WO2021134264A1 - 摄像光学镜头 - Google Patents

摄像光学镜头 Download PDF

Info

Publication number
WO2021134264A1
WO2021134264A1 PCT/CN2019/130043 CN2019130043W WO2021134264A1 WO 2021134264 A1 WO2021134264 A1 WO 2021134264A1 CN 2019130043 W CN2019130043 W CN 2019130043W WO 2021134264 A1 WO2021134264 A1 WO 2021134264A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging optical
curvature
radius
ttl
Prior art date
Application number
PCT/CN2019/130043
Other languages
English (en)
French (fr)
Inventor
夏傑
孙雯
Original Assignee
诚瑞光学(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诚瑞光学(常州)股份有限公司 filed Critical 诚瑞光学(常州)股份有限公司
Priority to PCT/CN2019/130043 priority Critical patent/WO2021134264A1/zh
Publication of WO2021134264A1 publication Critical patent/WO2021134264A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to the field of optical lenses, and in particular to a camera optical lens suitable for portable terminal equipment such as smart phones and digital cameras, as well as camera devices such as monitors and PC lenses.
  • the purpose of this application is to provide an imaging optical lens, which has good optical performance and features high resolution, wide angle, and good image quality.
  • an embodiment of the present application provides an imaging optical lens, characterized in that the imaging optical lens includes in order from the object side to the image side: a first lens, a second lens, and a third lens , The fourth lens, the fifth lens, and the sixth lens;
  • At least one of the first lens to the sixth lens includes a free-form surface, the focal length of the imaging optical lens is f, the focal length of the second lens is f2, and the on-axis thickness of the fourth lens is d7 , The on-axis distance between the image side surface of the fourth lens and the object side surface of the fifth lens is d8, and the following relationship is satisfied:
  • the radius of curvature of the object side surface of the second lens is R3
  • the radius of curvature of the image side surface of the second lens is R4, and the following relationship is satisfied:
  • the focal length of the first lens is f1
  • the radius of curvature of the object side of the first lens is R1
  • the radius of curvature of the image side of the first lens is R2
  • the on-axis thickness of the first lens is d1
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the radius of curvature of the object side surface of the second lens is R3
  • the radius of curvature of the image side surface of the second lens is R4
  • the axial thickness of the second lens is d3
  • the total optical length of the imaging optical lens is TTL, and satisfies the following relationship:
  • the focal length of the third lens is f3
  • the radius of curvature of the object side of the third lens is R5
  • the radius of curvature of the image side of the third lens is R6, and the on-axis thickness of the third lens is d5
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the fourth lens is f4
  • the radius of curvature of the object side of the fourth lens is R7
  • the radius of curvature of the image side of the fourth lens is R8,
  • the on-axis thickness of the fourth lens is d7
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the fifth lens is f5
  • the radius of curvature of the object side of the fifth lens is R9
  • the radius of curvature of the image side of the fifth lens is R10
  • the on-axis thickness of the fifth lens is d9
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the focal length of the sixth lens is f6, the radius of curvature of the object side of the sixth lens is R11, the radius of curvature of the image side of the sixth lens is R12, and the on-axis thickness of the sixth lens is d11 ,
  • the total optical length of the camera optical lens is TTL, and satisfies the following relationship:
  • the aperture F number of the imaging optical lens is Fno, and the following relational expression is satisfied:
  • the imaging optical lens according to the present application has good optical performance, high resolution, wide angle, and good imaging quality. It is especially suitable for high-pixel CCD, CMOS and other imaging elements. Mobile phone camera lens assembly and WEB camera lens.
  • FIG. 1 is a schematic diagram of the structure of an imaging optical lens according to a first embodiment of the present application
  • Fig. 2 is a situation in which the RMS spot diameter of the imaging optical lens shown in Fig. 1 is in the first quadrant;
  • FIG. 3 is a schematic diagram of the structure of an imaging optical lens according to a second embodiment of the present application.
  • Fig. 4 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 3 is in the first quadrant;
  • FIG. 5 is a schematic diagram of the structure of an imaging optical lens according to a third embodiment of the present application.
  • Fig. 6 is a case where the RMS spot diameter of the imaging optical lens shown in Fig. 5 is in the first quadrant;
  • FIG. 7 is a schematic structural diagram of an imaging optical lens according to a fourth embodiment of the present application.
  • FIG. 8 is a situation in which the RMS spot diameter of the imaging optical lens shown in FIG. 7 is in the first quadrant;
  • FIG. 9 is a schematic structural diagram of an imaging optical lens according to a fifth embodiment of the present application.
  • FIG. 10 is a case where the RMS spot diameter of the imaging optical lens shown in FIG. 9 is in the first quadrant.
  • FIG. 1 shows an imaging optical lens 10 according to the first embodiment of the application.
  • the imaging optical lens 10 includes six lenses. Specifically, the imaging optical lens 10 includes in order from the object side to the image side: an aperture S1, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens. Lens L6.
  • An optical element such as an optical filter GF may be provided between the sixth lens L6 and the image plane Si.
  • the first lens L1 has positive refractive power
  • the second lens L2 has negative refractive power
  • the third lens L3 has positive refractive power
  • the fourth lens L4 has negative refractive power
  • the fifth lens L5 has positive refractive power
  • the sixth lens L6 has Negative refractive power.
  • the first lens L1 is made of plastic material
  • the second lens L2 is made of plastic material
  • the third lens L3 is made of plastic material
  • the fourth lens L4 is made of plastic material
  • the fifth lens L5 is made of plastic material
  • the sixth lens L6 It is made of plastic.
  • At least one of the first lens L1 to the sixth lens L6 includes a free-form surface, and the free-form surface helps correct aberrations such as astigmatism, curvature of field, and distortion of the wide-angle optical system.
