WO2021134760A1 - 一种传输模式切换方法、电子设备及存储介质 - Google Patents

一种传输模式切换方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2021134760A1
WO2021134760A1 PCT/CN2020/070142 CN2020070142W WO2021134760A1 WO 2021134760 A1 WO2021134760 A1 WO 2021134760A1 CN 2020070142 W CN2020070142 W CN 2020070142W WO 2021134760 A1 WO2021134760 A1 WO 2021134760A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
data
multicast
indication information
transmission
Prior art date
Application number
PCT/CN2020/070142
Other languages
English (en)
French (fr)
Inventor
***
卢前溪
杨皓睿
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080090821.2A priority Critical patent/CN114902790A/zh
Priority to PCT/CN2020/070142 priority patent/WO2021134760A1/zh
Priority to EP20909196.6A priority patent/EP4087363A4/en
Publication of WO2021134760A1 publication Critical patent/WO2021134760A1/zh
Priority to US17/853,420 priority patent/US20220329985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/40Connection management for selective distribution or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a transmission mode switching method, electronic equipment, and storage medium.
  • the data of the terminal equipment can be transmitted by unicast transmission or multicast transmission according to the decision of the network equipment; however, how to realize the switching of data from unicast transmission to multicast transmission, or data from multiple transmissions?
  • the switch from broadcast transmission to unicast transmission has not yet been clarified.
  • embodiments of the present application provide a transmission mode switching method, electronic device, and storage medium, which can switch data from unicast transmission to multicast transmission, or from multicast transmission to unicast transmission.
  • an embodiment of the present application provides a transmission mode switching method, including: a core network element sends first indication information to a user plane function (UPF) entity, where the first indication information is used to indicate The multicast data corresponding to the terminal device is sent to the shared channel;
  • UPF user plane function
  • the core network element sends second indication information to an access network (Radio Access Network, RAN) network element, where the second indication information is used to indicate multicast data.
  • RAN Radio Access Network
  • an embodiment of the present application provides a transmission mode switching method, including: a RAN network element receives second indication information sent by a core network element, where the second indication information is used to indicate multicast data.
  • an embodiment of the present application provides a transmission mode switching method, including: a RAN network element determines that the data transmission mode is switched to multicast transmission;
  • the RAN network element performs data scheduling according to the data sequence number of the terminal device.
  • an embodiment of the present application provides a transmission mode switching method, which includes: in a case where the core network element determines that the data transmission mode is switched to unicast transmission, the core network element establishes a unicast for each terminal device. Transmission channel.
  • an embodiment of the present application provides a core network network element, and the core network network element includes:
  • the first sending unit is configured to send first indication information to the UPF entity, where the first indication information is used to indicate that the multicast data corresponding to the terminal device is sent to the shared channel; and the second indication information is sent to the RAN network element.
  • the second indication information is used to indicate multicast data.
  • an embodiment of the present application provides an access network network element, and the access network network element includes:
  • the second receiving unit is configured to receive second indication information sent by a core network element, where the second indication information is used to indicate multicast data.
  • an embodiment of the present application provides an access network network element, and the access network network element includes:
  • the sixth processing unit is configured to determine that the data transmission mode is switched to multicast transmission; and perform data scheduling according to the data sequence number of the terminal device.
  • embodiments of the present application provide a core network network element, where the core network network element includes:
  • the seventh processing unit is configured to establish a unicast transmission channel of each terminal device when it is determined that the data transmission mode is switched to unicast transmission.
  • an embodiment of the present application provides a core network element, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the computer program when the computer program is running. The steps of the transmission mode switching method performed by the core network element.
  • an embodiment of the present application provides an access network network element, including a processor and a memory for storing a computer program that can run on the processor, wherein, when the processor is used to run the computer program, The steps of the transmission mode switching method executed by the above-mentioned access network element are executed.
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the method for switching the transmission mode executed by the core network element described above is implemented.
  • an embodiment of the present application provides a storage medium storing an executable program, and when the executable program is executed by a processor, the method for switching the transmission mode executed by the network element of the access network is implemented.
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the transmission mode switching method performed by the core network element .
  • an embodiment of the present application provides a chip, including: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the above-mentioned transmission mode switching performed by the access network element method.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the transmission mode switching method performed by the core network element.
  • an embodiment of the present application provides a computer program product, including computer program instructions that cause a computer to execute the above-mentioned transmission mode switching method executed by the network element of the access network.
  • an embodiment of the present application provides a computer program that enables a computer to execute the transmission mode switching method performed by the core network element described above.
  • an embodiment of the present application provides a computer program that enables a computer to execute the transmission mode switching method performed by the above-mentioned access network element.
  • the transmission mode switching method provided by the embodiment of the present application includes: a core network element sends first indication information to a user plane function entity, where the first indication information is used to instruct to send multicast data corresponding to a terminal device to a shared channel; The core network element sends second indication information to the access network element, where the second indication information is used to indicate multicast data. In this way, the switching of data from unicast transmission to multicast transmission and the switching of data from multicast transmission to unicast transmission are realized.
  • Figure 1 is a network architecture diagram of the application point-to-multipoint transmission mechanism
  • FIG. 2 is a schematic diagram of the structure of the communication system of this application.
  • FIG. 3 is a schematic diagram of an optional processing flow of a transmission mode switching method applied to a core network element provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of an optional processing flow of a transmission mode switching method applied to a network element of an access network according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of a processing flow of a transmission mode switching method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another optional processing flow of a transmission mode switching method applied to an access network element provided by an embodiment of the application;
  • FIG. 7 is a schematic diagram of data transmission according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of another processing flow of a transmission mode switching method provided by an embodiment of the application.
  • FIG. 9 is another optional processing procedure of the transmission mode switching method applied to a core network element provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of another processing flow of a transmission mode switching method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of an optional composition structure of a core network network element according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of an optional composition structure of an access network network element according to an embodiment of the application.
  • FIG. 13 is a schematic diagram of another optional composition structure of an access network network element according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of another optional composition structure of a core network network element according to an embodiment of the application.
  • 15 is a schematic diagram of the hardware composition structure of an electronic device according to an embodiment of the application.
  • a point-to-multipoint transmission mechanism is introduced.
  • the network architecture of the point-to-multipoint transmission mechanism is shown in Figure 1.
  • the network side uses point-to-multipoint transmission in the area of the multicast service to send downlink data; the terminal equipment in the area of the multicast service can use multicast
  • the channel receives data.
  • the 5G system also supports protocol data unit (Protocol Data Unit, PDU) connection service.
  • PDU connection service refers to the service of exchanging PDU data packets between terminal equipment and data network (Data Network, DN); PDU connection service initiates PDU through terminal equipment The establishment of the session (PDU Session) is realized. Establishing a PDU session means establishing a data transmission channel between the terminal equipment and the DN.
  • Each single network slice selection assistance information (Single Network Slice Selection Assistance Information, S-NSSAI) subscription information may include a default data network (Digital Data Network, DNN) and multiple DNNs.
  • DNN Digital Data Network
  • AMF Access and Mobility Management Function
  • the AMF entity will Reject the PDU connection request and carry the reason value "DNN is not supported".
  • SMF Session Management Function
  • Each PDU session supports one PDU session type, such as one of IPv4, IPv6, IPv4v6, Ethenet, and Unstructured.
  • the PDU session is established, modified, or released between the terminal device and the SMF entity through NAS SM signaling.
  • the network device can also trigger the establishment of a PDU session.
  • the process can be: 1) When the application server wants to establish a PDU session connection, it sends an establishment request message to the core network element; 2) After the core network element receives the establishment request message from the application server , Send the message that triggers the establishment of the PDU session to the terminal device; 3) After the terminal device receives the message that triggers the establishment of the PDU session, it sends the message that triggers the establishment of the PDU session to the corresponding application on the terminal device; 4) The application on the terminal device is based on The content of the trigger message determines when to initiate a specified PDU session connection. See section 5.2.6.1 of TS 23.502 for the specific process.
  • the terminal device When a terminal device sends a PDU Session Establishment Request message to a network device, the terminal device needs to provide a PDU Session ID; the PDU Session ID is assigned by the terminal device and is unique within the terminal device. In order to support 3GPP under different networks and handover to 3GPP access, the PDU Session ID will be stored in the same data management (Unified Data Management, UDM) entity.
  • UDM Unified Data Management
  • the terminal device establishes multiple PDU session connections connected to the same DN, or multiple PDU session connections connected to different DNs.
  • the terminal device can establish multiple PDU session connections connected to the same DN, and connect to the DN through different UPFs.
  • the SMF corresponding to each PDU session can be different; the service SMF information of each PDU session will be registered in the UDM.
  • a PDU session is established for the same service. In this session, both the unicast data transmission of the service and the multicast data transmission of the data can be supported.
  • the data interface N3 interface between the core network and the access network (Radio Access Network, RAN)
  • the access network Radio Access Network, RAN
  • the specific N3 channel of the terminal device and the unicast data and multicast data for this terminal device are in this specific Transmission in the channel;
  • a shared transmission channel can also be used, and the shared transmission channel is shared by multiple terminals for data transmission, and multiple terminals can belong to the same group.
  • the network device can decide whether to use unicast transmission or multicast transmission, and the network device can also decide to switch the data transmission mode from unicast transmission to multicast transmission, or switch from multicast transmission to unicast transmission.
  • the embodiment of the application provides a transmission mode switching method.
  • the transmission mode switching method of the embodiment of the application can be applied to various communication systems, such as the global system of mobile communication (GSM) system, and code division multiple access (GSM) system.
  • code division multiple access (CDMA) system wideband code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE Frequency division duplex (FDD) system, LTE time division duplex (TDD) system, advanced long term evolution (LTE-A) system, new radio (NR) System, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed frequency band, NR (NR-based access to unlicensed spectrum, NR-U) system on unlicensed frequency band, Universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, wireless local area networks (WLAN), wireless fidelity (WiFi) , Next-generation communication
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the network equipment involved in the embodiments of this application may be a common base station (such as a NodeB or eNB or gNB), a new radio controller (NR controller), a centralized network element (centralized unit), a new radio base station, Remote radio module, micro base station, relay, distributed unit, reception point (transmission reception point, TRP), transmission point (transmission point, TP) or any other equipment.
  • a common base station such as a NodeB or eNB or gNB
  • NR controller new radio controller
  • a centralized network element centralized unit
  • a new radio base station Remote radio module
  • micro base station relay
  • distributed unit reception point (transmission reception point, TRP), transmission point (transmission point, TP) or any other equipment.
  • reception point transmission reception point
  • TRP transmission reception point
  • TP transmission point
  • the terminal device may be any terminal.
