WO2021135029A1 - 基于oct设备的气道弹性测量方法、***、设备及介质 - Google Patents

基于oct设备的气道弹性测量方法、***、设备及介质 Download PDF

Info

Publication number
WO2021135029A1
WO2021135029A1 PCT/CN2020/089790 CN2020089790W WO2021135029A1 WO 2021135029 A1 WO2021135029 A1 WO 2021135029A1 CN 2020089790 W CN2020089790 W CN 2020089790W WO 2021135029 A1 WO2021135029 A1 WO 2021135029A1
Authority
WO
WIPO (PCT)
Prior art keywords
airway
area
tracheal
trachea
elasticity
Prior art date
Application number
PCT/CN2020/089790
Other languages
English (en)
French (fr)
Inventor
陈愉
宋李烟
李百灵
高峻
Original Assignee
广州永士达医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州永士达医疗科技有限责任公司 filed Critical 广州永士达医疗科技有限责任公司
Publication of WO2021135029A1 publication Critical patent/WO2021135029A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30061Lung

Definitions

  • the invention relates to the field of airway elasticity testing, in particular to an airway elasticity measurement method, system, equipment and medium based on OCT equipment.
  • the measurement of lung function is an important indicator to evaluate the health of the respiratory system.
  • the measurement of lung function mainly includes lung volume capacity, expiration, maximum inspiration, expiratory flow-volume loop, airway resistance, and lung elasticity measurement. These are macroscopic evaluation indicators, but these are the overall measurement of the airway function of the lungs, and the airway elasticity is not measured at many different locations inside the airway. Therefore, the traditional macroscopic overall measurement of the airway function of the lungs cannot accurately and objectively reflect the strength of the airway function.
  • one of the objectives of the present invention is to provide an airway elasticity measurement method based on OCT equipment, which can solve the problem that the traditional macroscopically measuring the airway function of the lung cannot accurately and objectively reflect the airway. The question of the strength of the function.
  • the second object of the present invention is to provide an airway elasticity measurement system based on OCT equipment, which can solve the problem that the traditional macroscopically measuring the airway function of the lungs cannot accurately and objectively reflect the strength of the airway function.
  • the third objective of the present invention is to provide an electronic device that can solve the problem that the traditional macroscopically measuring the airway function of the lungs cannot accurately and objectively reflect the strength of the airway function.
  • the fourth object of the present invention is to provide a computer-readable storage medium, which can solve the problem that the traditional macroscopic overall measurement of the airway function of the lung cannot accurately and objectively reflect the strength of the airway function.
  • the airway elasticity measurement method based on OCT equipment includes the following steps:
  • Tracheal image acquisition acquiring several sets of tracheal images collected by the OCT device at different positions of the trachea to be tested in the trachea to be tested, each of the tracheal image sets includes all tracheal images in a single preset breathing cycle, each of the tracheal images The set corresponds to the position of the unique trachea to be tested;
  • Calculate the airway area calculate the airway area corresponding to each tracheal image according to each trachea image, and obtain a number of airway area sets containing the airway area, and each airway area set has a unique waiting area. Corresponding to the position of the trachea;
  • Airway elasticity coefficient distribution each airway elasticity coefficient in the airway elasticity coefficient set is correlated to the corresponding position of the trachea to be measured, and an airway elasticity coefficient distribution map is obtained.
  • the method further includes:
  • Tracheal image acquisition control the OCT device to move to different positions of the trachea to be tested according to the preset moving distance, and control the OCT device to collect all the parts in a single preset breathing cycle at different positions of the trachea to be tested according to the preset acquisition time and the preset time interval Trachea images, a number of tracheal image sets corresponding to different positions of the trachea to be tested are obtained, and each tracheal image set contains a number of tracheal images.
  • the preset collection time is the same as the preset breathing cycle, and the preset breathing cycle includes an inspiratory phase and an expiratory phase.
  • the preset moving distance is the distance between two adjacent tracheal positions to be measured.
  • is the coefficient of airway elasticity
  • a max is the maximum airway area
  • a min is the minimum airway area
  • the airway elasticity measurement system based on OCT equipment is characterized in that it includes an OCT device, a catheter, a withdrawal device, an acquisition module, a calculation module, and an airway elasticity coefficient distribution module, and the OCT device is respectively connected to the catheter and the return device.
  • the pumping device is connected, the catheter is connected to the withdrawing device, an image acquisition device is installed on the catheter, and the acquisition module, the calculation module, and the airway elasticity coefficient distribution module are all located inside the OCT device ,
  • the acquisition module is connected to the OCT device, the acquisition module is connected to the calculation module, and the calculation module is connected to the airway elastic coefficient distribution module,
  • the OCT device controls the withdrawal device to drive the catheter to move to different positions of the trachea to be tested according to a preset movement distance, and the image acquisition device on the catheter collects different to-be-tested locations according to the preset collection time and the preset time interval. All tracheal images in a single preset breathing cycle at the position of the trachea, obtain several tracheal image sets corresponding to different tracheal positions to be tested, and each tracheal image set contains several tracheal images;
