WO2021135625A1 - Pon多通道绑定传输方法、pon节点和存储介质 - Google Patents

Pon多通道绑定传输方法、pon节点和存储介质 Download PDF

Info

Publication number
WO2021135625A1
WO2021135625A1 PCT/CN2020/126169 CN2020126169W WO2021135625A1 WO 2021135625 A1 WO2021135625 A1 WO 2021135625A1 CN 2020126169 W CN2020126169 W CN 2020126169W WO 2021135625 A1 WO2021135625 A1 WO 2021135625A1
Authority
WO
WIPO (PCT)
Prior art keywords
data transmission
data
channel
transmission efficiency
sent
Prior art date
Application number
PCT/CN2020/126169
Other languages
English (en)
French (fr)
Inventor
张伟良
袁立权
郭勇
魏君珊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20908593.5A priority Critical patent/EP4087269A4/en
Priority to US17/789,754 priority patent/US12003901B2/en
Publication of WO2021135625A1 publication Critical patent/WO2021135625A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • This application relates to an optical communication network, for example, to a PON multi-channel bonding transmission method, a PON node and a storage medium.
  • PON Passive Optical Network
  • ODN Optical Distribution Network
  • Composition of passive components Compared with active optical networks, PON saves resources and has a lower cost, so it has been widely used.
  • multi-channel bonding technology is proposed in PON, that is, multiple optical channels are bonded together as a data transmission channel, which can increase the channel capacity and peak rate, and can effectively reduce the data transmission delay.
  • PON physical-oxide-semiconductor
  • the data on each channel needs to be encapsulated separately, and each encapsulation needs to add a frame header to indicate the data transmission on each channel happening.
  • the frame header encapsulated on each channel will occupy additional overhead, which will affect the data transmission efficiency, especially when the sent data is relatively short, the impact on the data transmission efficiency is particularly obvious.
  • the present application provides a PON multi-channel binding transmission method, PON node and storage medium.
  • PON node When multiple data transmission channels of the PON are combined and bound, data transmission efficiency and data transmission rate are balanced to meet the data transmission requirements of users.
  • the embodiment of the present application provides a PON multi-channel binding transmission method, including:
  • the data to be sent is transmitted on the data transmission channel binding combination of one or more data transmission channels.
  • An embodiment of the present application provides a PON node, including a processor and a memory, and the processor is configured to run program instructions stored in the memory to execute the above-mentioned PON multi-channel bonding transmission method.
  • the embodiment of the present application provides a computer-readable storage medium, and when the program is executed by a processor, the above-mentioned PON multi-channel bonding transmission method is realized.
  • FIG. 1 is a flowchart of a PON multi-channel bonding transmission method according to an embodiment
  • Figure 2 is a schematic diagram of the data structure of an XGEM frame
  • FIG. 3 is a flowchart of another PON multi-channel bonding transmission method provided by an embodiment
  • FIG. 5 is a schematic diagram of the data structure of a modified XGEM frame transmitted according to the PON multi-channel bonding transmission method provided by an embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a PON multi-channel bonding transmission device provided by an embodiment
  • Fig. 7 is a schematic structural diagram of a PON node provided by an embodiment.
  • NGEPON Next Generation Ethernet Passive Optical Network
  • HS-PON High-speed PON
  • Multi-channel bonding in PON can increase channel capacity and peak speed.
  • the data on each channel needs to be encapsulated separately, and then an independent frame header needs to be encapsulated on each channel to indicate the sending status of the data on each channel.
  • the frame header encapsulated on each channel will occupy additional overhead, which will affect the efficiency of data transmission. Especially when the sent data is relatively short, the impact on the data transmission efficiency is particularly obvious.
  • FIG. 1 is a flowchart of a PON multi-channel bonding transmission method provided by an embodiment. As shown in FIG. 1, the method provided in this embodiment includes the following steps.
  • Step S1010 Determine the multi-channel transmission mode of the data to be sent according to the data transmission efficiency and the preset data transmission efficiency threshold, where the data transmission efficiency used to determine the multi-channel transmission mode is higher than or equal to the preset data transmission efficiency threshold.
  • the PON multi-channel bonding transmission method provided in this embodiment is applied to any node in PON, including optical line terminal (OLT), optical network unit (ONU) or other data transmission in PON Network node.
  • Multiple data transmission channels can be established between each node in the PON, and each data transmission channel can perform data transmission independently.
  • the data transmitted in the PON is encapsulated in the form of data frames, and each data frame includes a frame header and data.
  • the frame header of each data frame includes relevant information of the data frame, so that the node receiving the data frame can determine the length of the data frame and other information by analyzing the information of the frame header, so as to realize the reception.
  • FIG 2 is a schematic diagram of the data structure of the 10 Gigabit Passive Optical Network Encapsulation Method (XG-Passive Optical Network Encapsulation Method, XGEM) frame.
  • XGEM frame the frame header of the XGEM frame (XGEM frame) It includes multiple parts, including 14-bit (bit) frame payload length indicator (Payload Length Indicator, PLI), 2-bit key index (Key index), 16-bit port identifier (XGEM Port-ID), and 18-bit frame payload length indicator (PLI).
  • Field selection Options
  • 1-bit fragmented frame end indicator (Last Fragment, LF)
  • 13-bit frame header error check Head Error Check, HEC).
  • the payload field (XGEM Payload) of the XGEM frame is used to carry the data to be transmitted in the XGEM frame. It can be seen that the frame header of the XGEM frame requires a total of 64 bits, that is, 8 bytes are required.
  • Figure 2 is only a schematic diagram of the data structure of an XGEM frame. For other forms of PON frames, it can also be divided into two parts: the frame header and the data field.
  • each data transmission channel in the PON Since the capacity of each data transmission channel in the PON is limited, in order to increase the data channel capacity and data transmission rate in the PON, a multi-channel binding scheme in which multiple data transmission channels are bound together to transmit data together is proposed.
  • the data in the data frame to be transmitted needs to be divided and then allocated to multiple data transmission channels for transmission.
  • the data transmitted on each channel needs to add a frame header, and a new data frame is generated on each data transmission channel.
  • the divided data in each data frame is combined to obtain the data to be transmitted.
  • the frame headers of the data frames respectively transmitted on each channel will occupy additional data transmission opportunities, thereby affecting the data transmission efficiency.
  • the multiple frame headers on multiple channels have a greater impact on the data transmission efficiency.
  • data transmission through multiple channels can increase the capacity of the data transmission channel, increase the data transmission rate, and shorten the data transmission delay.
  • the balance between data transmission efficiency and data transmission rate is not considered, resulting in data transmission that cannot meet user needs.
  • this application adopts a method of dynamically binding PON multi-channels.
  • the multi-channel transmission mode for transmitting the data to be sent is determined according to the data transmission efficiency of the multi-channel binding combination and the preset data transmission efficiency threshold.
  • the determined multi-channel transmission mode includes a binding combination of one or more data transmission channels.
  • the data transmission efficiency of the determined multi-channel transmission mode meets the preset conditions. That is, it is used to determine that the data transmission efficiency of the multi-channel transmission mode is higher than or equal to the preset data transmission efficiency threshold.
  • the data transmission efficiency of the data to be sent can be set according to the needs of the user, or can be preset in the PON node.
  • the data transmission efficiency of the multi-channel transmission mode that satisfies the preset condition further includes: a data transmission channel for determining that the data transmission efficiency of the multi-channel transmission mode is lower than the preset data transmission efficiency threshold and the multi-channel transmission mode The least quantity.
  • the data to be sent can be transmitted on one data transmission channel or on multiple data transmission channels. If the data to be sent is transmitted on multiple data transmission channels, then the data to be sent needs to be divided into at least two data units At least two data units can be evenly distributed on multiple data transmission channels in the PON, or can be distributed on multiple data transmission channels according to a preset distribution method.
  • the number of data transmission channels used to transmit at least two data units is one or more than one.
  • the data transmission efficiency when at least two data units are transmitted on multiple data transmission channels in the PON can be obtained according to the ratio of the data length in the data to be sent to the actual amount of data transmitted on each data transmission channel.
  • the data transmission efficiency is counted based on a certain period.
  • the statistical period for the statistical data transmission efficiency can be a preset time period, such as 24 hours, or 15 minutes, or the statistical period can also be an uplink superframe. Or downlink superframe. Or the statistical period can also be another preset time length.
