WO2021132559A1 - Polymerizable composition for optical material, molded object obtained from said composition, and use application thereof - Google Patents

Polymerizable composition for optical material, molded object obtained from said composition, and use application thereof Download PDF

Info

Publication number
WO2021132559A1
WO2021132559A1 PCT/JP2020/048717 JP2020048717W WO2021132559A1 WO 2021132559 A1 WO2021132559 A1 WO 2021132559A1 JP 2020048717 W JP2020048717 W JP 2020048717W WO 2021132559 A1 WO2021132559 A1 WO 2021132559A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
polymerizable composition
optical material
acid
polyol
Prior art date
Application number
PCT/JP2020/048717
Other languages
French (fr)
Japanese (ja)
Inventor
リベイロ,ニジェル
伸介 伊藤
河戸 伸雄
駿一 内藤
貴行 塙
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019235967A external-priority patent/JP2023011059A/en
Priority claimed from JP2020031316A external-priority patent/JP2023011060A/en
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2021132559A1 publication Critical patent/WO2021132559A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/23Photochromic filters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to a polymerizable composition for an optical material, a molded product obtained from the composition, and its use.
  • plastic lenses are lightweight, hard to break, and can be dyed, they are rapidly becoming widespread as optical materials for spectacle lenses, camera lenses, etc., and molded bodies for lenses using various plastic materials have been developed and used so far. ing.
  • Typical examples include an allyl resin obtained from diethylene glycol bisallyl carbonate or diallyl isophthalate, a (meth) acrylic resin obtained from (meth) acrylate, and a polythiourethane resin obtained from an isocyanate compound and a thiol compound. ..
  • Patent Document 1 discloses a polymerizable composition for an optical material, which comprises a compound having one or more mercapto groups, an aliphatic linear oligomer having a number average molecular weight of 200 or more, an isocyanate compound, and the like. .. The document describes that aliphatic linear oligomers such as polycaptolactone diols function as soft segments.
  • Patent Document 2 discloses a polymerizable composition for an optical material, which comprises a block copolymer, a photochromic compound, and a polythiol and polyiso (thio) cyanate compounds.
  • Patent Document 3 discloses a polymerizable composition for an optical material, which comprises a polyether polyol, a photochromic compound, and a polythiol and a polyiso (thio) cyanate compound.
  • Patent Document 4 describes that p-toluenesulfonic acid and the like have an effect of improving the pot life of polyurethane.
  • Patent Document 4 does not describe the use of polyols (polyether polyols, polyester polyols).
  • the present inventors can solve the above-mentioned problems by using a polyol compound, a polymerization-reactive compound other than the polyol compound, and an acid having a pKa of a predetermined value or an anhydride thereof in combination. And completed the present invention.
  • Composition [4] The polymerizable composition for an optical material according to any one of [1] to [3], which contains 200 ppm or more of an acid (b1).
  • R 1 represents an alkyl group of C1 to C5, a haloalkyl group of C1 to C5, and a substituted or unsubstituted phenyl group.
  • R 2 represents a hydrogen atom, an alkyl group of C1 ⁇ C5, a haloalkyl group of C1 ⁇ C5, a substituted or unsubstituted phenyl group.
  • X is a carbon atom and R 1 is a haloalkyl group of C1 to C5.
  • Q represents a divalent group derived from a diol, or a 3 to 30 valent group derived from a polyol having at least three primary alcohol groups, and m is 3 to 30.
  • An integer of 10 is indicated, n is an integer of 2 to 200, and the number of multiple ns existing may be the same or different.
  • Q indicates an integer of 2 to 30.
  • the polyiso (thio) cyanate compound is an aliphatic polyiso (thio) cyanate compound, an alicyclic polyiso (thio) cyanate compound, or an aromatic polyiso (thio) cyanate compound [1] to [12].
  • the polymerizable composition for an optical material according to any one of.
  • a primer coat layer is provided between the lens base material and the hard coat layer.
  • An optical material comprising the molded product according to any one of [17] to [19] or the laminate according to [20] or [21].
  • a plastic lens made of the molded product according to any one of [17] to [19] or the laminated body according to [19] or [20].
  • At least one polyol compound selected from (a) polyether polyol (a1) and polyester polyol (a2), (b1) an acid having a pKa of less than 0, and (c) a polyiso (thio) cyanate compound.
  • a method for producing a polymerizable composition for an optical material which comprises a polymerization-reactive compound (excluding polyol (a)) containing a bifunctional or higher active hydrogen compound.
  • a method for producing a polymerizable composition for an optical material which comprises. [25] At least one polyol compound selected from (a) polyether polyol (a1) and polyester polyol (a2), (b1) an acid having a pKa of less than 0, and (c) a polyiso (thio) cyanate compound.
  • a method for producing a polymerizable composition for an optical material which comprises a polymerization-reactive compound (excluding polyol (a)) containing a bifunctional or higher active hydrogen compound and (e) an internal release agent.
  • a polythiol compound is contained as the bifunctional or higher active hydrogen compound, and the compound is contained.
  • An acid (b1) having a pKa of less than 0 is mixed with the mixed solution obtained in the above step, and then a polythiol compound is mixed.
  • a method for producing a polymerizable composition for an optical material which comprises.
  • Example a1 It is a TEM photograph of the molded article prepared in Example a1. It is a TEM photograph of the molded article prepared in Example a2. It is a TEM photograph of the molded article prepared in Example a3. It is a TEM photograph of the molded article prepared in Example a4. It is a TEM photograph of the molded article prepared in Example a5. It is a TEM photograph of the molded article prepared in Example a6. It is a TEM photograph of the molded article prepared in the comparative example a1.
  • the polymerizable composition for an optical material of the present invention is At least one polyol compound (a) selected from the polyether polyol (a1) and the polyester polyol (a2), and At least one compound (b) selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
  • the polymerizable composition for an optical material of the present invention may further contain an internal mold release agent (d), a tin catalyst (e), a photochromic compound (f) and the like.
  • an internal mold release agent d
  • a tin catalyst e
  • a photochromic compound f
  • the components described in the following embodiments can be used.
  • the present invention will be described with reference to the first embodiment and the second embodiment.
  • the same components are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the polymerizable composition for an optical material of the present embodiment is At least one polyol compound (a) selected from the polyether polyol (a1) and the polyester polyol (a2), and Acids with a pKa of less than 0 (b1) and A polymerization-reactive compound (c) (excluding the polyol compound (a)) and.
  • a plastic lens is required to have excellent impact resistance in order to prevent cracking due to an impact such as dropping. Further, the plastic lens is also required to have excellent dyeability from the viewpoint of fashionability and the like.
  • Patent Documents 1 to 4 there is room for improvement in both impact resistance and dyeability. Further, the polymerizable composition obtained by mixing each component may have a high thickening rate after mixing, and there is room for improvement in handleability (pot life).