  • the acquisition module acquires several sets of tracheal images collected by the OCT device at different positions of the trachea to be tested in the trachea to be tested, and the calculation module calculates the airway area corresponding to each tracheal image according to each trachea image to obtain a number of A collection of airway area containing the airway area, each of the airway area collections corresponds to a unique tracheal position to be measured; the calculation module calculates the airway corresponding to each tracheal image according to each trachea image Area, a number of airway area sets containing the airway area are obtained, and each of the airway area sets corresponds to a unique tracheal position to be measured; the airway elasticity coefficient distribution module is used to calculate the airway elasticity coefficient Each airway elastic coefficient in the set is associated with the corresponding position of the trachea to be tested, and the airway elastic coefficient distribution map is obtained.
  • the withdrawal device is used to drive the catheter to rotate, and the withdrawal device is also used to drive the catheter to move axially back and forth in the trachea to be tested.
  • An electronic device including: a processor;
  • a memory and a program, wherein the program is stored in the memory and is configured to be executed by a processor, and the program includes an airway elasticity measurement method based on an OCT device of the present application.
  • a computer-readable storage medium has a computer program stored thereon, and the computer program is executed by a processor of the airway elasticity measurement method based on the OCT device of the present application.
  • the present invention has the beneficial effect that the airway elasticity measurement method based on the OCT device in the present application includes acquiring several sets of tracheal images collected by the OCT device at different positions of the trachea to be tested in the trachea to be tested.
  • a set of tracheal images includes all tracheal images in a single preset breathing cycle, and each set of tracheal images corresponds to a unique position of the trachea to be tested; according to each tracheal image, the airway area corresponding to each tracheal image is calculated, and a number of containing The airway area is a collection of airway area, and each airway area collection corresponds to a unique tracheal position to be measured; the largest airway area and the smallest airway area in each airway area collection are filtered out, based on the maximum airway area and The minimum airway area calculates the airway elastic coefficient corresponding to the airway area set, and obtains the airway elastic coefficient set containing multiple airway elastic coefficients; associates each airway elastic coefficient in the airway elastic coefficient set to Corresponding to the position of the trachea to be tested, a distribution map of the airway elastic coefficient is obtained.
  • the airway elastic coefficient set is finally calculated, and the airway elastic coefficient set is correlated with the corresponding tracheal position to be measured to obtain a more accurate airway elastic coefficient distribution map , which more comprehensively and accurately reflects the strength of the airway elasticity of the trachea.
  • Fig. 1 is a schematic flow chart of the method for measuring airway elasticity based on OCT equipment of the present invention
  • Fig. 2 is a schematic diagram of a tracheal image in a preset breathing cycle in the airway elasticity measurement method based on the OCT device of the present invention.
  • the OCT device-based airway elasticity measurement method of the present application includes the following steps:
  • Tracheal image acquisition control the OCT device to move to different positions of the trachea to be tested according to the preset moving distance, and control the OCT device to collect all the parts in a single preset breathing cycle at different positions of the trachea to be tested according to the preset acquisition time and the preset time interval Trachea images, a number of tracheal image sets corresponding to different positions of the trachea to be tested are obtained, and each tracheal image set contains a number of tracheal images.
  • the preset acquisition time is the same as the preset breathing cycle
  • the preset breathing cycle includes the inspiratory phase and the expiratory phase.
  • the preset moving distance is the distance between two adjacent tracheal positions to be tested.
  • the position of the trachea to be tested includes position 1, position 2, ..., position N, first move the OCT device to the end of the trachea to be tested (ie the deepest position), and then use the preset breathing cycle as The preset acquisition time at the position, assuming that the preset breathing cycle time is T, when the OCT device is at the end of the trachea to be tested, tracheal images are collected at preset time intervals to obtain a tracheal image, for example, when the preset time When the interval is 1/12*T, 12 tracheal images are measured at the position of the trachea to be tested, so that the corresponding tracheal images at the end of the trachea to be tested are set; then the OCT device is placed in the trachea to be tested according to the preset moving distance Do an axial forward and backward movement, that is, move from the end of the trachea to be tested to the head end of the trachea to be tested.
  • the number of positions to be measured for the trachea to be tested is determined by the length of the entire trachea to be tested.
  • the position of the trachea needs to be measured, it is measured in the above manner to obtain the corresponding set of tracheal images in the preset breathing cycle.
  • Figure 2 shows the relationship between the tracheal image collected at a certain tracheal position to be measured and the acquisition time .
  • the entire preset breathing cycle includes expiration and inspiration. Expiration is the expiration process in Figure 2, and the inspiration is the inspiration process in Figure 2. During the inhalation process, the trachea plays a role in muscle relaxation.
  • the trachea slowly opens, and air is inhaled from the outside until the tube wall reaches the maximum diastolic state.
  • the corresponding airway area is the largest airway area. After that, the expiration process is entered, and the corresponding airway will continue to narrow to the smallest Airway area, the change process of airway area in the entire preset breathing cycle is: first increase-then decrease.
  • Tracheal image acquisition acquiring several sets of tracheal images collected by the OCT device at different positions of the trachea to be tested.
  • Each tracheal image set includes all tracheal images in a single preset breathing cycle.
  • Each tracheal image set is associated with a unique The position of the trachea to be tested corresponds.
  • each tracheal image is the contour of the trachea. Measure the area of the contour in each image to obtain the airway area.