  • the data transmission efficiency when the data to be sent is transmitted on multiple data transmission channels in the PON can be pre-stated before the data to be sent is transmitted, or it can be based on the data to be sent after the data to be sent has been transmitted in a statistical period. Statistics of the actual delivery situation.
  • the data to be sent is pre-stated for transmission of multiple pre-statistical data when the data to be sent is allocated and transmitted on multiple different data transmission channel combinations in the PON. That is, in each statistical period, for the data to be sent, the pre-sending channel is first determined for pre-sending, and the data transmission efficiency is pre-stated.
  • the pre-sending channel is first determined for pre-sending, and the data transmission efficiency is pre-stated.
  • statistics on multiple different pre-statistical data transmission efficiencies For example, there are 4 data transmission channels that can be used to transmit the data to be sent. After the 4 data transmission channels are arranged and combined, a total of 15 data transmission channel combinations can be obtained, and then the 15 data transmission channel combinations can be pre-sent.
  • the pre-statistical data transmission efficiency corresponding to each data transmission channel combination is obtained.
  • the pre-statistical data transmission efficiency is not obtained after the data to be sent is actually sent on the data transmission channel, but is calculated according to the parameters of the data transmission channel combination and the size of the data to be sent.
  • the data transmission efficiency of the data to be sent after being transmitted on multiple data transmission channels in the PON is calculated. That is, in each statistical period, after the data to be sent is sent according to the determined data transmission channel binding combination, the actual data transmission efficiency is calculated.
  • the data transmission channel binding combination that has been determined here may be determined based on the data transmission efficiency counted in the last statistical period, or may be determined based on a preset strategy.
  • the preset data transmission efficiency threshold is set according to the data transmission requirements. If the actual data transmission efficiency is higher than or equal to the expected Set the data transmission efficiency threshold, then it means that when the data to be sent is transmitted on the data transmission channel combination corresponding to the data transmission efficiency, the data transmission efficiency meets the data transmission efficiency requirement, so the data can be transmitted on the data transmission channel combination . If the data transmission efficiency is lower than the preset data transmission efficiency threshold, it means that the data transmission efficiency cannot meet the demand when transmitting the data to be sent on the data transmission channel combination corresponding to the data transmission efficiency, and then it is necessary to adjust the transmission of the data to be sent.
  • the combination of data transmission channels used reduces the number of data transmission channels, thereby improving data transmission efficiency.
  • the determination strategy of the data transmission channel binding combination is: the data transmission efficiency of the data transmission channel binding combination is higher than or equal to the preset data transmission efficiency threshold when the data transmission channel binding combination has the largest number of data transmission channels, or the data transmission channel binding combination has the largest number of data transmission channels.
  • the data transmission efficiency of the transmission channel binding combination is lower than the preset data transmission efficiency threshold, the number of data transmission channels in the data transmission channel binding combination is the smallest.
  • the data transmission efficiency should be improved as much as possible.
  • the data to be sent is pre-statistically distributed on multiple different data transmission channel combinations in the PON for transmission of multiple pre-statistical data transmission efficiencies, then the selection is determined
  • the pre-statistical data transmission efficiency is higher than or equal to the preset data transmission efficiency threshold and the data transmission channel with the largest number of data transmission channels is bound to transmit the data to be sent, or it is determined that the pre-statistical data transmission efficiency is lower than the preset data transmission efficiency threshold and The data transmission channel with the least number of data transmission channels is bound and combined to transmit the data to be sent.
  • the transmission efficiency of multiple pre-statistical data is pre-stated, and then the transmission efficiencies of the multiple pre-statistical data are respectively compared with the preset data transmission efficiency. Threshold comparison, first determine whether there is a pre-statistical data transmission efficiency higher than or equal to the preset data transmission efficiency threshold among multiple pre-statistical data transmission efficiencies. If so, select the largest number of data transmission channels in the data transmission channel binding combination The combination of to carry out the transmission of the data to be sent.
  • the combination with the least number of data transmission channels in the data transmission channel binding combination is selected for the data to be sent Transmission. In this way, a balance can be made between the data transmission efficiency and the data transmission rate, and the optimal transmission of the data to be sent can be realized.
  • the data transmission efficiency of the data to be sent after being transmitted on multiple data transmission channels in the PON is counted, then if the data transmission efficiency is higher than or equal to the preset data
  • the transmission efficiency threshold is determined to select the data transmission channel binding combination with the largest number of data transmission channels to transmit the data to be sent, or if the data transmission efficiency is lower than the preset data transmission efficiency threshold, the data transmission channel with the least number of data transmission channels is determined to be selected
  • the binding combination transmits the data to be sent. That is, after the data to be sent has been transmitted in a statistical period, the actual data transmission efficiency is counted, and then it is judged whether the data transmission efficiency is higher than or equal to the preset data transmission efficiency threshold.
  • the transmission channel binding combination transmits the data to be sent. If the data transmission efficiency is lower than the preset data transmission efficiency threshold, then the data transmission channel binding combination with the least number of data transmission channels is selected to transmit the data to be sent. In this way, a balance can be made between the data transmission efficiency and the data transmission rate, and the optimal transmission of the data to be sent can be realized.
  • the data transmission efficiency of the data to be sent after being transmitted on multiple data transmission channels in the PON is counted. Then if the data transmission efficiency is higher than or equal to the preset data transmission efficiency threshold, increase the data transmission channel in the data transmission channel binding combination for transmitting the data to be sent; or if the data transmission efficiency is lower than the preset data transmission efficiency threshold, then Reduce the data transmission channels in the data transmission channel binding combination that transmits the data to be sent. That is, after the data to be sent has been transmitted in a statistical period, the actual data transmission efficiency is counted, and then it is judged whether the data transmission efficiency is higher than or equal to the preset data transmission efficiency threshold.
  • the data to be sent can be transmitted in the next statistical period. For data, increase the data transmission channel in the data transmission channel binding combination that transmits the data to be sent. If the data transmission efficiency is lower than the preset data transmission efficiency threshold, then when the data to be sent is transmitted in the next statistical period, the transmission of the data to be sent is reduced.
  • the data transmission channel is bound to the data transmission channel in the combination. In this way, the data transmission channel binding combination of the data to be sent can be dynamically adjusted, thereby balancing the data transmission efficiency and the data transmission rate, and realizing the optimal transmission of the data to be sent.
  • the data transmission efficiency is determined according to the data transmission strategy.
  • the data transmission strategy is the transmission efficiency priority
  • the data transmission strategy is the transmission delay priority is the data transmission efficiency is determined to be higher than the preset data transmission efficiency threshold.
  • the data transmission channel binding combination for transmitting the data to be sent can be determined, so that the data transmission channel binding combination can be determined according to the preset data transmission strategy before the statistics of the data transmission efficiency have been performed.
  • step S1020 the data to be sent is transmitted on the data transmission channel binding combination of one or more data transmission channels according to the multi-channel transmission mode.
  • the data to be sent can be transmitted on the data transmission channel binding combination of one or more data transmission channels in the multi-channel transmission mode. Since the data transmission efficiency of the determined multi-channel transmission mode meets the preset condition, after the data to be sent is transmitted according to the determined multi-channel transmission mode, the data transmission efficiency and the data transmission rate are balanced to meet the data transmission requirements of the user.