  • the focal length of the imaging optical lens 10 is f
  • the focal length of the second lens L2 is f2
  • the following relationship is satisfied: -3.00 ⁇ f2/f ⁇ -1.00, which specifies the focal length f2 of the second lens L2 and the imaging optical lens
  • the ratio of the focal length f of 10 is helpful for aberration correction within the range of conditions and improves the image quality.
  • it satisfies: -2.90 ⁇ f2/f ⁇ -1.27.
  • the on-axis thickness of the fourth lens L4 is defined as d7
  • the on-axis distance from the image side surface of the fourth lens L4 to the object side surface of the fifth lens L5 is d8, and the following relationship is satisfied: 0.60 ⁇ d7/ d8 ⁇ 1.10, when the above conditions are met, it is helpful for lens processing and lens assembly.
  • it satisfies: 0.62 ⁇ d7/d8 ⁇ 1.06.
  • the curvature radius of the object side surface of the second lens L2 as R3, and the curvature radius of the image side surface of the second lens L2 as R4, which satisfies the following relationship: 1.50 ⁇ R3/R4 ⁇ 3.00, which defines the shape of the second lens L2 .
  • the degree of deflection of light passing through the lens can be eased, and aberrations can be effectively reduced.
  • 1.60 ⁇ R3/R4 ⁇ 2.86 is satisfied.
  • the sum of the on-axis thickness is ⁇ CT, which defines that the on-axis thickness of the first lens L1 is d1, the on-axis thickness of the third lens L3 is d5, and the on-axis thickness of the fifth lens L5 is d9, and satisfies
  • ⁇ CT which defines that the on-axis thickness of the first lens L1 is d1
  • the on-axis thickness of the third lens L3 is d5
  • the on-axis thickness of the fifth lens L5 is d9
  • the following relational formula 1.20 ⁇ CT/(d1+d5+d9) ⁇ 1.65.
  • the lens thickness can be effectively distributed and the workability can be improved.
  • 1.25 ⁇ CT/(d1+d5+d9) ⁇ 1.64 is satisfied.
  • the focal length of the first lens is defined as f1, which satisfies the following relational expression: 0.38 ⁇ f1/f ⁇ 1.42, which specifies the ratio of the focal length of the first lens L1 to the focal length f of the imaging optical lens 10, within the range specified by the conditional formula,
  • the first lens has an appropriate positive refractive power, which is conducive to reducing system aberrations and at the same time conducive to the development of ultra-thin and wide-angle lenses.
  • 0.60 ⁇ f1/f ⁇ 1.13 is satisfied.
  • the curvature radius of the object side surface of the first lens L1 is R1
  • the curvature radius of the image side surface of the first lens L1 is R2, which satisfies the following relationship: -3.44 ⁇ (R1+R2)/(R1-R2) ⁇ -0.48 ,
  • the axial thickness of the first lens L1 is d1
  • the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.08 ⁇ d1/TTL ⁇ 0.30, which is beneficial to realize ultra-thinness.
  • 0.13 ⁇ d1/TTL ⁇ 0.24 is satisfied.
  • the curvature radius of the object side surface of the second lens L2 is R3, and the curvature radius of the image side surface of the second lens L2 is R4, which satisfies the following relationship: 1.08 ⁇ (R3+R4)/(R3-R4) ⁇ 5.82, which is specified
  • the shape of the second lens L2 is within the range, as the lens develops towards ultra-thin and wide-angle, it is beneficial to correct the problem of axial chromatic aberration.
  • it satisfies 1.73 ⁇ (R3+R4)/(R3-R4) ⁇ 4.65.
  • the on-axis thickness of the second lens L2 is defined as d3, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d3/TTL ⁇ 0.07, which is conducive to achieving ultra-thinness. Preferably, 0.03 ⁇ d3/TTL ⁇ 0.06 is satisfied.
  • the focal length of the third lens L3 is defined as f3, and the focal length of the imaging optical lens 10 is f, which satisfies the following relationship: 0.42 ⁇ f3/f ⁇ 2430.45.
  • the system has better Image quality and lower sensitivity.
  • 0.68 ⁇ f3/f ⁇ 1944.36 is satisfied.
  • the curvature radius of the object side surface of the third lens L3 is defined as R5, and the curvature radius of the image side surface of the third lens L3 is defined as R6, which satisfies the following relationship: -20.34 ⁇ (R5+R6)/(R5-R6) ⁇ 598.19 ,
  • the shape of the third lens L3 is specified, and within the specified range of the conditional formula, the degree of deflection of the light passing through the lens can be relaxed, and aberrations can be effectively reduced.
  • -12.71 ⁇ (R5+R6)/(R5-R6) ⁇ 478.55 is satisfied.
  • the on-axis thickness of the third lens L3 is defined as d5, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d5/TTL ⁇ 0.36, which is beneficial to realize ultra-thinness.
  • 0.04 ⁇ d5/TTL ⁇ 0.29 is satisfied.
  • the focal length of the fourth lens L4 is defined as f4, which satisfies the following relational formula: -19.93 ⁇ f4/f ⁇ -0.97, which stipulates the ratio of the focal length of the fourth lens L4 to the focal length of the system, which helps to improve the optics within the scope of the conditional formula System performance.
  • f4 satisfies the following relational formula: -19.93 ⁇ f4/f ⁇ -0.97, which stipulates the ratio of the focal length of the fourth lens L4 to the focal length of the system, which helps to improve the optics within the scope of the conditional formula System performance.
  • -12.46 ⁇ f4/f ⁇ -1.21 Preferably, -12.46 ⁇ f4/f ⁇ -1.21.
  • the radius of curvature of the object side surface of the fourth lens L4 as R7
  • the radius of curvature of the image side surface of the fourth lens L4 as R8, which satisfies the following relationship: -2.51 ⁇ (R7+R8)/(R7-R8) ⁇ 10.54
  • the shape of the fourth lens L4 is specified, and when it is within the specified range of the conditional expression, with the development of ultra-thin and wide-angle, it is beneficial to correct the aberration of the off-axis angle of view.
  • it satisfies -1.57 ⁇ (R7+R8)/(R7-R8) ⁇ 8.43.
  • the on-axis thickness of the fourth lens L4 is defined as d7, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.03 ⁇ d7/TTL ⁇ 0.09, which is conducive to achieving ultra-thinness.
  • 0.04 ⁇ d7/TTL ⁇ 0.08 is satisfied.
  • the focal length of the fifth lens L5 is defined as f5, which satisfies the following relationship: 0.32 ⁇ f5/f ⁇ 2.58.
  • the limitation of the fifth lens L5 can effectively smooth the light angle of the imaging lens and reduce the tolerance sensitivity.
  • 0.52 ⁇ f5/f ⁇ 2.07 is satisfied.
  • the radius of curvature of the object side surface of the fifth lens L5 as R9
  • the radius of curvature of the image side surface of the fifth lens L5 as R10
  • the shape of the fifth lens L5 is specified.
  • -1.92 ⁇ (R9+R10)/(R9-R10) ⁇ 1.60 is satisfied.
  • the on-axis thickness of the fifth lens L5 is defined as d9, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d9/TTL ⁇ 0.25, which is beneficial to realize ultra-thinness. Preferably, 0.03 ⁇ d9/TTL ⁇ 0.20 is satisfied.