  • the polymerizable composition for optical materials of the present embodiment it is possible to obtain a molded product having excellent handleability (pot life), impact resistance and dyeability. Further, the polymerizable composition for an optical material of the present invention is excellent in handleability (pot life), is also excellent in transparency, heat resistance, impact resistance and dyeability, and is capable of generating optical strain (pulse). It is possible to obtain a molded product that is suppressed, has excellent light resistance, and has an excellent balance of these characteristics.
  • the polyol compound (a) of the present embodiment comprises at least one selected from the polyether polyol (a1) and the polyester polyol (a2).
  • the weight average molecular weight of the polyol compound (a) can be 2000 or more, preferably 5000 or more, and more preferably 10000 or more. Further, from the viewpoint of maintaining good transparency of the resin, it can be set to 20000 or less, preferably 15000 or less.
  • polyether polyol (a1) As the polyether polyol (a1), a known compound can be used as long as the effects of the present invention can be obtained.
  • the polyether polyol (a1) can contain a compound represented by the following general formula (a1).
  • R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and at least one of them is a hydrogen atom.
  • R 1 each other there are two or more may be the same or different, R 2 each other existing in plural numbers may be the same or different.
  • m represents an integer of 15 or more and 500 or less.
  • the compound represented by the general formula (a1) can have a weight average molecular weight of 2000 or more, preferably 5000 or more, and more preferably 10000 or more. Further, from the viewpoint of maintaining good transparency of the resin, it can be set to 20000 or less, preferably 15000 or less.
  • one or a combination of two or more selected from the compounds represented by the general formula (a1) can be used as the polyether polyol (a1).
  • a compound represented by the following general formula (a1-1) can be specifically used.
  • R 3 and R 4 represent a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and at least one of them is a hydrogen atom.
  • a + c is an integer of 2 or more and 499 or less, preferably 2 or more and 400 or less
  • b is an integer of 1 or more and 300 or less, preferably 1 or more and 100 or less.
  • a plurality of R 3 and R 4 may be the same or different.
  • Examples of such compounds include the Pluronic series manufactured by BASF.
  • the structure of the compound contained in Pluronic is shown in Non-Patent Document 1.
  • the terminal hydroxyl group of the compound represented by the general formula (a1) may react with the polymerizable compound (c) such as isocyanate.
  • the compound represented by the following general formula (a1-2) or the following general formula (a1-3) can be used as the compound represented by the general formula (a1-1).
  • a, b, and c each indicate the number of units, and each is an integer of 3 or more and 300 or less independently.
  • Examples of such compounds include the Pluronic series (manufactured by BASF).
  • a, b, and c each indicate the number of units, and each is an integer of 3 or more and 300 or less independently.
  • Examples of such compounds include the Pluronic R series (manufactured by BASF).
  • polyester polyol (a2) As the polyester polyol (a2), a known compound can be used as long as the effects of the present invention can be obtained.
  • the polyester polyol (a2) can contain a compound represented by the following general formula (a2).
  • Q represents a divalent group derived from a diol, or a 3 to 30 valent group derived from a polyol having at least three primary alcohol groups, and m is 3 to 10 Indicates an integer of, n indicates an integer of 2 to 200, and the number of n that exists may be the same or different. q indicates an integer of 2 to 30.
  • the oxygen atom directly connected to Q is an oxygen atom derived from a diol or an oxygen atom derived from a polyol.
  • diol examples include ethylene glycol, propylene glycol, neopentyl glycol, 1,2-propanediol, 1,4-butanediol, and 1,6-hexanediol.
  • polyol having at least three primary alcohol groups examples include trimethylolpropane, pentaerythritol, dipentaerythritol and the like.
  • a compound having a weight average molecular weight of 1000 or more, preferably 2000 or more, and more preferably 3000 or more can be used from the viewpoint of the effect of the present embodiment. Further, from the viewpoint of maintaining good transparency of the resin, it can be 10,000 or less, preferably 5,000 or less.
  • CAPA polycaprolactone polyol series manufactured by PERSTORP, PLACCEL series manufactured by DEICEL, and the like can be used. These alcohol compounds may be used alone or as a mixture of two or more.
  • polyether polyol (a1) represented by the general formula (a1) and the polyester polyol (a2) represented by the general formula (a2) can be used in combination.
  • the polymerizable composition for an optical material of the present embodiment has handleability (pot life) because thickening is suppressed by using an acid (b1) having a pKa of less than 0 together with the component (a) and the component (c). ), And a molded product having excellent impact resistance and dyeability can be obtained.
  • the acid (b1) having a pKa of less than 0 hydrochloric acid (pKa: -3.7), methanesulfonic acid (pKa: -2.6), and p-toluenesulfonic acid (pKa: -2. 8), vinyl sulfonic acid (pKa: -2.7) and the like can be mentioned, with hydrochloric acid, methane sulfonic acid, p-toluene sulfonic acid and vinyl sulfonic acid being preferable, and hydrochloric acid, methane sulfonic acid and vinyl sulfonic acid being more preferable. preferable.
  • the acid (b1) having a pKa of less than 0 can include at least one selected from these.
  • thickening is suppressed, so that a polymerizable composition for an optical material having excellent handleability (pot life) can be obtained, and the composition has more impact resistance and dyeability.
  • An excellent molded product can be obtained.
  • the polymerizable composition for an optical material of the present embodiment can contain an acid (b1) having a pKa of less than 0 from the viewpoint of the effect of the present embodiment at 200 ppm or more, preferably 300 ppm or more, and more preferably 500 ppm or more. ..
  • the upper limit is not particularly limited, but from the viewpoint of handleability of the polymerizable composition for optical materials, it can be 5000 ppm or less, preferably 3000 ppm or less, and more preferably 2000 ppm or less.
  • Polymerization-reactive compound (c) A polymerizable functional group capable of self-polymerization, copolymerization, or addition polymerization in the presence or absence of an initiator and an additive such as a catalyst added to the polymerization-reactive compound (c) as needed.
  • a polymerization-reactive compound having at least one of the above is included.
  • the polymerization-reactive compound (c) does not contain the polymer (a).
  • polymerization-reactive compound a known compound can be used as long as the effects of the present invention can be obtained.
  • a polyiso (thio) cyanate compound having two or more isocyanato groups or isothiocyanato groups, an epoxy group or a thioepoxy group.
  • the polymerization-reactive compound (c) contains the polyiso (thio) cyanate compound and the bifunctional or higher active hydrogen compound.
  • polyiso (thio) cyanate compound examples include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate.
