one salt bath to prepare strengthened glass-ceramics.
  • the surface compressive stress of either side of the strengthened glass ceramic obtained in the step S4 ranges from 350 MPa to 500 MPa, and the tensile stress linear density of the strengthened glass ceramic is greater than 30,000 Mpa/mm.
  • the glass-ceramics obtained in step S3 are placed in a salt bath containing at least two of sodium nitrate, potassium nitrate, sodium carbonate, and potassium carbonate for two strengthened ion exchanges, thereby preparing strengthened glass-ceramics.
  • the temperature of the primary enhanced ion exchange is 380°C to 450°C, and the time of the primary enhanced ion exchange is 1h-10h; the temperature of the secondary enhanced ion exchange is 380°C to 450°C, and the second enhanced ion exchange The time of ion exchange is 10min ⁇ 240min.
  • the plain glass in step 1 of the method for preparing glass ceramics with high crystal content includes: SiO2: 68mol% to 79mol%, Al2O3: 1.8mol% to 4.9mol%, and P2O5: 1.5 mol% ⁇ 3.9mol%, B2O3: 0.1mol% ⁇ 2.9mol%, ZrO2: 1.6mol% ⁇ 5.9mol%, TiO2: 0.1mol% ⁇ 0.95mol%, K2O: 0.1mol% ⁇ 0.99mol%, Na2O: 0.1 mol% ⁇ 2.9mol%, Li2O: 12.5mol% ⁇ 21.5mol%, CeO2: 0.01mol% ⁇ 0.3mol%, SnO2: 0.01mol% ⁇ 0.2mol%, NaCl+Na2CO3+CaCO3: 0.49mol% ⁇ 1mol%.
  • the plain glass in step 1 of the method for preparing glass ceramics with a high crystal content comprises: SiO 2 : 68 mol% to 80 mol%, Al 2 O 3 : 1.9 mol% to 4.9 mol% , P 2 O 5 : 1.2mol% to 3.9mol%, B 2 O 3 : 0.1mol% to 2.9mol%, ZrO 2 : 1.6mol% to 5.9mol%, TiO 2 : 0.01mol% to 0.95mol%, K 2 O: 0.01 mol% to 0.99 mol%, Na 2 O: 0.1 mol% to 3 mol%, Li 2 O: 12.1 mol% to 21.9 mol%, CeO 2 : 0.01 mol% to 0.3 mol%, SnO 2 : 0.01 mol % ⁇ 0.2mol%, NaCl + Na 2 CO 3 + CaCO 3: 0.49mol% ⁇ 1mol%.
  • the plain glass in step 1 of the method for preparing glass ceramics with high crystal content includes: SiO 2 : 69 mol% to 79 mol%, Al 2 O 3 : 1.9 mol% to 4.8 mol %, P 2 O 5 : 1.3mol% to 3.9mol%, B 2 O 3 : 0.2mol% to 2.9mol%, ZrO 2 : 1.7mol% to 5.9mol%, TiO 2 : 0.02mol% to 0.94mol%, K 2 O: 0.01 mol% to 0.98 mol%, Na 2 O: 0.1 mol% to 2.9 mol%, Li 2 O: 12.2 mol% to 22 mol%, CeO 2: 0.02 mol% to 0.3 mol%, SnO 2 : 0.01 mol% ⁇ 0.19mol%, NaCl + Na 2 CO 3 + CaCO 3: 0.5mol% ⁇ 0.98mol%.
  • the present invention provides a high crystal content glass ceramic and a preparation method thereof, which have the following beneficial effects:
  • the mass percentage of crystals in the glass-ceramics of the present invention is 70%-95%, the average crystal size of the glass-ceramics is 70nm-100nm, the crystal size is small, and the percentage of the crystal phase in the glass-ceramics is larger, thus Improve the performance of glass-ceramics to meet the different needs of practical applications, and the practicability of glass-ceramics is strong.
  • the crystal phase of the glass-ceramic of the present invention includes at least two of lithium disilicate, spodumene, ⁇ -spodumene and ⁇ -eucryptite, and multiple crystal phases are intertwined to enhance its resistance. Destructive strength, tensile and bending strength.
  • the present invention guarantees the transmittance of visible light from 86% to 92%, so that it can be used in the windows and electronic product covers of household appliances such as microwave ovens, convection ovens, ovens, etc. Wide application prospects.
  • the present invention provides a glass-ceramic with high crystal content, the crystal phase includes at least two of lithium disilicate, spodumene, ⁇ -spodumene, and ⁇ -eucryptite; either side of the glass-ceramic
  • the surface compressive stress ranges from 300MPa to 500MPa, the tensile stress linear density of the glass-ceramics is greater than 30000Mpa/mm, the average crystal size of the glass-ceramics is 70nm-100nm; the mass percentage of the crystals in the glass-ceramics is 70%-95%.
  • the mass percentage of crystals in glass-ceramics is controlled at 70%-95%, while the average crystal size of glass-ceramics is controlled between 70nm-100nm.
  • the formula of the glass ceramics is: SiO 2 : 67 mol% to 80 mol%, Al 2 O 3 : 2 mol% to 5 mol%, P 2 O 5 : 1 mol% to 4 mol%, B 2 O 3 : 0mol% to 3mol%, ZrO 2 : 1.5mol% to 6mol%, TiO 2 : 0mol% to 1mol%, K 2 O: 0mol% to 1mol%, Na 2 O: 0mol% to 3mol%, Li 2 O: 12 mol% to 22 mol%, CeO 2 : 0 mol% to 0.3 mol%, SnO 2 : 0 mol% to 0.2 mol%, NaCl+Na 2 CO 3 +CaCO 3 : 0.5 mol%
  • the depth of the stress layer of the glass ceramics ranges from 10 um to 100 um, and the crystal mass percentage is greater than or equal to 70%. At this time, the average visible light transmittance of the glass ceramics with a thickness of 1 mm is 85% to 92%.
  • the Vickers hardness of the glass-ceramics is higher than 650kgf/mm 2 .
  • the mass percentage of crystals in the glass-ceramics is 75%-95%, and the crystal phase includes lithium disilicate, laphurite, ⁇ -eucryptite, and three crystals. The phases are intertwined to enhance the destructive strength and tensile and bending strength of the glass-ceramic.
  • the average crystal size of the glass-ceramics is 80nm-100nm; the mass percentage of the crystals in the glass-ceramics is 71%-93%.
  • the average visible light transmittance of the glass-ceramics with a thickness of 1mm is 86% ⁇ 91%, which makes the glass-ceramics have excellent light transmittance while improving various properties. It can replace ordinary glass as a cover protection material suitable for electronic display equipment, making it suitable for household appliances such as microwave ovens, light wave ovens, ovens, etc.
  • the windows and cover plates of electronic products have a wide range of application prospects.
