WO2021134634A1 - 便携式监护设备、远程监控中心及医疗监护方法 - Google Patents

便携式监护设备、远程监控中心及医疗监护方法 Download PDF

Info

Publication number
WO2021134634A1
WO2021134634A1 PCT/CN2019/130846 CN2019130846W WO2021134634A1 WO 2021134634 A1 WO2021134634 A1 WO 2021134634A1 CN 2019130846 W CN2019130846 W CN 2019130846W WO 2021134634 A1 WO2021134634 A1 WO 2021134634A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitored object
communication
activity state
monitoring device
communication signal
Prior art date
Application number
PCT/CN2019/130846
Other languages
English (en)
French (fr)
Inventor
杨志刚
张珍奇
邬闻彬
徐君
易日清
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/130846 priority Critical patent/WO2021134634A1/zh
Priority to CN201980098370.4A priority patent/CN114097253A/zh
Publication of WO2021134634A1 publication Critical patent/WO2021134634A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • This application relates to the technical field of medical equipment, more specifically, portable monitoring equipment, remote monitoring centers, and medical monitoring methods.
  • Portable monitoring equipment is a commonly used equipment in clinical monitoring scenarios, which can be worn on the patient's body to monitor the patient's physiological signs.
  • the device can minimize the restrictions on the patient's activities, and the usage is more convenient and flexible.
  • the physiological parameters monitored by the portable monitoring device can not only be displayed to the patient, but also uploaded to the remote monitoring center.
  • the remote monitoring center is set in a centralized monitoring place, which can collect and display the patient's physiological signs monitored by multiple portable monitoring devices, and the medical staff can realize unified monitoring of multiple patients.
  • this application provides a portable monitoring device, including:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the processor is used to identify the physiological sign parameters from the physiological sign signals, obtain the communication signal strength between the communication module and at least one node device in the communication network, determine the activity state of the monitored object based on the at least one communication signal strength, and change the state of the activity state Data is sent to the communication module;
  • the communication module is used to establish a communication connection with at least one node device in the communication network, and send the physiological sign parameters and the status data of the activity state to the remote monitoring center connected with the portable monitoring device.
  • this application provides a portable monitoring device, including:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the communication module is used to receive the status data of the activity status of the monitored object sent by other devices associated with the monitored object; send the physiological sign parameters and the status data of the activity status to the remote monitoring center connected to the portable monitoring device.
  • this application provides a remote monitoring center, including:
  • the communication module is used to receive the physiological parameters of the monitored object and the state data of the active state of the monitored object sent by the portable monitoring device, and the state data includes the occurrence time and severity of the active state;
  • the processor is used to generate a physiological sign parameter waveform chart according to the physiological sign parameter; according to the occurrence time of the active state, determine the waveform segment corresponding to the active state in the physiological sign parameter waveform chart, and establish the correspondence between the active state and the waveform segment relationship;
  • the display is used to display the waveform diagram of physiological signs and parameters, and to display the activity status according to the corresponding relationship.
  • this application provides a portable monitoring device, including:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the processor is used to identify the physiological sign parameters from the physiological sign signals, and obtain the communication signal strength between the communication module and at least one node device in the communication network;
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send physiological parameters and communication signal strength to the remote monitoring center connected to the portable monitoring device; wherein the communication signal strength is used for the remote monitoring center to determine the monitoring object Activity status.
  • this application provides a remote monitoring center, including:
  • the communication module is used to receive the physiological sign parameters of the monitored object sent by the portable monitoring device and the communication signal strength between the portable monitoring device and at least one node device in the communication network;
  • the processor is used to generate a physiological sign parameter waveform diagram according to the physiological sign parameter; determine the activity state of the monitored object based on the strength of at least one communication signal; determine the waveform corresponding to the activity state in the physiological sign parameter waveform diagram according to the occurrence time of the activity state Fragments, and establish the corresponding relationship between the active state and the waveform fragments;
  • the display is used to display the waveform diagram of physiological signs and parameters, and to display the activity status according to the corresponding relationship.
  • this application provides a portable monitoring device, including:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send status data of the activity state to the remote monitoring center connected to the portable monitoring device;
  • the processor is configured to obtain the communication signal strength between the communication module and at least one node device in the communication network, determine the active state of the monitored object based on the at least one communication signal strength, and send the state data of the active state to the communication module.
  • this application provides a portable monitoring device, including:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send the communication signal strength to the remote monitoring center connected to the portable monitoring device; wherein the communication signal strength is used for the remote monitoring center to determine the activity state of the monitored object;
  • the processor is used to obtain the communication signal strength between the communication module and at least one node device in the communication network, and send the communication signal strength to the communication module.
  • this application provides a remote monitoring center, including:
  • the communication module is used to receive the physiological parameter value of the monitored object sent by the portable monitoring device and the communication signal strength between the portable monitoring device and at least one node device in the communication network;
  • the processor is configured to determine the activity state of the monitored object based on the strength of at least one communication signal.
  • this application provides a portable monitoring device, including:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send the real-time location of the monitored object to the remote monitoring center connected to the portable monitoring device; receive the navigation route generated by the remote monitoring center based on the real-time location and the target location;
  • a processor configured to identify the physiological sign parameter from the physiological sign signal; and determine the real-time position of the monitored object according to the communication connection information between the communication module and the at least one node device;
  • the output module is used to output the navigation route.
  • this application provides a portable monitoring device, including:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send communication connection information between the communication module and at least one node device to a remote monitoring center connected to the portable monitoring device, where the communication connection information is used for remote monitoring
  • the center determines the real-time location of the monitored object; receives the navigation route generated by the remote monitoring center based on the real-time location and the target location;
  • a processor configured to obtain communication connection information between the communication module and at least one node device
  • the output module is used to output the navigation route.
  • this application provides a remote monitoring center, including:
  • the processor is used to obtain the real-time position of the monitored object and the target position to which the monitored object is to be moved; generate a navigation route according to the real-time position and the target position;
  • the communication module is used to send the navigation route to the portable monitoring device connected to the remote monitoring center.
  • this application provides a remote monitoring center, including:
  • the processor is used to obtain the real-time position of the monitored object and the monitoring space range corresponding to multiple guardians; among the multiple guardians, determine that the corresponding monitoring space range includes the target guardian at the real-time position; generate monitoring including the monitored object Information notification message;
  • the communication module is used to send notification messages to the monitoring equipment corresponding to the target monitoring personnel.
  • this application provides a portable monitoring device, including:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; after receiving the signal strength change instruction, change the communication signal strength between the communication module and at least one node device in the communication network;
  • the remote monitoring center sends the communication signal strength, where the communication signal strength is used for the remote monitoring center to determine the real-time location of the portable monitoring device;
  • the processor is configured to send a signal strength change instruction to the communication module when the device state of the portable monitoring device meets the preset condition.
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • this application provides a medical monitoring method applied to a remote monitoring center, and the method includes:
  • the state data includes the occurrence time and severity of the activity state
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • Identify the physiological sign parameters from the physiological sign signals and obtain the communication signal strength between the portable monitoring device and at least one node device in the communication network;
  • the communication signal strength is used for the remote monitoring center to determine the activity state of the monitored object.
  • this application provides a medical monitoring method applied to a remote monitoring center, and the method includes:
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • the communication signal strength is sent to the remote monitoring center connected with the portable monitoring equipment; the communication signal strength is used for the remote monitoring center to determine the activity status of the monitored object.
  • this application provides a medical monitoring method applied to a remote monitoring center, and the method includes:
  • the activity state of the monitored object is determined based on the strength of at least one communication signal.
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • this application provides a medical monitoring method applied to a remote monitoring center, and the method includes:
  • this application provides a medical monitoring method applied to a remote monitoring center, and the method includes:
  • this application provides a medical monitoring method applied to a portable monitoring device, and the method includes:
  • the communication signal strength is sent to the remote monitoring center connected with the portable monitoring device, where the communication signal strength is used for the remote monitoring center to determine the real-time location of the portable monitoring device.
  • the present application provides a readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the medical monitoring method as described in any one of the preceding items.
  • Figure 1 is a schematic diagram of an architecture of a medical monitoring system
  • Figure 2 is a schematic flow diagram of a medical monitoring method
  • Figure 3 is an example diagram of a corresponding relationship between the intensity of the communication signal and the collection time point
  • Figure 4 is an example diagram of the displayed ECG waveform and activity status
  • Figure 5 is an example diagram of the application service provided by the remote monitoring center
  • Figure 6 is another schematic diagram of the architecture of the medical monitoring system
  • Figure 7 is an example diagram of an alarm performed by a portable monitoring device
  • Figure 8 is another flow diagram of the medical monitoring method
  • Fig. 9 is another flow diagram of the medical monitoring method.
  • Figure 10 is a schematic diagram of a scenario where the remote monitoring center dynamically allocates medical resources
  • Figure 11 is another schematic flow chart of the medical monitoring method
  • Figure 12 is a schematic diagram of a portable monitor.
  • a monitoring system composed of portable monitoring equipment and a remote monitoring center is an important system in clinical monitoring scenarios. See Figure 1, which shows a structural embodiment of the monitoring system.
  • the portable monitoring device and the remote monitoring center can be connected in a wireless manner. Specifically, the portable monitoring device is connected to the node device in the communication network in a wireless manner, and the node device is connected to the remote monitoring center in a wired or wireless manner.
  • the node device may also be called a wireless access point (Access Point, AP for short).
  • a portable monitoring device is a monitoring device that is carried by the patient or is convenient for the patient to carry. It specifically includes but is not limited to a telemetry box, a node device responder, etc., wherein the node device responder communicates with the node device, and can obtain information with the node device.
  • the communication signal strength which may specifically be a signal monitor, etc.
  • the portable monitoring device can detect one or more parameters of the patient, including physiological parameters and non-physiological parameters. The parameters can be uploaded to the remote monitoring center through the above communication connection.
  • the remote monitoring center is a control device for remotely monitoring the portable monitoring device. It can receive the communication signal sent by the portable monitoring device, process the communication signal, and obtain and output monitoring data.
  • the specific forms of the remote monitoring center include, but are not limited to: a central station, an electronic medical record platform (Electronic Medical Record, EMR), a computer-based patient record (Computer-Based Patient Record, CPR), a bedside monitor, etc.
  • the portable monitoring device can easily collect various information related to the patient due to its portable characteristics, and this information can reflect the real-time status of the patient and/or the device itself.
  • the monitoring system can provide one or more services related to patient monitoring. The following describes the specific implementation process of the guardianship service in combination with various application scenarios.
  • FIG. 2 shows an embodiment of a process of a medical monitoring method, including S201-S206.
  • S201 The portable monitoring device collects physiological parameters of the monitored object.
  • the portable monitoring device can collect the physiological sign signals of the monitored object in real time, and can recognize the physiological sign signals to obtain the physiological sign parameters. It should be noted that the portable monitoring device can also directly send physiological sign signals to the remote monitoring center, and the remote monitoring center can identify the physiological sign parameters.
  • the portable monitoring device obtains the strength of the communication signal with at least one node device, and determines the activity state of the monitored object based on the strength of the communication signal.
  • the portable monitoring device can form a wireless communication network with at least one node device, and the portable monitoring device can follow the monitoring object to change the position, and the change of the position will affect the communication signal strength between the portable monitoring device and the node device. Therefore, the portable monitoring device can obtain the strength of the communication signal with at least one node device in the wireless communication network, and determine the activity state of the monitored object according to the degree of change in the strength of the communication signal.
  • the communication signal strength may specifically include but is not limited to: Received Signal Strength Indication (RSSI for short).
  • the determined activity state includes but is not limited to: stationary, moving or rotating.
  • the specific process of determining the activity status includes: determining the communication signal strength of the portable monitoring device and the same node device at multiple different time points; obtaining the degree of change of the communication signal over time according to the multiple communication signal strengths, And according to the degree of change, the activity state of the monitored object is determined.
  • the activity state is specifically static or a certain degree of vigorous activity. It should be noted that the activity determined by this implementation is specifically movement, that is, moving from one location point to another location point.
  • the portable monitoring device can communicate with the same node device multiple times, so the portable monitoring device can obtain the communication signal strength of the same node device at multiple different time points. Changes in the strength of the communication signal at different time points may indicate changes in the position and/or posture of the portable monitoring device. The greater the difference in the strength of the communication signal, the greater the change in the position and/or posture of the portable monitoring device (that is, the monitoring object). However, if there is an error in determining the activity status of the monitored object based on the magnitude of the change, the reason is that the change may have occurred in a relatively long period of time, or may have occurred in a relatively short period of time, and only occurred in a relatively short period of time.
  • the change in position and/or posture can more accurately reflect the activity of the monitored object. Therefore, it is necessary to determine the degree of change of the communication signal strength over time.
  • the degree of change is the ratio of the change of the communication signal strength to the time interval, which can be specifically referred to as the rate of change of the communication signal strength. The greater the rate of change of the communication signal strength, the more violent the position and/or posture of the portable monitoring device (that is, the monitoring object).
  • the portable monitoring device selects two communication signal strengths from the multiple communication signal strengths at least once as a group to obtain at least one communication signal strength group; calculate at least one communication signal strength group The ratio of the difference between the strength of the two communication signals in the signal strength group and the difference between the time points corresponding to the strength of the two communication signals; the activity state of the monitored object is determined according to at least one ratio.
  • a selected communication signal strength group includes two communication signal strengths, which are the received signal strength indicator RSSI1 at time point T1 and the received signal strength indicator RSSI2 at time point T2.
  • At least one ratio is calculated according to the intensities of a plurality of communication signals, and then the at least one ratio is combined to determine the activity state of the monitored object.
  • a specific determination method is to calculate the average value of at least one ratio, and determine the activity state of the monitored object according to the relationship between the average value and a preset average threshold value.
  • the preset average threshold may include: a critical value indicating that the monitored object changes from a static state to an active state. If the average value is greater than or equal to the critical value, it is determined that the activity state of the monitored object during the time period is active. If the average value is less than the critical value, it is determined that the active state of the monitored object during the time period is static.
  • the preset average threshold value may include: range values corresponding to activity states of different intensity levels.
  • the activity state can include four types: static, slow activity, moderate activity, and intense activity. The corresponding range value is preset for each activity state, and the range value of the above average value is judged to correspond to the range value. The activity status of is determined as the activity status of the monitored object.
  • the types of activity states are not limited to the above four types, and can also include others.
  • the type of activity state can be represented by a level, such as level 0 activity (representing stillness), level 1 activity, level 2 activity, level 3 activity, level 4 activity, and so on.
  • Another way of determining is specifically selecting ratio groups satisfying different preset ratio ranges from at least one ratio, and determining the activity state of the monitored object according to the number of ratios in the different ratio groups.
  • different preset ratio ranges are set for different activity states, and the preset ratio ranges are used to select a ratio that meets the activity state from at least one ratio.
  • the ratio is the rate of change of communication signal strength
  • the preset ratio range is specifically the range value of the rate of change of communication signal strength.
  • the preset ratio range is used to select a communication that satisfies the activity state among at least one rate of change of communication signal strength. The rate of change of signal strength.
  • the activity state may include, but is not limited to: static, gentle activity, moderate activity, and vigorous activity, and each activity state has a corresponding preset ratio range. After obtaining at least one ratio, the ratios belonging to the same preset ratio range are divided into the same group, thereby obtaining multiple ratio groups. Then the ratio group with the largest number of ratios is determined, and the activity state corresponding to the ratio group is determined as the activity state of the monitored object.
  • Another determination method is specifically a combination of the above two determination methods, and a comprehensive judgment is made on the determined activity status of the two determination methods to obtain the final activity status of the monitored object.
  • Fig. 3 shows an example diagram of the correspondence between the intensity of the communication signal and the collection time point.
  • the received signal strength indicates that the RSSI has a certain degree of change.
  • the monitoring object carrying the portable device is active in several time periods ranging from 0 to 50s, 170s to 180s, and 450s to 480s, and 0s to 50s and 450 to 480s. It is gentle activity, 60s ⁇ 420s is medium activity, 170s ⁇ 180s is strenuous activity.
  • this embodiment can also judge whether the monitored object has a rotation type of activity.
  • the specific process of determining the activity status of the monitored object includes: determining the communication signal strength of the portable monitoring device and multiple different node devices in the same time period to obtain multiple sets of communication signal strengths; according to each group of communication signals The change trend of intensity determines the activity state of the monitored object; the activity state includes: static or a certain degree of violent rotation.
  • a wireless communication network includes multiple node devices, and these node devices can be scattered and deployed in multiple different positions in a certain space.
  • the portable monitoring device can have a communication connection with multiple different node devices at the same time.
  • multiple node devices are deployed in a certain range of space, and the portable monitoring device carried by the monitoring object can communicate with the multiple node devices.
  • the monitored object is rotating in this space, there is a rule in the communication signal strength between the portable monitoring device it carries and the node devices in four directions: clockwise or counterclockwise, communication in different directions
  • the signal intensity increases and decreases sequentially in a regular manner. For example, if the monitoring object rotates clockwise, the change rule of the communication signal strength between the portable monitoring device and the node device in different orientations during the rotation is: the front is larger, the rear is smaller, the left and the right are medium, and the right is larger.
  • the left is smaller, the front and the back are medium, then the rear is larger, the front is smaller, the left and right sides are medium, then the left is larger, the right is smaller, the front and the rear are medium, and then the front is larger, the rear is smaller, and the left and right are two.
  • the square is medium, and the changes are repeated in turn. Of course, this is only an example, and the change rule of the communication signal strength can be obtained in the same way in other rotating scenarios.
  • the communication signal strength between the node device and the portable monitoring device in the same position has a law: it gradually becomes larger and then gradually becomes smaller. Integrating the changing laws of multiple node devices in different orientations, it can be determined whether the monitored object is rotating.
  • the portable monitoring device determines its communication signal strength in the same time period with multiple different directions, and the communication signal strength corresponding to the same position is the same communication signal strength group. If the change trend of the intensity of each group of communication signals conforms to the change trend corresponding to the rotation activity, it can be determined that the activity state of the monitored object is rotation. If the change trend of the communication signal strength of each group conforms to the change trend corresponding to the stationary activity, it is determined that the activity state of the monitored object is stationary. Alternatively, the change trend corresponding to the rotation activity can be set as a preset rotation change trend, and it is judged whether the change trend of each group of communication signal strength meets the preset rotation change trend. If it is, the activity state of the monitored object is determined to be rotating, otherwise it is determined The active state of the monitored object is static.
  • the portable monitoring device can also quantitatively determine the severity of the rotating activity. Specifically, if the activity state of the monitored object is rotating, the target change rate of each group of communication signal strength over time is calculated, and the severity corresponding to the target change rate is determined according to the preset correspondence between the change rate and the severity.
  • the corresponding relationship between different rates of change and severity can be preset, for example, the higher the rate of change, the higher the severity.
  • Calculate the change rate of the communication signal strength over time in each group of communication signal strength, and the change rate can be referred to as the target change rate.
  • Each group of communication signal strength corresponds to a target rate of change, select the target rate of change of a certain set of communication signal strength, or calculate the average target rate of change of multiple sets of communication signal strengths, according to the preset correspondence between the rate of change and the severity of
  • the severity of the target change rate or the average target change rate is determined as the severity of the activity state of the monitored object.
  • the portable monitoring device can monitor the activity status of the monitored object.
  • the activity status has status data.
  • the status data includes: the occurrence time of the activity status and the severity of the activity status.
  • the severity of the stillness can be 0 or a lower level.
