WO2021132693A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2021132693A1
WO2021132693A1 PCT/JP2020/049034 JP2020049034W WO2021132693A1 WO 2021132693 A1 WO2021132693 A1 WO 2021132693A1 JP 2020049034 W JP2020049034 W JP 2020049034W WO 2021132693 A1 WO2021132693 A1 WO 2021132693A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
component
meth
composition
acrylate
Prior art date
Application number
PCT/JP2020/049034
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 大房
橋本 直樹
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to KR1020227021315A priority Critical patent/KR20220123397A/en
Priority to JP2021567748A priority patent/JPWO2021132693A1/ja
Priority to CN202080089727.5A priority patent/CN114867757B/en
Publication of WO2021132693A1 publication Critical patent/WO2021132693A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Definitions

  • the present invention relates to a curable composition, preferably an active energy ray-curable composition, and particularly preferably a solvent-free active energy ray-curable composition, which belongs to these technical fields.
  • acryloyl group and / or methacryloyl group is referred to as "(meth) acryloyl group”
  • acrylate and / or methacrylate is referred to as "(meth) acrylate”
  • “acrylic acid and / or methacrylic acid” "Acid” is expressed as "(meth) acrylic acid”.
  • a compound having an ethylenically unsaturated group is referred to as a "curable component" in the composition.
  • Curable compositions are used in a variety of applications such as coatings, adhesives, inks, and electronic materials.
  • the active energy ray-curable composition has an advantage that it can be cured in a very short time, and (meth) acrylate having excellent curability is often used.
  • a high-pressure mercury lamp and a metal halide are used as a light source.
  • ultraviolet rays are irradiated in a nitrogen atmosphere or the composition is coated on a base material, and then a film is laminated on the coated surface and ultraviolet rays are irradiated under oxygen blocking.
  • the scope of application is limited due to problems such as large size of equipment, high cost, and low productivity.
  • oxygen inhibition is reduced by adding an additive such as an amine compound and a phosphorus compound to the composition, but such a relatively highly effective additive is a cured product. There is a problem of coloring.
  • G. Wegner et al. (2-oxo-1,3-dioxolane-4-yl) methyl (meth) acrylate [glycerin carbonate (meth) acrylate.
  • Glycarbo- (M) A Is obtained by the reaction of glycerol carbonate with (meth) acrylic acid chloride (Non-Patent Document 2).
  • the manufacturing method described in the same document is based on the acid chloride method, and there is a problem in consideration of the problem of corrosion of the container and the large environmental load.
  • the compound produced by the method described in the same document has a high concentration of sodium and chlorine, and therefore, when used as a component of a curable composition, the cured product has a problem of metal corrosion. There were problems such as low water resistance.
  • Patent Document 1 discloses an abrasion-resistant coating composition containing a trifunctional or higher functional polyacrylate and Glycarbo- (M) A, which has a high hardness, a high curing rate, and excellent adhesion. , It is disclosed that the effect of less coloring of the cured product is obtained (Patent Document 1).
  • the method for producing Glycarbo- (M) A in Patent Document 1 is also based on the acid chloride method, and the composition has the above-mentioned problems.
  • the present inventors have conducted diligent studies to find a curable composition containing Glycarbo- (M) A, which has no problem of metal corrosion and has excellent water resistance. It is.
  • the present inventors have prepared a curable composition containing Glycarbo- (M) A as the component (A) and reducing the chlorine concentration and the sodium concentration contained in the component (A).
  • the present invention has been completed by finding that the cured product is excellent in metal corrosion resistance and water resistance.
  • the present invention will be described in detail.
  • the cured product can be made excellent in metal corrosion resistance and water resistance.
  • the present invention is a composition containing the component (A), wherein the component (A) contains a compound represented by the formula (a) described later, and the chlorine concentration contained in the component (A) is less than 100 ppm. It is a curable composition having a sodium concentration of less than 100 ppb.
  • the component (A), the curable composition, the use and the method of use will be described.
  • Ra means a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • R b means a single bond or an oxyalkylene group.
  • Ra in the formula (a) means a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R a is preferably a hydrogen atom or a methyl group.
  • Examples of the oxyalkylene group in R b include an ethylene oxide group, a propylene oxide group, a tetramethylene oxide group, and a mixing unit of these alkylene oxide groups, and an ethylene oxide group is preferable.
  • the oxyalkylene group in R b may be an alkylene oxide group having a repeating unit, preferably 1 to 20, and more preferably 1 to 15.
  • the composition containing the component (A) is less susceptible to oxygen inhibition, has excellent curability, can reduce the viscosity of the composition without a solvent, and the cured product has excellent hardness, scratch resistance, and substrate adhesion. ..
  • a compound in which Ra is a hydrogen atom or a methyl group and R b is a single bond is preferable. That is, Glycarbo- (M) A [(2-oxo-1,3-dioxolane-4-yl) methyl (meth) acrylate] is preferable.
  • a compound having a hydrogen atom as R in the formula (a), that is, Glycarbo-A [(2-oxo-1,3-dioxolan-4-yl) methyl acrylate] is more preferable in that it is excellent in curability.
  • the compound of the formula (a) is preferably a compound in which Ra is a hydrogen atom or a methyl group, R b is an oxyalkylene group, and the repeating unit of the oxyalkylene group is 1 to 15.
  • the component (A) may be a mixture of these compounds.
  • the component (A) has a chlorine concentration of less than 100 ppm and a sodium concentration of less than 100 ppb.
  • the chlorine concentration in the present invention means a value obtained by the quartz tube combustion-ion chromatography method.
  • the sodium concentration in the present invention means a value obtained by measuring a sample with an ICP mass spectrometer and quantifying the detected element by an absolute calibration curve method.
  • glycerin carbonate As a method for producing the component (A), glycerin carbonate, an alkylene oxide adduct of glycerin carbonate, or a mixture of these compounds is used in that the component (A) having the above-mentioned chlorine concentration and sodium concentration can be easily produced.
  • a glycerin carbonate compound and (meth) acrylic acid are subjected to a dehydration esterification reaction
  • the component (A) can be produced in good yield and with reduced chlorine concentration and sodium concentration.
  • the method for producing the glycerin carbonate-based compound, the monofunctional (meth) acrylate, the catalyst, and the component (A) will be described with respect to the method for producing the component (A) by a transesterification reaction, which is a preferable method for producing the component (A).
  • the glycerin carbonate-based compound used as a raw material for the glycerin carbonate-based compound (A) component is a glycerin carbonate, an alkylene oxide adduct of the glycerin carbonate, or a mixture of these compounds.
  • a glycerin carbonate (4-hydroxymethyl-1,3-dioxolane-2-one)
  • a commercially available product can be used.
  • a compound produced by transesterifying glycerin with a carbonic acid ester compound such as ethylene carbonate, dimethyl carbonate and diethyl carbonate in the presence of a catalyst can also be used.
  • an ethylene oxide adduct of glycerin carbonate an ethylene oxide adduct of glycerin and a carbonic acid ester compound such as ethylene carbonate, dimethyl carbonate and diethyl carbonate are synthesized by transesterification reaction in the presence of a catalyst. Can be done.
  • a carbonic acid ester compound such as ethylene carbonate, dimethyl carbonate and diethyl carbonate
  • glycerin carbonate-based compound a mixture of the above-mentioned compounds can also be used.
  • a compound represented by the following general formula (1) can be mentioned.
  • R 1 represents a hydrogen atom and an alkyl group having 1 to 5 carbon atoms
  • R 2 represents an organic group having 1 to 50 carbon atoms.
  • R 1 in the above general formula (1) a hydrogen atom or a methyl group is preferable.
  • R 2 in the above general formula (1) include 1 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a 2-ethylhexyl group.
  • R 2 in the general formula (1) include the functional groups mentioned in JP-A-2017-39916, JP-A-2017-39917, and International Publication No. 2017/033732. ..
  • these monofunctional (meth) acrylates can be used alone or in any combination of two or more.
  • carbons such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate
  • alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth) acrylate, and N, N-dimethylaminoethyl (meth) acrylate are preferable, and glycerin carbonate is particularly preferable.
  • the transesterification reaction catalyst in the method for producing the catalyst (A) component conventionally known catalysts such as tin-based catalysts, titanium-based catalysts, and sulfuric acid can be used.
  • Catalyst X Cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof (hereinafter referred to as “azabicyclo compound”), amidine or a salt or complex thereof (hereinafter referred to as “amidine compound”), a compound having a pyridine ring or
  • One or more compound catalyst Y a compound containing zinc selected from the group consisting of the salt or complex (hereinafter referred to as "pyridine compound”) and phosphine or a salt or complex thereof (hereinafter referred to as "phosphine compound”).
  • pyridine compound a compound containing zinc selected from the group consisting of the salt or complex
  • phosphine compound phosphine compound
  • the catalyst X is one or more compounds selected from the group consisting of azabicyclo-based compounds, amidine-based compounds, pyridine-based compounds, and phosphine-based compounds.
  • the catalyst X one or more compounds selected from the group consisting of azabicyclo-based compounds, amidine-based compounds and pyridine-based compounds are preferable among the above-mentioned compound groups. These compounds have excellent catalytic activity and can preferably produce the component (A).
  • they form a complex with the catalyst Y described later after the reaction is completed they can be easily obtained from the reaction solution after the reaction by a simple method such as filtration and adsorption. Can be removed.
  • the azabicyclo-based compound can be more easily removed by filtration, adsorption or the like because the complex with the catalyst Y becomes sparingly soluble in the reaction solution.
  • the phosphine compound has excellent catalytic activity, it is difficult to form a complex with the catalyst Y, and most of the phosphine compound remains dissolved in the reaction solution after the reaction is completed. Difficult to remove from liquid. For this reason, the phosphine-based catalyst remains in the final product, which causes turbidity and catalyst precipitation during storage of the product, and thickening or gelation over time, resulting in storage stability. It may cause problems, and it may have similar problems when used as a component of a composition.
  • the azabicyclo-based compound examples include a cyclic tertiary amine having an azabicyclo structure, a salt of the amine, and various compounds as long as they satisfy the complex of the amine, and preferred compounds include quinuclidine and 3. -Hydroxyquinuclidine, 3-quinucridinone, 1-azabicyclo [2.2.2] octane-3-carboxylic acid, and triethylenediamine (also known as 1,4-diazabicyclo [2.2.2] octane. DABCO ”) and the like.
  • Specific examples of the azabicyclo-based compound include the compounds mentioned in JP-A-2017-39916, JP-A-2017-39917, WO2016 / 163208 and WO2017 / 033732. Be done.
  • amidine-based compound examples include imidazole, N-methylimidazole, N-ethyl imidazole, 1-benzyl-2-methyl imidazole, 1-benzyl-2-phenyl imidazole, 1-vinyl imidazole, 1-allyl imidazole, 1 , 8-Diazabicyclo [5.4.0] Undec-7-ene (hereinafter referred to as "DBU”), 1,5-Diazabicyclo [4.3.0] Nona-5-ene (hereinafter referred to as "DBN”) , N-Methylimidazole hydrochloride, DBU hydrochloride, DBN hydrochloride, N-methylimidazole acetate, DBU acetate, DBN acetate, N-methylimidazole acrylate, DBU acrylate, DBN acrylate, and Examples include phthalimide DBU and the like.
  • pyridine compounds include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, and N, N-dimethyl-. Examples thereof include 4-aminopyridine (hereinafter referred to as "DMAP").
  • DMAP 4-aminopyridine
  • Specific examples of the pyridine compound include the compounds mentioned in JP-A-2017-39916, JP-A-2017-39917, WO2016 / 163208 and WO2017 / 033732. Be done.
  • Examples of the phosphine or a salt or complex thereof include a compound containing a structure represented by the following general formula (2).
  • R 3 , R 4 and R 5 are a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, and 6 carbon atoms. It means an aryl group of up to 24 or a cycloalkyl group having 5 to 20 carbon atoms. R 3 , R 4 and R 5 may be the same or different. ]
  • phosphine compounds include triphenylphosphine, tris (4-methoxyphenyl) phosphine, tri (p-tolyl) phosphine, tri (m-tolyl) phosphine, and tris (4-methoxy-3,5-dimethylphenyl). ) Phosphine, tricyclohexylphosphine and the like.
  • Specific examples of the phosphine-based compound include the compounds mentioned in JP-A-2017-39916, JP-A-2017-39917, WO2016 / 163208 and WO2017 / 033732. Be done.
  • these catalysts X can be used alone or in any combination of two or more.
  • quinuclidine, 3-quinuclidinone, 3-hydroxyquinuclidine, DABCO, N-methylimidazole, DBU, DBN and DMAP are preferable, and particularly good reactivity with most glycerin carbonate compounds.
  • 3-Hydroxyquinuclidine, DABCO, N-methylimidazole, DBU and DMAP which are easily available, are more preferable.
  • the ratio of the catalyst X used in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.0001 to 0.5 mol of the catalyst X with respect to 1 mol of the total hydroxyl groups in the glycerin carbonate-based compound. , More preferably 0.0005 to 0.2 mol.
  • 0.0001 mol or more of the catalyst X the amount of the component (A) produced can be increased, and by using 0.5 mol or less, the formation of by-products and the coloring of the reaction solution can be suppressed. , The purification step after the reaction is completed can be simplified.
  • the catalyst Y is a compound containing zinc.
  • various compounds can be used as long as they are compounds containing zinc, but zinc organic acid and zinc diketone enolate are preferable because of their excellent reactivity.
  • the zinc organic acid include zinc dibasate such as zinc oxalate and a compound represented by the following general formula (3).
  • R 6 and R 7 have a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, and 6 to 24 carbon atoms. It means an aryl group or a cycloalkyl group having 5 to 20 carbon atoms. R 6 and R 7 may be the same or different.
  • a compound in which R 6 and R 7 are linear or branched alkyl groups having 1 to 20 carbon atoms is preferable.
  • the linear or branched alkyl group having 1 to 20 carbon atoms is a functional group having no halogen atom such as fluorine and chlorine, and the catalyst Y having the functional group has a high yield. It is preferable because the component (A) can be produced in the above.
  • Examples of the zinc diketone enolate include compounds represented by the following general formula (4).
  • R 8 , R 9 , R 10 , R 11 , R 12 and R 13 are hydrogen atoms, linear or branched alkyl groups having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. It means a linear or branched alkenyl group, an aryl group having 6 to 24 carbon atoms, or a cycloalkyl group having 5 to 20 carbon atoms. R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may be the same or different. ]
  • the zinc-containing compound represented by the above general formula (3) include zinc acetate, zinc acetate dihydrate, zinc propionate, zinc octylate, zinc neodecanoate, zinc laurate, zinc myristate, and the like.
  • Examples thereof include zinc stearate, zinc cyclohexane butyrate, zinc 2-ethylhexanate, zinc benzoate, zinc t-butyl benzoate, zinc salicylate, zinc naphthenate, zinc acrylate, and zinc methacrylate.
  • the complex with the hydrate, solvate, and catalyst X is also a component (A). Can be used as the catalyst Y in the production method of.
  • the zinc-containing compound represented by the above general formula (4) include zinc acetylacetonate, zinc acetylacetonate hydrate, bis (2,6-dimethyl-3,5-heptandionat) zinc, and bis. Examples thereof include (2,2,6,6-tetramethyl-3,5-heptandionat) zinc and bis (5,5-dimethyl-2,4-hexanedionat) zinc. If a complex with the hydrate, solvate, or catalyst X of these zinc-containing compounds is present, the complex with the hydrate, solvate, and catalyst X is also a component (A). Can be used as the catalyst Y in the production method of.
  • the above-mentioned compounds can be directly used, but these compounds can also be generated and used in the reaction system.
  • zinc compounds such as metallic zinc, zinc oxide, zinc hydroxide, zinc chloride and zinc nitrate (hereinafter referred to as "raw zinc compound") are used as raw materials, and in the case of organic acid zinc, the raw material zinc compound and organic acid
  • raw zinc compound a method of reacting the raw material zinc compound with 1,3-diketone and the like can be mentioned.
  • these catalysts Y can be used alone or in any combination of two or more.
  • these catalysts Y zinc acetate, zinc propionate, zinc acrylate, zinc methacrylate, and zinc acetylacetonate are preferable, and in particular, they show good reactivity with glycerin carbonate-based compounds and are easily available.
  • Zinc acetate, zinc acrylate, and zinc acetylacetonate are preferred.
  • the ratio of the catalyst Y used in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.0001 to 0.5 mol of the catalyst Y with respect to 1 mol of the total hydroxyl groups in the glycerin carbonate-based compound. , More preferably 0.0005 to 0.2 mol.
  • 0.0001 mol or more of the catalyst Y the amount of the component (A) produced can be increased, and by using 0.5 mol or less, the formation of by-products and the coloring of the reaction solution can be suppressed. , The purification step after the reaction is completed can be simplified.
  • Component (A) is preferably produced by transesterifying a glycerin carbonate-based compound with a monofunctional (meth) acrylate in the presence of a transesterification catalyst.
  • a method for producing the component (A) a production method in which the catalysts X and Y are used in combination as a catalyst is preferable, and the production method will be described below.
  • the ratio of the catalyst X and the catalyst Y used in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.005 to 10.0 mol of the catalyst X with respect to 1 mol of the catalyst Y. It is preferably 0.05 to 2.0 mol.
  • 0.005 mol or more the amount of the compound of the target formula (a) produced can be increased, and by using 10.0 mol or less, the formation of by-products and the coloring of the reaction solution are suppressed. Therefore, the purification step after the reaction is completed can be simplified.
  • the catalyst X is an azabicyclo-based compound
  • the catalyst Y is a compound represented by the general formula (3)
  • the azabicyclo-based compound is DABCO.
  • the compound represented by the general formula (3) is zinc acetate and / or zinc acrylate.
  • the catalyst X and the catalyst Y used in the present invention may be added from the beginning of the above reaction or may be added from the middle. Further, the desired amount to be used may be added all at once, or may be added in divided portions.
  • the reaction temperature in the method for producing the component (A) is preferably 40 to 180 ° C, more preferably 60 to 160 ° C.
  • the reaction rate can be increased, and by setting the reaction temperature to 180 ° C. or lower, thermal polymerization of the (meth) acryloyl group in the raw material or product is suppressed, and the reaction solution is colored. Can be suppressed, and the purification step after the reaction is completed can be simplified.
  • the reaction pressure in the method for producing the component (A) is not particularly limited as long as a predetermined reaction temperature can be maintained, and may be carried out in a reduced pressure state or in a pressurized state.
  • the reaction pressure is preferably 0.000001 to 10 MPa (absolute pressure).
  • a monohydric alcohol derived from a monofunctional (meth) acrylate is produced as a by-product as the transesterification reaction progresses.
  • the monohydric alcohol may remain coexisting in the reaction system, but the progress of the transesterification reaction can be further promoted by discharging the monohydric alcohol out of the reaction system.
  • the reaction can be carried out without using an organic solvent, but an organic solvent may be used if necessary.
  • organic solvent include n-hexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, n-nonane, n-decane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, and diah.
  • Hydrocarbons such as milbenzene, triamylbenzene, dodecylbenzene, didodecylbenzene, amyltoluene, isopropyltoluene, decalin and tetralin; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diamyl ether, diethyl acetal, dihexyl Ethers such as acetal, t-butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, trioxane, dioxane, anisole, diphenyl ether, dimethyl cellosolve, jiglime, triglime and tetraglime; crown ethers such as 18-crown-6; Ethers such as methyl benzoate and ⁇ -butyrolactone; ketones such as acetone, methyl
  • solvents hydrocarbons, ethers, carbonate compounds and ionic liquids are preferred. These solvents may be used alone, or two or more kinds may be arbitrarily combined and used as a mixed solvent.
  • an inert gas such as argon, helium, nitrogen or carbon dioxide may be introduced into the system for the purpose of maintaining a good color tone of the reaction solution, but acryloyl group polymerization may be carried out.
  • Oxygen-containing gas may be introduced into the system for the purpose of prevention.
  • Specific examples of the oxygen-containing gas include air, a mixed gas of oxygen and nitrogen, a mixed gas of oxygen and helium, and the like.
  • a method for introducing the oxygen-containing gas there is a method of dissolving it in the reaction solution or blowing it into the reaction solution (so-called bubbling).
  • a polymerization inhibitor to the reaction solution for the purpose of preventing the polymerization of the (meth) acryloyl group.
  • the polymerization inhibitor include organic polymerization inhibitors, inorganic polymerization inhibitors, organic salt polymerization inhibitors and the like.
  • organic polymerization inhibitor examples include hydroquinone, tert-butyl hydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol and 4 Examples thereof include phenolic compounds such as -tert-butylcatechol, quinone compounds such as benzoquinone, phenothiazine, and N-nitroso-N-phenylhydroxylamineammonium.
  • organic polymerization inhibitor an organic compound having a stable radical can also be used, and examples thereof include carbinoxyl and N-oxyl compounds.
  • N-oxyl compound examples include 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-oxo-2,2. , 6,6-Tetramethylpiperidin-1-oxyl and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl and the like.
  • the inorganic polymerization inhibitor examples include copper chloride, copper sulfate, iron sulfate and the like.
  • organic salt-based polymerization inhibitor examples include copper dibutyldithiocarbamate, N-nitroso-N-phenylhydroxylamine aluminum salt and the like.
  • the polymerization inhibitor may be added alone or in combination of two or more, may be added from the beginning of the present invention, or may be added in the middle. Further, the desired amount to be used may be added all at once, or may be added in divided portions. Moreover, you may add continuously via a rectification tower.
  • the addition ratio of the polymerization inhibitor is preferably 5 to 30,000 wtppm, more preferably 25 to 10,000 wtppm in the reaction solution. By setting this ratio to 5 wtppm or more, the polymerization inhibitory effect can be sufficiently exerted, and by setting it to 30,000 wtppm or less, coloring of the reaction solution can be suppressed and the purification step after the reaction is completed can be simplified. In addition, it is possible to prevent a decrease in the curing rate of the obtained component (A).
  • the reaction time in the method for producing the component (A) varies depending on the type and amount of the catalyst used, the reaction temperature, the reaction pressure, etc., but is preferably 0.1 to 150 hours, more preferably 0.5 to 80 hours.
  • the method for producing the component (A) can be carried out by any of a batch method, a semi-batch method and a continuous method.
  • a batch method a glycerin carbonate-based compound, a monofunctional (meth) acrylate, a catalyst and a polymerization inhibitor are charged in a reactor, and the oxygen-containing gas is bubbling in the reaction solution and stirred at a predetermined temperature. After that, the monohydric alcohol produced as a by-product with the progress of the transesterification reaction can be extracted from the reactor at a predetermined pressure to produce the desired component (A).
  • the separation / purification operation include a crystallization operation, a filtration operation, a distillation operation, an extraction operation, and the like, and it is preferable to combine these operations.
  • the crystallization operation include cold crystallization and concentrated crystallization
  • examples of the filtration operation include pressure filtration, suction filtration and centrifugal filtration
  • examples of the distillation operation include simple distillation, fractional distillation and molecular distillation.
  • examples of the extraction operation include solid-liquid extraction and liquid-liquid extraction.
  • a solvent may be used in the separation and purification operation.
  • a neutralizing agent for neutralizing the catalyst and / or polymerization inhibitor used in the present invention an adsorbent for adsorbing and removing, an acid and / or alkali for decomposing or removing by-products, and a color tone.
  • Activated carbon for improving the above, silica soil for improving the filtration efficiency and the filtration rate, and the like may be used.
  • the component (A) thus obtained can have a chlorine concentration of less than 100 ppm, preferably less than 10 ppm, and a sodium concentration of less than 100 ppb, preferably less than 10 ppb, and the cured product can be obtained.
  • a curable composition having excellent water resistance and metal corrosion resistance can be obtained.
  • component (D) When a compound having an ethylenically unsaturated group other than the component (A) described later [hereinafter referred to as "component (D)"] is blended, the content ratio of the component (A) is 100% by weight of the total curable component. In addition, 5 to 100% by weight is preferable, 5 to 95% by weight is more preferable, and 10 to 70% by weight is particularly preferable. By setting the content ratio of the component (A) to 5% by weight or more, the composition can have a low viscosity. On the other hand, when it is 95% by weight or less, the crosslink density can be increased and the heat resistance can be improved.
  • the curable component is as defined above, and means the components (A) and (D).
  • the present invention is a curable composition containing the above (A).
  • a method for producing the composition a mixture of reaction products containing (meth) acrylate obtained by transesterifying a glycerin carbonate-based compound and a monofunctional (meth) acrylate in the presence of the catalysts X and Y.
  • a production method including a step of producing the component (A) is preferable. According to the production method, the component (A) can be obtained in a high yield, so that the cost and productivity are excellent. Further, the component (A) obtained by the production method has a low viscosity and is easy to handle because there are few side reaction high molecular weight substances, and the chlorine concentration and the sodium concentration can be further reduced.
  • the method for producing the component (A) described above may be followed. Further, when other components described later are blended, the component (A) and the other components may be stirred and mixed.
  • the viscosity of the composition may be appropriately set according to the intended purpose, preferably 10 to 3,000 mPa ⁇ s, and more preferably 20 to 1,500 mPa ⁇ s.
  • the composition of the present invention can be used as an active energy ray-curable composition or a thermosetting composition, but can be preferably used as an active energy ray-curable composition. Further, the composition of the present invention can be used in any form of a solvent-free composition containing no organic solvent, a solvent-type composition containing an organic solvent, and an aqueous composition in which the component (A) is dissolved or dispersed in water. can do. In the aqueous composition in which the component (A) is dispersed in water, an emulsifier usually used or a reactive emulsifier described later can be used as the dispersant.
  • the composition of the present invention contains the component (A) as an essential component, but various components can be blended depending on the purpose.
  • the other components include a photopolymerization initiator [hereinafter referred to as "(B) component”], a thermal polymerization initiator [hereinafter referred to as “(C) component”], and the above-mentioned (A).
  • examples thereof include compounds having an ethylenically unsaturated group other than the components [hereinafter, referred to as “component (D)”] and the like.
  • component (D) ethylenically unsaturated group other than the components
  • composition of the present invention is used as an active energy ray-curable composition, particularly when ultraviolet rays and visible light are used as active energy rays, (B) from the viewpoint of easiness of curing and cost.
  • Component photopolymerization initiator
  • an electron beam is used as the active energy ray, it is not always necessary to blend it, but it can be blended in a small amount if necessary in order to improve the curability.
  • component (B) examples include benzyl dimethyl ketal, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy) phenyl.
  • Acylphosphine oxide compounds as well as thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4-propylthioxanthone, 3- [3,4-dimethyl-9-oxo-9H-thioxanthone-2 -Il-oxy] -2-hydroxypropyl-N, N, N-trimethylammonium chloride, fluorothioxanthone and other thioxanthone compounds can be mentioned.
  • Examples of the compound other than the above include benzyl, methyl phenylglioxyate, ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate, ethyl anthraquinone, phenanthrenequinone, camphorquinone and the like.
  • an acetophenone-based compound is preferable, and ⁇ -hydroxyphenyl ketone is preferable because it has good surface curability even in a thin film coating in the atmosphere.
  • ⁇ -hydroxyphenyl ketone 1-hydroxycyclohexylphenyl ketone and 2-hydroxy-2-methyl-1-phenyl-propane-1-one are more preferable.
  • acylphosphine oxide compound and the morphophosphorus compound are preferable to use in the acetphenone-based compound in combination.
  • acylphosphine oxide compound in this case, Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl- (2,4,6-trimethylbenzoyl) phenylphosphine and bis (2,6- Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and the like can be mentioned.
  • the morpholin compound include 2-methyl-1- [4- (methylthio)] phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl). Butane-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butane-1-one and the like can be mentioned.
  • the content ratio of the component (B) is preferably 0.05 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the total amount of the curable components.
  • Component (C) is a thermosetting initiator, and when the composition is used as a thermosetting composition, the component (C) can be blended.
  • the composition of the present invention can also be heat-cured by blending a thermal polymerization initiator.
  • a thermal polymerization initiator various compounds can be used, and organic peroxides and azo-based initiators are preferable.
  • organic peroxide examples include 1,1-bis (t-butylperoxy) 2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, and 1 , 1-bis (t-hexyl peroxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2, , 2-bis (4,4-di-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-Butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-dimethyl
  • azo compounds include 1,1'-azobis (cyclohexane-1-carbonitrile), 2- (carbamoylazo) isobutyronitrile, and 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile. , Azodi-t-octane, azodi-t-butane and the like.
  • organic peroxide can be combined with a reducing agent to cause a redox reaction.
  • the content ratio of the component (C) is preferably 10 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component.
  • the component (C) may be carried out according to the usual means of radical thermal polymerization, and in some cases, it may be used in combination with the component (B) (photopolymerization initiator), and after photocuring, the reaction rate is further increased. It is also possible to carry out thermosetting for the purpose of improving.
  • Component (D) is a compound having an ethylenically unsaturated group and is a compound other than the component (A).
  • a (meth) acryloyl group is preferable, and an acryloyl group is more preferable, because the composition is excellent in curability.
  • the component (D) may be a compound having one or more ethylenically unsaturated groups and may be a compound other than the above (A), specifically, a compound having one ethylenically unsaturated group.
  • monofunctional unsaturated compound a compound having two ethylenically unsaturated groups
  • bifunctional unsaturated compound a compound having three or more ethylenically unsaturated groups
  • trifunctional or higher unsaturated compound can be mentioned.
  • the monofunctional unsaturated compound examples include a compound having a (meth) acryloyl group, a compound having a monofunctional (meth) acrylamide and a vinyl group.
  • examples of compounds having a (meth) acryloyl group include Carboxyl and ethylenically unsaturated groups such as (meth) acrylic acid, Michael-added dimer of (meth) acrylic acid, ⁇ -carboxy-polycaprolactone mono (meth) acrylate, and monohydroxyethyl (meth) phthalate.
  • a (meth) acrylate having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate;
  • Carbitol (meth) acrylates such as ethyl carbitol (meth) acrylate, butyl carbitol (meth) acrylate, and 2-ethylhexyl carbitol (meth) acrylate;
  • Examples of monofunctional (meth) acrylamides include N, N-dimethyl (meth) acrylamide, (meth) acryloylmorpholine, N-methyl (meth) acrylamide, Nn-propyl (meth) acrylamide, and N-isopropyl (meth) acrylamide. , Nn-butyl (meth) acrylamide, N-sec-butyl (meth) acrylamide, Nt-butyl (meth) acrylamide, and N-alkyl (meth) acrylamide such as Nn-hexyl (meth) acrylamide.
  • N-hydroxyalkyl (meth) acrylamide such as N-hydroxyethyl (meth) acrylamide; as well as N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl ( Meta) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di-n-propyl (meth) acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di-n-butyl (meth) Examples thereof include N, N-dialkyl (meth) acrylamide such as acrylamide and N, N-dihexyl (meth) acrylamide.
  • Examples of the compound having a vinyl group include N-vinylpyrrolidone and N-vinylcaprolactam.
  • bifunctional unsaturated compound a bifunctional (meth) acrylate is preferable.
  • the bifunctional (meth) acrylate include 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and 3-methyl-1,5-pentanediol diacrylate.
  • 2-Butyl-2-ethyl-1,3-propanediol diacrylate ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate , Polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, di (meth) acrylate of alkylene oxide adduct of bisphenol A, di (meth) acrylate of alkylene oxide adduct of bisphenol F and the like. Be done.
  • oligomers such as urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate and polyether (meth) acrylate can be used in addition to the above-mentioned compounds.
  • a trifunctional or higher (meth) acrylate having three or more (meth) acryloyl groups is preferable.
  • Polypoly (meth) acrylates such as acrylate and dipentaerythritol tri, tetra, penta or hexa (meth) acrylate; and tri (meth) acrylates of glycerin alkylene oxide adducts, tri or tetra (pentaerythritol alkylene oxide adducts).
  • Poly (meth) acrylates of polyol alkylene oxide adducts such as (meth) acrylates; and tri (meth) acrylates of isocyanuric acid alkylene oxide adducts can be mentioned.
  • Examples of the above-mentioned alkylene oxide adduct include ethylene oxide adduct, propylene oxide adduct, ethylene oxide and propylene oxide adduct, and the like.
  • urethane (meth) acrylate or the like can be used in addition to the above-mentioned compounds.
  • pentaerythritol tri or tetra (meth) acrylate, dipentaerythritol tri, tetra, penta or hexa (meth) acrylate, and trifunctional or higher functional urethane (meth) acrylate are cured of the obtained composition. It is preferable because the product has high hardness and excellent adhesion to the base material.
  • urethane (meth) acrylates having trifunctionality or higher will be described in detail.
  • Examples of the trifunctional or higher functional urethane (meth) acrylate include a reaction product of a polyhydric alcohol, a polyhydric isocyanate and a hydroxyl group-containing (meth) acrylate, and a reaction product of an organic polyhydric isocyanate and a hydroxyl group-containing (meth) acrylate compound. ..
  • polyhydric alcohol examples include polyether polyols such as polypropylene glycol and polytetramethylene glycol, polyester polyols obtained by reacting the polyhydric alcohol with the polybasic acid, the polyhydric alcohol, the polybasic acid and ⁇ -caprolactone.
  • polyether polyols such as polypropylene glycol and polytetramethylene glycol
  • polyester polyols obtained by reacting the polyhydric alcohol with the polybasic acid, the polyhydric alcohol, the polybasic acid and ⁇ -caprolactone.
  • caprolactone polyol obtained by the reaction with
  • polycarbonate polyol for example, polycarbonate polyol obtained by the reaction of 1,6-hexanediol and diphenyl carbonate.
  • organic multivalent isocyanate examples include diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane-4,4'-diisocyanate and dicyclopentanyl diisocyanate; Examples thereof include organic polyisocyanates having three or more isocyanate groups such as hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
  • hydroxyl group-containing (meth) acrylate examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (meth) acrylate and hydroxyoctyl.
  • Hydroxyl-containing mono (meth) acrylates such as (meth) acrylate, trimethylol propane mono (meth) acrylate and pentaerythritol mono (meth) acrylate; And trimethylolpropane di (meth) acrylate, pentaerythritol di or tri (meth) acrylate, trimethylolpropane di or tri (meth) acrylate and dipentaerythritol di, tri, tetra or penta (meth) acrylate, glycerinji.
  • Examples thereof include hydroxyl group-containing polyfunctional (meth) acrylates such as (meth) acrylates.
  • Preferred trifunctional or higher functional urethane (meth) acrylates include organic polyisocyanates having two isocyanate groups and hydroxyl group-containing polyfunctional (meth) acrylate reactants. Among them, isophorone diisocyanate and hexamethylene diisocyanate are preferable as the organic polyisocyanate having two isocyanate groups because of its low viscosity, high hardness of the cured product, and low coloration, and hydroxyl group-containing polyfunctionality (meth).
  • pentaerythritol di or tri (meth) acrylate dipentaerythritol di, tri, tetra or penta (meth) acrylate, and glycerin di (meth) acrylate are preferable.
  • urethane (meth) acrylate those produced by a conventional method can be used.
  • an addition catalyst such as dibutyltin dilaurate
  • an organic polyvalent isocyanate and a polyvalent oar are heated and stirred to carry out an addition reaction to produce an isocyanate group-containing compound, and a hydroxyl group-containing (meth) acrylate is further added to the compound and heated.
  • -A method of stirring and adding reaction can be mentioned.
  • urethane poly (meth) acrylates other than these include compounds as described on pages 70 to 74 of the document "UV / EB Curing Material” [CMC Co., Ltd., published in 1992]. ..
  • the content ratio of the component (D) is preferably 0 to 80% by weight, more preferably 10 to 50% by weight, based on 100% by weight of the total amount of the curable components.
  • the content ratio of the component (D) is preferably 0 to 80% by weight, more preferably 10 to 50% by weight, based on 100% by weight of the total amount of the curable components.
  • a surface modifier may be added for the purpose of enhancing the leveling property at the time of application, increasing the slipperiness of the cured product and enhancing the scratch resistance, and the like.
  • the surface modifier include a surface conditioner, a surfactant, a leveling agent, an antifoaming agent, a slipperiness-imparting agent, an antifouling agent, and the like, and these known surface modifiers can be used. .. Among them, a silicone-based surface modifier and a fluorine-based surface modifier are preferably mentioned.
  • an organopolysiloxane having a polyoxyalkylene skeleton in its molecular structure an organopolysiloxane having a polyester skeleton, a fluoropolymer and an oligomer having a perfluoroalkyl group and a polyalkylene oxide chain, and a perfluoroalkyl.
  • Fluorine-based polymers and oligomers having an ether chain and a polyalkylene oxide chain can be mentioned.
  • a surface modifier having an ethylenically unsaturated group, preferably a (meth) acryloyl group in the molecule may be used for the purpose of enhancing the sustainability of slipperiness.
  • an organopolysiloxane having a polyoxyalkylene skeleton (hereinafter referred to as “component (E)”] because it has excellent surface smoothness and can significantly improve the antistatic function described later.
  • component (E) an organopolysiloxane having a polyoxyalkylene skeleton
  • the oxyalkylene constituting the polyoxyalkylene skeleton include oxyethylene, oxypropylene, oxybutylene, and a combination of these oxyalkylenes.
  • the form of binding of the polyoxyalkylene skeleton may be one end, both ends, or a side chain of the polysiloxane chain.
  • component (E) examples include a polyoxyethylene-methylpolysiloxane copolymer, a poly (oxyethylene-oxypropylene) methylpolysiloxane copolymer, and the like.
  • the component (E) is commercially available, for example, 71ADDITIVE, 74ADDITIVE, 57ADDITIVE, 8029ADDITIVE, 8054ADDITIVE, 8211ADDITIVE, 8019ADDITIVE, 8526ADDITIVE, FZ-2123, FZ-2191 [manufactured by Toray Dow Corning Co., Ltd.] TSF4440, TSF4441, TSF4445, TSF4446, TSF4450, TSF4452, TSF4460 (manufactured by Momentive Performance Materials); Silface SAG002, Silface SAG003, Silface SAG005, Silface SAG503A, Silface SAG008, Silface SJM003 [manufactured by Nissin Chemical Industry Co., Ltd.]; TEGO We
  • the content ratio of the surface modifier is preferably 0.01 to 5.0 parts by weight with respect to 100 parts by weight of the total amount of the curable components.
  • the composition of the present invention may be added with an antistatic agent for the purpose of imparting an antistatic function.
  • the antistatic agent include various cationic antistatic agents having a cationic group such as a quaternary ammonium salt, a pyridinium salt, and a primary to tertiary amino group, a sulfonic acid base, a sulfate ester base, and a phosphoric acid.
  • Anionic antistatic agents having anionic groups such as ester bases and phosphonic acid bases, amphoteric antistatic agents such as amino acid-based and aminosulfate ester-based agents, and nonionic antistatic agents such as aminoalcohol-based, glycerin-based, and polyethylene glycol-based Examples thereof include an antistatic agent and a high molecular weight antistatic agent obtained by increasing the amount of the antistatic agent as described above.
  • an ionic liquid and a metal salt can be used as the antistatic agent.
  • the ionic liquid and the metal salt are not particularly limited, and various commonly used ionic liquids and metal salts can be used. Since the metal salt has high ionic dissociation even in a small amount, it can exhibit excellent antistatic ability and is useful. On the other hand, since the ionic liquid exhibits excellent conductivity by itself, it is useful because it can impart sufficient antistatic ability even with a small amount of content.