  • the present invention also provides a method for preparing glass-ceramics with high crystal content, which includes the following steps:
  • step S2 Put the plain glass obtained in step S1 under the condition of temperature T1 of 500°C ⁇ 550°C, after heating for 1h ⁇ 5h, and then put it under the condition of temperature T2 of 550°C ⁇ 700°C, after heating for 1h ⁇ 6h , And then put it under the condition that the temperature T3 is 700°C ⁇ 800°C, and heat it for 0 ⁇ 4h;
  • Step S2 is cycled at least twice to prepare glass-ceramics.
  • the method further includes step S4: placing the glass-ceramics obtained in step S3 in a solution containing sodium nitrate and nitric acid. At least one strengthened ion exchange is performed in a salt bath of at least one of potassium, sodium carbonate, and potassium carbonate to prepare strengthened glass-ceramics.
  • the surface compressive stress on either side of the strengthened glass ceramic obtained in the step S4 ranges from 350 MPa to 500 MPa, and the tensile stress linear density of the strengthened glass ceramic is greater than 30,000 Mpa/mm.
  • the glass-ceramics obtained in step S3 are placed in a salt bath containing sodium nitrate, potassium nitrate, sodium carbonate, and potassium carbonate for two strengthened ion exchanges, thereby preparing strengthened glass-ceramics.
  • the temperature of the primary enhanced ion exchange is 380°C to 450°C, and the time of the primary enhanced ion exchange is 1h-10h; the temperature of the secondary enhanced ion exchange is 380°C to 450°C, and the secondary enhanced ion The exchange time is 10min ⁇ 240min.
  • the plain glass After obtaining the plain glass with a certain shape, place the plain glass at T1, T2, and T3 for heat treatment, and control to heat at T1 temperature for 1h ⁇ 5h, T2 temperature for 1h ⁇ 6h, T3 temperature for heating From 0h to 4h, according to the actual precipitation of crystals, cycle the heat treatment in step S2 at least twice to form as many nuclei as possible, increase the number of nuclei and crystals, and ensure that the mass percentage of crystals in the glass-ceramics is 70 % ⁇ 95%, the percentage of crystals in glass-ceramics is high, which can effectively improve the properties of glass-ceramics, meet various requirements in actual production and application, and enhance the practicability of glass-ceramics; at the same time, the above preparation method can be applied For the preparation of other glass-ceramics, the glass-ceramics that meet the requirements of users can be prepared according to specific requirements, which has strong versatility.
  • the plain glass in the step 1 in the method for preparing the glass-ceramics with high crystal content includes: SiO2: 68mol% to 79mol%, Al2O3: 1.8mol% to 4.9mol%, and P2O5: 1.5mol% to 3.9mol %, B2O3: 0.1mol% ⁇ 2.9mol%, ZrO2: 1.6mol% ⁇ 5.9mol%, TiO2: 0.1mol% ⁇ 0.95mol%, K2O: 0.1mol% ⁇ 0.99mol%, Na2O: 0.1mol% ⁇ 2.9mol %, Li2O: 12.5mol% to 21.5mol%, CeO2: 0.01mol% to 0.3mol%, SnO2: 0.01mol% to 0.2mol%, NaCl+Na2CO3+CaCO3: 0.49mol% to 1mol%.
  • Example 1 to Example 12 the preparation process conditions and related parameters of the preparation method of the high crystal content glass ceramics in each of the examples are as follows.
  • Example 1 The following takes Example 1 as an example for further analysis:
  • Step S1 According to the formula of the plain glass in Example 1, the glass is melted at 1650° C., and plain glass with a certain external size is obtained.
  • the thickness D of the plain glass is 0.65 ⁇ m
  • the Vickers hardness is 602 kgf/mm 2
  • the Young's modulus E of the plain glass is 71 GPa.
  • step S2 the plain glass is placed at a temperature of 550°C, heated for 240 minutes, then placed at 620°C, heated for 120 minutes, and then placed at a temperature of 700°C, heated for 120 minutes.
  • step S3 step S2 is cycled twice to prepare glass ceramics.
  • the Vickers hardness of the glass-ceramics is 663kgf/mm 2
  • the tensile stress linear density of the glass-ceramics is 34540 MPa/mm
  • the visible light transmittance is 91%
  • the average crystal size in the glass-ceramics is 67nm
  • the mass percentage of crystals in crystal glass is 90.2%.
  • Step S4 in this embodiment, the glass-ceramic is strengthened twice, the first strengthening treatment: the prepared glass-ceramic is placed in a mixed salt bath containing 90wt% of NaNO 3 and 10wt% of KNO 3 Carry out the first strengthening treatment process, the strengthening temperature is 450°C, and the strengthening time is 6h; the second strengthening treatment: the glass ceramics after the first strengthening treatment process are placed in 10wt% NaNO 3 , 90wt% KNO The second strengthening treatment process is carried out in the mixed salt bath of 3, the strengthening temperature is 450 °C, and the strengthening time is 30 minutes.
  • the surface compressive stress of the strengthened glass-ceramic is 455 MPa, the compressive stress depth is 85 ⁇ m, and the Vickers hardness is 663 kgf/mm 2 .
  • step S1 according to the formula of the plain glass in Example 6, the glass is melted at 1630° C., and plain glass with a certain external size is obtained.
  • the thickness D of the plain glass is 0.65 ⁇ m
  • the Vickers hardness is 673 kgf/mm 2
  • the Young's modulus E of the plain glass is 77 GPa.
  • step S2 the plain glass is placed at a temperature of 510°C, heated for 150 minutes, then placed at 540°C, heated for 60 minutes, and then placed at a temperature of 700°C, heated for 120 minutes.
  • step S3 step S2 is repeated twice to prepare glass ceramics.
  • the Vickers hardness of the glass-ceramics is 763kgf/mm 2
  • the tensile stress linear density of the glass-ceramics is 38152MPa/mm
  • the transmittance of visible light is 88%
  • the average crystal size in the glass-ceramics is 74nm.
  • the mass percentage of crystals in crystal glass is 78.9%.
  • Step S4 in this embodiment, the glass-ceramics are strengthened twice, the first strengthening treatment: the prepared glass-ceramics are placed in a mixed salt bath containing 95wt% of NaNO 3 and 5wt% of KNO 3 Carry out the first strengthening treatment process, the strengthening temperature is 400°C, and the strengthening time is 8h; the second strengthening treatment: the glass ceramics after the first strengthening treatment process are placed in 4wt% NaNO 3 , 96wt% KNO The second strengthening treatment process is carried out in the mixed salt bath of 3, the strengthening temperature is 440°C, and the strengthening time is 30min.
  • the surface compressive stress of the strengthened glass-ceramic is 505 MPa, the compressive stress depth is 72 ⁇ m, and the Vickers hardness is 763 kgf/mm 2 .
  • Step S1 According to the formula of the plain glass in Example 9, the glass is melted at 1620° C., and plain glass with a certain external size is obtained.
  • the thickness D of the plain glass is 0.65 ⁇ m
  • the Vickers hardness is 647 kgf/mm 2
  • the Young's modulus E of the plain glass is 73.6 GPa.
  • step S2 the plain glass is placed at a temperature of 510°C, heated for 150 minutes, then placed at 640°C, heated for 60 minutes, and then placed at a temperature of 700°C, heated for 120 minutes.