  • the terminal device may be a user equipment for machine-type communication. That is to say, the terminal equipment can also be called user equipment, mobile station (MS), mobile terminal (mobile terminal), terminal (terminal), etc., and the terminal equipment can be accessed through a radio access network. , RAN) communicates with one or more core networks.
  • the terminal device can be a mobile phone (or called a "cellular" phone), a computer with a mobile terminal, etc., for example, the terminal device can also be portable, pocket-sized, Hand-held, computer-built or vehicle-mounted mobile devices that exchange language and/or data with wireless access networks.
  • the embodiments of this application There is no specific limitation in the embodiments of this application.
  • network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through licensed spectrum, or through unlicensed spectrum, or through licensed spectrum and terminal equipment at the same time.
  • Unlicensed spectrum for communication Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be through the frequency spectrum below 7 gigahertz (gigahertz, GHz), or through the frequency spectrum above 7 GHz, and the frequency spectrum below 7 GHz can also be used at the same time. Communication is performed in the frequency spectrum above 7GHz.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 2.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to an access terminal, UE, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal devices 120 may perform direct terminal connection (Device to Device, D2D) communication.
  • D2D Direct terminal connection
  • the 5G system or 5G network may also be referred to as NR system or NR network.
  • An optional processing procedure of the transmission mode switching method applied to a core network element provided by the embodiment of the present invention, as shown in FIG. 3, includes the following steps:
  • Step S201 The core network element sends first indication information to the UPF entity, where the first indication information is used to indicate that the multicast data corresponding to the terminal device is sent to the shared channel.
  • the multicast data corresponding to different terminal devices in the same group may be transmitted in the shared channel.
  • the core network element receives the fourth indication information sent by the RAN network element, where the fourth indication information indicates that the data transmission mode is switched to multicast transmission, the AMF entity Or the SMF entity sends first indication information to the UPF entity, where the first indication information is used to instruct to send the multicast data corresponding to the terminal device to the shared channel.
  • the first indication information instructs the UPF to send the multicast data corresponding to the first terminal device and the second terminal device to the shared N3 channel.
  • the core network element determines that the data transmission mode is switched to multicast transmission according to the number of the terminal devices, the SMF entity sends the first indication information to the UPF entity
  • the first indication information is used to indicate that the multicast data corresponding to the terminal device is sent to the shared channel.
  • the first indication information instructs the UPF to send the multicast data corresponding to the first terminal device and the second terminal device to the shared N3 channel.
  • Step S202 The core network element sends second indication information to the access network RAN network element, where the second indication information is used to indicate multicast data.
  • the core network element receives the fourth indication information sent by the RAN network element, where the fourth indication information indicates that the data transmission mode is switched to multicast transmission, the AMF entity Or the SMF entity sends the second indication information to the RAN network element.
  • the core network element (such as the AMF entity or the SMF entity) determines that the data transmission mode is switched to multicast transmission according to the number of the terminal devices, the SMF entity sends a second indication to the RAN network element information.
  • the core network element can establish a shared N3 channel between the RAN network element and the UPF entity before performing steps S201 and S202. If the core network element has not established a shared N3 channel between the RAN network element and the UPF entity, the SMF needs to establish a shared N3 channel between the RAN network element and the UPF entity.
  • the method may further include:
  • Step S200 The core network element sends third indication information to the RAN network element, where the third indication information is used to indicate that the terminal device supports multicast transmission.
  • the third indication information is carried in the N2 message; that is, the core network element indicates to the RAN network element through the N2 message that the first terminal device and the second terminal device support multicast transmission.
  • the first terminal device and the second terminal device supporting multicast transmission can also be understood as the first terminal device and the second terminal device in a multicast transmission group.
  • the third indication information is also used to indicate data stream information and/or quality of service (Quality of Service) that the terminal device can perform multicast transmission. of Service, QoS) flow information.
  • the third indication information is also used to indicate data flow information and/or QoS flow information carrying the same multicast data.
  • the shared channel is only used to transmit multicast data, and cannot be used to transmit unicast data.
  • the unicast data of the first terminal device is transmitted on the N3 channel corresponding to the first terminal device; the multicast data of the first terminal device is shared on the N3 channel ⁇ Transfer.
  • An optional processing procedure of the transmission mode switching method applied to RAN network elements provided by the embodiment of the present invention, as shown in FIG. 4, includes:
  • Step S301 The RAN network element receives second indication information sent by the core network element, where the second indication information is used to indicate multicast data.
  • the second indication information is used to indicate multicast data, and it can be understood that the second indication information is used to indicate which data of the RAN network element is multicast data.
  • the RAN network element receives the second indication information sent by the core network element (AMF entity or SMF entity); in this scenario, it is the RAN network element to the core network element (such as the AMF entity or SMF entity) Send fourth indication information, where the fourth indication information indicates that the data transmission mode is switched to multicast transmission.
  • the core network element AMF entity or SMF entity
  • the RAN network element receives the second indication information sent by the core network element (SMF entity).
  • the core network element determines that the data transmission mode is switched to multicast transmission according to the number of terminal devices. Therefore, before step S301 is executed, the method may further include:
  • step S300 the RAN network element determines that the data transmission mode is switched to multicast transmission according to the unicast scheduling resource situation.
  • the method may further include:
  • Step S302 After sending the unicast data, the RAN network element sends the multicast transmission configuration information to the terminal device.
  • the RAN network element may send unicast data first, and then send multicast data. Before sending the multicast data, the RAN network element may send the multicast transmission configuration information to the terminal device.
  • the multicast transmission configuration information includes: Data Resource Bearer (DRB) information and/or Access Stratum (AS) layer information corresponding to the multicast transmission.
  • DRB Data Resource Bearer
  • AS Access Stratum
  • the method may further include:
  • Step S303 The RAN network element releases the DRB and the unicast channel corresponding to the unicast transmission of the terminal device.
  • the core network element includes: an SMF entity or an AMF entity.
  • an optional detailed processing procedure of the transmission mode switching method provided in the embodiment of the present application includes the following steps:
  • Step S401 The terminal device establishes or modifies a PDU session, and the PDU session may carry the corresponding unicast transmission and multicast transmission of the DNN.
  • the N3 channel between the UPF entity and the RAN network element can only be used to transmit unicast data, that is, the N3 channel between the UPF entity and the RAN network element can only be used for unicast transmission of data. Therefore, it is necessary to re-establish a channel for multicast transmission.
  • Step S402 In the process of establishing or modifying the PDU session, the core network element indicates to the RAN network element through the N2 message that the first terminal device and the second terminal device can perform multicast transmission.
  • that the first terminal device and the second terminal device can perform multicast transmission means that the first terminal device and the second terminal device are in the same transmission group.
  • the core network element may also indicate to the RAN network element through an N2 message the data stream information and/or that can be multicast in the PDU session between the first terminal device and the second terminal device. Or QoS information; the core network element may also indicate to the RAN network element the data flow information and/or QoS flow information that carries the same multicast data through the N2 message.
  • a shared N3 channel for multicast transmission can be established between the UFP entity and the RAN network element at the same time, and the shared N3 channel is used for the first terminal device and the second terminal device to perform multiplexing. Broadcast transmission.
  • Step S403 The network device decides to switch the data transmission mode of the first terminal device and the second terminal device to the multicast mode.
  • the RAN network element decides to switch the data transmission mode of the first terminal device and the second terminal device according to the unicast scheduling resource situation of the first terminal device and the second terminal device To multicast mode.
  • the RAN network element then sends instruction information to the core network element (such as the AMF entity or the SMF entity) to indicate the need to switch to the multicast mode.
  • the SMF entity first establishes the shared N3 channel for multicast transmission; if the shared N3 channel for multicast transmission has been established in step S401, the AMF The entity or SMF entity instructs the corresponding UPF entity to schedule and send multicast data corresponding to the first terminal device and the second terminal device to the shared N3 channel; the AMF entity or SMF entity also instructs the RAN network element to switch data transmission to the shared N3 channel in. After receiving the instruction sent by the AMF entity or the SMF entity, the UPF sends the multicast data of the first terminal device and the second terminal device in the shared N3 channel to the RAN network element.
  • the RAN network element can configure the terminal device to perform multicast transmission after the buffered unicast transmission data is sent; for example, configure the terminal device to perform multicast transmission corresponding to DRB information and other AS layer information. After sending the unicast transmission data, the RAN network element can release the DRB and N3 channels corresponding to the unicast of the first terminal device and the second terminal device.
  • the core network element determines that the data transmission mode is switched to the multicast transmission according to the number of terminal devices in the multicast transmission group.
  • the SMF entity notifies the UPF entity to switch to the multicast mode, and the UPF entity sends the downlink data to the shared N3 channel.
  • the SMF entity can notify the RAN network element in advance to receive the data on the shared N3 channel.
  • the shared N3 channel for multicast transmission is not established in step S401, the SMF entity needs to first establish the shared N3 channel for multicast transmission.
  • Step S404 The SMF entity initiates a PDU session modification process to modify the PDU session of the first terminal device and the PDU session of the second terminal device into a multicast transmission session.
  • the embodiment of the application provides a method for switching the data transmission mode from unicast transmission to multicast transmission.
  • the RAN network element or the core network element determines that the data transmission mode is multicast transmission; and, The shared channel of multicast transmission is only used to transmit multicast data, and cannot be used to transmit unicast data.
  • Another optional processing procedure of the transmission mode switching method applied to the network element of the access network provided by the embodiment of the present invention, as shown in FIG. 6, includes the following steps:
  • step S501 the RAN network element determines that the data transmission mode is switched to multicast transmission.
  • the RAN network element determines that the data transmission mode is switched to multicast transmission according to a local policy.
  • the unicast data and multicast data corresponding to different terminal devices in the same group can all be transmitted in the shared channel.
  • Step S502 The RAN network element performs data scheduling according to the data sequence number of the terminal device.
  • the shared channel can transmit either multicast data or unicast data. Therefore, in some embodiments, RAN network elements can schedule unicast data and multicast data in the shared channel in ascending order of all data sequence numbers; RAN network elements can also schedule unicast data and multicast data in the shared channel in ascending order of unicast data sequence numbers. Broadcast data, and then schedule the multicast data in the shared channel in the ascending order of the sequence number of the multicast data.
  • the first terminal device has established a session connection, and the second terminal device joins the multicast transmission; the data channels that the UPF entity sends to the first terminal device and the second terminal device use the same data that can be used for multicast scheduling.
  • SN number The RAN network element performs multicast scheduling for data with the same SN number.
  • the method further includes:
  • Step S500 The RAN network element receives fifth indication information sent by the core network element, where the fifth indication information is used to indicate that the terminal device supports multicast transmission.