  • a metal salt of an anion having a fluoro group and a sulfonyl group is preferable because it has excellent antistatic ability and optical properties.
  • component (F) a trifluoromethanesulfonyl group is preferable.
  • the metal forming the metal salt an alkali metal, a group 2A element, a transition metal and an amphoteric metal are preferable, and an alkali metal is more preferable.
  • a metal salt of bis (trifluoromethanesulfonyl) imide, an alkali metal salt of tris (trifluoromethanesulfonyl) methide, and an alkali metal salt of trifluoromethanesulfonic acid ion are preferable. That is, any one of the compounds represented by the following general formulas (D1) to (D3) is preferable.
  • M means an alkali metal.
  • the alkali metal salt lithium, sodium and potassium are preferable, and lithium is more preferable.
  • the above components include bis (fluoroalkylsulfonyl) imide ion, tris (fluoroalkylsulfonyl) methide ion, and fluoroalkylsulfonic acid ion, and specifically, bis (trifluoromethanesulfonyl) imidelithium [Li (CF 3).
  • bis (trifluoromethanesulfonyl) imide lithium, tris (trifluoromethanesulfonyl) methidolithium and lithium trifluoromethanesulfonate are preferable, and bis (trifluoromethanesulfonyl) imide lithium and lithium trifluoromethanesulfonate are particularly preferable.
  • the content ratio of the antistatic agent is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the solid content in the composition.
  • the composition of the present invention may contain a polymerization inhibitor for the purpose of improving storage stability such as preventing gelation of the composition.
  • the polymerization inhibitor include organic polymerization inhibitors, inorganic polymerization inhibitors, and organic salt polymerization inhibitors exemplified in the method for producing the component (A) described above, and the same compounds as described above are exemplified.
  • the organic compound having a stable radical is preferable as the polymerization inhibitor because it improves the storage stability and does not reduce the hardness of the cured product.
  • the organic compound having a stable radical include galbinoxyl and an N-oxyl compound, and the N-oxyl compound is more preferable for the following reasons.
  • the composition containing the N-oxyl compound is excellent in storage stability.
  • the N-oxyl compound include 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 2,2,6,6-tetramethylpiperidin-1-oxyl and 4-oxo-. Examples thereof include 2,2,6,6-tetramethylpiperidine-1-oxyl and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl.
  • the polymerization inhibitor can be added to the composition, or can be used as it is when it is contained in the component (A).
  • the polymerization inhibitor can be further added.
  • the content ratio of the polymerization inhibitor is preferably 0.0005 to 1% by weight, more preferably 0.005 to 0.1% by weight in the composition.
  • the content ratio of the polymerization inhibitor is 0.0005% by weight or more, the polymerization prohibition effect can be sufficiently exhibited, and when it is 1% by weight or less, a decrease in hardness of the cured product can be avoided.
  • the composition of the present invention does not substantially require an organic solvent, but may contain an organic solvent if necessary for the purpose of adjusting the viscosity or the like.
  • the organic solvent include the same compounds as those mentioned in the method for producing the component (A) described above.
  • the content ratio of the organic solvent is preferably 0.1 to 1000 parts by weight, more preferably 5 to 500 parts by weight, based on 100 parts by weight of the total amount of the curable components.
  • the composition can have a viscosity suitable for coating, and the composition can be easily applied by a known coating method described later.
  • Antioxidants are added for the purpose of improving durability such as heat resistance and weather resistance of cured products.
  • the antioxidant include phenolic antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants and the like.
  • examples of the phenolic antioxidant include hindered phenols such as dit-butylhydroxytoluene.
  • commercially available products include AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, and AO-80 manufactured by ADEKA CORPORATION.
  • Examples of the phosphorus-based antioxidant include phosphines such as trialkylphosphine and triarylphosphine, and trialkyl phosphite and triaryl phosphite.
  • sulfur-based antioxidant examples include thioether-based compounds
  • examples of commercially available products include AO-23, AO-412S, and AO-503A manufactured by ADEKA CORPORATION. These may use one kind or two or more kinds.
  • Preferred combinations of these antioxidants include a combination of a phenol-based antioxidant and a phosphorus-based antioxidant, and a combination of a phenol-based antioxidant and a sulfur-based antioxidant.
  • the content ratio of the antioxidant may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of the total amount of curable components. Is.
  • the durability of the composition can be improved by setting the content ratio of the antioxidant to 0.1 parts by weight or more, while improving the curability and adhesion by setting the content to 5 parts by weight or less. be able to.
  • Ultraviolet absorbers are added for the purpose of improving the light resistance of the cured product.
  • the ultraviolet absorber include triazine-based ultraviolet absorbers such as TINUVIN400, TINUVIN405, TINUVIN460, and TINUVIN479 manufactured by BASF, and benzotriazole-based ultraviolet absorbers such as TINUVIN900, TINUVIN928, and TINUVIN1130.
  • the content ratio of the ultraviolet absorber may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of the total amount of the curable component. Is. When the content ratio of the ultraviolet absorber is 0.01% by weight or more, the light resistance of the cured product can be improved, while when it is 5% by weight or less, the curability of the composition can be improved. It can be excellent.
  • silane coupling agent is blended for the purpose of improving the interfacial adhesive strength between the cured product and the substrate.
  • the silane coupling agent is not particularly limited as long as it can contribute to improving the adhesiveness with the base material.
  • silane coupling agent examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-.
  • the content ratio of the silane coupling agent may be appropriately set according to the intended purpose, and is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the total amount of the curable component. ..
  • the content ratio of the silane coupling agent may be appropriately set according to the intended purpose, and is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the total amount of the curable component. ..
  • the component (A) in the present invention has excellent curability, and Glycarbo-A [(2-oxo-1,3-dioxolan-4-yl) methyl acrylate] has excellent curability, and the composition has a low viscosity. It can be preferably used in a composition containing the component (A) as a reactive diluent.
  • the present invention relates to a curable composition, preferably an active energy ray-curable composition, and more preferably a solvent-free active energy ray-curable composition, and can be used for various purposes. Examples thereof include coating agents such as paints, adhesives, pressure-sensitive adhesives, inks, molding agents for forming excipient materials, and pattern forming agents such as resists.
  • the composition of the present invention can be preferably used for a coating agent composition, an adhesive composition, and a shaping material composition, and more preferably an active energy ray-curable coating agent composition and an adhesive composition. It can be used for products and excipient material compositions.
  • a coating agent composition an adhesive composition, and a shaping material composition
  • an active energy ray-curable coating agent composition and an adhesive composition it can be used for products and excipient material compositions.
  • preferred applications will be described.
  • only one of the illustrated compounds may be used, or two or more of them may be used in combination.
  • Coating agent composition The composition of the present invention has excellent thin film curability and high hardness of the cured product, so that it can be preferably used as a coating agent composition. Since the component (A) has a low viscosity, it is a solvent-free type. It can be more preferably used as a coating agent composition of. Further, as described above, the component (A) has a low chlorine concentration, whereby a cured film having excellent corrosion resistance can be formed, and the sodium concentration is low, whereby the water resistance is excellent. A cured film can be formed.
  • the composition of the present invention can be preferably used as a coating agent for various plastics, that is, a hard coating agent, and is preferably used as a solvent-free hard coating agent. can do.
  • the base material to which the hard coating agent is applied include plastic films used for polarizer protective films and antireflection films, resin molded products used for home appliances and automobile interior / exterior parts, and the like.
  • the coating agent composition contains the above (A) as an essential component, but various components can be blended depending on the purpose.
  • Specific examples of the other components include the above-mentioned components (B), (C), and (D), a surface modifier, an ultraviolet absorber, an antistatic agent, a polymerization inhibitor, an organic solvent, an antioxidant, and the like. And silane coupling agents.
  • pigments / dyes, polymers and the like can be mentioned.
  • Specific examples of pigments / dyes and polymers include compounds similar to those listed in paragraph numbers [0088] and [0094] of the International Publication WO2017 / 002964 pamphlet.
  • the coating agent composition it can be preferably used as a coating agent for a metal base material.
  • the component (A) used in the present invention has a low chlorine concentration, whereby a cured film of a curable composition having excellent corrosion resistance can be formed on the surface of the metal substrate. ..
  • a step of applying a curable composition to a part or all of the metal base material, and a coated composition It is preferable to include a step of irradiating the metal with active energy rays or curing the metal by heating.
  • the cured film of the metal substrate having the cured film obtained from the composition of the present invention has excellent water resistance and corrosion resistance
  • the electrode protection material used for the electrode protection material, the substrate circuit protection material, the lithium ion battery, etc. can be suitably used as a coating agent.
  • Adhesive Composition The composition of the present invention has a low viscosity and is excellent in curability, and therefore can be preferably used as an adhesive composition. Further, as described above, since the cured product is excellent in corrosion resistance and water resistance, it can be preferably used in applications requiring these physical characteristics.
  • the adhesive composition contains the above (A) as an essential component, but various components can be blended depending on the purpose.
  • Specific examples of the other components include the above-mentioned components (B), (C), and (D), a surface modifier, an ultraviolet absorber, a polymerization inhibitor, an organic solvent, an antioxidant, and a silane cup.
  • examples include ring agents, pigments / dyes, and polymers.
  • composition for Molding Material Since the composition of the present invention has a low viscosity and a high hardness of a cured product, it can be preferably used as a composition for a molding material used for mold transfer, nanoimprint, etc., and in particular, nanoimprint and the like. It can be preferably used as a shaping material used in the microfabrication application of. In the present invention, the shaping material is also included in the concept of the molding material for convenience.
  • the shaping material examples include a lens sheet, a nanoimprint film, an antireflection film having a moth-eye shape, a polarizing film, an antiglare film, a light extraction film for organic EL / LED, a light confinement film for a solar cell, and a heat ray retroreflective film. It can be used for producing a shaped film having a fine uneven structure on the surface.
  • the composition for a molding material contains the above (A) as an essential component, but various components can be blended depending on the purpose.
  • Specific examples of the other components include the above-mentioned components (B), (C), and (D), a surface modifier, an ultraviolet absorber, a polymerization inhibitor, an organic solvent, an antioxidant, and a silane cup.
  • examples include ring agents, pigments / dyes, and polymers.
  • composition of the present invention has excellent thin film curability, it is a transparent overprint varnish ink printed by a printing machine after single-color or multicolor printing, or color printing such as yellow, red, indigo, and black. It can be preferably used for ink for printing.
  • Printing methods include offset printing (normal flat plate that uses dampening water and waterless flat plate that does not use dampening water), letterpress printing (flat pressure letterpress, letterpress half-rotation, rotation, intermittent rotation, flexo), and concave printing.
  • Various printing methods such as (gravure printing), stencil printing (screen printing), and inkjet printing can be mentioned, and since they are excellent in emulsion stability, they can be preferably used for offset printing using dampening water. Moreover, since it has a low viscosity, it can be preferably used for inkjet printing.
  • the composition for ink contains the above (A) as an essential component, but various components can be blended depending on the purpose.
  • Specific examples of the other components include binders, pigments, plasticizers, abrasion resistant agents, and the like, in addition to the components (B), (C), and (D) described above.
  • Specific examples of the binder, pigment, plasticizer and anti-friction agent include compounds similar to the compounds listed in paragraph numbers [0101] to [0107] of the International Publication WO2017 / 002964 pamphlet.
  • the conventional method for producing the composition for ink may be followed, and the component (A), the component (B) (when the active energy ray is ultraviolet rays), the binder, the pigment, and the polymerization inhibitor.
  • a pigment is added and dispersed by a disperser such as a three-roll mill or a bead mill.
  • composition for pattern formation The composition of the present invention has high exposure sensitivity, is extremely excellent in developability, and can form a precise and accurate pattern, and therefore can be preferably used as a composition for pattern formation.
  • the pattern-forming composition contains the above (A) as an essential component, but various components can be blended depending on the purpose.
  • Specific examples of other components include the above-mentioned (B) and (D), organic solvents, antioxidants, ultraviolet absorbers, silane coupling agents, surface modifiers and polymerization inhibitors, as well as alkali-soluble resins.
  • Specific examples of the alkali-soluble resin include compounds similar to those listed in paragraph numbers [0110] to [0122] of the Pamphlet of International Publication WO2017 / 00264.
  • a conventional method may be followed.
  • a method of applying the composition to the applied substrate by a usual coating method and then irradiating it with active energy rays or heating it to cure it can be mentioned.
  • a general method known as a conventional curing method may be adopted.
  • the composition is adhered to the substrate by using the component (B) (photopolymerization initiator) and the component (C) (thermal polymerization initiator) in combination, irradiating them with active energy rays, and then heat-curing them.
  • a method of improving the sex can also be adopted.
  • Examples of the base material to which the composition of the present invention can be applied include plastics, metals, woods, inorganic materials, paper and the like, which can be applied to various materials.
  • plastics include polyolefins such as polyethylene and polypropylene, ABS resin, polyvinyl alcohol, cellulose acetate resins such as triacetyl cellulose and diacetyl cellulose, acrylic resin, polyethylene terephthalate, polycarbonate, polyarylate, polyether sulfone, norbornene and the like.
  • Examples thereof include cyclic polyolefin resins, polyvinyl chlorides, epoxy resins and polyurethane resins using the cyclic olefins of the above as monomers.
  • Examples of the metal include steel plates, metals such as aluminum and chromium, and metal oxides such as zinc oxide (ZnO) and indium tin oxide (ITO).
  • Examples of wood include natural wood and synthetic wood.
  • Examples of the inorganic material include glass, mortar, concrete and stone.
  • the method for applying the composition of the present invention to the substrate may be appropriately set according to the intended purpose, and is a bar coater, an applicator, a doctor blade, a dip coater, a roll coater, a spin coater, a flow coater, a knife coater, and a comma.
  • a bar coater an applicator, a doctor blade, a dip coater, a roll coater, a spin coater, a flow coater, a knife coater, and a comma.
  • Examples thereof include a method of coating with a coater, a reverse roll coater, a die coater, a lip coater, a spray coater, a gravure coater, a micro gravure coater and the like.
  • examples of the active energy ray for curing include ultraviolet rays, visible rays, electron beams and the like, but ultraviolet rays or visible rays are preferable, and ultraviolet rays are preferable. Is particularly preferable.
  • examples of the ultraviolet irradiation device include a high-pressure mercury lamp, a metal halide lamp, an ultraviolet (UV) electrodeless lamp, and a light emitting diode (LED).
  • the irradiation energy may be appropriately set according to the type and compounding composition of the active energy rays.
  • the irradiation energy is preferably 50 to 5,000 mJ / cm 2 , preferably 100 to 100. More preferably, 1,000 mJ / cm 2.
  • the cured film can be obtained by allowing the cured film to stand in a heatable dryer or the like.
  • the heating temperature may be appropriately set according to the substrate to be used and the purpose, and is preferably 40 to 180 ° C.
  • the temperature is preferably 120 ° C. or lower because the base material may be deformed if the temperature is too high.
  • the heating time may be appropriately set depending on the substrate to be applied and the heating temperature, and is preferably 0.5 to 60 minutes.
  • composition of the present invention can be preferably used for coating agent compositions, adhesive compositions, molding material compositions, ink compositions, and pattern forming compositions, and specific examples thereof. Will be explained.
  • Method of using coating agent composition As a method of using the coating agent composition, a conventional method may be followed. For example, a method of applying the composition to a base material and then curing it by irradiating it with active energy rays or heating it can be mentioned. Specifically, a method of applying the composition to the applied substrate by a usual coating method and then irradiating the active energy ray-curable composition with active energy rays to cure the composition, or a thermosetting composition. In the case of a product, a method of heating and curing may be mentioned.
  • composition is adhered to the substrate by using the component (C) (photopolymerization initiator) and the component (D) (thermal polymerization initiator) in combination, irradiating the composition with active energy rays, and then heat-curing the composition.
  • a method of improving the sex can also be adopted.
  • Examples of the base material to which the composition of the present invention can be applied include plastics, metals, woods, inorganic materials, paper and the like, which can be applied to various materials, and specific examples thereof are as described above.
  • the film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose.
  • the thickness of the cured film may be selected depending on the use of the substrate to be used and the application of the produced substrate having the cured film, but is preferably 1 ⁇ m to 5 mm, more preferably 3 ⁇ m to 3 mm. ..
  • the method for applying the composition of the present invention to the substrate may be appropriately set according to the purpose, and examples thereof include the methods described in detail above.
  • examples of the active energy ray for curing include ultraviolet rays, visible rays, electron beams, and the like, but ultraviolet rays are preferable.
  • examples of the ultraviolet irradiation device include the same devices as described above.
  • the irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
  • Method of using the adhesive composition As the method of using the adhesive composition, a conventional method may be followed. For example, a method in which the composition is applied to a base material, the coated surface is bonded to another base material, and then cured by irradiating or heating with active energy rays and the like can be mentioned. Specifically, a method of applying the composition to the applied substrate by a usual coating method and then irradiating the active energy ray-curable composition with active energy rays to cure the composition, or a thermosetting composition. In the case of a product, a method of heating and curing may be mentioned. In the case of the active energy ray-curable adhesive composition, at least one of the above-mentioned base materials has light transmittance.
  • composition is adhered to the substrate by using the component (C) (photopolymerization initiator) and the component (D) (thermal polymerization initiator) in combination, irradiating the composition with active energy rays, and then heat-curing the composition.
  • a method of improving the sex can also be adopted.
  • Examples of the base material to which the composition of the present invention can be applied include plastics, metals, woods, inorganic materials, paper and the like, which can be applied to various materials, and specific examples thereof are as described above.
  • the film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose.
  • the thickness of the cured film may be selected depending on the use of the base material to be used and the application of the manufactured base material having the cured film, but is preferably 0.1 to 500 ⁇ m, and preferably 1 to 200 ⁇ m. More preferred.
  • the method for applying the composition of the present invention to the substrate may be appropriately set according to the purpose, and examples thereof include the methods described in detail above.
  • examples of the active energy ray for curing include ultraviolet rays, visible rays, electron beams, and the like, but ultraviolet rays are preferable.
  • examples of the ultraviolet irradiation device include the same devices as described above.
  • the irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
  • composition of the present invention is used for molding material
  • a conventional method may be followed. Specifically, the composition is applied to a mold called a stamper having a desired shape, laminated with a film or sheet base material (hereinafter, these are collectively referred to as "film base material"), and then the active energy is activated.
  • film base material a film or sheet base material
  • Film substrates that can be used in the present invention include polymethylmethacrylate, polymethylmethacrylate-styrene copolymer film, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyacrylic nitrile, polycarbonate, polysulfone, polyethersulfone, and polyetherimide. , Polyetherketone, polyimide, polymethylpentene and other plastic films are preferred, and a glass-based substrate can be used if necessary.
  • the film substrate is preferably transparent or translucent (for example, milky white).
  • the thickness of the film base material is preferably 20 to 500 ⁇ m.
  • the film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose.
  • the thickness of the cured film may be selected depending on the use of the substrate to be used and the application of the produced substrate having the cured film, but is preferably 10 nm to 100 ⁇ m, more preferably 50 nm to 50 ⁇ m. ..
  • Examples of the active energy ray for curing the composition of the present invention include ultraviolet rays, visible rays, electron beams and the like, but ultraviolet rays are preferable.
  • Examples of the ultraviolet irradiation device include the same devices as described above.
  • the irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
  • the composition of the present invention is applied to a transparent substrate, and then a mold called a stamper having a desired lens shape is brought into close contact with the transparent substrate. Next, the composition is cured by irradiating it with active energy rays from the transparent substrate side, and then peeled from the mold.
  • the composition of the present invention is poured between a mold having a target lens shape and a transparent substrate. Next, the composition is cured by irradiating the active energy ray from the transparent substrate side, and then the mold is removed.
  • the material of the mold is not particularly limited, and examples thereof include metals such as brass and nickel, and resins such as epoxy resin. It is preferably made of metal because the mold has a long life.
  • composition of the present invention When the composition of the present invention is used for nanoimprint application, a conventional method may be followed. For example, after applying the composition to the base material, a mold having a fine processing pattern and having transparency is pressed. Next, a method of irradiating the transparent mold with active energy rays to cure the composition and then removing the mold can be used.
  • the printing substrate used in the printed matter of the present invention is not particularly limited, and for example, high-quality paper, coated paper, art paper, imitation paper, thin paper, thick paper and other papers, various synthetic papers, etc.
  • Polyester resin acrylic resin, vinyl chloride resin, vinylidene chloride resin, polyvinyl alcohol, polyethylene, polypropylene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene vinyl alcohol copolymer, ethylene methacrylate copolymer, nylon, polylactic acid
  • films or sheets such as polypropylene, cellophane, aluminum foil, and various other substrates that have been conventionally used as printing substrates.
  • the film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose.
  • the thickness of the cured film may be selected depending on the use of the substrate to be used and the application of the produced substrate having the cured film, but is preferably 1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m. ..
  • composition of the present invention when used for offset ink, it can be suitably used as a coating method on the base material by using an offset printing machine that continuously supplies water on the plate surface. Further, it can be suitably used in any paper supply method, that is, a sheet-fed offset printing machine that uses sheet-type printing paper and an offset rotary printing machine that uses reel-type printing paper.
  • composition of the present invention when used for inkjet ink, it can be suitably used as a coating method on a base material by using a known inkjet recording device or the like that ejects by an inkjet method to form an image. ..
  • the viscosity of the composition is 7 mPa ⁇ s to 30 mPa ⁇ s at the temperature at the time of discharge (for example, 40 ° C. to 80 ° C., preferably 25 ° C. to 30 ° C.) in consideration of the ejection property. preferable. More preferably, it is 7 mPa ⁇ s to 20 mPa ⁇ s.
  • Examples of the active energy ray for curing the composition of the present invention include ultraviolet rays, visible rays, electron beams and the like, but ultraviolet rays are preferable.
  • Examples of the ultraviolet irradiation device include the same devices as described above.
  • the irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
  • pattern-forming composition resists such as photosensitive lithographic printing plates, etching resists and solder resists, columnar spacers in liquid crystal panel manufacturing, pixels and black matrices in color filters, etc. are formed. Examples thereof include a coloring composition for this purpose, a color filter protective film, and the like.
  • the composition of the present invention can be preferably used depending on the use of a columnar spacer, a coloring composition for a color filter, and a protective film for a color filter in the production of a liquid crystal panel.
  • a nonionic surfactant such as polyoxyethylene lauryl ether or a fluorine-based surfactant is added to the composition. It can also be added. Further, if necessary, an adhesive aid, a storage stabilizer, an antifoaming agent and the like may be added as appropriate.
  • part means a part by weight.
  • HPLC High Performance Liquid Chromatography
  • Viscosity Viscosity
  • GPC Gel Permeation Chromatography
  • GC Gas Chromatography
  • APHA Chlorine Content
  • Chlorine Content Chlorine Content and Sodium Containing
  • Viscosity measurement conditions Using an E-type viscometer (cone plate type viscometer), the viscosity at 25 ° C was measured.
  • GC measurement conditions / equipment GC-14B manufactured by Shimadzu Corporation -Detector: FID detector-Column: ZB-1 (length 60 m, inner diameter 0.32 mm, film thickness 3 ⁇ m) -Injection temperature: 230 ° C or 270 ° C ⁇ Detector temperature: 330 °C -Column temperature: After holding at 125 ° C for 5 minutes, the temperature is raised at a rate of 10 ° C / min. Hold for 20 minutes after reaching 325 ° C. ⁇ Carrier gas: Nitrogen ⁇ Injection amount: Dilute to 10% by weight with methanol or acetone and then inject 0.4 ⁇ L. ⁇ Calculation method of purity (%) Dilute among the peaks detected by GC measurement.
  • ⁇ APHA APHA was measured using a color difference meter [Petroleum product color tester OME-2000 manufactured by Nippon Denshoku Kogyo Co., Ltd.].
  • ⁇ Chlorine content Trace 30 mg of sample is collected in a quartz boat of a chlorine-sulfur analyzer and burned under an argon / oxygen stream, and finally burned under a pure oxygen stream. The generated combustion gas is aerated in 10 ml of an absorbing liquid (0.3% hydrogen peroxide solution), and chlorine is collected as Cl ions. The same operation is repeated three times to collect chlorine in the same absorbing solution and use it as a test solution. The test solution is measured by ion chromatography, and Cl ions are quantified by the calibration curve method.
  • Sodium content 1 g of a sample is collected in a 20 ml PFA bottle (fluororesin bottle) and diluted with NMP (N-methylpyrrolidone) to a total volume of 10 g to prepare a test solution.
  • the test solution is measured with an ICP mass spectrometer. Quantify the detected elements by the absolute calibration curve method.
  • -Pretreatment environment Clean room G room (class 1000) and clean draft (class 100)
  • NMP For the electronics industry [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
  • -ICP mass spectrometer Agilent 7700s manufactured by Agilent Technologies, Inc. (organic solvent measurement mode: He / H2)
  • the pressure in the reaction system was adjusted in the range of 140 to 180 mmHg while heating and stirring in the reaction solution temperature range of 110 to 120 ° C., and the mixed solution of MEL and MCA produced as a by-product as the transesterification reaction proceeded was rectified in the rectification column. And withdrawn from the reaction system via a cooling tube.
  • MCA of the same weight as the withdrawal solution was added to the reaction system at any time.
  • MCA containing MEHQ and TEMPOL was added to the reaction system at any time via a rectification column. After 17 hours from the start of heating and stirring, heating was terminated, the pressure in the reaction system was returned to normal pressure, and extraction was completed.
  • Aluminum silicate as an adsorbent on the filtrate [Kyoward 700 (trade name) manufactured by Kyowa Chemical Industry Co., Ltd.). Hereinafter, the product name is abbreviated. ] was charged in 54 parts, and after contact treatment with heating and stirring under normal pressure for 1 hour at an internal temperature of 80 to 105 ° C., 3.0 parts of calcium hydroxide was added in a range of internal temperature of 20 to 40 ° C. The mixture was stirred under pressure for 1 hour. After separating the insoluble matter by pressure filtration, the filtrate is subjected to vacuum distillation for 16 hours at a temperature of 70 to 90 ° C. and a pressure of 0.001 to 100 mmHg while bubbling dry air, and contains unreacted MCA. The distillate was separated.
  • this distillate contains 6% glycerin, 72% of the compound having one ethylene oxide added only to the hydroxyl group at the 1-position of glycerin, and the compound having 2 ethylene oxides added only to the hydroxyl group at the 1-position of glycerin. Was contained at 10%.
  • reaction liquid temperature was 130 to 130.
  • the pressure in the reaction system was adjusted in the range of 4700 to 30 Pa while heating and stirring in the range of 150 ° C., and a mixed solution of ethylene glycol and ethylene carbonate produced as a by-product as the transesterification reaction proceeded was reacted via a cooling tube. Extracted from the system. After 15 hours from the start of heating and stirring, heating was terminated, the pressure in the reaction system was returned to normal pressure, and extraction was completed.
  • the kettle liquid was pressure-filtered to remove the activated alumina charged as a catalyst to obtain a filtrate.
  • the weight of the filtrate is 560 parts, and as a result of GC analysis, 5% of glycerin carbonate is added, one ethylene oxide is added only to the 1st hydroxyl group of glycerin, and the 2nd and 3rd hydroxyl groups are carbonated and intramolecular. 68% of the compounds that formed a cyclic carbonate structure in glycerin, two ethylene oxides were added only to the hydroxyl group at the 1-position of glycerin, and the hydroxyl groups at the 2- and 3-positions were carbonated to form a cyclic carbonate structure in the molecule. It contained 4%.
  • the pressure in the reaction system was adjusted in the range of 120 to 160 mmHg while heating and stirring in the reaction solution temperature range of 110 to 120 ° C., and the mixed solution of MEL and MCA produced as a by-product as the transesterification reaction proceeded was rectified in the rectification column. And withdrawn from the reaction system via a cooling tube.
  • MCA of the same weight as the withdrawal solution was added to the reaction system at any time.
  • MCA containing MEHQ and TEMPOL was added to the reaction system at any time via a rectification column. After 40 hours from the start of heating and stirring, heating was terminated, the pressure in the reaction system was returned to normal pressure, and extraction was completed.
  • compound a2 (filter solution) is 630 parts, and as a result of GC analysis, 7% of glycerin carbonate acrylate, 59% of acrylate of 1 mol of ethylene oxide adduct of glycerin carbonate, and 2 mol of ethylene oxide adduct of glycerin carbonate It contained 4% of the acrylate of. Table 1 shows various analysis results of the obtained compound a2.
  • the upper layer was extracted from the separatory funnel, concentrated under reduced pressure using an evaporator, and most of the normal hexane was recovered as a distillate.
  • the recovered normal hexane and new normal hexane were added to the remaining separatory funnel in the lower layer, and the extraction operation was performed again. After repeating this extraction operation and the normal hexane recovery operation a total of 8 times, the lower layer of the separatory funnel was extracted, 0.105 parts of MEHQ and 0.001 parts of TEMPOL were added, and the temperature was 60 ° C. while bubbling dry air.
  • compound a3 (pot solution) is 155 parts, and as a result of GC analysis, 9% of glycerin carbonate acrylate, 77% of acrylate of 1 mol of ethylene oxide adduct of glycerin carbonate, and 2 mol of ethylene oxide adduct of glycerin carbonate It contained 5% of the acrylate of.
  • Table 1 shows various analysis results of the obtained compound a3.
  • the water produced by the dehydration reaction was withdrawn from the diversion tube while heating and stirring for 7 hours at a reaction pressure of 370 Torr and a reaction solution temperature of 86 to 90 ° C. while bubbling. A part of the reaction solution was collected and the composition was analyzed by HPLC. As a result, it was confirmed that the reaction solution contained Glycarbo-A, which was the target product. After cooling the reaction solution to room temperature, 274.34 parts of toluene and 87.50 parts of water were added and stirred. When stirring was stopped and the mixture was allowed to stand, it was separated into three layers. The upper layer contained almost no target substance and was mainly composed of toluene. The middle layer was an aqueous layer.
  • the lower layer was a layer containing the target substance.
  • 250.00 parts of tetrahydrofuran and 55.48 parts of a 20% aqueous sodium hydroxide solution were added to the lower layer, and the mixture was stirred. When stirring was stopped and the mixture was allowed to stand, it was separated into two layers.
  • the lower layer was an aqueous layer
  • the upper layer was a layer containing the target substance.
  • 87.50 parts of water was added to the upper layer and stirred. When stirring was stopped and the mixture was allowed to stand, it was separated into two layers.
  • the lower layer was an aqueous layer
  • the upper layer was a layer containing the target substance.
  • the weight of the filtrate was 147.19 parts, and when the composition was analyzed using HPLC, it was confirmed that the filtrate contained Glycarbo-A, which was the target product. Hereinafter, it is referred to as compound a'2.
  • Table 1 shows various analysis results of the obtained compound a'2 (purified product).
  • Example 1 Production of active energy ray-curable composition
  • the compounds shown in Tables 2 to 4 below were stirred, mixed and dissolved in a stainless steel container at the ratios shown in Table 2 to produce an active energy ray-curable composition.
  • the numbers in Tables 2 to 4 mean the number of copies, and the abbreviations mean the following.
  • -M1200 Urethane acrylate [manufactured by Toagosei Co., Ltd., trade name: Aronix M-1200]
  • -M402 Dipentaerythritol penta / hexaacrylate mixture [manufactured by Toagosei Co., Ltd., trade name: Aronix M-402]
  • -Om907 2-Methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one [manufactured by IGM Resin, trade name: Omnirad907]
  • -DETX 2,4-diethylthioxanthone [manufactured by Nippon Kayaku Co., Ltd., trade name: Kayacure DETX-S]
  • -TPO Phosphorus-based photopolymerization initiator (2,4,6-trimethylbenzoyl-diphenylphosphine oxide) [manufactured by IGM
  • Viscosity The viscosity of the obtained composition was measured with an E-type viscometer (cone plate-type viscometer) (25 ° C.).
  • the ultraviolet irradiation device uses a metal halide lamp manufactured by Eye Graphics Co., Ltd., and is ultraviolet rays in the ultraviolet region (UV-A) centered on 365 nm under the conditions of an irradiation intensity of 200 mW / cm 2 and an integrated light intensity of 2,000 mJ / cm 2. Irradiated. After irradiation with ultraviolet rays, the obtained sample was held at an atmosphere of 85 ° C. and 85% RH for 100 hours, and a moist heat test was conducted. The change in appearance of the cured film after the moist heat test was visually observed and evaluated on the following three levels. ⁇ : No change, ⁇ : Problems such as foaming and peeling occurred in some parts, ⁇ : Peeling occurred on the entire surface of the cured film
  • the composition was applied to a thickness of 10 ⁇ m with a bar coater, and then irradiated with ultraviolet rays under the same conditions as in the wet heat test to cure the composition.
  • the time until the resistance value becomes 100 M ⁇ or less is measured in a state where a voltage of 20 V is continuously applied in an atmosphere of 85 ° C. and 85% RH, and insulation is performed. The reliability test was evaluated.
  • Adhesive strength (initial)
  • the composition obtained in Table 3 is applied to a 100 ⁇ m-thick easy-adhesive polyethylene terephthalate (hereinafter referred to as “easy-adhesive PET”) film [Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.] to a thickness of 10 ⁇ m with a bar coater, and then the other.
  • the easy-adhesive PET of No. 1 was laminated and irradiated with ultraviolet rays under the same conditions as in the moist heat test to cure the composition.
  • the above laminate was subjected to a T-shaped peeling test according to JIS K-6854 under the conditions of a peeling width of 25 mm and a peeling width of 25 ° C. to obtain a peeling strength.
  • Adhesive strength (after wet heat test) The laminate obtained in (4) was held for 100 hours in an atmosphere of 85 ° C. and 85% RH, and a T-shaped peeling test was carried out under the conditions of a peeling width of 25 mm and 25 ° C. according to JIS K-6854. The peel strength after the moist heat test was used.
  • a transfer mold (hereinafter referred to as "nickel mold") in which fine processing (semicircular pattern with a diameter of 3 ⁇ m and a film thickness of 5 ⁇ m) is formed on a nickel-plated stainless steel plate is shown in the table. After applying the composition obtained in No. 4 to a thickness of 10 ⁇ m with a bar coater, the easy-adhesion PET was laminated and irradiated with ultraviolet rays under the same conditions as in the moist heat test to cure the composition.
  • the dimensional change of the pattern shape of the nickel mold and the cured resin is less than 5%
  • The dimensional change is 5% or more, or the pattern is chipped.
  • Nickel mold in which fine processing (a bowl pattern with a diameter of 10 ⁇ m and a film thickness of 5 ⁇ m) is formed on a corrosive nickel-plated stainless steel plate is shown in the table.
  • the easy-adhesion PET was laminated and irradiated with ultraviolet rays under the same conditions as in the moist heat test to cure the composition. Then, it was held for 24 hours in an atmosphere of 40 ° C. and 80% RH, and a metal corrosiveness test was conducted. The change in appearance of the nickel mold after the metal corrosiveness test was visually observed and evaluated at the following three levels.
  • Part of the nickel mold is discolored
  • The entire surface of the nickel mold is discolored
  • compositions of Examples 1 to 3 containing the components (A) (Compounds a1 to a3) obtained in Production Examples 1 to 3 have low viscosities, and have a wet heat test and insulation reliability. The properties were good, and the performance as an active energy ray-curable coating agent composition was excellent.
  • compositions of Examples 4 to 6 containing the components (A) (Compounds a1 to a3) obtained in Production Examples 1 to 3 were excellent in adhesive strength and moist heat test. Therefore, it was excellent in performance as an active energy ray-curable adhesive composition.
  • the compositions of Comparative Examples 3 and 4 containing the (A)'components (compounds a'2 and a'3) obtained in Comparative Production Examples 2 and 3, respectively had an adhesive strength in a moist heat test. It dropped significantly.
  • the compositions of Examples 7 to 9 containing the components (A) (Compounds a1 to a3) obtained in Production Examples 1 to 3 are active energy ray-curable shaping materials.
  • the curable composition of the present invention can be preferably used as an active energy ray-curable composition, and further preferably as a solvent-free active energy ray-curable composition.
  • the curable composition of the present invention can be used for various purposes, and patterns such as coating agents such as paints, adhesives, adhesives, inks, molding agents for forming excipient materials, and resists are formed. Examples thereof include agents, which can be preferably used as coating agents, adhesives, and shaping materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

[Problem] To provide a curable composition containing (2-oxo-1,3-dioxolane-4-yl)methyl(meth)acrylate[glycerin carbonate(meth)acrylate], wherein a cured product thereof does not have a metal corrosion problem and has excellent water resistance. [Solution] A curable composition contains a component (A), wherein: the component (A) contains a compound represented by formula (a); and the component (A) has a chlorine concentration of less than 100 ppm and a sodium concentration of less than 100 ppb. [In formula (a), Ra indicates a hydrogen atom or a C1-C5 alkyl group, and Rb indicates a single bond or an oxyalkylene group.]