  • Several airway area collections containing airway area, and each airway area collection corresponds to a unique tracheal position to be measured.
  • the elastic coefficient of each airway is calculated according to the following formula (1):
  • is the coefficient of airway elasticity
  • a max is the maximum airway area
  • a min is the minimum airway area.
  • Airway elasticity coefficient distribution each airway elasticity coefficient in the airway elasticity coefficient set is associated with the corresponding position of the trachea to be measured, and the airway elasticity coefficient distribution map is obtained.
  • the airway elasticity coefficient depends on the ratio of the minimum airway area to the maximum area. The smaller the ratio is, the greater the difference between the minimum airway area and the maximum airway area, the better the airway flexibility.
  • the airway elasticity is better at this time; conversely, if the ratio is relatively large, it means that the minimum airway area and the maximum airway area are not much different, indicating that the size and area of the airway does not change much during the entire breathing process.
  • Road elasticity is poor.
  • the airway elasticity coefficient is characterized by a value of 0-1. The closer to 1 the better the elasticity, and the closer to 0, the worse the airway elasticity.
  • the invention also provides an airway elasticity measurement system based on OCT equipment, including OCT equipment, catheters, retraction equipment, acquisition modules, calculation modules, and airway elastic coefficient distribution modules.
  • OCT equipment is connected to the catheter and the retraction equipment respectively, and the catheter Connected to the withdrawal device, the catheter is equipped with an image acquisition device, the acquisition module, the calculation module and the airway elastic coefficient distribution module are all located inside the OCT device, the acquisition module is connected to the OCT device, the acquisition module is connected to the calculation module, and the calculation module is connected to the airway.
  • Channel elastic coefficient distribution module connection including OCT equipment, catheters, retraction equipment, acquisition modules, calculation modules, and airway elastic coefficient distribution modules.
  • the OCT device controls the withdrawal device according to the preset movement distance to drive the catheter to move to different positions of the trachea to be tested.
  • the image acquisition device on the catheter collects a single preset breath at different positions of the trachea to be tested according to the preset acquisition time and the preset time interval. For all tracheal images in the cycle, a number of tracheal image sets corresponding to different positions of the trachea to be tested are obtained, and each tracheal image set contains a number of tracheal images;
  • the acquisition module acquires several sets of tracheal images collected by the OCT device at different positions of the trachea to be tested.
  • the calculation module calculates the airway area corresponding to each tracheal image according to each trachea image, and obtains several airway areas containing airway areas.
  • each airway area collection corresponds to a unique tracheal position to be measured;
  • the calculation module calculates the airway area corresponding to each tracheal image according to each tracheal image, and obtains several airway area collections containing the airway area,
  • Each airway area set corresponds to a unique tracheal position to be measured;
  • the airway elastic coefficient distribution module is used to associate each airway elastic coefficient in the airway elastic coefficient set with the corresponding tracheal position to be measured to obtain air Distribution diagram of elastic coefficient of road.
  • the withdrawal device is used to drive the catheter to rotate, and the withdrawal device is also used to drive the catheter to move axially back and forth in the trachea to be tested.
  • the retraction equipment includes a rotating motor and a stepping motor. The rotating motor drives the tube to rotate, and the stepping motor drives the tube to move axially back and forth in the trachea to be tested.
  • This embodiment also provides an electronic device, including: a processor;
  • a memory and a program, wherein the program is stored in the memory and is configured to be executed by a processor, and the program includes an airway elasticity measurement method based on an OCT device of the present application.
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by the processor of the OCT device-based airway elasticity measurement method of the present application.
  • the airway elasticity measurement method based on the OCT device of the present invention includes acquiring several sets of tracheal images collected by the OCT device at different positions of the trachea to be tested in the trachea to be tested, and each tracheal image set includes all trachea in a single preset breathing cycle Image, each tracheal image collection corresponds to a unique tracheal position to be measured; according to each tracheal image, the airway area corresponding to each tracheal image is calculated, and several airway area sets containing the airway area are obtained, and each airway area The collection corresponds to the position of the only trachea to be tested; the largest airway area and the smallest airway area in each airway area collection are screened out, and the corresponding airway area of the airway area set is calculated according to the largest airway area and the smallest airway area Elastic coefficient, and obtain an airway elastic coefficient set containing multiple airway elastic coefficients; associate each airway elastic coefficient in the airway elastic coefficient set to the
  • the airway elastic coefficient set is finally calculated, and the airway elastic coefficient set is correlated with the corresponding tracheal position to be measured to obtain a more accurate airway elastic coefficient distribution map , More comprehensively and accurately reflect the strength of the airway elasticity of the trachea.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Geometry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明提供的基于OCT设备的气道弹性测量方法,包括获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,根据每个气管图像计算出每个气管图像对应的气道面积,得到若干含有气道面积的气道面积集合,筛选出每个气道面积集合中的最大气道面积和最小气道面积,根据最大气道面积和最小气道面积计算出该气道面积集合对应气道弹性系数,并得到含有多个气道弹性系数的气道弹性系数集合;将气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。本发明提供的基于OCT设备的气道弹性测量方法,得到更为精准的气道弹性系数分布图,更加全面、精准的反映出气管的气道弹性功能的强弱。