  • the focal length of the sixth lens L6 is defined as f6, which satisfies the following relational expression: -2.39 ⁇ f6/f ⁇ -0.34.
  • the reasonable distribution of optical power enables the system to have better imaging quality and lower sensitivity.
  • it satisfies -1.49 ⁇ f6/f ⁇ -0.42.
  • the radius of curvature of the object side surface of the sixth lens L6 as R11
  • the radius of curvature of the image side surface of the sixth lens L6 as R12
  • the shape of the sixth lens L6 is the shape of the sixth lens L6.
  • 0.35 ⁇ (R11+R12)/(R11-R12) ⁇ 2.69 is satisfied.
  • the on-axis thickness of the sixth lens L6 is defined as d11, and the total optical length of the imaging optical lens 10 is TTL, which satisfies the following relationship: 0.02 ⁇ d11/TTL ⁇ 0.17, which is beneficial to realize ultra-thinness. Preferably, 0.03 ⁇ d11/TTL ⁇ 0.14 is satisfied.
  • the aperture F number of the imaging optical lens 10 is Fno less than or equal to 2.06, a large aperture, and good imaging performance.
  • the aperture F number Fno of the imaging optical lens 10 is less than or equal to 2.02.
  • the total optical length TTL of the imaging optical lens 10 is less than or equal to 7.65 mm, which is beneficial to realize ultra-thinness.
  • the total optical length TTL is less than or equal to 7.30 mm.
  • the imaging optical lens 10 has good optical performance while adopting a free-form surface, which can match the design image area with the actual use area, and maximize the image quality of the effective area; according to the characteristics of the optical lens 10
  • the optical lens 10 is particularly suitable for mobile phone camera lens assemblies and WEB camera lenses composed of high-resolution CCD, CMOS, and other imaging elements.
  • the imaging optical lens 10 of the present application will be described below with an example.
  • the symbols described in each example are as follows.
  • the unit of focal length, on-axis distance, radius of curvature, and on-axis thickness is mm.
  • TTL total optical length (the on-axis distance from the object side of the first lens L1 to the imaging surface), the unit is mm;
  • Table 1 and Table 2 show design data of the imaging optical lens 10 of the first embodiment of the present application.
  • the object side surface and the image side surface of the first lens L1 are free-form surfaces.
  • R The radius of curvature of the optical surface, and the radius of curvature of the center of the lens
  • R1 the radius of curvature of the object side surface of the first lens L1;
  • R2 the radius of curvature of the image side surface of the first lens L1;
  • R3 the radius of curvature of the object side surface of the second lens L2;
  • R4 the radius of curvature of the image side surface of the second lens L2;
  • R5 the radius of curvature of the object side surface of the third lens L3;
  • R6 the radius of curvature of the image side surface of the third lens L3;
  • R7 the radius of curvature of the object side of the fourth lens L4;
  • R8 the radius of curvature of the image side surface of the fourth lens L4;
  • R9 the radius of curvature of the object side surface of the fifth lens L5;
  • R10 the radius of curvature of the image side surface of the fifth lens L5;
  • R11 the radius of curvature of the object side surface of the sixth lens L6;
  • R12 the radius of curvature of the image side surface of the sixth lens L6;
  • d0 the on-axis distance from the aperture S1 to the object side of the first lens L1;
  • d2 the on-axis distance from the image side surface of the first lens L1 to the object side surface of the second lens L2;
  • d4 the on-axis distance from the image side surface of the second lens L2 to the object side surface of the third lens L3;
  • d6 the on-axis distance from the image side surface of the third lens L3 to the object side surface of the fourth lens L4;
  • d10 the on-axis distance from the image side surface of the fifth lens L5 to the object side surface of the sixth lens L6;
  • d11 the on-axis thickness of the sixth lens L6;
  • d12 the on-axis distance from the image side surface of the sixth lens L6 to the object side surface of the optical filter GF;
  • d14 the on-axis distance from the image side surface of the optical filter GF to the image surface
  • nd refractive index of d-line
  • nd1 the refractive index of the d-line of the first lens L1;
  • nd2 the refractive index of the d-line of the second lens L2;
  • nd3 the refractive index of the d-line of the third lens L3;
  • nd4 the refractive index of the d-line of the fourth lens L4;
  • nd5 the refractive index of the d-line of the fifth lens L5;
  • nd6 the refractive index of the d-line of the sixth lens L6;
  • ndg the refractive index of the d-line of the optical filter GF
  • vg Abbe number of optical filter GF.
  • Table 2 shows the aspheric surface data of each lens in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient A4, A6, A8, A10, A12, A14, A16, A18, A20 are the aspherical coefficients, r is the vertical distance between the point on the aspherical curve and the optical axis, and z is the aspherical depth (distance on the aspherical surface The vertical distance between the point where the optical axis is r and the tangent plane tangent to the vertex on the aspheric optical axis).
  • the aspheric surface of each lens surface uses the aspheric surface shown in the above formula (1).
  • this application is not limited to the aspheric polynomial form represented by the formula (1).
  • Table 3 shows free-form surface data in the imaging optical lens 10 of the first embodiment of the present application.
  • k is the conic coefficient
  • Bi is the free-form surface coefficient
  • r is the vertical distance between the point on the free-form surface and the optical axis
  • x is the x-direction component of r
  • y is the y-direction component of r
  • z is the aspheric depth (aspherical surface The vertical distance between the point at the upper distance of r from the optical axis and the tangent plane tangent to the vertex on the aspheric optical axis).
  • each free-form surface uses the extended polynomial surface type (Extended Polynomial) shown in the above formula (2).
  • Extended Polynomial Extended Polynomial
  • this application is not limited to the free-form surface polynomial form expressed by the formula (2).
  • FIG. 2 shows a situation where the RMS spot diameter of the imaging optical lens 10 of the first embodiment is within the first quadrant. According to FIG. 2, it can be seen that the imaging optical lens 10 of the first embodiment can achieve good imaging quality.