  • the fifth indication information is also used to indicate data flow information and/or QoS flow information that the terminal device can perform multicast transmission.
  • the fifth indication information is also used to indicate data flow information and/or QoS flow information carrying the same multicast data.
  • the method further includes:
  • Step S503 The RAN network element configures a multicast transmission resource for the terminal device, and the multicast transmission resource is used to transmit multicast data.
  • the detailed processing flow of another transmission mode switching method includes the following steps:
  • Step S601 The terminal device establishes or modifies a PDU session, and the PDU session may carry the corresponding unicast transmission and multicast transmission of the DNN.
  • the N3 channel between the UPF entity and the RAN network element can not only be used to transmit unicast data, but also can be used to transmit multicast data; that is, the N3 channel between the UPF entity and the RAN network element can not only Used for unicast transmission of data, and can be used for multicast transmission of data.
  • Step S602 During the establishment or modification of the PDU session, the core network element indicates to the RAN network element through the N2 message that the first terminal device and the second terminal device can perform multicast transmission.
  • that the first terminal device and the second terminal device can perform multicast transmission means that the first terminal device and the second terminal device are in the same transmission group.
  • the core network element may also indicate to the RAN network element through an N2 message the data stream information and/or that can be multicast in the PDU session between the first terminal device and the second terminal device. Or QoS information.
  • the core network network element may also indicate to the RAN network element the data flow information and/or QoS flow information that bears the same multicast data through the N2 message.
  • the UPF entity may add a data sequence number (SN) that can be used for multicast transmission in the downlink data, and the data SN of the multicast transmission is used for the RAN network element for multicast scheduling.
  • SN data sequence number
  • the UPF entity can perform multicast in the data channel sent to the first terminal device and the data channel sent to the second terminal device
  • the scheduled data uses the same SN number; the RAN network element can perform multicast scheduling for the data with the same SN.
  • Step S603 The RAN network element determines that the data transmission mode is multicast transmission according to the local policy.
  • the RAN network element configures the multicast transmission resources of the first terminal device and the second terminal device, and the multicast transmission resource is used for multicast data transmission.
  • Step S604 the RAN network element performs multicast scheduling.
  • the RAN network element in order to reduce the data loss during the data transmission mode switching process, after the RAN network element switches to multicast transmission, it can start from the data of the first terminal device and the data of the second terminal device with the smallest SN. Multicast scheduling. Taking the data shown in Figure 7 as an example, the SNs of the data of the first terminal device are 5, 6, 7, 8, 9, 10, and 11 respectively, and the SNs of the data of the second terminal device are 9, 10, 11, and 11 respectively. 12, 13, 14, and 15. In a data scheduling method, the RAN network elements are scheduled sequentially from the data with SN of 5. Since the minimum value of the SN of the second terminal device is 9, the second terminal device performs repeated detection after receiving the data before the SN is 9.
  • the RAN network element continues to unicast the first terminal device. When the data with SN numbers 5, 6, 7, and 8 in the first terminal device are all sent, the SN is then scheduled from the multicast Number 9 data.
  • the embodiment of the application provides a method for switching the data transmission mode from unicast transmission to multicast transmission.
  • the RAN network element can determine that the data transmission mode is multicast transmission; and, the sharing of multicast transmission
  • the channel is not only used to transmit multicast data, but can also be used to transmit unicast data.
  • Another optional processing procedure of the transmission mode switching method applied to the core network element provided by the embodiment of the present application, as shown in FIG. 9, includes the following steps:
  • step S801 when the core network element determines that the data transmission mode is switched to unicast transmission, the core network element establishes a unicast transmission channel for each terminal device.
  • the core network element determines that the data transmission mode is switched to unicast transmission according to the number of terminal devices in the multicast transmission group.
  • the core network element receives the sixth indication information sent by the RAN network element, where the sixth indication information is used to indicate that the data transmission mode is switched to unicast transmission;
  • the RAN network element determines that the data transmission mode is unicast transmission according to the resource usage of the multicast transmission or the feedback information of the terminal equipment in the multicast transmission group.
  • the sixth indication information includes: information of the multicast group of the terminal device; for example, the identifier of the multicast group where the terminal device is located.
  • the sixth indication information may also include the identification information of the terminal device.
  • establishing the unicast transmission channel of each terminal device by the core network element includes: the core network element (SMF entity) sends seventh indication information to the RAN network element, where the seventh indication information is used to indicate The RAN network element establishes the unicast transmission channel and allocates the downlink address of the unicast transmission channel; the core network element (SMF entity) sends eighth indication information to the UPF entity, and the eighth indication information is used to indicate the unicast transmission channel. The downstream address of the broadcast transmission channel.
  • the method further includes:
  • Step S802 The core network element initiates a PDU session modification process to switch the session of the terminal device to a unicast session.
  • the core network element is an SMF entity.
  • the detailed processing flow of another transmission mode switching method includes the following steps:
  • Step S901 The first terminal device and the second terminal device transmit data in a multicast transmission manner.
  • Step S902 The network side device decides to switch the data transmission mode from multicast transmission to unicast transmission.
  • the RAN network element determines that the data transmission mode is switched from multicast transmission to unicast transmission according to the current resource usage of multicast transmission, or the RAN network element determines that the data transmission mode is switched from multicast transmission to unicast transmission according to feedback information from the terminal device;
  • the element (such as the AMF entity or the SMF entity) sends instruction information to instruct the data transmission mode to switch to unicast mode, and the instruction information can carry the information of the multicast group where the first terminal device and the second terminal device are located; optionally, so
  • the indication information may also carry the identification information of the first terminal device and the identification information of the second terminal device.
  • the core network element (such as the SMF entity) initiates the N3 channel establishment process of the first terminal device and the N3 channel establishment process of the second terminal device. After the N3 channel of the first terminal device and the N3 channel of the second terminal device are established, the RAN network element starts to receive the data on the N3 channel of the first terminal device and the data on the N3 channel of the second terminal device respectively.
  • a core network element determines the data transmission mode to switch from multicast transmission to unicast transmission according to the number of terminal devices in the multicast group.
  • the core network element (such as the SMF entity) switches to the multicast mode through the UPF entity; the core network element (such as the SMF entity) initiates the N3 channel establishment process of the first terminal device and the N3 channel establishment process of the second terminal device.
  • the specific implementation process of the SMF entity initiating the N3 channel establishment process of the terminal device may be: the SMF entity informs the RAN network element to establish the N3 channel through the N2 information, and informs the RAN network element to allocate the downlink receiving address of the N3 channel; SMF The entity then informs the UPF entity of the downlink receiving address of the N3 channel through N4 signaling.
  • Step S903 The SMF entity initiates a PDU session modification process to modify the session of the first terminal device and the session of the second terminal device into a unicast transmission session.
  • the embodiment of the present application provides a method for switching the data transmission mode from multicast transmission to unicast transmission.
  • the RAN network element or the core network element may determine that the data transmission mode is unicast transmission.
  • an embodiment of the present application provides a core network element.
  • the composition structure of the core network element 1000 includes:
  • the first sending unit 1001 is configured to send first indication information to the UPF entity, where the first indication information is used to indicate that the multicast data corresponding to the terminal device is sent to the shared channel; and the second indication information is sent to the RAN network element, so The second indication information is used to indicate multicast data.
  • the first sending unit 1001 is further configured to send third indication information to the RAN network element, where the third indication information is used to indicate that the terminal device supports multicast transmission.
  • the third indication information is also used to indicate data flow information and/or QoS flow information that the terminal device can perform multicast transmission.
  • the third indication information is also used to indicate data flow information and/or QoS flow information carrying the same multicast data.
  • the core network element 1000 further includes: a first processing unit 1002 configured to establish a shared channel between the access network element and the UPF entity.
  • the core network element 1000 further includes: a first receiving unit 1003 configured to receive fourth indication information sent by the RAN network element, where the fourth indication information is used to indicate data transmission The mode is switched to multicast transmission.
  • the core network element 1000 further includes: a second processing unit 1004 configured to determine that the data transmission mode is switched to multicast transmission according to the number of the terminal devices.
  • the core network element 1000 further includes: a third processing unit 1005 configured to initiate a protocol data unit PDU session modification process, and switch the session of the terminal device to a multicast session.
  • a third processing unit 1005 configured to initiate a protocol data unit PDU session modification process, and switch the session of the terminal device to a multicast session.
  • the core network element 1000 includes: an SMF entity or an AMF entity.
  • the shared channel is only used to transmit multicast data.
  • an embodiment of the present application provides an access network network element 2000.
  • the composition structure of the access network network element 2000 includes:
  • the second receiving unit 2001 is configured to receive second indication information sent by a core network element, where the second indication information is used to indicate multicast data.
  • the access network element 2000 further includes:
  • the fourth processing unit 2002 is configured to determine that the data transmission mode is switched to multicast transmission according to the unicast scheduling resource situation.
  • the access network element 2000 further includes:
  • the second sending unit 2003 is configured to send multicast transmission configuration information to the terminal device after sending the unicast data.
  • the multicast transmission configuration information includes: DRB information and/or AS layer information corresponding to the multicast transmission.
  • the access network element 2000 further includes:
  • the fifth processing unit 2004 is configured to release the DRB and the unicast channel corresponding to the unicast transmission of the terminal device.
  • the core network element includes: an SMF entity or an AMF entity.
  • the shared channel is only used to transmit multicast data.
  • an embodiment of the present application provides another access network network element.
  • the composition structure of the access network network element 3000, as shown in FIG. 13, includes:
  • the sixth processing unit 3001 is configured to determine that the data transmission mode is switched to multicast transmission; and perform data scheduling according to the data sequence number of the terminal device.
  • the sixth processing unit 3001 is further configured to configure a multicast transmission resource for the terminal device, and the multicast transmission resource is used to transmit multicast data.
  • the sixth processing unit 3001 is further configured to first schedule unicast data in the shared channel in ascending order of the unicast data sequence number, and then schedule multiple data in the shared channel in ascending order of the multicast data sequence number. Broadcast data.
  • the multicast data has the same data sequence number.
  • the sixth processing unit 3001 is configured to determine that the data transmission mode is switched to multicast transmission according to a local policy.
  • the access network network element 3000 further includes:
  • the third receiving unit 3002 is configured to receive fifth indication information sent by a core network element, where the fifth indication information is used to indicate that the terminal device supports multicast transmission.
  • the fifth indication information is also used to indicate data flow information and/or QoS flow information that the terminal device can perform multicast transmission.
  • the fifth indication information is also used to indicate data flow information and/or QoS flow information carrying the same multicast data.
  • an embodiment of the present application provides another core network element.