  • the PON multi-channel bonding transmission method provided in this embodiment determines the multi-channel transmission mode of the data to be sent according to the data transmission efficiency and the preset data transmission efficiency threshold, where the data transmission efficiency used to determine the multi-channel transmission mode is higher than Or equal to the preset data transmission efficiency threshold, and then transmit the data to be sent on the data transmission channel binding combination of one or more data transmission channels according to the multi-channel transmission mode, so that the multi-data transmission channel combination binding of PON can be performed , Balance data transmission efficiency and data transmission rate to meet users' data transmission needs.
  • FIG. 3 is a flowchart of another PON multi-channel bonding transmission method provided in an embodiment. As shown in FIG. 3, the method provided in this embodiment includes the following steps.
  • step S3010 the data to be sent is divided into at least two data units.
  • Step S3020 In each statistical period, the data transmission efficiency of at least two data units when they are transmitted on multiple data transmission channels in the PON is calculated.
  • Step S3030 Determine the data transmission channel binding combination used to transmit the data to be sent according to the data transmission efficiency and the preset data transmission efficiency threshold, wherein the data transmission efficiency of the data transmission channel binding combination is higher than or equal to the preset data transmission
  • the efficiency threshold the number of data transmission channels in the data transmission channel binding combination is the largest, or the data transmission efficiency of the data transmission channel binding combination is lower than the preset data transmission efficiency threshold, the number of data transmission channels in the data transmission channel binding combination is the least .
  • step S3040 at least two data units are sequentially allocated to the multiple data transmission channels of the data transmission channel binding combination for transmission, wherein each data unit is sequentially allocated to the data transmission channel with the earliest transmission time in chronological order.
  • the PON multi-channel bonding transmission method of the embodiment shown in Figure 1 it is proposed to determine the multi-channel transmission mode of the data to be sent according to the data transmission efficiency and the preset data transmission efficiency threshold, and then according to the multi-channel transmission mode in one or more The data transmission channel binding combination of two data transmission channels transmits the data to be sent. After the data transmission channel binding combination is determined, the data to be sent needs to be allocated to multiple data transmission channels in the determined data transmission channel binding combination.
  • the receiving end can merge the at least two data units into the data to be sent according to the same rule.
  • at least two data units are sequentially allocated to multiple data transmission channels combined by data transmission channel binding and sent, wherein each data unit is sequentially allocated to the data transmission channel with the earliest transmission time in chronological order.
  • the channel with the smallest data transmission channel number (or the channel with the largest number) can be selected. Then for the data receiving end, the data units can be arranged and merged in sequence according to the time sequence of receiving the data units.
  • the allocation of the at least two data units other methods may also be adopted, and it is sufficient that at least the allocation of the at least two data units on the multiple data channels can be uniquely determined.
  • FIG. 4 is a schematic diagram of data unit allocation in the PON multi-channel binding method provided in this embodiment.
  • the data transmission channel combination consists of 3 data transmission channels as an example, and the wavelengths of the 3 data transmission channels are ⁇ 1, ⁇ 2, and ⁇ 3 respectively.
  • the transmission channels of ⁇ 1 and ⁇ 2 include unbound data frame transmission.
  • the data to be sent is divided into 19 data units 0-18.
  • the transmission channel As shown in Figure 4, sends a total of 6 data units from 0 to 5 sequentially on the transmission channel of ⁇ 3.
  • the data transmission channels with the earliest sending time are ⁇ 2 and ⁇ 3, then the smaller numbered ⁇ 2 will be selected to send the data unit numbered 6.
  • the data transmission channel with the earliest transmission time is ⁇ 3, then the data unit numbered 7 will be sent at ⁇ 3.
  • data units numbered 8-18 they are sent on ⁇ 1- ⁇ 3 in sequence according to the same method.
  • the data transmission channel binding combination used to transmit the data to be sent is determined according to the data transmission efficiency and the preset data transmission efficiency threshold, the data transmission channel binding combination in the data transmission channel binding combination is further included. Add data channel binding instructions in the data frame header.
  • the data to be sent is divided into multiple data units and transmitted in multiple data transmission channels, in order to enable the receiving end to correctly transmit data on multiple data transmission channels.
  • a data channel binding instruction needs to be added to the frame header.
  • the data channel binding indication is used to indicate which data transmission channels are composed of the data transmission channel binding combination used to transmit the data to be sent.
  • the data channel binding indication may use the identifier of the data transmission channel to indicate, or the data channel binding indication may also use multiple bits to respectively indicate whether data units are transmitted on multiple data transmission channels.
  • FIG. 5 is a schematic diagram of the data structure of a modified XGEM frame transmitted according to the PON multi-channel binding transmission method provided by an embodiment of the present application.
  • a data channel binding indication needs to be added to the frame header of the XGEM frame.
  • the frame header part includes an 18-bit optional field (Options), then the data channel binding indication can be placed in the Options.
  • each bit corresponds to the transmission of a data unit on a data transmission channel.
  • the bit corresponding to the data transmission channel is 1 means that the data is transmitted on the data transmission channel corresponding to the bit, and The bit corresponding to the data transmission channel is 0, which means that the data is not transmitted on the data transmission channel corresponding to the bit.
  • the data receiving end can determine the binding combination of the data transmission channel by analyzing these 4 bits, so as to correctly complete the data reception.
  • FIG. 6 is a schematic structural diagram of a PON multi-channel bonding transmission device provided by an embodiment.
  • the PON multi-channel bonding transmission device provided in this embodiment includes: a determining unit 61 and a transmission unit 62.
  • the determining unit 61 is configured to determine the multi-channel transmission mode of the data to be sent according to the data transmission efficiency and the preset data transmission efficiency threshold, wherein the data transmission efficiency for determining the multi-channel transmission mode is higher than or equal to the preset data transmission efficiency Threshold;
  • the transmission unit 62 is set to transmit the data to be sent on the data transmission channel binding combination of one or more data transmission channels according to the multi-channel transmission mode.
  • the PON multi-channel bonding transmission device provided in this embodiment is used to implement the PON multi-channel bonding transmission method of the embodiment shown in FIG. 1.
  • the implementation principle and technical effect of the PON multi-channel bonding transmission device provided in this embodiment are similar. I won't repeat it here.
  • FIG. 7 is a schematic structural diagram of a PON node provided by an embodiment.
  • the PON node includes a processor 71, a memory 72, a transmitter 73, and a receiver 74; the number of processors 71 in the PON node can be It is one or more.
  • One processor 71 is taken as an example in FIG. 7; the processor 71 and the memory 72, the transmitter 73 and the receiver 74 in the PON node can be connected by bus or other methods. Connect as an example.
  • the memory 72 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the PON multi-channel bonding transmission method in the embodiments of FIG. 1 and FIG. 3 of this application (For example, the determination unit 61 and the transmission unit 62 in the PON multi-channel binding transmission device).
  • the processor 71 completes at least one functional application and data processing of the PON node by running the software programs, instructions, and modules stored in the memory 72, that is, realizes the above-mentioned PON multi-channel binding transmission method.
  • the memory 72 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the PON node.
  • the memory 72 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the transmitter 73 is a module or a combination of devices capable of data transmission in the PON, and includes, for example, an optical signal transmitting module.
  • the receiver 74 is a module or a combination of devices capable of receiving data in the PON, and includes, for example, an optical signal receiving module.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a PON multi-channel bonding transmission method when executed by a computer processor.
  • the method includes: according to data transmission efficiency and The preset data transmission efficiency threshold is used to determine the multi-channel transmission mode of the data to be sent, wherein the data transmission efficiency used to determine the multi-channel transmission mode is higher than or equal to the preset data transmission efficiency threshold; Or a data transmission channel binding combination of multiple data transmission channels to transmit the to-be-sent data.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (SAICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • SAICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (SAICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请提出一种无源光网络PON多通道绑定传输方法、PON节点和存储介质,一种PON多通道绑定传输方法包括:根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,其中,用于确定多通道传输方式的数据传输效率高于或等于预设数据传输效率门限;根据多通道传输方式在一个或多个数据传输通道的数据传输通道绑定组合上传输待发送数据。