  • S203 The portable monitoring device sends the physiological sign parameters and the state data of the activity state to the remote monitoring center.
  • the portable monitoring device may send data to the remote monitoring center based on at least one node device in the wireless communication network, or may also send data to the remote monitoring center through other communication methods.
  • the data includes: the physiological parameters of the monitored object and the state data of the activity state.
  • the portable monitoring device may send the status data of the activity state together or separately when sending the physiological sign parameters.
  • the portable device can send the determined status data of all types of activity status to the remote monitoring center; or, select the activity status, and send the status data of the activity status that meets the selection conditions to the remote monitoring center according to processing requirements, that is, When the activity status belongs to the preset type of activity status, the status data of the activity status is sent to the remote monitoring center.
  • the preset type of activity state may be an activity state set according to the intensity, such as a static type of activity state, a non-static type of activity state, or an activity state that exceeds a certain intensity, and so on.
  • the remote monitoring center generates a physiological sign parameter waveform diagram according to the physiological sign parameter.
  • the physiological sign parameters can be generated in the order of the acquisition time to generate the physiological sign parameter waveforms.
  • the oscillogram can reflect the changes in the physiological parameters of the monitored object over a period of time.
  • the physiological sign parameter waveform graph may include a trend graph and/or a real-time waveform graph.
  • a physiological sign parameter can generate a physiological sign parameter waveform diagram, or multiple physiological sign parameter waveform diagrams at different time periods.
  • the portable monitoring device can send physiological sign signals, and the remote monitoring center recognizes the physiological sign parameters from the physiological sign signals, and generates a physiological sign parameter waveform chart according to the physiological sign parameters.
  • physiological sign parameter waveform graph may not be limited to being generated by the remote monitoring center, but also can be generated by the portable monitoring device according to the collected physiological sign parameter signal, and send the physiological sign parameter waveform graph to the remote monitoring center display.
  • the remote monitoring center determines the waveform segment corresponding to the active state in the physiological sign parameter waveform chart, and establishes the corresponding relationship between the active state and the waveform segment.
  • the remote monitoring center receives the state data of the active state of the monitored object sent by the portable monitoring device, according to the occurrence time of the active state and the collection time of the physiological sign parameters, the waveform corresponding to the active state is determined in the physiological sign parameter waveform chart Fragment. That is to say, according to the correlation factor of time, the corresponding relationship between the activity state and the physiological sign parameter waveform is determined.
  • the remote monitoring center displays a waveform diagram of physiological signs and parameters, and displays the activity status according to the corresponding relationship.
  • the remote monitoring center has a display unit that displays a waveform diagram of physiological signs, so that medical staff can remotely obtain the state of physiological signs of the monitored object.
  • the physiological sign parameters sent by the portable monitoring device may include, but are not limited to: any one or more of ECG, blood oxygen saturation SPO2, and non-invasive blood pressure NIBP.
  • the remote monitoring center After the remote monitoring center receives the physiological sign parameters, it can generate and display one or more of the ECG waveform, the blood oxygen saturation SPO2 waveform, and the non-invasive blood pressure NIBP waveform.
  • the medical staff can observe the one or more
  • the changes in the waveform of the physiological sign parameters can be learned about the changes in one or more of the physiological sign parameters of the monitored subject's heart rate, blood oxygen saturation, and blood pressure.
  • the remote monitoring center can also display the activity status of the monitored object according to the corresponding relationship in time.
  • the remote monitoring center displays the ECG waveform of a monitored object in 3 different time periods. During the period from 14:59:06 to 15:00:06, the ECG waveform has abnormal fluctuations, and the abnormality Fluctuation corresponds to an activity state of moderate severity.
  • the medical staff can judge whether there is an association relationship between the change of the physiological sign parameter and the activity state. For example, if there is a large fluctuation in the physiological sign parameter waveform, the medical staff can check whether the fluctuation corresponds to a certain degree of activity state, and if it is, it may be determined that the abnormal fluctuation is caused by the activity of the monitored subject. There is no need to perform medical treatment actions on the monitored object, etc.
  • the activity status displayed by the remote monitoring center can provide more data support for medical staff's medical care decision-making, and make the medical care decision-making result more accurate.
  • the medical staff can judge whether the abnormal waveform segment is related to the activity of the monitored object based on the activity status displayed locally. There is no need to go to the site of the monitored object to confirm, and provide medical personnel for the monitoring work. It's convenient.
  • the remote monitoring center's use of active state data can also be embodied in other aspects. This application provides the following examples for description.
  • the remote monitoring center may mark the physiological sign parameters corresponding to the occurrence time of the preset type of activity state when the activity state includes the preset type of activity state.
  • the preset type of the activity state may be any one or more types set according to actual needs, and the preset type of the activity state may be determined according to the intensity and/or time of occurrence of the activity state.
  • the remote monitoring center can judge whether the activity state includes a preset type of activity state, or receive the judgment result of other devices, and mark the physiological sign parameter when the judgment result includes the preset type of activity state.
  • the method of marking the physiological sign parameter includes but is not limited to: marking the confidence of the physiological sign parameter, for example, marking the physiological sign parameter as "invalid", “low confidence” or “high confidence”.
  • marking the confidence of physiological sign parameters is that the execution of certain medical monitoring actions depends on the processing results of physiological sign parameters. If the processed parameters include physiological sign parameters that may affect the processing result, the processing will be affected. The accuracy of the result.
  • the processing of the ECG waveform includes the calculation of the ST segment and the QT segment.
  • the calculation process needs to use the ECG parameters of the ECG. If the collection time point of some ECG parameters in the ECG parameters corresponds to a certain degree of active state, the active state will interfere For the calculation accuracy of the ST segment and the QT segment, it is necessary to reduce the weight value of these ECG parameters to the calculation result.
  • the weight value of the physiological sign parameter in the subsequent calculation process can be adjusted. If the activity state will reduce the accuracy of the calculation result, reduce the weight value of the physiological sign parameter; otherwise, increase the weight value of the physiological sign parameter.
  • the specific adjustment level needs to be determined according to actual needs. It can be seen that through the correlation between the activity state and the physiological sign parameters, the subsequent processing process of the physiological sign parameters can be adjusted, and the accuracy of the processing results of the physiological sign parameters can be improved.
  • the remote monitoring center can process the alarm actions in the monitoring scene based on the activity status, so as to further improve the accuracy of the alarm actions.
  • the physiological sign parameter waveform diagram includes an abnormal waveform segment and the abnormal waveform segment corresponds to an active state whose severity is of a preset type, the alarm for the abnormal waveform segment is deleted.
  • the physiological sign parameter waveform may contain abnormal waveform fragments.
  • the abnormal waveform fragment will be alarmed to remind the medical staff to strengthen the monitoring of the monitored object.
  • the abnormal segment may be caused by the vigorous activity of the monitored object, and there is no need for medical staff to perform any enhanced monitoring behavior. Therefore, the alarm of the abnormal waveform segment can be deleted, that is, there is no need to alarm the abnormal waveform segment, thereby improving the accuracy of the alarm and avoiding the waste of medical resources.
  • the remote monitoring center can monitor and alarm certain activity states to alert relevant personnel of the occurrence of the activity state and promptly process the activity state. Specifically, when the activity state belongs to the preset type of activity state, generate alarm information corresponding to the preset type of activity state; send the alarm information to the portable monitoring device and/or send the alarm information to the device of the guardian associated with the monitored object .
  • the remote monitoring center can pre-set the types of active states for alarms, such as active states with a certain degree of severity, active states at a certain point in time at the time of occurrence, and so on. After obtaining the activity state of the monitored object, it is further judged whether the activity state belongs to a preset type of activity state. Alternatively, the remote monitoring center can also obtain the judgment result through other equipment. If the judgment result indicates that the activity state belongs to the preset type of activity state, the remote monitoring center generates alarm information about the preset type of activity state. Among them: the alarm information can include text, voice, graphics, images, etc. The content is related to a preset type of activity state.
  • the alarm content is used to prompt to stop vigorous activity .
  • the alarm information only outputs prompt signals such as sound and light.
  • the alarm information may be a combination of the above two forms, or any other form that can be expected by those skilled in the art to have a prompting function.
  • the alarm information can be sent to the portable monitoring device, and the portable monitoring device outputs the alarm information to remind the monitored object or other relevant personnel to pay attention to the relevant activity status of the monitored object.
  • the monitored object can have a corresponding relationship with the guardian, and the corresponding guardian will monitor the monitored object. Therefore, the alarm information can be sent to the guardian associated with the monitored object, specifically to the guardian-related equipment, such as Monitors, handheld terminals, computer equipment, etc. The device outputs the alarm information so that the guardian can pay more attention to the activity of the monitored object.
  • the remote monitoring center needs to send relevant information about the monitored object associated with the alarm information to the device, so that the guardian can accurately locate the monitored object.
  • the above two aspects can be combined to send the alarm information, or the alarm information can also be sent to other devices that those skilled in the art can think of.
  • this application describes the guardianship services implemented by the monitoring center based on the activity status in conjunction with the diagrams.
  • the portable monitoring device obtains the active state by monitoring the strength of the communication signal between it and the node device, and sends the active state to the remote monitoring center.
  • the remote monitoring center implements several services based on the activity status: display the activity status in association with the physiological sign parameter waveform diagram, prevent false alarms of abnormal waveform segments, mark the physiological sign parameters, and alarm the activity status. It should be noted that the remote monitoring center can implement any one or more of these services.
  • the active state can also be applied to other monitoring scenarios that those skilled in the art can expect.
  • the portable monitoring device determines the activity status based on the strength of the communication signal between it and the node device.
  • the portable monitoring device can also determine the activity status in other ways, such as using acceleration sensors to obtain the movement of the monitored object. And/or posture and other information, using the motion and/or posture information to determine the activity state.
  • the portable monitoring device is connected to other devices associated with the monitored object, such as a bracelet worn by the monitored object or other devices capable of monitoring activity status, and the portable monitoring device obtains the monitored object’s activity from these other devices. status.
  • the prompt information may be generated and output by the portable monitoring device itself, so as to prompt the monitored object wearing the portable monitoring device to pay attention to its own activity.
  • the portable monitoring device when the activity state belongs to the preset type of activity state, the portable monitoring device generates prompt information corresponding to the preset type of activity state.
  • the related description of the prompt information can refer to the alarm information generated by the above-mentioned remote monitoring center, which will not be repeated here.
  • the portable monitoring device when the activity state belongs to a preset type of activity state, the portable monitoring device generates alarm information corresponding to the preset type of activity state; sends the alarm information to the remote monitoring center and/or sends the alarm information to the monitored object.
  • the guardian’s device sends an alarm message.
  • the related description of the prompt information can refer to the alarm information generated by the above-mentioned remote monitoring center, which will not be repeated here.
  • the portable monitoring device obtains the activity status of the monitored object, and after determining that the activity status belongs to the preset type of activity status, it alarms by any one or more of the following three methods: output prompt information, remote The monitoring center sends alarm information, and sends alarm information to the equipment of the guardian associated with the monitored object.
  • the activity status is determined by the portable monitoring device, but it can also be determined by the remote monitoring center. See Fig. 8, which shows an embodiment of a process for the portable monitoring device and the monitoring center to implement medical monitoring services, which specifically includes S801-S807.
  • the portable monitoring device collects physiological parameters of the monitored object.
  • the portable monitoring device collects the physiological sign signals of the monitored object in real time, and recognizes the physiological sign parameters from the physiological sign signals.
  • the portable monitoring device obtains the strength of the communication signal with at least one node device in the communication network.
  • S803 The portable monitoring device sends the physiological sign parameters and the communication signal strength to the remote monitoring center.
  • the portable monitoring device establishes a communication connection with at least one node device in the communication network, and sends the physiological sign parameters and the communication signal strength to the connected remote monitoring center through the communication network.
  • the remote monitoring center generates a waveform diagram of the physiological sign parameter according to the physiological sign parameter.
  • the remote monitoring center determines the activity state of the monitored object based on the strength of at least one communication signal.
  • the specific method for the remote monitoring center to determine the active state can refer to the method for determining the active state of the portable monitoring device in the embodiment shown in FIG. 2, which will not be repeated here.
  • the execution sequence of S804 and S805 is not limited to this, and S805 may be executed first and then S804 may be executed, or the two steps may be executed simultaneously.
  • S806 Determine a waveform segment corresponding to the active state in the physiological sign parameter waveform diagram, and establish a corresponding relationship between the active state and the waveform segment.
  • the remote monitoring center displays a waveform diagram of physiological signs and parameters, and displays the activity status according to the corresponding relationship.
  • the portable monitoring device in this embodiment sends the communication signal strength to the remote monitoring center, and the remote monitoring center determines the activity state of the monitored object based on the communication signal strength.
  • the remote monitoring center can provide related monitoring services based on the activity status in the above manner, including but not limited to: preventing false alarms of abnormal segments, prompts or alarms for preset types of activity status, and parameters for physiological signs Mark and so on.
  • the activity state of the monitored object is processed together with the physiological sign parameters of the monitored object, but the activity state is not limited to the correlation processing with the physiological sign parameters.
  • the activity state can be used in other scenarios to provide related monitoring service. Therefore, in each of the above application scenarios, the portable monitoring device and the remote monitoring center can omit the processing of physiological parameters, and only determine the activity state based on the communication signal strength between the portable monitoring device and the node device.
  • the activity state may be determined by the portable monitoring device, or the portable monitoring device may send the communication signal strength to the remote monitoring center, and the remote monitoring center may determine based on the communication signal strength.
  • the specific determination method please refer to the previous description, which will not be repeated here.
  • the portable monitoring device can collect the real-time location of the monitored object. Based on the real-time location, the medical monitoring service implemented between the portable monitoring device and the remote monitoring center may also include: providing a navigation route for the monitored object.
  • the portable monitoring device collects physiological parameters of the monitored object.
  • the portable monitoring device determines the real-time location of the monitoring object according to the communication connection information with the at least one node device.
  • the portable monitoring device can form a wireless communication network with the node device.
  • the wireless communication network includes one or more node devices.
  • the portable monitoring device can use the communication connection information with at least one node device to calculate according to indoor positioning technology.
  • the real-time position of the portable monitoring device within a certain space can be that the portable monitoring device determines its real-time position through the position of the node device connected by real-time communication, or calculates the real-time position based on the communication signal strength of multiple adjacent node devices, such as three node devices. position.
  • the indoor positioning technology can also be other existing implementation processes, which are not specifically limited in this application.
  • the portable monitoring device can also determine the real-time position of the monitored object through other positioning technologies.
  • the portable monitoring device can also be equipped with a global positioning system (Global Positioning System, GPS for short), and use outdoor positioning technology to determine the real-time location of the monitored object.
  • Global Positioning System Global Positioning System, GPS for short
  • S903 The portable monitoring device sends the real-time location of the monitored object to the remote monitoring center.
  • the portable monitoring device can send its real-time location to the remote monitoring center through the communication network where the node device is located or other communication networks.
  • the portable monitoring device directly sends the communication connection information with at least one node device to the remote monitoring center, and the remote monitoring center calculates the real-time position of the monitored object according to the communication connection information.
  • the portable monitoring device may be connected to the base station, and the remote monitoring center may directly receive the real-time position of the portable monitoring device sent by the base station.
  • the remote monitoring center obtains the target position to which the monitored object is to be moved.
  • the monitored object may need to move to a certain position, which is called the target position.
  • the target location can be geographic coordinates, location name, etc.
  • the remote monitoring center can obtain the target location, and the specific obtaining methods include but are not limited to the following methods:
  • One way to obtain is that the user inputs the target location to the portable monitoring device, and the portable monitoring device sends the target location to the remote monitoring center.
  • a specific application scenario corresponding to this acquisition method is that if the monitored subject wants to go to a certain location, he can input the location to his own portable monitoring device.
  • the portable monitoring device sends the location to the remote monitoring center, so that the remote monitoring center uses the location as the target location to generate a navigation route, and sends the navigation route to the portable monitoring device of the monitored object.
  • the user inputs the target position to the remote monitoring center, and the remote monitoring center uses the target position input by the user as the target position to which the monitored object is to be moved.
  • a specific application scenario corresponding to this acquisition method is that the medical staff guide the monitored object to a certain location, such as a certain department for examination, and then input the location to the remote monitoring center so that the remote monitoring center will use the location as the target location to generate navigation Route and send the navigation route to the portable monitoring device of the monitored object.
  • the remote monitoring center generates a navigation route according to the real-time location and the target location.
  • the real-time position of the monitoring object is used as the starting point of the position, and the target position is used as the ending point of the position.
  • a map of the space where the monitoring object is located is obtained, and a navigation route from the starting point to the ending point of the position is generated based on the map.
  • the remote monitoring center obtains the real-time position of the monitored object, and the real-time position can form a movement trajectory.
  • the remote monitoring center can clearly monitor the movement route of the object according to the movement trajectory.
  • the remote monitoring center sends a navigation route to the portable monitoring device.
  • S907 The portable monitoring device outputs the navigation route.
  • the output mode includes, but is not limited to, displaying the navigation route, outputting the navigation voice, and so on. Based on the guidance of the navigation route, the monitored object can easily reach the target location.
  • the portable monitoring device After the portable monitoring device sends the real-time location of the monitored object to the remote monitoring center, the real-time location can be used by the remote monitoring center to provide more monitoring services.
  • the remote monitoring center displays the real-time position of the monitored object or sends the real-time position of the monitored object to the equipment associated with the medical staff when the physiological parameters of the monitored object are abnormal, so that the medical staff can accurately locate The monitored object, in turn, implements medical care behaviors on the monitored object in time.
  • the remote monitoring center implements dynamic allocation of medical resources according to the real-time location of the monitored object. Specifically, the remote monitoring center obtains the real-time position of the monitored object and obtains the monitoring space range corresponding to multiple guardians; among the multiple guardians, the corresponding monitoring space range is determined to include the target guardian at the real-time position; Notification messages of monitoring information; sending notification messages to the monitoring equipment corresponding to the target monitoring personnel.
  • the corresponding guardianship space range can be set for the guardian in advance.
  • the range of the guardianship space corresponding to the guardian can be fixed, for example, a certain monitoring space range is fixedly allocated to a guardian; the corresponding relationship between the guardianship space range and the guardian can also be changed, and is based on the guardian’s
  • the position prevails, for example, a certain size of space around the position of the guardian is set as the guardianship space range of the guardian.
  • the remote monitoring center can obtain the monitoring space range of each guardian, and judge the monitoring space range of which guardian(s) the real-time position of the monitored object belongs to, and then
  • the guardian corresponding to the scope of the guardianship space sends a notification message of the relevant information of the monitored object, or can send a notification message returning to the scope of a certain guardianship space to the monitored object.
  • the notification message sent to the guardian can be specifically sent to the guardian's monitoring equipment, which includes, but is not limited to: bedside monitors, mobile devices, and so on.
  • the notification message includes monitoring information related to the monitored object, such as the case data of the monitored object, the physiological parameters of the monitored object, the real-time position of the monitored object, etc., to notify the guardian to implement relevant monitoring behaviors on the monitored object.
  • the notification message sent to the monitored object can be specifically sent to the portable device of the monitored object, such as a portable monitoring device, a handheld communication device, and so on.
  • the scope of the monitoring space may be divided for the ward as a unit, and the content of the notification message may include, but is not limited to: prompting that the monitored subject has left his ward and prompting him to return.
  • the monitoring personnel in the monitoring space range will perform monitoring, thereby realizing the dynamic allocation of medical resources and improving the monitoring efficiency.
  • it can be judged whether the monitored object has left the monitoring range, and prompted to return if it leaves, so that the original guardian can monitor the monitored object.
  • the remote monitoring center or the portable monitoring device determines whether the monitored object has left the monitoring area according to the real-time position of the monitored object. If so, the portable monitoring device outputs prompt information, which is used to prompt the monitored object to return to the monitoring area. Monitoring area.
  • Portable monitoring equipment is a kind of medical equipment that monitors the monitored object, which is generally carried by the monitored object to realize the monitoring of the monitored object anytime and anywhere. In some abnormal situations, the portable monitoring device needs to send out a reminder signal so that the remote monitoring center can discover the abnormal situation in time.
  • FIG. 11 shows another embodiment of the medical monitoring method, which specifically includes S1101-S1104.
  • the portable monitoring device establishes a communication connection with at least one node device in the communication network.
  • the portable monitoring device can form a wireless communication network with multiple node devices.
  • the portable monitoring device changes the strength of the communication signal with at least one node device in the communication network.