  • Table 16 shows the values corresponding to the various values in each of Examples 1, 2, 3, 4, and 5 and the parameters that have been specified in the conditional expressions.
  • the first embodiment satisfies various conditional expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.669mm
  • the full-field image height (diagonal direction) IH is 8.000mm
  • the image height in the x direction is 6.400mm
  • the image height in the y direction is 4.800. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 76.65°
  • the x-direction is 68.24°
  • the y-direction is 53.76°
  • wide-angle, ultra-thin The on-axis and off-axis chromatic aberrations are fully corrected, and it has excellent optical characteristics.
  • the second embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 4 and Table 5 show the design data of the imaging optical lens 20 according to the second embodiment of the present application.
  • the object side surface and the image side surface of the sixth lens L6 are free-form surfaces.
  • Table 5 shows the aspheric surface data of each lens in the imaging optical lens 20 of the second embodiment of the present application.
  • Table 6 shows free-form surface data in the imaging optical lens 20 of the second embodiment of the present application.
  • FIG. 4 shows a situation where the RMS spot diameter of the imaging optical lens 20 of the second embodiment is within the first quadrant. According to FIG. 4, it can be seen that the imaging optical lens 20 of the second embodiment can achieve good imaging quality.
  • the second embodiment satisfies various conditional expressions.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.686mm
  • the full-field image height (diagonal direction) IH is 8.000mm
  • the image height in the x direction is 6.400mm
  • the image height in the y direction is 4.800. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 78.94°
  • the x-direction field-of-view angle is 67.58°
  • the y-direction field of view is 53.34°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the third embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 7 and Table 8 show the design data of the imaging optical lens 30 of the third embodiment of the present application.
  • the object side surface and the image side surface of the second lens L2 are free-form surfaces.
  • Table 8 shows the aspheric surface data of each lens in the imaging optical lens 30 of the third embodiment of the present application.
  • Table 9 shows free-form surface data in the imaging optical lens 30 of the third embodiment of the present application.
  • FIG. 6 shows a situation in which the RMS spot diameter of the imaging optical lens 30 of the third embodiment is within the first quadrant. According to FIG. 6, it can be seen that the imaging optical lens 30 of the third embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.979 mm
  • the full-field image height (diagonal direction) IH is 8.000 mm
  • the image height in the x direction is 6.400 mm
  • the image height in the y direction is 4.800. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 76.96°
  • the x-direction field-of-view angle is 65.24°
  • the y-direction field of view is 51.26°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the fourth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 10 and Table 11 show design data of the imaging optical lens 40 of the fourth embodiment of the present application.
  • the object side surface and the image side surface of the sixth lens L6 are free-form surfaces.
  • Table 11 shows the aspheric surface data of each lens in the imaging optical lens 40 of the fourth embodiment of the present application.
  • Table 12 shows free-form surface data in the imaging optical lens 40 of the fourth embodiment of the present application.
  • FIG. 8 shows a situation where the RMS spot diameter of the imaging optical lens 40 of the fourth embodiment is within the first quadrant. According to FIG. 8, it can be seen that the imaging optical lens 40 of the fourth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.669 mm
  • the full-field image height (diagonal direction) IH is 7.660 mm
  • the image height in the x direction is 6.120 mm
  • the image height in the y direction is 4.600. mm
  • the imaging effect is best in this rectangular range
  • the diagonal FOV is 71.27°
  • the x-direction field-of-view angle is 60.06°
  • the y-direction field of view is 46.60°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • the fifth embodiment is basically the same as the first embodiment, and the meaning of the symbols is the same as that of the first embodiment, and only the differences are listed below.
  • Table 13 and Table 14 show design data of the imaging optical lens 50 of the fifth embodiment of the present application.
  • the object side surface and the image side surface of the fourth lens L4 are free-form surfaces.
  • Table 14 shows the aspheric surface data of each lens in the imaging optical lens 50 of the fifth embodiment of the present application.
  • Table 15 shows free-form surface data in the imaging optical lens 50 of the fifth embodiment of the present application.
  • FIG. 10 shows a situation where the RMS spot diameter of the imaging optical lens 50 of the fifth embodiment is within the first quadrant. According to FIG. 10, it can be seen that the imaging optical lens 50 of the fifth embodiment can achieve good imaging quality.
  • the entrance pupil diameter ENPD of the imaging optical lens is 2.659mm
  • the full-field image height (diagonal direction) IH is 7.660mm
  • the image height in the x direction is 6.120mm
  • the image height in the y direction is 4.600. mm
  • the imaging effect is the best in this rectangular range
  • the diagonal FOV is 72.54°
  • the x-direction field-of-view angle is 60.11°
  • the y-direction field of view is 46.57°
  • wide-angle, ultra-thin and its axis
  • the on-axis and off-axis chromatic aberrations are fully corrected, and they have excellent optical characteristics.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 f2/f -2.65 -2.80 -2.58 -1.55 -1.55 d7/d8 0.74 1.01 0.80 0.65 0.67 f 4.670 4.701 4.916 5.338 5.319 f1 4.411 4.225 4.407 4.027 4.028 f2 -12.357 -13.156 -12.683 -8.264 -8.243 f3 148.774 7617.035 9.373 4.516 4.517 f4 -33.910 -46.848 -7.127 -9.873 -9.877 f5 3.136 3.052 7.039 9.119 9.163 f6 -2.506 -2.395 -5.869 -3.508 -3.604 Fno 1.75 1.75 1.65 2.00 2.00
  • Fno is the aperture F number of the imaging optical lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种摄像光学镜头(10),自物侧至像侧依序包含:第一透镜(L1),第二透镜(L2),第三透镜(L3),第四透镜(L4),第五透镜(L5),第六透镜(L6)。第一透镜(L1)至第六透镜(L6)中的至少一个含自由曲面。摄像光学镜头(10)的焦距为f,第二透镜(L2)的焦距为f2,第四透镜(L4)的轴上厚度为d7,第四透镜(L4)的像侧面到第五透镜(L5)的物侧面的轴上距离为d8,且满足下列关系式:-3.00≤f2/f≤-1.00;0.60≤d7/d8≤1.10。摄像光学镜头(10)具有良好光学性能的同时,满足高分辨率、广角、良好成像质量的设计要求。