Description

PON多通道绑定传输方法、PON节点和存储介质
本申请要求在2019年12月31日提交中国专利局、申请号为201911424432.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信网络,例如涉及一种PON多通道绑定传输方法、PON节点和存储介质。
背景技术
无源光网络(Passive Optical Network,PON)是一种光纤接入网络,PON在光分配网(Optical Distribution Network,ODN)中不含有任何有源电子器件及电子光源,仅由光分路器等无源器件组成。PON与有源光网络相比,节约资源,成本较低,因此已经得到了广泛应用。
为了提高数据传输带宽,在PON中提出多通道绑定技术,也就是将多个光通道绑定在一起作为一个数据传输通道,从而可以提高通道容量和峰值速率,并且可以有效降低数据传输时延。但是在多通道绑定时,数据被分割在多个通道上进行传输时,每个通道上的数据需要单独封装,每个封装都需要加一个帧头,以指示数据在每个通道上的发送情况。
但是每个通道上封装的帧头会占用额外的开销,将会影响数据传输效率,特别是当发送的数据比较短的情况下,对数据传输效率的影响尤其明显。
发明内容
本申请提供一种PON多通道绑定传输方法、PON节点和存储介质,在进行PON的多数据传输通道组合绑定时,平衡数据传输效率和数据传输速率,满足用户的数据传输需求。
本申请实施例提供一种PON多通道绑定传输方法,包括:
根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,其中,用于确定多通道传输方式的数据传输效率高于或等于预设数据传输效率门限;
根据多通道传输方式在一个或多个数据传输通道的数据传输通道绑定组合上传输待发送数据。
本申请实施例提供一种PON节点,包括处理器和存储器,处理器用于运行储存在存储器里的程序指令以执行上述的PON多通道绑定传输方法。
本申请实施例提供一种计算机可读存储介质,该程序被处理器执行时实现上述的PON多通道绑定传输方法。
附图说明
图1为一实施例提供的一种PON多通道绑定传输方法的流程图;
图2为XGEM帧的数据结构示意图;
图3为一实施例提供的另一种PON多通道绑定传输方法的流程图;
图4为本实施例提供的PON多通道绑定方法进行数据单元分配的示意图;
图5为根据本申请实施例提供的PON多通道绑定传输方法传输的修改后的XGEM帧的数据结构示意图;
图6为一实施例提供的一种PON多通道绑定传输装置的结构示意图;
图7为一实施例提供的一种PON节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。
在电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)下一代以太网无源光网络(Next Generation Ethernet Passive Optical Network,NGEPON)标准和国际电信联盟远程通信标准化组(International Telecommunication Union-Telecommunication Standardization Sector)高速PON(High Speed PON,HS-PON)标准中均已制定了多通道绑定的方案。在PON中进行多通道绑定可以提高通道容量和峰值速度。
但是由于多通道绑定后,每个通道上的数据需要单独封装,那么每个通道上均需要封装独立的帧头,以指示数据在每个通道上的发送情况。但是每个通道上封装的帧头会占用额外的开销,将会影响数据传输效率。特别是当发送的数据比较短的情况下,对数据传输效率的影响尤其明显。例如以需要发送的数据为64字节,封装帧头为8字节为例,如果在单通道上发送数据,则数据传输效率为64/(64+8)=88.89%;如果在两个通道上发送,那么数据传输效率为64/(64+16)=80%;如果在四个通道上发送,那么数据传输效率为 64/(64+32)=66.67%。由此可见,数据通道的增加虽然可以增加通道数据容量和传输速率,但数据通道的数量越多对数据传输效率的影响越大。
图1为一实施例提供的一种PON多通道绑定传输方法的流程图,如图1所示,本实施例提供的方法包括如下步骤。
步骤S1010,根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,其中,用于确定多通道传输方式的数据传输效率高于或等于预设数据传输效率门限。
本实施例提供的PON多通道绑定传输方法应用于PON中的任一节点,包括光线路终端(Optical Line Terminal,OLT)、光网络单元(Optical Network Unit,ONU)或PON中其他进行数据传输的网络节点。PON中的各节点之间可以建立多个数据传输通道,各数据传输通道分别能够独立进行数据传输。PON中传输的数据是以数据帧的形式进行封装的,其中每个数据帧都包括帧头和数据。其中每个数据帧的帧头部分包括该数据帧的相关信息,使得接收该数据帧的节点通过解析帧头部分的信息,确定该数据帧的长度等信息,从而实现接收。
图2为万兆吉比特无源光网络封装模式(XG-Passive Optical Network Encapsulation Method,XGEM)帧的数据结构示意图,如图2所示,XGEM帧(XGEM frame)的帧头部分(XGEM header)包括多部分内容,分别为14比特(bit)的帧净荷长度指示(Payload Length Indicator,PLI)、2bit的密钥索引(Key index)、16bit的端口标识(XGEM Port-ID)、18bit的可选域(Options)、1bit的分片帧帧尾指示(Last Fragment,LF)、13bit的帧头错误检验(Head Error Check,HEC)。XGEM帧的净荷域(XGEM Payload)用于承载XGEM帧所需传输的数据。由此可见,XGEM帧的帧头共计需要64bit,也即需要占用8个字节。图2仅为XGEM帧的数据结构示意图,对于其他形式的PON帧,同样可以分为帧头和数据域两部分。
由于PON中每个数据传输通道的容量是有限的,为了提高PON中的数据通道容量和数据传输速率,提出了将多个数据传输通道绑定在一起共同传输数据的多通道绑定方案。但是将所需传输的数据帧通过多个绑定的数据传输通道进行传输时,需要将所需传输的数据帧中的数据进行分割后分配在多个数据传输通道上进行传输,但分割后在每个通道上传输的数据均需要加上帧头,在每个数据传输通道上生成一个新的数据帧。在数据接收端,从绑定的各数据传输通道分别接收到数据帧后,将各数据帧中分割后的数据合并后得到所需传输的数据。那么在每个通道上分别传输的数据帧的帧头将占用额外的数据发送机会,从而影响数据发送效率。当所需传输的数据长度越短时,多通道上的多个帧头对数据传输效率的影响越大。虽然数据通道的增加会影响数据传输效率,但通 过多通道传输数据能够增大数据传输通道的容量,提高数据传输速率,也即缩短数据传输时延。而针对PON的多通道绑定方案中,并没有考虑数据传输效率和数据传输速率之间的平衡,导致数据的传输无法满足用户需求。
本申请为了平衡PON多通道绑定传输数据时的数据传输效率和数据传输速率,采用动态绑定PON多通道的方法。根据多通道绑定组合的数据传输效率和预设数据传输效率门限确定传输待发送数据的多通道传输方式,确定的多通道传输方式包括一个或多个数据传输通道的绑定组合。确定的多通道传输方式的数据传输效率满足预设的条件。即用于确定多通道传输方式的数据传输效率高于或等于预设数据传输效率门限。待发送数据的数据传输效率可以是根据用户的需求设置的,也可以是预设于PON节点中的。在一实施例中,多通道传输方式的数据传输效率满足预设的条件还包括:用于确定多通道传输方式的数据传输效率低于预设数据传输效率门限且多通道传输方式的数据传输通道数量最少。