  • changing the communication signal strength may include increasing or decreasing the communication signal strength, and how to change the communication signal strength may be set according to actual needs.
  • the preset conditions may be power conditions, location conditions, and collection conditions of physiological signs. specifically:
  • a specific method is that the portable monitoring device obtains its own remaining power; when the remaining power is lower than a preset power threshold, it sends a signal strength change instruction to the communication module.
  • the portable monitoring device obtains its own real-time position; when the real-time position has not changed for more than a preset length of time, it sends a signal strength change instruction to the communication module.
  • the portable monitoring device sends a signal strength change instruction to the communication module.
  • the possible abnormal situation in the two application scenarios is that the portable monitoring device is separated from the monitoring object, or the monitoring object has some unexpected condition and has not changed its position for a long time, and so on.
  • S1103 The portable monitoring device sends the communication signal strength to the remote monitoring center.
  • the remote monitoring center determines the real-time location of the portable monitoring device based on the strength of the communication signal.
  • the remote monitoring center prompts the monitoring personnel of the real-time location, so that the monitoring personnel can locate and find the portable monitoring equipment in time, and deal with the abnormal situation in time.
  • this application also provides specific medical equipment, such as a portable monitoring equipment and a remote monitoring center.
  • the specific structure of the medical equipment is as follows.
  • the portable monitoring device includes:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the processor is used to identify the physiological sign parameters from the physiological sign signals, obtain the communication signal strength between the communication module and at least one node device in the communication network, determine the activity state of the monitored object based on the at least one communication signal strength, and change the state of the activity state Data is sent to the communication module;
  • the communication module is used to establish a communication connection with at least one node device in the communication network, and send the physiological sign parameters and the status data of the activity state to the remote monitoring center connected with the portable monitoring device.
  • the processor determines the activity state of the monitored object based on the strength of at least one communication signal, it is specifically used to: determine the strength of the communication signal between the communication module and the same node device at multiple different time points; obtain the communication signal according to the strength of the multiple communication signals The degree of change over time, and according to the degree of change, determine the active state of the monitored object; the active state includes: static or a certain degree of violent movement.
  • the processor obtains the degree of change of the communication signal over time according to the intensity of multiple communication signals, and according to the degree of change, when determining the activity state of the monitored object, it is specifically used to: select two communications at least once from the intensities of multiple communication signals.
  • the signal strength is used as a group to obtain at least one communication signal strength group; the ratio of the difference between the two communication signal strengths in the at least one communication signal strength group and the difference between the two communication signal strengths at corresponding time points is calculated; according to at least one The ratio determines the activity status of the monitored object.
  • the processor determines the activity state of the monitored object according to at least one ratio
  • it is specifically used to: calculate the average value of the at least one ratio, and determine the activity state of the monitored object according to the relationship between the average value and the preset average threshold; And/or, selecting ratio groups satisfying different preset ratio ranges from at least one ratio, and determining the activity state of the monitored object according to the number of ratios in the different ratio groups.
  • the processor determines the activity state of the monitored object based on the strength of at least one communication signal, it is specifically configured to: determine the strength of the communication signal between the communication module and multiple different node devices in the same time period to obtain multiple sets of communication signal strength; The change trend of the strength of each group of communication signals determines the activity state of the monitored object; the activity state includes: static or a certain degree of violent rotation.
  • the processor determines the activity state of the monitored object according to the change trend of the communication signal strength of each group, it is specifically used to determine the activity state of the monitored object if the change trend of the communication signal strength of each group conforms to the preset rotation change trend Is rotating; if the activity state of the monitored object is rotating, the target change rate of each group of communication signal strength over time is calculated, and the intensity corresponding to the target change rate is determined according to the preset correspondence between the change rate and the intensity; if each group If the change trend of the communication signal strength does not conform to the preset rotation change trend, it is determined that the active state of the monitored object is stationary.
  • the state data of the active state includes: occurrence time and severity.
  • the processor when the processor sends the state data of the active state to the communication module, it is specifically used to send the state data of the active state to the communication module when the active state belongs to a preset type of active state.
  • the processor is also used to generate prompt information corresponding to the preset type of activity state when the activity state belongs to the preset type of activity state; correspondingly, the portable monitoring device further includes: an output module for outputting prompt information .
  • the processor is also used to generate alarm information corresponding to the preset type of activity state when the activity state belongs to the preset type of activity state;
  • the communication module is also used to send alarm information to the remote monitoring center and/or to The equipment of the guardian associated with the monitored object sends an alarm message.
  • a portable monitoring device includes:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the communication module is used to receive the status data of the activity status of the monitored object sent by other devices associated with the monitored object; send the physiological sign parameters and the status data of the activity status to the remote monitoring center connected to the portable monitoring device.
  • a remote monitoring center includes:
  • the communication module is used to receive the physiological parameters of the monitored object and the state data of the active state of the monitored object sent by the portable monitoring device, and the state data includes the occurrence time and severity of the active state;
  • the processor is used to generate a physiological sign parameter waveform chart according to the physiological sign parameter; according to the occurrence time of the active state, determine the waveform segment corresponding to the active state in the physiological sign parameter waveform chart, and establish the correspondence between the active state and the waveform segment relationship;
  • the display is used to display the waveform diagram of physiological signs and parameters, and to display the activity status according to the corresponding relationship.
  • the processor is further configured to mark the physiological sign parameters corresponding to the occurrence time of the preset type of activity state when the activity state includes the preset type of activity state.
  • the processor is also used for deleting the alarm for the abnormal waveform segment when the physiological sign parameter waveform diagram contains an abnormal waveform segment and the abnormal waveform segment corresponds to an active state whose severity is of a preset type.
  • the processor is also used to generate alarm information corresponding to the preset type of activity state when the activity state belongs to the preset type of activity state;
  • the communication module is also used to send alarm information to the portable monitoring device and/or to the monitor The device of the guardian associated with the object sends an alarm message.
  • a portable monitoring device includes:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the processor is used to identify the physiological sign parameters from the physiological sign signals, and obtain the communication signal strength between the communication module and at least one node device in the communication network;
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send physiological parameters and communication signal strength to the remote monitoring center connected to the portable monitoring device; wherein the communication signal strength is used for the remote monitoring center to determine the monitoring object Activity status.
  • a remote monitoring center includes:
  • the communication module is used to receive the physiological sign parameters of the monitored object sent by the portable monitoring device and the communication signal strength between the portable monitoring device and at least one node device in the communication network;
  • the processor is used to generate a physiological sign parameter waveform diagram according to the physiological sign parameter; determine the activity state of the monitored object based on the strength of at least one communication signal; determine the waveform corresponding to the activity state in the physiological sign parameter waveform diagram according to the occurrence time of the activity state Fragments, and establish the corresponding relationship between the active state and the waveform fragments;
  • the display is used to display the waveform diagram of physiological signs and parameters, and to display the activity status according to the corresponding relationship.
  • the processor is also used to generate alarm information corresponding to the preset type of activity state when the activity state belongs to the preset type of activity state;
  • the communication module is also used to send alarm information to the portable monitoring device and/or to the monitor The device of the guardian associated with the object sends an alarm message.
  • the processor is also used for deleting the alarm for the abnormal waveform segment when the physiological sign parameter waveform diagram contains an abnormal waveform segment and the abnormal waveform segment corresponds to an active state whose severity is of a preset type.
  • a portable monitoring device includes:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send status data of the activity state to the remote monitoring center connected to the portable monitoring device;
  • the processor is configured to obtain the communication signal strength between the communication module and at least one node device in the communication network, determine the active state of the monitored object based on the at least one communication signal strength, and send the state data of the active state to the communication module.
  • a portable monitoring device includes:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send the communication signal strength to the remote monitoring center connected to the portable monitoring device; wherein the communication signal strength is used for the remote monitoring center to determine the activity state of the monitored object;
  • the processor is used to obtain the communication signal strength between the communication module and at least one node device in the communication network, and send the communication signal strength to the communication module.
  • a remote monitoring center includes:
  • the communication module is used to receive the physiological parameter value of the monitored object sent by the portable monitoring device and the communication signal strength between the portable monitoring device and at least one node device in the communication network;
  • the processor is configured to determine the activity state of the monitored object based on the strength of at least one communication signal.
  • the processor determines the activity state of the monitored object based on the strength of at least one communication signal, it is specifically used to: determine the strength of the communication signal between the communication module and the same node device at multiple different time points; according to changes in the strength of multiple communication signals over time Degree, determine the active state of the monitored object; the active state includes: static or a certain degree of violent movement.
  • the processor determines the activity state of the monitored object according to the degree of change in the intensity of multiple communication signals over time, it is specifically used to: select two communication signal intensities from the multiple communication signal intensities at least once as a group to obtain at least one Communication signal strength group; calculate the ratio of the difference between the two communication signal strengths in at least one communication signal strength group and the time point difference corresponding to the two communication signal strengths; determine the activity state of the monitored object according to the at least one ratio.
  • the processor determines the activity state of the monitored object according to at least one ratio
  • it is specifically used to: calculate the average value of the at least one ratio, and determine the activity state of the monitored object according to the relationship between the average value and the preset average threshold;
  • the ratio groups satisfying different preset ratio ranges are respectively selected from at least one ratio, and the activity state of the monitored object is determined according to the number of ratios in the different ratio groups.
  • the processor determines the activity state of the monitored object based on the strength of at least one communication signal, it is specifically configured to: determine the strength of the communication signal between the communication module and multiple different node devices in the same continuous time period to obtain multiple sets of communication signal strength; According to the change trend of each group of communication signal strength, determine the activity state of the monitored object; the activity state includes: static or a certain degree of violent rotation.
  • the processor determines the activity state of the monitored object according to the change trend of the communication signal strength of each group, it is specifically used to determine the activity state of the monitored object if the change trend of the communication signal strength of each group conforms to the preset rotation change trend Is rotating; if the activity state of the monitored object is rotating, the target change rate of each group of communication signal strength over time is calculated, and the intensity corresponding to the target change rate is determined according to the preset correspondence between the change rate and the intensity; if each group If the change trend of the communication signal strength does not conform to the preset rotation change trend, it is determined that the active state of the monitored object is stationary.
  • a portable monitoring device includes:
  • Parameter sensor attachment used to collect the physiological signs of the monitored object in real time
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send the real-time location of the monitored object to the remote monitoring center connected to the portable monitoring device; receive the navigation route generated by the remote monitoring center based on the real-time location and the target location;
  • a processor configured to identify the physiological sign parameter from the physiological sign signal; and determine the real-time position of the monitored object according to the communication connection information between the communication module and the at least one node device;
  • the output module is used to output the navigation route.
  • the portable monitoring device may further include: an input module, which is used to receive the target position input by the monitored object; and the communication module, which is also used to send the target position to the remote monitoring center.
  • a portable monitoring device includes:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; send communication connection information between the communication module and at least one node device to a remote monitoring center connected to the portable monitoring device, where the communication connection information is used for remote monitoring
  • the center determines the real-time location of the monitored object; receives the navigation route generated by the remote monitoring center based on the real-time location and the target location;
  • a processor configured to obtain communication connection information between the communication module and at least one node device
  • the output module is used to output the navigation route.
  • a remote monitoring center includes:
  • the processor is used to obtain the real-time position of the monitored object and the target position to which the monitored object is to be moved; generate a navigation route according to the real-time position and the target position;
  • the communication module is used to send the navigation route to the portable monitoring device connected to the remote monitoring center.
  • the remote monitoring center also includes: an input module for receiving the target location input by the user;
  • the processor When the processor obtains the target position to which the monitored object is to be moved, it is specifically used to: use the target position received by the input module as the target position to which the monitored object is to be moved.
  • the communication module is also used to receive the target position of the monitored object to be moved to from the portable monitoring device, and send the target position to the processor; when the processor obtains the target position of the monitored object to be moved, it is specifically used for: the processor Receive the target position to which the monitored object is to be moved sent by the communication module.
  • the communication module is also used to receive the real-time position of the monitored object sent by other devices, and send the real-time position of the monitored object to the processor; when the processor obtains the real-time position of the monitored object, it is specifically used to: the processor receives the communication module sent The real-time location of the monitored object.
  • the communication module is also used to receive the communication connection information between the portable monitoring device associated with the monitored object and at least one node device in the communication network; and send the communication connection information to the processor; when the processor obtains the real-time position of the monitored object, the specific Used for: Determine the real-time location of the monitored object based on the communication connection information.
  • a remote monitoring center includes:
  • the processor is used to obtain the real-time position of the monitored object and the monitoring space range corresponding to multiple guardians; among the multiple guardians, determine that the corresponding monitoring space range includes the target guardian at the real-time position; generate monitoring including the monitored object Information notification message;
  • the communication module is used to send notification messages to the monitoring equipment corresponding to the target monitoring personnel.
  • a portable monitoring device includes:
  • the communication module is used to establish a communication connection with at least one node device in the communication network; after receiving the signal strength change instruction, change the communication signal strength between the communication module and at least one node device in the communication network;
  • the remote monitoring center sends the communication signal strength, where the communication signal strength is used for the remote monitoring center to determine the real-time location of the portable monitoring device;
  • the processor is configured to send a signal strength change instruction to the communication module when the device state of the portable monitoring device meets the preset condition.
  • the processor when the processor sends a signal strength change instruction to the communication module when the device state of the portable monitoring device meets the preset condition, it is specifically used to: obtain the remaining power of the portable monitoring device; when the remaining power is lower than the preset power threshold, Send a signal strength change command to the communication module.
  • the processor when the processor sends a signal strength change instruction to the communication module when the device state of the portable monitoring device meets the preset condition, it is specifically used to: obtain the real-time position of the portable monitoring device; when the real-time position exceeds the preset length of time, there is no change When, send a signal strength change command to the communication module.
  • the processor when the processor sends a signal strength change instruction to the communication module when the device state of the portable monitoring device meets the preset condition, it is specifically used to: when the portable monitoring device does not collect the physiological sign signal for a period of time that reaches the preset period of time , Send a signal strength change command to the communication module.
  • FIG. 12 shows a structural example of a portable monitor, which specifically includes: sensor accessory 121, parameter measurement circuit 122, main control circuit 123, display 124, external communication and power interface 125, alarm circuit 126, and input interface circuit 127.
  • the parameter measurement circuit 122 includes at least one parameter measurement circuit 122 corresponding to a physiological parameter.
  • the parameter measurement circuit 122 includes at least an ECG signal parameter measurement circuit, a respiratory parameter measurement circuit, a body temperature parameter measurement circuit, a blood oxygen parameter measurement circuit, and a noninvasive blood pressure parameter measurement circuit. At least one parameter measurement circuit among the invasive blood pressure parameter measurement circuit, etc., each parameter measurement circuit 122 is respectively connected to an externally inserted sensor accessory 121 through a corresponding sensor interface.
  • the sensor accessories 121 include detection accessories corresponding to the detection of physiological parameters such as electrocardiographic respiration, blood oxygen, blood pressure, and body temperature.
  • the parameter measurement circuit 122 is mainly used to connect the sensor accessory 121 to obtain the collected physiological parameter signals, and may include at least two or more physiological parameter measurement circuits.
  • the parameter measurement circuit 122 may be, but is not limited to, the physiological parameter measurement circuit 122 (module) , The parameter measurement circuit 122 (module) or the sensor accessory 121 collects human physiological parameters and so on.
  • the parameter measurement circuit 122 obtains the physiological sampling signal of the relevant patient by obtaining the external physiological parameter sensor attachment through the extended interface, and obtains the physiological data after processing for alarm and display.
  • the expansion interface can also be used to output the control signal on how to collect the physiological parameters output by the main control circuit 123 to the external physiological parameter monitoring accessory through the corresponding interface, so as to realize the monitoring and control of the patient's physiological parameters.
  • the portable monitor or module assembly may also include a main control circuit 123, which needs to include at least one processor and at least one memory.
  • the main control circuit 123 may also include a power management module, a power IP module, and an interface conversion circuit. At least one of the others.
  • the power management module is used to control the power on and off of the whole machine, the power-on sequence of each power domain inside the board, and the battery charging and discharging.
  • the power IP module refers to associating the schematic diagram of the power circuit unit that is frequently called repeatedly with the PCB layout, and solidifying it into a separate power module, that is, converting an input voltage into an output voltage through a predetermined circuit, where the input voltage and The output voltage is different.
  • the voltage of 15V is converted to 1.8V, 3.3V or 3.8V, etc.
  • the power IP module can be single-channel or multi-channel. When the power IP module is a single channel, the power IP module can convert an input voltage to an output voltage. When the power IP module is multi-channel, the power IP module can convert one input voltage into multiple output voltages, and the voltage values of the multiple output voltages can be the same or different, so as to meet the differences of multiple electronic components at the same time Voltage demand, and the module has few external interfaces, it works in the system as a black box decoupling from the external hardware system, which improves the reliability of the entire power supply system.
  • the interface conversion circuit is used to convert the signal output by the main control minimum system module (that is, at least one processor and at least one memory in the main control circuit 123) into an input standard signal required by the actual external device, for example, to support an external VGA
  • the display function converts the RGB digital signal output by the main control CPU into a VGA analog signal, supports external network functions, and converts the RMII signal into a standard network differential signal.
  • the portable monitor or module assembly may also include one or more of a local display 124, an alarm circuit 126, an input interface circuit 127, and an external communication and power interface 125.
  • the main control circuit 123 is used to coordinate and control the boards, circuits and devices in the portable monitor or module assembly.
  • the main control circuit 123 is used to control the data interaction between the parameter measurement circuit 122 and the communication interface circuit, as well as the transmission of control signals, and transmit the physiological data to the display 124 for display, or it can receive data from the touch screen.
  • user control commands input by physical input interface circuits such as keyboards, keys, etc. can also output control signals on how to collect physiological parameters.
  • the alarm circuit 126 may be an audible and visual alarm circuit.
  • the main control circuit 123 completes the calculation of physiological parameters, and can send the calculation results and waveforms of the parameters to the host (such as the host with the display 124, PC, central station, etc.) through the external communication and power interface 125, and external communication and power supply
  • the interface 125 can be one of Ethernet, Token Ring, Token Bus, and the optical fiber distributed data interface (FDDI) as the backbone of these three networks.
  • the combination may also be one or a combination of wireless interfaces such as infrared, Bluetooth, wifi, and WMTS communication, or may also be one or a combination of wired data connection interfaces such as RS232 and USB.
  • the external communication and power interface 125 may also be one or a combination of the wireless data transmission interface and the wired data transmission interface.
  • the host can be any computer equipment such as the host of the monitor, an electrocardiograph, an ultrasonic diagnostic apparatus, a computer, etc., and a monitoring device can be formed by installing the matching software.
  • the host can also be a communication device, such as a mobile phone, a portable monitor, or a module component that sends data to a mobile phone that supports Bluetooth communication through a Bluetooth interface to realize remote data transmission.
  • the present application also provides a computer storage medium on which a computer program is stored, and when the computer program is executed by a processor, the medical monitoring method in any one of the foregoing embodiments is implemented.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Alarm Systems (AREA)