Description

基于OCT设备的气道弹性测量方法、***、设备及介质 技术领域
本发明涉及气道弹性测试领域,尤其涉及基于OCT设备的气道弹性测量方法、***、设备及介质。
背景技术
肺部的功能测量是评价呼吸***健康程度的重要指标,目前对于肺功能的测试主要采用的有肺容积容量、呼气、最大吸气、呼气流量-容积环、气道阻力、肺弹性测定等宏观评价指标,但这些都是从宏观整体上测量肺部的气道功能,且并没有在气道内部多处不同位置进行气道弹性的测量。因此传统的从宏观整体上测量肺部的气道功能并不能准确客观的反映出气道功能的强弱。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供基于OCT设备的气道弹性测量方法,其能解决传统的从宏观整体上测量肺部的气道功能并不能准确客观的反映出气道功能的强弱的问题。
本发明的目的之二在于提供基于OCT设备的气道弹性测量***,其能解决传统的从宏观整体上测量肺部的气道功能并不能准确客观的反映出气道功能的强弱的问题。
本发明的目的之三在于提供一种电子设备,其能解决传统的从宏观整体上测量肺部的气道功能并不能准确客观的反映出气道功能的强弱的问题。
本发明的目的之四在于提供一种计算机可读存储介质,其能解决传统的从宏观整体上测量肺部的气道功能并不能准确客观的反映出气道功能的强弱的问题。
本发明的目的之一采用以下技术方案实现:
基于OCT设备的气道弹性测量方法,包括以下步骤:
气管图像获取,获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,每个所述气管图像集合包括单个预设呼吸周期内所有的气管图像,每个所述气管图像集合与唯一的待测气管位置对应;
计算气道面积,根据每个所述气管图像计算出每个气管图像对应的气道面积,得到若干含有所述气道面积的气道面积集合,每个所述气道面积集合与唯一的待测气管位置对应;
计算气道弹性系数,筛选出每个气道面积集合中的最大气道面积和最小气道面积,根据所述最大气道面积和所述最小气道面积计算出该气道面积集合对应气道弹性系数,并得到含有多个气道弹性系数的气道弹性系数集合;
气道弹性系数分布,将所述气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。
进一步地,在所述气管图像获取之前还包括:
气管图像采集,根据预设移动距离控制OCT设备移动至不同待测气管位置处,根据预设采集时间以及预设时间间隔控制OCT设备采集不同待测气管位置处的单个预设呼吸周期内的所有气管图像,得到与不同待测气管位置对应的若干气管图像集合,每个气管图像集合含有若干气管图像。
进一步地,所述预设采集时间与所述预设呼吸周期相同,所述预设呼吸周期包括吸气相和呼气相。
进一步地,所述预设移动距离为两个相邻的待测气管位置之间的距离。
进一步地,所述根据所述最大气道面积和所述最小气道面积计算出该气道面积集合对应气道弹性系数具体如以下公式所示:
Figure PCTCN2020089790-appb-000001
其中,γ为气道弹性系数,A max为最大气道面积,A min为最小气道面积。
本发明的目的之二采用以下技术方案实现:
基于OCT设备的气道弹性测量***,其特征在于:包括OCT设备、导管、回抽设备、获取模块、计算模块以及气道弹性系数分布模块,所述OCT设备分别与所述导管和所述回抽设备连接,所述导管与所述回抽设备连接,所述导管上安装有图像采集设备,所述获取模块、所述计算模块以及所述气道弹性系数分布模块均位于所述OCT设备内部,所述获取模块与所述OCT设备连接,所述获取模块与所述计算模块连接,所述计算模块与所述气道弹性系数分布模块连接,
所述OCT设备根据预设移动距离控制所述回抽设备带动所述导管移动至不同待测气管位置处,所述导管上的图像采集设备根据预设采集时间以及预设时间间隔采集不同待测气管位置处的单个预设呼吸周期内的所有气管图像,得到与不同待测气管位置对应的若干气管图像集合,每个气管图像集合含有若干气管图像;
所述获取模块获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,所述计算模块根据每个所述气管图像计算出每个气管图像对应的气道面积,得到若干含有所述气道面积的气道面积集合,每个所述气道面积集合与唯一的待测气管位置对应;所述计算模块根据每个所述气管图像计算出每个气管图像对应的气道面积,得到若干含有所述气道面积的气道面积集合,每个所述气道面积集合与唯一的待测气管位置对应;所述气道弹性系数分布模块用于将所述气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气 管位置上,得到气道弹性系数分布图。