  • the composition structure of the core network element 4000, as shown in FIG. 14, includes:
  • the seventh processing unit 4001 is configured to establish a unicast transmission channel of each terminal device when it is determined that the data transmission mode is switched to unicast transmission.
  • the seventh processing unit 4001 is further configured to determine that the data transmission mode is switched to unicast transmission according to the number of terminal devices in the multicast transmission group.
  • the core network element 4000 further includes:
  • the fourth receiving unit 4002 is configured to receive sixth indication information sent by a RAN network element, where the sixth indication information is used to indicate that the data transmission mode is switched to unicast transmission;
  • the data transmission mode is determined by the RAN network element according to the resource usage of the multicast transmission or the feedback information of the terminal equipment in the multicast transmission group.
  • the sixth indication information includes: information of a multicast group of the terminal device.
  • the sixth indication information further includes: identification information of the terminal device.
  • the seventh processing unit 4001 is configured to send seventh indication information to the RAN network element, where the seventh indication information is used to instruct the RAN network element to establish a unicast transmission channel and allocate a unicast transmission channel. Downlink address; sending eighth indication information to the UPF entity, where the eighth indication information is used to indicate the downlink address of the unicast transmission channel.
  • the seventh processing unit 4001 is further configured to initiate a PDU session modification process, and switch the session of the terminal device to a unicast session.
  • the core network element 4000 includes an SMF entity.
  • the embodiment of the present application also provides a core network element, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above core network when the computer program is running. Steps of the transmission mode switching method performed by the network element.
  • the embodiment of the present application also provides a core network element, including a processor and a memory for storing a computer program that can run on the processor, wherein the processor is used to execute the above core network when the computer program is running. Steps of the transmission mode switching method performed by the network element.
  • An embodiment of the present application also provides an access network element, including a processor and a memory for storing a computer program that can run on the processor, where the processor is used to execute the above-mentioned access when the computer program is running. Steps of the transmission mode switching method executed by the network element of the access network.
  • An embodiment of the present application also provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the transmission mode switching method performed by the core network element.
  • An embodiment of the present application also provides a chip, including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the above-mentioned transmission mode switching method executed by the access network element.
  • An embodiment of the present application also provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above-mentioned method for switching the transmission mode executed by the core network element is implemented.
  • the embodiment of the present application also provides a storage medium storing an executable program, and when the executable program is executed by a processor, the method for switching the transmission mode executed by the network element of the access network is implemented.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the above-mentioned transmission mode switching method executed by the core network element.
  • An embodiment of the present application also provides a computer program product, including computer program instructions, which cause a computer to execute the transmission mode switching method executed by the above-mentioned access network element.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the transmission mode switching method performed by the core network element.
  • An embodiment of the present application also provides a computer program that enables a computer to execute the transmission mode switching method performed by the above-mentioned access network element.
  • the electronic device 700 includes: at least one processor 701, a memory 702, and at least one network interface 704.
  • the various components in the electronic device 700 are coupled together through the bus system 705. It can be understood that the bus system 705 is used to implement connection and communication between these components.
  • the bus system 705 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clear description, various buses are marked as the bus system 705 in FIG. 15.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM (CD) -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the electronic device 700.
  • Examples of such data include: any computer program used to operate on the electronic device 700, such as the application program 7022.
  • the program for implementing the method of the embodiment of the present application may be included in the application 7022.
  • the method disclosed in the foregoing embodiment of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and so on.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the electronic device 700 may be used by one or more Application Specific Integrated Circuits (ASIC, Application Specific Integrated Circuit), DSP, Programmable Logic Device (PLD, Programmable Logic Device), and Complex Programmable Logic Device (CPLD). , Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components to implement the foregoing method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal processor
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA Complex Programmable Logic Device
  • controller MCU
  • MPU or other electronic components to implement the foregoing method.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种传输模式切换方法,包括:核心网网元向用户面功能实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道;所述核心网网元向接入网网元发送第二指示信息,所述第二指示信息用于指示多播数据。本申请还公开了另一种传输模式切换方法、设备及存储介质。

Description

一种传输模式切换方法、电子设备及存储介质 技术领域
本申请涉及无线通信技术领域,尤其涉及一种传输模式切换方法、电子设备及存储介质。
背景技术
相关技术中,终端设备(User Equipment,UE)的数据可以由网络设备决定采用单播传输或多播传输的方式进行传输;但是,如何实现数据从单播传输切换至多播传输、或者数据从多播传输切换至单播传输尚未被明确。