  • step S3 step S2 is cycled twice to prepare glass ceramics.
  • the Vickers hardness of the glass-ceramics is 754kgf/mm 2
  • the tensile stress linear density of the glass-ceramics is 37840 MPa/mm
  • the transmittance of visible light is 89.7%
  • the average crystal size in the glass-ceramics is 84nm.
  • the mass percentage of crystals in crystal glass is 75.8%.
  • Step S4 in this embodiment, the glass-ceramics are strengthened twice, the first strengthening treatment: the prepared glass-ceramics are placed in the presence of 94wt% of NaNO 3 , 4wt% of KNO 3 , and 2wt% of K
  • the first strengthening treatment process is carried out in a mixed salt bath of 2 CO 3 , the strengthening temperature is 440°C, and the strengthening time is 4.5h
  • the second strengthening treatment the glass ceramics that have undergone the first strengthening treatment process are placed in 4wt
  • the second strengthening treatment process is carried out in a mixed salt bath of% NaNO 3 and 96 wt% KNO 3 , the strengthening temperature is 440° C., and the strengthening time is 30 minutes.
  • the surface compressive stress of the strengthened glass ceramic was 499 MPa, the compressive stress depth was 83 ⁇ m, and the Vickers hardness was 754 kgf/mm 2 .
  • Example 12 The following takes Example 12 as an example for further analysis:
  • Step S1 according to the formula of the plain glass in Example 12, the glass is melted at 1580° C., and plain glass with a certain external size is obtained.
  • the thickness D of the plain glass is 0.7 ⁇ m
  • the Vickers hardness is 604 kgf/mm 2
  • the Young's modulus E of the plain glass is 73.1 GPa.
  • step S2 the plain glass is placed at a temperature of 500°C, heated for 240 minutes, then placed at 600°C, heated for 60 minutes, and then placed at a temperature of 700°C, heated for 120 minutes.
  • step S3 step S2 is cycled twice to prepare glass ceramics.
  • the Vickers hardness of the glass-ceramics is 611kgf/mm 2
  • the tensile stress linear density of the glass-ceramics is 45273MPa/mm
  • the transmittance of visible light is 91%
  • the average crystal size in the glass-ceramics is 71nm.
  • the mass percentage of crystals in crystal glass is 82.0%.
  • Step S4 in this embodiment, the glass-ceramics are strengthened twice, the first strengthening treatment: the prepared glass-ceramics are placed containing 95wt% of NaNO 3 , 4wt% of KNO 3 , and 2wt% of Na 2 CO 3 , 1wt% Na 2 CO 3 mixed salt bath for the first strengthening treatment process, the strengthening temperature is 440 °C, the strengthening time is 4.5h; the second strengthening treatment: will go through the first strengthening treatment process crystallized glass was placed containing 4wt% of NaNO 3, 96wt% of the mixture salt bath of KNO 3 in a second strengthening treatment process, strengthen temperature 440 °C, reinforcing time 30min.
  • the surface compressive stress of the strengthened glass ceramic was 492 MPa, the compressive stress depth was 92 ⁇ m, and the Vickers hardness was 683 kgf/mm 2 .
  • the present invention provides a glass ceramic with high crystal content and a preparation method thereof, which has the following beneficial effects:
  • the mass percentage of crystals in the glass-ceramics of the present invention is 70%-95%, the average crystal size of the glass-ceramics is 70nm-100nm, the crystal size is small, and the percentage of the crystal phase in the glass-ceramics is larger, thus Improve the performance of glass-ceramics to meet the different needs of practical applications, and the practicality of glass-ceramics is strong.