Description

硬化型組成物Curable composition
 本発明は、硬化型組成物、好ましくは活性エネルギー線硬化型組成物に関し、特に好ましくは無溶剤型活性エネルギー線硬化型組成物に関し、これら技術分野に属する。
 尚、本明細書においては、「アクリロイル基及び/又はメタクリロイル基」を「(メタ)アクリロイル基」と、「アクリレート及び/又はメタクリレート」を「(メタ)アクリレート」と、「アクリル酸及び/又はメタクリル酸」を「(メタ)アクリル酸」と表す。
 又、エチレン性不飽和基を有する化合物を、組成物中の「硬化性成分」と表す。
The present invention relates to a curable composition, preferably an active energy ray-curable composition, and particularly preferably a solvent-free active energy ray-curable composition, which belongs to these technical fields.
In the present specification, "acryloyl group and / or methacryloyl group" is referred to as "(meth) acryloyl group", "acrylate and / or methacrylate" is referred to as "(meth) acrylate", and "acrylic acid and / or methacrylic acid". "Acid" is expressed as "(meth) acrylic acid".
Further, a compound having an ethylenically unsaturated group is referred to as a "curable component" in the composition.
 硬化型組成物は、コーティング剤、接着剤、インキ、及び電子材料等の種々の用途で使用されている。
 その中でも、活性エネルギー線硬化型組成物は、非常に短時間で硬化できる利点があり、硬化性に優れた(メタ)アクリレートが多く使用され、紫外線硬化の場合には、光源として高圧水銀灯、メタルハライドランプ、及びLED等の紫外線ランプを有する照射装置や、電子線硬化の場合には、電子線照射装置が用いられている。
Curable compositions are used in a variety of applications such as coatings, adhesives, inks, and electronic materials.
Among them, the active energy ray-curable composition has an advantage that it can be cured in a very short time, and (meth) acrylate having excellent curability is often used. In the case of ultraviolet curing, a high-pressure mercury lamp and a metal halide are used as a light source. An irradiation device having a lamp and an ultraviolet lamp such as an LED, and in the case of electron beam curing, an electron beam irradiation device is used.
 一方、(メタ)アクリレートを含む活性エネルギー線硬化型組成物の短所として、空気中で硬化させると、空気中の酸素の影響により硬化が阻害されること(以下、「酸素阻害」という)が挙げられる。 On the other hand, as a disadvantage of the active energy ray-curable composition containing (meth) acrylate, when cured in air, the curing is inhibited by the influence of oxygen in the air (hereinafter referred to as "oxygen inhibition"). Be done.
 従来、この酸素阻害による硬化阻害を防ぐ為に、窒素雰囲気下で紫外線を照射したり、組成物を基材に塗工した後、塗工面にフィルムをラミネートして酸素遮断下で紫外線を照射する方法が知られているが、装置の大型化、コスト高及び生産性低下といった問題があり、適用範囲が限られる。
 又、組成物に、アミン化合物及びリン系化合物等の添加剤を配合することにより、酸素阻害が軽減することが知られているが、このような比較的効果の高い添加剤は、硬化物が着色してしまう問題がある。
Conventionally, in order to prevent curing inhibition due to oxygen inhibition, ultraviolet rays are irradiated in a nitrogen atmosphere or the composition is coated on a base material, and then a film is laminated on the coated surface and ultraviolet rays are irradiated under oxygen blocking. Although the method is known, the scope of application is limited due to problems such as large size of equipment, high cost, and low productivity.
Further, it is known that oxygen inhibition is reduced by adding an additive such as an amine compound and a phosphorus compound to the composition, but such a relatively highly effective additive is a cured product. There is a problem of coloring.
 上記問題を解決するため、酸素阻害を受けにくい(メタ)アクリレートが過去から検討されている。
 その中で、C.Deckerらによれば、環状カーボネート骨格を有するアクリレートである(2-オキソ-1,3-ジオキソラン-4-イル)メチルアクリレート〔グリセリンカーボネートアクリレート。以下、「Glycarbo-A」という。〕が、空気下においても高い硬化性を有していることを明らかにしている(非特許文献1)。
 しかし、同文献で用いられている製造方法は、グリセロールと毒性の高いホスゲンを反応させ、得られた塩化物とアクリル酸を反応させて目的物を得るという、危険性の高い方法であり、環境負荷の高さと作業員の安全性の面で大いに問題があった。
In order to solve the above problems, (meth) acrylates that are less susceptible to oxygen inhibition have been studied for a long time.
Among them, C.I. According to Decker et al., An acrylate having a cyclic carbonate skeleton (2-oxo-1,3-dioxolane-4-yl) methyl acrylate [glycerin carbonate acrylate. Hereinafter referred to as "Glycarbo-A". ], It has been clarified that it has high curability even under air (Non-Patent Document 1).
However, the production method used in the same document is a highly dangerous method of reacting glycerol with highly toxic phosgene and reacting the obtained chloride with acrylic acid to obtain the desired product, which is an environment. There were major problems in terms of high load and worker safety.
 又、G.Wegnerらは、(2-オキソ-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート〔グリセリンカーボネート(メタ)アクリレート。以下、「Glycarbo-(M)A」という。〕を、グリセロールカーボネートと(メタ)アクリル酸クロライドとの反応により得ている(非特許文献2)。
 しかしながら、同文献記載の製造方法は酸クロライド法によるものであり、容器の腐食の問題や、環境負荷の大きさを考慮すると問題がある。
 又、発明者らの検討によれば、同文献記載の方法で製造された化合物は、ナトリウム及び塩素濃度が高いため、硬化型組成物の成分として使用した場合、硬化物が金属腐食の問題や耐水性が低い等の問題があった。
In addition, G. Wegner et al. (2-oxo-1,3-dioxolane-4-yl) methyl (meth) acrylate [glycerin carbonate (meth) acrylate. Hereinafter, it is referred to as "Glycarbo- (M) A". ] Is obtained by the reaction of glycerol carbonate with (meth) acrylic acid chloride (Non-Patent Document 2).
However, the manufacturing method described in the same document is based on the acid chloride method, and there is a problem in consideration of the problem of corrosion of the container and the large environmental load.
Further, according to the study by the inventors, the compound produced by the method described in the same document has a high concentration of sodium and chlorine, and therefore, when used as a component of a curable composition, the cured product has a problem of metal corrosion. There were problems such as low water resistance.
 又、特許文献1では、3官能以上のポリアクリレートとGlycarbo-(M)Aを含む耐摩耗性コーティング組成物が開示され、当該組成物は、硬度が高く、硬化速度が速く、密着性に優れ、硬化物の着色が少ないとの効果を奏することが開示されている(特許文献1)。
 しかしながら、特許文献1におけるGlycarbo-(M)Aの製造方法も酸クロライド法によるものであり、当該組成物は、前述のような問題があった。
Further, Patent Document 1 discloses an abrasion-resistant coating composition containing a trifunctional or higher functional polyacrylate and Glycarbo- (M) A, which has a high hardness, a high curing rate, and excellent adhesion. , It is disclosed that the effect of less coloring of the cured product is obtained (Patent Document 1).
However, the method for producing Glycarbo- (M) A in Patent Document 1 is also based on the acid chloride method, and the composition has the above-mentioned problems.
特開2001-19875号公報Japanese Unexamined Patent Publication No. 2001-1975
 本発明者らは、Glycarbo-(M)Aを含む硬化型組成物であって、その硬化物が金属腐食の問題がなく、耐水性に優れる硬化型組成物を見出すため、鋭意検討を行ったのである。 The present inventors have conducted diligent studies to find a curable composition containing Glycarbo- (M) A, which has no problem of metal corrosion and has excellent water resistance. It is.
 本発明者らは、前記課題を解決するため、(A)成分としてGlycarbo-(M)Aを含み、(A)成分中に含まれる塩素濃度及びナトリウム濃度を低減させた硬化型組成物が、硬化物が、耐金属腐食性及び耐水性に優れることを見出し、本発明を完成した。
 以下、本発明を詳細に説明する。
In order to solve the above-mentioned problems, the present inventors have prepared a curable composition containing Glycarbo- (M) A as the component (A) and reducing the chlorine concentration and the sodium concentration contained in the component (A). The present invention has been completed by finding that the cured product is excellent in metal corrosion resistance and water resistance.
Hereinafter, the present invention will be described in detail.
 本発明の組成物によれば、その硬化物を耐金属腐食性及び耐水性に優れたものとすることができる。 According to the composition of the present invention, the cured product can be made excellent in metal corrosion resistance and water resistance.
 本発明は、(A)成分を含む組成物であって、(A)成分が、後記式(a)で表される化合物を含み、(A)成分中に含まれる塩素濃度が100ppm未満であり、かつナトリウム濃度が100ppb未満である硬化型組成物である。
 以下、(A)成分、硬化型組成物、用途及び使用方法について説明する。
The present invention is a composition containing the component (A), wherein the component (A) contains a compound represented by the formula (a) described later, and the chlorine concentration contained in the component (A) is less than 100 ppm. It is a curable composition having a sodium concentration of less than 100 ppb.
Hereinafter, the component (A), the curable composition, the use and the method of use will be described.
1.(A)成分
 本発明の必須成分である(A)成分は、下記式(a)で表される化合物を含む。
1. 1. Component (A) The component (A), which is an essential component of the present invention, contains a compound represented by the following formula (a).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
〔式(a)において、Raは、水素原子又は炭素数1~5のアルキル基を意味し、Rbは、単結合、又はオキシアルキレン基を意味する。〕 [In the formula (a), Ra means a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R b means a single bond or an oxyalkylene group. ]
 式(a)におけるRaは、水素原子又は炭素数1~5のアルキル基を意味し、Raとしては、水素原子又はメチル基が好ましい。 Ra in the formula (a) means a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R a is preferably a hydrogen atom or a methyl group.
 Rbにおけるオキシアルキレン基としては、エチレンオキサイド基、プロピレンオキサイド基、テトラメチレンオキサイド基、及びこれらアルキレンオキサイド基の混合単位等が挙げられ、エチレンオキサイド基が好ましい。
 Rbにおけるオキシアルキレン基としては、繰り返し単位を有するアルキレンオキサイド基であっても良く、1~20が好ましく、より好ましくは1~15である。
Examples of the oxyalkylene group in R b include an ethylene oxide group, a propylene oxide group, a tetramethylene oxide group, and a mixing unit of these alkylene oxide groups, and an ethylene oxide group is preferable.
The oxyalkylene group in R b may be an alkylene oxide group having a repeating unit, preferably 1 to 20, and more preferably 1 to 15.
 (A)成分を含む組成物は、酸素阻害を受けにくく、硬化性に優れ、組成物を無溶剤で低粘度化でき、その硬化物が、硬度、耐擦傷性、及び基材密着性に優れる。
 式(a)の化合物としては、Raが水素原子又はメチル基で、Rbが単結合である化合物が好ましい。即ち、Glycarbo-(M)A〔(2-オキソ-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート〕が好ましい。
 さらに、式(a)におけるRとして水素原子を有する化合物、即ち、Glycarbo-A〔(2-オキソ-1,3-ジオキソラン-4-イル)メチルアクリレート〕が、硬化性に優れる点でより好ましい。
 又、式(a)の化合物としては、Raが水素原子又はメチル基で、Rbがオキシアルキレン基である化合物で、オキシアルキレン基の繰り返し単位が1~15である化合物が好ましい。
 (A)成分としては、これら化合物の混合物であっても良い。
The composition containing the component (A) is less susceptible to oxygen inhibition, has excellent curability, can reduce the viscosity of the composition without a solvent, and the cured product has excellent hardness, scratch resistance, and substrate adhesion. ..
As the compound of the formula (a), a compound in which Ra is a hydrogen atom or a methyl group and R b is a single bond is preferable. That is, Glycarbo- (M) A [(2-oxo-1,3-dioxolane-4-yl) methyl (meth) acrylate] is preferable.
Further, a compound having a hydrogen atom as R in the formula (a), that is, Glycarbo-A [(2-oxo-1,3-dioxolan-4-yl) methyl acrylate] is more preferable in that it is excellent in curability.
The compound of the formula (a) is preferably a compound in which Ra is a hydrogen atom or a methyl group, R b is an oxyalkylene group, and the repeating unit of the oxyalkylene group is 1 to 15.
The component (A) may be a mixture of these compounds.
 さらに、(A)成分は、塩素濃度が100ppm未満、かつナトリウム濃度が100ppb未満である。
 塩素濃度を100ppm未満、かつナトリウム濃度を100ppb未満とすることで、得られる組成物の硬化物を、耐水性、及び耐金属腐食性に優れたものとすることができる。
 尚、本発明における塩素濃度とは、石英管燃焼-イオンクロマトグラフィー法によって求められた値を意味する。
 又、本発明におけるナトリウム濃度とは、試料をICP質量分析装置で測定し、検出された元素を絶対検量線法により定量した値を意味する。
Further, the component (A) has a chlorine concentration of less than 100 ppm and a sodium concentration of less than 100 ppb.
By setting the chlorine concentration to less than 100 ppm and the sodium concentration to less than 100 ppb, the cured product of the obtained composition can be made excellent in water resistance and metal corrosion resistance.
The chlorine concentration in the present invention means a value obtained by the quartz tube combustion-ion chromatography method.
The sodium concentration in the present invention means a value obtained by measuring a sample with an ICP mass spectrometer and quantifying the detected element by an absolute calibration curve method.
 (A)成分の製造方法としては、前記した塩素濃度及びナトリウム濃度を有する(A)成分を容易に製造できる点で、グリセリンカーボネート、グリセリンカーボネートのアルキレンオキサイド付加物、又はこれら化合物の混合物〔以下、これらをまとめ「グリセリンカーボネート系化合物」ともいう〕と1個のCH2=C(R)-(C=O)-基を有する化合物〔以下、「単官能(メタ)アクリレート」という〕をエステル交換反応させて得られるものが好ましい。尚、CH2=C(R)-(C=O)-基のRは、前記と同様に、水素原子又は炭素数1~5のアルキル基を意味する。
 グリセリンカーボネート系化合物と(メタ)アクリル酸を脱水エステル化反応させる製造方法では、副反応物である高分子量体が多く生成してしまい、得られる(A)成分が高粘度化してしまう問題がある。
 又、グリセリンカーボネート系化合物と(メタ)アクリル酸クロライドを反応させる酸クロライド法は、(A)成分中に含まれる塩素濃度、及びナトリウム濃度を低減させることが難しく、硬化物の耐水性や耐金属腐食性が低下してしまう問題がある。
 これに対して、グリセリンカーボネート系化合物と単官能アクリレートのエステル交換反応によれば、(A)成分を収率良く、しかも、塩素濃度及びナトリウム濃度を低減させて製造することが可能となる。
As a method for producing the component (A), glycerin carbonate, an alkylene oxide adduct of glycerin carbonate, or a mixture of these compounds is used in that the component (A) having the above-mentioned chlorine concentration and sodium concentration can be easily produced. These are collectively referred to as "glycerin carbonate-based compounds"] and a compound having one CH 2 = C (R)-(C = O) -group [hereinafter referred to as "monofunctional (meth) acrylate"] is transesterified. Those obtained by reaction are preferable. The R of the CH 2 = C (R)-(C = O) -group means a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, as described above.
In the production method in which a glycerin carbonate compound and (meth) acrylic acid are subjected to a dehydration esterification reaction, there is a problem that a large amount of high molecular weight compounds, which are side reactants, are produced, and the obtained component (A) becomes highly viscous. ..
In addition, it is difficult to reduce the chlorine concentration and sodium concentration contained in the component (A) by the acid chloride method in which a glycerin carbonate compound is reacted with (meth) acrylic acid chloride, and the cured product has water resistance and metal resistance. There is a problem that the corrosiveness is reduced.
On the other hand, according to the transesterification reaction between the glycerin carbonate compound and the monofunctional acrylate, the component (A) can be produced in good yield and with reduced chlorine concentration and sodium concentration.
 以下、(A)成分の好ましい製造方法であるエステル交換反応による製造方法に関して、グリセリンカーボネート系化合物、単官能(メタ)アクリレート、触媒及び(A)成分の製造方法について説明する。 Hereinafter, the method for producing the glycerin carbonate-based compound, the monofunctional (meth) acrylate, the catalyst, and the component (A) will be described with respect to the method for producing the component (A) by a transesterification reaction, which is a preferable method for producing the component (A).
1-1.グリセリンカーボネート系化合物
 (A)成分の原料として使用するグリセリンカーボネート系化合物は、グリセリンカーボネート、グリセリンカーボネートのアルキレンオキサイド付加物、又はこれら化合物の混合物である。
 グリセリンカーボネート(4-ヒドロキシメチル-1,3-ジオキソラン-2-オン)としては、市販品を使用することができる。又、グリセリンと、エチレンカーボネート、炭酸ジメチル及び炭酸ジエチル等の炭酸エステル化合物を、触媒の存在下にエステル交換反応させて製造したものを使用することもできる。
 グリセリンカーボネートのアルキレンオキサイド付加物としては、グリセリンのエチレンオキサイド付加物と、エチレンカーボネート、炭酸ジメチル及び炭酸ジエチル等の炭酸エステル化合物を、触媒の存在下にエステル交換反応させて合成したものを使用することができる。
 グリセリンカーボネート系化合物としては、前記した化合物の混合物を使用することもできる。
1-1. The glycerin carbonate-based compound used as a raw material for the glycerin carbonate-based compound (A) component is a glycerin carbonate, an alkylene oxide adduct of the glycerin carbonate, or a mixture of these compounds.
As the glycerin carbonate (4-hydroxymethyl-1,3-dioxolane-2-one), a commercially available product can be used. Further, a compound produced by transesterifying glycerin with a carbonic acid ester compound such as ethylene carbonate, dimethyl carbonate and diethyl carbonate in the presence of a catalyst can also be used.
As the alkylene oxide adduct of glycerin carbonate, an ethylene oxide adduct of glycerin and a carbonic acid ester compound such as ethylene carbonate, dimethyl carbonate and diethyl carbonate are synthesized by transesterification reaction in the presence of a catalyst. Can be done.
As the glycerin carbonate-based compound, a mixture of the above-mentioned compounds can also be used.
1-2.単官能(メタ)アクリレート
 (A)成分の原料として使用する単官能(メタ)アクリレートは、分子中に1個のCH2=C(R)-(C=O)-基を有する化合物であり、例えば、下記一般式(1)で示される化合物が挙げられる。
1-2. The monofunctional (meth) acrylate used as a raw material for the monofunctional (meth) acrylate (A) component is a compound having one CH 2 = C (R)-(C = O) -group in the molecule. For example, a compound represented by the following general formula (1) can be mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)において、R1は水素原子、炭素数1~5のアルキル基を表し、R2は炭素数1~50の有機基を表す。 In the formula (1), R 1 represents a hydrogen atom and an alkyl group having 1 to 5 carbon atoms, and R 2 represents an organic group having 1 to 50 carbon atoms.
 上記一般式(1)におけるR1としては、水素原子又はメチル基が好ましい。
 上記一般式(1)におけるR2の好ましい具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基及び2-エチルヘキシル基等の炭素数1~8のアルキル基、2-メトキシエチル基、2-エトキシエチル基及び2-メトキシブチル基等のアルコキシアルキル基、並びにN,N-ジメチルアミノエチル基、N,N-ジエチルアミノエチル基、N,N-ジメチルアミノプロピル基及びN,N-ジエチルアミノプロピル基等のジアルキルアミノ基等が挙げられる。
 上記一般式(1)におけるR2の具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報及び国際公開第2017/033732号で挙げた官能基が挙げられる。
As R 1 in the above general formula (1), a hydrogen atom or a methyl group is preferable.
Preferred specific examples of R 2 in the above general formula (1) include 1 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group and a 2-ethylhexyl group. Alkoxyalkyl groups of ~ 8 alkyl groups, 2-methoxyethyl groups, 2-ethoxyethyl groups and 2-methoxybutyl groups, as well as N, N-dimethylaminoethyl groups, N, N-diethylaminoethyl groups, N, N -Dialkylamino groups such as dimethylaminopropyl group and N, N-diethylaminopropyl group can be mentioned.
Specific examples of R 2 in the general formula (1) include the functional groups mentioned in JP-A-2017-39916, JP-A-2017-39917, and International Publication No. 2017/033732. ..
 本発明ではこれらの単官能(メタ)アクリレートを単独で又は二種以上を任意に組み合わせて使用できる。
 これらの単官能(メタ)アクリレートの中では、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレート等の炭素数1~8のアルキル基を有するアルキル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート、並びにN,N-ジメチルアミノエチル(メタ)アクリレートが好ましく、特にグリセリンカーボネート系化合物に対して良好な反応性を示し、入手が容易な炭素数1~4のアルキル基を有するアクリレート、及び炭素数1~2のアルキル基を有するアルコキシアルキル(メタ)アクリレートが好ましい。
 さらに、グリセリンカーボネート系化合物の溶解を促進し、極めて良好な反応性を示す炭素数1~2のアルキル基を有するアルコキシアルキル(メタ)アクリレートがより好ましく、2-メトキシエチル(メタ)アクリレートが特に好ましい。
In the present invention, these monofunctional (meth) acrylates can be used alone or in any combination of two or more.
Among these monofunctional (meth) acrylates, carbons such as methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate Alkyl (meth) acrylates having an alkyl group of number 1 to 8, alkoxyalkyl (meth) acrylates such as 2-methoxyethyl (meth) acrylate, and N, N-dimethylaminoethyl (meth) acrylate are preferable, and glycerin carbonate is particularly preferable. An acrylate having an alkyl group having 1 to 4 carbon atoms and an alkoxyalkyl (meth) acrylate having an alkyl group having 1 to 2 carbon atoms, which show good reactivity with the system compound and are easily available, are preferable.
Further, an alkoxyalkyl (meth) acrylate having an alkyl group having 1 to 2 carbon atoms, which promotes the dissolution of a glycerin carbonate-based compound and exhibits extremely good reactivity, is more preferable, and 2-methoxyethyl (meth) acrylate is particularly preferable. ..
1-3.触媒
 (A)成分の製造方法におけるエステル交換反応触媒としては、例えば、スズ系触媒、チタン系触媒及び硫酸等の従来公知のものを使用することができる。
 本発明では、(A)成分を効率的に高収率で製造できる点で、触媒として下記触媒X及びYを併用することが好ましい。
触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体(以下、「アザビシクロ系化合物」という)、アミジン又はその塩若しくは錯体(以下、「アミジン系化合物」という)、ピリジン環を有する化合物又はその塩若しくは錯体(以下、「ピリジン系化合物」という)、及びホスフィン又はその塩若しくは錯体(以下、「ホスフィン系化合物」という)からなる群から選ばれる一種以上の化合物
触媒Y:亜鉛を含む化合物。
 以下、触媒X及び触媒Yについて説明する。
1-3. As the transesterification reaction catalyst in the method for producing the catalyst (A) component, conventionally known catalysts such as tin-based catalysts, titanium-based catalysts, and sulfuric acid can be used.
In the present invention, it is preferable to use the following catalysts X and Y together as a catalyst in that the component (A) can be efficiently produced in a high yield.
Catalyst X: Cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof (hereinafter referred to as "azabicyclo compound"), amidine or a salt or complex thereof (hereinafter referred to as "amidine compound"), a compound having a pyridine ring or One or more compound catalyst Y: a compound containing zinc selected from the group consisting of the salt or complex (hereinafter referred to as "pyridine compound") and phosphine or a salt or complex thereof (hereinafter referred to as "phosphine compound").
Hereinafter, the catalyst X and the catalyst Y will be described.
1-3-1.触媒X
 触媒Xは、アザビシクロ系化合物、アミジン系化合物、ピリジン系化合物及びホスフィン系化合物からなる群から選ばれる一種以上の化合物である。
 触媒Xとしては、前記した化合物群の中でも、アザビシクロ系化合物、アミジン系化合物及びピリジン系化合物からなる群から選ばれる一種以上の化合物が好ましい。これら化合物は、触媒活性に優れ(A)成分を好ましく製造できる他、反応終了後に後記する触媒Yと錯体を形成するため、ろ過及び吸着等による簡便な方法により反応終了後の反応液から容易に除去できる。特に、アザビシクロ系化合物は、その触媒Yとの錯体が反応液に難溶解性となるため、ろ過及び吸着等によりさらに容易に除去することができる。
 一方、ホスフィン系化合物は、触媒活性に優れるものの、触媒Yと錯体を形成し難く、反応終了後の反応液中に大部分が溶解したままとなるため、ろ過及び吸着等による簡便な方法により反応液から除去し難い。このため、最終製品中にもホスフィン系触媒が残存してしまい、これにより製品の保存中に、濁りや触媒の析出が発生したり、経時的に増粘又はゲル化してしまうという保存安定性の問題を生じることがあり、組成物の成分として使用する場合も同様の問題を有することがあった。
1-3-1. Catalyst X
The catalyst X is one or more compounds selected from the group consisting of azabicyclo-based compounds, amidine-based compounds, pyridine-based compounds, and phosphine-based compounds.
As the catalyst X, one or more compounds selected from the group consisting of azabicyclo-based compounds, amidine-based compounds and pyridine-based compounds are preferable among the above-mentioned compound groups. These compounds have excellent catalytic activity and can preferably produce the component (A). In addition, since they form a complex with the catalyst Y described later after the reaction is completed, they can be easily obtained from the reaction solution after the reaction by a simple method such as filtration and adsorption. Can be removed. In particular, the azabicyclo-based compound can be more easily removed by filtration, adsorption or the like because the complex with the catalyst Y becomes sparingly soluble in the reaction solution.
On the other hand, although the phosphine compound has excellent catalytic activity, it is difficult to form a complex with the catalyst Y, and most of the phosphine compound remains dissolved in the reaction solution after the reaction is completed. Difficult to remove from liquid. For this reason, the phosphine-based catalyst remains in the final product, which causes turbidity and catalyst precipitation during storage of the product, and thickening or gelation over time, resulting in storage stability. It may cause problems, and it may have similar problems when used as a component of a composition.
 アザビシクロ系化合物の具体例としては、アザビシクロ構造を有する環状3級アミン、当該アミンの塩、又は当該アミンの錯体を満足する化合物であれば種々の化合物が挙げられ、好ましい化合物としては、キヌクリジン、3-ヒドロキシキヌクリジン、3-キヌクリジノン、1-アザビシクロ[2.2.2]オクタン-3-カルボン酸、及びトリエチレンジアミン(別名:1,4-ジアザビシクロ[2.2.2]オクタン。以下、「DABCO」という)等が挙げられる。
 アザビシクロ系化合物の具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報、国際公開第2016/163208号及び国際公開第2017/033732号で挙げた化合物が挙げられる。
Specific examples of the azabicyclo-based compound include a cyclic tertiary amine having an azabicyclo structure, a salt of the amine, and various compounds as long as they satisfy the complex of the amine, and preferred compounds include quinuclidine and 3. -Hydroxyquinuclidine, 3-quinucridinone, 1-azabicyclo [2.2.2] octane-3-carboxylic acid, and triethylenediamine (also known as 1,4-diazabicyclo [2.2.2] octane. DABCO ") and the like.
Specific examples of the azabicyclo-based compound include the compounds mentioned in JP-A-2017-39916, JP-A-2017-39917, WO2016 / 163208 and WO2017 / 033732. Be done.
 アミジン系化合物の具体例としては、イミダゾール、N-メチルイミダゾール、N-エチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ビニルイミダゾール、1-アリルイミダゾール、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(以下、「DBU」という)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(以下、「DBN」という)、N-メチルイミダゾール塩酸塩、DBU塩酸塩、DBN塩酸塩、N-メチルイミダゾール酢酸塩、DBU酢酸塩、DBN酢酸塩、N-メチルイミダゾールアクリル酸塩、DBUアクリル酸塩、DBNアクリル酸塩、及びフタルイミドDBU等が挙げられる。 Specific examples of the amidine-based compound include imidazole, N-methylimidazole, N-ethyl imidazole, 1-benzyl-2-methyl imidazole, 1-benzyl-2-phenyl imidazole, 1-vinyl imidazole, 1-allyl imidazole, 1 , 8-Diazabicyclo [5.4.0] Undec-7-ene (hereinafter referred to as "DBU"), 1,5-Diazabicyclo [4.3.0] Nona-5-ene (hereinafter referred to as "DBN") , N-Methylimidazole hydrochloride, DBU hydrochloride, DBN hydrochloride, N-methylimidazole acetate, DBU acetate, DBN acetate, N-methylimidazole acrylate, DBU acrylate, DBN acrylate, and Examples include phthalimide DBU and the like.
 ピリジン系化合物の主な具体例としては、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2-エチルピリジン、3-エチルピリジン、4-エチルピリジン、及びN,N-ジメチル-4-アミノピリジン(以下、「DMAP」という)等が挙げられる。
 ピリジン系化合物の具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報、国際公開第2016/163208号及び国際公開第2017/033732号で挙げた化合物が挙げられる。
Major specific examples of pyridine compounds include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 3-ethylpyridine, 4-ethylpyridine, and N, N-dimethyl-. Examples thereof include 4-aminopyridine (hereinafter referred to as "DMAP").
Specific examples of the pyridine compound include the compounds mentioned in JP-A-2017-39916, JP-A-2017-39917, WO2016 / 163208 and WO2017 / 033732. Be done.
 ホスフィン又はその塩若しくは錯体は、下記一般式(2)で示される構造を含む化合物等が挙げられる。 Examples of the phosphine or a salt or complex thereof include a compound containing a structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔式(2)において、R3、R4及びR5は、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数1~20の直鎖状又は分岐状アルケニル基、炭素数6~24のアリール基、若しくは、炭素数5~20のシクロアルキル基を意味する。R3、R4及びR5としては、同一であっても異なっていても良い。〕 [In the formula (2), R 3 , R 4 and R 5 are a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, and 6 carbon atoms. It means an aryl group of up to 24 or a cycloalkyl group having 5 to 20 carbon atoms. R 3 , R 4 and R 5 may be the same or different. ]
 ホスフィン系化合物の具体例としては、トリフェニルホスフィン、トリス(4-メトキシフェニル)ホスフィン、トリ(p-トリル)ホスフィン、トリ(m-トリル)ホスフィン、トリス(4-メトキシ-3,5-ジメチルフェニル)ホスフィン、及びトリシクロヘキシルホスフィン等が挙げられる。
 ホスフィン系化合物の具体例としては、前記以外にも特開2017-39916号公報、特開2017-39917号公報、国際公開第2016/163208号及び国際公開第2017/033732号で挙げた化合物が挙げられる。
Specific examples of phosphine compounds include triphenylphosphine, tris (4-methoxyphenyl) phosphine, tri (p-tolyl) phosphine, tri (m-tolyl) phosphine, and tris (4-methoxy-3,5-dimethylphenyl). ) Phosphine, tricyclohexylphosphine and the like.
Specific examples of the phosphine-based compound include the compounds mentioned in JP-A-2017-39916, JP-A-2017-39917, WO2016 / 163208 and WO2017 / 033732. Be done.
 本発明ではこれらの触媒Xを単独で又は二種以上を任意に組み合わせて使用できる。これらの触媒Xの中では、キヌクリジン、3-キヌクリジノン、3-ヒドロキシキヌクリジン、DABCO、N-メチルイミダゾール、DBU、DBN及びDMAPが好ましく、特に殆どのグリセリンカーボネート系化合物に対して良好な反応性を示し、入手が容易な3-ヒドロキシキヌクリジン、DABCO、N-メチルイミダゾール、DBU及びDMAPがより好ましい。 In the present invention, these catalysts X can be used alone or in any combination of two or more. Among these catalysts X, quinuclidine, 3-quinuclidinone, 3-hydroxyquinuclidine, DABCO, N-methylimidazole, DBU, DBN and DMAP are preferable, and particularly good reactivity with most glycerin carbonate compounds. 3-Hydroxyquinuclidine, DABCO, N-methylimidazole, DBU and DMAP, which are easily available, are more preferable.
 (A)成分の製造方法における触媒Xの使用割合は特に制限はないが、グリセリンカーボネート系化合物中の水酸基合計1モルに対して、触媒Xを0.0001~0.5モル使用することが好ましく、より好ましくは0.0005~0.2モルである。触媒Xを0.0001モル以上使用することで、(A)成分の生成量を多くすることができ、0.5モル以下とすることで、副生成物の生成や反応液の着色を抑制し、反応終了後の精製工程を簡便にすることができる。 The ratio of the catalyst X used in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.0001 to 0.5 mol of the catalyst X with respect to 1 mol of the total hydroxyl groups in the glycerin carbonate-based compound. , More preferably 0.0005 to 0.2 mol. By using 0.0001 mol or more of the catalyst X, the amount of the component (A) produced can be increased, and by using 0.5 mol or less, the formation of by-products and the coloring of the reaction solution can be suppressed. , The purification step after the reaction is completed can be simplified.
1-3-2.触媒Y
 触媒Yは、亜鉛を含む化合物である。
 触媒Yとしては、亜鉛を含む化合物であれば種々の化合物を使用することができるが、反応性に優れることから有機酸亜鉛及び亜鉛ジケトンエノラートが好ましい。
 有機酸亜鉛としては、蓚酸亜鉛等の二塩基酸亜鉛及び下記一般式(3)で表される化合物を挙げることができる。
1-3-2. Catalyst Y
The catalyst Y is a compound containing zinc.
As the catalyst Y, various compounds can be used as long as they are compounds containing zinc, but zinc organic acid and zinc diketone enolate are preferable because of their excellent reactivity.
Examples of the zinc organic acid include zinc dibasate such as zinc oxalate and a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔式(3)において、R6及びR7は、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数1~20の直鎖状又は分岐状アルケニル基、炭素数6~24のアリール基、若しくは、炭素数5~20のシクロアルキル基を意味する。R6及びR7としては、同一であっても異なっていても良い。〕
 前記式(3)の化合物としては、R6及びR7が、炭素数1~20の直鎖状又は分岐状アルキル基である化合物が好ましい。R6及びR7において、炭素数1~20の直鎖状又は分岐状アルキル基は、フッ素及び塩素等のハロゲン原子を有しない官能基であり、当該官能基を有する触媒Yは、高収率で(A)成分を製造できるため好ましい。
[In the formula (3), R 6 and R 7 have a linear or branched alkyl group having 1 to 20 carbon atoms, a linear or branched alkenyl group having 1 to 20 carbon atoms, and 6 to 24 carbon atoms. It means an aryl group or a cycloalkyl group having 5 to 20 carbon atoms. R 6 and R 7 may be the same or different. ]
As the compound of the formula (3), a compound in which R 6 and R 7 are linear or branched alkyl groups having 1 to 20 carbon atoms is preferable. In R 6 and R 7 , the linear or branched alkyl group having 1 to 20 carbon atoms is a functional group having no halogen atom such as fluorine and chlorine, and the catalyst Y having the functional group has a high yield. It is preferable because the component (A) can be produced in the above.
 亜鉛ジケトンエノラートとしては、下記一般式(4)で表される化合物を挙げることができる。 Examples of the zinc diketone enolate include compounds represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式(4)において、R8、R9、R10、R11、R12及びR13は、水素原子、炭素数1~20の直鎖状又は分岐状アルキル基、炭素数1~20の直鎖状又は分岐状アルケニル基、炭素数6~24のアリール基、若しくは炭素数5~20のシクロアルキル基を意味する。R8、R9、R10、R11、R12及びR13としては、同一であっても異なっていても良い。〕 [In formula (4), R 8 , R 9 , R 10 , R 11 , R 12 and R 13 are hydrogen atoms, linear or branched alkyl groups having 1 to 20 carbon atoms, and 1 to 20 carbon atoms. It means a linear or branched alkenyl group, an aryl group having 6 to 24 carbon atoms, or a cycloalkyl group having 5 to 20 carbon atoms. R 8 , R 9 , R 10 , R 11 , R 12 and R 13 may be the same or different. ]
 上記一般式(3)で表される亜鉛を含む化合物の具体例としては、酢酸亜鉛、酢酸亜鉛二水和物、プロピオン酸亜鉛、オクチル酸亜鉛、ネオデカン酸亜鉛、ラウリン酸亜鉛、ミリスチン酸亜鉛、ステアリン酸亜鉛、シクロヘキサン酪酸亜鉛、2-エチルヘキサン酸亜鉛、安息香酸亜鉛、t-ブチル安息香酸亜鉛、サリチル酸亜鉛、ナフテン酸亜鉛、アクリル酸亜鉛、及びメタクリル酸亜鉛等が挙げられる。
 尚、これらの亜鉛を含む化合物について、その水和物又は溶媒和物又は触媒Xとの錯体が存在する場合には、該水和物及び溶媒和物及び触媒Xとの錯体も(A)成分の製造方法における触媒Yとして使用できる。
Specific examples of the zinc-containing compound represented by the above general formula (3) include zinc acetate, zinc acetate dihydrate, zinc propionate, zinc octylate, zinc neodecanoate, zinc laurate, zinc myristate, and the like. Examples thereof include zinc stearate, zinc cyclohexane butyrate, zinc 2-ethylhexanate, zinc benzoate, zinc t-butyl benzoate, zinc salicylate, zinc naphthenate, zinc acrylate, and zinc methacrylate.
If a complex with the hydrate, solvate, or catalyst X of these zinc-containing compounds is present, the complex with the hydrate, solvate, and catalyst X is also a component (A). Can be used as the catalyst Y in the production method of.
 上記一般式(4)で表される亜鉛を含む化合物の具体例としては、亜鉛アセチルアセトナート、亜鉛アセチルアセトナート水和物、ビス(2,6-ジメチル-3,5-ヘプタンジオナト)亜鉛、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオナト)亜鉛、及びビス(5,5-ジメチル-2,4-ヘキサンジオナト)亜鉛等が挙げられる。尚、これらの亜鉛を含む化合物について、その水和物又は溶媒和物又は触媒Xとの錯体が存在する場合には、該水和物及び溶媒和物及び触媒Xとの錯体も(A)成分の製造方法における触媒Yとして使用できる。 Specific examples of the zinc-containing compound represented by the above general formula (4) include zinc acetylacetonate, zinc acetylacetonate hydrate, bis (2,6-dimethyl-3,5-heptandionat) zinc, and bis. Examples thereof include (2,2,6,6-tetramethyl-3,5-heptandionat) zinc and bis (5,5-dimethyl-2,4-hexanedionat) zinc. If a complex with the hydrate, solvate, or catalyst X of these zinc-containing compounds is present, the complex with the hydrate, solvate, and catalyst X is also a component (A). Can be used as the catalyst Y in the production method of.
 触媒Yにおける、有機酸亜鉛及び亜鉛ジケトンエノラートとしては、前記した化合物を直接使用することができるが、反応系内でこれら化合物を発生させ使用することもできる。例えば、金属亜鉛、酸化亜鉛、水酸化亜鉛、塩化亜鉛及び硝酸亜鉛等の亜鉛化合物(以下、「原料亜鉛化合物」という)を原料として使用し、有機酸亜鉛の場合は、原料亜鉛化合物と有機酸を反応させる方法、亜鉛ジケトンエノラートの場合は、原料亜鉛化合物と1,3-ジケトンを反応させる方法等が挙げられる。 As the zinc organic acid and the zinc diketone enolate in the catalyst Y, the above-mentioned compounds can be directly used, but these compounds can also be generated and used in the reaction system. For example, zinc compounds such as metallic zinc, zinc oxide, zinc hydroxide, zinc chloride and zinc nitrate (hereinafter referred to as "raw zinc compound") are used as raw materials, and in the case of organic acid zinc, the raw material zinc compound and organic acid In the case of zinc diketone enolate, a method of reacting the raw material zinc compound with 1,3-diketone and the like can be mentioned.
 本発明ではこれらの触媒Yを単独で又は二種以上を任意に組み合わせて使用できる。これらの触媒Yの中では、酢酸亜鉛、プロピオン酸亜鉛、アクリル酸亜鉛、メタクリル酸亜鉛、及び亜鉛アセチルアセトナートが好ましく、特にグリセリンカーボネート系化合物に対して良好な反応性を示し、入手が容易な酢酸亜鉛、アクリル酸亜鉛、及び亜鉛アセチルアセトナートが好ましい。 In the present invention, these catalysts Y can be used alone or in any combination of two or more. Among these catalysts Y, zinc acetate, zinc propionate, zinc acrylate, zinc methacrylate, and zinc acetylacetonate are preferable, and in particular, they show good reactivity with glycerin carbonate-based compounds and are easily available. Zinc acetate, zinc acrylate, and zinc acetylacetonate are preferred.
 (A)成分の製造方法における触媒Yの使用割合は特に制限はないが、グリセリンカーボネート系化合物中の水酸基合計1モルに対して、触媒Yを0.0001~0.5モル使用することが好ましく、より好ましくは0.0005~0.2モルである。触媒Yを0.0001モル以上使用することで、(A)成分の生成量を多くすることができ、0.5モル以下とすることで、副生成物の生成や反応液の着色を抑制し、反応終了後の精製工程を簡便にすることができる。 The ratio of the catalyst Y used in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.0001 to 0.5 mol of the catalyst Y with respect to 1 mol of the total hydroxyl groups in the glycerin carbonate-based compound. , More preferably 0.0005 to 0.2 mol. By using 0.0001 mol or more of the catalyst Y, the amount of the component (A) produced can be increased, and by using 0.5 mol or less, the formation of by-products and the coloring of the reaction solution can be suppressed. , The purification step after the reaction is completed can be simplified.
1-4.(A)成分の製造方法
 (A)成分は、エステル交換触媒の存在下に、グリセリンカーボネート系化合物と単官能(メタ)アクリレートをエステル交換反応させて製造することが好ましい。
 前記した通り、(A)成分の製造方法としては、触媒として前記触媒X及びYを併用する製造方法が好ましく、以下、当該製造方法について説明する。
1-4. Method for Producing Component (A) Component (A) is preferably produced by transesterifying a glycerin carbonate-based compound with a monofunctional (meth) acrylate in the presence of a transesterification catalyst.
As described above, as a method for producing the component (A), a production method in which the catalysts X and Y are used in combination as a catalyst is preferable, and the production method will be described below.
 (A)成分の製造方法における触媒Xと触媒Yの使用割合は特に制限はないが、触媒Yの1モルに対して、触媒Xを0.005~10.0モル使用することが好ましく、より好ましくは0.05~2.0モルである。0.005モル以上使用することで、目的の式(a)の化合物の生成量を多くすることができ、10.0モル以下とすることで、副生成物の生成や反応液の着色を抑制し、反応終了後の精製工程を簡便にすることができる。 The ratio of the catalyst X and the catalyst Y used in the method for producing the component (A) is not particularly limited, but it is preferable to use 0.005 to 10.0 mol of the catalyst X with respect to 1 mol of the catalyst Y. It is preferably 0.05 to 2.0 mol. By using 0.005 mol or more, the amount of the compound of the target formula (a) produced can be increased, and by using 10.0 mol or less, the formation of by-products and the coloring of the reaction solution are suppressed. Therefore, the purification step after the reaction is completed can be simplified.
 本発明で併用する触媒Xと触媒Yの組合せとしては、触媒Xがアザビシクロ系化合物で、触媒Yが前記一般式(3)で表される化合物の組み合わせが好ましく、さらに、アザビシクロ系化合物がDABCOであり、前記一般式(3)で表される化合物が酢酸亜鉛及び/又はアクリル酸亜鉛である組み合わせが最も好ましい。
 この組合せが、(A)成分を収率よく得られることに加え、反応終了後の色調に優れることから、色調が重要視される各種工業用途に好適に使用できる。さらには比較的安価に入手可能な触媒であることから、経済的に有利な製造方法となる。