Abstract

一种便携式监护设备、远程监控中心、医疗监护方法、可读存储介质,便携式监护设备可以实时采集监测对象的生理体征信号,从生理体征信号中识别生理体征参数(S201);获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度,基于至少一个通信信号强度确定监测对象的活动状态(S202);向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据(S203)。远程监控中心依据生理体征参数生成生理体征参数波形图(S204);在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系(S205);显示生理体征参数波形图,以及按照对应关系显示活动状态(S206)。

Description

便携式监护设备、远程监控中心及医疗监护方法 技术领域
本申请涉及医疗设备技术领域,更具体地,是便携式监护设备、远程监控中心及医疗监护方法。
背景技术
便携式监护设备是临床监护场景中的一个常用设备,其可以佩戴在患者身体上,用于对患者的生理体征情况进行监测。该设备能够最大限度地减少对患者活动的限制,使用方式较为方便灵活。便携式监护设备监测得到的生理体征参数不仅可以显示给患者,还可以上传至远程监控中心。
远程监控中心设置在集中监护场所,其可以收集多个便携式监护设备监测的患者生理体征情况并进行展示,由医护人员实现对多个患者的统一监控。
发明内容
第一方面,本申请提供了一种便携式监护设备,包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
处理器,用于从生理体征信号中识别生理体征参数,获得通信模块与通信网络中至少一个节点设备的通信信号强度,基于至少一个通信信号强度确定监测对象的活动状态,以及将活动状态的状态数据发送至通信模块;
通信模块,用于建立与通信网络中至少一个节点设备的通信连接,向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
第二方面,本申请提供了一种便携式监护设备,包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
处理器,用于从生理体征信号中识别生理体征参数;
通信模块,用于接收与监测对象关联的其他设备发送的监测对象的活动状态的状态数据;向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
第三面,本申请提供了一种远程监控中心,包括:
通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数及监测对象的活动状态的状态数据,状态数据包括活动状态的发生时间以及剧烈程度;
处理器,用于依据生理体征参数生成生理体征参数波形图;根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
显示器,用于显示生理体征参数波形图,以及按照对应关系显示活动状态。
第四方面,本申请提供了一种便携式监护设备,包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
处理器,用于从生理体征信号中识别生理体征参数,获得通信模块与通信网络中至少一个节点设备的通信信号强度;
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送生理体征参数以及通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态。
第五方面,本申请提供了一种远程监控中心,包括:
通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
处理器,用于依据生理体征参数生成生理体征参数波形图;基于至少一个通信信号强度确定监测对象的活动状态;根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
显示器,用于显示生理体征参数波形图,以及按照对应关系显示活动状态。
第六方面,本申请提供了一种便携式监护设备,包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送活动状态的状态数据;
处理器,用于获得通信模块与通信网络中至少一个节点设备的通信信号强度,基于至少一个通信信号强度确定监测对象的活动状态,以及将活动状态的状态数据发送至通信模块。
第七方面,本申请提供了一种便携式监护设备,包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态;
处理器,用于获得通信模块与通信网络中至少一个节点设备的通信信号强度,以及将通信信号强度发送至通信模块。
第八方面,本申请提供了一种远程监控中心,包括:
通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数值及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
处理器,用于基于至少一个通信信号强度确定监测对象的活动状态。
第九方面,本申请提供了一种便携式监护设备,包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送监测对象的实时位置;接收远程监控中心依据实时位置以及目标位置生成的导航路线;
处理器,用于从生理体征信号中识别生理体征参数;以及根据通信模块与至少一个节点设备的通信连接信息确定监测对象的实时位置;
输出模块,用于输出导航路线。
第十方面,本申请提供了一种便携式监护设备,包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送通信模块与至少一个节点设备的通信连接信息,其中通信连接信息用于供远程监控中心确定监测对象的实时位置;接收远程监控中心依据实时位置以及目标位置生成的导航路线;
处理器,用于获得通信模块与至少一个节点设备的通信连接信息;
输出模块,用于输出导航路线。
第十一方面,本申请提供了一种远程监控中心,包括:
处理器,用于获得监测对象的实时位置以及监测对象待运动至的目标位置;依据实时位置以及目标位置生成导航路线;
通信模块,用于向与远程监控中心相连的便携式监护设备发送导航路线。
第十二方面,本申请提供了一种远程监控中心,包括:
处理器,用于获得监测对象的实时位置以及获得多个监护人员对应的监护 空间范围;在多个监护人员中,确定对应的监护空间范围包括实时位置的目标监护人员;生成包括监测对象的监测信息的通知消息;
通信模块,用于向目标监护人员对应的监护设备发送通知消息。
第十三方面,本申请提供了一种便携式监护设备,包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;在接收到信号强度变更指令后,变更通信模块与通信网络中至少一个节点设备的通信信号强度;向与便携式监护设备相连的远程监控中心发送通信信号强度,其中通信信号强度用于供远程监控中心确定便携式监护设备的实时位置;
处理器,用于当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令。
第十四方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
实时采集监测对象的生理体征信号,并从生理体征信号中识别生理体征参数;
获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
基于至少一个通信信号强度确定监测对象的活动状态;
建立与通信网络中至少一个节点设备的通信连接,向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
第十五方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
实时采集监测对象的生理体征信号;
从生理体征信号中识别生理体征参数;
接收与监测对象关联的其他设备发送的监测对象的活动状态的状态数据;
向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
第十六方面,本申请提供了一种医疗监护方法,应用于远程监控中心,该方法包括:
接收便携式监护设备发送的监测对象的生理体征参数及监测对象的活动状态的状态数据,状态数据包括活动状态的发生时间以及剧烈程度;
依据生理体征参数生成生理体征参数波形图;根据活动状态的发生时间, 在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
显示生理体征参数波形图,以及按照对应关系显示活动状态。
第十七方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
实时采集监测对象的生理体征信号;
从生理体征信号中识别生理体征参数,获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
建立与通信网络中至少一个节点设备的通信连接;
向与便携式监护设备相连的远程监控中心发送生理体征参数以及通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态。
第十八方面,本申请提供了一种医疗监护方法,应用于远程监控中心,该方法包括:
接收便携式监护设备发送的监测对象的生理体征参数及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
依据生理体征参数生成生理体征参数波形图;
基于至少一个通信信号强度确定监测对象的活动状态;
根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段;
建立活动状态与波形片段之间的对应关系;
显示生理体征参数波形图,以及按照对应关系显示活动状态。
第十九方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
建立与通信网络中至少一个节点设备的通信连接;
获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
基于至少一个通信信号强度确定监测对象的活动状态;
向与便携式监护设备相连的远程监控中心发送活动状态的状态数据。
第二十方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
建立与通信网络中至少一个节点设备的通信连接;
获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
向与便携式监护设备相连的远程监控中心发送通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态。
第二十一方面,本申请提供了一种医疗监护方法,应用于远程监控中心,该方法包括:
接收便携式监护设备发送的监测对象的生理体征参数值及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
基于至少一个通信信号强度确定监测对象的活动状态。
第二十二方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
实时采集监测对象的生理体征信号,并从生理体征信号中识别生理体征参数;
建立与通信网络中至少一个节点设备的通信连接,并根据便携式监护设备与至少一个节点设备的通信连接信息确定监测对象的实时位置;
向与便携式监护设备相连的远程监控中心发送监测对象的实时位置;
接收远程监控中心依据实时位置以及目标位置生成的导航路线;
输出导航路线。
第二十三方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
建立与通信网络中至少一个节点设备的通信连接;
获得便携式监护设备与至少一个节点设备的通信连接信息;
向与便携式监护设备相连的远程监控中心发送通信连接信息,其中通信连接信息用于供远程监控中心确定监测对象的实时位置;
接收远程监控中心依据实时位置以及目标位置生成的导航路线;
输出导航路线。
第二十四方面,本申请提供了一种医疗监护方法,应用于远程监控中心,该方法包括:
获得监测对象的实时位置以及监测对象待运动至的目标位置;
依据实时位置以及目标位置生成导航路线;
向与远程监控中心相连的便携式监护设备发送导航路线。
第二十五方面,本申请提供了一种医疗监护方法,应用于远程监控中心,该方法包括:
获得监测对象的实时位置以及获得多个监护人员对应的监护空间范围;
在多个监护人员中,确定对应的监护空间范围包括实时位置的目标监护人员;
生成包括监测对象的监测信息的通知消息;
向目标监护人员对应的监护设备发送通知消息。
第二十六方面,本申请提供了一种医疗监护方法,应用于便携式监护设备,该方法包括:
建立与通信网络中至少一个节点设备的通信连接;
当便携式监护设备的设备状态满足预设条件时,变更便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
向与便携式监护设备相连的远程监控中心发送通信信号强度,其中通信信号强度用于供远程监控中心确定便携式监护设备的实时位置。
第二十七方面,本申请提供了一种可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上任一项所述的医疗监护方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为医疗监护***的一个架构示意图;
图2为医疗监护方法的一个流程示意图;
图3为通信信号强度与采集时间点的一个对应关系示例图;
图4为显示的心电图波形与活动状态的一个示例图;
图5为远程监控中心所提供的应用服务的一个示例图;
图6为医疗监护***的另一个架构示意图;
图7为便携式监护设备进行报警的一种示例图;
图8为医疗监护方法的另一个流程示意图;
图9为医疗监护方法的又一个流程示意图;
图10为远程监控中心动态分配医疗资源的一个场景示意图;
图11为医疗监护方法的又一个流程示意图;
图12为便携式监护仪的一个结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在医疗领域中,便携式监护设备与远程监控中心组成的监护***是临床监护场景中的一个重要***。见图1,其示出了监护***的一种结构实施例。便携式监护设备与远程监控中心可以通过无线方式进行通信连接,具体地,便携式监护设备与通信网络中的节点设备通过无线方式相连,节点设备通过有线方式或无线方式与远程监控中心相连。其中节点设备也可以称为无线接入点(Access Point,简称AP)。
便携式监护设备,是患者随身携带或方便患者携带的一种监护设备,具体包括但不局限于遥测盒子、节点设备响应器等,其中节点设备响应器与节点设备通信连接,能够获得与节点设备的通信信号强度,其可以具体为信号监测器等。便携式监护设备可以检测患者的一项或多项参数,包括生理体征参数和非生理体征参数。参数可以通过上述通信连接上传至远程监控中心。
远程监控中心为远程监控便携式监护设备的控制设备,其可以接收便携式监护设备发送的通信信号,对通信信号进行处理,得到并输出监控数据。远程监控中心的具体形式包括但不局限于:中央站、电子化病历平台(Electronic Medical Record,简称EMR)、基于计算机的病人记录(Computer-Based Patient Record,简称CPR)、床边监护仪等。
需要说明的是,上述监护***中,便携式监护设备由于其便于携带的特点可以方便地采集与病患相关的各项信息,这些信息可以反映病患和/或设备自身的实时状态。通过对这些信息的分析处理,监护***可以提供一项或多项与病患监护相关的服务。以下结合各种不同的应用场景,说明监护服务的具体实 现过程。
见图2,其示出了医疗监护方法的一个流程实施例,包括S201-S206。
S201:便携式监护设备采集监测对象的生理体征参数。
具体地,便携式监护设备可以实时采集监测对象的生理体征信号,且可以对生理体征信号进行识别以获得生理体征参数。需要说明的是,便携式监护设备也可以直接将生理体征信号发送至远程监控中心,由远程监控中心识别得到生理体征参数。
S202:便携式监护设备获得与至少一个节点设备的通信信号强度,并基于通信信号强度确定监测对象的活动状态。
其中,便携式监护设备可以与至少一个节点设备组成无线通信网络,便携式监护设备可以跟随监测对象变动位置,位置的变动会影响便携式监护设备与节点设备之间的通信信号强度。因此,便携式监护设备可以获得与无线通信网络中的至少一个节点设备的通信信号强度,并根据通信信号强度的变化程度来确定监测对象的活动状态。其中,通信信号强度可以具体包括但不局限于:接收的信号强度指示(Received Signal Strength Indication,简称RSSI)。确定出的活动状态包括但不局限于:静止、移动或旋转。
在一种实现方式中,确定活动状态的具体过程包括:确定便携式监护设备与同一节点设备在多个不同时间点的通信信号强度;根据多个通信信号强度,得到通信信号随时间的变化程度,并根据变化程度,确定监测对象的活动状态,活动状态具体为静止或一定剧烈程度的活动。需要说明的是,该实现方式确定的活动具体为移动,即从一个位置点移动到另一个位置点。
具体来讲,便携式监护设备可以多次与同一节点设备进行通信连接,因此便携式监护设备可以获得与该同一节点设备在多个不同的时间点的通信信号强度。不同时间点的通信信号强度发生变化,可以表示便携式监护设备的位置和/或姿态发生变化。通信信号强度的差值越大,则说明便携式监护设备(即监测对象)的位置和/或姿态变化越大。但是,如果依据该变化大小确定监测对象的活动状态可能存在误差,原因是该变化可能是较长一段时间发生的,也可能是较短一段时间内发生的,只有在较短一段时间内发生的位置和/或姿态变化才更准确地反映监测对象活动的情况。因此,需要确定通信信号强度随时间的变化程度,该变化程度是通信信号强度的变化与时间间隔的比值,具体可 以称为通信信号强度的变化率。通信信号强度的变化率越大,则说明便携式监护设备(即监测对象)的位置和/或姿态的活动越剧烈。
更具体地,得到多个不同时间点的通信信号强度后,便携式监护设备从多个通信信号强度中至少一次选择两个通信信号强度作为一组,得到至少一个通信信号强度组;计算至少一个通信信号强度组中的两个通信信号强度的差值与两个通信信号强度对应的时间点的差值的比值;根据至少一个比值,确定监测对象的活动状态。
例如,选择的一个通信信号强度组中包括两个通信信号强度,分别为时间点T1的接收信号强度指示RSSI1以及时间点T2的接收信号强度指示RSSI2。计算该两个通信信号强度的差值,计算两个通信信号强度对应的时间点的差值,以及计算两个差值的比值,即△RSSI/△T=RSSI2-RSSI1/T2-T1。根据多个通信信号强度至少计算一个该比值,进而综合该至少一个比值的情况来确定监测对象的活动状态。
一种确定方式具体为,计算至少一个比值的平均值,并根据平均值与预设平均值阈值之间的关系确定监测对象的活动状态。
例如,预设平均值阈值可以包括:表示监测对象从静止状态转变为活动状态的临界值。如果平均值大于或等于该临界值,则确定监测对象在该时间段内的活动状态为活动。如果平均值小于临界值,则确定监测对象在该时间段内的活动状态为静止。或者,预设平均值阈值可以包括:不同剧烈程度的活动状态对应的范围值。例如,活动状态可以包括四种:静止、活动平缓、活动中等以及活动剧烈,则分别为每个活动状态预先设置对应的范围值,判断上述平均值落入哪个范围值,则将该范围值对应的活动状态确定为监测对象的活动状态。需要说明的是,活动状态的类型并不局限于上述四种,还可以包括其他。或者,活动状态的类型可以通过等级来表示,例如0级活动(表示静止)、1级活动、2级活动、3级活动、4级活动等等。
另一种确定方式具体为,在至少一个比值中分别选择满足不同预设比值范围的比值组,并根据不同比值组内比值的个数确定监测对象的活动状态。
在实施时,为不同的活动状态设置不同的预设比值范围,预设比值范围用于在至少一个比值中选择符合该活动状态的比值。换句话说,比值即通信信号强度变化率,预设比值范围具体为通信信号强度变化率的范围值,预设比值范 围用于在至少一个通信信号强度变化率中,选择满足该活动状态的通信信号强度变化率。得到多个比值组后,统计比值组内的比值个数,将比值个数最多的比值组对应的活动状态。
例如,活动状态可以包括但不局限于:静止、活动平缓、活动中等以及活动剧烈,每种活动状态具有对应的预设比值范围。得到至少一个比值后,将属于同一预设比值范围的比值划分为同一组,从而得到多个比值组。然后确定出比值个数最多的比值组,将该比值组对应的活动状态确定为监测对象的活动状态。
又一种确定方式具体为,以上两种确定方式的结合,并对两种确定方式的确定的活动状态进行综合判断,得出监测对象最终的活动状态。