因此,首先就需要统计待发送数据在PON中不同的数据通道组合上传输时的数据传输效率。待发送数据可以在一个数据传输通道上传输,也可以在多个数据传输通道上传输,若待发送数据在多个数据传输通道上传输,那么就需要将待发送数据分割为至少两个数据单元,至少两个数据单元可以平均分配在PON中的多个数据传输通道上,也可以根据预设的分配方式分配在多个数据传输通道上。用于传输至少两个数据单元的数据传输通道的数量为一个或者一个以上。至少两个数据单元在PON中多个数据传输通道上传输时的数据传输效率可以根据待发送数据中的数据长度大小与各数据传输通道上实际传输的数据量之比得出。
在一实施例中,数据传输效率基于一定周期进行统计,统计数据传输效率的统计周期,可以是一个预设的时间周期,例如24小时,或者15分钟,或者统计周期还可以是一个上行超帧或者下行超帧。或者统计周期还可以是其他预设的时间长度。
其中,待发送数据在PON中多个数据传输通道上传输时的数据传输效率可以在传输待发送数据之前进行预统计,也可以在已在一个统计周期内传输完待发送数据后根据待发送数据的实际发送情况进行统计。
在一实施例中,在每个统计周期发送待发送数据之前,预统计待发送数据分配在PON中多个不同的数据传输通道组合上传输时的多个预统计数据传输效率。也就是在每个统计周期内,针对待发送数据,先确定预发送通道进行预发送,预统计数据传输效率。通过改变预发送通道的组合形式,统计多个不同的预统计数据传输效率。例如,能够用于传输待发送数据的数据传输通道为4个, 4个数据传输通道进行排列组合后能够得到共15种数据传输通道组合,那么可以在这15种数据传输通道组合上分别预发送待发送数据的至少两个数据单元,得到每种数据传输通道组合对应的预统计数据传输效率。预统计数据传输效率并不是将待发送数据在数据传输通道上进行了实际发送后得到的,而是根据数据传输通道组合的参数和待发送数据的大小进行计算后得出的。
在一实施例中,在每个统计周期发送待发送数据之后,统计待发送数据在PON中多个数据传输通道上传输后的数据传输效率。也就是在每个统计周期内,根据已经确定的数据传输通道绑定组合发送待发送数据后,统计实际的数据传输效率。这里已经确定的数据传输通道绑定组合可以是根据上一统计周期统计到的数据传输效率确定的,也可以是根据预设的策略确定的。
为了平衡传输待发送数据的数据传输效率和数据传输速率,需要预设数据传输效率门限,预设数据传输效率门限是根据数据传输需求而设定的,实际的数据传输效率若高于或等于预设数据传输效率门限,那么表示在该数据传输效率对应的数据传输通道组合上传输待发送数据时,数据传输效率是满足数据传输效率需求的,因此可以将数据在该数据传输通道组合上进行传输。而若数据传输效率低于预设数据传输效率门限,那么表示在该数据传输效率对应的数据传输通道组合上传输待发送数据时,数据传输效率无法满足需求,那么则需要调整传输待发送数据所使用的数据传输通道组合,减少数据传输通道的数量,从而提高数据传输效率。
其中,数据传输通道绑定组合的确定策略为:数据传输通道绑定组合的数据传输效率高于或等于预设数据传输效率门限时数据传输通道绑定组合中的数据传输通道数量最多,或者数据传输通道绑定组合的数据传输效率低于预设数据传输效率门限时数据传输通道绑定组合中的数据传输通道数量最少。也就是在满足预设数据传输效率门限的前提下,使用数据传输通道数量最多的数据传输通道绑定组合传输待发送数据,从而尽可能提高数据传输速率;或者在数据传输效率无法满足预设数据传输效率门限的前提下,尽可能提高数据传输效率。
在一实施例中,若在每个统计周期发送待发送数据之前,预统计待发送数据分配在PON中多个不同的数据传输通道组合上传输时的多个预统计数据传输效率,那么确定选择预统计数据传输效率高于或等于预设数据传输效率门限且数据传输通道数量最多的数据传输通道绑定组合传输待发送数据,或者确定选择预统计数据传输效率低于预设数据传输效率门限且数据传输通道数量最少的数据传输通道绑定组合传输待发送数据。也就是在还未传输待发送数据之前,例如在传输待发送数据的第一个统计周期,预统计多个预统计数据传输效率,然后将多个预统计数据传输效率分别与预设数据传输效率门限进行比较,首先 判断多个预统计数据传输效率中是否有高于或等于预设数据传输效率门限的预统计数据传输效率,若有,则选择数据传输通道绑定组合中数据传输通道数量最多的组合进行待发送数据的传输。或者,若多个预统计数据传输效率中没有高于或等于预设数据传输效率门限的预统计数据传输效率,那么就选择数据传输通道绑定组合中数据传输通道数量最少的组合进行待发送数据的传输。这样就可在数据传输效率和数据传输速率之间进行平衡,实现待发送数据的最优传输。
在一实施例中,若在每个统计周期发送待发送数据之后,统计待发送数据在PON中多个数据传输通道上传输后的数据传输效率,那么若数据传输效率高于或等于预设数据传输效率门限,则确定选择数据传输通道数量最多的数据传输通道绑定组合传输待发送数据,或者若数据传输效率低于预设数据传输效率门限,则确定选择数据传输通道数量最少的数据传输通道绑定组合传输待发送数据。也就是在已经在一个统计周期传输了待发送数据之后,统计实际的数据传输效率,然后判断数据传输效率是否高于或等于预设数据传输效率门限,若是则可以选择数据传输通道数量最多的数据传输通道绑定组合传输待发送数据,若数据传输效率低于预设数据传输效率门限,那么选择数据传输通道数量最少的数据传输通道绑定组合传输待发送数据。这样就可在数据传输效率和数据传输速率之间进行平衡,实现待发送数据的最优传输。
在一实施例中,若在每个统计周期发送待发送数据之后,统计待发送数据在PON中多个数据传输通道上传输后的数据传输效率。那么若数据传输效率高于或等于预设数据传输效率门限,则增加传输待发送数据的数据传输通道绑定组合中的数据传输通道;或者若数据传输效率低于预设数据传输效率门限,则减少传输待发送数据的数据传输通道绑定组合中的数据传输通道。也就是在已经在一个统计周期传输了待发送数据之后,统计实际的数据传输效率,然后判断数据传输效率是否高于或等于预设数据传输效率门限,若是,则可以在下一个统计周期传输待发送数据时,增加传输待发送数据的数据传输通道绑定组合中的数据传输通道,若数据传输效率低于预设数据传输效率门限,那么在下一个统计周期传输待发送数据时,减少传输待发送数据的数据传输通道绑定组合中的数据传输通道。这样就可动态地调整待发送数据的数据传输通道绑定组合,从而在数据传输效率和数据传输速率之间进行平衡,实现待发送数据的最优传输。
在一实施例中,若在统计周期开始前,未统计数据传输效率,则根据数据传输策略确定数据传输效率。其中,当数据传输策略为传输效率优先时确定数据传输效率低于预设数据传输效率门限,当数据传输策略为传输时延优先时确定数据传输效率高于预设数据传输效率门限。那么就可以根据数据传输策略, 确定传输待发送数据的数据传输通道绑定组合,从而在还未进行数据传输效率的统计时,根据预设的数据传输策略确定数据传输通道绑定组合。
步骤S1020,根据多通道传输方式在一个或多个数据传输通道的数据传输通道绑定组合上传输待发送数据。
在确定了待发送数据的多通道传输方式后,即可在多通道传输方式的一个或多个数据传输通道的数据传输通道绑定组合上传输待发送数据。由于确定的多通道传输方式的数据传输效率满足了预设条件,因此根据确定的多通道传输方式传输了待发送数据后,平衡数据传输效率和数据传输速率,满足用户的数据传输需求。
本实施例提供的PON多通道绑定传输方法,根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,其中,用于确定多通道传输方式的数据传输效率高于或等于预设数据传输效率门限,然后根据多通道传输方式在一个或多个数据传输通道的数据传输通道绑定组合上传输待发送数据,从而可以在进行PON的多数据传输通道组合绑定时,平衡数据传输效率和数据传输速率,满足用户的数据传输需求。