  • An aliphatic polyisocyanate compound such as lysine diisocyanatomethyl ester, lysine triisocyanate, xylylene diisocyanate; Isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, bis (isocyanatocyclohexyl) methane, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) ) Bicyclo- [2.2.1] -heptane, 3,8-bis (isocyanatomethyl) tricyclodecane, 3,9-bis (isocyanatomethyl) tricyclodecane, 4,8-bis (isocyanatomethyl) ) Alicyclic polyisocyanate compounds such as tricyclodecane, 4,9-bis (isocyanatomethyl) tricyclodecane; Aromatic polyisocyanate compounds such as tolylene di
  • bifunctional or higher active hydrogen compound examples include a poly (thio) all compound having two or more hydroxy groups or mercapto groups, a polyamine compound having two or more amino groups or secondary amino groups, and a poly having two or more carboxyl groups. Examples thereof include carboxylic acid compounds. Further, a compound having two or more active hydrogen groups selected from a hydroxy group, a mercapto group, an amino group, a second amino group, a carboxyl group and the like in one molecule can also be mentioned. Two or more active hydrogen groups may be the same or different.
  • polyol compound examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butylene glycol, methanolyl glycol, glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, butanetriol, 1,2-.
  • Methylglucoside pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, sreitol, ribitol, arabinitol, xylitol, aritol, manitol, zulcitol, iditol, glycol, inositol, hexanetriol, triglycerose, diglycerol, triethylene Glycol, polyethylene glycol, tris (2-hydroxyethyl) isocyanurate, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, tricyclo [5.2.1.
  • polythiol compounds examples include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, and diethylene glycol bis.
  • the polymerizable composition for an optical material of the present invention may further contain an internal mold release agent (d) for the purpose of improving the mold release property from the mold after molding.
  • the internal mold release agent (d) is not particularly limited, and conventionally known ones can be used, and examples thereof include acidic phosphoric acid esters. Examples of the acidic phosphoric acid ester include phosphoric acid monoester and phosphoric acid diester, which can be used alone or in combination of two or more.
  • ZelekUN manufactured by STEPAN
  • internal mold release agent for MR manufactured by Mitsui Chemicals
  • JP series manufactured by Johoku Chemical Industry Co., Ltd.
  • Phosphanol series manufactured by Toho Chemical Industry Co., Ltd.
  • Daihachi Chemical Industry Co., Ltd. AP DP series and the like manufactured by Kogyo Co., Ltd.
  • ZelekUN manufactured by STEPAN
  • an internal mold release agent for MR manufactured by Mitsui Chemicals Co., Ltd.
  • JP series manufactured by Johoku Chemical Industry Co., Ltd. are more preferable.
  • the amount of the internal mold release agent (d) used is not particularly limited, but is in the range of 0.0001 to 10 parts by weight with respect to 100 parts by weight of the polymerizable composition for optical materials.
  • the polymerizable composition for an optical material of the present embodiment may further contain a tin catalyst (e). ..
  • a tin catalyst (e) When the tin catalyst (e) is contained, the polymerizable composition for optical materials tends to thicken and the pot life tends to be shortened, but the polymerizable composition for optical materials of the present embodiment has an acid (b1) having a pKa of less than 0. ) Is included, so it is excellent in the effect of suppressing thickening, and the pot life can be improved while making the best use of the catalytic performance of the tin catalyst.
  • tin catalyst (e) examples include dibutyl tin dilaurate, dibutyl tin dichloride, dimethyl tin dichloride, and the like, and one or more of them can be used in combination.
  • the amount of the tin catalyst (e) used is not particularly limited, but is in the range of 0 to 10 parts by weight with respect to 100 parts by weight of the polymerization-reactive compound (c).
  • the polymerizable composition for an optical material of the present embodiment can further contain a photochromic compound (f).
  • Examples of the photochromic compound (f) include compounds whose absorption characteristics (absorption spectrum) change with respect to light of a specific wavelength.
  • Known photochromic compounds can be used, for example, naphthopyran, chromene, spiropyran, spiroxazine and thiospiropirane, benzopyran, stilbene, azobenzene, thioindigo, bisimidazole, spirodihydroindidine, quinine, perimidine spiro
  • Examples include compounds derived from compounds such as cyclohexadienone, viologen, flugide, flugimid, diarylethene, hydrazine, aniline, aryldisulfide, arylthiosulfonate, spiroperimidine, triarylmethane.
  • the component (d) added as needed, the component (e) or the component (f), ultraviolet absorption is absorbed. It may further contain an agent, a light stabilizer, a polymerization catalyst, a resin modifier and the like.
  • the polymerizable composition for an optical material of the present embodiment can be obtained by mixing the above components by a conventionally known method.
  • the polymerization-reactive compound (c) contains a polyiso (thio) cyanate compound and a bifunctional or higher functional hydrogen compound, the following from the viewpoint of handleability and obtaining a desired composition, the following Can be obtained by the method.
  • a polyiso (thio) cyanate compound, a polyol compound (a), and an acid (b1) having a pKa of less than 0 are mixed to prepare a mixed solution, and then a bifunctional or higher active hydrogen is added to the mixed solution.
  • a bifunctional or higher active hydrogen compounds may be added to the mixed solution all at once, or may be added gradually.
  • the polymerizable composition for an optical material of the present embodiment contains an internal mold release agent (d), and the polymerization reactive compound (c) is a polyiso (thio) cyanate compound and a bifunctional or higher functional hydrogen compound.
  • the polythiol compound When the polythiol compound is contained, it can be obtained by the following method from the viewpoint of handleability and obtaining a desired composition.
  • the internal mold release agent (d) and the polyiso (thio) cyanate compound are mixed, and then the polyol compound (a) is mixed. Then, an acid (b1) having a pKa of less than 0 is mixed with the obtained mixed solution, and then a polythiol compound is mixed.
  • the polyol compound (a) and the acid (b1) may be added to the mixed solution all at once, or may be added gradually.
  • a molded product can be obtained by curing the polymerizable composition for an optical material.
  • the molded product of the present embodiment contains a microphase-separated structure of the polyol compound (a). Since the molded product contains a microphase-separated structure, it is superior in impact resistance and dyeability.
  • the impact absorption and hydrophilicity are improved by including the micro-phase separation structure in the molded body, especially in the vicinity of the surface of the molded body. As a result, it is considered to be superior in impact resistance and dyeability.
  • the microphase-separated structure tends to be unevenly distributed near the surface of the molded product, and it is considered that the shock absorption and hydrophilicity are further improved.
  • the average particle size of the microphase-separated structure is 1 to 50 nm, preferably 2 to 30 nm, and more preferably 5 to 20 nm from the viewpoint of the effect of the present embodiment. The average particle size can be measured by cross-sectional TEM analysis.
  • the molded product of the present embodiment can be used as various optical materials by forming a desired shape and providing a coat layer, other members, or the like formed as needed.