见图3,其示出了通信信号强度与采集时间点的一个对应关系示例图。在480秒的一个时间段内,接收的信号强度指示RSSI有一定幅度的变化。通过对通信信号强度的变化率的分析,可以确定携带该便携式设备的监测对象在0~50s、170s~180s、450s~480s的几个时间段内存在活动情况,且0s~50s以及450~480s为平缓活动,60s~420s为中等活动,170s~180s为剧烈活动。
以上实现方式中,可以确定监测对象的活动状态为静止或者移动。除了可以判断是否存在移动类型的活动,本实施例还可以判断监测对象是否存在旋转类型的活动。
在一种实现方式中,确定监测对象活动状态的具体过程包括:确定便携式监护设备分别与多个不同节点设备在同一时间段内的通信信号强度,得到多组通信信号强度;根据各组通信信号强度的变化趋势,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的旋转。
具体来讲,无线通信网络中包括多个节点设备,此些节点设备可以分散部署在某个空间的多个不同方位。便携式监护设备可以同时与此多个不同的节点设备存在通信连接,当携带便携式监护设备的监测对象进行旋转类型的活动时,由于人体对通信信号的遮挡吸收效应,便携式监护设备与此些节点设备之间的通信信号强度会发生变化,且变化趋势满足一定的规律。
例如,在一定范围的空间内部署有多个节点设备,监测对象携带的便携式监护设备可以与该多个节点设备进行通信连接。若监测对象在该空间内进行旋转活动,则其携带的便携式监护设备与前后左右四个方位的节点设备之间的通 信信号强度存在一个规律:按照顺时针或逆时针的方向,不同方位的通信信号强度有规律地依次变大又变小。具体例如:监测对象顺时针旋转,则在旋转过程中便携式监护设备与不同方位的节点设备之间的通信信号强度变化规律为:前方较大后方较小左右两方中等,变为右方较大左方较小前后两方中等,再变为后方较大前方较小左右两方中等,再变为左方较大右方较小前后两方中等,再变为前方较大后方较小左右两方中等,依次重复变化。当然,此处仅仅是一种示例说明,在其他的旋转场景下可以同理得到通信信号强度的变化规律。
可以理解的是,从节点设备角度来看,同一方位的节点设备与便携式监护设备的通信信号强度的变化存在规律:逐渐变大又逐渐变小。综合多个不同方位的节点设备的变化规律,可以确定出监测对象是否进行旋转活动。
因此,便携式监护设备确定其与多个不同方位在同一时间段内的通信信号强度,同一方位对应的通信信号强度为同一个通信信号强度组。如果各组通信信号强度的变化趋势符合旋转活动对应的变化趋势,则可以确定监测对象的活动状态为旋转。如果各组通信信号强度的变化趋势符合静止活动对应的变化趋势,则确定监测对象的活动状态为静止。或者,可以将旋转活动对应的变化趋势设置为预设的旋转变化趋势,判断各组通信信号强度的变化趋势是否符合预设的旋转变化趋势,若是则确定监测对象的活动状态为旋转,否则确定监测对象的活动状态为静止。
需要说明的是,便携式监护设备除了可以定性判断监测对象的活动状态为静止还是旋转,还可以定量判断旋转活动的剧烈程度。具体地,若监测对象的活动状态为旋转,则计算各组通信信号强度随时间的目标变化率,根据变化率与剧烈程度的预设对应关系,确定目标变化率对应的剧烈程度。
具体来讲,可以预先设置不同变化率与剧烈程度的对应关系,例如变化率越高,则表示剧烈程度越高。计算每组通信信号强度内的通信信号强度随时间的变化率,该变化率可以称为目标变化率。每组通信信号强度各自对应一个目标变化率,选择某一组通信信号强度的目标变化率,或者计算多组通信信号强度的平均目标变化率,根据变化率与剧烈程度的预设对应关系,将目标变化率或者平均目标变化率对应的剧烈程度确定为监测对象的活动状态的剧烈程度。
由以上说明可知,便携式监护设备可以监测得到监测对象的活动状态,活动状态具有状态数据,状态数据包括:活动状态的发生时间以及活动状态的剧 烈程度。其中静止的剧烈程度可以为0或某个较低的等级。
S203:便携式监护设备向远程监控中心发送生理体征参数以及活动状态的状态数据。
其中,便携式监护设备可以基于无线通信网络中至少一个节点设备,向远程监控中心发送数据,或者也可以通过其他通信方式向远程监控中心发送数据。数据包括:监测对象的生理体征参数以及活动状态的状态数据。
具体地,便携式监护设备可以在发送生理体征参数时,一并发送活动状态的状态数据,或者分开发送。另外,便携式设备可以将确定的所有类型活动状态的状态数据均向远程监控中心发送;或者,对活动状态进行选择,根据处理需求将满足选择条件的活动状态的状态数据向远程监控中心发送,即当活动状态属于预设类型的活动状态时,向远程监控中心发送活动状态的状态数据。预设类型的活动状态可以是根据剧烈程度设置的活动状态,如静止类型的活动状态、非静止类型的活动状态、或者超过一定剧烈程度的活动状态等等。
S204:远程监控中心依据生理体征参数生成生理体征参数波形图。
其中,远程监控中心接收到便携式监护设备发送的监测对象的生理体征参数后,可以将生理体征参数按照采集时间的先后顺序生成生理体征参数波形图。波形图可以反映监测对象在一段时间内生理体征参数的变化情况。生理体征参数波形图可以包括趋势图和/或实时波形图。一项生理体征参数可以生成一个生理体征参数波形图,也可以生成在不同时间段的多个生理体征参数波形图。或者,便携式监护设备可以发送生理体征信号,远程监控中心从生理体征信号中识别生理体征参数,并根据生理体征参数生成生理体征参数波形图。
需要说明的是,生理体征参数波形图可以并不局限于由远程监控中心生成,也可以是便携式监护设备根据采集的生理体征参数信号生成的,并将该生理体征参数波形图发送至远程监控中心显示。
S205:远程监控中心在生理体征参数波形图中确定与活动状态对应的波形片段,建立活动状态与波形片段之间的对应关系。
其中,远程监控中心接收到便携式监护设备发送的监测对象的活动状态的状态数据后,根据活动状态的发生时间以及生理体征参数的采集时间,在生理体征参数波形图中确定与活动状态对应的波形片段。也就是说,根据时间这个关联因素,确定活动状态与生理体征参数波形之间的对应关系。
S206:远程监控中心显示生理体征参数波形图,以及按照对应关系显示活动状态。
其中,远程监控中心具有显示单元,显示生理体征参数波形图,以供医护人员远程获得监测对象的生理体征状态。一旦根据生理体征参数波形图发现监测对象的生理状态异常,能够即时采取必要的医疗措施。例如,便携式监护设备发送的生理体征参数可以包括但不局限于:心电图ECG、血氧饱和度SPO2、无创血压NIBP中的任意一项或多项。远程监控中心接收到生理体征参数后,可以生成并显示心电图ECG波形图、血氧饱和度SPO2波形图、无创血压NIBP波形图中的一种或多种,医护人员通过观察该一种或多种生理体征参数波形图的变化情况,可以获知监测对象心率、血氧饱和度、血压中的一项或多项生理体征参数的变化情况。
需要说明的是,远程监控中心除了可以显示生理体征参数波形图之外,还可以按照时间上的对应关系,显示监测对象的活动状态。例如图4,远程监控中心显示某监测对象在3个不同时间段内的心电图波形,在14:59:06到15:00:06的一段时间段内,心电图波形发生了异常波动,且该异常波动对应有一个剧烈程度为中等的活动状态。
通过该对应关系,医护人员可以判断生理体征参数的变化是否与活动状态之间存在关联关系。例如,如果生理体征参数波形存在较大的波动,医护人员可以查看该波动是否对应有某种剧烈程度的活动状态,如果是,则可能判定该异常波动是由于监测对象自身的活动造成的,从而不必对监测对象进行医疗救治动作等等。
可见,远程监控中心显示的活动状态,可以为医护人员的医护决策提供了更多的数据支持,使得医护决策结果更加准确。并且,医护人员在观察到异常波形片段后,根据本地显示的活动状态,便可以判断该异常波形片段是否与监测对象的活动情况相关,无需前往监测对象所在现场确认,为医护人员的监护工作提供了便利。
远程监控中心对于活动状态的状态数据的使用,还可以体现在其他方面。本申请提供以下几个实施例进行说明。
在一个实施例中,远程监控中心可以在活动状态包括预设类型的活动状态的情况下,对预设类型的活动状态的发生时间对应的生理体征参数进行标记。 其中,活动状态的预设类型可以是根据实际需求而设置的任意一种或多种类型,可以根据活动状态的剧烈程度和/或发生时间确定活动状态的预设类型。另外,远程监控中心可以自身判断活动状态是否包含有预设类型的活动状态,或者接收其他设备的判断结果,在判断结果为包括预设类型的活动状态的情况下,对生理体征参数进行标记。
标记生理体征参数的方式包括但不局限于:对生理体征参数的置信度进行标记,例如将生理体征参数标记为“无效”、“置信度低”或“置信度高”等。之所以对生理体征参数的置信度进行标记,是因为某些医疗监护动作的执行需要依赖于对生理体征参数的处理结果,如果处理的参数包括可能影响处理结果的生理体征参数,则会影响处理结果的准确度。
例如,对心电图波形的处理包括计算ST段及QT段,计算过程需要使用心电图ECG参数,如果ECG参数中某些ECG参数的采集时间点对应有一定剧烈程度的活动状态,则该活动状态会干扰ST段及QT段的计算准确度,因此需要降低该些ECG参数对于计算结果的权重值。
对生理体征参数的置信度进行标记,则可以调整生理体征参数在后续计算过程的权重值。如果活动状态会导致计算结果的准确度降低,则降低生理体征参数的权重值;反之则提高生理体征参数的权重值。具体调整至何种程度,需要根据实际需求确定。可见,通过活动状态与生理体征参数的关联关系,对生理体征参数的后续处理过程进行调整,提高生理体征参数处理结果的准确度。
在另一实施例中,远程监控中心可以基于活动状态,对监护场景中的报警动作进行处理,进一步提高报警动作的准确度。具体地,当生理体征参数波形图包含异常波形片段且异常波形片段对应有剧烈程度属于预设类型的活动状态时,删除对异常波形片段的报警。
其中,远程监控中心生成生理体征参数波形图后,该生理体征参数波形图中可能包含异常波形片段,根据监护报警策略需要会对该异常波形片段进行报警,以提醒医护人员加强对监测对象的监护。通过上述说明可知,该异常片段可能是由于监测对象的剧烈活动导致的,并无需医护人员实施何种加强监护行为。因此,可以删除对该异常波形片段的报警,也就是说,无需对该异常波形片段进行报警,从而提高报警准确度,避免对医疗资源的浪费。
在又一实施例中,远程监控中心可以对某些活动状态进行监控报警,以提 醒相关人员该活动状态的发生,及时对该活动状态进行处理动作。具体地,当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;向便携式监护设备发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
其中,远程监控中心可以预先设置进行报警的活动状态的类型,如剧烈程度达到一定程度的活动状态、发生时间点在某个时间点的活动状态等等。获得监测对象的活动状态后,进一步判断活动状态是否属于预设类型的活动状态。或者,远程监控中心也可以通过其他设备得到判断结果。如果判断结果表示活动状态属于预设类型的活动状态,则远程监控中心关于该预设类型的活动状态,生成报警信息。其中:报警信息可以包括文字、语音、图形、图像等内容,内容是与预设类型的活动状态相关的,例如预设类型的活动状态为剧烈的活动状态,则报警内容用于提示停止剧烈活动。或者,报警信息仅仅输出声、光等提示信号。或者,报警信息可以是以上两种形式的结合,或者是本领域技术人员能够期望到的具有提示作用的任何其他形式。
一方面,报警信息可以发送至便携式监护设备,便携式监护设备输出报警信息,以提示监测对象或其他相关人员注意监测对象的相关活动状态。另一方面,监测对象可以与监护人员具有对应关系,由对应的监护人员对监测对象进行监护工作,因此报警信息可以发送至监测对象关联的监护人员,具体是发送至监护人员相关的设备,如监护仪、手持终端、计算机设备等。设备输出该报警信息,以使监护人员对监测对象的活动情况加强注意。当然,这种情况下远程监控中心需要向设备发送报警信息关联的监测对象的相关信息,以使监护人员准确定位监测对象。当然,可以将上述两个方面进行结合发送报警信息,或者报警信息还可以发送至本领域技术人员能够想到的其他设备。
为了便于理解,本申请结合图示对监控中心依据活动状态实现的监护服务进行说明。如图5所示,便携式监护设备通过监测其与节点设备之间的通信信号强度得到活动状态,将活动状态发送至远程监控中心。远程监控中心基于活动状态实现几项服务:与生理体征参数波形图关联显示活动状态、防止对异常波形片段的误报警、标记生理体征参数、对活动状态进行报警。需要说明的是,远程监控中心可以实现这几项服务中的任意一项或多项。另外,除了这几种使用方式之外,活动状态还可以应用在本领域技术人员能够期望到的其他监护场 景中。
需要说明的是,上述便携式监护设备是基于其与节点设备之间的通信信号强度来确定活动状态,当然,便携式监护设备还可以通过其他方式来确定活动状态,如使用加速传感器获取监测对象的运动和/或姿态等信息,使用该运动和/或姿态信息来确定活动状态。又或者,如图6所示,便携式监护设备与监测对象关联的其他设备相连,例如监测对象佩戴的手环或者其他能够监测活动状态的设备,便携式监护设备从这些其他设备上获得监测对象的活动状态。
在一个实施例中,提示信息可以是由便携式监护设备自身生成并输出,以提示佩戴该便携式监护设备的监测对象注意自身的活动情况。具体地,当活动状态属于预设类型的活动状态时,便携式监护设备生成与预设类型的活动状态对应的提示信息。该提示信息的相关说明可以参照上述远程监控中心生成的报警信息,此处并不赘述。
在又一个实施例中,当活动状态属于预设类型的活动状态时,便携式监护设备生成与预设类型的活动状态对应的报警信息;向远程监控中心发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。该提示信息的相关说明可以参照上述远程监控中心生成的报警信息,此处并不赘述。
如图7所示,便携式监护设备获得监测对象的活动状态,确定活动状态属于预设类型的活动状态后,通过以下三种方式中的任意一种或多种进行报警:输出提示信息、向远程监控中心发送报警信息、向监测对象关联的监护人员的设备发送报警信息。
以上各种应用场景说明中,活动状态是由便携式监护设备确定出来的,但还可以由远程监控中心来确定。见图8,其示出了便携式监护设备与监控中心实现医疗监护服务的一个流程实施例,具体包括S801-S807。
S801:便携式监护设备采集监测对象的生理体征参数。
具体地,便携式监护设备实时采集监测对象的生理体征信号,并从生理体征信号中识别生理体征参数。
S802:便携式监护设备获得与通信网络中至少一个节点设备的通信信号强度。
S803:便携式监护设备向远程监控中心发送生理体征参数以及通信信号强度。
具体地,便携式监护设备建立与通信网络中至少一个节点设备的通信连接,通过通信网络向相连的远程监控中心发送生理体征参数以及通信信号强度。
S804:远程监控中心依据生理体征参数生成生理体征参数波形图。
S805:远程监控中心基于至少一个通信信号强度确定监测对象的活动状态。
其中,远程监控中心确定活动状态的具体方式,可以参照图2所示的实施例中便携式监护设备确定活动状态的方式,此处并不赘述。另外,S804与S805的执行顺序并不局限于此,可以先执行S805再执行S804,或者两个步骤同时执行。
S806:在生理体征参数波形图中确定与活动状态对应的波形片段,建立活动状态与波形片段之间的对应关系。
S807:远程监控中心显示生理体征参数波形图,以及按照对应关系显示活动状态。
需要说明的是,本实施例的说明可以参见图2所示的实施例的相关内容,此处并不赘述。与图2所示的实施例相比,本实施例中便携式监护设备将通信信号强度发送给远程监控中心,由远程监控中心基于通信信号强度确定监测对象的活动状态。
确定活动状态后,远程监控中心可以按照上述方式基于活动状态提供相关的监护服务,包括但不局限于:防止异常片段的误报警、对预设类型的活动状态的提示或报警、对生理体征参数的标记等等。
以上应用场景中,监测对象的活动状态与监测对象的生理体征参数一并进行处理,但活动状态并不局限于同生理体征参数进行关联处理,活动状态可以应用在其他场景中提供相关的监护服务。因此,上述各个应用场景中,便携式监护设备以及远程监控中心可以省略对于生理参数的处理,只是基于便携式监护设备与节点设备之间的通信信号强度,来确定活动状态。当然,该活动状态可以是由便携式监护设备确定,也可以是便携式监护设备将通信信号强度发送至远程监控中心,由远程监控中心基于通信信号强度确定。具体的确定方式参见前已述及,此处并不赘述。
在实际应用中,便携式监护设备可以采集监测对象的实时位置,基于该实时位置,便携式监护设备与远程监控中心之间实现的医疗监护服务,还可以包括:为监测对象提供导航路线。
见图9,其示出了医疗监护方法的一个流程实施例,具体包括S901-S907。
S901:便携式监护设备采集监测对象的生理体征参数。
S902:便携式监护设备根据与至少一个节点设备的通信连接信息确定监测对象的实时位置。
其中,便携式监护设备可以与节点设备组成无线通信网络,无线通信网络中包括一个或多个节点设备,便携式监护设备可以依据室内定位技术,使用与至少一个节点设备之间的通信连接信息,来计算便携式监护设备在某个空间范围内的实时位置。例如,室内定位技术的过程可以是,便携式监护设备通过实时通信连接的节点设备的位置确定自身的实时位置,或者,基于与相邻的多个节点设备如三个节点设备的通信信号强度计算实时位置。当然,室内定位技术还可以是现有的其他实现过程,对此本申请并不做具体限定。
在一种实现方式中,便携式监护设备还可以通过其他定位技术,对监测对象的实时位置进行确定。例如,便携式监护设备还可以设置全球定位***(Global Positioning System,简称GPS),使用室外定位技术确定监测对象的实时位置。
S903:便携式监护设备向远程监控中心发送监测对象的实时位置。
其中,便携式监护设备可以通过节点设备所在的通信网络或者其他通信网络,向远程监控中心发送自身的实时位置。或者,便携式监护设备直接将与至少一个节点设备的通信连接信息发送至远程监控中心,由远程监控中心根据通信连接信息计算监测对象的实时位置。又或者,便携式监护设备可以与基站连接,远程监控中心可以直接接收基站发送的该便携式监护设备的实时位置。
S904:远程监控中心获得监测对象待运动至的目标位置。
其中,监测对象可能需要运动至某个位置,该位置称为目标位置。目标位置可以是地理坐标、地点名称等。远程监控中心可以获得该目标位置,具体的获得方式包括但不局限于以下几种方式:
一种获得方式是,用户向便携式监护设备输入该目标位置,便携式监护设备将该目标位置发送至远程监控中心。该获得方式对应的一种具体的应用场景 是,监测对象想要前往某个位置,可以向自身的便携式监护设备输入该位置。便携式监护设备将该位置发送远程监控中心,以使远程监控中心将该位置作为目标位置生成导航路线,并将导航路线发送至监测对象的便携式监护设备。
另一种获得方式是,用户向远程监控中心输入该目标位置,远程监控中心将用户输入的目标位置作为监测对象待运动至的目标位置。该获得方式对应的一种具体的应用场景是,医护人员指导监测对象前往某个位置如某科室进行检查,则向远程监控中心输入该位置,以使远程监控中心将该位置作为目标位置生成导航路线,并将导航路线发送至监测对象的便携式监护设备。
S905:远程监控中心依据实时位置以及目标位置生成导航路线。
其中,监测对象的实时位置作为位置起点,目标位置作为位置终点,获得监测对象所在空间的地图,根据该地图生成位置起点到位置终点的导航路线。
另外,远程监控中心获得监测对象的实时位置,实时位置可以形成运动轨迹,远程监控中心根据运动轨迹可以明确监测对象的运动路线。
S906:远程监控中心向便携式监护设备发送导航路线。
S907:便携式监护设备输出导航路线。
其中,输出方式包括但不局限于显示导航路线、输出导航语音等等。基于导航路线的指引,监测对象可以方便地到达目标位置。
便携式监护设备向远程监控中心发送监测对象的实时位置后,实时位置可以供远程监控中心提供更多的监护服务。
在一个实施例中,远程监控中心在监测对象的生理体征参数出现异常的情况下,显示监测对象的实时位置或者将监测对象的实时位置发送至医护人员关联的设备,以使医护人员能够准确定位该监测对象,进而及时对该监测对象实施医护行为。
在另一个实施例中,远程监控中心根据监测对象的实时位置实现医疗资源的动态分配。具体地,远程监控中心获得监测对象的实时位置以及获得多个监护人员对应的监护空间范围;在多个监护人员中,确定对应的监护空间范围包括实时位置的目标监护人员;生成包括监测对象的监测信息的通知消息;向目标监护人员对应的监护设备发送通知消息。
具体地,可以预先为监护人员设置对应的监护空间范围。需要说明的是,监护人员对应的监护空间范围可以是固定的,例如某个监控空间范围固定分配 给某监护人员;监护空间范围与监护人员的对应关系也可以是变动的,且以监护人员的位置为准,例如将监护人员所在位置周围的某大小的空间范围设置为该监护人员的监护空间范围。