  • the crystal phase of the glass-ceramic of the present invention includes at least two of lithium disilicate, spodumene, ⁇ -spodumene and ⁇ -eucryptite, and multiple crystal phases are intertwined to enhance its resistance. Destructive strength, tensile and bending strength.
  • the present invention guarantees the transmittance of visible light from 86% to 92%, so that it can be used in the windows and electronic product covers of household appliances such as microwave ovens, convection ovens, ovens, etc. Wide application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Glass Compositions (AREA)

Abstract

一种高晶体含量的微晶玻璃及其制备方法,制备方法包括以下步骤:S1:在温度为1500℃~1600℃熔制玻璃,并获取具有一定外形尺寸的素玻璃;S2:将步骤S1中所得的素玻璃置于温度T1为500℃~550℃的条件下,加热1h~5h后,再置于温度T2为550℃~700℃的条件下,加热1h~6h后,再置于温度T3为700℃~800℃的条件下,加热0~4h;S3:至少循环步骤S2两次,制备出微晶玻璃。微晶玻璃中晶体的质量百分数在70%~95%。

Description

一种高晶体含量的微晶玻璃及其制备方法 技术领域
本发明涉及玻璃生产制造技术领域,尤其涉及一种高晶体含量的微晶玻璃及其制备方法。
背景技术
微晶玻璃是指加有晶核剂(或不加晶核剂)的特定组成的基础玻璃,在一定温度制度下进行晶化热处理,在玻璃内均匀地析出大量的微小晶体,形成致密的微晶相和玻璃相的多相复合体。微晶玻璃制备方法包括整体析晶法(熔融法)、烧结法、溶胶—凝胶法等,工业生产过程中通常采用整体析晶法制备微晶玻璃,步骤为:(1)利用加入晶核剂或紫外辐照等方法使玻璃内形成晶核;(2)再经热处理使晶核长大,其他生产工艺与普通玻璃相同;即先将玻璃进行熔制和成型,经过结晶化前加工,在经过结晶化热处理,最后进行微晶玻璃的加工,完成微晶玻璃的制备。
整体析晶法制备微晶玻璃中的热处理过程是使微晶玻璃产生预定结晶相和玻璃相的关键工序。玻璃的组成确定后,微晶玻璃的结构与性能主要取决于热处理制度(热处理温度与保温时间)。在热处理过程中,玻璃中可能产生分相、晶核形成、晶体生长及二次结晶形成等现象。一般可把热处理过程分为两个阶段:第一阶段是玻璃结构的微调及晶核形成,第二阶段为晶体生长。微晶玻璃的成核与晶体生长通常受热处理温度及保温时间的影响较大,而微晶玻璃的性能很大程度上取决于晶相与玻璃相的比例、晶粒的尺寸及分布。然而现有生产微晶玻璃的工艺中,所生产的微晶玻璃中的晶核数量及晶体数量比例较低,影响微晶玻璃的各项性能(例如,抗拉强度、抗破坏强度、抗拉弯强度等),无法满足实际要求,降低微晶玻璃的实用性。
因此,现有技术存在缺陷,需要改进。
发明内容
本发明的目的是克服现有技术的不足,提供一种高晶体含量的微晶玻璃及其制备方法,解决现有技术中,由于微晶玻璃中的晶相占比较低,降低微晶玻璃的各项性能,降低微晶玻璃的实用性的问题。
本发明的技术方案如下:一种高晶体含量的微晶玻璃,晶相包括二硅酸锂、透锂长石、β-锂辉石、β-锂霞石中的至少两种;所述微晶玻璃任一面的表面压应力范围为300MPa~500MPa,所述微晶玻璃的张应力线密度大于30000Mpa/mm,所述微晶玻璃的平均晶体尺寸为70nm~100nm;所述微晶玻璃中晶体的质量百分数为70%~95%。
进一步地,所述微晶玻璃的配方为:SiO 2:67mol%~80mol%、Al 2O 3:2mol%~5mol%、P 2O 5:1mol%~4mol%、B 2O 3:0mol%~3mol%、ZrO 2:1.5mol%~6mol%、TiO 2:0mol%~1mol%、K 2O:0mol%~1mol%、Na 2O:0mol%~3mol%、Li 2O:12mol%~22mol%、CeO 2:0mol%~0.3mol%、SnO 2:0mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.5mol%~1mol%。
优选地,所述微晶玻璃的配方为:SiO 2:68mol%~79mol%、Al 2O 3:1.8mol%~4.9mol%、P 2O 5:1.5mol%~3.9mol%、B 2O 3:0.1mol%~2.9mol%、ZrO 2:1.6mol%~5.9mol%、TiO 2:0.1mol%~0.95mol%、K 2O:0.1mol%~0.99mol%、Na 2O:0.1mol%~2.9mol%、Li 2O:12.5mol%~21.5mol%、CeO 2:0.01mol%~0.3mol%、SnO 2:0.01mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.49mol%~1mol%。
更优选地,所述微晶玻璃的配方为:SiO 2:69mol%~78mol%、Al 2O 3:1.9mol%~4.8mol%、P 2O 5:1.6mol%~3.85mol%、B 2O 3:0.15mol%~2.85mol%、ZrO 2:1.7mol%~5.8mol%、TiO 2:0.15mol%~0.95mol%、K 2O:0.15mol%~0.99mol%、Na 2O:0.15mol%~2.9mol%、Li 2O:13mol%~21mol%、CeO 2:0.02mol%~0.3mol%、SnO 2:0.01mol%~0.19mol%、 NaCl+Na 2CO 3+CaCO 3:0.5mol%~0.99mol%。
进一步地,所述微晶玻璃的应力层深度范围为10um~100um,晶体质量百分数大于或等于70%,此时1mm厚的所述微晶玻璃的可见光平均透过率为85%~92%。
进一步地,所述微晶玻璃的维氏硬度高于650kgf/mm 2
进一步地,所述微晶玻璃中晶体的质量百分数为75%~95%。优选地,所述微晶玻璃中晶体的质量百分数为80%~93%。
进一步地,所述晶相包括二硅酸锂、透锂长石、β-锂霞石。
进一步地,所述微晶玻璃的平均晶体尺寸为80nm~100nm;所述微晶玻璃中晶体的质量百分数为71%~93%,此时1mm厚的所述微晶玻璃的可见光平均透过率为86%~91%。
本发明还提供一种高晶体含量的微晶玻璃的制备方法,包括以下步骤:
S1:在温度为1500℃~1600℃熔制玻璃,并获取具有一定外形尺寸的素玻璃。
S2:将步骤S1中所得的素玻璃置于温度T1为500℃~550℃的条件下,加热1h~5h后,再置于温度T2为550℃~700℃的条件下,加热1h~6h后,再置于温度T3为700℃~800℃的条件下,加热0~4h。
S3:至少循环步骤S2两次,制备出微晶玻璃。
进一步地,高晶体含量的微晶玻璃的制备方法中的所述步骤S3后,还包括步骤S4:将步骤S3中所得的微晶玻璃置于包含硝酸钠、硝酸钾、碳酸钠、碳酸钾中至少一种的盐浴中进行至少一次强化离子交换,从而制备出强化微晶玻璃。
进一步地,所述步骤S4中所得的强化微晶玻璃任一面的表面压应力范围为350MPa~500MPa,所述强化微晶玻璃的张应力线密度大于30000Mpa/mm。
进一步地,将步骤S3中所得的微晶玻璃置于包含硝酸钠、硝酸钾、碳 酸钠、碳酸钾中至少两种的盐浴中进行两次强化离子交换,从而制备出强化的微晶玻璃。
进一步地,所述一次强化离子交换的温度为380℃~450℃,且一次强化离子交换的时间为1h~10h;所述二次强化离子交换的温度为380℃~450℃,且二次强化离子交换的时间为10min~240min。