发明内容
为解决上述技术问题,本申请实施例提供一种传输模式切换方法、电子设备及存储介质,能够实现数据从单播传输切换至多播传输、或从多播传输切换至单播传输。
第一方面,本申请实施例提供一种传输模式切换方法,包括:核心网网元向用户面功能(User plane Function,UPF)实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道;
所述核心网网元向接入网(Radio Access Network,RAN)网元发送第二指示信息,所述第二指示信息用于指示多播数据。
第二方面,本申请实施例提供一种传输模式切换方法,包括:RAN网元接收核心网网元发送的第二指示信息,所述第二指示信息用于指示多播数据。
第三方面,本申请实施例提供一种传输模式切换方法,包括:RAN网元确定数据传输模式切换为多播传输;
所述RAN网元按照终端设备的数据序列号进行数据调度。
第四方面,本申请实施例提供一种传输模式切换方法,包括:核心网网元在确定数据传输模式切换至单播传输的情况下,所述核心网网元建立每个终端设备的单播传输通道。
第五方面,本申请实施例提供一种核心网网元,所述核心网网元包括:
第一发送单元,配置为向UPF实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道;向RAN网元发送第二指示信息,所述第二指示信息用于指示多播数据。
第六方面,本申请实施例提供一种接入网网元,所述接入网网元包括:
第二接收单元,配置为接收核心网网元发送的第二指示信息,所述第二指示信息用于指示多播数据。
第七方面,本申请实施例提供一种接入网网元,所述接入网网元包括:
第六处理单元,配置为确定数据传输模式切换为多播传输;按照终端设备的数据序列号进行数据调度。
第八方面,本申请实施例提供一种核心网网元,所述核心网网元包括:
第七处理单元,配置为在确定数据传输模式切换至单播传输的情况下,建立每个终端设备的单播传输通道。
第九方面,本申请实施例提供一种核心网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述核心网网元执行的传输模式切换方法的步骤。
第十方面,本申请实施例提供一种接入网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述接入网网元执行的传输模式切换方法的步骤。
第十一方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述核心网网元执行的传输模式切换方法。
第十二方面,本申请实施例提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述接入网网元执行的传输模式切换方法。
第十三方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述核心网网元执行的传输模式切换方法。
第十四方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述接入网网元执行的传输模式切换方法。
第十五方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述核心网网元执行的传输模式切换方法。
第十六方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述接入网网元执行的传输模式切换方法。
第十七方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述核心网网元执行的传输模式切换方法。
第十八方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行上述接入网网元执行的传输模式切换方法。
本申请实施例提供的传输模式切换方法,包括:核心网网元向用户面功能实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道;所述核心网网元向接入网网元发送第二指示信息,所述第二指示信息用于指示多播数据。如此,实现了数据从单播传输至多播传输的切换,以及数据从多播传输至单播传输的切换。
附图说明
图1为本申请点到多点的传输机制的网络架构图;
图2为本申请通信***的结构示意图;
图3为本申请实施例提供的应用于核心网网元的传输模式切换方法的一种可选处理流程示意图;
图4为本申请实施例提供的应用于接入网网元的传输模式切换方法一种可选处理流程示意图;
图5为本申请实施例提供的传输模式切换方法的一种处理流程示意图;
图6为本申请实施例提供的应用于接入网网元的传输模式切换方法另一种可选处理流程示意图;
图7为本申请实施例数据传输示意图;
图8为本申请实施例提供的传输模式切换方法的另一种处理流程示意图;
图9为本申请实施例提供的应用于核心网网元的传输模式切换方法的又一种可选处理流程;
图10为本申请实施例提供的传输模式切换方法的另一种处理流程示意图;
图11为本申请实施例核心网网元的一种可选组成结构示意图;
图12为本申请实施例接入网网元的一种可选组成结构示意图;
图13为本申请实施例接入网网元的另一种可选组成结构示意图;
图14为本申请实施例核心网网元的另一种可选组成结构示意图;
图15为本申请实施例电子设备的硬件组成结构示意图。
具体实施方式
为了能够更加详尽地了解本申请实施例的特点和技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
在对本申请实施例提供的传输模式切换方法进行详细说明之前,先对相关技术中的数据传输模式进行简要说明。
在5G***中,引入点到多点的传输机制。点到多点的传输机制的网络架构图1所示,网络侧在多播业务的区域内采用点到多点的传输方式发送下行数据;在多播业务的区域中的终端设备可以采用多播信道接收数据。
5G***还支持协议数据单元(Protocol Data Unit,PDU)连接业务,PDU连接业务是指终端设备与数据网络(Data Network,DN)之间交换PDU数据包的业务;PDU连接业务通过终端设备发起PDU会话(PDU Session)的建立来实现。建立一个PDU会话即是建立了一条终端设备与DN的数据传输通道。
每个单网络切片选择辅助信息(Single Network Slice Selection Assistance Information,S-NSSAI)的订阅信息可能会包含一个默认数据网络(Digital Data Network,DNN)和多个DNN。当终端设备发起PDU会话建立请求(PDU Session Establishment Request)时没有提供S-NSSAI的DNN时,若终端设备的订阅信息有默认DNN,则接入和移动管理功能(Access and Mobility Management Function,AMF)实体会为S-NSSAI选择默认DNN;若终端设备的订阅信息没有默认DNN,则AMF实体会为S-NSSAI选择本地配置的DNN。如果终端设备在PDU会为S-NSSAI消息里携带的DNN不被网络设备支持,并且AMF实体也没能通过查询NRF选择到合适的会话管理功能(Session Management Function,SMF)实体,则AMF实体将拒绝该PDU连接请求,并携带原因值“DNN is not supported”。
每个PDU会话支持一种PDU会话类型,如IPv4、IPv6、IPv4v6、Ethenet、Unstructured中的一种。PDU会话在终端设备和SMF实体之间通过NAS SM信令进行建立、修改、或释放。
网络设备也可以触发PDU会话的建立,过程可以为:1)应用服务器要建立PDU会话连接时,向核心网网元发送建立请求消息;2)核心网网元收到应用服务器的建立请求消息后,向终端设备发送触发PDU会话建立的消息;3)终端设备收到触发PDU会话建立的消息后,将触发PDU会话建立的消息发送至终端设备上对应的应用;4)终端设备上的应用根据触发消息的内容来决定何时发起指定的PDU会话连接。具体流程见TS 23.502章节5.2.6.1。
终端设备给网络设备发送PDU Session Establishment Request消息时,终端设备需要提供PDU Session ID;PDU Session ID由终端设备分配,且在终端设备内具有唯一性。为了支持不同网络下的3GPP和给3GPP接入的切换,PDU Session ID会被存储在同一数据管理(Unified Data Management,UDM)实体中。
不管是3GPP接入还是非3GPP接入,终端设备都建立多条连接到同一个DN的PDU会话连接,或者多条连接到不同DN的PDU会话连接。终端设备可以建立多条连接到 同一个DN的PDU会话连接,且通过不同的UPF连接到DN上。终端设备建立的多条PDU会话连接,每条PDU会话对应的SMF可以不同;每条PDU会话的服务SMF信息会登记在UDM中。在多播数据传输过程中,在终端设备建立PDU会话时,针对同一个业务会建立一个PDU会话,在此会话中既能够支持业务的单播数据传输,也能够支持数据的多播数据传输。
在核心网与接入网(Radio Access Network,RAN)之间的数据接口N3接口中,既可以采用终端设备特定的N3通道,针对此终端设备的单播数据和多播数据都在此特定的通道中传输;也可以采用共享的传输通道,共享的传输通道为多个终端数据传输共享,多个终端可以属于同一个组。
为了提高空口数据传输的效率,网络设备能够决定是否采用单播传输还是多播传输,网络设备也能够决定数据传输模式从单播传输切换至多播传输,或者从多播传输切换至单播传输。
本申请实施例提供一种传输模式切换方法,本申请实施例的传输模式切换方法可以应用于各种通信***,例如:全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)***、先进的长期演进(advanced long term evolution,LTE-A)***、新无线(new radio,NR)***、NR***的演进***、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
本申请实施例描述的***架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中涉及的网络设备,可以是普通的基站(如NodeB或eNB或者gNB)、新无线控制器(new radio controller,NR controller)、集中式网元(centralized unit)、新无线基站、射频拉远模块、微基站、中继(relay)、分布式网元(distributed unit)、接收点(transmission reception point,TRP)、传输点(transmission point,TP)或者任何其它设备。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请所有实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备。
在本申请实施例中,终端设备可以是任意的终端,比如,终端设备可以是机器类通信的用户设备。也就是说,该终端设备也可称之为用户设备、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是 移动电话(或称为“蜂窝”电话)、具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。本申请实施例中不做具体限定。
可选的,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
可选的,网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过非授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过7吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过7GHz以上的频谱进行通信,还可以同时使用7GHz以下的频谱和7GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信等,本申请实施例也可以应用于这些通信***。
示例性的,本申请实施例应用的通信***100如图2所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、UE、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop, WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G***或5G网络还可以称为NR***或NR网络。
本发明实施例提供的应用于核心网网元的传输模式切换方法的一种可选处理流程,如图3所示,包括以下步骤:
步骤S201,核心网网元向UPF实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道。
本申请实施例中,同一个组内的不同终端设备对应的多播数据,可以在共享通道内传输。
在一些实施例中,核心网网元(如AMF实体或SMF实体)接收RAN网元发送的第四指示信息,所述第四指示信息指示数据传输模式切换为多播传输的情况下,AMF实体或SMF实体向UPF实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道。如,所述第一指示信息指示UPF将第一终端设备和第二终端设备对应的多播数据发送至共享N3通道中。
在另一些实施例中,核心网网元(如AMF实体或SMF实体)根据所述终端设备的数量,确定数据传输模式切换为多播传输的情况下,SMF实体向UPF实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道。如,所述第一指示信息指示UPF将第一终端设备和第二终端设备对应的多播数据发送至共享N3通道中。
步骤S202,核心网网元向接入网RAN网元发送第二指示信息,所述第二指示信息用于指示多播数据。
在一些实施例中,核心网网元(如AMF实体或SMF实体)接收RAN网元发送的第四指示信息,所述第四指示信息指示数据传输模式切换为多播传输的情况下,AMF实体或SMF实体向RAN网元发送第二指示信息。
在另一些实施例中,核心网网元(如AMF实体或SMF实体)根据所述终端设备的数量,确定数据传输模式切换为多播传输的情况下,SMF实体向RAN网元发送第二指示信息。
本申请实施例中,若在执行步骤S201和S202之前,核心网网元可以建立RAN网元与UPF实体之间的共享N3通道。若核心网网元未建立RAN网元与UPF实体之间的共享N3通道,则SMF需要建立RAN网元与UPF实体之间的共享N3通道。
本申请实施例在执行步骤S201之前,所述方法还可以包括:
步骤S200,核心网网元向RAN网元发送第三指示信息,所述第三指示信息用于指示所述终端设备支持多播传输。
在一些实施例中,所述第三指示信息携带于N2消息中;即核心网网元通过N2消息向RAN网元指示第一终端设备和第二终端设备支持多播传输。第一终端设备和第二终端设备支持多播传输也可以理解为第一终端设备和第二终端设备在一多播传输组中。