As the combination of the catalyst X and the catalyst Y used in combination in the present invention, it is preferable that the catalyst X is an azabicyclo-based compound, the catalyst Y is a compound represented by the general formula (3), and the azabicyclo-based compound is DABCO. Most preferably, the compound represented by the general formula (3) is zinc acetate and / or zinc acrylate.
This combination can be suitably used for various industrial applications in which the color tone is important because the component (A) can be obtained in good yield and the color tone is excellent after the reaction is completed. Furthermore, since it is a catalyst that can be obtained at a relatively low cost, it is an economically advantageous production method.
 本発明で使用する触媒X及び触媒Yは、上記反応の最初から添加してもよいし、途中から添加してもよい。又、所望の使用量を一括で添加してもよいし、分割して添加してもよい。 The catalyst X and the catalyst Y used in the present invention may be added from the beginning of the above reaction or may be added from the middle. Further, the desired amount to be used may be added all at once, or may be added in divided portions.
 (A)成分の製造方法における反応温度は40~180℃であることが好ましく、より好ましくは60~160℃である。反応温度を40℃以上にすることで、反応速度を速くすることができ、180℃以下とすることで、原料や生成物中の(メタ)アクリロイル基の熱重合を抑制し、反応液の着色を抑制でき、反応終了後の精製工程を簡便にすることができる。 The reaction temperature in the method for producing the component (A) is preferably 40 to 180 ° C, more preferably 60 to 160 ° C. By setting the reaction temperature to 40 ° C. or higher, the reaction rate can be increased, and by setting the reaction temperature to 180 ° C. or lower, thermal polymerization of the (meth) acryloyl group in the raw material or product is suppressed, and the reaction solution is colored. Can be suppressed, and the purification step after the reaction is completed can be simplified.
 (A)成分の製造方法における反応圧力は、所定の反応温度を維持できれば特に制限はなく、減圧状態で実施してもよく、又加圧状態で実施してもよい。反応圧力としては、0.000001~10MPa(絶対圧力)が好ましい。 The reaction pressure in the method for producing the component (A) is not particularly limited as long as a predetermined reaction temperature can be maintained, and may be carried out in a reduced pressure state or in a pressurized state. The reaction pressure is preferably 0.000001 to 10 MPa (absolute pressure).
 (A)成分の製造方法においては、エステル交換反応の進行に伴い単官能(メタ)アクリレートに由来する1価アルコールが副生する。該1価アルコールを反応系内に共存させたままでもよいが、該1価アルコールを反応系外に排出することにより、エステル交換反応の進行をより促進することができる。 In the method for producing the component (A), a monohydric alcohol derived from a monofunctional (meth) acrylate is produced as a by-product as the transesterification reaction progresses. The monohydric alcohol may remain coexisting in the reaction system, but the progress of the transesterification reaction can be further promoted by discharging the monohydric alcohol out of the reaction system.
 (A)成分の製造方法では有機溶媒を使用せずに反応させることもできるが、必要に応じて有機溶媒を使用してもよい。
 有機溶媒の具体例としては、n-ヘキサン、シクロヘキサン、メチルシクロヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、ジアミルベンゼン、トリアミルベンゼン、ドデシルベンゼン、ジドデシルベンゼン、アミルトルエン、イソプロピルトルエン、デカリン及びテトラリン等の炭化水素類;ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジエチルアセタール、ジヘキシルアセタール、t-ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン、トリオキサン、ジオキサン、アニソール、ジフェニルエーテル、ジメチルセロソルブ、ジグライム、トリグライム及びテトラグライム等のエーテル類;18-クラウン-6等のクラウンエーテル類;安息香酸メチル及びγ-ブチロラクトン等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン及びベンゾフェノン等のケトン類;炭酸ジメチル、炭酸ジエチル、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート等のカーボネート化合物;スルホラン等のスルホン類;ジメチルスルホキサイド等のスルホキサイド類;尿素類又はその誘導体;トリブチルホスフィンオキサイド等のホスフィンオキサイド類、イミダゾリウム塩、ピペリジニウム塩及びピリジニウム塩等のイオン液体;シリコンオイル並びに;水等が挙げられる。
 これらの溶媒の中では、炭化水素類、エーテル類、カーボネート化合物及びイオン液体が好ましい。
 これらの溶媒は単独で使用してもよく、二種以上を任意に組み合わせて混合溶媒として使用してもよい。
In the method for producing the component (A), the reaction can be carried out without using an organic solvent, but an organic solvent may be used if necessary.
Specific examples of the organic solvent include n-hexane, cyclohexane, methylcyclohexane, n-heptane, n-octane, n-nonane, n-decane, benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylbenzene, amylbenzene, and diah. Hydrocarbons such as milbenzene, triamylbenzene, dodecylbenzene, didodecylbenzene, amyltoluene, isopropyltoluene, decalin and tetralin; diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diamyl ether, diethyl acetal, dihexyl Ethers such as acetal, t-butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran, tetrahydropyran, trioxane, dioxane, anisole, diphenyl ether, dimethyl cellosolve, jiglime, triglime and tetraglime; crown ethers such as 18-crown-6; Ethers such as methyl benzoate and γ-butyrolactone; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, acetophenone and benzophenone; dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, 1,2-butylene carbonate and the like. Carbonate compounds; Sulfons such as sulfolanes; Sulfoxides such as dimethyl sulfoxide; Ureas or derivatives thereof; Phosphine oxides such as tributylphosphine oxide, ionic liquids such as imidazolium salt, piperidinium salt and pyridinium salt; ; Water and the like can be mentioned.
Among these solvents, hydrocarbons, ethers, carbonate compounds and ionic liquids are preferred.
These solvents may be used alone, or two or more kinds may be arbitrarily combined and used as a mixed solvent.
 (A)成分の製造方法においては、反応液の色調を良好に維持する目的で系内にアルゴン、ヘリウム、窒素及び炭酸ガス等の不活性ガスを導入してもよいが、アクリロイル基の重合を防止する目的で系内に含酸素ガスを導入してもよい。含酸素ガスの具体例としては、空気、酸素と窒素の混合ガス、酸素とヘリウムの混合ガス等が挙げられる。含酸素ガスの導入方法としては、反応液中に溶存させたり、又は反応液中に吹込む(いわゆるバブリング)方法がある。 In the method for producing the component (A), an inert gas such as argon, helium, nitrogen or carbon dioxide may be introduced into the system for the purpose of maintaining a good color tone of the reaction solution, but acryloyl group polymerization may be carried out. Oxygen-containing gas may be introduced into the system for the purpose of prevention. Specific examples of the oxygen-containing gas include air, a mixed gas of oxygen and nitrogen, a mixed gas of oxygen and helium, and the like. As a method for introducing the oxygen-containing gas, there is a method of dissolving it in the reaction solution or blowing it into the reaction solution (so-called bubbling).
 (A)成分の製造方法においては、(メタ)アクリロイル基の重合を防止する目的で反応液中に重合禁止剤を添加することが好ましい。
 重合禁止剤としては、有機系重合禁止剤、無機系重合禁止剤及び有機塩系重合禁止剤等が挙げられる。
 有機系重合禁止剤の具体例としては、ハイドロキノン、tert-ブチルハイドロキノン、ハイドロキノンモノメチルエーテル、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール及び4-tert-ブチルカテコール等のフェノール系化合物、ベンゾキノン等のキノン化合物、フェノチアジン、並びにN-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム等が挙げられる。
 有機系重合禁止剤としては、安定ラジカルを有する有機化合物も使用することができ、カルビノキシル及びN-オキシル化合物等が挙げられる。
 N-オキシル化合物としては、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル及び4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等が挙げられる。
 無機系重合禁止剤としては、塩化銅、硫酸銅及び硫酸鉄等が挙げられる。
 有機塩系重合禁止剤としては、ジブチルジチオカルバミン酸銅、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩等が挙げられる。
 重合禁止剤は、一種を単独で添加しても又は二種以上を任意に組み合わせて添加してもよく、本発明の最初から添加してもよいし、途中から添加してもよい。又、所望の使用量を一括で添加してもよいし、分割して添加してもよい。又、精留塔を経由して連続的に添加してもよい。
 重合禁止剤の添加割合としては、反応液中に5~30,000wtppmが好ましく、より好ましくは25~10,000wtppmである。この割合を5wtppm以上とすることで、重合禁止効果を十分に発揮することができ、30,000wtppm以下にすることで、反応液の着色を抑制でき、反応終了後の精製工程を簡便にすることができ、又、得られる(A)成分の硬化速度の低下を防止することができる。
In the method for producing the component (A), it is preferable to add a polymerization inhibitor to the reaction solution for the purpose of preventing the polymerization of the (meth) acryloyl group.
Examples of the polymerization inhibitor include organic polymerization inhibitors, inorganic polymerization inhibitors, organic salt polymerization inhibitors and the like.
Specific examples of the organic polymerization inhibitor include hydroquinone, tert-butyl hydroquinone, hydroquinone monomethyl ether, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol and 4 Examples thereof include phenolic compounds such as -tert-butylcatechol, quinone compounds such as benzoquinone, phenothiazine, and N-nitroso-N-phenylhydroxylamineammonium.
As the organic polymerization inhibitor, an organic compound having a stable radical can also be used, and examples thereof include carbinoxyl and N-oxyl compounds.
Examples of the N-oxyl compound include 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl and 4-oxo-2,2. , 6,6-Tetramethylpiperidin-1-oxyl and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl and the like.
Examples of the inorganic polymerization inhibitor include copper chloride, copper sulfate, iron sulfate and the like.
Examples of the organic salt-based polymerization inhibitor include copper dibutyldithiocarbamate, N-nitroso-N-phenylhydroxylamine aluminum salt and the like.
The polymerization inhibitor may be added alone or in combination of two or more, may be added from the beginning of the present invention, or may be added in the middle. Further, the desired amount to be used may be added all at once, or may be added in divided portions. Moreover, you may add continuously via a rectification tower.
The addition ratio of the polymerization inhibitor is preferably 5 to 30,000 wtppm, more preferably 25 to 10,000 wtppm in the reaction solution. By setting this ratio to 5 wtppm or more, the polymerization inhibitory effect can be sufficiently exerted, and by setting it to 30,000 wtppm or less, coloring of the reaction solution can be suppressed and the purification step after the reaction is completed can be simplified. In addition, it is possible to prevent a decrease in the curing rate of the obtained component (A).
 (A)成分の製造方法における反応時間は、触媒の種類と使用量、反応温度、反応圧力等により異なるが、0.1~150時間が好ましく、より好ましくは0.5~80時間である。 The reaction time in the method for producing the component (A) varies depending on the type and amount of the catalyst used, the reaction temperature, the reaction pressure, etc., but is preferably 0.1 to 150 hours, more preferably 0.5 to 80 hours.
 (A)成分の製造方法は、回分式、半回分式及び連続式のいずれの方法によっても実施できる。回分式の一例としては、反応器にグリセリンカーボネート系化合物、単官能(メタ)アクリレート、触媒及び重合禁止剤を仕込み、含酸素ガスを反応液中にバブリングさせながら所定の温度で撹拌する。その後、エステル交換反応の進行に伴い副生した1価アルコールを所定の圧力にて反応器から抜出すことで目的の(A)成分を生成させる等の方法で実施できる。 The method for producing the component (A) can be carried out by any of a batch method, a semi-batch method and a continuous method. As an example of the batch type, a glycerin carbonate-based compound, a monofunctional (meth) acrylate, a catalyst and a polymerization inhibitor are charged in a reactor, and the oxygen-containing gas is bubbling in the reaction solution and stirred at a predetermined temperature. After that, the monohydric alcohol produced as a by-product with the progress of the transesterification reaction can be extracted from the reactor at a predetermined pressure to produce the desired component (A).
 (A)成分の製造方法で得られた反応生成物に対しては、分離・精製操作を実施することが目的の(A)成分を純度よく得ることができるため好ましい。
 分離・精製操作としては、晶析操作、ろ過操作、蒸留操作及び抽出操作等が挙げられ、これらを組合わせることが好ましい。晶析操作としては、冷却晶析及び濃縮晶析等が挙げられ、ろ過操作としては、加圧ろ過、吸引ろ過及び遠心ろ過等が挙げられ、蒸留操作としては、単式蒸留、分別蒸留、分子蒸留及び水蒸気蒸留等が挙げられ、抽出操作としては、固液抽出、液液抽出等が挙げられる。
 該分離精製操作においては溶媒を使用してもよい。
 又、本発明で使用した触媒及び/又は重合禁止剤を中和するための中和剤や、吸着除去するための吸着剤、副生成物を分解又は除去するための酸及び/又はアルカリ、色調を改善するための活性炭、ろ過効率及びろ過速度を向上するためのケイソウ土等を使用してもよい。
It is preferable to carry out a separation / purification operation on the reaction product obtained by the method for producing the component (A) because the desired component (A) can be obtained with high purity.
Examples of the separation / purification operation include a crystallization operation, a filtration operation, a distillation operation, an extraction operation, and the like, and it is preferable to combine these operations. Examples of the crystallization operation include cold crystallization and concentrated crystallization, examples of the filtration operation include pressure filtration, suction filtration and centrifugal filtration, and examples of the distillation operation include simple distillation, fractional distillation and molecular distillation. And steam distillation and the like, and examples of the extraction operation include solid-liquid extraction and liquid-liquid extraction.
A solvent may be used in the separation and purification operation.
In addition, a neutralizing agent for neutralizing the catalyst and / or polymerization inhibitor used in the present invention, an adsorbent for adsorbing and removing, an acid and / or alkali for decomposing or removing by-products, and a color tone. Activated carbon for improving the above, silica soil for improving the filtration efficiency and the filtration rate, and the like may be used.
 この様にして得られた(A)成分は、この中に含まれる塩素濃度を100ppm未満、好ましくは10ppm未満とし、かつナトリウム濃度を100ppb未満、好ましくは10ppb未満にすることができ、硬化物が耐水性及び耐金属腐食性に優れた硬化型組成物とすることができる。 The component (A) thus obtained can have a chlorine concentration of less than 100 ppm, preferably less than 10 ppm, and a sodium concentration of less than 100 ppb, preferably less than 10 ppb, and the cured product can be obtained. A curable composition having excellent water resistance and metal corrosion resistance can be obtained.
 後記する(A)成分以外のエチレン性不飽和基を有する化合物〔以下、「(D)成分」という〕を配合する場合、(A)成分の含有割合は、硬化性成分の合計100重量%中に、5~100重量%が好ましく、より好ましくは5~95重量%であり、特に好ましくは10~70重量%である。
 (A)成分の含有割合が5重量%以上とすることで、組成物を低粘度とすることができる。一方、95重量%以下とすることで、架橋密度を高くし、耐熱性を向上させることができる。
 尚、硬化性成分は前記で定義した通りであり、(A)及び(D)成分を意味する。
When a compound having an ethylenically unsaturated group other than the component (A) described later [hereinafter referred to as "component (D)"] is blended, the content ratio of the component (A) is 100% by weight of the total curable component. In addition, 5 to 100% by weight is preferable, 5 to 95% by weight is more preferable, and 10 to 70% by weight is particularly preferable.
By setting the content ratio of the component (A) to 5% by weight or more, the composition can have a low viscosity. On the other hand, when it is 95% by weight or less, the crosslink density can be increased and the heat resistance can be improved.
The curable component is as defined above, and means the components (A) and (D).
2.硬化型組成物
 本発明は、前記(A)を含む硬化型組成物である。
 組成物の製造方法としては、前記触媒X及びYの存在下に、グリセリンカーボネート系化合物と単官能(メタ)アクリレートとを、エステル交換反応させて得られる(メタ)アクリレートを含む反応生成物の混合物である(A)成分を製造する工程を含む製造方法が好ましい。
 当該製造方法によれば、(A)成分を高収率で得ることができるため、コストと生産性に優れる。又、当該製造方法で得られる(A)成分は、副反応高分子量体が少ないために低粘度で取扱いが容易であり、さらに塩素濃度及びナトリウム濃度を低減させることができる。
 当該工程としては、前記した(A)成分の製造方法に従えば良い。
 さらに、後記するその他の成分を配合する場合は、(A)成分とその他の成分を撹拌・混合すれば良い。
2. Curable Composition The present invention is a curable composition containing the above (A).
As a method for producing the composition, a mixture of reaction products containing (meth) acrylate obtained by transesterifying a glycerin carbonate-based compound and a monofunctional (meth) acrylate in the presence of the catalysts X and Y. A production method including a step of producing the component (A) is preferable.
According to the production method, the component (A) can be obtained in a high yield, so that the cost and productivity are excellent. Further, the component (A) obtained by the production method has a low viscosity and is easy to handle because there are few side reaction high molecular weight substances, and the chlorine concentration and the sodium concentration can be further reduced.
As the step, the method for producing the component (A) described above may be followed.
Further, when other components described later are blended, the component (A) and the other components may be stirred and mixed.
 組成物の粘度としては目的に応じて適宜設定すれば良く、10~3,000mPa・sが好ましく、より好ましくは20~1,500mPa・sである。 The viscosity of the composition may be appropriately set according to the intended purpose, preferably 10 to 3,000 mPa · s, and more preferably 20 to 1,500 mPa · s.
 本発明の組成物は、活性エネルギー線硬化型組成物として使用することも、熱硬化型組成物として使用することもできるが、活性エネルギー線硬化型組成物として好ましく使用することができる。
 又、本発明の組成物は、有機溶剤を含まない無溶剤型組成物、有機溶剤を含む溶剤型組成物、(A)成分を水中に溶解又は分散させた水系組成物のいずれの形態でも使用することができる。(A)成分を水中に分散させた水系組成物において、分散剤としては通常使用される乳化剤や後記する反応性乳化剤を使用することができる。
The composition of the present invention can be used as an active energy ray-curable composition or a thermosetting composition, but can be preferably used as an active energy ray-curable composition.
Further, the composition of the present invention can be used in any form of a solvent-free composition containing no organic solvent, a solvent-type composition containing an organic solvent, and an aqueous composition in which the component (A) is dissolved or dispersed in water. can do. In the aqueous composition in which the component (A) is dispersed in water, an emulsifier usually used or a reactive emulsifier described later can be used as the dispersant.
 本発明の組成物は、前記(A)成分を必須成分とするものであるが、目的に応じて種々の成分を配合することができる。
 その他成分の好ましい例としては、具体的には、光重合開始剤〔以下、「(B)成分」という〕、熱重合開始剤〔以下、「(C)成分」という〕、及び前記(A)成分以外のエチレン性不飽和基を有する化合物〔以下、「(D)成分」という〕等が挙げられる。
 以下、これらの成分について説明する。
 尚、後記するその他の成分は、例示した化合物の1種のみを使用しても良く、2種以上を併用しても良い。
The composition of the present invention contains the component (A) as an essential component, but various components can be blended depending on the purpose.
Specific preferred examples of the other components include a photopolymerization initiator [hereinafter referred to as "(B) component"], a thermal polymerization initiator [hereinafter referred to as "(C) component"], and the above-mentioned (A). Examples thereof include compounds having an ethylenically unsaturated group other than the components [hereinafter, referred to as “component (D)”] and the like.
Hereinafter, these components will be described.
As the other components described later, only one of the illustrated compounds may be used, or two or more of them may be used in combination.
2-1.(B)成分
 本発明の組成物を活性エネルギー線硬化型組成物として使用する場合において、特に、活性エネルギー線として紫外線及び可視光線を用いたときには、硬化の容易性やコストの観点から、(B)成分(光重合開始剤)を更に含有することが好ましい。
 活性エネルギー線として電子線を使用する場合には、必ずしも配合する必要はないが、硬化性を改善させるため必要に応じて少量配合することもできる。
2-1. (B) Ingredients When the composition of the present invention is used as an active energy ray-curable composition, particularly when ultraviolet rays and visible light are used as active energy rays, (B) from the viewpoint of easiness of curing and cost. ) Component (photopolymerization initiator) is preferably further contained.
When an electron beam is used as the active energy ray, it is not always necessary to blend it, but it can be blended in a small amount if necessary in order to improve the curability.
 (B)成分の具体例としては、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-[4-[4-(2-ヒドロキシ-2-メチループロピオニル)ベンジル]フェニル]-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン及び3,6-ビス(2-メチル-2-モルフォリノプロピオニル)-9-n-オクチルカルバゾール等のアセトフェノン系化合物;
ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル及びベンゾインイソブチルエーテル等のベンゾイン化合物;
ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン及び4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;
ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド化合物;並びに
チオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル-オキシ]-2-ヒドロキシプロピル-N,N,N―トリメチルアンモニウムクロライド及びフルオロチオキサントン等のチオキサントン系化合物等が挙げられる。
 前記以外の化合物としては、ベンジル、フェニルグリオキシ酸メチル、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート、エチルアントラキノン及びフェナントレンキノン及びカンファーキノン等が挙げられる。
Specific examples of the component (B) include benzyl dimethyl ketal, 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy) phenyl. ] -2-Hydroxy-2-methyl-1-propane-1-one, oligo [2-hydroxy-2-methyl-1- [4-1 (methylvinyl) phenyl] propanone, 2-hydroxy-1-[ 4- [4- (2-Hydroxy-2-methyl-propionyl) benzyl] phenyl] -2-methylpropan-1-one, 2-methyl-1- [4- (methylthio)] phenyl] -2-morpholinopro Pan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butane-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpho) Acetphenone compounds such as phosphorus-4-yl-phenyl) butane-1-one and 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-octylcarbazole;
Benzoin compounds such as benzoin, benzoin ethyl ether, benzoin isopropyl ether and benzoin isobutyl ether;
Benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, methyl-2-benzophenone, 1- [4- (4-benzoylphenyl sulfanyl) phenyl ] -2-Methyl-2- (4-methylphenylsulfonyl) propan-1-one, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone and 4-methoxy-4' -Benzophenone compounds such as dimethylaminobenzophenone;
Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, etc. Acylphosphine oxide compounds; as well as thioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, isopropylthioxanthone, 1-chloro-4-propylthioxanthone, 3- [3,4-dimethyl-9-oxo-9H-thioxanthone-2 -Il-oxy] -2-hydroxypropyl-N, N, N-trimethylammonium chloride, fluorothioxanthone and other thioxanthone compounds can be mentioned.
Examples of the compound other than the above include benzyl, methyl phenylglioxyate, ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate, ethyl anthraquinone, phenanthrenequinone, camphorquinone and the like.
 これら化合物の中でも、アセトフェノン系化合物が好ましく、さらにα-ヒドロキシフェニルケトンが、大気下において、薄膜のコーティングであっても表面硬化性が良好であり好ましい。α-ヒドロキシフェニルケトンとしては、1-ヒドロキシシクロヘキシルフェニルケトン、及び2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンがより好ましい。
 又、硬化物の膜厚を厚くする必要がある場合、例えば50μm以上とする必要がある場合は、硬化物内部の硬化性を向上させる目的で、又は紫外線吸収剤や顔料を併用する場合は、アシルホスフィンオキサイド化合物とアセトフェノン系化合物におけるモルフォリン化合物を併用することが好ましい。この場合のアシルホスフィンオキサイド化合物としては、
ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、エチル-(2,4,6-トリメチルベンゾイル)フェニルホスフィネート及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等が挙げられる。モルフォリン化合物としては、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタンー1-オン、及び2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン等が挙げられる。
Among these compounds, an acetophenone-based compound is preferable, and α-hydroxyphenyl ketone is preferable because it has good surface curability even in a thin film coating in the atmosphere. As the α-hydroxyphenyl ketone, 1-hydroxycyclohexylphenyl ketone and 2-hydroxy-2-methyl-1-phenyl-propane-1-one are more preferable.
When it is necessary to increase the thickness of the cured product, for example, when it is necessary to make it 50 μm or more, for the purpose of improving the curability inside the cured product, or when using an ultraviolet absorber or pigment in combination, It is preferable to use the acylphosphine oxide compound and the morphophosphorus compound in the acetphenone-based compound in combination. As the acylphosphine oxide compound in this case,
Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ethyl- (2,4,6-trimethylbenzoyl) phenylphosphine and bis (2,6- Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide and the like can be mentioned. Examples of the morpholin compound include 2-methyl-1- [4- (methylthio)] phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl). Butane-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butane-1-one and the like can be mentioned.
 (B)成分の含有割合は、硬化性成分の合計量100重量部に対し0.05~15重量部が好ましく、より好ましくは0.1~10重量部である。(B)成分の割合を0.05重量部以上にすることで、組成物の光硬化性を良好にし、密着性に優れるものとすることができ、15重量部以下とすることで、硬化物の内部硬化性が良好にすることができ、基材との密着性を良好にすることができる。 The content ratio of the component (B) is preferably 0.05 to 15 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the total amount of the curable components. By setting the proportion of the component (B) to 0.05 parts by weight or more, the photocurability of the composition can be improved and the adhesion can be improved, and by setting the ratio to 15 parts by weight or less, the cured product can be obtained. The internal curability of the material can be improved, and the adhesion to the substrate can be improved.
2-2.(C)成分
 (C)成分は熱重合開始剤であり、組成物を熱硬化型組成物として使用する場合には、(C)成分を配合することができる。
 本発明の組成物は、熱重合開始剤を配合し、加熱硬化させることもできる。
 熱重合開始剤としては、種々の化合物を使用することができ、有機過酸化物及びアゾ系開始剤が好ましい。
2-2. Component (C) Component (C) is a thermosetting initiator, and when the composition is used as a thermosetting composition, the component (C) can be blended.
The composition of the present invention can also be heat-cured by blending a thermal polymerization initiator.
As the thermal polymerization initiator, various compounds can be used, and organic peroxides and azo-based initiators are preferable.
 有機過酸化物の具体例としては、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジーメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α、α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等が挙げられる。 Specific examples of the organic peroxide include 1,1-bis (t-butylperoxy) 2-methylcyclohexane, 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, and 1 , 1-bis (t-hexyl peroxy) cyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) cyclohexane, 2, , 2-bis (4,4-di-butylperoxycyclohexyl) propane, 1,1-bis (t-butylperoxy) cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-Butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di (m-toluoleperoxy) hexane, t-butylper Oxyisopropyl monocarbonate, t-butylperoxy2-ethylhexylmonocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxyacetate, 2, 2-bis (t-butylperoxy) butane, t-butylperoxybenzoate, n-butyl-4,4-bis (t-butylperoxy) valerate, di-t-butylperoxyisophthalate, α, α '-Bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylcumyl peroxide, di-t-butyl Peroxide, p-menthan hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexin-3, diisopropylbenzenehydroperoxide, t-butyltrimethylsilyl peroxide, 1,1,3 , 3-Tetramethylbutylhydroperoxide, cumenehydroperoxide, t-hexylhydroperoxide, t-butylhydroperoxide and the like.
 アゾ系化合物の具体例としては、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、アゾジ-t-オクタン、アゾジ-t-ブタン等が挙げられる。 Specific examples of azo compounds include 1,1'-azobis (cyclohexane-1-carbonitrile), 2- (carbamoylazo) isobutyronitrile, and 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile. , Azodi-t-octane, azodi-t-butane and the like.
 これらは単独で用いても良いし、2種以上を併用しても良い。又、有機過酸化物は還元剤と組み合わせることによりレドックス反応とすることも可能である。 These may be used alone or in combination of two or more. In addition, the organic peroxide can be combined with a reducing agent to cause a redox reaction.
 (C)成分の含有割合としては、硬化性成分合計量100重量部に対して、10重量部以下が好ましい。
 (C)成分を単独で用いる場合は、通常のラジカル熱重合の常套手段にしたがって行えばよく、場合によっては(B)成分(光重合開始剤)と併用し、光硬化させた後にさらに反応率を向上させる目的で熱硬化を行うこともできる。
The content ratio of the component (C) is preferably 10 parts by weight or less with respect to 100 parts by weight of the total amount of the curable component.
When the component (C) is used alone, it may be carried out according to the usual means of radical thermal polymerization, and in some cases, it may be used in combination with the component (B) (photopolymerization initiator), and after photocuring, the reaction rate is further increased. It is also possible to carry out thermosetting for the purpose of improving.
2-3.(D)成分
 (D)成分は、エチレン性不飽和基を有する化合物であって、前記(A)成分以外の化合物である。
 (D)成分のエチレン性不飽和基としては、組成物の硬化性に優れることから、(メタ)アクリロイル基が好ましく、アクリロイル基がさらに好ましい。
2-3. Component (D) Component (D) is a compound having an ethylenically unsaturated group and is a compound other than the component (A).
As the ethylenically unsaturated group of the component (D), a (meth) acryloyl group is preferable, and an acryloyl group is more preferable, because the composition is excellent in curability.
 (D)成分としては、1個以上のエチレン性不飽和基を有する化合物であって、前記(A)以外の化合物であればよく、具体的には1個のエチレン性不飽和基を有する化合物(以下、「単官能不飽和化合物」という)、及び2個のエチレン性不飽和基を有する化合物(以下、「2官能不飽和化合物」という)、エチレン性不飽和基を3個以上有する化合物(以下、「3官能以上不飽和化合物」という)が挙げられる。 The component (D) may be a compound having one or more ethylenically unsaturated groups and may be a compound other than the above (A), specifically, a compound having one ethylenically unsaturated group. (Hereinafter referred to as "monofunctional unsaturated compound"), a compound having two ethylenically unsaturated groups (hereinafter referred to as "bifunctional unsaturated compound"), and a compound having three or more ethylenically unsaturated groups (hereinafter referred to as "bifunctional unsaturated compound"). Hereinafter, "trifunctional or higher unsaturated compound") can be mentioned.
 単官能不飽和化合物の具体例としては、(メタ)アクリロイル基を有する化合物、単官能(メタ)アクリルアミド及びビニル基を有する化合物が挙げられる。
 (メタ)アクリロイル基を有する化合物の例としては、
(メタ)アクリル酸、(メタ)アクリル酸のマイケル付加型のダイマー、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、及びフタル酸モノヒドロキシエチル(メタ)アクリレート等のカルボキシル基及びエチレン性不飽和基を有する化合物;
2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、及び4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシル基を有する(メタ)アクリレート;
エチルカルビトール(メタ)アクリレート、ブチルカルビトール(メタ)アクリレート、及び2-エチルヘキシルカルビトール(メタ)アクリレート等のカルビトール(メタ)アクリレート;
ベンジル(メタ)アクリレート、フェノールのアルキレンオキサイド付加物の(メタ)アクリレート、アルキルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、パラクミルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、オルトフェニルフェノール(メタ)アクリレート、オルトフェニルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、及び2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の芳香族基を有する単官能(メタ)アクリレート;
シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、及びジシクロペンテニルオキシエチル(メタ)アクリレート等の脂環式基を有する単官能(メタ)アクリレート;並びに
テトラヒドロフルフリル(メタ)アクリレート、(メタ)アクリロイルモルホリン、N-(2-(メタ)アクリロキシエチル)ヘキサヒドロフタルイミド、及びN-(2-(メタ)アクリロキシエチル)テトラヒドロフタルイミド等の複素環を有する単官能(メタ)アクリレート等が挙げられる。
Specific examples of the monofunctional unsaturated compound include a compound having a (meth) acryloyl group, a compound having a monofunctional (meth) acrylamide and a vinyl group.
Examples of compounds having a (meth) acryloyl group include
Carboxyl and ethylenically unsaturated groups such as (meth) acrylic acid, Michael-added dimer of (meth) acrylic acid, ω-carboxy-polycaprolactone mono (meth) acrylate, and monohydroxyethyl (meth) phthalate. Compounds with;
A (meth) acrylate having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate;
Carbitol (meth) acrylates such as ethyl carbitol (meth) acrylate, butyl carbitol (meth) acrylate, and 2-ethylhexyl carbitol (meth) acrylate;
Benzyl (meth) acrylate, (meth) acrylate of phenol alkylene oxide adduct, (meth) acrylate of alkylphenol alkylene oxide adduct, (meth) acrylate of paracumylphenol alkylene oxide adduct, orthophenylphenol (meth) Monofunctional (meth) acrylates with aromatic groups such as acrylates, (meth) acrylates of alkylene oxide adducts of orthophenylphenol, and 2-hydroxy-3-phenoxypropyl (meth) acrylates;
Monofunctional (meth) acrylates with alicyclic groups such as cyclohexyl (meth) acrylates, isobornyl (meth) acrylates, dicyclopentenyl (meth) acrylates, and dicyclopentenyloxyethyl (meth) acrylates; and tetrahydrofurfuryl ( Monofunctional with heterocycles such as meta) acrylate, (meth) acryloylmorpholine, N- (2- (meth) acryloxyethyl) hexahydrophthalimide, and N- (2- (meth) acryloyloxyethyl) tetrahydrophthalimide. Meta) Acrylate and the like can be mentioned.
 単官能(メタ)アクリルアミドとしては、N,N-ジメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、N-メチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-sec-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、及びN-n-ヘキシル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;
N-ヒドロキシエチル(メタ)アクリルアミド等のN-ヒドロキシアルキル(メタ)アクリルアミド;並びに
 N,N-ジメチルアミノエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジ-n-プロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ-n-ブチル(メタ)アクリルアミド及びN,N-ジヘキシル(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド等が挙げられる。
Examples of monofunctional (meth) acrylamides include N, N-dimethyl (meth) acrylamide, (meth) acryloylmorpholine, N-methyl (meth) acrylamide, Nn-propyl (meth) acrylamide, and N-isopropyl (meth) acrylamide. , Nn-butyl (meth) acrylamide, N-sec-butyl (meth) acrylamide, Nt-butyl (meth) acrylamide, and N-alkyl (meth) acrylamide such as Nn-hexyl (meth) acrylamide. ;
N-hydroxyalkyl (meth) acrylamide such as N-hydroxyethyl (meth) acrylamide; as well as N, N-dimethylaminoethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl ( Meta) acrylamide, N, N-diethyl (meth) acrylamide, N, N-di-n-propyl (meth) acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di-n-butyl (meth) Examples thereof include N, N-dialkyl (meth) acrylamide such as acrylamide and N, N-dihexyl (meth) acrylamide.
 ビニル基を有する化合物としては、N-ビニルピロリドン、及びN-ビニルカプロラクタム等が挙げられる。 Examples of the compound having a vinyl group include N-vinylpyrrolidone and N-vinylcaprolactam.
 2官能不飽和化合物としては、2官能(メタ)アクリレートが好ましい。
 2官能(メタ)アクリレートとしては、具体的には、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、3-メチル-1,5-ペンタンジオールジアクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジアクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ビスフェノールAのアルキレンオキサイド付加物のジ(メタ)アクリレート、及びビスフェノールFのアルキレンオキサイド付加物のジ(メタ)アクリレート等が挙げられる。
As the bifunctional unsaturated compound, a bifunctional (meth) acrylate is preferable.
Specific examples of the bifunctional (meth) acrylate include 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, and 3-methyl-1,5-pentanediol diacrylate. , 2-Butyl-2-ethyl-1,3-propanediol diacrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate , Polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, di (meth) acrylate of alkylene oxide adduct of bisphenol A, di (meth) acrylate of alkylene oxide adduct of bisphenol F and the like. Be done.
 2官能(メタ)アクリレートとしては、前記した化合物以外にも、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート及びポリエーテル(メタ)アクリレート等のオリゴマーを用いることができる。 As the bifunctional (meth) acrylate, oligomers such as urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate and polyether (meth) acrylate can be used in addition to the above-mentioned compounds.
 3官能以上不飽和化合物としては、(メタ)アクリロイル基を、3個以上有する3官能以上(メタ)アクリレートが好ましい。例えば、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールのトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンのトリ又はテトラ(メタ)アクリレート、ジグリセリンのトリ又はテトラ(メタ)アクリレート及びジペンタエリスリトールのトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールポリ(メタ)アクリレート;並びに
グリセリンアルキレンオキサイド付加物のトリ(メタ)アクリレート、ペンタエリスリトールアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジトリメチロールプロパンアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジグリセリンアルキレンオキサイド付加物のトリ又はテトラ(メタ)アクリレート、ジペンタエリスリトールアルキレンオキサイド付加物のトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート等のポリオールアルキレンオキサイド付加物のポリ(メタ)アクリレート;並びにイソシアヌル酸アルキレンオキサイド付加物のトリ(メタ)アクリレート等を挙げることができる。
 前記したアルキレンオキサイド付加物の例としては、エチレンオキサイド付加物、プロピレンオキサイド付加物、並びに、エチレンオキサイド及びプロピレンオキサイド付加物等が挙げられる。
As the trifunctional or higher unsaturated compound, a trifunctional or higher (meth) acrylate having three or more (meth) acryloyl groups is preferable. For example, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri or tetra (meth) acrylate, trimethylolpropane tri or tetra (meth) acrylate, diglycerin tri or tetra (meth). Polypoly (meth) acrylates such as acrylate and dipentaerythritol tri, tetra, penta or hexa (meth) acrylate; and tri (meth) acrylates of glycerin alkylene oxide adducts, tri or tetra (pentaerythritol alkylene oxide adducts). Tri or tetra (meth) acrylate of meta) acrylate, trimethylolpropane alkylene oxide adduct, tri or tetra (meth) acrylate of diglycerin alkylene oxide adduct, tri, tetra, penta or hexa of dipentaerythritol alkylene oxide adduct Poly (meth) acrylates of polyol alkylene oxide adducts such as (meth) acrylates; and tri (meth) acrylates of isocyanuric acid alkylene oxide adducts can be mentioned.
Examples of the above-mentioned alkylene oxide adduct include ethylene oxide adduct, propylene oxide adduct, ethylene oxide and propylene oxide adduct, and the like.
 3官能以上(メタ)アクリレートとしては、前記した化合物以外にも、ウレタン(メタ)アクリレート等も用いることができる。 As the trifunctional or higher (meth) acrylate, urethane (meth) acrylate or the like can be used in addition to the above-mentioned compounds.
 これら化合物の中でも、ペンタエリスリトールのトリ又はテトラ(メタ)アクリレート、ジペンタエリスリトールのトリ、テトラ、ペンタ又はヘキサ(メタ)アクリレート、及び3官能以上のウレタン(メタ)アクリレートは、得られる組成物の硬化物が高硬度かつ基材密着性に優れるため好ましい。以下、3官能以上のウレタン(メタ)アクリレートについて詳述する。 Among these compounds, pentaerythritol tri or tetra (meth) acrylate, dipentaerythritol tri, tetra, penta or hexa (meth) acrylate, and trifunctional or higher functional urethane (meth) acrylate are cured of the obtained composition. It is preferable because the product has high hardness and excellent adhesion to the base material. Hereinafter, urethane (meth) acrylates having trifunctionality or higher will be described in detail.