如图10所示,远程监控中心在获得监测对象的实时位置后,可以获得每个监护人员的监护空间范围,并判断监测对象的实时位置归属于哪个或哪些监护人员的监护空间范围,进而向该监护空间范围对应的监护人员发送该监测对象相关信息的通知消息,或者可以向监测对象发送返回某监护空间范围的通知消息。发给监护人员的通知消息可以具体发送至监护人员的监护设备上,监护设备包括但不局限于:床旁监护仪、移动设备等等。通知消息包括监测对象相关的监测信息,如监测对象的病例数据、监测对象的生理体征参数、监测对象的实时位置等等,以通知监护人员对该监测对象实施相关的监护行为。发给监测对象的通知消息可以具体发送至监测对象的便携式设备,如便携式监护设备、手持通信设备等等。监护空间范围可以是为病房为单位划分的,通知消息的内容可以包括但不局限于:提示监测对象已经离开自己的病房并提示其返回。基于此方案,当监测对象实时进入某个监护空间范围,则由该监护空间范围的监护人员进行监护,从而实现了医疗资源的动态分配,提高了监护效率。并且,可以判断监测对象是否离开监护范围,并在离开的情况下提示其返回,方便原有监护人员对监测对象进行监护。
在又一个实施例中,远程监控中心或者便携式监护设备,根据监测对象的实时位置确定监测对象是否离开监护区域,如果是,则通过便携式监护设备输出提示信息,提示信息用于提示监测对象返回该监护区域。
便携式监护设备是一种对监测对象进行监测的医疗设备,其一般由监测对象随身携带,实现对监测对象的随时随地监测。在某些异常情况下,便携式监护设备需要发出提示信号,以使远程监控中心及时发现该异常状况。
见图11,其示出了医疗监控方法的又一实施例,具体包括S1101-S1104。
S1101:便携式监护设备建立与通信网络中至少一个节点设备的通信连接。
其中,便携式监护设备可以与多个节点设备组成无线通信网络。
S1102:当设备状态满足预设条件时,便携式监护设备变更与通信网络中至少一个节点设备的通信信号强度。
其中,变更通信信号强度可以包括将通信信号强度增大或减小,具体如何变更可以根据实际需求设置。预设条件可以是电量条件、位置条件、生理体征参数的采集条件等。具体地:
一种具体方式是,便携式监护设备获得自身的剩余电量;当剩余电量低于预设电量阈值时,向通信模块发送信号强度变更指令。
另一具体方式是,便携式监护设备获得自身的实时位置;当实时位置超过预设时间长度未发生变化时,向通信模块发送信号强度变更指令。又一具体方式是,当便携式监护设备未采集到生理体征信号的时间长度达到预设时间长度时,便携式监护设备向通信模块发送信号强度变更指令。该两种应用场景下可能的异常情况是,便携式监护设备与监测对象脱离,或者监测对象出现某种意外状况长期未改变位置等等。
S1103:便携式监护设备向远程监控中心发送通信信号强度。
S1104:远程监控中心基于通信信号强度确定便携式监护设备的实时位置。
其中,远程监控中心确定实时位置的具体方式可以参见上述说明,此处并不赘述。远程监控中心向监护人员提示该实时位置,以使监护人员及时定位并查找便携式监护设备,并及时对异常状况进行处理。
为了实现上述医疗监护方法,本申请还提供了具体的医疗设备,如便携式监护设备以及远程监控中心,医疗设备的具体结构如下。
在一个实施例中,便携式监护设备包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
处理器,用于从生理体征信号中识别生理体征参数,获得通信模块与通信网络中至少一个节点设备的通信信号强度,基于至少一个通信信号强度确定监测对象的活动状态,以及将活动状态的状态数据发送至通信模块;
通信模块,用于建立与通信网络中至少一个节点设备的通信连接,向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
其中,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具体用于:确定通信模块与同一节点设备在多个不同时间点的通信信号强度;根据多个通信信号强度,得到通信信号随时间的变化程度,并根据变化程度,确 定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的移动。
其中,处理器根据多个通信信号强度,得到通信信号随时间的变化程度,并根据变化程度,确定监测对象的活动状态时,具体用于:从多个通信信号强度中至少一次选择两个通信信号强度作为一组,得到至少一个通信信号强度组;计算至少一个通信信号强度组中的两个通信信号强度的差值与两个通信信号强度对应的时间点的差值的比值;根据至少一个比值,确定监测对象的活动状态。
其中,处理器根据至少一个比值,确定监测对象的活动状态时,具体用于:计算至少一个比值的平均值,并根据平均值与预设平均值阈值之间的关系确定监测对象的活动状态;和/或,在至少一个比值中分别选择满足不同预设比值范围的比值组,并根据不同比值组内比值的个数确定监测对象的活动状态。
其中,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具体用于:确定通信模块分别与多个不同节点设备在同一时间段内的通信信号强度,得到多组通信信号强度;根据各组通信信号强度的变化趋势,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的旋转。
其中,处理器根据各组通信信号强度的变化趋势,确定监测对象的活动状态时,具体用于:若各组通信信号强度的变化趋势符合预设的旋转变化趋势,则确定监测对象的活动状态为旋转;若监测对象的活动状态为旋转,则计算各组通信信号强度随时间的目标变化率,根据变化率与剧烈程度的预设对应关系,确定目标变化率对应的剧烈程度;若各组通信信号强度的变化趋势不符合预设的旋转变化趋势,则确定监测对象的活动状态为静止。
其中,活动状态的状态数据包括:发生时间及剧烈程度。
其中,处理器将活动状态的状态数据发送至通信模块时,具体用于:当活动状态属于预设类型的活动状态时,将活动状态的状态数据发送至通信模块。
其中,处理器,还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的提示信息;相应地,便携式监护设备还包括:输出模块,用于输出提示信息。
其中,处理器,还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;通信模块,还用于向远程监控中心发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
在一个实施例中,一种便携式监护设备包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
处理器,用于从生理体征信号中识别生理体征参数;
通信模块,用于接收与监测对象关联的其他设备发送的监测对象的活动状态的状态数据;向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
在一个实施例中,一种远程监控中心包括:
通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数及监测对象的活动状态的状态数据,状态数据包括活动状态的发生时间以及剧烈程度;
处理器,用于依据生理体征参数生成生理体征参数波形图;根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
显示器,用于显示生理体征参数波形图,以及按照对应关系显示活动状态。
其中,处理器还用于在活动状态包括预设类型的活动状态的情况下,对预设类型的活动状态的发生时间对应的生理体征参数进行标记。
其中,处理器还用于当生理体征参数波形图包含异常波形片段且异常波形片段对应有剧烈程度属于预设类型的活动状态时,删除对异常波形片段的报警。
其中,处理器还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;通信模块,还用于向便携式监护设备发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
在一个实施例中,一种便携式监护设备包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
处理器,用于从生理体征信号中识别生理体征参数,获得通信模块与通信网络中至少一个节点设备的通信信号强度;
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送生理体征参数以及通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态。
在一个实施例中,一种远程监控中心包括:
通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
处理器,用于依据生理体征参数生成生理体征参数波形图;基于至少一个通信信号强度确定监测对象的活动状态;根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
显示器,用于显示生理体征参数波形图,以及按照对应关系显示活动状态。
其中,处理器还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;通信模块,还用于向便携式监护设备发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
其中,处理器还用于当生理体征参数波形图包含异常波形片段且异常波形片段对应有剧烈程度属于预设类型的活动状态时,删除对异常波形片段的报警。
在一个实施例中,一种便携式监护设备包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送活动状态的状态数据;
处理器,用于获得通信模块与通信网络中至少一个节点设备的通信信号强度,基于至少一个通信信号强度确定监测对象的活动状态,以及将活动状态的状态数据发送至通信模块。
在一个实施例中,一种便携式监护设备包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态;
处理器,用于获得通信模块与通信网络中至少一个节点设备的通信信号强度,以及将通信信号强度发送至通信模块。
在一个实施例中,一种远程监控中心包括:
通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数值及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
处理器,用于基于至少一个通信信号强度确定监测对象的活动状态。
其中,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具 体用于:确定通信模块与同一节点设备在多个不同时间点的通信信号强度;根据多个通信信号强度随时间的变化程度,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的移动。
其中,处理器根据多个通信信号强度随时间的变化程度,确定监测对象的活动状态时,具体用于:从多个通信信号强度中至少一次选择两个通信信号强度作为一组,得到至少一个通信信号强度组;计算至少一个通信信号强度组中的两个通信信号强度的差值与两个通信信号强度对应的时间点的差值的比值;根据至少一个比值,确定监测对象的活动状态。
其中,处理器根据至少一个比值,确定监测对象的活动状态时,具体用于:计算至少一个比值的平均值,并根据平均值与预设平均值阈值之间的关系确定监测对象的活动状态;或者,在至少一个比值中分别选择满足不同预设比值范围的比值组,并根据不同比值组内比值的个数确定监测对象的活动状态。
其中,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具体用于:确定通信模块分别与多个不同节点设备在同一连续时间段内的通信信号强度,得到多组通信信号强度;根据各组通信信号强度的变化趋势,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的旋转。
其中,处理器根据各组通信信号强度的变化趋势,确定监测对象的活动状态时,具体用于:若各组通信信号强度的变化趋势符合预设的旋转变化趋势,则确定监测对象的活动状态为旋转;若监测对象的活动状态为旋转,则计算各组通信信号强度随时间的目标变化率,根据变化率与剧烈程度的预设对应关系,确定目标变化率对应的剧烈程度;若各组通信信号强度的变化趋势不符合预设的旋转变化趋势,则确定监测对象的活动状态为静止。
在一个实施例中,一种便携式监护设备包括:
参数传感器附件,用于实时采集监测对象的生理体征信号;
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送监测对象的实时位置;接收远程监控中心依据实时位置以及目标位置生成的导航路线;
处理器,用于从生理体征信号中识别生理体征参数;以及根据通信模块与至少一个节点设备的通信连接信息确定监测对象的实时位置;
输出模块,用于输出导航路线。
其中,便携式监护设备可以还包括:输入模块,用于接收监测对象输入的目标位置;通信模块,还用于向远程监控中心发送目标位置。
在一个实施例中,一种便携式监护设备包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送通信模块与至少一个节点设备的通信连接信息,其中通信连接信息用于供远程监控中心确定监测对象的实时位置;接收远程监控中心依据实时位置以及目标位置生成的导航路线;
处理器,用于获得通信模块与至少一个节点设备的通信连接信息;
输出模块,用于输出导航路线。
在一个实施例中,一种远程监控中心包括:
处理器,用于获得监测对象的实时位置以及监测对象待运动至的目标位置;依据实时位置以及目标位置生成导航路线;
通信模块,用于向与远程监控中心相连的便携式监护设备发送导航路线。
其中,远程监控中心还包括:输入模块,用于接收用户输入的目标位置;
处理器获得监测对象待运动至的目标位置时,具体用于:将输入模块接收到的目标位置作为监测对象待运动至的目标位置。
其中,通信模块还用于接收便携式监护设备发送的监测对象待运动至的目标位置,并将目标位置发送至处理器;处理器获得监测对象待运动至的目标位置时,具体用于:处理器接收通信模块发送的监测对象待运动至的目标位置。
其中,通信模块还用于接收其他设备发送的监测对象的实时位置,并将监测对象的实时位置发送至处理器;处理器获得监测对象的实时位置时,具体用于:处理器接收通信模块发送的监测对象的实时位置。
其中,通信模块,还用于接收监测对象关联的便携式监护设备与通信网络中至少一个节点设备的通信连接信息;并将通信连接信息发送至处理器;处理器获得监测对象的实时位置时,具体用于:依据通信连接信息,确定监测对象的实时位置。
在一个实施例中,一种远程监控中心包括:
处理器,用于获得监测对象的实时位置以及获得多个监护人员对应的监护空间范围;在多个监护人员中,确定对应的监护空间范围包括实时位置的目标监护人员;生成包括监测对象的监测信息的通知消息;
通信模块,用于向目标监护人员对应的监护设备发送通知消息。
在一个实施例中,一种便携式监护设备包括:
通信模块,用于建立与通信网络中至少一个节点设备的通信连接;在接收到信号强度变更指令后,变更通信模块与通信网络中至少一个节点设备的通信信号强度;向与便携式监护设备相连的远程监控中心发送通信信号强度,其中通信信号强度用于供远程监控中心确定便携式监护设备的实时位置;
处理器,用于当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令。
其中,处理器当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令时,具体用于:获得便携式监护设备的剩余电量;当剩余电量低于预设电量阈值时,向通信模块发送信号强度变更指令。
其中,处理器当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令时,具体用于:获得便携式监护设备的实时位置;当实时位置超过预设时间长度未发生变化时,向通信模块发送信号强度变更指令。
其中,处理器当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令时,具体用于:当便携式监护设备未采集到生理体征信号的时间长度达到预设时间长度时,向通信模块发送信号强度变更指令。
见图12,其示出了便携式监护仪的一个结构示例,具体包括:传感器附件121、参数测量电路122、主控电路123、显示器124、对外通讯和电源接口125、报警电路126以及输入接口电路127。
参数测量电路122至少包括一个生理参数对应的参数测量电路122,参数测量电路122至少包含心电信号参数测量电路、呼吸参数测量电路、体温参数测量电路、血氧参数测量电路、无创血压参数测量电路、有创血压参数测量电路等等中的至少一个参数测量电路,每个参数测量电路122分别通过相应的传感器接口与外部***的传感器附件121连接。传感器附件121包括用于心电呼吸、血氧、血压、体温等生理参数检测所对应的检测附件。
参数测量电路122主要是用来连接传感器附件121获得采集的生理参数信号的,可以包括至少两种以上生理参数的测量电路,参数测量电路122可以是但不局限于生理参数测量电路122(模块),参数测量电路122(模块)或传感器附件121采集人体生理参数等。
具体的,参数测量电路122通过扩展接口获得外部生理参数传感器附件获得有关病人的生理采样信号,并经过处理后得到生理数据,用以报警和显示。
扩展接口还可用于将主控电路123输出的关于如何采集生理参数的控制信号通过相应接口输出至外部生理参数监测附件,实现对病人生理参数的监测控制。
便携式监护仪或模块组件还可以包括主控电路123,主控电路123需要包括至少一个处理器和至少一个存储器,当然,主控电路123还可以包括电源管理管理模块、电源IP模块和接口转换电路等中的至少之一。电源管理模块用于控制整机开关机、板卡内部各电源域上电时序和电池充放电等。电源IP模块是指把经常重复调用的电源电路单元的原理图和PCB版图相关联,固化成单独的电源模块,即,将一输入电压通过预定的电路转换为一输出电压,其中,输入电压和输出电压不同。例如,将15V的电压转换为1.8V、3.3V或3.8V等。可以理解的是,电源IP模块可以是单路的,还可以是多路的。当电源IP模块为单路时,电源IP模块可以将一个输入电压转换为一个输出电压。当电源IP模块为多路时,电源IP模块可以将一个输入电压转换为多个输出电压,且多个输出电压的电压值可以相同,也可以不相同,从而能够同时满足多个电子元件的不同电压需求,并且模块对外接口少,在***中工作呈黑盒与外界硬件***解耦,提高了整个电源***的可靠性。接口转换电路用于将主控最小***模块(即主控电路123中的至少一个处理器和至少一个存储器)输出的信号,转换为实际外部设备所要求接收的输入标准信号,例如,支持外接VGA显示功能,是将主控CPU输出的RGB数字信号转换为VGA模拟信号,支持对外网络功能,是将RMII信号转换为标准的网络差分信号。
此外,便携式监护仪或模块组件还可以包括本地显示器124、报警电路126、输入接口电路127、对外通讯和电源接口125中的一个或多个。主控电路123用于协调、控制便携式监护仪或模块组件中的各板卡、各电路和设备。在本实施例中,主控电路123用于控制参数测量电路122和通讯接口电路之间的数据交互、以及控制信号的传输,并将生理数据输送到显示器124上进行显示,也可以接收来自触摸屏或者键盘、按键等物理输入接口电路输入的用户控制指令,当然还可以输出的关于如何采集生理参数的控制信号。报警电路126可以是声光报警电路。主控电路123完成生理参数的计算,并通过对外通讯和电源接口 125可将参数的计算结果和波形发送到主机(如带显示器124的主机、PC机、中央站等等),对外通讯和电源接口125可以是以太网(Ethernet)、令牌环(Token Ring)、令牌总线(Token Bus)以及作为这三种网的骨干网光纤分布数据接口(FDDI)构成的局域网接口中的一个或其组合,还可以是红外、蓝牙、wifi、WMTS通讯等无线接口中的一个或其组合,或者还可以是RS232、USB等有线数据连接接口中的一个或其组合。对外通讯和电源接口125也可以是无线数据传输接口和有线数据传输接口中的一种或两种的组合。主机可以是监护仪的主机、心电图机,超声诊断仪,计算机等任何一个计算机设备,安装配合的软件,就能够组成一个监护设备。主机还可以是通讯设备,例如手机,便携式监护仪或模块组件通过蓝牙接口将数据发送到支持蓝牙通讯的手机上,实现数据的远程传输。
另外,本申请还提供了一种计算机存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任意一个实施例中的医疗监护方法。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括上述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (66)