图3为一实施例提供的另一种PON多通道绑定传输方法的流程图,如图3所示,本实施例提供的方法包括如下步骤。
步骤S3010,将待发送数据分割为至少两个数据单元。
步骤S3020,在每个统计周期内,统计至少两个数据单元在PON中多个数据传输通道上传输时的数据传输效率。
步骤S3030,根据数据传输效率和预设数据传输效率门限,确定传输待发送数据所使用的数据传输通道绑定组合,其中,数据传输通道绑定组合的数据传输效率高于或等于预设数据传输效率门限时数据传输通道绑定组合中的数据传输通道数量最多,或者数据传输通道绑定组合的数据传输效率低于预设数据传输效率门限时数据传输通道绑定组合中的数据传输通道数量最少。
步骤S3040,将至少两个数据单元依次分配在数据传输通道绑定组合的多个数据传输通道上发送,其中每个数据单元按照时间顺序依次分配在发送时间最早的数据传输通道上。
图1所示实施例的PON多通道绑定传输方法中,提出了根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,然后根据多通道传输方式在一个或多个数据传输通道的数据传输通道绑定组合上传输待发送数据。而在确定了数据传输通道绑定组合后,还需要将待发送数据分配在确定的数据传输通道绑定组合中的多个数据传输通道中。
若待发送数据未分割,则无需确定待发送数据的分配方式,而若将待发送数据分割为至少两个数据单元后,至少两个数据单元需要根据一定的规则分配在数据传输通道绑定组合的多个数据传输通道中,这样才能使接收端在多个数据传输通道上接收到至少两个数据单元后,可以根据相同的规则将至少两个数据单元合并为待发送数据。在本实施例中,将至少两个数据单元依次分配在数据传输通道绑定组合的多个数据传输通道上发送,其中每个数据单元按照时间顺序依次分配在发送时间最早的数据传输通道上。若在多个数据传输通道上都存在最早发送数据,那么可以选择数据传输通道编号最小的通道(或者编号最大的)。那么对于数据接收端,就可以根据接收到各数据单元的时间顺序依次将各数据单元排列起来并进行合并。对于至少两个数据单元的分配还可以采用其他方式,至少能够唯一确定至少两个数据单元在多个数据通道上的分配即可。
如图4所示,图4为本实施例提供的PON多通道绑定方法进行数据单元分配的示意图。图4中以数据传输通道组合由3个数据传输通道为例,3个数据传输通道的波长分别为λ1、λ2、λ3。其中在λ1和λ2的传输通道上都包括未绑定的数据帧传输。在本实施例中,将待发送数据分割为0-18共19个数据单元。当确定待发送数据在这三个数据传输通道上传输时,首先在各传输通道上添加帧头(H),然后针对每个数据单元,依次选择在3个数据传输通道上发送时间最早的数据传输通道,如图4中所示,在λ3的传输通道上依次发送0-5共6个数据单元。对于编号为6的数据单元,发送时间最早的数据传输通道为λ2和λ3两个,那么将选择编号较小的λ2发送编号为6的数据单元。对于编号为7的数据单元,发送时间最早的数据传输通道为λ3,那么将在λ3发送编号为7的数据单元。对于编号为8-18的数据单元,根据相同方法依次在λ1-λ3上进行发送。
在一实施例中,根据数据传输效率和预设数据传输效率门限,确定传输待发送数据所使用的数据传输通道绑定组合之后,还包括在数据传输通道绑定组合中的各数据传输通道的数据帧头中添加数据通道绑定指示。
由于本申请实施例提供的PON多通道绑定传输方法中,将待发送数据分割为多个数据单元在多个数据传输通道中进行了传输,为了使接收端能够正确地在多个数据传输通道上接收数据单元,需要在帧头部分添加数据通道绑定指示。数据通道绑定指示用于表示传输待发送数据所使用的数据传输通道绑定组合由哪些数据传输通道组成。数据通道绑定指示可以使用数据传输通道的标识进行指示,或者数据通道绑定指示还可以是用多个比特分别表示多个数据传输通道上是否传输了数据单元。
图5为根据本申请实施例提供的PON多通道绑定传输方法传输的修改后的 XGEM帧的数据结构示意图,如图5所示,当确定XGEM帧在数据传输通道绑定组合的多个数据传输通道上传输时,需要在XGEM帧的帧头部分增加数据通道绑定指示。在图2所示的XGEM帧的帧头的基础中,帧头部分包括18bit的可选域(Options),那么就可以将数据通道绑定指示放在Options中。例如PON节点发送待发送数据的数据传输通道共有4个,则可以在Options分出4bit承载数据通道绑定指示,而将剩余14bit作为新的可选域(New Options)。在分出的4bit中,每一bit分别对应一个数据传输通道上传输数据单元的情况,例如与数据传输通道对应的bit为1表示数据在该bit对应的数据传输通道上进行了传输,而与数据传输通道对应的bit为0表示数据在该bit对应的数据传输通道上未传输。那么数据接收端就可以通过解析这4个bit确定数据传输通道的绑定组合,从而正确地完成数据接收。
图6为一实施例提供的一种PON多通道绑定传输装置的结构示意图,如图6所示,本实施例提供的PON多通道绑定传输装置包括:确定单元61和传输单元62。
确定单元61,设置为根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,其中,用于确定多通道传输方式的数据传输效率高于或等于预设数据传输效率门限;传输单元62,设置为根据多通道传输方式在一个或多个数据传输通道的数据传输通道绑定组合上传输待发送数据。
本实施例提供的PON多通道绑定传输装置用于实现图1所示实施例的PON多通道绑定传输方法,本实施例提供的PON多通道绑定传输装置实现原理和技术效果类似,此处不再赘述。
图7为一实施例提供的一种PON节点的结构示意图,如图7所示,该PON节点包括处理器71、存储器72、发送器73和接收器74;PON节点中处理器71的数量可以是一个或多个,图7中以一个处理器71为例;PON节点中的处理器71和存储器72、发送器73和接收器74;可以通过总线或其他方式连接,图7中以通过总线连接为例。
存储器72作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请图1、图3实施例中的PON多通道绑定传输方法对应的程序指令/模块(例如,PON多通道绑定传输装置中的确定单元61、传输单元62)。处理器71通过运行存储在存储器72中的软件程序、指令以及模块,从而完成PON节点至少一种功能应用以及数据处理,即实现上述的PON多通道绑定传输方法。
存储器72可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据PON节点的 使用所创建的数据等。此外,存储器72可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
发送器73为能够在PON中进行数据传输的模块或器件组合,例如包括光信号发射模块。接收器74为能够在PON中接收数据的模块或器件组合,例如包括光信号接收模块。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种PON多通道绑定传输方法,该方法包括:根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,其中,用于确定多通道传输方式的数据传输效率高于或等于预设数据传输效率门限;根据所述多通道传输方式在一个或多个数据传输通道的数据传输通道绑定组合上传输所述待发送数据。
以上仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和***(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor, DSP)、专用集成电路(Application Specific Integrated Circuit,SAIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (12)