Description

摄像光学镜头 技术领域
本申请涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
随着成像镜头的发展,人们对镜头的成像要求越来越高,镜头的“夜景拍照”和“背景虚化”也成为衡量镜头成像标准的重要指标。目前多采用旋转对称的非球面,这类非球面只在子午平面内具有充分的自由度,并不能很好的对轴外像差进行校正。自由曲面是一种非旋转对称的表面类型,能够更好地平衡像差,提高成像质量,而且自由曲面的加工也逐渐成熟。随着对镜头成像要求的提升,在设计镜头时加入自由曲面显得十分重要,尤其是在广角和超广角镜头的设计中效果更为明显。
发明内容
针对上述问题,本申请的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,具有高分辨率、广角、良好成像质量的特点。
为解决上述技术问题,本申请的实施方式提供了一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜;
所述第一透镜至所述第六透镜中的至少一个含自由曲面,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第四透镜的轴上厚度为d7,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,且满足下列关系式:
-3.00≤f2/f≤-1.00;
0.60≤d7/d8≤1.10。
优选地,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
1.50≤R3/R4≤3.00。
优选地,所述摄像光学镜头的所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的轴上厚度的总和为ΣCT,所述第一透镜的轴上厚度为d1,所述第三透镜的轴上厚度为d5,所述第五透镜的轴上厚度为d9,且满足下列关系式:
1.20≤ΣCT/(d1+d5+d9)≤1.65。
优选地,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.38≤f1/f≤1.42;
-3.44≤(R1+R2)/(R1-R2)≤-0.48;
0.08≤d1/TTL≤0.30。
优选地,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
1.08≤(R3+R4)/(R3-R4)≤5.82;
0.02≤d3/TTL≤0.07。
优选地,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.42≤f3/f≤2430.45;
-20.34≤(R5+R6)/(R5-R6)≤598.19;
0.03≤d5/TTL≤0.36。
优选地,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴 上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-19.93≤f4/f≤-0.97;
-2.51≤(R7+R8)/(R7-R8)≤10.54;
0.03≤d7/TTL≤0.09。
优选地,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
0.32≤f5/f≤2.58;
-3.08≤(R9+R10)/(R9-R10)≤2.00;
0.02≤d9/TTL≤0.25。
优选地,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
-2.39≤f6/f≤-0.34;
0.22≤(R11+R12)/(R11-R12)≤3.37;
0.02≤d11/TTL≤0.17。
优选地,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:
Fno≤2.06。
本申请的有益效果在于:根据本申请的摄像光学镜头具有良好光学性能的同时,具有高分辨率、广角、良好成像质量的特点,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图3是本申请第二实施方式的摄像光学镜头的结构示意图;
图4是图3所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图5是本申请第三实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图7是本申请第四实施方式的摄像光学镜头的结构示意图;
图8是图7所示摄像光学镜头的RMS光斑直径在第一象限内的情况;
图9是本申请第五实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的RMS光斑直径在第一象限内的情况。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
(第一实施方式)
参考附图,本申请提供了一种摄像光学镜头10。图1所示为本申请第一实施方式的摄像光学镜头10,该摄像光学镜头10包括六个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈 S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6。第六透镜L6和像面Si之间可设置有光学过滤片(filter)GF等光学元件。
第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力,第四透镜L4具有负屈折力,第五透镜L5具有正屈折力,第六透镜L6具有负屈折力。
在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质。通过合理化配置透镜的材料,使得镜头具有良好的光学性能。
在本实施方式中,定义所述第一透镜L1至所述第六透镜L6中的至少一个含自由曲面,自由曲面有助于广角光学***像散、场曲和畸变等像差校正。
所述摄像光学镜头10的焦距为f,所述第二透镜L2的焦距为f2,且满足下列关系式:-3.00≤f2/f≤-1.00,规定了第二透镜L2焦距f2与摄像光学镜头10的焦距f的比值,在条件范围内有助于像差校正,提高成像质量。优选地,满足:-2.90≤f2/f≤-1.27。
定义所述第四透镜L4的轴上厚度为d7,所述第四透镜L4的像侧面到所述第五透镜L5的物侧面的轴上距离为d8,且满足下列关系式:0.60≤d7/d8≤1.10,当满足上述条件时,有助于镜片加工和镜头组装。优选地,满足:0.62≤d7/d8≤1.06。
定义所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:1.50≤R3/R4≤3.00,规定了第二透镜L2的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足1.60≤R3/R4≤2.86。
定义所述摄像光学镜头10的所述第一透镜L1、所述第二透镜L2、所述第三透镜L3、所述第四透镜L4、所述第五透镜L5和所述第六透镜L6的轴上厚度的总和为ΣCT,定义所述第一透镜L1的轴上厚度为d1,所述第三透镜L3的轴上厚度为d5,所述第五透镜L5的轴上厚度为d9,且满足下列关系式:1.20≤ΣCT/(d1+d5+d9)≤1.65,在条件式 规定范围内,可有效分配镜片厚度,提高可加工性。优选地,满足1.25≤ΣCT/(d1+d5+d9)≤1.64。
定义所述第一透镜的焦距为f1,满足下列关系式:0.38≤f1/f≤1.42,规定了第一透镜L1的焦距与摄像光学镜头10的焦距f的比值,在条件式规定范围内,第一透镜具有适当的正屈折力,有利于减小***像差,同时有利于镜头向超薄化、广角化发展。优选地,满足0.60≤f1/f≤1.13。
所述第一透镜L1物侧面的曲率半径为R1,所述第一透镜L1像侧面的曲率半径为R2,满足下列关系式:-3.44≤(R1+R2)/(R1-R2)≤-0.48,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正***球差,优选地,满足-2.15≤(R1+R2)/(R1-R2)≤-0.60。
所述第一透镜L1的轴上厚度为d1,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.08≤d1/TTL≤0.30,有利于实现超薄化。优选地,满足0.13≤d1/TTL≤0.24。
所述第二透镜L2物侧面的曲率半径为R3,所述第二透镜L2像侧面的曲率半径为R4,满足下列关系式:1.08≤(R3+R4)/(R3-R4)≤5.82,规定了第二透镜L2的形状,在范围内时,随着镜头向超薄广角化发展,有利于补正轴上色像差问题,优选地,满足1.73≤(R3+R4)/(R3-R4)≤4.65。
定义所述第二透镜L2的轴上厚度为d3,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d3/TTL≤0.07,有利于实现超薄化。优选地,满足0.03≤d3/TTL≤0.06。
定义所述第三透镜L3的焦距为f3,所述摄像光学镜头10的焦距为f,满足下列关系式:0.42≤f3/f≤2430.45,通过光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选地,满足0.68≤f3/f≤1944.36。