进一步地,所述回抽设备用于带动所述导管转动,所述回抽设备还用于带动所述导管在待测气管内做轴向的前后运动。
本发明的目的之三采用以下技术方案实现:
一种电子设备,包括:处理器;
存储器;以及程序,其中所述程序被存储在所述存储器中,并且被配置成由处理器执行,所述程序包括用于执行本申请的基于OCT设备的气道弹性测量方法。
本发明的目的之四采用以下技术方案实现:
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行本申请的基于OCT设备的气道弹性测量方法。
相比现有技术,本发明的有益效果在于:本申请中的基于OCT设备的气道弹性测量方法,包括获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,每个气管图像集合包括单个预设呼吸周期内所有的气管图像,每个气管图像集合与唯一的待测气管位置对应;根据每个气管图像计算出每个气管图像对应的气道面积,得到若干含有气道面积的气道面积集合,每个气道面积集合与唯一的待测气管位置对应;筛选出每个气道面积集合中的最大气道面积和最小气道面积,根据最大气道面积和最小气道面积计算出该气道面积集合对应气道弹性系数,并得到含有多个气道弹性系数的气道弹性系数集合;将气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。通过测量气管不同位置的预设呼吸周期内的气管图像,最后计算出气道弹性系数集合,将气道弹性系数集合与对应的待测气管位置相互关联,得到更为精准的气道弹性系数分布图,更加全面、精准的反映出气管 的气道弹性功能的强弱。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的基于OCT设备的气道弹性测量方法的流程示意图;
图2为本发明的基于OCT设备的气道弹性测量方法中的一个预设呼吸周期内的气管图像的示意图。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
如图1所示,本申请的基于OCT设备的气道弹性测量方法,包括以下步骤:
气管图像采集,根据预设移动距离控制OCT设备移动至不同待测气管位置处,根据预设采集时间以及预设时间间隔控制OCT设备采集不同待测气管位置处的单个预设呼吸周期内的所有气管图像,得到与不同待测气管位置对应的若干气管图像集合,每个气管图像集合含有若干气管图像。在本实施例中,预设采集时间与预设呼吸周期相同,预设呼吸周期包括吸气相和呼气相。预设移动距离为两个相邻的待测气管位置之间的距离。以下举例说明:例如待测气管位 置包括位置1、位置2、……、位置N,先将OCT设备移动至待测气管的末端(即最深端位置),然后将预设呼吸周期作为在每一个位置上的预设采集时间,假设预设呼吸周期时间为T,OCT设备在待测气管末端处时,每隔预设时间间隔就采集一次气管图像,得到一张气管图像,例如当预设时间间隔为1/12*T时,则在一个待测气管的位置就测量得到12张气管图像,从而待测气管末端对应的气管图像集合;然后根据预设移动距离将OCT设备在待测气管中做轴向的前后运动,即由待测气管的末端向待测气管的首端移动,待测气管需要测量的位置个数由整个待测气管的需要测量的长度决定,每移动至一个待测气管的需要测量的位置时,均按上述方式测量,得到对应的预设呼吸周期内的气管图像集合,如图2所示为某一待测气管位置处采集到的气管图像与采集时间的关系,整个预设呼吸周期包括呼气相和吸气相,呼气相为图2中的呼气过程,吸气相为图2中的吸气过程,吸气过程中,气管在肌肉舒张等作用机制下,气管慢慢打开,气体从外界吸入直到管壁达到最大的舒张状态,对应的气道面积为最大气道面积,在此之后进入呼气过程,对应的气道将不断收窄直至最小气道面积,整个预设呼吸周期中气道面积的变化过程为:先增大-后缩小。
气管图像获取,获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,每个气管图像集合包括单个预设呼吸周期内所有的气管图像,每个气管图像集合与唯一的待测气管位置对应。
计算气道面积,根据每个气管图像计算出每个气管图像对应的气道面积,每个气管图像即为气管的轮廓,测量每张图像中的轮廓的面积,即得到气道面积,从而得到若干含有气道面积的气道面积集合,每个气道面积集合与唯一的待测气管位置对应。
计算气道弹性系数,筛选出每个气道面积集合中的最大气道面积和最小气 道面积,根据最大气道面积和最小气道面积计算出该气道面积集合对应气道弹性系数,并得到含有多个气道弹性系数的气道弹性系数集合。在本实施例中,根据以下公式(1)计算每个气道弹性系数:
Figure PCTCN2020089790-appb-000002
其中,γ为气道弹性系数,A max为最大气道面积,A min为最小气道面积。以下举例说明:如上气管图像采集中的举例作为依据,当待测气管位置包括位置1、位置2、……、位置N时对应得到与之对应的气道弹性系数γ 1、γ 2、……、γ N
气道弹性系数分布,将气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。将上述的每个气道弹性系数与对应的待测气管位置相互关联,从而得到对应的气道弹性系数分布图,即以待测气管位置为横向坐标,一气道弹性系数为纵坐标的二维坐标图。在本实施例中,气道弹性系数的大小取决于最小气道面积和最大面积的比值,这个比值越小即最小气道面积和最大气道面积相差越大,说明气道的伸缩性越好,此时气道弹性较好;反之,如果这个比值比较大,则说明最小气道面积和最大气道面积相差不大,说明在整个呼吸过程中,气道大小面积变化不大,此时气道弹性较差。气道弹性系数由一个0-1的数值表征,越接近1表示弹性也好,越接近0,则表示气道弹性越差。
在发明还提供了基于OCT设备的气道弹性测量***,包括OCT设备、导管、回抽设备、获取模块、计算模块以及气道弹性系数分布模块,OCT设备分别与导管和回抽设备连接,导管与回抽设备连接,导管上安装有图像采集设备,获取 模块、计算模块以及气道弹性系数分布模块均位于OCT设备内部,获取模块与OCT设备连接,获取模块与计算模块连接,计算模块与气道弹性系数分布模块连接,
OCT设备根据预设移动距离控制回抽设备带动导管移动至不同待测气管位置处,导管上的图像采集设备根据预设采集时间以及预设时间间隔采集不同待测气管位置处的单个预设呼吸周期内的所有气管图像,得到与不同待测气管位置对应的若干气管图像集合,每个气管图像集合含有若干气管图像;
获取模块获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,计算模块根据每个气管图像计算出每个气管图像对应的气道面积,得到若干含有气道面积的气道面积集合,每个气道面积集合与唯一的待测气管位置对应;计算模块根据每个气管图像计算出每个气管图像对应的气道面积,得到若干含有气道面积的气道面积集合,每个气道面积集合与唯一的待测气管位置对应;气道弹性系数分布模块用于将气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。本实施例中,回抽设备用于带动导管转动,回抽设备还用于带动导管在待测气管内做轴向的前后运动。回抽设备包括旋转马达和步进马达,旋转马达带动导管转动,步进马达带动导管在待测气管内做轴向的前后运动。
本实施例中还提供一种电子设备,包括:处理器;
存储器;以及程序,其中程序被存储在存储器中,并且被配置成由处理器执行,程序包括用于执行本申请的基于OCT设备的气道弹性测量方法。
本实施例中还提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行本申请的基于OCT设备的气道弹性测量方法。
本发明的基于OCT设备的气道弹性测量方法,包括获取OCT设备在待测气 管中不同待测气管位置处采集的若干气管图像集合,每个气管图像集合包括单个预设呼吸周期内所有的气管图像,每个气管图像集合与唯一的待测气管位置对应;根据每个气管图像计算出每个气管图像对应的气道面积,得到若干含有气道面积的气道面积集合,每个气道面积集合与唯一的待测气管位置对应;筛选出每个气道面积集合中的最大气道面积和最小气道面积,根据最大气道面积和最小气道面积计算出该气道面积集合对应气道弹性系数,并得到含有多个气道弹性系数的气道弹性系数集合;将气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。通过测量气管不同位置的预设呼吸周期内的气管图像,最后计算出气道弹性系数集合,将气道弹性系数集合与对应的待测气管位置相互关联,得到更为精准的气道弹性系数分布图,更加全面、精准的反映出气管的气道弹性功能的强弱。
以上,仅为本发明的较佳实施例而已,并非对本发明作任何形式上的限制;凡本行业的普通技术人员均可按说明书附图所示和以上而顺畅地实施本发明;但是,凡熟悉本专业的技术人员在不脱离本发明技术方案范围内,利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对以上实施例所作的任何等同变化的更动、修饰与演变等,均仍属于本发明的技术方案的保护范围之内。