  1. 一种便携式监护设备,其特征在于,包括:
    参数传感器附件,用于实时采集监测对象的生理体征信号;
    处理器,用于从生理体征信号中识别生理体征参数,获得通信模块与通信网络中至少一个节点设备的通信信号强度,基于至少一个通信信号强度确定监测对象的活动状态,以及将活动状态的状态数据发送至通信模块;
    通信模块,用于建立与通信网络中至少一个节点设备的通信连接,向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
  2. 如权利要求1的便携式监护设备,其特征在于,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具体用于:
    确定通信模块与同一节点设备在多个不同时间点的通信信号强度;
    根据多个通信信号强度,得到通信信号随时间的变化程度,并根据变化程度,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的移动。
  3. 如权利要求2的便携式监护设备,其特征在于,处理器根据多个通信信号强度,得到通信信号随时间的变化程度,并根据变化程度,确定监测对象的活动状态时,具体用于:
    从多个通信信号强度中至少一次选择两个通信信号强度作为一组,得到至少一个通信信号强度组;
    计算至少一个通信信号强度组中的两个通信信号强度的差值与两个通信信号强度对应的时间点的差值的比值;
    根据至少一个比值,确定监测对象的活动状态。
  4. 如权利要求3的便携式监护设备,其特征在于,处理器根据至少一个比值,确定监测对象的活动状态时,具体用于:
    计算至少一个比值的平均值,并根据平均值与预设平均值阈值之间的关系确定监测对象的活动状态;和/或,
    在至少一个比值中分别选择满足不同预设比值范围的比值组,并根据不同比值组内比值的个数确定监测对象的活动状态。
  5. 如权利要求1的便携式监护设备,其特征在于,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具体用于:
    确定通信模块分别与多个不同节点设备在同一时间段内的通信信号强度,得到多组通信信号强度;
    根据各组通信信号强度的变化趋势,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的旋转。
  6. 如权利要求5的便携式监护设备,其特征在于,处理器根据各组通信信号强度的变化趋势,确定监测对象的活动状态时,具体用于:
    若各组通信信号强度的变化趋势符合预设的旋转变化趋势,则确定监测对象的活动状态为旋转;
    若监测对象的活动状态为旋转,则计算各组通信信号强度随时间的目标变化率,根据变化率与剧烈程度的预设对应关系,确定目标变化率对应的剧烈程度;
    若各组通信信号强度的变化趋势不符合预设的旋转变化趋势,则确定监测对象的活动状态为静止。
  7. 如权利要求1的便携式监护设备,其特征在于,活动状态的状态数据包括:发生时间及剧烈程度。
  8. 如权利要求1的便携式监护设备,其特征在于,处理器将活动状态的状态数据发送至通信模块时,具体用于:
    当活动状态属于预设类型的活动状态时,将活动状态的状态数据发送至通信模块。
  9. 如权利要求1的便携式监护设备,其特征在于,
    处理器,还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的提示信息;
    相应地,便携式监护设备还包括:
    输出模块,用于输出提示信息。
  10. 如权利要求1的便携式监护设备,其特征在于,
    处理器,还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;
    通信模块,还用于向远程监控中心发送报警信息和/或向监测对象关联的 监护人员的设备发送报警信息。
  11. 一种便携式监护设备,其特征在于,包括:
    参数传感器附件,用于实时采集监测对象的生理体征信号;
    处理器,用于从生理体征信号中识别生理体征参数;
    通信模块,用于接收与监测对象关联的其他设备发送的监测对象的活动状态的状态数据;向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
  12. 一种远程监控中心,其特征在于,包括:
    通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数及监测对象的活动状态的状态数据,状态数据包括活动状态的发生时间以及剧烈程度;
    处理器,用于依据生理体征参数生成生理体征参数波形图;根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
    显示器,用于显示生理体征参数波形图,以及按照对应关系显示活动状态。
  13. 如权利要求12的远程监控中心,其特征在于,
    处理器,还用于在活动状态包括预设类型的活动状态的情况下,对预设类型的活动状态的发生时间对应的生理体征参数进行标记。
  14. 如权利要求12的远程监控中心,其特征在于,
    处理器,还用于当生理体征参数波形图包含异常波形片段且异常波形片段对应有剧烈程度属于预设类型的活动状态时,删除对异常波形片段的报警。
  15. 如权利要求12远程监控中心,其特征在于,
    处理器,还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;
    通信模块,还用于向便携式监护设备发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
  16. 一种便携式监护设备,其特征在于,包括:
    参数传感器附件,用于实时采集监测对象的生理体征信号;
    处理器,用于从生理体征信号中识别生理体征参数,获得通信模块与通信网络中至少一个节点设备的通信信号强度;
    通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送生理体征参数以及通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态。
  17. 一种远程监控中心,其特征在于,包括:
    通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    处理器,用于依据生理体征参数生成生理体征参数波形图;基于至少一个通信信号强度确定监测对象的活动状态;根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
    显示器,用于显示生理体征参数波形图,以及按照对应关系显示活动状态。
  18. 如权利要求17的远程监控中心,其特征在于,
    处理器,还用于当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;
    通信模块,还用于向便携式监护设备发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
  19. 如权利要求17的远程监控中心,其特征在于,
    处理器,还用于当生理体征参数波形图包含异常波形片段且异常波形片段对应有剧烈程度属于预设类型的活动状态时,删除对异常波形片段的报警。
  20. 一种便携式监护设备,其特征在于,包括:
    通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送活动状态的状态数据;
    处理器,用于获得通信模块与通信网络中至少一个节点设备的通信信号强度,基于至少一个通信信号强度确定监测对象的活动状态,以及将活动状态的状态数据发送至通信模块。
  21. 一种便携式监护设备,其特征在于,包括:
    通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态;
    处理器,用于获得通信模块与通信网络中至少一个节点设备的通信信号强度,以及将通信信号强度发送至通信模块。
  22. 一种远程监控中心,其特征在于,包括:
    通信模块,用于接收便携式监护设备发送的监测对象的生理体征参数值及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    处理器,用于基于至少一个通信信号强度确定监测对象的活动状态。
  23. 如权利要求22的远程监控中心,其特征在于,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具体用于:
    确定通信模块与同一节点设备在多个不同时间点的通信信号强度;
    根据多个通信信号强度随时间的变化程度,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的移动。
  24. 如权利要求23的远程监控中心,其特征在于,处理器根据多个通信信号强度随时间的变化程度,确定监测对象的活动状态时,具体用于:
    从多个通信信号强度中至少一次选择两个通信信号强度作为一组,得到至少一个通信信号强度组;
    计算至少一个通信信号强度组中的两个通信信号强度的差值与两个通信信号强度对应的时间点的差值的比值;
    根据至少一个比值,确定监测对象的活动状态。
  25. 如权利要求24的远程监控中心,其特征在于,处理器根据至少一个比值,确定监测对象的活动状态时,具体用于:
    计算至少一个比值的平均值,并根据平均值与预设平均值阈值之间的关系确定监测对象的活动状态;或者,
    在至少一个比值中分别选择满足不同预设比值范围的比值组,并根据不同比值组内比值的个数确定监测对象的活动状态。
  26. 如权利要求22的远程监控中心,其特征在于,处理器基于至少一个通信信号强度确定监测对象的活动状态时,具体用于:
    确定通信模块分别与多个不同节点设备在同一连续时间段内的通信信号 强度,得到多组通信信号强度;
    根据各组通信信号强度的变化趋势,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的旋转。
  27. 如权利要求26的远程监控中心,其特征在于,处理器根据各组通信信号强度的变化趋势,确定监测对象的活动状态时,具体用于:
    若各组通信信号强度的变化趋势符合预设的旋转变化趋势,则确定监测对象的活动状态为旋转;
    若监测对象的活动状态为旋转,则计算各组通信信号强度随时间的目标变化率,根据变化率与剧烈程度的预设对应关系,确定目标变化率对应的剧烈程度;
    若各组通信信号强度的变化趋势不符合预设的旋转变化趋势,则确定监测对象的活动状态为静止。
  28. 一种便携式监护设备,其特征在于,包括:
    参数传感器附件,用于实时采集监测对象的生理体征信号;
    通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送监测对象的实时位置;接收远程监控中心依据实时位置以及目标位置生成的导航路线;
    处理器,用于从生理体征信号中识别生理体征参数;以及根据通信模块与至少一个节点设备的通信连接信息确定监测对象的实时位置;
    输出模块,用于输出导航路线。
  29. 如权利要求28的便携式监护设备,其特征在于,还包括:
    输入模块,用于接收监测对象输入的目标位置;
    通信模块,还用于向远程监控中心发送目标位置。
  30. 一种便携式监护设备,其特征在于,包括:
    通信模块,用于建立与通信网络中至少一个节点设备的通信连接;向与便携式监护设备相连的远程监控中心发送通信模块与至少一个节点设备的通信连接信息,其中通信连接信息用于供远程监控中心确定监测对象的实时位置;接收远程监控中心依据实时位置以及目标位置生成的导航路线;
    处理器,用于获得通信模块与至少一个节点设备的通信连接信息;
    输出模块,用于输出导航路线。
  31. 一种远程监控中心,其特征在于,包括:
    处理器,用于获得监测对象的实时位置以及监测对象待运动至的目标位置;依据实时位置以及目标位置生成导航路线;
    通信模块,用于向与远程监控中心相连的便携式监护设备发送导航路线。
  32. 如权利要求31的远程监控中心,其特征在于,还包括:
    输入模块,用于接收用户输入的目标位置;
    处理器获得监测对象待运动至的目标位置时,具体用于:
    将输入模块接收到的目标位置作为监测对象待运动至的目标位置。
  33. 如权利要求31的远程监控中心,其特征在于,
    通信模块,还用于接收便携式监护设备发送的监测对象待运动至的目标位置,并将目标位置发送至处理器;
    处理器获得监测对象待运动至的目标位置时,具体用于:
    处理器接收通信模块发送的监测对象待运动至的目标位置。
  34. 如权利要求31的远程监控中心,其特征在于,
    通信模块,还用于接收其他设备发送的监测对象的实时位置,并将监测对象的实时位置发送至处理器;
    处理器获得监测对象的实时位置时,具体用于:
    处理器接收通信模块发送的监测对象的实时位置。
  35. 如权利要求31的远程监控中心,其特征在于,
    通信模块,还用于接收监测对象关联的便携式监护设备与通信网络中至少一个节点设备的通信连接信息;并将通信连接信息发送至处理器;
    处理器获得监测对象的实时位置时,具体用于:
    依据通信连接信息,确定监测对象的实时位置。
  36. 一种远程监控中心,其特征在于,包括:
    处理器,用于获得监测对象的实时位置以及获得多个监护人员对应的监护空间范围;在多个监护人员中,确定对应的监护空间范围包括实时位置的目标监护人员;生成包括监测对象的监测信息的通知消息;
    通信模块,用于向目标监护人员对应的监护设备发送通知消息。
  37. 一种便携式监护设备,其特征在于,包括:
    通信模块,用于建立与通信网络中至少一个节点设备的通信连接;在接收到信号强度变更指令后,变更通信模块与通信网络中至少一个节点设备的通信信号强度;向与便携式监护设备相连的远程监控中心发送通信信号强度,其中通信信号强度用于供远程监控中心确定便携式监护设备的实时位置;
    处理器,用于当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令。
  38. 如权利要求37的便携式监护设备,其特征在于,
    处理器当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令时,具体用于:
    获得便携式监护设备的剩余电量;
    当剩余电量低于预设电量阈值时,向通信模块发送信号强度变更指令。
  39. 如权利要求37的便携式监护设备,其特征在于,
    处理器当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令时,具体用于:
    获得便携式监护设备的实时位置;
    当实时位置超过预设时间长度未发生变化时,向通信模块发送信号强度变更指令。
  40. 如权利要求37的便携式监护设备,其特征在于,
    处理器当便携式监护设备的设备状态满足预设条件时,向通信模块发送信号强度变更指令时,具体用于:
    当便携式监护设备未采集到生理体征信号的时间长度达到预设时间长度时,向通信模块发送信号强度变更指令。
  41. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    实时采集监测对象的生理体征信号,并从生理体征信号中识别生理体征参数;
    获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    基于至少一个通信信号强度确定监测对象的活动状态;
    建立与通信网络中至少一个节点设备的通信连接,向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
  42. 如权利要求41的医疗监护方法,其特征在于,基于至少一个通信信号强度确定监测对象的活动状态,包括:
    确定便携式监护设备与同一节点设备在多个不同时间点的通信信号强度;
    根据多个通信信号强度,得到通信信号随时间的变化程度,并根据变化程度,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的移动。
  43. 如权利要求42的医疗监护方法,其特征在于,根据多个通信信号强度,得到通信信号随时间的变化程度,并根据变化程度,确定监测对象的活动状态,包括:
    从多个通信信号强度中至少一次选择两个通信信号强度作为一组,得到至少一个通信信号强度组;
    计算至少一个通信信号强度组中的两个通信信号强度的差值与两个通信信号强度对应的时间点的差值的比值;
    根据至少一个比值,确定监测对象的活动状态。
  44. 如权利要求43的医疗监护方法,其特征在于,根据至少一个比值,确定监测对象的活动状态,包括:
    计算至少一个比值的平均值,并根据平均值与预设平均值阈值之间的关系确定监测对象的活动状态;和/或,
    在至少一个比值中分别选择满足不同预设比值范围的比值组,并根据不同比值组内比值的个数确定监测对象的活动状态。
  45. 如权利要求41的医疗监护方法,其特征在于,基于至少一个通信信号强度确定监测对象的活动状态,包括:
    确定便携式监护设备分别与多个不同节点设备在同一时间段内的通信信号强度,得到多组通信信号强度;
    根据各组通信信号强度的变化趋势,确定监测对象的活动状态;其中活动状态包括:静止或某种剧烈程度的旋转。
  46. 如权利要求45的医疗监护方法,其特征在于,根据各组通信信号强度的变化趋势,确定监测对象的活动状态,包括:
    若各组通信信号强度的变化趋势符合预设的旋转变化趋势,则确定监测对象的活动状态为旋转;
    若监测对象的活动状态为旋转,则计算各组通信信号强度随时间的目标变化率,根据变化率与剧烈程度的预设对应关系,确定目标变化率对应的剧烈程度;
    若各组通信信号强度的变化趋势不符合预设的旋转变化趋势,则确定监测对象的活动状态为静止。
  47. 如权利要求41的医疗监护方法,其特征在于,活动状态的状态数据包括:发生时间及剧烈程度。
  48. 如权利要求41的医疗监护方法,其特征在于,向与便携式监护设备相连的远程监控中心发送活动状态的状态数据,包括:
    当活动状态属于预设类型的活动状态时,向与便携式监护设备相连的远程监控中心发送活动状态的状态数据。
  49. 如权利要求41的医疗监护方法,其特征在于,还包括:
    当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的提示信息;
    输出提示信息。
  50. 如权利要求41的医疗监护方法,其特征在于,还包括:
    当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;
    向远程监控中心发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
  51. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    实时采集监测对象的生理体征信号;
    从生理体征信号中识别生理体征参数;
    接收与监测对象关联的其他设备发送的监测对象的活动状态的状态数据;
    向与便携式监护设备相连的远程监控中心发送生理体征参数以及活动状态的状态数据。
  52. 一种医疗监护方法,其特征在于,应用于远程监控中心,该方法包括:
    接收便携式监护设备发送的监测对象的生理体征参数及监测对象的活动状态的状态数据,状态数据包括活动状态的发生时间以及剧烈程度;
    依据生理体征参数生成生理体征参数波形图;根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段,以及建立活动状态与波形片段之间的对应关系;
    显示生理体征参数波形图,以及按照对应关系显示活动状态。
  53. 如权利要求52的医疗监护方法,其特征在于,还包括:
    在活动状态包括预设类型的活动状态的情况下,对预设类型的活动状态的发生时间对应的生理体征参数进行标记。
  54. 如权利要求52的医疗监护方法,其特征在于,还包括:
    当生理体征参数波形图包含异常波形片段且异常波形片段对应有剧烈程度属于预设类型的活动状态时,删除对异常波形片段的报警。
  55. 如权利要求52的医疗监护方法,其特征在于,还包括:
    当活动状态属于预设类型的活动状态时,生成与预设类型的活动状态对应的报警信息;
    向便携式监护设备发送报警信息和/或向监测对象关联的监护人员的设备发送报警信息。
  56. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    实时采集监测对象的生理体征信号;
    从生理体征信号中识别生理体征参数,获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    建立与通信网络中至少一个节点设备的通信连接;
    向与便携式监护设备相连的远程监控中心发送生理体征参数以及通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态。
  57. 一种医疗监护方法,其特征在于,应用于远程监控中心,该方法包括:
    接收便携式监护设备发送的监测对象的生理体征参数及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    依据生理体征参数生成生理体征参数波形图;
    基于至少一个通信信号强度确定监测对象的活动状态;
    根据活动状态的发生时间,在生理体征参数波形图中确定与活动状态对应的波形片段;
    建立活动状态与波形片段之间的对应关系;
    显示生理体征参数波形图,以及按照对应关系显示活动状态。
  58. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    建立与通信网络中至少一个节点设备的通信连接;
    获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    基于至少一个通信信号强度确定监测对象的活动状态;
    向与便携式监护设备相连的远程监控中心发送活动状态的状态数据。
  59. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    建立与通信网络中至少一个节点设备的通信连接;
    获得便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    向与便携式监护设备相连的远程监控中心发送通信信号强度;其中通信信号强度用于供远程监控中心确定监测对象的活动状态。
  60. 一种医疗监护方法,其特征在于,应用于远程监控中心,该方法包括:
    接收便携式监护设备发送的监测对象的生理体征参数值及便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    基于至少一个通信信号强度确定监测对象的活动状态。
  61. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    实时采集监测对象的生理体征信号,并从生理体征信号中识别生理体征参数;
    建立与通信网络中至少一个节点设备的通信连接,并根据便携式监护设备与至少一个节点设备的通信连接信息确定监测对象的实时位置;
    向与便携式监护设备相连的远程监控中心发送监测对象的实时位置;
    接收远程监控中心依据实时位置以及目标位置生成的导航路线;
    输出导航路线。
  62. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    建立与通信网络中至少一个节点设备的通信连接;
    获得便携式监护设备与至少一个节点设备的通信连接信息;
    向与便携式监护设备相连的远程监控中心发送通信连接信息,其中通信连接信息用于供远程监控中心确定监测对象的实时位置;
    接收远程监控中心依据实时位置以及目标位置生成的导航路线;
    输出导航路线。
  63. 一种医疗监护方法,其特征在于,应用于远程监控中心,该方法包括:
    获得监测对象的实时位置以及监测对象待运动至的目标位置;
    依据实时位置以及目标位置生成导航路线;
    向与远程监控中心相连的便携式监护设备发送导航路线。
  64. 一种医疗监护方法,其特征在于,应用于远程监控中心,该方法包括:
    获得监测对象的实时位置以及获得多个监护人员对应的监护空间范围;
    在多个监护人员中,确定对应的监护空间范围包括实时位置的目标监护人员;
    生成包括监测对象的监测信息的通知消息;
    向目标监护人员对应的监护设备发送通知消息。
  65. 一种医疗监护方法,其特征在于,应用于便携式监护设备,该方法包括:
    建立与通信网络中至少一个节点设备的通信连接;
    当便携式监护设备的设备状态满足预设条件时,变更便携式监护设备与通信网络中至少一个节点设备的通信信号强度;
    向与便携式监护设备相连的远程监控中心发送通信信号强度,其中通信信号强度用于供远程监控中心确定便携式监护设备的实时位置。
  66. 一种可读存储介质,其上存储有计算机程序,其特征在于,计算机程序被处理器执行时实现如权利要求41至65任一项的方法。
PCT/CN2019/130846 2019-12-31 2019-12-31 便携式监护设备、远程监控中心及医疗监护方法 WO2021134634A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130846 WO2021134634A1 (zh) 2019-12-31 2019-12-31 便携式监护设备、远程监控中心及医疗监护方法
CN201980098370.4A CN114097253A (zh) 2019-12-31 2019-12-31 便携式监护设备、远程监控中心及医疗监护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130846 WO2021134634A1 (zh) 2019-12-31 2019-12-31 便携式监护设备、远程监控中心及医疗监护方法