进一步地,所述的一种高晶体含量的微晶玻璃的制备方法的所述步骤1中的素玻璃包含:SiO2:68mol%~79mol%、Al2O3:1.8mol%~4.9mol%、P2O5:1.5mol%~3.9mol%、B2O3:0.1mol%~2.9mol%、ZrO2:1.6mol%~5.9mol%、TiO2:0.1mol%~0.95mol%、K2O:0.1mol%~0.99mol%、Na2O:0.1mol%~2.9mol%、Li2O:12.5mol%~21.5mol%、CeO2:0.01mol%~0.3mol%、SnO2:0.01mol%~0.2mol%、NaCl+Na2CO3+CaCO3:0.49mol%~1mol%。
优选地,所述的一种高晶体含量的微晶玻璃的制备方法的所述步骤1中的素玻璃包含:SiO 2:68mol%~80mol%、Al 2O 3:1.9mol%~4.9mol%、P 2O 5:1.2mol%~3.9mol%、B 2O 3:0.1mol%~2.9mol%、ZrO 2:1.6mol%~5.9mol%、TiO 2:0.01mol%~0.95mol%、K 2O:0.01mol%~0.99mol%、Na 2O:0.1mol%~3mol%、Li 2O:12.1mol%~21.9mol%、CeO 2:0.01mol%~0.3mol%、SnO 2:0.01mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.49mol%~1mol%。
更优选地,所述的一种高晶体含量的微晶玻璃的制备方法的所述步骤1中的素玻璃包含:SiO 2:69mol%~79mol%、Al 2O 3:1.9mol%~4.8mol%、P 2O 5:1.3mol%~3.9mol%、B 2O 3:0.2mol%~2.9mol%、ZrO 2:1.7mol%~5.9mol%、TiO 2:0.02mol%~0.94mol%、K 2O:0.01mol%~0.98mol%、Na 2O:0.1mol%~2.9mol%、Li 2O:12.2mol%~22mol%、CeO 2:0.02mol%~0.3mol%、SnO 2:0.01mol%~0.19mol%、NaCl+Na 2CO 3+CaCO 3:0.5mol%~0.98mol%。
采用上述方案,本发明提供一种高晶体含量的微晶玻璃及其制备方法,具有以下有益效果:
1、本发明中的微晶玻璃中晶体的质量百分数为70%~95%,微晶玻璃的平均晶体尺寸为70nm~100nm,晶体尺寸小,微晶玻璃中晶相所占百分比较大,从而提高微晶玻璃的各项性能,以满足实际应用的不同需求,微晶玻璃的实用性强。
2、本发明中的微晶玻璃中晶相包括二硅酸锂、透锂长石、β-锂辉石、β-锂霞石中的至少两种,多种晶相相互交织,增强其抗破坏强度、抗拉弯强度。
3、本发明在提高微晶玻璃本身力学性能的前体下,保证可见光的透过率为86%~92%,使其在微波炉、光波炉、烤箱等家用电器的视窗及电子产品盖板具有广泛应用前景。
4、本发明中的高晶体含量的微晶玻璃的制备方法中,采用多次循环热处理操作,可有效提高晶核和晶体的形成数量,保证微晶玻璃中晶体的质量百分数在70%~95%;可以应用于其它微晶玻璃的制备,根据具体要求制备出符合用户要求的微晶玻璃,通用性强。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
本发明提供一种高晶体含量的微晶玻璃,晶相包括二硅酸锂、透锂长石、β-锂辉石、β-锂霞石中的至少两种;所述微晶玻璃任一面的表面压应力范围为300MPa~500MPa,所述微晶玻璃的张应力线密度大于30000Mpa/mm,所述微晶玻璃的平均晶体尺寸为70nm~100nm;所述微晶玻璃中晶体的质量百分数为70%~95%。微晶玻璃中晶体的质量百分数控制在70%~95%,同时将微晶玻璃的平均晶体尺寸控制在70nm~100nm之间,微晶玻璃中晶相所占百分比较大,从而提高微晶玻璃的各项性能,满足实际应用的需求,提高微晶玻璃的实用性。具体地,在本发明实施例中,所述微晶玻璃的配方为:SiO 2:67mol%~80mol%、Al 2O 3:2mol%~5mol%、P 2O 5:1mol%~4mol%、B 2O 3:0mol%~3mol%、ZrO 2:1.5mol%~6mol%、 TiO 2:0mol%~1mol%、K 2O:0mol%~1mol%、Na 2O:0mol%~3mol%、Li 2O:12mol%~22mol%、CeO 2:0mol%~0.3mol%、SnO 2:0mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.5mol%~1mol%。所述微晶玻璃的应力层深度范围为10um~100um,晶体质量百分数大于或等于70%,此时1mm厚的所述微晶玻璃的可见光平均透过率为85%~92%。所述微晶玻璃的维氏硬度高于650kgf/mm 2。具体地,本发明实施例中,所述微晶玻璃中晶体的质量百分数为75%~95%,所述晶相包括二硅酸锂、透锂长石、β-锂霞石,三种晶相相互交织,增强微晶玻璃的抗破坏强度、抗拉弯强度。所述微晶玻璃的平均晶体尺寸为80nm~100nm;所述微晶玻璃中晶体的质量百分数为71%~93%,此时1mm厚的所述微晶玻璃的可见光平均透过率为86%~91%,这使得微晶玻璃在提高各项性能的同时具有优异的透光性,可代替普通玻璃作为适宜电子显示设备的盖板保护材料,使其在微波炉、光波炉、烤箱等家用电器的视窗及电子产品盖板具有广泛应用前景。
本发明还提供一种高晶体含量的微晶玻璃的制备方法,包括以下步骤:
S1:在温度为1500℃~1600℃熔制玻璃,并获取具有一定外形尺寸的素玻璃;
S2:将步骤S1中所得的素玻璃置于温度T1为500℃~550℃的条件下,加热1h~5h后,再置于温度T2为550℃~700℃的条件下,加热1h~6h后,再置于温度T3为700℃~800℃的条件下,加热0~4h;
S3:至少循环步骤S2两次,制备出微晶玻璃。
具体地,本发明实施例中,所述高晶体含量的微晶玻璃的制备方法中的所述步骤S3后,还包括步骤S4:将步骤S3中所得的微晶玻璃置于包含硝酸钠、硝酸钾、碳酸钠、碳酸钾中至少一种的盐浴中进行至少一次强化离子交换,从而制备出强化微晶玻璃。所述步骤S4中所得的强化微晶玻璃任一面的表面压应力范围为350MPa~500MPa,所述强化微晶玻璃的张应力线密度大于30000Mpa/mm。具体地,将步骤S3中所得的微晶玻璃置于 包含硝酸钠、硝酸钾、碳酸钠、碳酸钾的盐浴中进行两次强化离子交换,从而制备出强化的微晶玻璃。具体地所述一次强化离子交换的温度为380℃~450℃,且一次强化离子交换的时间为1h~10h;所述二次强化离子交换的温度为380℃~450℃,且二次强化离子交换的时间为10min~240min。在获取具有一定形状的素玻璃后,将素玻璃依次置于T1、T2、T3温度下进行热处理操作,并控制在T1温度下加热1h~5h,T2温度下加热1h~6h,T3温度下加热0h~4h,根据实际析出晶体的情况,至少循环步骤S2中的热处理操作两次,尽可能多的形成晶核,提高晶核和晶体的形成数量,保证微晶玻璃中晶体的质量百分数在70%~95%,微晶玻璃中晶体所占百分比高,可有效提高微晶玻璃的各项性能,满足实际生产应用中的各项要求,增强微晶玻璃的实用性;同时上述制备方法可以应用于其它微晶玻璃的制备,根据具体要求制备出符合用户要求的微晶玻璃,通用性强。
所述高晶体含量的微晶玻璃的制备方法中的所述步骤1中的素玻璃包含:SiO2:68mol%~79mol%、Al2O3:1.8mol%~4.9mol%、P2O5:1.5mol%~3.9mol%、B2O3:0.1mol%~2.9mol%、ZrO2:1.6mol%~5.9mol%、TiO2:0.1mol%~0.95mol%、K2O:0.1mol%~0.99mol%、Na2O:0.1mol%~2.9mol%、Li2O:12.5mol%~21.5mol%、CeO2:0.01mol%~0.3mol%、SnO2:0.01mol%~0.2mol%、NaCl+Na2CO3+CaCO3:0.49mol%~1mol%。
下面列举具体实施例对本发明提供的制备方法做进一步更详细的说明,但并不以任何方式限定发明的保护范围。
实施例1至实施例12中的所述素玻璃的配方如下表。
Figure PCTCN2020137731-appb-000001