 3官能以上のウレタン(メタ)アクリレートとしては、多価アルコール、多価イソシアネート及び水酸基含有(メタ)アクリレートの反応物、並びに有機多価イソシアネートと水酸基含有(メタ)アクリレート化合物との反応物が挙げられる。 Examples of the trifunctional or higher functional urethane (meth) acrylate include a reaction product of a polyhydric alcohol, a polyhydric isocyanate and a hydroxyl group-containing (meth) acrylate, and a reaction product of an organic polyhydric isocyanate and a hydroxyl group-containing (meth) acrylate compound. ..
 多価アルコールとしては、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール、前記多価アルコールと前記多塩基酸との反応によって得られるポリエステルポリオール、前記多価アルコールと前記多塩基酸とε-カプロラクトンとの反応によって得られるカプロラクトンポリオール、及びポリカーボネートポリオール(例えば、1,6-ヘキサンジオールとジフェニルカーボネートとの反応によって得られるポリカーボネートポリオール等)等が挙げられる。 Examples of the polyhydric alcohol include polyether polyols such as polypropylene glycol and polytetramethylene glycol, polyester polyols obtained by reacting the polyhydric alcohol with the polybasic acid, the polyhydric alcohol, the polybasic acid and ε-caprolactone. Examples thereof include caprolactone polyol obtained by the reaction with, and polycarbonate polyol (for example, polycarbonate polyol obtained by the reaction of 1,6-hexanediol and diphenyl carbonate).
 有機多価イソシアネートとしては、例えば、イソホロンジイソシネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート及びジシクロペンタニルジイソシアネート等のジイソシアネート;
並びにヘキサメチレンジイソシアネート3量体及びイソホロンジイソシアネート3量体等の3個以上のイソシアネート基を有する有機ポリイソシアネートが挙げられる。
Examples of the organic multivalent isocyanate include diisocyanates such as isophorone diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane-4,4'-diisocyanate and dicyclopentanyl diisocyanate;
Examples thereof include organic polyisocyanates having three or more isocyanate groups such as hexamethylene diisocyanate trimer and isophorone diisocyanate trimer.
 水酸基含有(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシペンチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート及びヒドロキシオクチル(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート及びペンタエリスリトールモノ(メタ)アクリレート等の水酸基含有モノ(メタ)アクリレート;
並びにトリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ又はトリ(メタ)アクリレート、ジトリメチロールプロパンのジ又はトリ(メタ)アクリレート及びジペンタエリスリトールのジ、トリ、テトラ又はペンタ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等の水酸基含有多官能(メタ)アクリレート等が挙げられる。
Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxypentyl (meth) acrylate, hydroxyhexyl (meth) acrylate and hydroxyoctyl. Hydroxyl-containing mono (meth) acrylates such as (meth) acrylate, trimethylol propane mono (meth) acrylate and pentaerythritol mono (meth) acrylate;
And trimethylolpropane di (meth) acrylate, pentaerythritol di or tri (meth) acrylate, trimethylolpropane di or tri (meth) acrylate and dipentaerythritol di, tri, tetra or penta (meth) acrylate, glycerinji. Examples thereof include hydroxyl group-containing polyfunctional (meth) acrylates such as (meth) acrylates.
 好ましい3官能以上のウレタン(メタ)アクリレートとしては、2個のイソシアネート基を有する有機ポリイソシアネートと、水酸基含有多官能(メタ)アクリレートの反応物が挙げられる。その中でも、粘度が低く、硬化物の硬度が高く、かつ低着色な点から、2個のイソシアネート基を有する有機ポリイソシアネートとしてはイソホロンジイソシネートやヘキサメチレンジイソシアネートが好ましく、水酸基含有多官能(メタ)アクリレートとしては、ペンタエリスリトールジ又はトリ(メタ)アクリレート、ジペンタエリスリトールのジ、トリ、テトラ又はペンタ(メタ)アクリレート、グリセリンジ(メタ)アクリレートが好ましい。 Preferred trifunctional or higher functional urethane (meth) acrylates include organic polyisocyanates having two isocyanate groups and hydroxyl group-containing polyfunctional (meth) acrylate reactants. Among them, isophorone diisocyanate and hexamethylene diisocyanate are preferable as the organic polyisocyanate having two isocyanate groups because of its low viscosity, high hardness of the cured product, and low coloration, and hydroxyl group-containing polyfunctionality (meth). ) As the acrylate, pentaerythritol di or tri (meth) acrylate, dipentaerythritol di, tri, tetra or penta (meth) acrylate, and glycerin di (meth) acrylate are preferable.
 ウレタン(メタ)アクリレートは、常法により製造されたものを使用することができる。
 例えば、ジブチルスズジラウレート等の付加触媒存在下、有機多価イソシアネートと多価オールを加熱撹拌し付加反応させてイソシアネート基含有化合物を製造し、当該化合物にさらに水酸基含有(メタ)アクリレートを添加し、加熱・撹拌して付加反応させる方法等が挙げられる。
 有機多価イソシアネートと水酸基含有(メタ)アクリレートの反応物の場合は、付加触媒存在下、有機多価イソシアネートと水酸基含有(メタ)アクリレートを加熱・撹拌し、付加反応させる方法等が挙げられる。
As the urethane (meth) acrylate, those produced by a conventional method can be used.
For example, in the presence of an addition catalyst such as dibutyltin dilaurate, an organic polyvalent isocyanate and a polyvalent oar are heated and stirred to carry out an addition reaction to produce an isocyanate group-containing compound, and a hydroxyl group-containing (meth) acrylate is further added to the compound and heated. -A method of stirring and adding reaction can be mentioned.
In the case of a reaction product of an organic polyvalent isocyanate and a hydroxyl group-containing (meth) acrylate, a method of heating and stirring the organic polyvalent isocyanate and the hydroxyl group-containing (meth) acrylate in the presence of an addition catalyst to cause an addition reaction can be mentioned.
 これら以外のウレタンポリ(メタ)アクリレートの例としては、文献「UV・EB硬化材料」[(株)シーエムシー、1992年発行]の70~74頁に記載されているような化合物等が挙げられる。 Examples of urethane poly (meth) acrylates other than these include compounds as described on pages 70 to 74 of the document "UV / EB Curing Material" [CMC Co., Ltd., published in 1992]. ..
 (D)成分の含有割合は、硬化性成分の合計量100重量%中に0~80重量%が好ましく、より好ましくは10~50重量%である。
 (D)成分の含有割合が80重量%以下とすることで、組成物が高粘度となってしまうことを防止し、コーティング剤として使用する場合において、基材との密着性に優れるものとすることができる。
 (D)成分の含有割合を10重量%以上とすることで、コーティング剤として使用する場合において、プラスチックとの密着性に優れるものとすることができる。
The content ratio of the component (D) is preferably 0 to 80% by weight, more preferably 10 to 50% by weight, based on 100% by weight of the total amount of the curable components.
By setting the content ratio of the component (D) to 80% by weight or less, it is possible to prevent the composition from becoming highly viscous and to have excellent adhesion to the base material when used as a coating agent. be able to.
By setting the content ratio of the component (D) to 10% by weight or more, it is possible to obtain excellent adhesion to the plastic when used as a coating agent.
2-4.前記以外のその他の成分
 その他の成分の好ましいものとしては、表面改質剤、帯電防止剤、重合禁止剤、有機溶剤、酸化防止剤、紫外線吸収剤、及びシランカップリング剤等が挙げられる。
 以下、これらの成分について説明する。
2-4. Other components other than the above Preferred of the other components include surface modifiers, antistatic agents, polymerization inhibitors, organic solvents, antioxidants, ultraviolet absorbers, silane coupling agents and the like.
Hereinafter, these components will be described.
2-4-1.表面改質剤
 本発明の組成物は、塗布時のレベリング性を高める目的や、硬化物の滑り性を高めて耐擦傷性を高める目的等のため、表面改質剤を添加してもよい。
 表面改質剤としては、表面調整剤、界面活性剤、レベリング剤、消泡剤、スベリ性付与剤及び防汚性付与剤等が挙げられ、これら公知の表面改質剤を使用することができる。
 それらのうち、シリコーン系表面改質剤及びフッ素系表面改質剤が好適に挙げられる。具体例としては、分子構造中にポリオキシアルキレン骨格を有するオルガノポリシロキサン、ポリエステル骨格を有するオルガノポリシロキサン、パーフルオロアルキル基とポリアルキレンオキサイド鎖とを有するフッ素系ポリマー及びオリゴマー、並びに、パーフルオロアルキルエーテル鎖とポリアルキレンオキサイド鎖とを有するフッ素系ポリマー及びオリゴマー等が挙げられる。
 又、滑り性の持続力を高める等の目的で、分子中にエチレン性不飽和基、好ましくは(メタ)アクリロイル基を有する表面改質剤を使用してもよい。
2-4-1. Surface modifier In the composition of the present invention, a surface modifier may be added for the purpose of enhancing the leveling property at the time of application, increasing the slipperiness of the cured product and enhancing the scratch resistance, and the like.
Examples of the surface modifier include a surface conditioner, a surfactant, a leveling agent, an antifoaming agent, a slipperiness-imparting agent, an antifouling agent, and the like, and these known surface modifiers can be used. ..
Among them, a silicone-based surface modifier and a fluorine-based surface modifier are preferably mentioned. Specific examples include an organopolysiloxane having a polyoxyalkylene skeleton in its molecular structure, an organopolysiloxane having a polyester skeleton, a fluoropolymer and an oligomer having a perfluoroalkyl group and a polyalkylene oxide chain, and a perfluoroalkyl. Fluorine-based polymers and oligomers having an ether chain and a polyalkylene oxide chain can be mentioned.
Further, a surface modifier having an ethylenically unsaturated group, preferably a (meth) acryloyl group in the molecule may be used for the purpose of enhancing the sustainability of slipperiness.
 これらの中でも、表面平滑性に優れ、かつ後述する帯電防止機能を大幅に改善できるため、ポリオキシアルキレン骨格を有するオルガノポリシロキサン〔以下、「(E)成分」という〕を用いるのが好ましい。
 ポリオキシアルキレン骨格を構成するオキシアルキレンの例としては、オキシエチレン、オキシプロピレン、オキシブチレン及びこれらオキシアルキレンの組み合わせ等が挙げられる。
 ポリオキシアルキレン骨格の結合の形態としては、ポリシロキサン鎖の片末端、両末端、及び側鎖のいずれでも良い。
 (E)成分の具体例としては、ポリオキシエチレン-メチルポリシロキサン共重合体、ポリ(オキシエチレン-オキシプロピレン)メチルポリシロキサン共重合体等が挙げられる。
 (E)成分は市販されており、例えば、71ADDITIVE、74ADDITIVE、57ADDITIVE、8029ADDITIVE、8054ADDITIVE、8211ADDITIVE、8019ADDITIVE、8526ADDITIVE、FZ-2123、FZ-2191〔東レ・ダウコーニング(株)製〕;
TSF4440、TSF4441、TSF4445、TSF4446、TSF4450、TSF4452、TSF4460(モメンティブ・パフォーマンス・マテリアルズ社製);
シルフェイスSAG002、シルフェイスSAG003、シルフェイスSAG005、シルフェイスSAG503A、シルフェイスSAG008、シルフェイスSJM003〔日信化学工業(株)製〕;
TEGO Wet KL245、TEGO Wet 250、TEGO Wet 260、TEGO Wet 265、TEGO Wet 270、TEGO Wet 280(エボニック社製);並びに
BYK-345,BYK-347,BYK-348,BYK-375,BYK-377(ビックケミー・ジャパン社製)等が挙げられる
Among these, it is preferable to use an organopolysiloxane having a polyoxyalkylene skeleton [hereinafter referred to as “component (E)”] because it has excellent surface smoothness and can significantly improve the antistatic function described later.
Examples of the oxyalkylene constituting the polyoxyalkylene skeleton include oxyethylene, oxypropylene, oxybutylene, and a combination of these oxyalkylenes.
The form of binding of the polyoxyalkylene skeleton may be one end, both ends, or a side chain of the polysiloxane chain.
Specific examples of the component (E) include a polyoxyethylene-methylpolysiloxane copolymer, a poly (oxyethylene-oxypropylene) methylpolysiloxane copolymer, and the like.
The component (E) is commercially available, for example, 71ADDITIVE, 74ADDITIVE, 57ADDITIVE, 8029ADDITIVE, 8054ADDITIVE, 8211ADDITIVE, 8019ADDITIVE, 8526ADDITIVE, FZ-2123, FZ-2191 [manufactured by Toray Dow Corning Co., Ltd.]
TSF4440, TSF4441, TSF4445, TSF4446, TSF4450, TSF4452, TSF4460 (manufactured by Momentive Performance Materials);
Silface SAG002, Silface SAG003, Silface SAG005, Silface SAG503A, Silface SAG008, Silface SJM003 [manufactured by Nissin Chemical Industry Co., Ltd.];
TEGO Wet KL245, TEGO Wet 250, TEGO Wet 260, TEGO Wet 265, TEGO Wet 270, TEGO Wet 280 (manufactured by Evonik); and BYK-345, BYK-347, BYK-348, BYK-375, BYK-377 ( (Made by Big Chemie Japan), etc.
 表面改質剤の含有割合は、硬化性成分の合計量100重量部に対して、0.01~5.0重量部であることが好ましい。 The content ratio of the surface modifier is preferably 0.01 to 5.0 parts by weight with respect to 100 parts by weight of the total amount of the curable components.
2-4-2.帯電防止剤
 本発明の組成物は、帯電防止機能を付与する目的のため、帯電防止剤を添加してもよい。
 帯電防止剤としては、例えば、第4級アンモニウム塩、ピリジニウム塩、第1~3級アミノ基などのカチオン性基を有する各種のカチオン性帯電防止剤や、スルホン酸塩基、硫酸エステル塩基、リン酸エステル塩基、ホスホン酸塩基などのアニオン性基を有するアニオン性帯電防止剤や、アミノ酸系、アミノ硫酸エステル系などの両性帯電防止剤や、アミノアルコール系、グリセリン系、ポリエチレングリコール系などのノニオン性帯電防止剤や、上記の様な帯電防止剤を高分子量化した高分子型帯電防止剤などが挙げられる。
 又、帯電防止剤としてイオン液体及び金属塩を用いることもできる。イオン液体及び金属塩としては特に限定されず、一般的に用いられる各種イオン液体及び金属塩を用いることができる。前記金属塩は、微量の含有量であってもイオン解離性が高いために、優れた帯電防止能を発現することができ、有用である。一方、前記イオン液体は、それ自身で優れた導電性を示すため、微量の含有量であっても十分な帯電防止能を付与することができ、有用である。
2-4-2. Antistatic agent The composition of the present invention may be added with an antistatic agent for the purpose of imparting an antistatic function.
Examples of the antistatic agent include various cationic antistatic agents having a cationic group such as a quaternary ammonium salt, a pyridinium salt, and a primary to tertiary amino group, a sulfonic acid base, a sulfate ester base, and a phosphoric acid. Anionic antistatic agents having anionic groups such as ester bases and phosphonic acid bases, amphoteric antistatic agents such as amino acid-based and aminosulfate ester-based agents, and nonionic antistatic agents such as aminoalcohol-based, glycerin-based, and polyethylene glycol-based Examples thereof include an antistatic agent and a high molecular weight antistatic agent obtained by increasing the amount of the antistatic agent as described above.
Further, an ionic liquid and a metal salt can be used as the antistatic agent. The ionic liquid and the metal salt are not particularly limited, and various commonly used ionic liquids and metal salts can be used. Since the metal salt has high ionic dissociation even in a small amount, it can exhibit excellent antistatic ability and is useful. On the other hand, since the ionic liquid exhibits excellent conductivity by itself, it is useful because it can impart sufficient antistatic ability even with a small amount of content.
 これらのなかでも、フルオロ基及びスルホニル基を有する陰イオンの金属塩〔以下、「(F)成分」という〕が帯電防止能と光学特性に優れる点で好ましい。
 (F)成分において、フルオロ基及びスルホニル基を有する陰イオンとしては、トリフルオロメタンスルホニル基が好ましい。又、金属塩を形成する金属としては、アルカリ金属、2A族元素、遷移金属及び両性金属が好ましく、アルカリ金属がより好ましい。
Among these, a metal salt of an anion having a fluoro group and a sulfonyl group [hereinafter referred to as “component (F)”] is preferable because it has excellent antistatic ability and optical properties.
In the component (F), as the anion having a fluoro group and a sulfonyl group, a trifluoromethanesulfonyl group is preferable. Further, as the metal forming the metal salt, an alkali metal, a group 2A element, a transition metal and an amphoteric metal are preferable, and an alkali metal is more preferable.
 (F)成分の具体的化合物としては、ビス(トリフルオロメタンスルホニル)イミドの金属塩、トリス(トリフルオロメタンスルホニル)メチドのアルカリ金属塩及びトリフルオロメタンスルホン酸イオンのアルカリ金属塩が好ましい。
 即ち、下記一般式(D1)~(D3)で表される化合物のいずれか1つが好ましい。
 M(CF3SO22N ・・・・・・(D1)
 M(CF3SO23C ・・・・・・(D2)
 M(CF3SO3)   ・・・・・・(D3)
 一般式(D1)~(D3)において、Mは、アルカリ金属を意味する。
 アルカリ金属塩としては、リチウム、ナトリウム及びカリウムが好ましく、リチウムがより好ましい。
As the specific compound of the component (F), a metal salt of bis (trifluoromethanesulfonyl) imide, an alkali metal salt of tris (trifluoromethanesulfonyl) methide, and an alkali metal salt of trifluoromethanesulfonic acid ion are preferable.
That is, any one of the compounds represented by the following general formulas (D1) to (D3) is preferable.
M (CF 3 SO 2 ) 2 N ・ ・ ・ ・ ・ ・ (D1)
M (CF 3 SO 2 ) 3 C ・ ・ ・ ・ ・ ・ (D2)
M (CF 3 SO 3 ) ・ ・ ・ ・ ・ ・ (D3)
In the general formulas (D1) to (D3), M means an alkali metal.
As the alkali metal salt, lithium, sodium and potassium are preferable, and lithium is more preferable.
 上記成分の具体例としては、ビス(フルオロアルキルスルホニル)イミドイオン、トリス(フルオロアルキルスルホニル)メチドイオン、フルオロアルキルスルホン酸イオンからなり、具体的には、ビス(トリフルオロメタンスルホニル)イミドリチウム〔Li(CF3SO22N〕、ビス(トリフルオロメタンスルホニル)イミドリカリウム〔K(CF3SO22N〕、ビス(トリフルオロメタンスルホニル)イミドナトリウム〔Na(CF3SO22N〕、トリス(トリフルオロメタンスルホニル)メチドリチウム〔Li(CF3SO23C〕、トリス(トリフルオロメタンスルホニル)メチドカリウム〔K(CF3SO23C〕、トリス(トリフルオロメタンスルホニル)メチドナトリウム〔Na(CF3SO23C〕、トリフルオロメタンスルホン酸リチウム〔Li(CF3SO3)〕、トリフルオロメタンスルホン酸カリウム〔K(CF3SO3)〕、トリフルオロメタンスルホン酸ナトリウム〔Na(CF3SO3)〕等が挙げられる。
 これら化合物の中でも、ビス(トリフルオロメタンスルホニル)イミドリチウム、トリス(トリフルオロメタンスルホニル)メチドリチウム及びトリフルオロメタンスルホン酸リチウムが好ましく、ビス(トリフルオロメタンスルホニル)イミドリチウム及びトリフルオロメタンスルホン酸リチウムが特に好ましい。
Specific examples of the above components include bis (fluoroalkylsulfonyl) imide ion, tris (fluoroalkylsulfonyl) methide ion, and fluoroalkylsulfonic acid ion, and specifically, bis (trifluoromethanesulfonyl) imidelithium [Li (CF 3). SO 2 ) 2 N], bis (trifluoromethanesulfonyl) imidolipotassium [K (CF 3 SO 2 ) 2 N], bis (trifluoromethanesulfonyl) imide sodium [Na (CF 3 SO 2 ) 2 N], tris ( Trifluoromethanesulfonyl) methidolithium [Li (CF 3 SO 2 ) 3 C], tris (trifluoromethanesulfonyl) methide potassium [K (CF 3 SO 2 ) 3 C], tris (trifluoromethanesulfonyl) methide sodium [Na (CF 3) SO 2 ) 3 C], Lithium trifluoromethanesulfonate [Li (CF 3 SO 3 )], Potassium trifluoromethanesulfonate [K (CF 3 SO 3 )], Sodium trifluoromethanesulfonate [Na (CF 3 SO 3 )] ] Etc. can be mentioned.
Among these compounds, bis (trifluoromethanesulfonyl) imide lithium, tris (trifluoromethanesulfonyl) methidolithium and lithium trifluoromethanesulfonate are preferable, and bis (trifluoromethanesulfonyl) imide lithium and lithium trifluoromethanesulfonate are particularly preferable.
 帯電防止剤の含有割合としては、組成物中の固形分100重量部に対して、0.1~20重量部が好ましく、より好ましくは0.5~10重量部である。
 帯電防止剤の含有割合を0.1重量部以上とすることにより、表面抵抗率を低減させる効果が発揮され、一方20重量部以下とすることで、硬化物の耐水性を優れたものとすることができる。
The content ratio of the antistatic agent is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the solid content in the composition.
By setting the content ratio of the antistatic agent to 0.1 parts by weight or more, the effect of reducing the surface resistivity is exhibited, while by setting it to 20 parts by weight or less, the water resistance of the cured product is improved. be able to.
 本発明では、より効果的に表面抵抗率を低減させるため、(E)成分と(F)成分を併用することが好ましい。 In the present invention, in order to reduce the surface resistivity more effectively, it is preferable to use the component (E) and the component (F) in combination.
2-4-3.重合禁止剤
 本発明の組成物には、組成物のゲル化を防止する等の保存安定性を改善する目的で、重合禁止剤を配合することができる。
 重合禁止剤としては、前記した(A)成分の製造方法において例示された有機系重合禁止剤、無機系重合禁止剤、及び有機塩系重合禁止剤が挙げられ、前記と同様の化合物が例示される。
 重合禁止剤としては、これら化合物の中でも、安定ラジカルを有する有機化合物が、保存安定性を向上しつつ、硬化物の硬度を落さないという理由で好ましい。安定ラジカルを有する有機化合物としては、ガルビノキシル及びN-オキシル化合物等が挙げられ、N-オキシル化合物が、以下の理由でより好ましい。即ち、組成物を使用して塗工する際には、作業効率に優れるとの理由で紫外線を除いた蛍光灯(UVカット蛍光灯)下で作業を行うことが多いが、この様な蛍光灯下において組成物を保存する場合においても、N-オキシル化合物を含む組成物は保存安定性に優れる。
 N-オキシル化合物の具体例としては、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、2,2,6,6-テトラメチルピペリジン-1-オキシル、4-オキソ-2,2,6,6-テトラメチルピペリジン-1-オキシル及び4-メトキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル等が挙げられる。
 重合禁止剤は、組成物に添加することも、(A)成分に含まれる場合は、そのまま使用することができる。又、(A)成分に重合禁止剤が含まれる場合であっても、重合禁止剤をさらに添加することもできる。
 重合禁止剤の含有割合としては、組成物中に0.0005~1重量%が好ましく、より好ましくは0.005~0.1重量%である。重合禁止剤の含有割合を0.0005重量%以上とすることで、重合禁止効果を十分に発揮することができ、1重量%以下にすることで硬化物の硬度の低下を避けることができる。
2-4-3. Polymerization inhibitor The composition of the present invention may contain a polymerization inhibitor for the purpose of improving storage stability such as preventing gelation of the composition.
Examples of the polymerization inhibitor include organic polymerization inhibitors, inorganic polymerization inhibitors, and organic salt polymerization inhibitors exemplified in the method for producing the component (A) described above, and the same compounds as described above are exemplified. To.
Among these compounds, the organic compound having a stable radical is preferable as the polymerization inhibitor because it improves the storage stability and does not reduce the hardness of the cured product. Examples of the organic compound having a stable radical include galbinoxyl and an N-oxyl compound, and the N-oxyl compound is more preferable for the following reasons. That is, when coating with a composition, the work is often performed under a fluorescent lamp (UV cut fluorescent lamp) excluding ultraviolet rays because of its excellent work efficiency. Such a fluorescent lamp Even when the composition is stored underneath, the composition containing the N-oxyl compound is excellent in storage stability.
Specific examples of the N-oxyl compound include 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, 2,2,6,6-tetramethylpiperidin-1-oxyl and 4-oxo-. Examples thereof include 2,2,6,6-tetramethylpiperidine-1-oxyl and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl.
The polymerization inhibitor can be added to the composition, or can be used as it is when it is contained in the component (A). Further, even when the component (A) contains a polymerization inhibitor, the polymerization inhibitor can be further added.
The content ratio of the polymerization inhibitor is preferably 0.0005 to 1% by weight, more preferably 0.005 to 0.1% by weight in the composition. When the content ratio of the polymerization inhibitor is 0.0005% by weight or more, the polymerization prohibition effect can be sufficiently exhibited, and when it is 1% by weight or less, a decrease in hardness of the cured product can be avoided.
2-4-4.有機溶剤
 本発明の組成物は、実質的に有機溶剤を必要としないが、粘度調整等の目的で必要に応じて有機溶剤を含んでいても良い。
 有機溶剤としては、前記した(A)成分の製造方法において挙げた有機溶媒と同じ化合物を挙げることができる。
 有機溶剤の含有割合としては、硬化性成分の合計量100重量部に対して0.1~1000重量部が好ましく、より好ましくは5~500重量部である。上記範囲であると、組成物を塗工に適当な粘度とすることができ、後記する公知の塗布方法で組成物を容易に塗布することができる
2-4-4. Organic Solvent The composition of the present invention does not substantially require an organic solvent, but may contain an organic solvent if necessary for the purpose of adjusting the viscosity or the like.
Examples of the organic solvent include the same compounds as those mentioned in the method for producing the component (A) described above.
The content ratio of the organic solvent is preferably 0.1 to 1000 parts by weight, more preferably 5 to 500 parts by weight, based on 100 parts by weight of the total amount of the curable components. Within the above range, the composition can have a viscosity suitable for coating, and the composition can be easily applied by a known coating method described later.
2-4-5.酸化防止剤
 酸化防止剤は、硬化物の耐熱性、耐候性等の耐久性を向上させる目的で配合する。
 酸化防止剤としては、たとえばフェノール系酸化防止剤やリン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
 フェノール系酸化防止剤としては、たとえば、ジt-ブチルヒドロキシトルエン等のヒンダードフェノール類を挙げることができる。市販されているものとしては、(株)アデカ製のAO-20、AO-30、AO-40、AO-50、AO-60、AO-70、AO-80等が挙げられる。
 リン系酸化防止剤としては、トリアルキルホスフィン、トリアリールホスフィン等のホスフィン類や、亜リン酸トリアルキルや亜リン酸トリアリール等が挙げられる。これらの誘導体で市販品としては、たとえば(株)アデカ製、アデカスタブPEP-4C、PEP-8、PEP-24G、PEP-36、HP-10、260、522A、329K、1178、1500、135A、3010等が挙げられる。
 硫黄系酸化防止剤としては、チオエーテル系化合物が挙げられ、市販品としては(株)アデカ製AO-23、AO-412S、AO-503A等が挙げられる。
 これらは1種を用いても2種類以上を用いてもよい。これら酸化防止剤の好ましい組合せとしては、フェノール系酸化防止剤とリン系酸化防止剤との併用、及びフェノール系酸化防止剤と硫黄系酸化防止剤の併用が挙げられる。
 酸化防止剤の含有割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.01~5重量部が好ましく、より好ましくは0.1~1重量部である。
 酸化防止剤の含有割合を0.1重量部以上とすることで、組成物の耐久性を向上させることができ、一方、5重量部以下とすることで、硬化性や密着性を良好にすることができる。
2-4-5. Antioxidants Antioxidants are added for the purpose of improving durability such as heat resistance and weather resistance of cured products.
Examples of the antioxidant include phenolic antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants and the like.
Examples of the phenolic antioxidant include hindered phenols such as dit-butylhydroxytoluene. Examples of commercially available products include AO-20, AO-30, AO-40, AO-50, AO-60, AO-70, and AO-80 manufactured by ADEKA CORPORATION.
Examples of the phosphorus-based antioxidant include phosphines such as trialkylphosphine and triarylphosphine, and trialkyl phosphite and triaryl phosphite. Commercially available products of these derivatives include, for example, ADEKA CORPORATION PEP-4C, PEP-8, PEP-24G, PEP-36, HP-10, 260, 522A, 329K, 1178, 1500, 135A, 3010. And so on.
Examples of the sulfur-based antioxidant include thioether-based compounds, and examples of commercially available products include AO-23, AO-412S, and AO-503A manufactured by ADEKA CORPORATION.
These may use one kind or two or more kinds. Preferred combinations of these antioxidants include a combination of a phenol-based antioxidant and a phosphorus-based antioxidant, and a combination of a phenol-based antioxidant and a sulfur-based antioxidant.
The content ratio of the antioxidant may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of the total amount of curable components. Is.
The durability of the composition can be improved by setting the content ratio of the antioxidant to 0.1 parts by weight or more, while improving the curability and adhesion by setting the content to 5 parts by weight or less. be able to.
2-4-6.紫外線吸収剤
 紫外線吸収剤は、硬化物の耐光性を向上させる目的で配合する。
 紫外線吸収剤としては、BASF社製TINUVIN400、TINUVIN405、TINUVIN460、TINUVIN479等のトリアジン系紫外線吸収剤や、TINUVIN900、TINUVIN928、TINUVIN1130等のベンゾトリアゾール系紫外線吸収剤を挙げることができる。
 紫外線吸収剤の含有割合としては、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.01~5重量部が好ましく、より好ましくは0.1~1重量部である。紫外線吸収剤の含有割合を0.01重量%以上とすることで、硬化物の耐光性を良好なものとすることができ、一方、5重量%以下とすることで、組成物の硬化性に優れるものとすることができる。
2-4-6. Ultraviolet absorbers Ultraviolet absorbers are added for the purpose of improving the light resistance of the cured product.
Examples of the ultraviolet absorber include triazine-based ultraviolet absorbers such as TINUVIN400, TINUVIN405, TINUVIN460, and TINUVIN479 manufactured by BASF, and benzotriazole-based ultraviolet absorbers such as TINUVIN900, TINUVIN928, and TINUVIN1130.
The content ratio of the ultraviolet absorber may be appropriately set according to the purpose, and is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, based on 100 parts by weight of the total amount of the curable component. Is. When the content ratio of the ultraviolet absorber is 0.01% by weight or more, the light resistance of the cured product can be improved, while when it is 5% by weight or less, the curability of the composition can be improved. It can be excellent.
2-4-7.シランカップリング剤
 シランカップリング剤は、硬化物と基材との界面接着強度を改善する目的で配合する。
 シランカップリング剤としては、基材との接着性向上に寄与できるものであれば特に限定されるものではない。
2-4-7. Silane Coupling Agent The silane coupling agent is blended for the purpose of improving the interfacial adhesive strength between the cured product and the substrate.
The silane coupling agent is not particularly limited as long as it can contribute to improving the adhesiveness with the base material.
 シランカップリング剤としては、具体的には、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。 Specific examples of the silane coupling agent include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 3-. Glycydoxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-Aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3 -Aminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane and the like can be mentioned.
 シランカップリング剤の含有割合は、目的に応じて適宜設定すれば良く、硬化性成分合計量100重量部に対して0.1~10重量部が好ましく、より好ましくは1~5重量部である。
 シランカップリング剤の含有割合を0.1重量部以上にすることで、組成物の接着力を向上させることができ、一方、10重量部以下とすることで、接着力の経時変化を防止することができる。
The content ratio of the silane coupling agent may be appropriately set according to the intended purpose, and is preferably 0.1 to 10 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the total amount of the curable component. ..
By setting the content ratio of the silane coupling agent to 0.1 parts by weight or more, the adhesive strength of the composition can be improved, while by setting the content ratio to 10 parts by weight or less, the change of the adhesive strength with time is prevented. be able to.
3.用途
 本発明における(A)成分は、硬化性に優れ、特にGlycarbo-A〔(2-オキソ-1,3-ジオキソラン-4-イル)メチルアクリレート〕は硬化性に優れ、しかも組成物を低粘度化でき、(A)成分を反応性希釈剤として含む組成物に好ましく使用することができる。
 本発明は、硬化型組成物、好ましくは活性エネルギー線硬化型組成物、さらに好ましくは無溶剤型活性エネルギー線硬化型組成物に関し、種々の用途に使用可能である。
 例えば、塗料等のコーティング剤、接着剤、粘着剤、インキ、賦型材料等を形成するための成形剤、及びレジスト等のパターン形成剤等が挙げられる。
 本発明の組成物は、これら用途の中でもコーティング剤組成物、接着剤組成物、賦形材料組成物に好ましく使用することができ、より好ましくは活性エネルギー線硬化型コーティング剤組成物、接着剤組成物、賦型材料組成物に使用することができる。
 以下、好ましい用途について説明する。
 尚、以下に挙げるその他の成分は、例示した化合物の1種のみを使用しても良く、2種以上を併用しても良い。
3. 3. Applications The component (A) in the present invention has excellent curability, and Glycarbo-A [(2-oxo-1,3-dioxolan-4-yl) methyl acrylate] has excellent curability, and the composition has a low viscosity. It can be preferably used in a composition containing the component (A) as a reactive diluent.
The present invention relates to a curable composition, preferably an active energy ray-curable composition, and more preferably a solvent-free active energy ray-curable composition, and can be used for various purposes.
Examples thereof include coating agents such as paints, adhesives, pressure-sensitive adhesives, inks, molding agents for forming excipient materials, and pattern forming agents such as resists.
Among these uses, the composition of the present invention can be preferably used for a coating agent composition, an adhesive composition, and a shaping material composition, and more preferably an active energy ray-curable coating agent composition and an adhesive composition. It can be used for products and excipient material compositions.
Hereinafter, preferred applications will be described.
As the other components listed below, only one of the illustrated compounds may be used, or two or more of them may be used in combination.
3-1.コーティング剤組成物
 本発明の組成物は、薄膜硬化性が優れ、硬化物の硬度が高いため、コーティング剤組成物として好ましく使用することができ、(A)成分は低粘度であるため無溶剤型のコーティング剤組成物としてより好ましく使用することができる。
 さらに、前記した通り、(A)成分は塩素濃度が低いものであり、これにより耐腐食性に優れた硬化膜を形成することができ、ナトリウム濃度が低いものであり、これにより耐水性に優れる硬化膜を形成することができる。
3-1. Coating agent composition The composition of the present invention has excellent thin film curability and high hardness of the cured product, so that it can be preferably used as a coating agent composition. Since the component (A) has a low viscosity, it is a solvent-free type. It can be more preferably used as a coating agent composition of.
Further, as described above, the component (A) has a low chlorine concentration, whereby a cured film having excellent corrosion resistance can be formed, and the sodium concentration is low, whereby the water resistance is excellent. A cured film can be formed.
 さらに、本発明の組成物は、得られる硬化膜が表面硬度や耐擦傷性に優れるため、各種プラスチックのコーティング剤、即ち、ハードコート剤として好ましく使用でき、無溶剤型のハードコート剤として好ましく使用することができる。
 ハードコート剤が適用する基材としては、偏光子保護フィルムや反射防止フィルムに用いられるプラスチックフィルム、家電製品や自動車内外装部品に用いられる樹脂成型品等が挙げられる。
Further, since the obtained cured film is excellent in surface hardness and scratch resistance, the composition of the present invention can be preferably used as a coating agent for various plastics, that is, a hard coating agent, and is preferably used as a solvent-free hard coating agent. can do.
Examples of the base material to which the hard coating agent is applied include plastic films used for polarizer protective films and antireflection films, resin molded products used for home appliances and automobile interior / exterior parts, and the like.
 コーティング剤組成物は、前記(A)を必須成分とするものであるが、目的に応じて種々の成分を配合することができる。
 その他成分としては、具体的には、前記した(B)、(C)、及び(D)成分、表面改質剤、紫外線吸収剤、帯電防止剤、重合禁止剤、有機溶剤、酸化防止剤、及びシランカップリング剤が挙げられる。
 これら以外にも、顔料・染料及びポリマー等が挙げられる。
 顔料・染料、及びポリマーの具体例としては、国際公開WO2017/002964号パンフレットの段落番号[0088]及び[0094]で挙げた化合物と同様の化合物が挙げられる。
The coating agent composition contains the above (A) as an essential component, but various components can be blended depending on the purpose.
Specific examples of the other components include the above-mentioned components (B), (C), and (D), a surface modifier, an ultraviolet absorber, an antistatic agent, a polymerization inhibitor, an organic solvent, an antioxidant, and the like. And silane coupling agents.
In addition to these, pigments / dyes, polymers and the like can be mentioned.
Specific examples of pigments / dyes and polymers include compounds similar to those listed in paragraph numbers [0088] and [0094] of the International Publication WO2017 / 002964 pamphlet.
 コーティング剤組成物の他の用途としては、金属基材のコーティング剤として好ましく使用することができる。
 前記した通り、本発明で使用する(A)成分は塩素濃度が低いものであり、これにより、金属基材表面に、耐腐食性に優れた硬化型組成物の硬化膜を形成することができる。
 本発明の組成物を使用する硬化膜を有する金属基材の製造方法としては、金属基材上の一部又は全部に、硬化型組成物を塗工する工程、及び、塗工された組成物に活性エネルギー線を照射するか又は加熱により硬化させる工程を含むことが好ましい。
 本発明の組成物から得られた硬化膜を有する金属基材は、硬化膜が耐水性及び耐腐食性に優れているため、電極保護材、基板回路保護材及びリチウムイオン電池等に用いる電極保護コーティング剤に好適に使用できる。
As another application of the coating agent composition, it can be preferably used as a coating agent for a metal base material.
As described above, the component (A) used in the present invention has a low chlorine concentration, whereby a cured film of a curable composition having excellent corrosion resistance can be formed on the surface of the metal substrate. ..
As a method for producing a metal base material having a cured film using the composition of the present invention, a step of applying a curable composition to a part or all of the metal base material, and a coated composition. It is preferable to include a step of irradiating the metal with active energy rays or curing the metal by heating.
Since the cured film of the metal substrate having the cured film obtained from the composition of the present invention has excellent water resistance and corrosion resistance, the electrode protection material used for the electrode protection material, the substrate circuit protection material, the lithium ion battery, etc. It can be suitably used as a coating agent.
3-2.接着剤組成物
 本発明の組成物は、低粘度で硬化性に優れるため、接着剤組成物として好ましく使用することができ。
 さらに、前記した通り、硬化物が耐腐食性及び耐水性に優れるため、これらの物性が要求される用途に好ましく使用することができる。
3-2. Adhesive Composition The composition of the present invention has a low viscosity and is excellent in curability, and therefore can be preferably used as an adhesive composition.
Further, as described above, since the cured product is excellent in corrosion resistance and water resistance, it can be preferably used in applications requiring these physical characteristics.
 接着剤組成物は、前記(A)を必須成分とするものであるが、目的に応じて種々の成分を配合することができる。
 その他成分としては、具体的には、前記した(B)、(C)、及び(D)成分の他、表面改質剤、紫外線吸収剤、重合禁止剤、有機溶剤、酸化防止剤、シランカップリング剤、顔料・染料、及びポリマー等が挙げられる。
The adhesive composition contains the above (A) as an essential component, but various components can be blended depending on the purpose.
Specific examples of the other components include the above-mentioned components (B), (C), and (D), a surface modifier, an ultraviolet absorber, a polymerization inhibitor, an organic solvent, an antioxidant, and a silane cup. Examples include ring agents, pigments / dyes, and polymers.
3-3.成形材用組成物
 本発明の組成物は、低粘度で、硬化物の硬度が高いため、金型転写やナノインプリント等で使用する成形材用組成物として好ましく使用することができ、特に、ナノインプリント等の微細加工用途で使用する賦形材料に好ましく使用することができる。
 尚、本発明では、賦形材料も便宜上成形材の概念に含める。
3-3. Composition for Molding Material Since the composition of the present invention has a low viscosity and a high hardness of a cured product, it can be preferably used as a composition for a molding material used for mold transfer, nanoimprint, etc., and in particular, nanoimprint and the like. It can be preferably used as a shaping material used in the microfabrication application of.
In the present invention, the shaping material is also included in the concept of the molding material for convenience.
 賦型材料としては、レンズシート、ナノインプリントフィルム、モスアイ形状を有する反射防止フィルム、偏光フィルム、防眩フィルム、有機EL・LED用光取出しフィルム、太陽電池用光閉じ込めフィルム及び熱線再帰性反射フィルム等の微細凹凸構造を表面に有する賦型フィルムの製造に使用可能である。 Examples of the shaping material include a lens sheet, a nanoimprint film, an antireflection film having a moth-eye shape, a polarizing film, an antiglare film, a light extraction film for organic EL / LED, a light confinement film for a solar cell, and a heat ray retroreflective film. It can be used for producing a shaped film having a fine uneven structure on the surface.
 成形材用組成物は、前記(A)を必須成分とするものであるが、目的に応じて種々の成分を配合することができる。
 その他成分としては、具体的には、前記した(B)、(C)、及び(D)成分の他、表面改質剤、紫外線吸収剤、重合禁止剤、有機溶剤、酸化防止剤、シランカップリング剤、顔料・染料、及びポリマー等が挙げられる。
The composition for a molding material contains the above (A) as an essential component, but various components can be blended depending on the purpose.
Specific examples of the other components include the above-mentioned components (B), (C), and (D), a surface modifier, an ultraviolet absorber, a polymerization inhibitor, an organic solvent, an antioxidant, and a silane cup. Examples include ring agents, pigments / dyes, and polymers.
3-4.インキ用組成物
 本発明の組成物は、薄膜硬化性に優れるため、単色又は多色印刷後さらに印刷機で印刷される透明なオーバープリントニスインキや黄、紅、藍、及び墨等のカラー印刷用インキ用として好ましく使用することができる。
3-4. Composition for Ink Since the composition of the present invention has excellent thin film curability, it is a transparent overprint varnish ink printed by a printing machine after single-color or multicolor printing, or color printing such as yellow, red, indigo, and black. It can be preferably used for ink for printing.
 印刷方式としては、オフセット印刷(湿し水を使用する通常の平版及び湿し水を使用しない水無し平版)、凸版印刷(平圧凸版、凸版半輪転、輪転、間欠輪転、フレキソ)、凹版印刷(グラビア印刷)、孔版印刷(スクリーン印刷)、インクジェット印刷等種々の印刷方式が挙げられ、乳化安定性に優れるために、湿し水を使用するオフセット印刷用として、好ましく使用することができる。又、低粘度であるため、インクジェット印刷としても好ましく使用することができる。 Printing methods include offset printing (normal flat plate that uses dampening water and waterless flat plate that does not use dampening water), letterpress printing (flat pressure letterpress, letterpress half-rotation, rotation, intermittent rotation, flexo), and concave printing. Various printing methods such as (gravure printing), stencil printing (screen printing), and inkjet printing can be mentioned, and since they are excellent in emulsion stability, they can be preferably used for offset printing using dampening water. Moreover, since it has a low viscosity, it can be preferably used for inkjet printing.