定义所述第三透镜L3物侧面的曲率半径为R5,所述第三透镜L3像侧面的曲率半径为R6,满足下列关系式:-20.34≤(R5+R6)/(R5-R6)≤598.19,规定了第三透镜L3的形状,在条件式规定范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。优选地,满足-12.71≤(R5+R6)/(R5-R6)≤478.55。
定义所述第三透镜L3的轴上厚度为d5,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d5/TTL≤0.36,有利于实现超薄化。优选地,满足0.04≤d5/TTL≤0.29。
定义所述第四透镜L4的焦距为f4,满足下列关系式:-19.93≤f4/f≤-0.97,规定了第四透镜L4焦距与***焦距的比值,在条件式范围内有助于提高光学***性能。优选地,满足-12.46≤f4/f≤-1.21。
定义所述第四透镜L4物侧面的曲率半径为R7,所述第四透镜L4像侧面的曲率半径为R8,满足下列关系式:-2.51≤(R7+R8)/(R7-R8)≤10.54,规定了第四透镜L4的形状,在条件式规定范围内时,随着超薄广角化的发展,有利于补正轴外画角的像差等问题。优选地,满足-1.57≤(R7+R8)/(R7-R8)≤8.43。
定义所述第四透镜L4的轴上厚度为d7,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.03≤d7/TTL≤0.09,有利于实现超薄化。优选地,满足0.04≤d7/TTL≤0.08。
定义所述第五透镜L5的焦距为f5,满足下列关系式:0.32≤f5/f≤2.58,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度。优选地,满足0.52≤f5/f≤2.07。
定义所述第五透镜L5物侧面的曲率半径为R9,所述第五透镜L5像侧面的曲率半径为R10,满足下列关系式:-3.08≤(R9+R10)/(R9-R10)≤2.00,规定的是第五透镜L5的形状,在条件式规定范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足-1.92≤(R9+R10)/(R9-R10)≤1.60。
定义所述第五透镜L5的轴上厚度为d9,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d9/TTL≤0.25,有利于实现超薄化。优选地,满足0.03≤d9/TTL≤0.20。
定义所述第六透镜L6的焦距为f6,满足下列关系式:-2.39≤f6/f≤-0.34,通过光焦度的合理分配,使得***具有较佳的成像品质和较低的敏感性。优选地,满足-1.49≤f6/f≤-0.42。
定义所述第六透镜L6物侧面的曲率半径为R11,所述第六透镜L6像侧面的曲率半径为R12,满足下列关系式:0.22≤ (R11+R12)/(R11-R12)≤3.37,规定的是第六透镜L6的形状,在条件范围内时,随着超薄广角化发展,有利于补正轴外画角的像差等问题。优选地,满足0.35≤(R11+R12)/(R11-R12)≤2.69。
定义所述第六透镜L6的轴上厚度为d11,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:0.02≤d11/TTL≤0.17,有利于实现超薄化。优选地,满足0.03≤d11/TTL≤0.14。
本实施方式中,摄像光学镜头10的光圈F数为Fno小于或等于2.06,大光圈,成像性能好。优选地,摄像光学镜头10的光圈F数Fno小于或等于2.02。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于7.65毫米,有利于实现超薄化。优选地,光学总长TTL小于或等于7.30毫米。
当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,采用自由曲面,可实现设计像面区域与实际使用区域匹配,最大程度提升有效区域的像质;根据该光学镜头10的特性,该光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
下面将用实例进行说明本申请的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、曲率半径、轴上厚度的单位为mm。
TTL:光学总长(第一透镜L1的物侧面到成像面的轴上距离),单位为mm;
表1、表2示出本申请第一实施方式的摄像光学镜头10的设计数据。其中,第一透镜L1的物侧面和像侧面为自由曲面。
【表1】
Figure PCTCN2019130043-appb-000001
Figure PCTCN2019130043-appb-000002
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
d:透镜的轴上厚度以及透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到光学过滤片GF的物侧面的轴上距离;
d13:光学过滤片GF的轴上厚度;
d14:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本申请第一实施方式的摄像光学镜头10中各透镜的非球面数据。
【表2】
Figure PCTCN2019130043-appb-000003
Figure PCTCN2019130043-appb-000004
其中,k是圆锥系数A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数,r是非球面曲线上的点与光轴的垂直距离,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
z=(cr 2)/[1+{1-(k+1)(c 2r 2)} 1/2]+A4x 4+A6x 6+A8x 8+A10x 10+A12x 12+A14x 14+A16x 16+A18x 18+A20x 20       (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本申请不限于该公式(1)表示的非球面多项式形式。
表3示出本申请第一实施方式的摄像光学镜头10中的自由曲面数据。
【表3】
Figure PCTCN2019130043-appb-000005
Figure PCTCN2019130043-appb-000006
其中,k是圆锥系数,Bi是自由曲面系数,r是自由曲面上的点与光轴的垂直距离,x是r的x方向分量,y是r的y方向分量,z是非球面深度(非球面上距离光轴为r的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。
Figure PCTCN2019130043-appb-000007
为方便起见,各个自由曲面使用上述公式(2)中所示的扩展多项式面型(Extended Polynomial)。但是,本申请不限于该公式(2)表示的自由曲面多项式形式。
图2示出了第一实施例的摄像光学镜头10的RMS光斑直径在第一象限内的情况,根据图2可知,第一实施方式的摄像光学镜头10能够实现良好的成像品质。
后出现的表16示出各实例1、2、3、4、5中各种数值与条件式中已规定的参数所对应的值。
如表16所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.669mm,全视场像高(对角线方向)IH为8.000mm,x方向像高为6.400mm,y方向像高为4.800mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为76.65°,x方向的视场角为68.24°,y方向的视场角为53.76°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表4、表5示出本申请第二实施方式的摄像光学镜头20的设计数据。其中,第六透镜L6的物侧面和像侧面为自由曲面。
【表4】
Figure PCTCN2019130043-appb-000008
表5示出本申请第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表5】
Figure PCTCN2019130043-appb-000009
表6示出本申请第二实施方式的摄像光学镜头20中的自由曲面数据。
【表6】
Figure PCTCN2019130043-appb-000010
Figure PCTCN2019130043-appb-000011
图4示出了第二实施例的摄像光学镜头20的RMS光斑直径在第一象限内的情况,根据图4可知,第二实施方式的摄像光学镜头20能够实现良好的成像品质。
如表16所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.686mm,全视场像高(对角线方向)IH为8.000mm,x方向像高为6.400mm,y方向像高为4.800mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为78.94°,x方向视场角为67.58°,y方向视场角为53.34°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表7、表8示出本申请第三实施方式的摄像光学镜头30的设计数据。其中,第二透镜L2的物侧面和像侧面为自由曲面。
【表7】
Figure PCTCN2019130043-appb-000012
Figure PCTCN2019130043-appb-000013