Claims (9)

  1. 基于OCT设备的气道弹性测量方法,其特征在于,包括以下步骤:
    气管图像获取,获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,每个所述气管图像集合包括单个预设呼吸周期内所有的气管图像,每个所述气管图像集合与唯一的待测气管位置对应;
    计算气道面积,根据每个所述气管图像计算出每个气管图像对应的气道面积,得到若干含有所述气道面积的气道面积集合,每个所述气道面积集合与唯一的待测气管位置对应;
    计算气道弹性系数,筛选出每个气道面积集合中的最大气道面积和最小气道面积,根据所述最大气道面积和所述最小气道面积计算出该气道面积集合对应气道弹性系数,并得到含有多个气道弹性系数的气道弹性系数集合;
    气道弹性系数分布,将所述气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。
  2. 如权利要求1所述的基于OCT设备的气道弹性测量方法,其特征在于:在所述气管图像获取之前还包括:
    气管图像采集,根据预设移动距离控制OCT设备移动至不同待测气管位置处,根据预设采集时间以及预设时间间隔控制OCT设备采集不同待测气管位置处的单个预设呼吸周期内的所有气管图像,得到与不同待测气管位置对应的若干气管图像集合,每个气管图像集合含有若干气管图像。
  3. 如权利要求2所述的基于OCT设备的气道弹性测量方法,其特征在于:所述预设采集时间与所述预设呼吸周期相同,所述预设呼吸周期包括吸气相和呼气相。
  4. 如权利要求2所述的基于OCT设备的气道弹性测量方法,其特征在于: 所述预设移动距离为两个相邻的待测气管位置之间的距离。
  5. 如权利要求1所述的基于OCT设备的气道弹性测量方法,其特征在于:所述根据所述最大气道面积和所述最小气道面积计算出该气道面积集合对应气道弹性系数具体如以下公式所示:
    Figure PCTCN2020089790-appb-100001
    其中,γ为气道弹性系数,A max为最大气道面积,A min为最小气道面积。
  6. 基于OCT设备的气道弹性测量***,其特征在于:包括OCT设备、导管、回抽设备、获取模块、计算模块以及气道弹性系数分布模块,所述OCT设备分别与所述导管和所述回抽设备连接,所述导管与所述回抽设备连接,所述导管上安装有图像采集设备,所述获取模块、所述计算模块以及所述气道弹性系数分布模块均位于所述OCT设备内部,所述获取模块与所述OCT设备连接,所述获取模块与所述计算模块连接,所述计算模块与所述气道弹性系数分布模块连接,
    所述OCT设备根据预设移动距离控制所述回抽设备带动所述导管移动至不同待测气管位置处,所述导管上的图像采集设备根据预设采集时间以及预设时间间隔采集不同待测气管位置处的单个预设呼吸周期内的所有气管图像,得到与不同待测气管位置对应的若干气管图像集合,每个气管图像集合含有若干气管图像;
    所述获取模块获取OCT设备在待测气管中不同待测气管位置处采集的若干气管图像集合,所述计算模块根据每个所述气管图像计算出每个气管图像对应的气道面积,得到若干含有所述气道面积的气道面积集合,每个所述气道面积 集合与唯一的待测气管位置对应;所述计算模块根据每个所述气管图像计算出每个气管图像对应的气道面积,得到若干含有所述气道面积的气道面积集合,每个所述气道面积集合与唯一的待测气管位置对应;所述气道弹性系数分布模块用于将所述气道弹性系数集合中的每个气道弹性系数均关联到对应的待测气管位置上,得到气道弹性系数分布图。
  7. 如权利要求6所述的基于OCT设备的气道弹性测量***,其特征在于:所述回抽设备用于带动所述导管转动,所述回抽设备还用于带动所述导管在待测气管内做轴向的前后运动。
  8. 一种电子设备,其特征在于包括:处理器;
    存储器;以及程序,其中所述程序被存储在所述存储器中,并且被配置成由处理器执行,所述程序包括用于执行权利要求1-5任意一项所述的方法。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述计算机程序被处理器执行如权利要求1-5任意一项所述的方法。
PCT/CN2020/089790 2019-12-31 2020-05-12 基于oct设备的气道弹性测量方法、***、设备及介质 WO2021135029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911422171.2 2019-12-31
CN201911422171.2A CN111161344B (zh) 2019-12-31 2019-12-31 基于oct设备的气道弹性测量方法、***、设备及介质

Publications (1)