 インキ用組成物は、前記(A)を必須成分とするものであるが、目的に応じて種々の成分を配合することができる。
 その他成分としては、具体的には、前記した(B)、(C)及び(D)成分の他、バインダー、顔料、可塑剤及び耐摩擦剤等が挙げられる。
 バインダー、顔料、可塑剤及び耐摩擦剤の具体例としては、国際公開WO2017/002964号パンフレットの段落番号[0101]~[0107]で挙げた化合物と同様の化合物が挙げられる。
The composition for ink contains the above (A) as an essential component, but various components can be blended depending on the purpose.
Specific examples of the other components include binders, pigments, plasticizers, abrasion resistant agents, and the like, in addition to the components (B), (C), and (D) described above.
Specific examples of the binder, pigment, plasticizer and anti-friction agent include compounds similar to the compounds listed in paragraph numbers [0101] to [0107] of the International Publication WO2017 / 002964 pamphlet.
 インキ用組成物の製造方法としては、従来のインキ用組成物の製造方法に従えば良く、(A)成分、(B)成分(活性エネルギー線が紫外線の場合)、バインダー、顔料、重合禁止剤及びワックスその他添加剤等を配合した後、顔料を加えて、三本ロールミル、ビーズミル等の分散機で分散する方法等が挙げられる。 As the method for producing the composition for ink, the conventional method for producing the composition for ink may be followed, and the component (A), the component (B) (when the active energy ray is ultraviolet rays), the binder, the pigment, and the polymerization inhibitor. In addition, after blending wax and other additives, a pigment is added and dispersed by a disperser such as a three-roll mill or a bead mill.
3-5.パターン形成用組成物
 本発明の組成物は、露光感度が高く現像性に非常に優れ、精密で正確なパターンを形成することができるため、パターン形成用組成物として好ましく使用することができる。
3-5. Composition for pattern formation The composition of the present invention has high exposure sensitivity, is extremely excellent in developability, and can form a precise and accurate pattern, and therefore can be preferably used as a composition for pattern formation.
 パターン形成用組成物は、前記(A)を必須成分とするものであるが、目的に応じて種々の成分を配合することができる。
 その他成分としては、具体的には、前記した(B)、(D)、有機溶剤、酸化防止剤、紫外線吸収剤、シランカップリング剤、表面改質剤及び重合禁止剤の他、アルカリ可溶性樹脂等が挙げられる。
 アルカリ可溶性樹脂の具体例としては、国際公開WO2017/002964号パンフレットの段落番号[0110]~[0122]で挙げた化合物と同様の化合物が挙げられる。
The pattern-forming composition contains the above (A) as an essential component, but various components can be blended depending on the purpose.
Specific examples of other components include the above-mentioned (B) and (D), organic solvents, antioxidants, ultraviolet absorbers, silane coupling agents, surface modifiers and polymerization inhibitors, as well as alkali-soluble resins. And so on.
Specific examples of the alkali-soluble resin include compounds similar to those listed in paragraph numbers [0110] to [0122] of the Pamphlet of International Publication WO2017 / 00264.
4.使用方法
 本発明の組成物の使用方法としては、常法に従えば良い。
 例えば、適用される基材に組成物を通常の塗装方法により塗布した後、活性エネルギー線を照射するか又は加熱して硬化させる方法が挙げられる。
 活性エネルギー線の照射方法は、従来の硬化方法として知られている一般的な方法を採用すれば良い。
 又、組成物に(B)成分(光重合開始剤)及び(C)成分(熱重合開始剤)を併用し、これを活性エネルギー線照射した後、加熱硬化させることにより、基材との密着性を向上させる方法も採用することができる。
4. Method of use As a method of using the composition of the present invention, a conventional method may be followed.
For example, a method of applying the composition to the applied substrate by a usual coating method and then irradiating it with active energy rays or heating it to cure it can be mentioned.
As the method of irradiating the active energy rays, a general method known as a conventional curing method may be adopted.
Further, the composition is adhered to the substrate by using the component (B) (photopolymerization initiator) and the component (C) (thermal polymerization initiator) in combination, irradiating them with active energy rays, and then heat-curing them. A method of improving the sex can also be adopted.
 本発明の組成物が適用できる基材としては、種々の材料に適用でき、プラスチック、金属、木材、無機材料及び紙等が挙げられる。
 プラスチックの具体例としては、ポリエチレン及びポリプロピレン等のポリオレフィン、ABS樹脂、ポリビニルアルコール、トリアセチルセルロース及びジアセチルセルロース等のセルロースアセテート樹脂、アクリル樹脂、ポリエチレンテレフタレート、ポリカーボネート、ポリアリレート、ポリエーテルサルホン、ノルボルネン等の環状オレフィンをモノマーとする環状ポリオレフィン樹脂、ポリ塩化ビニル、エポキシ樹脂及びポリウレタン樹脂等が挙げられる。
 金属としては、鋼板、アルミ及びクロム等の金属、酸化亜鉛(ZnO)及び酸化インジウムスズ(ITO)等の金属酸化物等が挙げられる。
 木材としては、自然の木材及び合成木材等が挙げられる。
 無機材料としては、ガラス、モルタル、コンクリート及び石材等が挙げられる。
Examples of the base material to which the composition of the present invention can be applied include plastics, metals, woods, inorganic materials, paper and the like, which can be applied to various materials.
Specific examples of plastics include polyolefins such as polyethylene and polypropylene, ABS resin, polyvinyl alcohol, cellulose acetate resins such as triacetyl cellulose and diacetyl cellulose, acrylic resin, polyethylene terephthalate, polycarbonate, polyarylate, polyether sulfone, norbornene and the like. Examples thereof include cyclic polyolefin resins, polyvinyl chlorides, epoxy resins and polyurethane resins using the cyclic olefins of the above as monomers.
Examples of the metal include steel plates, metals such as aluminum and chromium, and metal oxides such as zinc oxide (ZnO) and indium tin oxide (ITO).
Examples of wood include natural wood and synthetic wood.
Examples of the inorganic material include glass, mortar, concrete and stone.
 本発明の組成物の基材への塗工方法としては、目的に応じて適宜設定すれば良く、バーコーター、アプリケーター、ドクターブレード、ディップコーター、ロールコーター、スピンコーター、フローコーター、ナイフコーター、コンマコーター、リバースロールコーター、ダイコーター、リップコーター、スプレーコーター、グラビアコーター及びマイクログラビアコーター等で塗工する方法が挙げられる。 The method for applying the composition of the present invention to the substrate may be appropriately set according to the intended purpose, and is a bar coater, an applicator, a doctor blade, a dip coater, a roll coater, a spin coater, a flow coater, a knife coater, and a comma. Examples thereof include a method of coating with a coater, a reverse roll coater, a die coater, a lip coater, a spray coater, a gravure coater, a micro gravure coater and the like.
 本発明の組成物を活性エネルギー線硬化型組成物として使用する場合において、硬化させるための活性エネルギー線としては、紫外線、可視光線及び電子線等が挙げられるが、紫外線又は可視光線が好ましく、紫外線が特に好ましい。
 紫外線照射装置としては、高圧水銀ランプ、メタルハライドランプ、紫外線(UV)無電極ランプ、発光ダイオード(LED)等が挙げられる。
 照射エネルギーは、活性エネルギー線の種類や配合組成に応じて適宜設定すれば良く、一例として高圧水銀ランプを使用する場合を挙げると、照射エネルギーで50~5,000mJ/cm2が好ましく、100~1,000mJ/cm2がより好ましい。
When the composition of the present invention is used as an active energy ray-curable composition, examples of the active energy ray for curing include ultraviolet rays, visible rays, electron beams and the like, but ultraviolet rays or visible rays are preferable, and ultraviolet rays are preferable. Is particularly preferable.
Examples of the ultraviolet irradiation device include a high-pressure mercury lamp, a metal halide lamp, an ultraviolet (UV) electrodeless lamp, and a light emitting diode (LED).
The irradiation energy may be appropriately set according to the type and compounding composition of the active energy rays. For example, when a high-pressure mercury lamp is used, the irradiation energy is preferably 50 to 5,000 mJ / cm 2 , preferably 100 to 100. More preferably, 1,000 mJ / cm 2.
 本発明の組成物を熱硬化型組成物として使用する場合は、加熱可能な乾燥機等に硬化膜を静置することで硬化膜を得ることができる。
 加熱温度としては、使用する基材や目的に応じて適宜設定すれば良く、40~180℃が好ましい。基材がプラスチックの場合は、温度が高すぎると基材が変形するおそれがあるため、120℃以下であることが好ましい。
 加熱時間は適用する基材及び加熱温度によって適宜設定すれば良く、好ましくは0.5~60分である。
When the composition of the present invention is used as a thermosetting composition, the cured film can be obtained by allowing the cured film to stand in a heatable dryer or the like.
The heating temperature may be appropriately set according to the substrate to be used and the purpose, and is preferably 40 to 180 ° C. When the base material is plastic, the temperature is preferably 120 ° C. or lower because the base material may be deformed if the temperature is too high.
The heating time may be appropriately set depending on the substrate to be applied and the heating temperature, and is preferably 0.5 to 60 minutes.
 前記した通り、本発明の組成物は、コーティング剤組成物、接着剤組成物、成形材用組成物、インキ用組成物、及びパターン形成用組成物に好ましく使用することができ、それらの具体例につて説明する。 As described above, the composition of the present invention can be preferably used for coating agent compositions, adhesive compositions, molding material compositions, ink compositions, and pattern forming compositions, and specific examples thereof. Will be explained.
4-1.コーティング剤組成物の使用方法
 コーティング剤組成物の使用方法としては、常法に従えば良い。
 例えば、基材に組成物を塗布した後、活性エネルギー線を照射するか又は加熱することにより硬化させる方法等が挙げられる。
 具体的には、適用される基材に組成物を通常の塗装方法により塗布した後、活性エネルギー線硬化型組成物の場合には活性エネルギー線を照射して硬化させる方法、又熱硬化型組成物の場合は加熱して硬化させる方法等が挙げられる。
 又、組成物に(C)成分(光重合開始剤)及び(D)成分(熱重合開始剤)を併用し、これを活性エネルギー線照射した後、加熱硬化させることにより、基材との密着性を向上させる方法も採用することができる。
4-1. Method of using coating agent composition As a method of using the coating agent composition, a conventional method may be followed.
For example, a method of applying the composition to a base material and then curing it by irradiating it with active energy rays or heating it can be mentioned.
Specifically, a method of applying the composition to the applied substrate by a usual coating method and then irradiating the active energy ray-curable composition with active energy rays to cure the composition, or a thermosetting composition. In the case of a product, a method of heating and curing may be mentioned.
Further, the composition is adhered to the substrate by using the component (C) (photopolymerization initiator) and the component (D) (thermal polymerization initiator) in combination, irradiating the composition with active energy rays, and then heat-curing the composition. A method of improving the sex can also be adopted.
 本発明の組成物が適用できる基材としては、種々の材料に適用でき、プラスチック、金属、木材、無機材料及び紙等が挙げられ、その具体例は、前記で挙げた通りである。 Examples of the base material to which the composition of the present invention can be applied include plastics, metals, woods, inorganic materials, paper and the like, which can be applied to various materials, and specific examples thereof are as described above.
 基材に対する組成物硬化膜の膜厚は、目的に応じて適宜設定すればよい。硬化膜の厚さとしては、使用する基材や製造した硬化膜を有する基材の用途に応じて選択すればよいが、1μm~5mmであることが好ましく、3μm~3mmであることがより好ましい。 The film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose. The thickness of the cured film may be selected depending on the use of the substrate to be used and the application of the produced substrate having the cured film, but is preferably 1 μm to 5 mm, more preferably 3 μm to 3 mm. ..
 本発明の組成物の基材への塗工方法としては、目的に応じて適宜設定すれば良く、前記で詳述した方法等が挙げられる。 The method for applying the composition of the present invention to the substrate may be appropriately set according to the purpose, and examples thereof include the methods described in detail above.
 活性エネルギー線硬化型コーティング剤組成物として使用する場合において、硬化させるための活性エネルギー線としては、紫外線、可視光線及び電子線等が挙げられるが、紫外線が好ましい。
 紫外線照射装置としては、前記と同様の装置が挙げられる。
 照射エネルギーとしては、活性エネルギー線の種類や配合組成に応じて適宜設定すれば良く、前記と同様の照射エネルギーが挙げられる。
When used as an active energy ray-curable coating agent composition, examples of the active energy ray for curing include ultraviolet rays, visible rays, electron beams, and the like, but ultraviolet rays are preferable.
Examples of the ultraviolet irradiation device include the same devices as described above.
The irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
4-2.接着剤組成物の使用方法
 接着剤組成物の使用方法としては、常法に従えば良い。
 例えば、基材に組成物を塗布した後、塗工面に他の基材と貼合した後、活性エネルギー線を照射するか又は加熱することにより硬化させる方法等が挙げられる。
 具体的には、適用される基材に組成物を通常の塗装方法により塗布した後、活性エネルギー線硬化型組成物の場合には活性エネルギー線を照射して硬化させる方法、又熱硬化型組成物の場合は加熱して硬化させる方法等が挙げられる。
 尚、活性エネルギー線硬化型接着剤組成物の場合においては、上記基材の少なくとも一方として、光透過性を有するものを使用する。
 又、組成物に(C)成分(光重合開始剤)及び(D)成分(熱重合開始剤)を併用し、これを活性エネルギー線照射した後、加熱硬化させることにより、基材との密着性を向上させる方法も採用することができる。
4-2. Method of using the adhesive composition As the method of using the adhesive composition, a conventional method may be followed.
For example, a method in which the composition is applied to a base material, the coated surface is bonded to another base material, and then cured by irradiating or heating with active energy rays and the like can be mentioned.
Specifically, a method of applying the composition to the applied substrate by a usual coating method and then irradiating the active energy ray-curable composition with active energy rays to cure the composition, or a thermosetting composition. In the case of a product, a method of heating and curing may be mentioned.
In the case of the active energy ray-curable adhesive composition, at least one of the above-mentioned base materials has light transmittance.
Further, the composition is adhered to the substrate by using the component (C) (photopolymerization initiator) and the component (D) (thermal polymerization initiator) in combination, irradiating the composition with active energy rays, and then heat-curing the composition. A method of improving the sex can also be adopted.
 本発明の組成物が適用できる基材としては、種々の材料に適用でき、プラスチック、金属、木材、無機材料及び紙等が挙げられ、その具体例は、前記で挙げた通りである。 Examples of the base material to which the composition of the present invention can be applied include plastics, metals, woods, inorganic materials, paper and the like, which can be applied to various materials, and specific examples thereof are as described above.
 基材に対する組成物硬化膜の膜厚は、目的に応じて適宜設定すればよい。硬化膜の厚さとしては、使用する基材や製造した硬化膜を有する基材の用途に応じて選択すればよいが、0.1~500μmであることが好ましく、1~200μmであることがより好ましい。 The film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose. The thickness of the cured film may be selected depending on the use of the base material to be used and the application of the manufactured base material having the cured film, but is preferably 0.1 to 500 μm, and preferably 1 to 200 μm. More preferred.
 本発明の組成物の基材への塗工方法としては、目的に応じて適宜設定すれば良く、前記で詳述した方法等が挙げられる。 The method for applying the composition of the present invention to the substrate may be appropriately set according to the purpose, and examples thereof include the methods described in detail above.
 活性エネルギー線硬化型接着剤組成物として使用する場合において、硬化させるための活性エネルギー線としては、紫外線、可視光線及び電子線等が挙げられるが、紫外線が好ましい。
 紫外線照射装置としては、前記と同様の装置が挙げられる。
 照射エネルギーとしては、活性エネルギー線の種類や配合組成に応じて適宜設定すれば良く、前記と同様の照射エネルギーが挙げられる。
When used as an active energy ray-curable adhesive composition, examples of the active energy ray for curing include ultraviolet rays, visible rays, electron beams, and the like, but ultraviolet rays are preferable.
Examples of the ultraviolet irradiation device include the same devices as described above.
The irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
4-3.成形材用組成物の使用方法
 本発明の組成物を成形材用途で使用する場合の使用方法としては、常法に従えば良い。
 具体的には、目的の形状を有するスタンパを称される金型に組成物を塗布し、フィルム又はシート基材(以下これらをまとめて「フィルム基材」という。)でラミネートした後に、活性エネルギー線を照射し硬化させる方法、所定の型枠に組成物を注入した後、活性エネルギー線硬化型組成物の場合には活性エネルギー線を照射することにより硬化させる方法、又熱硬化型組成物の場合は加熱して硬化させる方法等が挙げられる。
4-3. Method of Using Composition for Molding Material As the method of use when the composition of the present invention is used for molding material, a conventional method may be followed.
Specifically, the composition is applied to a mold called a stamper having a desired shape, laminated with a film or sheet base material (hereinafter, these are collectively referred to as "film base material"), and then the active energy is activated. A method of irradiating a line to cure, a method of injecting the composition into a predetermined mold and then irradiating an active energy ray to cure the active energy ray-curable composition, or a heat-curable composition. In this case, a method of heating and curing may be mentioned.
 本発明に使用できるフィルム基材としては、ポリメチルメタクリレート、ポリメチルメタクリレート-スチレン共重合体フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリアクリルニトリル、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルケトン、ポリイミド、ポリメチルペンテン等のプラスチックフィルムが好ましく、必要であれば、ガラス系基材を使用することができる。 Film substrates that can be used in the present invention include polymethylmethacrylate, polymethylmethacrylate-styrene copolymer film, polyethylene terephthalate, polyethylene naphthalate, polyarylate, polyacrylic nitrile, polycarbonate, polysulfone, polyethersulfone, and polyetherimide. , Polyetherketone, polyimide, polymethylpentene and other plastic films are preferred, and a glass-based substrate can be used if necessary.
 フィルム基材は透明もしくは半透明(例えば、乳白色)のものが好ましい。フィルム基材の厚さとしては20~500μmが好ましい。 The film substrate is preferably transparent or translucent (for example, milky white). The thickness of the film base material is preferably 20 to 500 μm.
 基材に対する組成物硬化膜の膜厚は、目的に応じて適宜設定すればよい。硬化膜の厚さとしては、使用する基材や製造した硬化膜を有する基材の用途に応じて選択すればよいが、10nm~100μmであることが好ましく、50nm~50μmであることがより好ましい。 The film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose. The thickness of the cured film may be selected depending on the use of the substrate to be used and the application of the produced substrate having the cured film, but is preferably 10 nm to 100 μm, more preferably 50 nm to 50 μm. ..
 本発明の組成物を硬化させるための活性エネルギー線としては、紫外線、可視光線及び電子線等が挙げられるが、紫外線が好ましい。
 紫外線照射装置としては、前記と同様の装置が挙げられる。
 照射エネルギーとしては、活性エネルギー線の種類や配合組成に応じて適宜設定すれば良く、前記と同様の照射エネルギーが挙げられる。
Examples of the active energy ray for curing the composition of the present invention include ultraviolet rays, visible rays, electron beams and the like, but ultraviolet rays are preferable.
Examples of the ultraviolet irradiation device include the same devices as described above.
The irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
 本発明の組成物を使用してレンズシートを製造する例について説明する。
 比較的膜厚の薄いレンズシートを製造する場合は、本発明の組成物を透明基板に塗布した後、目的のレンズの形状を有するスタンパと称される金型を密着させる。
 次いで、透明基板側から活性エネルギー線を照射して、組成物を硬化させ、この後、金型から剥離させる。
An example of producing a lens sheet using the composition of the present invention will be described.
When producing a lens sheet having a relatively thin film thickness, the composition of the present invention is applied to a transparent substrate, and then a mold called a stamper having a desired lens shape is brought into close contact with the transparent substrate.
Next, the composition is cured by irradiating it with active energy rays from the transparent substrate side, and then peeled from the mold.
 一方、比較的膜厚の厚いレンズシートを製造する場合は、目的のレンズの形状を有する金型と透明基板の間に、本発明の組成物を流し込む。
 次いで、透明基板側から活性エネルギー線を照射して組成物を硬化させ、この後金型を脱型させる。
On the other hand, in the case of producing a lens sheet having a relatively thick film thickness, the composition of the present invention is poured between a mold having a target lens shape and a transparent substrate.
Next, the composition is cured by irradiating the active energy ray from the transparent substrate side, and then the mold is removed.
 前記金型としては、その材質は特に限定されないが、例えば真鍮及びニッケル等の金属、並びにエポキシ樹脂等の樹脂が挙げられる。金型の寿命が長い点で、金属製であることが好ましい。 The material of the mold is not particularly limited, and examples thereof include metals such as brass and nickel, and resins such as epoxy resin. It is preferably made of metal because the mold has a long life.
 本発明の組成物をナノインプリント用途で使用する場合は、常法に従えば良い。
 例えば、基材に組成物を塗布した後、微細加工パターンを有し透明性を有する型(モールド)をプレスする。
 次いで、透明のモールド上から活性エネルギー線を照射して組成物を硬化させ、この後モールドを脱型させる方法等を使用することができる。
When the composition of the present invention is used for nanoimprint application, a conventional method may be followed.
For example, after applying the composition to the base material, a mold having a fine processing pattern and having transparency is pressed.
Next, a method of irradiating the transparent mold with active energy rays to cure the composition and then removing the mold can be used.
4-4.インキ用組成物の使用方法
 本発明の印刷物で使用する印刷基材としては、特に限定は無く、例えば、上質紙、コート紙、アート紙、模造紙、薄紙、厚紙等の紙、各種合成紙、ポリエステル樹脂、アクリル樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン酢酸ビニル共重合体、エチレンビニルアルコール共重合体、エチレンメタクリル酸共重合体、ナイロン、ポリ乳酸、ポリカーボネート等のフィルム又はシート、セロファン、アルミニウムフォイル、その他従来から印刷基材として使用されている各種基材を挙げることが出来る。
4-4. How to use the composition for ink The printing substrate used in the printed matter of the present invention is not particularly limited, and for example, high-quality paper, coated paper, art paper, imitation paper, thin paper, thick paper and other papers, various synthetic papers, etc. Polyester resin, acrylic resin, vinyl chloride resin, vinylidene chloride resin, polyvinyl alcohol, polyethylene, polypropylene, polyacrylonitrile, ethylene vinyl acetate copolymer, ethylene vinyl alcohol copolymer, ethylene methacrylate copolymer, nylon, polylactic acid, Examples thereof include films or sheets such as polypropylene, cellophane, aluminum foil, and various other substrates that have been conventionally used as printing substrates.
 基材に対する組成物硬化膜の膜厚は、目的に応じて適宜設定すればよい。硬化膜の厚さとしては、使用する基材や製造した硬化膜を有する基材の用途に応じて選択すればよいが、1~20μmであることが好ましく、1~10μmであることがより好ましい。 The film thickness of the composition cured film with respect to the base material may be appropriately set according to the purpose. The thickness of the cured film may be selected depending on the use of the substrate to be used and the application of the produced substrate having the cured film, but is preferably 1 to 20 μm, more preferably 1 to 10 μm. ..
 本発明の組成物をオフセットインキ用として使用する場合、基材への塗工方法としては、版面上に水を連続供給するオフセット印刷機を用いて好適に使用することが出来る。又、シート形態の印刷用紙を用いる枚葉オフセット印刷機、リール形態の印刷用紙を用いるオフセット輪転印刷機、いずれの用紙供給方式においても好適に利用することが可能である。 When the composition of the present invention is used for offset ink, it can be suitably used as a coating method on the base material by using an offset printing machine that continuously supplies water on the plate surface. Further, it can be suitably used in any paper supply method, that is, a sheet-fed offset printing machine that uses sheet-type printing paper and an offset rotary printing machine that uses reel-type printing paper.
 本発明の組成物をインクジェットインキ用として使用する場合、基材への塗工方法としては、インクジェット方式により吐出して画像を形成する公知のインクジェット記録装置等を用いて好適に使用することが出来る。 When the composition of the present invention is used for inkjet ink, it can be suitably used as a coating method on a base material by using a known inkjet recording device or the like that ejects by an inkjet method to form an image. ..
 インクジェット方式では、吐出性を考慮し、吐出時の温度(例えば、40℃~80℃、好ましくは25℃~30℃)において、組成物の粘度が、7mPa・s~30mPa・sであることが好ましい。より好ましくは7mPa・s~20mPa・sである。 In the inkjet method, the viscosity of the composition is 7 mPa · s to 30 mPa · s at the temperature at the time of discharge (for example, 40 ° C. to 80 ° C., preferably 25 ° C. to 30 ° C.) in consideration of the ejection property. preferable. More preferably, it is 7 mPa · s to 20 mPa · s.
 本発明の組成物を硬化させるための活性エネルギー線としては、紫外線、可視光線及び電子線等が挙げられるが、紫外線が好ましい。
 紫外線照射装置としては、前記と同様の装置が挙げられる。
 照射エネルギーとしては、活性エネルギー線の種類や配合組成に応じて適宜設定すれば良く、前記と同様の照射エネルギーが挙げられる。
Examples of the active energy ray for curing the composition of the present invention include ultraviolet rays, visible rays, electron beams and the like, but ultraviolet rays are preferable.
Examples of the ultraviolet irradiation device include the same devices as described above.
The irradiation energy may be appropriately set according to the type of active energy ray and the compounding composition, and the same irradiation energy as described above can be mentioned.
4-5.パターン形成用組成物の使用方法
 パターン形成用組成物としては、感光性平版印刷版、エッチングレジスト及びソルダーレジスト等のレジスト、液晶パネル製造における、柱状スペーサー、カラーフィルターにおける画素やブラックマトリックス等を形成のための着色組成物、及びカラーフィルター保護膜等が挙げられる。
4-5. How to use the pattern-forming composition As the pattern-forming composition, resists such as photosensitive lithographic printing plates, etching resists and solder resists, columnar spacers in liquid crystal panel manufacturing, pixels and black matrices in color filters, etc. are formed. Examples thereof include a coloring composition for this purpose, a color filter protective film, and the like.
 本発明の組成物は、これらの用途の中でも、液晶パネル製造における、柱状スペーサー用、カラーフィルター用着色組成物、及びカラーフィルター用保護膜の用途により好ましく使用できる。
 柱状スペーサー及びカラーフィルター保護膜用途で使用する場合には、塗工性、現像性を改良するために、組成物にポリオキシエチレンラウリルエーテル等のノニオン系界面活性剤や、フッ素系界面活性剤を添加することもできる。又、必要に応じて、接着助剤、保存安定剤及び消泡剤等を適宜添加してもよい。
Among these uses, the composition of the present invention can be preferably used depending on the use of a columnar spacer, a coloring composition for a color filter, and a protective film for a color filter in the production of a liquid crystal panel.
When used in columnar spacers and color filter protective film applications, in order to improve coatability and developability, a nonionic surfactant such as polyoxyethylene lauryl ether or a fluorine-based surfactant is added to the composition. It can also be added. Further, if necessary, an adhesive aid, a storage stabilizer, an antifoaming agent and the like may be added as appropriate.
 以下に、製造例、実施例及び比較例を示し、本発明をより具体的に説明する。
 尚、以下において「部」とは重量部を意味する。
 高速液体クロマトグラフィー(以下、「HPLC」という)、粘度、ゲルパーミエションクロマトグラフィー(以下、「GPC」という)、ガスクロマトグラフィー(以下、「GC」という)、APHA、塩素含有量及びナトリウム含有量は、下記の条件で測定した。
Hereinafter, the present invention will be described in more detail with reference to Production Examples, Examples and Comparative Examples.
In the following, "part" means a part by weight.
High Performance Liquid Chromatography (hereinafter referred to as "HPLC"), Viscosity, Gel Permeation Chromatography (hereinafter referred to as "GPC"), Gas Chromatography (hereinafter referred to as "GC"), APHA, Chlorine Content and Sodium Containing The amount was measured under the following conditions.
◆HPLC測定条件
・装置:Waters(株)製 ACQUITY UPLC
・検出器:UV検出器
・検出波長:210nm
・カラム:Waters(株)製 ACQUITY UPLC BEH C18(Part No.186002350、カラム内径2.1mm、カラム長さ50mm)
・カラムの温度:40℃
・溶離液の組成:0.03重量%トリフルオロ酢酸水溶液とメタノールの混合溶液
・溶離液の流量:0.3mL/分
◆ HPLC measurement conditions / equipment: ACQUITY UPLC manufactured by Waters Corp.
・ Detector: UV detector ・ Detection wavelength: 210nm
-Column: ACQUITY UPLC BEH C18 (Part No. 186002350, column inner diameter 2.1 mm, column length 50 mm) manufactured by Waters Corp.
-Column temperature: 40 ° C
-Eluent composition: 0.03 wt% trifluoroacetic acid aqueous solution and methanol mixed solution-Eluent flow rate: 0.3 mL / min
◆粘度測定条件
 E型粘度計(コーンプレート型粘度計)を使用し、25℃での粘度を測定した。
◆ Viscosity measurement conditions Using an E-type viscometer (cone plate type viscometer), the viscosity at 25 ° C was measured.
◆GPC測定条件
・装置:Waters(株)製 GPC システム名 1515 2414 717P RI
・検出器:RI検出器
・カラム:ガードカラム 昭和電工(株)製 Shodex KFG(8μm 4.6×10mm)、本カラム2種類 Waters(株)製 styragel HR 4E THF(7.8×300mm)+styragel HR 1THF(7.8×300mm)
・カラムの温度:40℃
・溶離液組成:THF(内部標準として硫黄を0.03%含むもの)、流量0.75mL/分
・検量線:標準ポリスチレンを使って較正曲線を作成した。
・純度(%)の算出方法
 GPC測定で検出されたピークのうち、精製処理物に由来するピークを全て合算した面積を100%とし、グリセリンカーボネートアクリレート及び/又はグリセリンカーボネートエチレンオキサイド付加物のアクリレートを含むピークの面積から下記式(1)に基づき算出した。なお、各ピークが完全に分離していない場合は、垂直分割処理して各ピークの面積とした。
 精製処理物の純度(%)=(I/S)×100 ・・・(1)
 式(1)における記号及び用語は、前記した通りである。
・S:精製処理物に由来する検出ピークの総面積
・I:グリセリンカーボネートアクリレート及び/又はグリセリンカーボネートエチレンオキサイト付加物のアクリレートを含む検出ピークの面積
◆ GPC measurement conditions / equipment: Waters Co., Ltd. GPC system name 1515 2414 717P RI
-Detector: RI detector-Column: Guard column Showa Denko Co., Ltd. Shodex KFG (8 μm 4.6 x 10 mm), 2 types of this column Waters Co., Ltd. stylel HR 4E THF (7.8 x 300 mm) + stylel HR 1 THF (7.8 x 300 mm)
-Column temperature: 40 ° C
-Eluent composition: THF (containing 0.03% sulfur as an internal standard), flow rate 0.75 mL / min-calibration curve: Calibration curve was created using standard polystyrene.
-Calculation method of purity (%) Of the peaks detected by GPC measurement, the total area of all the peaks derived from the purified product is set to 100%, and glycerin carbonate acrylate and / or acrylate of glycerin carbonate ethylene oxide adduct is used. It was calculated from the area of the peak including it based on the following formula (1). When each peak was not completely separated, it was vertically divided to obtain the area of each peak.
Purity of refined product (%) = (I / S) x 100 ... (1)
The symbols and terms in the formula (1) are as described above.
-S: Total area of detection peaks derived from purified product-I: Area of detection peaks containing glycerin carbonate acrylate and / or acrylate of glycerin carbonate ethylene oxide adduct
◆GC測定条件
・装置:(株)島津製作所製 GC-14B
・検出器:FID検出器
・カラム:ZB-1(長さ60m、内径0.32mm、膜厚3μm)
・インジェクション温度:230℃又は270℃
・検出器温度:330℃
・カラム温度:125℃で5分間保持後、10℃/分の速度で昇温。325℃に到達後に20分保持
・キャリアガス:窒素
・注入量:メタノール又はアセトンで10重量%に希釈後に0.4μL注入
・純度(%)の算出方法
 GC測定で検出されたピークのうち、希釈溶剤に由来するピークを考慮せず、希釈前の試料に由来するピークを全て合算した面積を100%とし、目的物のピーク面積から下記式(2)に基づき算出した。尚、各ピークが完全に分離していない場合は、垂直分割処理して各ピークの面積とした。
 目的物の純度(%)=(I/S)×100 ・・・(2)
 式(2)における記号及び用語は、前記した通りである。
・S:溶剤希釈前の試料に由来する検出ピークの総面積
・I:目的物のピーク面積
◆ GC measurement conditions / equipment: GC-14B manufactured by Shimadzu Corporation
-Detector: FID detector-Column: ZB-1 (length 60 m, inner diameter 0.32 mm, film thickness 3 μm)
-Injection temperature: 230 ° C or 270 ° C
・ Detector temperature: 330 ℃
-Column temperature: After holding at 125 ° C for 5 minutes, the temperature is raised at a rate of 10 ° C / min. Hold for 20 minutes after reaching 325 ° C. ・ Carrier gas: Nitrogen ・ Injection amount: Dilute to 10% by weight with methanol or acetone and then inject 0.4 μL. ・ Calculation method of purity (%) Dilute among the peaks detected by GC measurement. The total area of all the peaks derived from the sample before dilution was set to 100% without considering the peaks derived from the solvent, and the peak area of the target product was calculated based on the following formula (2). When each peak was not completely separated, it was vertically divided to obtain the area of each peak.
Purity of the target product (%) = (I / S) x 100 ... (2)
The symbols and terms in the formula (2) are as described above.
・ S: Total area of detection peaks derived from the sample before solvent dilution ・ I: Peak area of the target product
◆APHA
 色差計〔日本電色工業(株)製 石油製品色試験器OME-2000〕を使用し、APHAを測定した。
◆ APHA
APHA was measured using a color difference meter [Petroleum product color tester OME-2000 manufactured by Nippon Denshoku Kogyo Co., Ltd.].
◆塩素含有量
 微量塩素硫黄分析装置の石英ボートに試料30mgを採取し、アルゴン/酸素気流下で燃焼させ、最後は純酸素気流下で燃焼させる。発生した燃焼ガスを吸収液(0.3%過酸化水素水)10mlに通気し、塩素分をClイオンとして捕集する。同操作を3回繰返して同じ吸収液に塩素分を捕集し、供試液とする。供試液をイオンクロマトグラフで測定し、検量線法によりClイオンを定量する。
・微量塩素硫黄分析装置:(株)三菱化学アナリテック製TOX-100
・イオンクロマトグラフ:サーモフィッシャーサイエンティフィック(株)製DIONEX ICS-3000(カラム:IonPac AG20/AS20)
◆ Chlorine content Trace 30 mg of sample is collected in a quartz boat of a chlorine-sulfur analyzer and burned under an argon / oxygen stream, and finally burned under a pure oxygen stream. The generated combustion gas is aerated in 10 ml of an absorbing liquid (0.3% hydrogen peroxide solution), and chlorine is collected as Cl ions. The same operation is repeated three times to collect chlorine in the same absorbing solution and use it as a test solution. The test solution is measured by ion chromatography, and Cl ions are quantified by the calibration curve method.
・ Trace chlorine sulfur analyzer: TOX-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd.
-Ion chromatograph: DIONEX ICS-3000 manufactured by Thermo Fisher Scientific Co., Ltd. (column: IonPac AG20 / AS20)
◆ナトリウム含有量
 試料1gを20mlのPFAボトル(フッ素樹脂ボトル)に採取し、NMP(N-メチルピロリドン)で全量10gに希釈し、供試液とする。供試液をICP質量分析装置で測定する。検出された元素を絶対検量線法により定量する。
・前処理環境:クリーンルームG室(クラス1000)及びクリーンドラフト(クラス100)
・NMP:電子工業用〔富士フイルム和光純薬(株)製〕
・混合標準液:XSTC-622B(SPEX社製)
・ICP質量分析装置:アジレント・テクノロジー(株)社製Agilent7700s(有機溶媒測定モード:He/H2)
◆ Sodium content 1 g of a sample is collected in a 20 ml PFA bottle (fluororesin bottle) and diluted with NMP (N-methylpyrrolidone) to a total volume of 10 g to prepare a test solution. The test solution is measured with an ICP mass spectrometer. Quantify the detected elements by the absolute calibration curve method.
-Pretreatment environment: Clean room G room (class 1000) and clean draft (class 100)
・ NMP: For the electronics industry [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
-Mixed standard solution: XSTC-622B (manufactured by SPEX)
-ICP mass spectrometer: Agilent 7700s manufactured by Agilent Technologies, Inc. (organic solvent measurement mode: He / H2)
1.製造例
 尚、製造例における略号は、下記を意味する。
・MCA:2-メトキシエチルアクリレート
・MEL:2-メトキシエタノール
・DABCO:トリエチレンジアミン
・MEHQ:ハイドロキノンモノメチルエーテル
・TEMPOL:4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル
・DEHA:N,N-ジエチルヒドロキシルアミン
1. 1. Production Example Abbreviations in the manufacturing example means below.
-MCA: 2-methoxyethyl acrylate-MEL: 2-methoxyethanol-DABCO: triethylenediamine-MEHQ: hydroquinone monomethyl ether-TEMPOL: 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl-DEHA : N, N-diethylhydroxylamine
1)製造例1
 撹拌機、温度計、ガス導入管、精留塔及び冷却管を取付けた3リットルのフラスコに、グリセリンカーボネートを660.00部(5.59モル)、MCAを1891.10部(14.53モル)、触媒XとしてDABCO(トリエチレンジアミン)を1.22部(0.011モル)、触媒Yとしてアクリル酸亜鉛を4.52部(0.022モル)、MEHQを1.02部(仕込んだ原料の総重量に対して474ppm)、TEMPOLを0.74部(仕込んだ原料の総重量に対して288pm)仕込み、含酸素ガス(酸素を5容量%、窒素を95容量%)を液中にバブリングさせた。
 反応液温度110~120℃の範囲で加熱撹拌させながら、反応系内の圧力を140~180mmHgの範囲で調整し、エステル交換反応の進行に伴い副生したMELとMCAの混合液を精留塔及び冷却管を介して反応系から抜出した。
 又、該抜出液と同重量部のMCAを反応系に随時追加した。又、MEHQ及びTEMPOLを含むMCAを精留塔を介して反応系に随時追加した。加熱撹拌開始から17時間後に加熱を終了し、反応系内の圧力を常圧に戻して抜出を終了した。反応液を一部採取し、HPLCを用いて組成分析を行った結果、目的物であるGlycarbo-A〔(2-オキソ-1,3-ジオキソラン-4-イル)メチルアクリレート〕を含むことを確認した。
1) Production example 1
660.00 parts (5.59 mol) of glycerin carbonate and 1891.10 parts (14.53 mol) of MCA in a 3 liter flask equipped with a stirrer, thermometer, gas introduction tube, rectification tower and cooling tube. ), 1.22 parts (0.011 mol) of DABCO (triethylenediamine) as catalyst X, 4.52 parts (0.022 mol) of zinc acrylate as catalyst Y, and 1.02 parts (prepared raw materials) of MEHQ. 474 ppm with respect to the total weight of the material, 0.74 parts of TEMPOL (288 pm with respect to the total weight of the charged raw materials), and bubbling oxygen-containing gas (5% by volume of oxygen, 95% by volume of nitrogen) in the liquid. I let you.
The pressure in the reaction system was adjusted in the range of 140 to 180 mmHg while heating and stirring in the reaction solution temperature range of 110 to 120 ° C., and the mixed solution of MEL and MCA produced as a by-product as the transesterification reaction proceeded was rectified in the rectification column. And withdrawn from the reaction system via a cooling tube.
In addition, MCA of the same weight as the withdrawal solution was added to the reaction system at any time. In addition, MCA containing MEHQ and TEMPOL was added to the reaction system at any time via a rectification column. After 17 hours from the start of heating and stirring, heating was terminated, the pressure in the reaction system was returned to normal pressure, and extraction was completed. As a result of collecting a part of the reaction solution and analyzing the composition using HPLC, it was confirmed that the target product, Glycarbo-A [(2-oxo-1,3-dioxolane-4-yl) methyl acrylate] was contained. did.
 ろ液に吸着剤として珪酸アルミニウム〔協和化学工業(株)製キョーワード700(商品名)。以下、商品名を略す。〕を54部投入し、内温80~105℃の範囲で常圧下1時間加熱撹拌して接触処理した後、内温20~40℃の範囲で水酸化カルシウムを3.0部投入し、常圧下1時間撹拌した。
 加圧ろ過により不溶物を分離した後、ろ液に乾燥空気をバブリングさせながら、温度70~90℃、圧力0.001~100mmHgの範囲で16時間の減圧蒸留を行い、未反応のMCAを含む留出液を分離した。
Aluminum silicate as an adsorbent on the filtrate [Kyoward 700 (trade name) manufactured by Kyowa Chemical Industry Co., Ltd.). Hereinafter, the product name is abbreviated. ] Was charged in 54 parts, and after contact treatment with heating and stirring under normal pressure for 1 hour at an internal temperature of 80 to 105 ° C., 3.0 parts of calcium hydroxide was added in a range of internal temperature of 20 to 40 ° C. The mixture was stirred under pressure for 1 hour.
After separating the insoluble matter by pressure filtration, the filtrate is subjected to vacuum distillation for 16 hours at a temperature of 70 to 90 ° C. and a pressure of 0.001 to 100 mmHg while bubbling dry air, and contains unreacted MCA. The distillate was separated.
 得られた釜液にDEHAを0.87部(第2工程処理物に対して900ppm)添加し、内温70~90℃の範囲で常圧下3時間撹拌した。その後、釜液に珪藻土〔昭和化学工業(株)製ラヂオライト(商品名)。以下、商品名を略す。〕を4.50部添加して加圧ろ過を行い、得られたろ液を精製処理物とした。ろ液の重量は945.75部であり、HPLCを用いて組成分析を行ったところ、目的物であるGlycarbo-Aを含むことを確認した。以下、化合物a1という。