  • the optical material examples include a plastic lens, a light emitting diode (LED), a prism, an optical fiber, an information recording substrate, a filter, and the like.
  • a plastic lens it is suitable as a plastic lens.
  • the plastic lens made of the molded product of the present embodiment will be described.
  • the plastic lens can be manufactured as follows.
  • the plastic lens of the present embodiment is usually produced by a casting polymerization method using the above-mentioned polymerizable composition for an optical material.
  • the method for producing a plastic lens of the present embodiment includes a step of forming a lens base material by cast polymerization of a polymerizable composition for an optical material.
  • the obtained composition of the present embodiment is injected into a cavity composed of a glass mold and a gasket or tape, and is polymerized and cured by heating or irradiating with radiation such as ultraviolet rays other than infrared rays.
  • a resin of the form and a plastic lens base material made of the resin are manufactured.
  • the polymerization-reactive compound (c) polymerizes to form a resin, and the polymer (a) forms a microphase-separated structure, and the resin, the microphase-separated structure, and the acid (b1) are combined.
  • a plastic lens base material made of the above can be obtained.
  • the polymerization conditions are not limited because they differ greatly depending on the polymerizable composition for optical materials, the type and amount of catalyst used, the shape of the mold, etc., but are not limited, but are approximately 1 to 150 ° C. It takes 50 hours.
  • the lens base material obtained by removing the mold from the mold may be reheated (annealed) as necessary for the purpose of completing polymerization or removing strain due to residual stress.
  • a laminated body may be provided in which a hard coat layer and an antireflection layer are provided in this order on a lens base material made of a molded product. From the viewpoint of impact resistance, it is also preferable to provide a primer coat layer between the lens base material and the hard coat layer.
  • the coating agent used for the primer layer examples include polyester resin, polyamide resin, polyurethane resin, epoxy resin, phenol resin, (meth) acrylic resin, polyvinyl acetate resin, polyethylene and polypropylene.
  • a coating agent containing a polyolefin resin or a copolymer or a modified resin thereof, a resin such as a cellulose resin as the main component of the vehicle can be used.
  • the laminated body can be provided with a functional coat layer such as a dimming coat layer and an antistatic coat as other layers. Furthermore, various functions such as dyeing for fashionability, polishing of the surface and edges, and putting a polarizing film inside or sticking to the surface for the purpose of imparting polarization. Processing or the like that imparts sex may be performed.
  • a functional coat layer such as a dimming coat layer and an antistatic coat as other layers.
  • various functions such as dyeing for fashionability, polishing of the surface and edges, and putting a polarizing film inside or sticking to the surface for the purpose of imparting polarization. Processing or the like that imparts sex may be performed.
  • the surface of the obtained lens base material was subjected to corona treatment, ozone treatment, oxygen gas, nitrogen gas, or the like.
  • Physical or chemical treatments such as low temperature plasma treatment, glow discharge treatment, oxidation treatment with chemicals, flame treatment and the like can also be performed.
  • the plastic lens of the present embodiment made of the molded body or laminated body thus obtained can be used for various lens applications such as a glasses lens, a camera lens, a pickup lens, a fullnel lens, a prism lens, and a lenticular lens.
  • lens applications such as a glasses lens, a camera lens, a pickup lens, a fullnel lens, a prism lens, and a lenticular lens.
  • particularly preferable applications include spectacle lenses, camera lenses, and pickup lenses having a smooth surface.
  • the polymerizable composition for an optical material of the present embodiment is with a polyether polyol (a1), At least one compound (b) selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
  • the polymerizable composition for an optical material of the present invention is excellent in handleability (pot life) by containing these components.
  • Polyether polyol (a1) As the polyether polyol (a1), a known compound can be used as long as the effects of the present invention can be obtained.
  • polyether polyol (a1) comprises at least one segment of the polyether and is either polyester, polycarbonate, poly (meth) acrylate, polyamide, polyethyleneimine, polysiloxane, polysulfide, polyolefin, or polystyrene.
  • polyether polyol (a1) is a linear polyether block copolymer having at least two different segments.
  • the structure of the segment has a divalent organic group derived from ethylene glycolate, propylene glycolate, butylene glycolate and the like, and a divalent organic group derived from thiolates such as ethanedithiolate and propanedithiolate.
  • the segment structure can be mentioned.
  • the polyether block copolymer is a branched block copolymer such as a dendrimer, a star block copolymer, a graft block copolymer or the like.
  • Branched block copolymers may have at least three branched chains made from a combination of at least two different segments.
  • the structure of the branched chain portion includes, for example, a trivalent organic group derived from glycerol, trioxyethylamine, trioxyethyl (alkyl) ammonium salt, etc., and a tetravalent organic group derived from ethylenediamine, alkylammonium salt, etc.
  • Tetraoxyethylenediamine Tetraoxyethylenediamine, tetravalent organic group derived from oxy form of pentaerythritol, hexavalent organic group derived from oxy form of dipentaerythritol, etc., structure having trivalent or higher organic group Can be mentioned.
  • the polyether is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, and polybutylene glycol.
  • the polyester includes, but is not limited to, a composition obtained from the condensation of a dicarboxylic acid and a diol. Examples of the dicarboxylic acid include adipic acid, succinic acid and the like, or a combination thereof.
  • diol examples include ethylene-1,2-diol, butane-1,4-diol, hexane-1,6-diol, propane-1,2-diol, 3-methylpentane-1,5-diol, and 2-.
  • polyester examples include polycaprolactone, polybutyrolactone, polyvalerolactone, polylactic acid, polyglycolic acid, or a combination thereof.
  • the polycarbonate is not particularly limited, and examples thereof include a composition obtained by condensation of carbonate and diol.
  • diol examples include ethylene-1,2-diol, butane-1,4-diol, hexane-1,6-diol, propane-1,2-diol, 3-methylpentane-1,5-diol, and 2-.
  • Methylpropane-1,3-diol, 2,2-dimethylpropane-1,3-diol, pentane-1,5-diol, heptane-1,7-diol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene Glycol and the like, or a combination thereof can be mentioned.
  • the poly (meth) acrylate is not particularly limited, but is limited to methyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and benzyl.
  • (Meta) acrylate, phenyl (meth) acrylate and the like, or a combination thereof can be mentioned.
  • the polyamide is not particularly limited, and examples thereof include a composition obtained by condensation of a dicarboxylic acid and a diamine.
  • examples of the dicarboxylic acid include adipic acid, succinic acid and the like, or a combination thereof.
  • examples of the diamine include hexamethylenediamine and the like.
  • polyamide examples include lactam such as polycaprolactam.
  • polyethyleneimine chain which is a polymer chain examples include a polyethyleneimine chain, a polypropionyl aziridine chain, a polyacetyl aziridine chain, and a polyformyl aziridine chain.