Publication Number Publication Date
WO2021135029A1 true WO2021135029A1 (zh) 2021-07-08

Family

ID=70560653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089790 WO2021135029A1 (zh) 2019-12-31 2020-05-12 基于oct设备的气道弹性测量方法、***、设备及介质

Country Status (2)

Country Link
CN (1) CN111161344B (zh)
WO (1) WO2021135029A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502302A (zh) * 2002-11-27 2004-06-09 通用电气公司 用于气管测量的方法和***
CN1981706A (zh) * 2005-09-16 2007-06-20 美国西门子医疗解决公司 可视化用于评估的气道的***和方法
US20140276016A1 (en) * 2013-03-14 2014-09-18 Volcano Corporation Flushing for imaging catheters
CN104504737A (zh) * 2015-01-08 2015-04-08 深圳大学 一种从肺部ct图像获得三维气管树的方法
CN108510478A (zh) * 2018-03-19 2018-09-07 青岛海信医疗设备股份有限公司 肺气道图像分割方法、终端、存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3292118A1 (en) * 2015-05-07 2018-03-14 Chiesi Farmaceutici S.p.A. Aminoester derivatives
CN106880339A (zh) * 2017-03-09 2017-06-23 广州永士达医疗科技有限责任公司 一种呼吸道oct***
CN207666579U (zh) * 2017-03-09 2018-07-31 广州永士达医疗科技有限责任公司 一种呼吸道oct***
CN109602383B (zh) * 2018-12-10 2020-04-14 吴修均 一种多功能智能支气管镜检查***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502302A (zh) * 2002-11-27 2004-06-09 通用电气公司 用于气管测量的方法和***
CN1981706A (zh) * 2005-09-16 2007-06-20 美国西门子医疗解决公司 可视化用于评估的气道的***和方法
US20140276016A1 (en) * 2013-03-14 2014-09-18 Volcano Corporation Flushing for imaging catheters
CN104504737A (zh) * 2015-01-08 2015-04-08 深圳大学 一种从肺部ct图像获得三维气管树的方法
CN108510478A (zh) * 2018-03-19 2018-09-07 青岛海信医疗设备股份有限公司 肺气道图像分割方法、终端、存储介质

Also Published As

Publication number Publication date
CN111161344B (zh) 2021-08-10
CN111161344A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
CN109803708B (zh) 呼吸设备和通气机设备
US6540689B1 (en) Methods for accurately, substantially noninvasively determining pulmonary capillary blood flow, cardiac output, and mixed venous carbon dioxide content
EP2120707B1 (en) Method and device for evaluation of spirographic and gas exchange data
RU2540149C2 (ru) Система и способ количественного определения растяжимости легких у субъекта, самостоятельно осуществляющего вентиляцию
JP6876057B2 (ja) パラメータの最適化による呼吸メカニクス及び患者努力の同時推定
Kuhlen et al. A new method for PO. 1 measurement using standard respiratory equipment
WO2011027242A1 (en) System and method for quantifying lung compliance in a self-ventilating subject
JP6665179B2 (ja) 被験者の健康状態を決定する方法及びデバイス
EP2633806A1 (en) Method, arrangement and computer program product for respiratory gas monitoring of ventilated patients
WO2016188343A1 (zh) 估算气阻和顺应性的方法和装置
SE513980C2 (sv) Sätt och anordning för bestämning av effektiv lungvolym
EP3568183A1 (en) System and method for adaptive scheduling of pause maneuvers used for estimation of compliance and/or resistance during mechanical ventilation
Sinha et al. Graphic analysis of pulmonary mechanics in neonates receiving assisted ventilation.
CN110974298A (zh) 一种利用超声ai技术捕捉膈肌运动辅助判断呼吸机脱机的方法
Fletcher et al. Passive respiratory mechanics
CN112754465B (zh) 一种压力控制机械通气下肺部准静态顺应性估测方法
CN109906054A (zh) 使用p0.1策略来估算呼吸肌压力和呼吸力学的***和方法
WO2021135029A1 (zh) 基于oct设备的气道弹性测量方法、***、设备及介质
CN112089933A (zh) 一种基于呼吸机动态测算呼吸力学参数的方法
Gerhardt et al. Measurement and monitoring of pulmonary function
RU122865U1 (ru) Прибор для оценки функционального состояния дыхательных мышц пациента
JP3264536B2 (ja) 換気・ガス交換機能の総合的評価および立体的表示方法ならびに装置
CN204228710U (zh) 一种不需要控制呼气流量的呼出气一氧化氮测量装置
US9226690B2 (en) Method for measuring dead lung space
US20240165353A1 (en) Systems and methods for ultrasound-based assessment of regional respiratory parameters to guide lung protective ventilation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908962

Country of ref document: EP

Kind code of ref document: A1