Figure PCTCN2020137731-appb-000002
Figure PCTCN2020137731-appb-000003
实施例1至实施例12中,各个实施例中高晶体含量的微晶玻璃的制备方法的制备工艺条件及相关参数如下表。
Figure PCTCN2020137731-appb-000004
Figure PCTCN2020137731-appb-000005
Figure PCTCN2020137731-appb-000006
实施例1至实施例12中素玻璃、微晶玻璃及强化后的强化微晶玻璃的特性对比如下表。
Figure PCTCN2020137731-appb-000007
Figure PCTCN2020137731-appb-000008
以下以实施例1为例作进一步分析:
步骤S1,根据实施例1中的素玻璃的配方,在1650℃条件下熔制玻璃,并获取具有一定外形尺寸的素玻璃。其中,所述素玻璃的厚度D为0.65μm,维氏硬度为602kgf/mm 2,素玻璃杨氏模量E为71GPa。
步骤S2,将所述素玻璃置于温度为550℃条件下,加热240min,再置于620℃,加热120min,再置于温度为700℃下,加热120min。
步骤S3,循环步骤S2两次,制备出微晶玻璃。其中,所述微晶玻璃的维氏硬度为663kgf/mm 2,微晶玻璃的张应力线密度为34540MPa/mm,可见光的透过率为91%,微晶玻璃中平均晶体尺寸为67nm,微晶玻璃中晶体的质量百分数为90.2%。
步骤S4,在本实施例中对微晶玻璃进行两次强化处理,第一次强化处理:将制得的微晶玻璃置于含有90wt%的NaNO 3、10wt%的KNO 3的混合 盐浴中进行第一次强化处理工艺,强化温度为450℃,强化时间为6h;第二次强化处理:将经过第一次强化处理工艺的微晶玻璃置于含有10wt%的NaNO 3、90wt%的KNO 3的混合盐浴中进行第二次强化处理工艺,强化温度为450℃,强化时间为30min。强化后的微晶玻璃的表面压应力为455MPa,压应力深度85μm,维氏硬度为663kgf/mm 2
以下以实施例6为例作进一步分析:
步骤S1,根据实施例6中的素玻璃的配方,在1630℃条件下熔制玻璃,并获取具有一定外形尺寸的素玻璃。其中,所述素玻璃的厚度D为0.65μm,维氏硬度为673kgf/mm 2,素玻璃杨氏模量E为77GPa。
步骤S2,将所述素玻璃置于温度为510℃条件下,加热150min,再置于540℃,加热60min,再置于温度为700℃下,加热120min。
步骤S3,循环步骤S2两次,制备出微晶玻璃。其中,所述微晶玻璃的维氏硬度为763kgf/mm 2,微晶玻璃的张应力线密度为38152MPa/mm,可见光的透过率为88%,微晶玻璃中平均晶体尺寸为74nm,微晶玻璃中晶体的质量百分数为78.9%。
步骤S4,在本实施例中对微晶玻璃进行两次强化处理,第一次强化处理:将制得的微晶玻璃置于含有95wt%的NaNO 3、5wt%的KNO 3的混合盐浴中进行第一次强化处理工艺,强化温度为400℃,强化时间为8h;第二次强化处理:将经过第一次强化处理工艺的微晶玻璃置于含有4wt%的NaNO 3、96wt%的KNO 3的混合盐浴中进行第二次强化处理工艺,强化温度为440℃,强化时间为30min。强化后的微晶玻璃的表面压应力为505MPa,压应力深度72μm,维氏硬度为763kgf/mm 2
以下以实施例9为例作进一步分析:
步骤S1,根据实施例9中的素玻璃的配方,在1620℃条件下熔制玻璃,并获取具有一定外形尺寸的素玻璃。其中,所述素玻璃的厚度D为0.65μm,维氏硬度为647kgf/mm 2,素玻璃杨氏模量E为73.6GPa。
步骤S2,将所述素玻璃置于温度为510℃条件下,加热150min,再置于640℃,加热60min,再置于温度为700℃下,加热120min。
步骤S3,循环步骤S2两次,制备出微晶玻璃。其中,所述微晶玻璃的维氏硬度为754kgf/mm 2,微晶玻璃的张应力线密度为37840MPa/mm,可见光的透过率为89.7%,微晶玻璃中平均晶体尺寸为84nm,微晶玻璃中晶体的质量百分数为75.8%。
步骤S4,在本实施例中对微晶玻璃进行两次强化处理,第一次强化处理:将制得的微晶玻璃置于含有94wt%的NaNO 3、4wt%的KNO 3、2wt%的K 2CO 3的混合盐浴中进行第一次强化处理工艺,强化温度为440℃,强化时间为4.5h;第二次强化处理:将经过第一次强化处理工艺的微晶玻璃置于含有4wt%的NaNO 3、96wt%的KNO 3的混合盐浴中进行第二次强化处理工艺,强化温度为440℃,强化时间为30min。强化后的微晶玻璃的表面压应力为499MPa,压应力深度83μm,维氏硬度为754kgf/mm 2
以下以实施例12为例作进一步分析:
步骤S1,根据实施例12中的素玻璃的配方,在1580℃条件下熔制玻璃,并获取具有一定外形尺寸的素玻璃。其中,所述素玻璃的厚度D为0.7μm,维氏硬度为604kgf/mm 2,素玻璃杨氏模量E为73.1GPa。
步骤S2,将所述素玻璃置于温度为500℃条件下,加热240min,再置于600℃,加热60min,再置于温度为700℃下,加热120min。
步骤S3,循环步骤S2两次,制备出微晶玻璃。其中,所述微晶玻璃的维氏硬度为611kgf/mm 2,微晶玻璃的张应力线密度为45273MPa/mm,可见光的透过率为91%,微晶玻璃中平均晶体尺寸为71nm,微晶玻璃中晶体的质量百分数为82.0%。
步骤S4,在本实施例中对微晶玻璃进行两次强化处理,第一次强化处理:将制得的微晶玻璃置于含有95wt%的NaNO 3、4wt%的KNO 3、2wt%的Na 2CO 3、1wt%的Na 2CO 3的混合盐浴中进行第一次强化处理工艺,强化温 度为440℃,强化时间为4.5h;第二次强化处理:将经过第一次强化处理工艺的微晶玻璃置于含有4wt%的NaNO 3、96wt%的KNO 3的混合盐浴中进行第二次强化处理工艺,强化温度为440℃,强化时间为30min。强化后的微晶玻璃的表面压应力为492MPa,压应力深度92μm,维氏硬度为683kgf/mm 2
综上所述,本发明提供一种高晶体含量的微晶玻璃及其制备方法,具有以下有益效果:
1、本发明中的微晶玻璃中晶体的质量百分数为70%~95%,微晶玻璃的平均晶体尺寸为70nm~100nm,晶体尺寸小,微晶玻璃中晶相所占百分比较大,从而提高微晶玻璃的各项性能,以满足实际应用的不同需求,微晶玻璃的实用性强。
2、本发明中的微晶玻璃中晶相包括二硅酸锂、透锂长石、β-锂辉石、β-锂霞石中的至少两种,多种晶相相互交织,增强其抗破坏强度、抗拉弯强度。
3、本发明在提高微晶玻璃本身力学性能的前体下,保证可见光的透过率为86%~92%,使其在微波炉、光波炉、烤箱等家用电器的视窗及电子产品盖板具有广泛应用前景。
4、本发明中的高晶体含量的微晶玻璃的制备方法中,采用多次循环热处理操作,可有效提高晶核和晶体的形成数量,保证微晶玻璃中晶体的质量百分数在70%~95%;可以应用于其它微晶玻璃的制备,根据具体要求制备出符合用户要求的微晶玻璃,通用性强。
以上仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种高晶体含量的微晶玻璃,其特征在于,晶相包括二硅酸锂、透锂长石、β-锂辉石、β-锂霞石中的至少两种;所述微晶玻璃任一面的表面压应力范围为300MPa~500MPa,所述微晶玻璃的张应力线密度大于30000Mpa/mm,所述微晶玻璃的平均晶体尺寸为70nm~100nm;所述微晶玻璃中晶体的质量百分数为70%~95%。
  2. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃的配方为:SiO 2:67mol%~80mol%、Al 2O 3:2mol%~5mol%、P 2O 5:1mol%~4mol%、B 2O 3:0mol%~3mol%、ZrO 2:1.5mol%~6mol%、TiO 2:0mol%~1mol%、K 2O:0mol%~1mol%、Na 2O:0mol%~3mol%、Li 2O:12mol%~22mol%、CeO 2:0mol%~0.3mol%、SnO 2:0mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.5mol%~1mol%。