  • polysiloxane chain which is a polymer chain
  • examples of the polysiloxane chain include a polydimethylsiloxane chain and a polymethylphenylsiloxane chain.
  • the polysulfide may contain a polyethylene sulfide chain or the like.
  • examples of the polyolefin include polyethylene, polypropylene and the like, or a combination thereof.
  • examples of the polystyrene include polystyrene, polystyrene sulfonate, and the like, or a combination thereof.
  • the polyether block copolymer of the present embodiment can preferably form micelles by microphase separation and provide a uniformly dispersed nano-sized structure.
  • the micellar structure may be contained in the cured polyurethane thermosetting resin or may be formed during the curing process.
  • the morphology of micelles depends on the nature, concentration, and temperature of the block copolymer and can include, for example, spherical, worm-like, and vesicular.
  • the micellar structure contributes to useful properties such as improved resin toughness, and is effective for functional molecules such as photochromic dyes while maintaining the glass transition temperature, mechanical and optical properties of poly (thio) urethane resins. Can be dispersed in.
  • the polyether polyol (a1) can contain the compound represented by the general formula (a1) in the first embodiment. Since the compound represented by the general formula (a1) is the same as that of the first embodiment, the description thereof will be omitted.
  • the compound (b) is at least one selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
  • the acid (b1) having a pKa of less than 0 the compound exemplified in the first embodiment can be used.
  • the anhydride (b2) of the acid having a pKa of less than 0 a known compound can be used as long as the effect of the present invention can be obtained, and the anhydride of the acid (b1) can be mentioned.
  • Examples of the compound (b) include a compound (b') represented by the following general formula (1), and one kind or a mixture of two or more kinds can be used. In this embodiment, it is preferable to include compound (b').
  • n represents 0 or 1.
  • R 1 represents an alkyl group of C1 to C5, a haloalkyl group of C1 to C5, and a substituted or unsubstituted phenyl group.
  • R 2 represents a hydrogen atom, an alkyl group of C1 ⁇ C5, a haloalkyl group of C1 ⁇ C5, a substituted or unsubstituted phenyl group.
  • Examples of the substituent of the substituted phenyl group include a halogen atom, a hydroxyl group, a carboxyl group, an amino group, an alkyl group of C1 to C3, a haloalkyl group of C1 to C3, and the like.
  • the compound (b') contains at least one selected from methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic anhydride, and methanesulfonic acid anhydride.
  • the polymerizable composition for an optical material of the present embodiment contains the compound (b') in an amount of 10 ppm or more, preferably 50 ppm or more, more preferably 100 ppm or more, from the viewpoint of the effect of the present embodiment.
  • the compound (b') is a compound in which X is a carbon atom and R 1 is a haloalkyl group of C1 to C5 in the general formula (1), or X is a carbon atom and R. 1 is an alkyl group of C1, n is 0, and R 2 is free of acetic acid, which is a hydrogen atom.
  • Examples of the compound excluded from the compound (b') include trifluoroacetic anhydride and the like.
  • the above-mentioned acid (b1) having a pKa of less than 0 and the anhydride (b2) of the acid having a pKa of less than 0 can be mixed and used.
  • the mixing ratio (b1: b2) in that case is not particularly limited, but is 5:95 to 95: 5.
  • the compound (b) is more preferably the compound (b') represented by the general formula (1).
  • the polymerization-reactive compound (c) has a polymerizable functional group capable of self-polymerization, copolymerization, or addition polymerization in the presence or absence of an initiator and an additive such as a catalyst, which are added as necessary. A polymerization-reactive compound having at least one is included.
  • the polymerization-reactive compound (c) does not contain the polyether polyol (a1). Since the polymerization-reactive compound (c) in the present embodiment is the same as that in the first embodiment, the description thereof will be omitted.
  • the polymerizable composition for an optical material of the present invention may further contain an internal mold release agent (d) for the purpose of improving the mold release property from the mold after molding.
  • an internal mold release agent (d) for the purpose of improving the mold release property from the mold after molding.
  • the internal mold release agent (d) the same one as in the first embodiment can be used.
  • the polymerizable composition for an optical material of the present embodiment may further contain a tin catalyst (e). ..
  • the polymerizable composition for optical materials tends to thicken and the pot life tends to be shortened, but the polymerizable composition for optical materials of the present embodiment is anhydrous with an acid having a pKa of less than 0. Since it contains a substance (b2), it has an excellent effect of suppressing thickening, and can improve the pot life while making the best use of the catalytic performance of the tin catalyst.
  • tin catalyst (e) examples include dibutyl tin dilaurate, dibutyl tin dichloride, dimethyl tin dichloride, and the like, and one or more of them can be used in combination.
  • the amount of the tin catalyst (e) used is not particularly limited, but is in the range of 0 to 10 parts by weight with respect to 100 parts by weight of the polymerization-reactive compound (c).
  • the polymerizable composition for an optical material of the present embodiment can further contain a photochromic compound (f).
  • the same compound as in the first embodiment can be used.
  • the component (d) added as needed, the component (e) or the component (f), ultraviolet absorption is absorbed. It may further contain an agent, a light stabilizer, a polymerization catalyst, a resin modifier and the like.
  • the polymerizable composition for an optical material of the present embodiment can be obtained by mixing the above components by a conventionally known method.
  • a molded product can be obtained by curing the polymerizable composition for an optical material.
  • the molded product of the present embodiment can be used as various optical materials by forming a desired shape and providing a coat layer, other members, or the like formed as needed.
  • the optical material examples include a plastic lens, a light emitting diode (LED), a prism, an optical fiber, an information recording substrate, a filter, and the like.
  • a plastic lens it is suitable as a plastic lens.
  • the plastic lens made of the molded product of the present embodiment will be described.
  • the plastic lens can be manufactured as follows.
  • the plastic lens of the present embodiment is usually produced by a casting polymerization method using the above-mentioned polymerizable composition for an optical material.
  • the method for producing a plastic lens of the present embodiment includes a step of forming a lens base material by cast polymerization of a polymerizable composition for an optical material. Each step is the same as that of the first embodiment, and the description thereof will be omitted.
  • the plastic lens of the present embodiment made of the molded body or laminated body thus obtained can be used for various lens applications such as a glasses lens, a camera lens, a pickup lens, a fullnel lens, a prism lens, and a lenticular lens.
  • lens applications such as a glasses lens, a camera lens, a pickup lens, a fullnel lens, a prism lens, and a lenticular lens.
  • particularly preferable applications include spectacle lenses, camera lenses, and pickup lenses having a smooth surface.
  • Example A First, the evaluation method in Example A of the present invention is shown below. ⁇ Evaluation method> -Viscosity: After adjusting the polymerizable composition for an optical material of the present embodiment, stirring was continued at 15 ° C. for 5 hours in a nitrogen atmosphere, and then BROOKFIELD ENGINEERING LABS. INC. The viscosity of the composition was measured using a B-type viscometer (model: LVT) manufactured by the same company.