在另一些实施例中,所述第三指示信息除了用于指示所述终端设备支持多播传输之外,还用于指示终端设备能够进行多播传输的数据流信息和/或服务质量(Quality of Service,QoS)流信息。所述第三指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
需要说明的是,本申请实施例中,共享通道仅用于传输多播数据,不能够用于传输单播数据。举例来说,第一终端设备包括多播数据和单播数据,则第一终端设备的单播 数据在第一终端设备对应的N3通道上传输;第一终端设备的多播数据在共享N3通道上传输。
本发明实施例提供的应用于RAN网元的传输模式切换方法一种可选处理流程,如图4所示,包括:
步骤S301,RAN网元接收核心网网元发送的第二指示信息,所述第二指示信息用于指示多播数据。
在一些实施例中,所述第二指示信息用于指示多播数据,可以理解为第二指示信息用于指示RAN网元哪些数据是多播数据。
在一些实施例中,RAN网元接收核心网网元(AMF实体或SMF实体)发送第二指示信息;在该场景下,是由RAN网元向核心网网元(如AMF实体或SMF实体)发送第四指示信息,所述第四指示信息指示数据传输模式切换为多播传输。
在另一些实施例中,RAN网元接收核心网网元(SMF实体)发送的第二指示信息。在该场景下,是由核心网网元(SMF实体)根据终端设备的数量,确定数据传输模式切换为多播传输。因此,在执行步骤S301之前,所述方法还可以包括:
步骤S300,RAN网元根据单播调度资源情况,确定数据传输模式切换为多播传输。
在一些实施例中,所述方法还可以包括:
步骤S302,RAN网元在发送完单播数据之后,向终端设备发送多播传输配置信息。
本申请实施例中,由于共享N3通道仅用于传输多播数据,不能够用于传输单播数据,因此RAN网元可以先发送单播数据,再发送多播数据。RAN网元在发送多播数据之前,可以向终端设备发送多播传输配置信息。
在一些实施例中,多播传输配置信息包括:多播传输对应的数据无线承载(Data Resource Bearer,DRB)信息和/或接入层(Access Stratum,AS)层信息。
在一些实施例中,所述方法还可以包括:
步骤S303,RAN网元释放终端设备单播传输对应的DRB和单播通道。
需要说明的是,本申请实施例中,所述核心网网元包括:SMF实体或AMF实体。
针对图3和图4所示的传输模式切换方法,本申请实施例提供的传输模式切换方法的一种可选详细处理流程,包括以下步骤:
步骤S401,终端设备建立或者修改PDU会话,所述PDU会话可以承载对应的DNN的单播传输和多播传输。
本申请实施例中,UPF实体和RAN网元之间的N3通道仅能够用于传输单播数据,即UPF实体和RAN网元之间的N3通道仅能够用于数据的单播传输。因此,需要再建立用于多播传输的通道。
步骤S402,在PDU会话建立或者修改的过程中,核心网网元通过N2消息向RAN网元指示第一终端设备和第二终端设备可以进行多播传输。
在一些实施例中,所述第一终端设备和所述第二终端设备可以进行多播传输是指,所述第一终端设备和所述第二终端设备在同一个传输组内。
在一些实施例中,所述核心网网元还可以通过N2消息向RAN网元指示所述第一终端设备和所述第二终端设备的PDU会话中能够进行多播传输的数据流信息和/或者QoS信息;所述核心网网元还可以通过N2消息向RAN网元指示承载相同的多播数据的数据流信息和/或QoS流信息。
在一些实施例中,UFP实体与RAN网元之间可以同时建立一条用于多播传输的共享N3通道,所述共享N3通道用于所述第一终端设备和所述第二终端设备进行多播传输。
步骤S403,网络设备决定将所述第一终端设备和所述第二终端设备的数据传输模 式切换到多播模式。
在一些实施例中,RAN网元根据所述第一终端设备和所述第二终端设备的单播调度资源情况,决定将所述第一终端设备和所述第二终端设备的数据传输模式切换到多播模式。RAN网元再向核心网网元(如AMF实体或SMF实体)发送指示信息,指示需要切换至多播模式。若在步骤S401中未建立用于多播传输的共享N3通道,SMF实体首先建立用于多播传输的共享N3通道;若在步骤S401中已经建立用于多播传输的共享N3通道,则AMF实体或SMF实体指示对应的UPF实体将第一终端设备和第二终端设备对应的多播数据调度发送中共享N3通道中;AMF实体或SMF实体还指示RAN网元将数据传输切换到共享N3通道中。UPF接收到AMF实体或SMF实体发送的指示后,将所述第一终端设备和所述第二终端设备的多播数据发在共享N3通道中发送到RAN网元。RAN网元可以将缓存的单播传输数据发送完成之后,再配置终端设备进行多播传输;如配置终端设备进行多播传输对应的DRB信息和其他AS层的信息等。RAN网元在发送完单播传输数据之后,可以释放第一终端设备和第二终端设备单播对应的DRB和N3通道。
在另一些实施例中,核心网网元(如AMF实体或SMF实体)根据多播传输组中的终端设备的数量,确定数据传输模式切换为多播传输。SMF实体通知UPF实体切换至多播模式,UPF实体将下行数据发送到共享N3通道。其中,SMF实体可以提前通知RAN网元接收共享N3通道上的数据。这里,若在步骤S401中未建立用于多播传输的共享N3通道,SMF实体需要先建立用于多播传输的共享N3通道。
步骤S404,SMF实体发起PDU会话修改过程,将所述第一终端设备的PDU会话和所述第二终端设备的PDU会话修改为多播传输会话。
本申请实施例提供了一种数据传输模式由单播传输切换为多播传输的实现方法,如图5所示,由RAN网元或核心网网元确定数据传输模式为多播传输;并且,多播传输的共享通道仅用于传输多播数据,不能够用于传输单播数据。
本发明实施例提供的应用于接入网网元的传输模式切换方法的另一种可选处理流程,如图6所示,包括以下步骤:
步骤S501,RAN网元确定数据传输模式切换为多播传输。
在一些实施例中,RAN网元根据本地策略确定数据传输模式切换为多播传输。
本申请实施例中,在多播传输时,同一个组内的不同终端设备对应的单播数据和多播数据,均可以在共享通道内传输。
步骤S502,RAN网元按照终端设备的数据序列号进行数据调度。
本申请实施例中,共享通道既可以传输多播数据,也可以传输单播数据。因此,在一些实施例中,RAN网元可以按照全部数据序号的升序在共享通道中调度单播数据和多播数据;RAN网元也可以先按照单播数据序号的升序在共享通道中调度单播数据,再按照多播数据序号的升序在所述共享通道中调度多播数据。
举例来说,第一终端设备已经建立会话连接,第二终端设备再加入多播传输;则UPF实体发送给第一终端设备和第二终端设备的数据通道中可以进行多播调度的数据使用相同的SN号。RAN网元针对相同SN号的数据进行多播调度。
在一些实施例中,所述方法还包括:
步骤S500,RAN网元接收核心网网元发送的第五指示信息,所述第五指示信息用于指示所述终端设备支持多播传输。
在一些实施例中,所述第五指示信息,还用于指示所述终端设备能够进行多播传输的数据流信息和/或QoS流信息。所述第五指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
在一些实施例中,所述方法还包括:
步骤S503,RAN网元为终端设备配置多播传输资源,所述多播传输资源用于传输多播数据。
针对图6所示的传输模式切换方法,本申请实施例提供的另一种传输模式切换方法的详细处理流程,包括以下步骤:
步骤S601,终端设备建立或者修改PDU会话,所述PDU会话可以承载对应的DNN的单播传输和多播传输。
本申请实施例中,UPF实体和RAN网元之间的N3通道不仅能够用于传输单播的数据,而且能够用于传输多播数据;即UPF实体和RAN网元之间的N3通道不仅能够用于数据的单播传输,而且能够用于数据的多播传输。
步骤S602,在PDU会话建立或者修改的过程中,核心网网元通过N2消息向RAN网元指示第一终端设备和第二终端设备可以进行多播传输。
在一些实施例中,所述第一终端设备和所述第二终端设备可以进行多播传输是指,所述第一终端设备和所述第二终端设备在同一个传输组内。
在一些实施例中,所述核心网网元还可以通过N2消息向RAN网元指示所述第一终端设备和所述第二终端设备的PDU会话中能够进行多播传输的数据流信息和/或QoS信息。所述核心网网元还可以通过N2消息向RAN网元指示承载相同的多播数据的数据流信息和/或QoS流信息。
本申请实施例中,UPF实体可以在下行数据中添加可用于多播传输的数据序列号(SN),多播传输的数据SN用于RAN网元进行多播调度。举例来说,第一终端设备已经建立会话连接,第二终端设备加入多播传输,则UPF实体在发送给第一终端设备的数据通道和发送给第二终端设备的数据通道中可以进行多播调度的数据使用相同的SN号;RAN网元针对相同SN好的数据可以进行多播调度。
步骤S603,RAN网元根据本地策略确定数据传输模式为多播传输。
在一些实施例中,RAN网元配置第一终端设备和第二终端设备的多播传输资源,所述多播传输资源用于进行多播数据传输。
步骤S604,RAN网元进行多播调度。
在一些实施例中,为了减少数据传输模式切换过程中的数据损失,RAN网元切换到多播传输之后,可以从第一终端设备的数据和第二终端设备的数据中SN最小的数据开始进行多播调度。以图7所示的数据为例,第一终端设备的数据的SN分别是5、6、7、8、9、10和11,第二终端设备的数据的SN分别是9、10、11、12、13、14和15。在一种数据调度方式中,RAN网元从SN为5的数据开始顺序调度,由于第二终端设备的SN最小值为9,因此第二终端设备接收到SN为9之前的数据便进行重复检测;在重复检测过程中,若第二终端设备检测到自身已经接收过与该SN相同的数据,则丢弃该数据。在另一种数据调度方式中,RAN网元继续单播调度第一终端设备,当第一终端设备中SN号为5、6、7和8的数据均发送完成之后,再从多播调度SN号为9的数据。
本申请实施例提供了一种数据传输模式由单播传输切换为多播传输的实现方法,如图8所示,可由RAN网元确定数据传输模式为多播传输;并且,多播传输的共享通道不仅用于传输多播数据,还能够用于传输单播数据。
本申请实施例提供的应用于核心网网元的传输模式切换方法的另一种可选处理流程,如图9所示,包括以下步骤:
步骤S801,核心网网元在确定数据传输模式切换至单播传输的情况下,所述核心网网元建立每个终端设备的单播传输通道。
在一些实施例中,核心网网元(如SMF实体或AMF实体)根据多播传输组中终端设备的数量,确定数据传输模式切换为单播传输。
在另一些实施例中,核心网网元(如SMF实体或AMF实体)接收RAN网元发送的第六指示信息,所述第六指示信息用于指示数据传输模式切换为单播传输;在该场景下,RAN网元根据多播传输的资源使用情况或多播传输组中终端设备的反馈信息确定数据传输模式为单播传输。其中,所述第六指示信息包括:终端设备的多播组的信息;如所述终端设备所在的多播组的标识。所述第六指示信息除包括终端设备的多播组的信息之外,还可以包括终端设备的标识信息。
在一些实施例中,核心网网元建立每个终端设备的单播传输通道包括:核心网网元如(SMF实体)向RAN网元发送第七指示信息,所述第七指示信息用于指示RAN网元建立单播传输通道和分配单播传输通道的下行地址;核心网网元如(SMF实体)向用UPF实体发送第八指示信息,所述第八指示信息系用于指示所述单播传输通道的下行地址。
在一些实施例中,所述方法还包括:
步骤S802,核心网网元发起PDU会话修改过程,将所述终端设备的会话切换为单播会话。
在一些实施例中,所述核心网网元为SMF实体。
针对图9所示的传输模式切换方法,本申请实施例提供的另一种传输模式切换方法的详细处理流程,包括以下步骤:
步骤S901,第一终端设备和第二终端设备通过多播传输的方式传输数据。
步骤S902,网络侧设备决定数据传输模式由多播传输切换为单播传输。
在一些实施例中,RAN网元根据当前多播传输的资源使用情况、或者RAN网元根据终端设备的反馈信息确定数据传输模式从多播传输切换到单播传输;RAN网元向核心网网元(如AMF实体或SMF实体)发送指示信息,指示数据传输模式切换至单播模式,指示信息中可携带第一终端设备和第二终端设备所在的多播组的信息;可选地,所述指示信息还可以携带第一终端设备的标识信息和第二终端设备的标识信息。核心网网元(如SMF实体)发起第一终端设备的N3通道建立过程以及第二终端设备的N3通道建立过程。当第一终端设备的N3通道和第二终端设备的N3通道建立完成之后,RAN网元开始分别接收第一终端设备的N3通道上的数据和第二终端设备的N3通道上的数据。
在另一些实施例中,核心网网元(如AMF实体或SMF实体)根据多播组中终端设备的数量确定数据传输模式从多播传输切换到单播传输。核心网网元(如SMF实体)通过UPF实体切换到多播模式;核心网网元(如SMF实体)发起第一终端设备的N3通道建立过程以及第二终端设备的N3通道建立过程。
本申请实施例中,SMF实体发起终端设备的N3通道建立过程的具体实施过程可以是:SMF实体通过N2信息通知RAN网元建立N3通道,并通知RAN网元分配N3通道的下行接收地址;SMF实体再通过N4信令通知UPF实体所述N3通道的下行接收地址。
步骤S903,SMF实体发起PDU会话修改过程,将第一终端设备的会话和第二终端设备的会话修改为单播传输会话。
本申请实施例提供了一种数据传输模式由多播传输切换为单播传输的实现方法,如图10所示,可由RAN网元或核心网网元确定数据传输模式为单播传输。
为实现上述传输模式切换方法,本申请实施例提供一种核心网网元,所述核心网网元1000的组成结构,如图11所示,包括:
第一发送单元1001,配置为向UPF实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道;向RAN网元发送第二指示信息,所述第二指示信息用于指示多播数据。
在一些实施例中,所述第一发送单元1001,还配置为向所述RAN网元发送第三指示信息,所述第三指示信息用于指示所述终端设备支持多播传输。
在一些实施例中,所述第三指示信息,还用于指示所述终端设备能够进行多播传输的数据流信息和/或QoS流信息。
在一些实施例中,所述第三指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
在一些实施例中,所述核心网网元1000还包括:第一处理单元1002,配置为建立所述接入网网元与所述UPF实体之间的共享通道。
在一些实施例中,其中,所述核心网网元1000还包括:第一接收单元1003,配置为接收所述RAN网元发送的第四指示信息,所述第四指示信息用于指示数据传输模式切换为多播传输。
在一些实施例中,所述核心网网元1000还包括:第二处理单元1004,配置为根据所述终端设备的数量,确定数据传输模式切换为多播传输。
在一些实施例中,所述核心网网元1000还包括:第三处理单元1005,配置为发起协议数据单元PDU会话修改过程,将所述终端设备的会话切换为多播会话。
在一些实施例中,所述核心网网元1000包括:SMF实体或AMF实体。
在一些实施例中,所述共享通道仅用于传输多播数据。
为实现上述传输模式切换方法,本申请实施例提供一种接入网网元2000,所述接入网网元2000的组成结构,如图12所示,包括:
第二接收单元2001,配置为接收核心网网元发送的第二指示信息,所述第二指示信息用于指示多播数据。
在一些实施例中,所述接入网网元2000还包括:
第四处理单元2002,配置为根据单播调度资源情况,确定数据传输模式切换为多播传输。
在一些实施例中,所述接入网网元2000还包括:
第二发送单元2003,配置为在发送完单播数据之后,向终端设备发送多播传输配置信息。
在一些实施例中,所述多播传输配置信息包括:多播传输对应的DRB信息和/或AS层信息。
在一些实施例中,所述接入网网元2000还包括:
第五处理单元2004,配置为释放终端设备单播传输对应的DRB和单播通道。
在一些实施例中,所述核心网网元包括:SMF实体或AMF实体。
在一些实施例中,所述共享通道仅用于传输多播数据。
为实现上述传输模式切换方法,本申请实施例提供另一种接入网网元,所述接入网网元3000的组成结构,如图13所示,包括:
第六处理单元3001,配置为确定数据传输模式切换为多播传输;按照终端设备的数据序列号进行数据调度。
在一些实施例中,所述第六处理单元3001,还配置为为所述终端设备配置多播传输资源,所述多播传输资源用于传输多播数据。
在一些实施例中,所述第六处理单元3001,还配置为先按照单播数据序号的升序在共享通道中调度单播数据,再按照多播数据序号的升序在所述共享通道中调度多播数 据。
在一些实施例中,所述多播数据具有相同的数据序号。
在一些实施例中,所述第六处理单元3001,配置为根据本地策略确定数据传输模式切换为多播传输。
在一些实施例中,所述接入网网元3000还包括:
第三接收单元3002,配置为接收核心网网元发送的第五指示信息,所述第五指示信息用于指示所述终端设备支持多播传输。
在一些实施例中,所述第五指示信息,还用于指示所述终端设备能够进行多播传输的数据流信息和/或QoS流信息。
在一些实施例中,所述第五指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
为实现上述传输模式切换方法,本申请实施例提供另一种核心网网元,所述核心网网元4000的组成结构,如图14所示,包括:
第七处理单元4001,配置为在确定数据传输模式切换至单播传输的情况下,建立每个终端设备的单播传输通道。
在一些实施例中,所述第七处理单元4001,还配置为根据多播传输组中终端设备的数量,确定数据传输模式切换为单播传输。
在一些实施例中,所述核心网网元4000还包括:
第四接收单元4002,配置为接收RAN网元发送的第六指示信息,所述第六指示信息用于指示数据传输模式切换为单播传输;
所述数据传输模式由所述RAN网元根据多播传输的资源使用情况或多播传输组中终端设备的反馈信息确定。
在一些实施例中,所述第六指示信息包括:终端设备的多播组的信息。
在一些实施例中,所述第六指示信息还包括:终端设备的标识信息。
在一些实施例中,所述第七处理单元4001,配置为向RAN网元发送第七指示信息,所述第七指示信息用于指示RAN网元建立单播传输通道和分配单播传输通道的下行地址;向UPF实体发送第八指示信息,所述第八指示信息系用于指示所述单播传输通道的下行地址。
在一些实施例中,所述第七处理单元4001,还配置为发起PDU会话修改过程,将所述终端设备的会话切换为单播会话。
在一些实施例中,所述核心网网元4000包括:SMF实体。
本申请实施例还提供一种核心网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述核心网网元执行的传输模式切换方法的步骤。
本申请实施例还提供一种核心网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述核心网网元执行的传输模式切换方法的步骤。
本申请实施例还提供一种接入网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述接入网网元执行的传输模式切换方法的步骤。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述核心网网元执行的传输模式切换方法。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行上述接入网网元执行的传输模式切换方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述核心网网元执行的传输模式切换方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述接入网网元执行的传输模式切换方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述核心网网元执行的传输模式切换方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述接入网网元执行的传输模式切换方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述核心网网元执行的传输模式切换方法。
本申请实施例还提供一种计算机程序,所述计算机程序使得计算机执行上述接入网网元执行的传输模式切换方法。
图15是本申请实施例的电子设备(核心网网元和接入网网元)的硬件组成结构示意图,电子设备700包括:至少一个处理器701、存储器702和至少一个网络接口704。电子设备700中的各个组件通过总线***705耦合在一起。可理解,总线***705用于实现这些组件之间的连接通信。总线***705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图15中将各种总线都标为总线***705。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持电子设备700的操作。这些数据的示例包括:用于在电子设备700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或 者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,电子设备700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (88)

  1. 一种传输模式切换方法,所述方法包括:
    核心网网元向用户面功能UPF实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道;
    所述核心网网元向接入网RAN网元发送第二指示信息,所述第二指示信息用于指示多播数据。
  2. 根据权利要求1所述的方法,所述方法还包括:
    所述核心网网元向所述RAN网元发送第三指示信息,所述第三指示信息用于指示所述终端设备支持多播传输。
  3. 根据权利要求2所述的方法,其中,所述第三指示信息,还用于指示所述终端设备能够进行多播传输的数据流信息和/或服务质量QoS流信息。
  4. 根据权利要求3所述的方法,其中,所述第三指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
  5. 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:
    所述核心网网元建立所述接入网网元与所述UPF实体之间的共享通道。
  6. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    所述核心网网元接收所述RAN网元发送的第四指示信息,所述第四指示信息用于指示数据传输模式切换为多播传输。
  7. 根据权利要求1至5任一项所述的方法,其中,所述方法还包括:
    所述核心网网元根据所述终端设备的数量,确定数据传输模式切换为多播传输。
  8. 根据权利要求6或7所述的方法,其中,所述方法还包括:
    所述核心网网元发起协议数据单元PDU会话修改过程,将所述终端设备的会话切换为多播会话。
  9. 根据权利要求1至8任一项所述的方法,其中,所述核心网网元包括:
    服务管理功能SMF实体或移动管理功能AMF实体。
  10. 根据权利要求1至9任一项所述的方法,其中,所述共享通道仅用于传输多播数据。
  11. 一种传输模式切换方法,所述方法包括:
    接入网RAN网元接收核心网网元发送的第二指示信息,所述第二指示信息用于指示多播数据。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    所述RAN网元根据单播调度资源情况,确定数据传输模式切换为多播传输。
  13. 根据权利要11或12所述的方法,其中,所述方法还包括:
    所述RAN网元在发送完单播数据之后,向终端设备发送多播传输配置信息。
  14. 根据权利要求13所述的方法,其中,所述多播传输配置信息包括:
    多播传输对应的数据无线承载DRB信息和/或接入层AS层信息。
  15. 根据权利要求11至14任一项所述的方法,其中,所述方法还包括:
    所述RAN网元释放终端设备单播传输对应的DRB和单播通道。
  16. 根据权利要求11至15任一项所述的方法,其中,所述核心网网元包括:
    服务管理功能SMF实体或移动管理功能AMF实体。
  17. 根据权利要求11至16任一项所述的方法,其中,所述共享通道仅用于传输多播数据。
  18. 一种传输模式切换方法,所述方法包括:
    接入网RAN网元确定数据传输模式切换为多播传输;
    所述RAN网元按照终端设备的数据序列号进行数据调度。
  19. 根据权利要求18所述的方法,其中,所述方法还包括:
    所述RAN网元为所述终端设备配置多播传输资源,所述多播传输资源用于传输多播数据。
  20. 根据权利要求18或19所述的方法,其中,所述RAN网元按照全部数据序号的升序在共享通道中调度单播数据和多播数据。
  21. 根据权利要求18或19所述的方法,其中,所述RAN网元先按照单播数据序号的升序在共享通道中调度单播数据;
    所述RAN网元再按照多播数据序号的升序在所述共享通道中调度多播数据。
  22. 根据权利要求20或21所述的方法,其中,所述多播数据具有相同的数据序号。
  23. 根据权利要求18至22任一项所述的方法,其中,所述RAN网元确定数据传输模式切换为多播传输包括:
    所述RAN网元根据本地策略确定数据传输模式切换为多播传输。
  24. 根据权利要求18至23任一项所述的方法,其中,所述方法还包括:
    所述接入网网元接收核心网网元发送的第五指示信息,所述第五指示信息用于指示所述终端设备支持多播传输。
  25. 根据权利要求24所述的方法,其中,所述第五指示信息,还用于指示所述终端设备能够进行多播传输的数据流信息和/或服务质量QoS流信息。
  26. 根据权利要求25所述的方法,其中,所述第五指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
  27. 一种传输模式切换方法,所述方法包括:
    核心网网元在确定数据传输模式切换至单播传输的情况下,所述核心网网元建立每个终端设备的单播传输通道。
  28. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述核心网网元根据多播传输组中终端设备的数量,确定数据传输模式切换为单播传输。
  29. 根据权利要求27所述的方法,其中,所述方法还包括:
    所述核心网网元接收接入网RAN网元发送的第六指示信息,所述第六指示信息用于指示数据传输模式切换为单播传输;
    所述数据传输模式由所述RAN网元根据多播传输的资源使用情况或多播传输组中终端设备的反馈信息确定。
  30. 根据权利要求29所述的方法,其中,所述第六指示信息包括:
    终端设备的多播组的信息。
  31. 根据权利要求30所述的方法,其中,所述第六指示信息还包括:
    终端设备的标识信息。
  32. 根据权利要求27至31任一项所述的方法,其中,所述核心网网元建立每个终端设备的单播传输通道包括:
    所述核心网网元向RAN网元发送第七指示信息,所述第七指示信息用于指示RAN网元建立单播传输通道和分配单播传输通道的下行地址;
    所述核心网网元向用户面功能UPF实体发送第八指示信息,所述第八指示信息系用于指示所述单播传输通道的下行地址。
  33. 根据权利要求27至32任一项所述的方法,其中,所述方法还包括:
    所述核心网网元发起协议数据单元PDU会话修改过程,将所述终端设备的会话切 换为单播会话。
  34. 根据权利要求27至33任一项所述的方法,其中,所述核心网网元包括:服务管理功能SMF实体。
  35. 一种核心网网元,所述核心网网元包括:
    第一发送单元,配置为向用户面功能UPF实体发送第一指示信息,所述第一指示信息用于指示将终端设备对应的多播数据发送至共享通道;向接入网RAN网元发送第二指示信息,所述第二指示信息用于指示多播数据。
  36. 根据权利要求35所述的核心网网元,其中,所述第一发送单元,还配置为向所述RAN网元发送第三指示信息,所述第三指示信息用于指示所述终端设备支持多播传输。
  37. 根据权利要求36所述的核心网网元,其中,所述第三指示信息,还用于指示所述终端设备能够进行多播传输的数据流信息和/或服务质量QoS流信息。
  38. 根据权利要求37所述的核心网网元,其中,所述第三指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
  39. 根据权利要求35至38任一项所述的核心网网元,其中,所述核心网网元还包括:
    第一处理单元,配置为建立所述接入网网元与所述UPF实体之间的共享通道。
  40. 根据权利要求35至39任一项所述的核心网网元,其中,所述核心网网元还包括:
    第一接收单元,配置为接收所述RAN网元发送的第四指示信息,所述第四指示信息用于指示数据传输模式切换为多播传输。
  41. 根据权利要求35至39任一项所述的核心网网元,其中,所述核心网网元还包括:
    第二处理单元,配置为根据所述终端设备的数量,确定数据传输模式切换为多播传输。
  42. 根据权利要求40或41所述的核心网网元,其中,所述核心网网元还包括:
    第三处理单元,配置为发起协议数据单元PDU会话修改过程,将所述终端设备的会话切换为多播会话。
  43. 根据权利要求35至42任一项所述的核心网网元,其中,所述核心网网元包括:
    服务管理功能SMF实体或移动管理功能AMF实体。
  44. 根据权利要求35至43任一项所述的核心网网元,其中,所述共享通道仅用于传输多播数据。
  45. 一种接入网网元,所述接入网网元包括:
    第二接收单元,配置为接收核心网网元发送的第二指示信息,所述第二指示信息用于指示多播数据。
  46. 根据权利要求45所述的接入网网元,其中,所述接入网网元还包括:
    第四处理单元,配置为根据单播调度资源情况,确定数据传输模式切换为多播传输。
  47. 根据权利要求45或46所述的接入网网元,其中,所述接入网网元还包括:
    第二发送单元,配置为在发送完单播数据之后,向终端设备发送多播传输配置信息。
  48. 根据权利要求47所述的接入网网元,其中,所述多播传输配置信息包括:
    多播传输对应的数据无线承载DRB信息和/或接入层AS层信息。
  49. 根据权利要求45至48任一项所述的接入网网元,其中,所述接入网网元还包括:
    第五处理单元,配置为释放终端设备单播传输对应的DRB和单播通道。
  50. 根据权利要求45至49任一项所述的接入网网元,其中,所述核心网网元包括:
    服务管理功能SMF实体或移动管理功能AMF实体。
  51. 根据权利要求45至50任一项所述的接入网网元,其中,所述共享通道仅用于传输多播数据。
  52. 一种接入网网元,所述接入网网元包括:
    第六处理单元,配置为确定数据传输模式切换为多播传输;按照终端设备的数据序列号进行数据调度。