表8示出本申请第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表8】
Figure PCTCN2019130043-appb-000014
表9示出本申请第三实施方式的摄像光学镜头30中的自由曲面数据。
【表9】
Figure PCTCN2019130043-appb-000015
Figure PCTCN2019130043-appb-000016
图6示出了第三实施例的摄像光学镜头30的RMS光斑直径在第一象限内的情况,根据图6可知,第三实施方式的摄像光学镜头30能够实现良好的成像品质。
以下表16按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学***满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.979mm,全视场像高(对角线方向)IH为8.000mm,x方向像高为6.400mm,y方向像高为4.800mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为76.96°,x方向视场角为65.24°,y方向视场角为51.26°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第四实施方式)
第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表10、表11示出本申请第四实施方式的摄像光学镜头40的设计数据。其中,第六透镜L6的物侧面和像侧面为自由曲面。
【表10】
Figure PCTCN2019130043-appb-000017
Figure PCTCN2019130043-appb-000018
表11示出本申请第四实施方式的摄像光学镜头40中各透镜的非球面数据。
【表11】
Figure PCTCN2019130043-appb-000019
表12示出本申请第四实施方式的摄像光学镜头40中的自由曲面数据。
【表12】
Figure PCTCN2019130043-appb-000020
Figure PCTCN2019130043-appb-000021
图8示出了第四实施例的摄像光学镜头40的RMS光斑直径在第一象限内的情况,根据图8可知,第四实施方式的摄像光学镜头40能够实现良好的成像品质。
以下表16按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学***满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.669mm,全视场像高(对角线方向)IH为7.660mm,x方向像高为6.120mm,y方向像高为4.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为71.27°,x方向视场角为60.06°,y方向视场角为46.60°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第五实施方式)
第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表13、表14示出本申请第五实施方式的摄像光学镜头50的设计数据。其中,第四透镜L4的物侧面和像侧面为自由曲面。
【表13】
Figure PCTCN2019130043-appb-000022
Figure PCTCN2019130043-appb-000023
表14示出本申请第五实施方式的摄像光学镜头50中各透镜的非球面数据。
【表14】
Figure PCTCN2019130043-appb-000024
表15示出本申请第五实施方式的摄像光学镜头50中的自由曲面数据。
【表15】
Figure PCTCN2019130043-appb-000025
Figure PCTCN2019130043-appb-000026
图10示出了第五实施例的摄像光学镜头50的RMS光斑直径在第一象限内的情况,根据图10可知,第五实施方式的摄像光学镜头50能够实现良好的成像品质。
以下表16按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学***满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径ENPD为2.659mm,全视场像高(对角线方向)IH为7.660mm,x方向像高为6.120mm,y方向像高为4.600mm,在此矩形范围内成像效果最佳,对角线方向的视场角FOV为72.54°,x方向视场角为60.11°,y方向视场角为46.57°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表16】
参数及条件式 实施例1 实施例2 实施例3 实施例4 实施例5
f2/f -2.65 -2.80 -2.58 -1.55 -1.55
d7/d8 0.74 1.01 0.80 0.65 0.67
f 4.670 4.701 4.916 5.338 5.319
f1 4.411 4.225 4.407 4.027 4.028
f2 -12.357 -13.156 -12.683 -8.264 -8.243
f3 148.774 7617.035 9.373 4.516 4.517
f4 -33.910 -46.848 -7.127 -9.873 -9.877
f5 3.136 3.052 7.039 9.119 9.163
f6 -2.506 -2.395 -5.869 -3.508 -3.604
Fno 1.75 1.75 1.65 2.00 2.00
其中,Fno为摄像光学镜头的光圈F数。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜;
    所述第一透镜至所述第六透镜中的至少一个含自由曲面,所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第四透镜的轴上厚度为d7,所述第四透镜的像侧面到所述第五透镜的物侧面的轴上距离为d8,且满足下列关系式:
    -3.00≤f2/f≤-1.00;
    0.60≤d7/d8≤1.10。
  2. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,且满足下列关系式:
    1.50≤R3/R4≤3.00。
  3. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜和所述第六透镜的轴上厚度的总和为ΣCT,所述第一透镜的轴上厚度为d1,所述第三透镜的轴上厚度为d5,所述第五透镜的轴上厚度为d9,且满足下列关系式:
    1.20≤ΣCT/(d1+d5+d9)≤1.65。
  4. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.38≤f1/f≤1.42;
    -3.44≤(R1+R2)/(R1-R2)≤-0.48;
    0.08≤d1/TTL≤0.30。
  5. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二 透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    1.08≤(R3+R4)/(R3-R4)≤5.82;
    0.02≤d3/TTL≤0.07。
  6. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.42≤f3/f≤2430.45;
    -20.34≤(R5+R6)/(R5-R6)≤598.19;
    0.03≤d5/TTL≤0.36。
  7. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -19.93≤f4/f≤-0.97;
    -2.51≤(R7+R8)/(R7-R8)≤10.54;
    0.03≤d7/TTL≤0.09。
  8. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    0.32≤f5/f≤2.58;
    -3.08≤(R9+R10)/(R9-R10)≤2.00;
    0.02≤d9/TTL≤0.25。
  9. 根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:
    -2.39≤f6/f≤-0.34;
    0.22≤(R11+R12)/(R11-R12)≤3.37;
    0.02≤d11/TTL≤0.17。
  10. 根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数为Fno,且满足下列关系式:
    Fno≤2.06。
PCT/CN2019/130043 2019-12-30 2019-12-30 摄像光学镜头 WO2021134264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130043 WO2021134264A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130043 WO2021134264A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Publications (1)