  • HAZE value Using a haze meter (model number: NDH 2000) manufactured by Nippon Denshoku Kogyo Co., Ltd., the HAZE value of a 2.5 mm thick flat plate resin was measured. If the HAZE value is less than 0.70, it can be used as a lens without any problem.
  • Refractive index (ne), Abbe number ( ⁇ e) Using Shimadzu's Purfrich refractometer KPR-30, wavelength 546.1 nm (mercury e-line), wavelength 480.0 nm (Cd F'line) and wavelength 643.9 nm. The refractive index (ne, nF', nC') at (CdC'line) was measured, and the refractive index (ne) and Abbe number ( ⁇ e) were determined, respectively.
  • Tg The glass transition temperature Tg was measured by the TMA penation method (50 g load, pin tip 0.5 mm ⁇ , heating rate 10 ° C./min).
  • -Relative density Measured by the Archimedes method.
  • a dyeing solution prepared by dissolving 40 g of a dye (BPI gray / Brain Power Inc.) in 1960 g of water is heated to 90 ° C., and a 9.0 mm ⁇ 50.0 mm ⁇ 1.4 mm test piece is immersed for 60 minutes. After that, the transmittance at each wavelength was measured with an ultraviolet-visible spectrophotometer.
  • Example a1 49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (manufactured by Sigma Aldrich; trade name: Pluronic F-127) 1.98 weight The part was charged and reacted at 20 ° C. for 1 hour.
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 45 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C.
  • Example a2 49.58 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (manufactured by Sigma Aldrich; trade name: Pluronic F-77) 1.98 weight The part was charged and reacted at 20 ° C. for 1 hour.
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 44 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C.
  • Example a3 49.61 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (manufactured by Sigma Aldrich; trade name: Pluronic L-64) 1.98 weight The part was charged and reacted at 20 ° C. for 1 hour.
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 40 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C.
  • Example a4 49.61 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Was mixed and dissolved to prepare a uniform solution, and then 1.98 parts by weight of polycaprolactone diol (manufactured by Perstop; trade name CAPA 2302A) having a weight average molecular weight of 3000 was charged and reacted at 20 ° C. for 1 hour.
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583
  • internal mold release agent manufactured by Johoku Chemical Co., Ltd .; trade name JP506H
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 41 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C.
  • Example a5 39.60 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Was mixed and dissolved to prepare a uniform solution, and then 1.98 parts by weight of polycaprolactone diol (manufactured by Perstop; trade name CAPA 2403D) having a weight average molecular weight of 4000 was charged and reacted at 20 ° C. for 1 hour.
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583
  • internal mold release agent manufactured by Johoku Chemical Co., Ltd .; trade name JP506H
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 42 parts by weight were mixed and dissolved to prepare a uniform solution.
  • a uniform solution obtained by mixing and dissolving 0.0060 parts by weight of dimethyltin dichloride (manufactured by Honjo Chemical Co., Ltd .; trade name Nestin P) as a tin catalyst in 10.0 parts by weight of metaxylylene diisocyanate is added to the prepared solution and mixed. It was dissolved to give a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold.
  • the releasability was good, and no peeling of the mold was observed.
  • the obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was observed from the TEM photograph that particles having a diameter of 5 to 20 nm were uniformly dispersed in the resin.
  • the composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
  • Example a6 39.61 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Was mixed and dissolved to prepare a uniform solution, and then 1.98 parts by weight of polycaprolactone diol (manufactured by Perstop; trade name CAPA 2302A) having a weight average molecular weight of 3000 was charged and reacted at 20 ° C. for 1 hour.
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583
  • internal mold release agent manufactured by Johoku Chemical Co., Ltd .; trade name JP506H
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 41 parts by weight were mixed and dissolved to prepare a uniform solution.
  • a uniform solution obtained by mixing and dissolving 0.0060 parts by weight of dimethyltin dichloride (manufactured by Honjo Chemical Co., Ltd .; trade name Nestin P) as a tin catalyst in 10.0 parts by weight of metaxylylene diisocyanate is added to the prepared solution and mixed. It was dissolved to give a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold.
  • the releasability was good, and no peeling of the mold was observed.
  • the obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was observed from the TEM photograph that particles having a diameter of 5 to 8 nm were uniformly dispersed in the resin.
  • the composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
  • Example a7 Hydrogen chloride gas was blown into metaxylylene diisocyanate to dissolve it, and a solution having a hydrogen chloride concentration of 3000 ppm was prepared. To 33.3 parts by weight of this solution, 16.3 parts by weight of metaxylylene diisocyanate was added, 1.50 parts by weight of an ultraviolet absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name: Biosorb 583), and an internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; Product name JP506H) After mixing and dissolving 0.30 parts by weight to make a uniform solution, polyoxyethylene polyoxypropylene glycol having a weight average molecular weight of 13300 (manufactured by Sigma Aldrich; trade name Pluronic F-127) 1.98 parts by weight Was charged and reacted at 20 ° C.
  • an ultraviolet absorber manufactured by Kyodo Yakuhin Co., Ltd .; trade name: Biosorb 583
  • Example a8 49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H)
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583
  • internal mold release agent manufactured by Johoku Chemical Co., Ltd .; trade name JP506H
  • To obtain a uniform solution 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time.
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 45 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C.
  • Example a9 49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H)
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583
  • internal mold release agent manufactured by Johoku Chemical Co., Ltd .; trade name JP506H
  • polyoxyethylene polyoxypropylene glycol manufactured by Sigma Aldrich; trade name: Pluronic F-127 having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time.
  • Example a10 39.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H)
  • UV absorber manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583
  • internal mold release agent manufactured by Johoku Chemical Co., Ltd .; trade name JP506H
  • To obtain a uniform solution 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time.
  • compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 45 parts by weight were mixed and dissolved to prepare a uniform solution.
  • a uniform solution obtained by mixing and dissolving 0.0020 parts by weight of dimethyltin dichloride (manufactured by Honjo Chemical Co., Ltd .; trade name Nestin P) as a tin catalyst in 10.0 parts by weight of metaxylylene diisocyanate is added to the prepared solution and mixed. It was dissolved to give a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. Table 1 shows the composition and the evaluation results of the obtained molded product.
  • the releasability was good, and no peeling of the mold was observed.
  • the obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, no particles were confirmed in the resin from the TEM photograph.
  • the composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
  • 0.10 parts by weight of formic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-di.
  • Composition 48.45 weight containing mercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane The parts were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C.
  • the obtained molded product was further annealed at 120 ° C. for 2 hours.