  53. 根据权利要求52所述的接入网网元,其中,所述第六处理单元,还配置为为所述终端设备配置多播传输资源,所述多播传输资源用于传输多播数据。
  54. 根据权利要求52或53所述的接入网网元,其中,所述第六处理单元,还配置为按照全部数据序号的升序在共享通道中调度单播数据和多播数据。
  55. 根据权利要求52或53所述的接入网网元,其中,所述第六处理单元,还配置为先按照单播数据序号的升序在共享通道中调度单播数据,再按照多播数据序号的升序在所述共享通道中调度多播数据。
  56. 根据权利要求54或55所述的接入网网元,其中,所述多播数据具有相同的数据序号。
  57. 根据权利要求52至56任一项所述的接入网网元,其中,所述第六处理单元,配置为根据本地策略确定数据传输模式切换为多播传输。
  58. 根据权利要求52至57任一项所述的接入网网元,其中,所述接入网网元还包括:
    第三接收单元,配置为接收核心网网元发送的第五指示信息,所述第五指示信息用于指示所述终端设备支持多播传输。
  59. 根据权利要求58所述的接入网网元,其中,所述第五指示信息,还用于指示所述终端设备能够进行多播传输的数据流信息和/或服务质量QoS流信息。
  60. 根据权利要求59所述的接入网网元,其中,所述第五指示信息,还用于指示承载相同的多播数据的数据流信息和/或QoS流信息。
  61. 一种核心网网元,所述核心网网元包括:
    第七处理单元,配置为在确定数据传输模式切换至单播传输的情况下,建立每个终端设备的单播传输通道。
  62. 根据权利要求61所述的核心网网元,其中,所述第七处理单元,还配置为根据多播传输组中终端设备的数量,确定数据传输模式切换为单播传输。
  63. 根据权利要求61所述的核心网网元,其中,所述核心网网元还包括:
    第四接收单元,配置为接收接入网RAN网元发送的第六指示信息,所述第六指示信息用于指示数据传输模式切换为单播传输;
    所述数据传输模式由所述RAN网元根据多播传输的资源使用情况或多播传输组中终端设备的反馈信息确定。
  64. 根据权利要求63所述的核心网网元,其中,所述第六指示信息包括:
    终端设备的多播组的信息。
  65. 根据权利要求64所述的核心网网元,其中,所述第六指示信息还包括:
    终端设备的标识信息。
  66. 根据权利要求61至65任一项所述的核心网网元,其中,所述第七处理单元,配置为向RAN网元发送第七指示信息,所述第七指示信息用于指示RAN网元建立单播传输通道和分配单播传输通道的下行地址;向用户面功能UPF实体发送第八指示信息,所述第八指示信息系用于指示所述单播传输通道的下行地址。
  67. 根据权利要求61至66任一项所述的核心网网元,其中,所述第七处理单元,还配置为发起协议数据单元PDU会话修改过程,将所述终端设备的会话切换为单播会话。
  68. 根据权利要求61至67任一项所述的核心网网元,其中,所述核心网网元包括:服务管理功能SMF实体。
  69. 一种核心网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求1至10任一项所述的传输模式切换方法的步骤。
  70. 一种接入网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求11至17任一项所述的传输模式切换方法的步骤。
  71. 一种接入网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求18至26任一项所述的传输模式切换方法的步骤。
  72. 一种核心网网元,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,
    所述处理器用于运行所述计算机程序时,执行权利要求27至34任一项所述的传输模式切换方法的步骤。
  73. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至10任一项所述的传输模式切换方法。
  74. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求11至17任一项所述的传输模式切换方法。
  75. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求18至26任一项所述的传输模式切换方法。
  76. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求27至34任一项所述的传输模式切换方法。
  77. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10任一项所述的传输模式切换方法。
  78. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求11至17任一项所述的传输模式切换方法。
  79. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求18至26任一项所述的传输模式切换方法。
  80. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求27至34任一项所述的传输模式切换方法。
  81. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10任一项所述的传输模式切换方法。
  82. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求11至17任一项所述的传输模式切换方法。
  83. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求18至26任一项所述的传输模式切换方法。
  84. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执 行如权利要求27至34任一项所述的传输模式切换方法。
  85. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至10任一项所述的传输模式切换方法。
  86. 一种计算机程序,所述计算机程序使得计算机执行如权利要求11至17任一项所述的传输模式切换方法。
  87. 一种计算机程序,所述计算机程序使得计算机执行如权利要求18至26任一项所述的传输模式切换方法。
  88. 一种计算机程序,所述计算机程序使得计算机执行如权利要求27至34任一项所述的传输模式切换方法。
PCT/CN2020/070142 2020-01-02 2020-01-02 一种传输模式切换方法、电子设备及存储介质 WO2021134760A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080090821.2A CN114902790A (zh) 2020-01-02 2020-01-02 一种传输模式切换方法、电子设备及存储介质
PCT/CN2020/070142 WO2021134760A1 (zh) 2020-01-02 2020-01-02 一种传输模式切换方法、电子设备及存储介质
EP20909196.6A EP4087363A4 (en) 2020-01-02 2020-01-02 TRANSMISSION MODE SWITCHING METHOD, ELECTRONIC DEVICE AND STORAGE MEDIA
US17/853,420 US20220329985A1 (en) 2020-01-02 2022-06-29 Method for switching transmission mode and core network element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/070142 WO2021134760A1 (zh) 2020-01-02 2020-01-02 一种传输模式切换方法、电子设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/853,420 Continuation US20220329985A1 (en) 2020-01-02 2022-06-29 Method for switching transmission mode and core network element

Publications (1)

Publication Number Publication Date
WO2021134760A1 true WO2021134760A1 (zh) 2021-07-08

Family

ID=76686864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070142 WO2021134760A1 (zh) 2020-01-02 2020-01-02 一种传输模式切换方法、电子设备及存储介质

Country Status (4)

Country Link
US (1) US20220329985A1 (zh)
EP (1) EP4087363A4 (zh)
CN (1) CN114902790A (zh)
WO (1) WO2021134760A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001568A1 (zh) * 2022-06-29 2024-01-04 中兴通讯股份有限公司 Smf网元选择方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069071A1 (en) * 2006-09-15 2008-03-20 Motorola, Inc. Dynamic selection of wireless information communication modes for a wireless communication device
CN109547944A (zh) * 2017-09-21 2019-03-29 华为技术有限公司 数据传输的方法及装置
CN110167190A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 会话建立方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411755B (zh) * 2017-12-28 2022-10-04 华为技术有限公司 一种通信方法、及相关产品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080069071A1 (en) * 2006-09-15 2008-03-20 Motorola, Inc. Dynamic selection of wireless information communication modes for a wireless communication device
CN109547944A (zh) * 2017-09-21 2019-03-29 华为技术有限公司 数据传输的方法及装置
CN110167190A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 会话建立方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "PDU Session Enhanced for Multicast to Provide the Basic Multicast Connectivity Service", 3GPP DRAFT; S2-1911366, vol. SA WG2, 8 November 2019 (2019-11-08), Reno, Nevada, USA, pages 1 - 6, XP051821458 *
See also references of EP4087363A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001568A1 (zh) * 2022-06-29 2024-01-04 中兴通讯股份有限公司 Smf网元选择方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
EP4087363A4 (en) 2023-01-11
EP4087363A1 (en) 2022-11-09
US20220329985A1 (en) 2022-10-13
CN114902790A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2020043009A1 (zh) 一种ui显示方法、装置、终端设备及存储介质
US20220053580A1 (en) Information processing method, and first and second terminal devices
WO2021022460A1 (zh) 一种会话验证方法、电子设备及存储介质
WO2022151242A1 (zh) 一种数据传输方法、电子设备及存储介质
US20220329985A1 (en) Method for switching transmission mode and core network element
CN112586065B (zh) 一种数据传输方法、终端设备及存储介质
TW202025815A (zh) 無線通訊方法和基站
CN113132954B (zh) 一种参数配置方法、终端设备及存储介质
WO2020077966A1 (zh) 一种参数配置方法、终端设备及存储介质
CN113115257B (zh) 一种连接配置方法、设备及存储介质
WO2020103050A1 (zh) 一种数据通道的建立方法及装置、网络设备
US20230102218A1 (en) Data transmission method and device, and storage medium
WO2022205383A1 (zh) 一种中继方式确定方法、电子设备及存储介质
WO2022027638A1 (zh) 一种数据传输方法、电子设备及存储介质
WO2023020276A1 (zh) 组播广播业务数据传输方法、装置、设备以及存储介质
EP3902350B1 (en) Resource pool configuration method, device, and storage medium
WO2022126412A1 (zh) 一种重置配置方法及装置、终端设备
WO2020077642A1 (zh) 一种连接配置方法、设备及存储介质
TW202015482A (zh) 通訊方法和設備
CN114846825A (zh) 一种数据转发方法及装置、通信设备
CN115767727A (zh) 一种数据传输方法、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20909196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020909196

Country of ref document: EP

Effective date: 20220802