Publication Number Publication Date
WO2021134264A1 true WO2021134264A1 (zh) 2021-07-08

Family

ID=76686076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130043 WO2021134264A1 (zh) 2019-12-30 2019-12-30 摄像光学镜头

Country Status (1)

Country Link
WO (1) WO2021134264A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220113499A1 (en) * 2020-10-12 2022-04-14 Samsung Electro-Mechanics Co., Ltd. Optical imaging system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175058A1 (ja) * 2013-04-22 2014-10-30 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP2014232147A (ja) * 2013-05-28 2014-12-11 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN104950422A (zh) * 2014-08-13 2015-09-30 瑞声声学科技(深圳)有限公司 摄像镜头
WO2016109956A1 (zh) * 2015-01-07 2016-07-14 浙江舜宇光学有限公司 摄像镜头
CN109581625A (zh) * 2017-09-29 2019-04-05 康达智株式会社 摄像镜头
CN110297311A (zh) * 2019-06-29 2019-10-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110361840A (zh) * 2019-06-30 2019-10-22 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110398821A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110471167A (zh) * 2019-08-16 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175058A1 (ja) * 2013-04-22 2014-10-30 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
JP2014232147A (ja) * 2013-05-28 2014-12-11 コニカミノルタ株式会社 撮像レンズ、撮像装置及び携帯端末
CN104950422A (zh) * 2014-08-13 2015-09-30 瑞声声学科技(深圳)有限公司 摄像镜头
WO2016109956A1 (zh) * 2015-01-07 2016-07-14 浙江舜宇光学有限公司 摄像镜头
CN109581625A (zh) * 2017-09-29 2019-04-05 康达智株式会社 摄像镜头
CN110297311A (zh) * 2019-06-29 2019-10-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110361840A (zh) * 2019-06-30 2019-10-22 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110398821A (zh) * 2019-06-30 2019-11-01 瑞声科技(新加坡)有限公司 摄像光学镜头
CN110471167A (zh) * 2019-08-16 2019-11-19 瑞声通讯科技(常州)有限公司 摄像光学镜头

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220113499A1 (en) * 2020-10-12 2022-04-14 Samsung Electro-Mechanics Co., Ltd. Optical imaging system

Similar Documents

Publication Publication Date Title
WO2022021453A1 (zh) 摄像光学镜头
WO2022000658A1 (zh) 摄像光学镜头
WO2022000659A1 (zh) 摄像光学镜头
WO2021168881A1 (zh) 摄像光学镜头
WO2021168882A1 (zh) 摄像光学镜头
WO2022000647A1 (zh) 摄像光学镜头
WO2022041391A1 (zh) 摄像光学镜头
WO2021097930A1 (zh) 摄像光学镜头
WO2022007027A1 (zh) 摄像光学镜头
WO2022021457A1 (zh) 摄像光学镜头
WO2022007022A1 (zh) 摄像光学镜头
WO2022021456A1 (zh) 摄像光学镜头
WO2021248576A1 (zh) 摄像光学镜头
WO2022126700A1 (zh) 摄像光学镜头
WO2022032827A1 (zh) 摄像光学镜头
WO2022021454A1 (zh) 摄像光学镜头
WO2022021455A1 (zh) 摄像光学镜头
WO2021168891A1 (zh) 摄像光学镜头
WO2022021458A1 (zh) 摄像光学镜头
WO2021168889A1 (zh) 摄像光学镜头
WO2021134324A1 (zh) 摄像光学镜头
WO2021134321A1 (zh) 摄像光学镜头
WO2021134264A1 (zh) 摄像光学镜头
WO2022032828A1 (zh) 摄像光学镜头
WO2021134330A1 (zh) 摄像光学镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958614

Country of ref document: EP

Kind code of ref document: A1