  • the obtained molded product had a heat resistance of 95 ° C. and was transparent, but many cracks were generated, so that the physical properties could not be evaluated.
  • P1 Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (Pluronic F-127 manufactured by Sigma Aldrich) having a weight average molecular weight of 13333.
  • P2 Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (Pluronic F-77 manufactured by Sigma Aldrich) having a weight average molecular weight of 6800.
  • P3 Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (Pluronic L-64 manufactured by Sigma Aldrich) having a weight average molecular weight of 2900.
  • P4 Poly (caprolactone) diol having a weight average molecular weight of 3000 (CAPA2302A manufactured by Polyester)
  • P5 Poly (caprolactone) diol having a weight average molecular weight of 4000 (CAPA2403D manufactured by Perstop)
  • the thiourethane urethane molded products of Examples a1 to a10 are excellent in impact resistance and dyeability as compared with Comparative Example a1 which is a thiourethane molded product containing no polyol compound (a) and acid (b1). It was excellent in balance with various physical properties as other optical materials.
  • the thiourethane urethane molded articles of Examples a1 to a10 have a gradual increase in the viscosity of the formulation as compared with the thiourethane urethane molded articles (Comparative Examples a2 to a4) in which an acid having a pKa of 0 or more is used as an additive. Therefore, it is excellent in handleability, can be handled smoothly in the process of manufacturing an optical material, and has an excellent appearance with less occurrence of optical distortion. Further, in the thiourethane urethane molded product to which formic acid was added (Comparative Example a2), a large amount of cracks were generated in the resin during the curing process, and the physical properties could not be evaluated.
  • Example a1 The laminate in which the hard coat layer and the antireflection layer are laminated on the thiourethane urethane molded body of Example a1 is compared with the laminate in which the hard coat layer and the antireflection layer are laminated on the thiourethane urethane molded body of Examples a2 to a10. As a result, it was superior in impact resistance, and the appearance was superior because no veins were confirmed in the molded body itself.
  • the laminate obtained by laminating the primer layer, the hard coat layer and the antireflection layer on the thiourethane urethane molded body of Example a1 and Example a10 is the thiourethane molded body of Comparative Example a1 and the primer layer, the hard coat layer and the antireflection layer. It was superior in impact resistance as compared with the laminated body in which the above was laminated.
  • the thiourethane urethane molded product obtained from the polymerizable composition for optical materials of the present invention is excellent in transparency, heat resistance, impact resistance and dyeability, and the occurrence of optical strain (pulse) is suppressed. It was excellent in light resistance and a good balance of these characteristics.
  • the thiourethane urethane molded product obtained from the polymerizable composition for optical materials of the present invention can be suitably used in various optical materials that require high transparency, especially in spectacle lenses.
  • Example B First, the evaluation method in Example B of the present invention is shown below.
  • -Fading speed t1 / 2 (fading half-life): After irradiating the molded product with light for 15 minutes in the same manner as above, the absorbance of the molded product sample at 550 nm recovers to an intermediate value before and after color development after the light irradiation is stopped. The time (s) required for the above was measured. This time was defined as the fading half-life. A molded product with a fast fading half-life is judged to have good dimming performance.
  • Example b1 2.0 parts by weight of polyol L64 (manufactured by Kaneka) as a polyether polyol (a), 0.2 parts by weight of acidic phosphate ester JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), and methanesulfonic acid as a compound (b). 0.01 part by weight of (manufactured by Tokyo Kasei Co., Ltd.) and 40.22 parts by weight of metaxylylene diisocyanate were mixed at room temperature.
  • polyol L64 manufactured by Kaneka
  • acidic phosphate ester JP-506H manufactured by Johoku Chemical Industry Co., Ltd.
  • methanesulfonic acid as a compound (b).
  • 0.01 part by weight of (manufactured by Tokyo Kasei Co., Ltd.) and 40.22 parts by weight of metaxylylene diisocyanate were mixed at room temperature.
  • a polymerizable composition was prepared by adding 10 parts by weight of metaxylylene diisocyanate in which 0.005 parts by weight of dimethyltin dichloride (manufactured by Tokyo Kasei) was dissolved. This polymerizable composition is stirred at 20 ° C., and the viscosity of the polymerizable composition after 1 hour, 3 hours, and 5 hours have passed immediately after the preparation of the polymerizable composition is measured using a B-type viscometer (manufactured by Brookfield). And measured. The measurement results are shown in Table-1.
  • Example b1 [Reference Example b1, Examples b2 to b13, Comparative Examples b1 to b10] The description in Example b1 except that the types and amounts of the polyether polyol (a) and the compound (b) and the amount of the tin catalyst (d) added were changed to the values shown in Tables 1 and 2. A polymerizable composition was prepared by the method and the viscosity was measured. The measurement results are shown in Table 4 and Table-5.
  • Example b14 0.078 parts by weight of Reveracol Wembley Gray (manufactured by Vivid) as a photochromic compound (f), 0.064 parts by weight of Reveracol Heath green (manufactured by Vivimed), and polyol L64 (manufactured by Kaneka) 2 as a polyether polyol (a). .0 parts by weight, 0.2 parts by weight of acidic phosphate ester JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), 0.05 parts by weight of methanesulfonic acid (manufactured by Tokyo Kasei) as compound (b), and metaxylylene.
  • a polymerizable composition by adding 10 parts by weight of methylxylylene diisocyanate in which 0.004 parts by weight of dimethyltin dichloride (manufactured by Tokyo Kasei Co., Ltd.) was dissolved, the polymerizable composition was stirred at 20 ° C. for 1 hour. did.
  • the polymerizable composition was filtered through a 1 ⁇ m PTFE membrane filter while depressurizing at a depressurization degree of 133 to 400 Pa using a vacuum pump, and degassing was performed with a vacuum pump for 40 minutes while stirring until the bubbles disappeared. ..
  • the polymerizable composition was poured into a glass mold having a thickness of 2 mm, and the temperature was raised from room temperature to 120 ° C. in an oven to cure the polymerizable composition to prepare a molded product.
  • the viscosity of the polymerizable composition did not increase rapidly during the preparation of the polymerizable composition, and the polymerizable composition could be injected into the glass mold.
  • the measurement results of the photochromic characteristics are shown in Table-6.
  • Example b15 A molded product was prepared by the method described in Example b14 and the photochromic characteristics were measured, except that the type and the amount of compound (b) added were changed to the values shown in Table 3. The measurement results are shown in Table-6.