  3. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃的应力层深度范围为10um~100um,晶体质量百分数大于或等于70%,此时1mm厚的所述微晶玻璃的可见光平均透过率为85%~92%。
  4. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃的配方为:SiO 2:68mol%~79mol%、Al 2O 3:1.8mol%~4.9mol%、P 2O 5:1.5mol%~3.9mol%、B 2O 3:0.1mol%~2.9mol%、ZrO 2:1.6mol%~5.9mol%、TiO 2:0.1mol%~0.95mol%、K 2O:0.1mol%~0.99mol%、Na 2O:0.1mol%~2.9mol%、Li 2O:12.5mol%~21.5mol%、CeO 2:0.01mol%~0.3mol%、SnO 2:0.01mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.49mol%~1mol%。
  5. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃的维氏硬度高于650kgf/mm 2
  6. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃的配方为:SiO 2:69mol%~78mol%、Al 2O 3:1.9mol%~4.8mol%、P 2O 5:1.6mol%~3.85mol%、B 2O 3:0.15mol%~2.85mol%、ZrO 2:1.7mol%~5.8mol%、TiO 2:0.15mol%~0.95mol%、K 2O:0.15mol%~0.99mol%、Na 2O:0.15mol%~2.9mol%、Li 2O:13mol%~21mol%、CeO 2:0.02mol%~0.3mol%、SnO 2:0.01mol%~0.19mol%、NaCl+Na 2CO 3+CaCO 3:0.5mol%~0.99mol%。
  7. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃中晶体的质量百分数为75%~95%。
  8. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述晶相包括二硅酸锂、透锂长石、β-锂霞石。
  9. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃中晶体的质量百分数为80%~93%。
  10. 根据权利要求1所述的一种高晶体含量的微晶玻璃,其特征在于,所述微晶玻璃的平均晶体尺寸为80nm~100nm;所述微晶玻璃中晶体的质量百分数为71%~93%,此时1mm厚的所述微晶玻璃的可见光平均透过率为86%~91%。
  11. 一种高晶体含量的微晶玻璃的制备方法,其特征在于,包括以下步骤:
    S1:在温度为1500℃~1600℃熔制玻璃,并获取具有一定外形尺 寸的素玻璃;
    S2:将步骤S1中所得的素玻璃置于温度T1为500℃~550℃的条件下,加热1h~5h后,再置于温度T2为550℃~700℃的条件下,加热1h~6h后,再置于温度T3为700℃~800℃的条件下,加热0~4h;
    S3:至少循环步骤S2两次,制备出微晶玻璃。
  12. 根据权利要求11所述的一种高晶体含量的微晶玻璃的制备方法,其特征在于,所述步骤S3后,还包括以下步骤:
    S4:将步骤S3中所得的微晶玻璃置于包含硝酸钠、硝酸钾、碳酸钠、碳酸钾中至少一种的盐浴中进行至少一次强化离子交换,从而制备出强化微晶玻璃。
  13. 根据权利要求11所述的一种高晶体含量的微晶玻璃的制备方法,其特征在于,所述步骤S4中所得的强化微晶玻璃任一面的表面压应力范围为350MPa~500MPa,所述强化微晶玻璃的张应力线密度大于30000Mpa/mm。
  14. 根据权利要求12所述的一种高晶体含量的微晶玻璃的制备方法,其特征在于,将步骤S3中所得的微晶玻璃置于包含硝酸钠、硝酸钾、碳酸钠、碳酸钾中至少两种的盐浴中进行两次强化离子交换,从而制备出强化的微晶玻璃。
  15. 根据权利要求14所述的一种高晶体含量的微晶玻璃的制备方法,其特征在于,所述一次强化离子交换的温度为380℃~450℃,且一次强化离子交换的时间为1h~10h;所述二次强化离子交换的温度为380℃~450℃,且二次强化离子交换的时间为 10min~240min。
  16. 根据权利要求11所述的一种高晶体含量的微晶玻璃的制备方法,其特征在于,所述步骤1中的素玻璃包含:SiO 2:67mol%~80mol%、Al 2O 3:2mol%~5mol%、P 2O 5:1mol%~4mol%、B 2O 3:0mol%~3mol%、ZrO 2:1.5mol%~6mol%、TiO 2:0mol%~1mol%、K 2O:0mol%~1mol%、Na 2O:0mol%~3mol%、Li 2O:12mol%~22mol%、CeO 2:0mol%~0.3mol%、SnO 2:0mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.5mol%~1mol%。
  17. 根据权利要求11所述的一种高晶体含量的微晶玻璃的制备方法,其特征在于,所述步骤1中的素玻璃包含:SiO 2:68mol%~80mol%、Al 2O 3:1.9mol%~4.9mol%、P 2O 5:1.2mol%~3.9mol%、B 2O 3:0.1mol%~2.9mol%、ZrO 2:1.6mol%~5.9mol%、TiO 2:0.01mol%~0.95mol%、K 2O:0.01mol%~0.99mol%、Na 2O:0.1mol%~3mol%、Li 2O:12.1mol%~21.9mol%、CeO 2:0.01mol%~0.3mol%、SnO 2:0.01mol%~0.2mol%、NaCl+Na 2CO 3+CaCO 3:0.49mol%~1mol%。
  18. 权利要求11所述的一种高晶体含量的微晶玻璃的制备方法,其特征在于,所述步骤1中的素玻璃包含:SiO 2:69mol%~79mol%、Al 2O 3:1.9mol%~4.8mol%、P 2O 5:1.3mol%~3.9mol%、B 2O 3:0.2mol%~2.9mol%、ZrO 2:1.7mol%~5.9mol%、TiO 2:0.02mol%~0.94mol%、K 2O:0.01mol%~0.98mol%、Na 2O:0.1mol%~2.9mol%、Li 2O:12.2mol%~22mol%、CeO 2:0.02mol%~0.3mol%、SnO 2:0.01mol%~0.19mol%、NaCl+Na 2CO 3+CaCO 3:0.5mol%~0.98mol%。
PCT/CN2020/137731 2019-12-30 2020-12-18 一种高晶体含量的微晶玻璃及其制备方法 WO2021135992A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911399294.9 2019-12-30
CN201911399294.9A CN111018356B (zh) 2019-12-30 2019-12-30 一种高晶体含量的微晶玻璃及其制备方法

Publications (1)

Publication Number Publication Date
WO2021135992A1 true WO2021135992A1 (zh) 2021-07-08

Family

ID=70196160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137731 WO2021135992A1 (zh) 2019-12-30 2020-12-18 一种高晶体含量的微晶玻璃及其制备方法

Country Status (2)

Country Link
CN (1) CN111018356B (zh)