  1. 一种无源光网络PON多通道绑定传输方法,包括:
    根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式;
    根据所述多通道传输方式在包括至少一个数据传输通道的数据传输通道绑定组合上传输所述待发送数据。
  2. 根据权利要求1所述的方法,其中,所述数据传输效率基于统计周期进行统计。
  3. 根据权利要求2所述的方法,其中,所述统计周期包括预设时间长度或者预设数量的超帧。
  4. 根据权利要求1~3中任一项所述的方法,其中,用于确定所述多通道传输方式的数据传输效率高于或等于所述预设数据传输效率门限;或者,
    用于确定所述多通道传输方式的数据传输效率低于所述预设数据传输效率门限且所述多通道传输方式的数据传输通道绑定组合中包括的数据传输通道数量最少。
  5. 根据权利要求4所述的方法,其中,所述根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,包括:
    在每个统计周期发送所述待发送数据之前,预统计所述待发送数据分配在PON中多个不同的数据传输通道绑定组合上传输的情况下的多个预统计数据传输效率;
    选择预统计数据传输效率高于或等于所述预设数据传输效率门限且数据传输通道数量最多的数据传输通道绑定组合传输所述待发送数据,或者选择预统计数据传输效率低于所述预设数据传输效率门限且数据传输通道数量最少的数据传输通道绑定组合传输所述待发送数据。
  6. 根据权利要求4所述的方法,其中,所述根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式,包括:
    在每个统计周期发送所述待发送数据之后,统计所述待发送数据在PON中多个数据传输通道上传输后的数据传输效率;
    在所述数据传输效率高于或等于所述预设数据传输效率门限的情况下,选择数据传输通道数量最多的数据传输通道绑定组合传输所述待发送数据,或者在所述数据传输效率低于所述预设数据传输效率门限的情况下,选择数据传输通道数量最少的数据传输通道绑定组合传输所述待发送数据。
  7. 根据权利要求4所述的方法,其中,所述根据数据传输效率和预设数据传 输效率门限,确定待发送数据的多通道传输方式,包括:
    在每个统计周期发送所述待发送数据之后,统计所述待发送数据在PON中多个数据传输通道上传输后的数据传输效率;
    在所述数据传输效率高于或等于所述预设数据传输效率门限的情况下,增加传输所述待发送数据的数据传输通道绑定组合中的数据传输通道的数量;或者在所述数据传输效率低于所述预设数据传输效率门限的情况下,减少传输所述待发送数据的数据传输通道绑定组合中的数据传输通道的数量。
  8. 根据权利要求6或7所述的方法,其中,在所述根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式之前,还包括:
    在所述统计周期开始前,且未统计所述数据传输效率的情况下,根据数据传输策略确定所述数据传输效率,其中,在所述数据传输策略为传输效率优先的情况下,确定所述数据传输效率低于所述预设数据传输效率门限,在所述数据传输策略为传输时延优先的情况下,确定所述数据传输效率高于或等于所述预设数据传输效率门限。
  9. 根据权利要求1~7中任一项所述的方法,其中,所述根据所述多通道传输方式在包括至少一个数据传输通道的数据传输通道绑定组合上传输所述待发送数据包括:
    将所述待发送数据依次分配在所述数据传输通道绑定组合的多个数据传输通道上发送,其中,每个数据单元按照数据传输通道的发送时间由早到晚的顺序依次分配在各自的数据传输通道上。
  10. 根据权利要求9所述的方法,其中,在所述根据数据传输效率和预设数据传输效率门限,确定待发送数据的多通道传输方式之后,还包括:
    在所述数据传输通道绑定组合中的每个数据传输通道的数据帧头中添加数据通道绑定指示。
  11. 一种无源光网络PON节点,包括处理器和存储器,所述处理器用于运行储存在所述存储器里的程序指令以执行根据权利要求1~10中任意一项所述的PON多通道绑定传输方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1~10中任一项所述的无源光网络PON多通道绑定传输方法。
PCT/CN2020/126169 2019-12-31 2020-11-03 Pon多通道绑定传输方法、pon节点和存储介质 WO2021135625A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20908593.5A EP4087269A4 (en) 2019-12-31 2020-11-03 PON MULTI-CHANNEL HEAD TRANSMISSION METHOD, PON NODE AND STORAGE MEDIUM
US17/789,754 US12003901B2 (en) 2019-12-31 2020-11-03 PON multi-channel binding transmission method, PON node and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911424432.4 2019-12-31
CN201911424432.4A CN111601186A (zh) 2019-12-31 2019-12-31 Pon多通道动态绑定传输方法、pon节点和存储介