 得られた化合物a1(精製処理物)の各種分析結果を表1に示す。
0.87 parts of DEHA (900 ppm with respect to the processed product in the second step) was added to the obtained kettle liquid, and the mixture was stirred at an internal temperature of 70 to 90 ° C. for 3 hours under normal pressure. After that, diatomaceous earth [Radiolite (trade name) manufactured by Showa Chemical Co., Ltd.) was added to the kettle liquid. Hereinafter, the product name is abbreviated. ] Was added in an amount of 4.50 parts, and pressure filtration was performed, and the obtained filtrate was used as a purified product. The weight of the filtrate was 945.75 parts, and when the composition was analyzed using HPLC, it was confirmed that the filtrate contained Glycarbo-A, which was the target product. Hereinafter, it is referred to as compound a1.

Table 1 shows various analysis results of the obtained compound a1 (purified product).
2)製造例2
(1)グリセリンカーボネートエチレンオキサイド付加物の製造
 まず、グリセリンカーボネートエチレンオキサイド付加物の原料であるグリセリンのエチレンオキサイド付加物を精製した。
 撹拌機、温度計、冷却管を取付けた3リットルのフラスコに、グリセリンのエチレンオキサイド付加物〔花王(株)製エマルゲンGE-1(商品名)、水酸基価1190mgKOH/g〕を1722部仕込み、釜液温度125~140℃、系内圧力70~7Paの範囲で43時間の減圧蒸留を行い、まず475部を抜きだし(以下、「初留液」という)、その後508部を抜き出した(以下、「本留液」という)。
 この本留液は、GC分析の結果、グリセリンを6%、グリセリンの1位の水酸基にのみエチレンオキシドが1個付加した化合物を72%、グリセリンの1位の水酸基にのみエチレンオキシドが2個付加した化合物を10%含んでいた。
2) Manufacturing example 2
(1) Production of Glycerin Carbonate Ethylene Oxide Adduct First, the ethylene oxide adduct of glycerin, which is a raw material of the glycerin carbonate ethylene oxide adduct, was purified.
1722 parts of glycerin ethylene oxide adduct [Emargen GE-1 (trade name) manufactured by Kao Co., Ltd., hydroxyl value 1190 mgKOH / g] was charged in a 3-liter flask equipped with a stirrer, a thermometer, and a cooling tube. Vacuum distillation was performed for 43 hours at a liquid temperature of 125 to 140 ° C. and an internal pressure of 70 to 7 Pa, and 475 parts were first extracted (hereinafter referred to as "initial distillate"), and then 508 parts were extracted (hereinafter, 508 parts). "Main distillate").
As a result of GC analysis, this distillate contains 6% glycerin, 72% of the compound having one ethylene oxide added only to the hydroxyl group at the 1-position of glycerin, and the compound having 2 ethylene oxides added only to the hydroxyl group at the 1-position of glycerin. Was contained at 10%.
 撹拌機、温度計、冷却管を取付けた3リットルのフラスコに、上記で得た本留液を504部、エチレンカーボネートを411部、触媒として活性アルミナを0.9部仕込み、反応液温度130~150℃の範囲で加熱撹拌させながら、反応系内の圧力を4700~30Paの範囲で調整し、エステル交換反応の進行に伴い副生したエチレングリコールとエチレンカーボネートの混合液を冷却管を介して反応系から抜出した。加熱撹拌開始から15時間後に加熱を終了し、反応系内の圧力を常圧に戻して抜出を終了した。その後、釜液を加圧ろ過して触媒として投入した活性アルミナを除去し、ろ液を得た。
 ろ液の重量は560部であり、GC分析の結果、グリセリンカーボネートを5%、グリセリンの1位の水酸基にのみエチレンオキシドが1個付加し、2位及び3位の水酸基がカーボネート化されて分子内で環状カーボネート構造を形成した化合物を68%、グリセリンの1位の水酸基にのみエチレンオキシドが2個付加し、2位及び3位の水酸基がカーボネート化されて分子内で環状カーボネート構造を形成した化合物を4%含んでいた。
In a 3 liter flask equipped with a stirrer, a thermometer, and a cooling tube, 504 parts of the main distillate obtained above, 411 parts of ethylene carbonate, and 0.9 parts of active alumina as a catalyst were charged, and the reaction liquid temperature was 130 to 130. The pressure in the reaction system was adjusted in the range of 4700 to 30 Pa while heating and stirring in the range of 150 ° C., and a mixed solution of ethylene glycol and ethylene carbonate produced as a by-product as the transesterification reaction proceeded was reacted via a cooling tube. Extracted from the system. After 15 hours from the start of heating and stirring, heating was terminated, the pressure in the reaction system was returned to normal pressure, and extraction was completed. Then, the kettle liquid was pressure-filtered to remove the activated alumina charged as a catalyst to obtain a filtrate.
The weight of the filtrate is 560 parts, and as a result of GC analysis, 5% of glycerin carbonate is added, one ethylene oxide is added only to the 1st hydroxyl group of glycerin, and the 2nd and 3rd hydroxyl groups are carbonated and intramolecular. 68% of the compounds that formed a cyclic carbonate structure in glycerin, two ethylene oxides were added only to the hydroxyl group at the 1-position of glycerin, and the hydroxyl groups at the 2- and 3-positions were carbonated to form a cyclic carbonate structure in the molecule. It contained 4%.
(2)グリセリンカーボネートエチレンオキサイド付加物のアクリレートの製造
 撹拌機、温度計、ガス導入管、精留塔及び冷却管を取付けた3リットルのフラスコに、上記で得たろ液を450部、MCAを1553部(11.93モル)、触媒XとしてDABCOを0.31部(0.028モル)、触媒Yとしてアクリル酸亜鉛を1.15部(0.056モル)、純水を2.09部、MEHQを0.78部(仕込んだ原料の総重量に対して464ppm)、TEMPOLを0.56部(仕込んだ原料の総重量に対して279pm)仕込み、含酸素ガス(酸素を5容量%、窒素を95容量%)を液中にバブリングさせた。
 反応液温度110~120℃の範囲で加熱撹拌させながら、反応系内の圧力を120~160mmHgの範囲で調整し、エステル交換反応の進行に伴い副生したMELとMCAの混合液を精留塔及び冷却管を介して反応系から抜出した。
 又、該抜出液と同重量部のMCAを反応系に随時追加した。又、MEHQ及びTEMPOLを含むMCAを精留塔を介して反応系に随時追加した。加熱撹拌開始から40時間後に加熱を終了し、反応系内の圧力を常圧に戻して抜出を終了した。
 反応終了釜液に吸着剤として珪酸アルミニウムを18部投入し、内温80~105℃の範囲で常圧下1時間加熱撹拌して接触処理した後、内温20~40℃の範囲で水酸化カルシウムを0.9部投入し、常圧下1時間撹拌した。
 加圧ろ過により不溶物を分離した後、ろ液に乾燥空気をバブリングさせながら、温度70~90℃、圧力0.001~100mmHgの範囲で16時間の減圧蒸留を行い、未反応のMCAを含む留出液を分離した。
(2) Production of acrylate of glycerin carbonate ethylene oxide adduct 450 parts of the filtrate obtained above and 1553 MCA in a 3 liter flask equipped with a stirrer, a thermometer, a gas introduction tube, a rectification tower and a cooling tube. Parts (11.93 mol), DABCO 0.31 part (0.028 mol) as catalyst X, 1.15 part (0.056 mol) of zinc acrylate as catalyst Y, 2.09 part of pure water, 0.78 parts of MEHQ (464 ppm with respect to the total weight of the charged raw materials), 0.56 parts of TEMPOL (279 pm with respect to the total weight of the charged raw materials), and oxygen-containing gas (5% by volume of oxygen, nitrogen) 95% by volume) was bubbled in the liquid.
The pressure in the reaction system was adjusted in the range of 120 to 160 mmHg while heating and stirring in the reaction solution temperature range of 110 to 120 ° C., and the mixed solution of MEL and MCA produced as a by-product as the transesterification reaction proceeded was rectified in the rectification column. And withdrawn from the reaction system via a cooling tube.
In addition, MCA of the same weight as the withdrawal solution was added to the reaction system at any time. In addition, MCA containing MEHQ and TEMPOL was added to the reaction system at any time via a rectification column. After 40 hours from the start of heating and stirring, heating was terminated, the pressure in the reaction system was returned to normal pressure, and extraction was completed.
Reaction completion 18 parts of aluminum silicate was added as an adsorbent to the kettle solution, and after contact treatment with heating and stirring under normal pressure for 1 hour at an internal temperature of 80 to 105 ° C, calcium hydroxide was added at an internal temperature of 20 to 40 ° C. Was added in 0.9 parts and stirred under normal pressure for 1 hour.
After separating the insoluble matter by pressure filtration, the filtrate is subjected to vacuum distillation for 16 hours at a temperature of 70 to 90 ° C. and a pressure of 0.001 to 100 mmHg while bubbling dry air, and contains unreacted MCA. The distillate was separated.
 得られた釜液にDEHAを0.75部添加し、内温70~90℃の範囲で常圧下3時間撹拌した。その後、釜液に珪藻土を4.5部添加して加圧ろ過を行い、得られたろ液を精製処理物とした。以下、化合物a2という。
 化合物a2(ろ液)の重量は630部であり、GC分析の結果、グリセリンカーボネートアクリレートを7%、グリセリンカーボネートのエチレンオキサイド1モル付加物のアクリレートを59%、グリセリンカーボネートのエチレンオキサイド2モル付加物のアクリレートを4%含んでいた。
 得られた化合物a2の各種分析結果を表1に示す。
0.75 parts of DEHA was added to the obtained kettle liquid, and the mixture was stirred at an internal temperature of 70 to 90 ° C. under normal pressure for 3 hours. Then, 4.5 parts of diatomaceous earth was added to the kettle liquid and pressure filtration was performed, and the obtained filtrate was used as a purified product. Hereinafter, it is referred to as compound a2.
The weight of compound a2 (filter solution) is 630 parts, and as a result of GC analysis, 7% of glycerin carbonate acrylate, 59% of acrylate of 1 mol of ethylene oxide adduct of glycerin carbonate, and 2 mol of ethylene oxide adduct of glycerin carbonate It contained 4% of the acrylate of.
Table 1 shows various analysis results of the obtained compound a2.
3)製造例3
 3リットルの分液漏斗に、製造例2で得た精製処理物を200部、ノルマルヘキサンを1525部入れ、分液漏斗を激しく振とうさせて抽出操作を行った。静置後の液は二層分離し、グリセリンカーボネートアクリレート等のカーボネート構造を持つ成分は主に下層に分配され、上層のノルマルヘキサンを主成分とする層には、グリセリントリアクリレートやグリセリンの2位の水酸基にのみエチレンオキシドが1個付加した後、トリアクリレート化された化合物、すなわちカーボネート構造を有さないアクリレート化合物が多く含まれていた。
 上層を分液漏斗から抜出し、エバポレーターにより減圧濃縮してノルマルヘキサンの大部分を蒸留液として回収した。回収したノルマルヘキサンおよび新たなノルマルヘキサンを下層の残る分液漏斗に加え、再度抽出操作を行った。この抽出操作とノルマルヘキサンの回収操作を計8回繰返した後、分液漏斗の下層を抜出し、MEHQを0.105部、TEMPOLを0.001部加えて乾燥空気をバブリングさせながら、温度60℃、圧力3~100mmHgの範囲で5時間の減圧蒸留を行い、下層に少量含まれるノルマルヘキサンを留去し、得られた釜液を精製処理物とした。以下、化合物a3という。
 化合物a3(釜液)の重量は155部であり、GC分析の結果、グリセリンカーボネートアクリレートを9%、グリセリンカーボネートのエチレンオキサイド1モル付加物のアクリレートを77%、グリセリンカーボネートのエチレンオキサイド2モル付加物のアクリレートを5%含んでいた。
 得られた化合物a3の各種分析結果を表1に示す。
3) Manufacturing example 3
200 parts of the purified product obtained in Production Example 2 and 1525 parts of normal hexane were placed in a 3 liter separatory funnel, and the separatory funnel was vigorously shaken to perform an extraction operation. The liquid after standing is separated into two layers, and the components having a carbonate structure such as glycerin carbonate acrylate are mainly distributed to the lower layer, and the upper layer containing normal hexane as a main component is the second position of glycerin triacrylate and glycerin. After one ethylene oxide was added only to the hydroxyl group of the above, a large amount of a triacrylate-ized compound, that is, an acrylate compound having no carbonate structure was contained.
The upper layer was extracted from the separatory funnel, concentrated under reduced pressure using an evaporator, and most of the normal hexane was recovered as a distillate. The recovered normal hexane and new normal hexane were added to the remaining separatory funnel in the lower layer, and the extraction operation was performed again. After repeating this extraction operation and the normal hexane recovery operation a total of 8 times, the lower layer of the separatory funnel was extracted, 0.105 parts of MEHQ and 0.001 parts of TEMPOL were added, and the temperature was 60 ° C. while bubbling dry air. Distillation was carried out under reduced pressure for 5 hours at a pressure of 3 to 100 mmHg, a small amount of normal hexane contained in the lower layer was distilled off, and the obtained pot solution was used as a purified product. Hereinafter, it is referred to as compound a3.
The weight of compound a3 (pot solution) is 155 parts, and as a result of GC analysis, 9% of glycerin carbonate acrylate, 77% of acrylate of 1 mol of ethylene oxide adduct of glycerin carbonate, and 2 mol of ethylene oxide adduct of glycerin carbonate It contained 5% of the acrylate of.
Table 1 shows various analysis results of the obtained compound a3.
4)比較製造例1〔チタン触媒を使ったエステル交換反応による製造〕
 回転子、温度計、ガス導入管、冷却管を取付けた20ミリリットルの試験管に、グリセリンカーボネートを2.502部(0.212モル)、MCAを4.958部(0.0381モル)、MEHQを0.003部、フェノチアジンを0.001部仕込み、含酸素ガス(酸素を5容量%、窒素を95容量%)を液中にバブリングさせながら反応液温度105~120℃の範囲で加熱を0.5時間行った。その後、触媒としてチタンテトラノルマルブトキシドを0.245部(0.0007モル)添加し、反応液温度105~120℃の範囲で加熱を6時間行った。
 反応液を一部採取し、HPLCを用いて組成分析を行ったが、目的物であるGlycarbo-Aの生成は確認されなかった。
4) Comparative Production Example 1 [Production by transesterification reaction using a titanium catalyst]
2.502 parts (0.212 mol) of glycerin carbonate, 4.958 parts (0.0381 mol) of MCA, MEHQ in a 20 ml test tube equipped with a rotor, thermometer, gas introduction tube, and cooling tube. 0.003 part and phenothiazine 0.001 part, and while bubbling oxygen-containing gas (5% by volume of oxygen, 95% by volume of nitrogen) in the liquid, the reaction liquid temperature is 0 in the range of 105 to 120 ° C. . I went for 5 hours. Then, 0.245 parts (0.0007 mol) of titanium tetranormalbutoxide was added as a catalyst, and heating was carried out in the reaction solution temperature range of 105 to 120 ° C. for 6 hours.
A part of the reaction solution was collected and the composition was analyzed by HPLC, but the formation of the target product, Glycarbo-A, was not confirmed.
5)比較製造例2〔脱水エステル化反応による製造〕
 撹拌機、温度計、ガス導入管、冷却管、分水管を取付けたフラスコに、グリセリンカーボネートを213.46部(1.81モル)、アクリル酸を169.90部(2.36モル)、メタンスルホン酸を6.15部、硫酸銅を0.60部、MEHQを0.61部、トルエンを210.95部仕込み、含酸素ガス(酸素を5容量%、窒素を95容量%)を液中にバブリングさせながら反応圧力370Torr、反応液温度86~90℃の範囲で7時間加熱撹拌しながら脱水反応で生じた水を分水管より抜出した。反応液を一部採取し、HPLCを用いて組成分析を行った結果、目的物であるGlycarbo-Aを含むことを確認した。
 反応液を室温まで冷却した後、トルエンを274.34部、水を87.50部加えて撹拌した。撹拌を停止して静置したところ、3層に分離した。上層は目的物を殆ど含んでおらず、トルエンが主成分であった。中間層は水層であった。下層は目的物を含む層であった。
 上層及び中間層を排出後、下層にテトラヒドロフランを250.00部、20%水酸化ナトリウム水溶液を55.48部加えて撹拌した。撹拌を停止して静置したところ、2層に分離した。下層は水層であり、上層は目的物を含む層であった。
 下層を排出後、上層に水を87.50部加えて撹拌した。撹拌を停止して静置したところ、2層に分離した。下層は水層であり、上層は目的物を含む層であった。
 下層を排出後、上層をフラスコへ移液し、MEHQを0.14部添加して乾燥空気をバブリングさせながら、温度40~80℃、圧力0.01~600mmHgの範囲で6時間の減圧蒸留を行い、テトラヒドロフラン、トルエン、水等の低沸点成分を除去した。
釜液に珪藻土〔昭和化学工業(株)製ラヂオライト(商品名)〕を1.40部添加して加圧ろ過を行い、得られたろ液を精製処理物とした。ろ液の重量は147.19部であり、HPLCを用いて組成分析を行ったところ、目的物であるGlycarbo-Aを含むことを確認した。以下、化合物a’2という。
 得られた化合物a’2(精製処理物)の各種分析結果を表1に示す。
5) Comparative production example 2 [Production by dehydration esterification reaction]
In a flask equipped with a stirrer, thermometer, gas introduction pipe, cooling pipe, and water diversion pipe, 213.46 parts (1.81 mol) of glycerin carbonate, 169.90 parts (2.36 mol) of acrylic acid, and methane. 6.15 parts of sulfonic acid, 0.60 parts of copper sulfate, 0.61 part of MEHQ, 210.95 parts of toluene, and oxygen-containing gas (5% by volume of oxygen, 95% by volume of nitrogen) in the liquid. The water produced by the dehydration reaction was withdrawn from the diversion tube while heating and stirring for 7 hours at a reaction pressure of 370 Torr and a reaction solution temperature of 86 to 90 ° C. while bubbling. A part of the reaction solution was collected and the composition was analyzed by HPLC. As a result, it was confirmed that the reaction solution contained Glycarbo-A, which was the target product.
After cooling the reaction solution to room temperature, 274.34 parts of toluene and 87.50 parts of water were added and stirred. When stirring was stopped and the mixture was allowed to stand, it was separated into three layers. The upper layer contained almost no target substance and was mainly composed of toluene. The middle layer was an aqueous layer. The lower layer was a layer containing the target substance.
After discharging the upper layer and the intermediate layer, 250.00 parts of tetrahydrofuran and 55.48 parts of a 20% aqueous sodium hydroxide solution were added to the lower layer, and the mixture was stirred. When stirring was stopped and the mixture was allowed to stand, it was separated into two layers. The lower layer was an aqueous layer, and the upper layer was a layer containing the target substance.
After discharging the lower layer, 87.50 parts of water was added to the upper layer and stirred. When stirring was stopped and the mixture was allowed to stand, it was separated into two layers. The lower layer was an aqueous layer, and the upper layer was a layer containing the target substance.
After discharging the lower layer, transfer the upper layer to a flask, add 0.14 part of MEHQ, and while bubbling dry air, perform vacuum distillation at a temperature of 40 to 80 ° C. and a pressure of 0.01 to 600 mmHg for 6 hours. Then, low boiling point components such as tetrahydrofuran, toluene and water were removed.
1.40 parts of diatomaceous earth [Radiolite (trade name) manufactured by Showa Chemical Co., Ltd.] was added to the kettle solution and pressure filtration was performed, and the obtained filtrate was used as a purified product. The weight of the filtrate was 147.19 parts, and when the composition was analyzed using HPLC, it was confirmed that the filtrate contained Glycarbo-A, which was the target product. Hereinafter, it is referred to as compound a'2.
Table 1 shows various analysis results of the obtained compound a'2 (purified product).
6)比較製造例3〔酸クロライド法による製造〕
 非特許文献〔G.ワグナーら(Gerhard Wegner et al.),マクロモレキュルズ(Macromolecules),2007年,40巻,7558-7565頁〕に記載の方法を参考に実施した。
 撹拌機、温度計、滴下漏斗、及びガス導入管を取付けた2リットルのフラスコに、グリセリンカーボネートを130.00部(1.10モル)、トリエチルアミンを111.40部(1.10モル)、テトラヒドロフランを700mL仕込み、気相部に窒素を流しながら内温0~5℃の範囲に冷却した。
 滴下漏斗に塩化アクリロイルを99.64部(1.10モル)、テトラヒドロフランを260mL仕込み、撹拌しながら内温が0~5℃の範囲になるように約3時間かけてゆっくり滴下した。
 滴下終了後1時間撹拌し、上澄み液を分液漏斗に移液し、フラスコに残った沈殿を洗浄したテトラヒドロフラン50mLを分液漏斗に加えて、飽和食塩水150mLで有機溶媒層を洗浄した。
 有機溶媒層にMEHQを0.047部、TEMPOLを0.0047部加え、乾燥空気をバブリングさせながら、温度50~70℃、圧力20~100mmHgの範囲で10時間の減圧蒸留を行い、テトラヒドロフランを含む留出液を分離した。
 加圧ろ過により固形物を分離し、得られたろ液を精製処理物とした。ろ液の重量は59.72部であり、HPLCを用いて組成分析を行ったところ、目的物であるGlycarbo-Aを含むことを確認した。以下、化合物a’3という。
 得られた化合物a’3(精製処理物)の各種分析結果を表1に示す。
6) Comparative production example 3 [Production by acid chloride method]
Non-patent document [G. Wagner et al. (Gerhard Wegner et al.), Macromolecules, 2007, Vol. 40, pp. 7558-7565].
In a 2 liter flask equipped with a stirrer, thermometer, dropping funnel, and gas introduction tube, 130.00 parts (1.10 mol) of glycerin carbonate, 111.40 parts (1.10 mol) of triethylamine, tetrahydrofuran. Was charged and cooled to an internal temperature range of 0 to 5 ° C. while flowing nitrogen through the gas phase.
99.64 parts (1.10 mol) of acryloyl chloride and 260 mL of tetrahydrofuran were charged in the dropping funnel, and the mixture was slowly added dropwise over about 3 hours with stirring so that the internal temperature was in the range of 0 to 5 ° C.
After the completion of the dropping, the mixture was stirred for 1 hour, the supernatant was transferred to a separatory funnel, 50 mL of tetrahydrofuran which washed the precipitate remaining in the flask was added to the separatory funnel, and the organic solvent layer was washed with 150 mL of saturated brine.
0.047 parts of MEHQ and 0.0047 parts of TEMPOL were added to the organic solvent layer, and while bubbling dry air, vacuum distillation was carried out at a temperature of 50 to 70 ° C. and a pressure of 20 to 100 mmHg for 10 hours to contain tetrahydrofuran. The distillate was separated.
The solid matter was separated by pressure filtration, and the obtained filtrate was used as a purified product. The weight of the filtrate was 59.72 parts, and when the composition was analyzed using HPLC, it was confirmed that the filtrate contained Glycarbo-A, which was the target product. Hereinafter, it is referred to as compound a'3.
Table 1 shows various analysis results of the obtained compound a'3 (purified product).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
2.実施例
1)活性エネルギー線硬化型組成物の製造
 下記表2~表4に示す化合物を表2に示す割合で、ステンレス製容器で撹拌・混合・溶解し、活性エネルギー線硬化型組成物を製造した。
 尚、表2~表4における数字は部数を意味し、略号は下記を意味する。
・M1200:ウレタンアクリレート〔東亞合成(株)製、商品名:アロニックスM-1200〕
・M402:ジペンタエリスリトールペンタ/ヘキサアクリレート混合物〔東亞合成(株)製、商品名:アロニックスM-402〕
・Om907:2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔IGMレジン社製、商品名:Omnirad907〕
・DETX:2,4-ジエチルチオキサントン〔日本化薬(株)製、商品名:カヤキュアDETX-S〕
・TPO:リン系光重合開始剤(2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド)〔IGMレジン社製、商品名:Omnirad TPO〕
2. Example
1) Production of active energy ray-curable composition The compounds shown in Tables 2 to 4 below were stirred, mixed and dissolved in a stainless steel container at the ratios shown in Table 2 to produce an active energy ray-curable composition.
The numbers in Tables 2 to 4 mean the number of copies, and the abbreviations mean the following.
-M1200: Urethane acrylate [manufactured by Toagosei Co., Ltd., trade name: Aronix M-1200]
-M402: Dipentaerythritol penta / hexaacrylate mixture [manufactured by Toagosei Co., Ltd., trade name: Aronix M-402]
-Om907: 2-Methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one [manufactured by IGM Resin, trade name: Omnirad907]
-DETX: 2,4-diethylthioxanthone [manufactured by Nippon Kayaku Co., Ltd., trade name: Kayacure DETX-S]
-TPO: Phosphorus-based photopolymerization initiator (2,4,6-trimethylbenzoyl-diphenylphosphine oxide) [manufactured by IGM Resin, trade name: Omnirad TPO]
2)評価方法
 得られた組成物を使用し、下記評価を行った。それらの結果を表2~表4に示す。
2) Evaluation method The following evaluation was performed using the obtained composition. The results are shown in Tables 2 to 4.
(1)粘度
 得られた組成物の粘度をE型粘度計(コーンプレート型粘度計)(25℃)で測定した。
(1) Viscosity The viscosity of the obtained composition was measured with an E-type viscometer (cone plate-type viscometer) (25 ° C.).
(2)湿熱試験
 100μm厚の易接着ポリエチレンテレフタレート(以下、「PET」という)フィルム〔東洋紡(株)製コスモシャインA4300〕に、表2で得られた組成物をバーコータで10μm厚に塗布した後、紫外線照射して組成物を硬化させた。
 紫外線照射装置は、アイグラフィックス(株)製メタルハライドランプを用い、365nmを中心とする紫外線領域(UV-A)で、照射強度200mW/cm2、積算光量2,000mJ/cm2の条件で紫外線照射した。
 紫外線照射後、得られたサンプルを85℃、85%RHの雰囲気下で100時間保持し、湿熱試験を行った。湿熱試験後の硬化膜の外観変化を目視で観察し、以下の3水準で評価した。
〇:変化なし、△:一部で発泡、剥がれなどの不具合発生、×:硬化膜全面で剥がれ発生
(2) Moist heat test After applying the composition obtained in Table 2 to a 100 μm-thick easy-adhesive polyethylene terephthalate (hereinafter referred to as “PET”) film [Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.] to a thickness of 10 μm with a bar coater. , The composition was cured by irradiation with ultraviolet rays.
The ultraviolet irradiation device uses a metal halide lamp manufactured by Eye Graphics Co., Ltd., and is ultraviolet rays in the ultraviolet region (UV-A) centered on 365 nm under the conditions of an irradiation intensity of 200 mW / cm 2 and an integrated light intensity of 2,000 mJ / cm 2. Irradiated.
After irradiation with ultraviolet rays, the obtained sample was held at an atmosphere of 85 ° C. and 85% RH for 100 hours, and a moist heat test was conducted. The change in appearance of the cured film after the moist heat test was visually observed and evaluated on the following three levels.
〇: No change, △: Problems such as foaming and peeling occurred in some parts, ×: Peeling occurred on the entire surface of the cured film
(3)絶縁信頼性
 ポリイミド/銅の積層フィルムに、ライン/スペース=100/100の櫛型パターンをフォトリソグラフィー法で形成した基板(以下、「櫛型基板」という)に、表2で得られた組成物をバーコータで10μm厚に塗布した後、湿熱試験と同様の条件で紫外線照射して組成物を硬化させた。
 上記方法で得た評価用サンプルを用いて、85℃、85%RHの雰囲気下で、20Vの電圧を連続的に印加した状態において、抵抗値が100MΩ以下になるまでの時間を測定し、絶縁信頼性試験を評価した。
(3) Insulation Reliability A substrate obtained by forming a comb-shaped pattern of line / space = 100/100 on a polyimide / copper laminated film by a photolithography method (hereinafter referred to as “comb-shaped substrate”) can be obtained in Table 2. The composition was applied to a thickness of 10 μm with a bar coater, and then irradiated with ultraviolet rays under the same conditions as in the wet heat test to cure the composition.
Using the evaluation sample obtained by the above method, the time until the resistance value becomes 100 MΩ or less is measured in a state where a voltage of 20 V is continuously applied in an atmosphere of 85 ° C. and 85% RH, and insulation is performed. The reliability test was evaluated.
(4)接着力(初期)
 100μm厚の易接着ポリエチレンテレフタレート(以下、「易接着PET」という)フィルム〔東洋紡(株)製コスモシャインA4300〕に、表3で得られた組成物をバーコータで10μm厚に塗布した後、もう一方の易接着PETをラミネートして湿熱試験と同様の条件で紫外線照射し、組成物を硬化させた。
 上記積層体を、剥離幅25mm、25℃の条件においてJIS K-6854に準じてT字剥離試験を実施し、剥離強度とした。
(4) Adhesive strength (initial)
The composition obtained in Table 3 is applied to a 100 μm-thick easy-adhesive polyethylene terephthalate (hereinafter referred to as “easy-adhesive PET”) film [Cosmo Shine A4300 manufactured by Toyobo Co., Ltd.] to a thickness of 10 μm with a bar coater, and then the other. The easy-adhesive PET of No. 1 was laminated and irradiated with ultraviolet rays under the same conditions as in the moist heat test to cure the composition.
The above laminate was subjected to a T-shaped peeling test according to JIS K-6854 under the conditions of a peeling width of 25 mm and a peeling width of 25 ° C. to obtain a peeling strength.
(5)接着力(湿熱試験後)
 (4)で得られた積層体を、85℃、85%RHの雰囲気下で100時間保持し、剥離幅25mm、25℃の条件においてJIS K-6854に準じてT字剥離試験を実施し、湿熱試験後の剥離強度とした。
(5) Adhesive strength (after wet heat test)
The laminate obtained in (4) was held for 100 hours in an atmosphere of 85 ° C. and 85% RH, and a T-shaped peeling test was carried out under the conditions of a peeling width of 25 mm and 25 ° C. according to JIS K-6854. The peel strength after the moist heat test was used.
(6)形状再現性
 ニッケルめっきされたステンレス板上に微細加工(直径3μm、膜厚5μmの半円型模様)が形成された転写用金型(以下、「ニッケル金型」という)に、表4で得られた組成物をバーコータで10μm厚に塗布した後、易接着PETをラミネートして湿熱試験と同様の条件で紫外線照射し、組成物を硬化させた。
 その後、ニッケル金型から剥離し、得られた硬化膜のパターン形状を顕微鏡にて観察し、形状の寸法を測定してニッケル金型との寸法を比較し、形状再現性を以下の2水準で評価した。
〇:ニッケル金型と硬化樹脂のパターン形状の寸法変化が5%未満、×:寸法変化が5%以上、又はパターンに欠けが見られる
(6) Shape reproducibility A transfer mold (hereinafter referred to as "nickel mold") in which fine processing (semicircular pattern with a diameter of 3 μm and a film thickness of 5 μm) is formed on a nickel-plated stainless steel plate is shown in the table. After applying the composition obtained in No. 4 to a thickness of 10 μm with a bar coater, the easy-adhesion PET was laminated and irradiated with ultraviolet rays under the same conditions as in the moist heat test to cure the composition.
After that, it was peeled off from the nickel mold, the pattern shape of the obtained cured film was observed with a microscope, the dimensions of the shape were measured, the dimensions were compared with the nickel mold, and the shape reproducibility was adjusted to the following two levels. evaluated.
〇: The dimensional change of the pattern shape of the nickel mold and the cured resin is less than 5%, ×: The dimensional change is 5% or more, or the pattern is chipped.
(7)金型腐食性
 ニッケルめっきされたステンレス板上に微細加工(直径10μm、膜厚5μmのお椀型模様)が形成された転写用金型(以下、「ニッケル金型」という)に、表4で得られた組成物をバーコータで10μm厚に塗布した後、易接着PETをラミネートして湿熱試験と同様の条件で紫外線照射し、組成物を硬化させた。
 その後、40℃、80%RHの雰囲気下で24時間保持し、金属腐食性の試験を行った。金属腐食性の試験後のニッケル金型の外観変化を目視で観察し、以下の3水準で評価した。
〇:変化なし、△:ニッケル金型の一部が変色、×:ニッケル金型の全面が変色
(7) Mold Corrosive A transfer mold (hereinafter referred to as "nickel mold") in which fine processing (a bowl pattern with a diameter of 10 μm and a film thickness of 5 μm) is formed on a corrosive nickel-plated stainless steel plate is shown in the table. After applying the composition obtained in No. 4 to a thickness of 10 μm with a bar coater, the easy-adhesion PET was laminated and irradiated with ultraviolet rays under the same conditions as in the moist heat test to cure the composition.
Then, it was held for 24 hours in an atmosphere of 40 ° C. and 80% RH, and a metal corrosiveness test was conducted. The change in appearance of the nickel mold after the metal corrosiveness test was visually observed and evaluated at the following three levels.
〇: No change, △: Part of the nickel mold is discolored, ×: The entire surface of the nickel mold is discolored
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2に基づき検討すると、製造例1~同3で得られた(A)成分(化合物a1~a3)を含む実施例1~同3の組成物は低粘度であり、かつ湿熱試験及び絶縁信頼性が良好であり、活性エネルギー線硬化型コーティング剤組成物としての性能に優れるものであった。これに対して、比較製造例2及び3で得られた(A)’成分(化合物a’2及びa’3)をそれぞれ含む比較例1及び同2の組成物は、湿熱試験で外観変化が大きく、かつ絶縁信頼性も低いものであった。
 又、表3に基づき検討すると、製造例1~同3で得られた(A)成分(化合物a1~a3)を含む実施例4~同6の組成物は、接着力及び湿熱試験に優れており、活性エネルギー線硬化型接着剤組成物としての性能に優れるものであった。これに対して、比較製造例2及び3で得られた(A)’成分(化合物a’2及びa’3)をそれぞれ含む比較例3及び同4の組成物は、湿熱試験で接着力が大きく低下した。
 又、表4に基づき検討すると、製造例1~同3で得られた(A)成分(化合物a1~a3)を含む実施例7~同9の組成物は、活性エネルギー線硬化型賦形材料組成物として用いたとき、形状再現性に優れ、かつ金型腐食性も良好なため、活性エネルギー線硬化型賦形材料組成物として好適な組成物であった。これに対し、比較製造例2及び3で得られた(A)’成分(化合物a’2及びa’3)をそれぞれ含む比較例5及び同6の組成物は、比較例5は高粘度なため形状再現性に問題があり、かつ比較例5及び6は金型腐食性に問題があり、本用途には不適な組成物であった。
Examining based on Table 2, the compositions of Examples 1 to 3 containing the components (A) (Compounds a1 to a3) obtained in Production Examples 1 to 3 have low viscosities, and have a wet heat test and insulation reliability. The properties were good, and the performance as an active energy ray-curable coating agent composition was excellent. On the other hand, the compositions of Comparative Examples 1 and 2 containing the (A)'components (compounds a'2 and a'3) obtained in Comparative Production Examples 2 and 3, respectively, showed a change in appearance in a moist heat test. It was large and had low insulation reliability.
Further, when examined based on Table 3, the compositions of Examples 4 to 6 containing the components (A) (Compounds a1 to a3) obtained in Production Examples 1 to 3 were excellent in adhesive strength and moist heat test. Therefore, it was excellent in performance as an active energy ray-curable adhesive composition. On the other hand, the compositions of Comparative Examples 3 and 4 containing the (A)'components (compounds a'2 and a'3) obtained in Comparative Production Examples 2 and 3, respectively, had an adhesive strength in a moist heat test. It dropped significantly.
Further, when examined based on Table 4, the compositions of Examples 7 to 9 containing the components (A) (Compounds a1 to a3) obtained in Production Examples 1 to 3 are active energy ray-curable shaping materials. When used as a composition, it has excellent shape reproducibility and good mold corrosiveness, so that it is a suitable composition as an active energy ray-curable shaping material composition. On the other hand, the compositions of Comparative Examples 5 and 6 containing the (A)'components (compounds a'2 and a'3) obtained in Comparative Production Examples 2 and 3, respectively, had a high viscosity in Comparative Example 5. Therefore, there is a problem in shape reproducibility, and Comparative Examples 5 and 6 have a problem in mold corrosiveness, so that the composition is not suitable for this application.
 本発明の硬化型組成物は、活性エネルギー線硬化型組成物として好ましく使用することができ、さらに無溶剤型活性エネルギー線硬化型組成物として好ましく使用することができる。
 本発明の硬化型組成物は、種々の用途に使用可能であり、塗料等のコーティング剤、接着剤、粘着剤、インキ、賦型材料等を形成するための成形剤、及びレジスト等のパターン形成剤等が挙げられ、コーティング剤、接着剤、及び賦形材料に好ましく使用することができる。
The curable composition of the present invention can be preferably used as an active energy ray-curable composition, and further preferably as a solvent-free active energy ray-curable composition.
The curable composition of the present invention can be used for various purposes, and patterns such as coating agents such as paints, adhesives, adhesives, inks, molding agents for forming excipient materials, and resists are formed. Examples thereof include agents, which can be preferably used as coating agents, adhesives, and shaping materials.