Publications (1)

Publication Number Publication Date
WO2021134634A1 true WO2021134634A1 (zh) 2021-07-08

Family

ID=76686844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130846 WO2021134634A1 (zh) 2019-12-31 2019-12-31 便携式监护设备、远程监控中心及医疗监护方法

Country Status (2)

Country Link
CN (1) CN114097253A (zh)
WO (1) WO2021134634A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452133A (zh) * 2022-03-10 2022-05-10 四川省医学科学院·四川省人民医院 一种基于分级监护模式的护理方法及护理***
CN116990203A (zh) * 2023-09-26 2023-11-03 天宇利水信息技术成都有限公司 基于声光信号融合的水沙通量同步在线监测方法及***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116548981B (zh) * 2023-07-12 2023-09-08 四川省医学科学院·四川省人民医院 一种无线传输的分体式心电监护***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325155A (zh) * 2011-07-14 2012-01-18 福建冰原网络科技有限公司 基于无线传感网络的生命体征监控方法及***
US20160015004A1 (en) * 2014-07-21 2016-01-21 Nicholas Jay Bonge, JR. Wireless animal training, monitoring and remote control system
CN106941523A (zh) * 2017-03-14 2017-07-11 深圳市科奈信科技有限公司 基于物联网的健康监测信息采集方法和***
CN206348901U (zh) * 2016-12-30 2017-07-21 深圳市天工测控技术有限公司 一种蓝牙监护***
CN107277748A (zh) * 2017-05-15 2017-10-20 深圳市冠旭电子股份有限公司 一种蓝牙配对方法、***及其终端设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105534492A (zh) * 2015-11-30 2016-05-04 张胜国 智能人体体征***测***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325155A (zh) * 2011-07-14 2012-01-18 福建冰原网络科技有限公司 基于无线传感网络的生命体征监控方法及***
US20160015004A1 (en) * 2014-07-21 2016-01-21 Nicholas Jay Bonge, JR. Wireless animal training, monitoring and remote control system
CN206348901U (zh) * 2016-12-30 2017-07-21 深圳市天工测控技术有限公司 一种蓝牙监护***
CN106941523A (zh) * 2017-03-14 2017-07-11 深圳市科奈信科技有限公司 基于物联网的健康监测信息采集方法和***
CN107277748A (zh) * 2017-05-15 2017-10-20 深圳市冠旭电子股份有限公司 一种蓝牙配对方法、***及其终端设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114452133A (zh) * 2022-03-10 2022-05-10 四川省医学科学院·四川省人民医院 一种基于分级监护模式的护理方法及护理***
CN116990203A (zh) * 2023-09-26 2023-11-03 天宇利水信息技术成都有限公司 基于声光信号融合的水沙通量同步在线监测方法及***
CN116990203B (zh) * 2023-09-26 2023-12-15 天宇利水信息技术成都有限公司 基于声光信号融合的水沙通量同步在线监测方法及***

Also Published As

Publication number Publication date
CN114097253A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2021134634A1 (zh) 便携式监护设备、远程监控中心及医疗监护方法
US11089992B2 (en) Fetal movement monitor
US10368748B2 (en) System and method of evaluating an association between a wireless sensor and a monitored patient
EP1505903B1 (en) Method and apparatus for displaying a heart rate signal
US20100160743A1 (en) Apparatus and method for monitoring health index using electroconductive fiber
US20160147965A1 (en) Medical system
EP3375350A1 (en) Biological information monitor, biological information measurement system, program used in biological information monitor, and nontemporary computer readable medium storing program used in biological information monitor
KR20160105440A (ko) 알람 이벤트의 임상적 관련성을 결정하는 방법 및 시스템
US20210327592A1 (en) Method for displaying an early warning score, monitoring device and display system
CN111477334A (zh) 目标区域的提醒方法及电子设备
WO2020133347A1 (zh) 一种对患者的监护方法及装置
CN109833037B (zh) 一种监测血压状态的设备和计算机可读存储介质
KR20140065801A (ko) 센서 입력 시스템
WO2019131248A1 (ja) 注意喚起システム、情報処理装置、情報処理方法、及びプログラム
CN214284904U (zh) 体征参数监测设备
CN115211825A (zh) 血压测量方法、装置、耳机设备及计算机可读存储介质
CN115193009A (zh) 一种仰卧起坐次数计算方法及可穿戴设备
WO2020133487A1 (zh) 一种应用于监护设备的界面操作方法及监护设备
WO2020133429A1 (zh) 监护方法、监护仪及计算机存储介质
RU113943U1 (ru) Система дистанционного мониторинга температуры тела человека
KR100844405B1 (ko) 움직임 감지센서를 이용한 집안 내 일상 생활에서의무구속적 행동량 측정장치 및 그에 따른 무구속적 행동량측정방법
US20220117561A1 (en) Monitoring device, method for setting reference baseline and readable storage medium
CN116602644B (zh) 血管信号采集***、人体特征监测***
EP4134000B1 (en) Cardiac rhythm detection control method and terminal
CN111954161B (zh) 一种病房监护方法及设备、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958199

Country of ref document: EP

Kind code of ref document: A1