Publications (1)

Publication Number Publication Date
WO2021135625A1 true WO2021135625A1 (zh) 2021-07-08

Family

ID=72184866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126169 WO2021135625A1 (zh) 2019-12-31 2020-11-03 Pon多通道绑定传输方法、pon节点和存储介质

Country Status (4)

Country Link
US (1) US12003901B2 (zh)
EP (1) EP4087269A4 (zh)
CN (1) CN111601186A (zh)
WO (1) WO2021135625A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601186A (zh) * 2019-12-31 2020-08-28 中兴通讯股份有限公司 Pon多通道动态绑定传输方法、pon节点和存储介
CN113098857B (zh) * 2021-03-29 2022-06-28 西安微电子技术研究所 一种多通道通信方法及***
CN113810502A (zh) * 2021-09-27 2021-12-17 远峰科技股份有限公司 一种通信数据传输方法、***、计算机设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534249A (zh) * 2009-04-15 2009-09-16 杭州华三通信技术有限公司 一种在捆绑链路上发送数据的方法及网络设备
CN104836681A (zh) * 2015-03-30 2015-08-12 华为技术有限公司 一种多链路绑定的数据分发方法及装置
US20170366329A1 (en) * 2016-06-21 2017-12-21 Marvell World Trade Ltd. Channel Bonding Design and Signaling in Wireless Communications
EP3537673A1 (en) * 2016-11-04 2019-09-11 ZTE Corporation Data sending and receiving method and device, onu, and olt
CN111601186A (zh) * 2019-12-31 2020-08-28 中兴通讯股份有限公司 Pon多通道动态绑定传输方法、pon节点和存储介

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8483563B2 (en) * 2009-12-16 2013-07-09 Futurewei Technologies, Inc. Header error control protected ten gigabit passive optical network downstream frame synchronization pattern
US8923131B2 (en) * 2010-02-16 2014-12-30 Broadcom Corporation Traffic management in a multi-channel system
US10177871B2 (en) 2015-07-10 2019-01-08 Futurewei Technologies, Inc. High data rate extension with bonding
US9924248B2 (en) 2015-12-01 2018-03-20 Adtran, Inc. Pon wavelength bonding for high-rate services

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534249A (zh) * 2009-04-15 2009-09-16 杭州华三通信技术有限公司 一种在捆绑链路上发送数据的方法及网络设备
CN104836681A (zh) * 2015-03-30 2015-08-12 华为技术有限公司 一种多链路绑定的数据分发方法及装置
US20170366329A1 (en) * 2016-06-21 2017-12-21 Marvell World Trade Ltd. Channel Bonding Design and Signaling in Wireless Communications
EP3537673A1 (en) * 2016-11-04 2019-09-11 ZTE Corporation Data sending and receiving method and device, onu, and olt
CN111601186A (zh) * 2019-12-31 2020-08-28 中兴通讯股份有限公司 Pon多通道动态绑定传输方法、pon节点和存储介

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4087269A4

Also Published As

Publication number Publication date
CN111601186A (zh) 2020-08-28
US20230048590A1 (en) 2023-02-16
US12003901B2 (en) 2024-06-04
EP4087269A4 (en) 2024-02-14
EP4087269A1 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2021135625A1 (zh) Pon多通道绑定传输方法、pon节点和存储介质
CN108075903B (zh) 用于建立灵活以太网群组的方法和设备
CN1883158B (zh) 用于传输上的改进型光纤信道超量预订的装置和方法
EP3073688B1 (en) Data transmission method, core forwarding device and end point forwarding device
US8310934B2 (en) Method and device for controlling information channel flow
JP7096364B2 (ja) Olt、onu、ponシステム、及びponシステムにおける情報伝送方法
WO2017097008A1 (zh) 一种多个光网络单元的接入方法、装置及存储介质
US11785113B2 (en) Client service transmission method and apparatus
CN105915558B (zh) 一种onu混插的无源光网络通信方法及***
CN108521343A (zh) 一种oam报文的处理方法及装置
KR102424047B1 (ko) 데이터 패킷 배포 방법, 송신자 장치, 수신자 장치 및 저장 매체
US10461874B2 (en) Optical line terminal efficiently utilizing multilane and passive optical network comprising the optical line terminal
US10798472B2 (en) Data transmission method, data receiving method, optical line terminal and optical network unit
EP3244676B1 (en) Resource indication method and device
US20110318009A1 (en) Pon system, optical network unit used therein, and transmission control method therefor
WO2018090296A1 (zh) 无源光网络的通信方法、装置和***
KR102309444B1 (ko) 데이터 캡슐화, 전송 방법, 장치 및 컴퓨터 저장 매체
TW201543849A (zh) 數位用戶迴路之流量控制
CN110830152B (zh) 接收码块流的方法、发送码块流的方法和通信装置
WO2023134508A1 (zh) 一种光传送网中的业务处理的方法、装置和***
US20230122525A1 (en) Data Frame Transmission Method and Related Device
CN117318812A (zh) 一种数据传输方法及装置
CN105933802B (zh) 一种onu混插的无源光网络通信方法及***
WO2019223006A1 (zh) 一种基于电力线信道的数据帧传输方法及装置
CN106797272B (zh) 一种光交换信号处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020908593

Country of ref document: EP

Effective date: 20220801