WO (1) WO2021135992A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018356B (zh) * 2019-12-30 2022-05-10 重庆鑫景特种玻璃有限公司 一种高晶体含量的微晶玻璃及其制备方法
CN111635138B (zh) * 2020-04-28 2022-02-25 重庆鑫景特种玻璃有限公司 一种透过率接近玻璃前驱体的玻璃陶瓷及其制备方法
CN111646704B (zh) * 2020-06-08 2022-02-22 重庆鑫景特种玻璃有限公司 掺杂β-锂霞石晶须的玻璃陶瓷及其制备方法、化学强化玻璃陶瓷
CN112321162B (zh) * 2020-11-13 2023-05-30 重庆鑫景特种玻璃有限公司 蓝紫光低透过率玻璃陶瓷及其制备方法、玻璃制品
CN114835400B (zh) * 2021-01-30 2023-03-31 华为技术有限公司 化学强化微晶玻璃及其制备方法和电子设备
KR102542448B1 (ko) * 2021-06-15 2023-06-07 주식회사 하스 치과용 벌크 블록 및 그 제조방법
BR112023026201A2 (pt) * 2021-06-15 2024-03-05 Hass Co Ltd Bloco de massa dentário e método para fabricar o mesmo
CN115594406A (zh) * 2021-07-08 2023-01-13 荣耀终端有限公司(Cn) 化学强化微晶玻璃及其制备方法与应用
KR102519286B1 (ko) * 2021-07-26 2023-04-10 주식회사 하스 치과용 벌크 블록 및 그 제조방법
CN113683309B (zh) * 2021-08-25 2022-09-23 清远南玻节能新材料有限公司 微晶玻璃及其制备方法与应用
CN115772003A (zh) * 2021-09-04 2023-03-10 深圳市微思腾新材料科技有限公司 一种无色透明玻璃组合物、微晶玻璃及其制备方法
CN117466535A (zh) * 2022-07-22 2024-01-30 重庆鑫景特种玻璃有限公司 一种耐酸碱性优异的微晶玻璃及其制备方法和用途
CN115557704A (zh) * 2022-09-14 2023-01-03 沈阳环境科学研究院 利用煤矸石、废玻璃等原料制备高性能纳米微晶玻璃的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001120A (zh) * 2014-10-08 2017-08-01 康宁股份有限公司 具有透锂长石和硅酸锂结构的高强玻璃‑陶瓷
CN107902909A (zh) * 2017-12-01 2018-04-13 成都光明光电股份有限公司 微晶玻璃及其基板
CN109320091A (zh) * 2018-10-26 2019-02-12 成都创客之家科技有限公司 电子设备盖板用微晶玻璃制品和微晶玻璃
CN110143759A (zh) * 2019-06-13 2019-08-20 科立视材料科技有限公司 一种高强度透明微晶玻璃
TW201943670A (zh) * 2018-04-09 2019-11-16 美商康寧公司 局部強化之玻璃陶瓷及其製造方法
CN111018356A (zh) * 2019-12-30 2020-04-17 深圳市东丽华科技有限公司 一种高晶体含量的微晶玻璃及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867447B (zh) * 2017-12-01 2022-02-01 成都光明光电股份有限公司 微晶玻璃及其基板
CN110002760B (zh) * 2019-04-30 2021-09-24 重庆鑫景特种玻璃有限公司 一种含有微纳米晶体的玻璃陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107001120A (zh) * 2014-10-08 2017-08-01 康宁股份有限公司 具有透锂长石和硅酸锂结构的高强玻璃‑陶瓷
CN107902909A (zh) * 2017-12-01 2018-04-13 成都光明光电股份有限公司 微晶玻璃及其基板
TW201943670A (zh) * 2018-04-09 2019-11-16 美商康寧公司 局部強化之玻璃陶瓷及其製造方法
CN109320091A (zh) * 2018-10-26 2019-02-12 成都创客之家科技有限公司 电子设备盖板用微晶玻璃制品和微晶玻璃
CN110143759A (zh) * 2019-06-13 2019-08-20 科立视材料科技有限公司 一种高强度透明微晶玻璃
CN111018356A (zh) * 2019-12-30 2020-04-17 深圳市东丽华科技有限公司 一种高晶体含量的微晶玻璃及其制备方法

Also Published As

Publication number Publication date
CN111018356B (zh) 2022-05-10
CN111018356A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021135992A1 (zh) 一种高晶体含量的微晶玻璃及其制备方法
WO2021121404A1 (zh) 一种多晶核复合透明玻璃陶瓷及其制备方法
CN111087174B (zh) 一种具有高弹性模量的玻璃陶瓷、强化玻璃陶瓷及其制备方法
TWI752809B (zh) 具有葉長石及矽酸鋰結構的高強度玻璃陶瓷
CN111635138B (zh) 一种透过率接近玻璃前驱体的玻璃陶瓷及其制备方法
CN109803937B (zh) 玻璃陶瓷
TW201228980A (en) Fusion formed and ion exchanged glass-ceramics
CN111087175A (zh) 一种稀土掺杂的强化玻璃陶瓷及其制备方法与应用
CN114605074A (zh) 微晶玻璃及其制备方法
WO2024088186A1 (zh) 一种微晶玻璃、微晶玻璃前驱体及其制备方法
CN116282926A (zh) 一种可强化高强度透明硅酸锌锂微晶玻璃及其制备方法
WO2024109495A1 (zh) 一种3d微晶玻璃及其制备方法、预晶化微晶玻璃
US12006248B2 (en) White glass-ceramic substrates and articles including tetragonal zirconia crystalline phase, and method of manufacturing the same
WO2024017081A1 (zh) 一种耐酸碱性优异的微晶玻璃及其制备方法和用途
CN1315747C (zh) 一种含氟磷锂铝硅玻璃陶瓷及其制备方法
JP2023504787A (ja) 3次元ガラスセラミック物品及びその製造方法
CN116969683A (zh) 一种可化学强化的微晶玻璃及其强化方法与应用
CN114890679B (zh) 强化玻璃、分相玻璃及其制备方法与应用
US4022627A (en) Crystallizable glasses and nephetine glass-ceramics containing ZrO2 and ZnO
CN108623154B (zh) 一种表面强化的透明玻璃
WO2023206002A1 (zh) 微晶玻璃、强化玻璃及其制备方法与应用
CN115745409B (zh) 一种具有多层结构的高硬度微晶玻璃、其制备方法及应用
WO2024113751A1 (zh) 一种透明无色尖晶石微晶玻璃及其制备和应用
JP2010202460A (ja) 結晶化ガラスの製造方法及び結晶化ガラス
JPS63151647A (ja) セラミツクス−ガラス複合体の強化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20909450

Country of ref document: EP

Kind code of ref document: A1