Claims (17)

  1. (A)成分を含む組成物であって、(A)成分が、下記式(a)で表される化合物を含み、(A)成分中に含まれる塩素濃度が100ppm未満であり、かつナトリウム濃度が100ppb未満である硬化型組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式(a)において、Raは、水素原子又は炭素数1~5のアルキル基を意味し、Rbは、単結合、又はオキシアルキレン基を意味する。〕
    A composition containing the component (A), wherein the component (A) contains a compound represented by the following formula (a), the chlorine concentration contained in the component (A) is less than 100 ppm, and the sodium concentration. A curable composition in which is less than 100 ppb.
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (a), Ra means a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and R b means a single bond or an oxyalkylene group. ]
  2. 式(a)で表される化合物が(2-オキソ-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレートである請求項1記載の硬化型組成物。 The curable composition according to claim 1, wherein the compound represented by the formula (a) is (2-oxo-1,3-dioxolane-4-yl) methyl (meth) acrylate.
  3. 式(a)で表される化合物が(2-オキソ-1,3-ジオキソラン-4-イル)メチルアクリレートである請求項2記載の硬化型組成物。 The curable composition according to claim 2, wherein the compound represented by the formula (a) is (2-oxo-1,3-dioxolane-4-yl) methyl acrylate.
  4. 前記(A)成分が、下記触媒X及びYの存在下に、グリセリンカーボネート、グリセリンカーボネートのアルキレンオキサイド付加物、又はこれら化合物の混合物と分子中に1個のCH2=C(R)-(C=O)-基を有する化合物をエステル交換反応させて得られる化合物の混合物である請求項1~請求項3のいずれか1項に記載の硬化型組成物。
    触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくはその錯体、ピリジン環を有する化合物又はその塩若しくは錯体、及びホスフィン又はその塩若しくは錯体からなる群から選ばれる一種以上の化合物。
    触媒Y:亜鉛を含む化合物。
    The component (A) contains one CH 2 = C (R)-(C) in the molecule with glycerin carbonate, an alkylene oxide adduct of glycerin carbonate, or a mixture of these compounds in the presence of the following catalysts X and Y. = O)-The curable composition according to any one of claims 1 to 3, which is a mixture of compounds obtained by transesterifying a compound having a group.
    Catalyst X: A type selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, amidin or a salt thereof or a complex thereof, a compound having a pyridine ring or a salt or complex thereof, and phosphine or a salt or complex thereof. The above compounds.
    Catalyst Y: A compound containing zinc.
  5. 分子中に1個のCH2=C(R)-(C=O)-基を有する化合物が、アルコキシアルキル(メタ)アクリレートである請求項4記載の硬化型組成物。 The curable composition according to claim 4, wherein the compound having one CH 2 = C (R)-(C = O) -group in the molecule is an alkoxyalkyl (meth) acrylate.
  6. 前記触媒Xが、アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくはその錯体、及びピリジン環を有する化合物又はその塩若しくは錯体よりなる群から選ばれる一種以上の化合物である請求項4又は請求項5に記載の硬化型組成物。 The catalyst X is one or more compounds selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, amidin or a salt thereof or a complex thereof, and a compound having a pyridine ring or a salt or complex thereof. The curable composition according to claim 4 or 5.
  7. 前記触媒Yが、有機酸亜鉛及び亜鉛ジケトンエノラートの少なくとも1つである請求項4~請求項6のいずれか1項に記載の硬化型組成物。 The curable composition according to any one of claims 4 to 6, wherein the catalyst Y is at least one of zinc organic acid and zinc diketone enolate.
  8. 前記(A)成分に、さらに(B)成分:光重合開始剤を含む請求項1~請求項7のいずれか1項に記載の硬化型組成物。 The curable composition according to any one of claims 1 to 7, further comprising a component (B): a photopolymerization initiator in addition to the component (A).
  9. 前記(A)成分に、さらに(C)成分:熱重合開始剤を含む請求項1~請求項8のいずれか1項に記載の硬化型組成物。 The curable composition according to any one of claims 1 to 8, further comprising a component (C): a thermal polymerization initiator in addition to the component (A).
  10. 前記(A)成分に、さらに(D)成分:(A)成分以外のエチレン性不飽和基を有する化合物を含む請求項1~請求項9のいずれか1項に記載の硬化型組成物。 The curable composition according to any one of claims 1 to 9, wherein the component (A) further contains a compound (D): a compound having an ethylenically unsaturated group other than the component (A).
  11. 請求項1~請求項10のいずれか1項に記載の硬化型組成物を含む、硬化型コーティング剤組成物。 A curable coating agent composition comprising the curable composition according to any one of claims 1 to 10.
  12. 請求項1~請求項10のいずれか1項に記載の硬化型組成物を含む、硬化型賦型材料組成物。 A curable excipient material composition comprising the curable composition according to any one of claims 1 to 10.
  13. 請求項1~請求項10のいずれか1項に記載の硬化型組成物を含む、硬化型接着剤組成物。 A curable adhesive composition comprising the curable composition according to any one of claims 1 to 10.
  14. 下記触媒X及びYの存在下に、グリセリンカーボネート、グリセリンカーボネートのアルキレンオキサイド付加物、又はこれら化合物の混合物と分子中に1個のCH2=C(R)-(C=O)-基を有する化合物をエステル交換反応させて得られる化合物の混合物であって、混合物中に含まれる塩素濃度が100ppm未満であり、かつナトリウム濃度が100ppb未満である(A)成分を製造する工程を含む、
    硬化型組成物の製造方法。
    触媒X:アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくはその錯体、ピリジン環を有する化合物又はその塩若しくは錯体、及びホスフィン又はその塩若しくは錯体からなる群から選ばれる一種以上の化合物。
    触媒Y:亜鉛を含む化合物。
    In the presence of the following catalysts X and Y, it has one CH 2 = C (R)-(C = O) -group in the molecule with glycerin carbonate, an alkylene oxide adduct of glycerin carbonate, or a mixture of these compounds. A mixture of compounds obtained by transesterifying a compound, which comprises a step of producing a component (A) having a chlorine concentration of less than 100 ppm and a sodium concentration of less than 100 ppb in the mixture.
    A method for producing a curable composition.
    Catalyst X: A type selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, amidin or a salt thereof or a complex thereof, a compound having a pyridine ring or a salt or complex thereof, and phosphine or a salt or complex thereof. The above compounds.
    Catalyst Y: A compound containing zinc.
  15. 分子中に1個のCH2=C(R)-(C=O)-基を有する化合物が、アルコキシアルキル(メタ)アクリレートである請求項14に記載の硬化型組成物の製造方法。 The method for producing a curable composition according to claim 14, wherein the compound having one CH 2 = C (R)-(C = O) -group in the molecule is an alkoxyalkyl (meth) acrylate.
  16. 前記触媒Xが、アザビシクロ構造を有する環状3級アミン又はその塩若しくは錯体、アミジン又はその塩若しくはその錯体、及びピリジン環を有する化合物又はその塩若しくは錯体よりなる群から選ばれる一種以上の化合物である請求項14又は請求項15に記載の硬化型組成物の製造方法。 The catalyst X is one or more compounds selected from the group consisting of a cyclic tertiary amine having an azabicyclo structure or a salt or complex thereof, amidin or a salt thereof or a complex thereof, and a compound having a pyridine ring or a salt or complex thereof. The method for producing a curable composition according to claim 14 or 15.
  17. 前記触媒Yが、有機酸亜鉛及び亜鉛ジケトンエノラートの少なくとも1つである請求項14~請求項16のいずれか1項に記載の硬化型組成物の製造方法。 The method for producing a curable composition according to any one of claims 14 to 16, wherein the catalyst Y is at least one of zinc organic acid and zinc diketone enolate.
PCT/JP2020/049034 2019-12-26 2020-12-25 Curable composition WO2021132693A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227021315A KR20220123397A (en) 2019-12-26 2020-12-25 curable composition
JP2021567748A JPWO2021132693A1 (en) 2019-12-26 2020-12-25
CN202080089727.5A CN114867757B (en) 2019-12-26 2020-12-25 Hardening composition, method for producing same, coating agent composition, molding material composition, and adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-235536 2019-12-26
JP2019235536 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132693A1 true WO2021132693A1 (en) 2021-07-01

Family

ID=76575276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049034 WO2021132693A1 (en) 2019-12-26 2020-12-25 Curable composition

Country Status (5)

Country Link
JP (1) JPWO2021132693A1 (en)
KR (1) KR20220123397A (en)
CN (1) CN114867757B (en)
TW (1) TW202134294A (en)
WO (1) WO2021132693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047860A1 (en) * 2021-09-24 2023-03-30 リンテック株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive, pressure-sensitive adhesive sheet, and laminate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019729A (en) * 1999-07-06 2001-01-23 Nippon Kayaku Co Ltd Resin composition and its cured material
JP2009084432A (en) * 2007-09-28 2009-04-23 Nippon Shokubai Co Ltd Curable composition
JP2011241251A (en) * 2010-05-14 2011-12-01 Sanyo Chem Ind Ltd Polymerizable compound for inkjet printing ink, and ink composition
JP2014183833A (en) * 2013-02-21 2014-10-02 Ube Ind Ltd Method for producing glycerol carbonate acrylate compounds
JP2017048172A (en) * 2015-09-03 2017-03-09 東亞合成株式会社 Production method of monofunctional (meth)acrylate
JP2018100371A (en) * 2016-12-21 2018-06-28 東亞合成株式会社 Curable composition
WO2019034716A1 (en) * 2017-08-17 2019-02-21 Basf Se Process for producing (meth)acrylates from glycerol carbonate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230136A (en) * 1999-02-08 2000-08-22 Mitsubishi Rayon Co Ltd Protective coating material composition for optical disk and optical disk
JP2001019875A (en) 1999-07-06 2001-01-23 Nippon Kayaku Co Ltd Abrasion-resistant coating composition
JP2003253092A (en) * 2002-03-01 2003-09-10 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device using the same
JP5150494B2 (en) * 2006-08-01 2013-02-20 帝人化成株式会社 Resin composition
JP5169288B2 (en) * 2007-09-21 2013-03-27 住友ベークライト株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6911620B2 (en) * 2017-08-03 2021-07-28 東亞合成株式会社 Curable composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019729A (en) * 1999-07-06 2001-01-23 Nippon Kayaku Co Ltd Resin composition and its cured material
JP2009084432A (en) * 2007-09-28 2009-04-23 Nippon Shokubai Co Ltd Curable composition
JP2011241251A (en) * 2010-05-14 2011-12-01 Sanyo Chem Ind Ltd Polymerizable compound for inkjet printing ink, and ink composition
JP2014183833A (en) * 2013-02-21 2014-10-02 Ube Ind Ltd Method for producing glycerol carbonate acrylate compounds
JP2017048172A (en) * 2015-09-03 2017-03-09 東亞合成株式会社 Production method of monofunctional (meth)acrylate
JP2018100371A (en) * 2016-12-21 2018-06-28 東亞合成株式会社 Curable composition
WO2019034716A1 (en) * 2017-08-17 2019-02-21 Basf Se Process for producing (meth)acrylates from glycerol carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047860A1 (en) * 2021-09-24 2023-03-30 リンテック株式会社 Pressure-sensitive adhesive composition, pressure-sensitive adhesive, pressure-sensitive adhesive sheet, and laminate

Also Published As

Publication number Publication date
TW202134294A (en) 2021-09-16
KR20220123397A (en) 2022-09-06
CN114867757A (en) 2022-08-05
JPWO2021132693A1 (en) 2021-07-01
CN114867757B (en) 2024-05-14

Similar Documents

Publication Publication Date Title
JP7119553B2 (en) Active energy ray-curable composition
JP7022348B2 (en) Method for producing a curable composition
JP5853859B2 (en) Active energy ray-curable adhesive composition for plastic film or sheet
JP6844105B2 (en) Curable composition
JP6493699B2 (en) Resin sheet and manufacturing method thereof
JP6519729B2 (en) Resin sheet and method for manufacturing the same
WO2021132693A1 (en) Curable composition
JP5803661B2 (en) Electron beam curable composition for optical film or optical sheet formation
JPWO2018117062A1 (en) Curable composition
WO2022225041A1 (en) Curable composition, active-energy-ray-curable composition, and active-energy-ray-curable coating composition
WO2016006497A1 (en) Active-energy-ray-curable composition
JP5891972B2 (en) Optical film or sheet, polarizer protective film, and polarizing plate
JP6927233B2 (en) Active energy ray-curable composition
JP6418053B2 (en) Manufacturing method of resin sheet
JP2022024597A (en) Curable composition
JP6485446B2 (en) Active energy ray-curable coating agent composition
JP6458379B2 (en) Active energy ray-curable composition
JP2014122987A (en) Active energy ray-curable composition for forming optical film or sheet, and optical film or sheet
JP2021105170A (en) Active energy ray-curable composition and method for producing the same
JP7363036B2 (en) (Meth)acrylate manufacturing method
JP2021046485A (en) Curable composition
JP2022184569A (en) Curable composition
JP2021017492A (en) Curable composition
JP2021088637A (en) Water-releasable curable composition
JP2022086409A (en) Active energy ray-curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907797

Country of ref document: EP

Kind code of ref document: A1