  • PEG2000 Polyethylene glycol (weight average molecular weight 2000, manufactured by Sigma Aldrich)
  • PPG2000 Polypropylene glycol (weight average molecular weight 2000, manufactured by Sigma Aldrich)
  • Polyol L64 Block PEG / PPG (manufactured by Kaneka Corporation)
  • DMC Dimethyltin dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • MSA Methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), pKa: -2.6
  • MSANA Sodium methanesulfonate (manufactured by Wako Kagaku)
  • MSAA Methanesulfonic acid anhydride (manufactured by Wako Kagaku)
  • Phosphoric acid Phosphoric acid (manufactured by Wako Kagaku)
  • pKa 2.12 PTSA: p-toluenesulfonic acid (man

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The polymerizable composition for an optical material according to the present invention contains: at least one polyol compound (a) selected from (a1) polyether polyols and (a2) polyester polyols; at least one compound (b) selected from (b1) acids having a pKa less than 0 and (b2) anhydrides of acids having a pKa less than 0; and a polymerization reactive compound (c) (excluding the polyol compound (a)) including a polyiso(thio)cyanate compound and an active hydrogen compound having two or more functional groups.

Description

光学材料用重合性組成物、当該組成物から得られる成形体およびその用途Polymerizable compositions for optical materials, molded articles obtained from the compositions and their uses
 本発明は、光学材料用重合性組成物、当該組成物から得られる成形体およびその用途に関する。 The present invention relates to a polymerizable composition for an optical material, a molded product obtained from the composition, and its use.
 プラスチックレンズは、軽量で割れ難く、染色が可能なため眼鏡レンズ、カメラレンズ等の光学材料として急速に普及してきており、これまでに様々なプラスチック材料を用いたレンズ用成形体が開発され使用されている。 Since plastic lenses are lightweight, hard to break, and can be dyed, they are rapidly becoming widespread as optical materials for spectacle lenses, camera lenses, etc., and molded bodies for lenses using various plastic materials have been developed and used so far. ing.
 代表的な例としては、ジエチレングリコールビスアリルカーボネートやジアリルイソフタレートから得られるアリル樹脂や、(メタ)アクリレートから得られる(メタ)アクリル樹脂、イソシアネート化合物とチオール化合物から得られるポリチオウレタン樹脂が挙げられる。 Typical examples include an allyl resin obtained from diethylene glycol bisallyl carbonate or diallyl isophthalate, a (meth) acrylic resin obtained from (meth) acrylate, and a polythiourethane resin obtained from an isocyanate compound and a thiol compound. ..
 特許文献1には、メルカプト基を1個以上有する化合物と、数平均分子量200以上の脂肪族直鎖状オリゴマーと、イソシアネート化合物等と、を含む、光学材料用重合性組成物が開示されている。当該文献には、ポリカプトラクトンジオール等の脂肪族直鎖状オリゴマーがソフトセグメントとして機能することが記載されている。 Patent Document 1 discloses a polymerizable composition for an optical material, which comprises a compound having one or more mercapto groups, an aliphatic linear oligomer having a number average molecular weight of 200 or more, an isocyanate compound, and the like. .. The document describes that aliphatic linear oligomers such as polycaptolactone diols function as soft segments.
 特許文献2には、ブロックコポリマーと、フォトクロミック化合物と、ポリチオールおよびポリイソ(チオ)シアナート化合物と、を含む、光学材料用重合性組成物が開示されている。 Patent Document 2 discloses a polymerizable composition for an optical material, which comprises a block copolymer, a photochromic compound, and a polythiol and polyiso (thio) cyanate compounds.
 特許文献3には、ポリエーテルポリオールと、フォトクロミック化合物と、ポリチオールおよびポリイソ(チオ)シアナート化合物と、を含む、光学材料用重合性組成物が開示されている。 Patent Document 3 discloses a polymerizable composition for an optical material, which comprises a polyether polyol, a photochromic compound, and a polythiol and a polyiso (thio) cyanate compound.
 特許文献4には、p-トルエンスルホン酸等がポリウレタンのポットライフを改善する効果があると記載されている。 Patent Document 4 describes that p-toluenesulfonic acid and the like have an effect of improving the pot life of polyurethane.
特開2006-265402号公報Japanese Unexamined Patent Publication No. 2006-265402 国際公開第2018/070383号International Publication No. 2018/070383 国際公開第2019/117305号International Publication No. 2019/117305 米国特許番号4,877,829号U.S. Pat. No. 4,877,829
 特許文献1~3の従来技術においては、重合性組成物が増粘することからハンドリング性(ポットライフ)に改善の余地があった。特許文献4には、ポリオール(ポリエーテルポリオール、ポリエステルポリオール)を用いることについては記載されていない。 In the prior arts of Patent Documents 1 to 3, there was room for improvement in handleability (pot life) because the polymerizable composition thickened. Patent Document 4 does not describe the use of polyols (polyether polyols, polyester polyols).
 本発明者らは鋭意検討の結果、ポリオール化合物と、該ポリオール化合物以外の重合反応性化合物と、pKaが所定の値である酸またはその無水物とを組み合わせて用いることにより、前記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent studies, the present inventors can solve the above-mentioned problems by using a polyol compound, a polymerization-reactive compound other than the polyol compound, and an acid having a pKa of a predetermined value or an anhydride thereof in combination. And completed the present invention.
 すなわち、本発明は、以下に示すことができる。
[1](a)ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物と、
(b)pKaが0未満の酸(b1)およびpKaが0未満の酸の無水物(b2)から選択される少なくとも1種の化合物と、
(c)ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(ポリオール化合物(a)を除く)と、
を含む、光学材料用重合性組成物。
[2] 化合物(b)がpKaが0未満の酸(b1)である、[1]に記載の光学材料用重合性組成物。
[3] 酸(b1)は、塩酸、メタンスルホン酸、p-トルエンスルホン酸、およびビニルスルホン酸から選択される少なくとも1種を含む、[1]または[2]に記載の光学材料用重合性組成物。
[4] 酸(b1)を200ppm以上含む、[1]~[3]のいずれかに記載の光学材料用重合性組成物。
[5] ポリオール化合物(a)の重量平均分子量が2000以上である、[1]~[4]のいずれかに記載の光学材料用重合性組成物。
[6] ポリオール化合物(a)がポリエーテルポリオール(a1)である、[1]に記載の光学材料用重合性組成物。
[7] 化合物(b)が、下記一般式(1)で表される化合物(b’)を含む、[1]または[6]に記載の光学材料用重合性組成物。
Figure JPOXMLDOC01-appb-C000004
(一般式(1)中、Xは炭素原子またはS(=O)を示す。nは0または1を示す。
はC1~C5のアルキル基、C1~C5のハロアルキル基、置換または無置換のフェニル基を示す。
は水素原子、C1~C5のアルキル基、C1~C5のハロアルキル基、置換または無置換のフェニル基を示す。
ただし、Xが炭素原子であり、かつRがC1~C5のハロアルキル基である場合を除く。)
[8] 化合物(b’)は、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸無水物、メタンスルホン酸無水物から選択される少なくとも1種を含む、[7]に記載の光学材料用重合性組成物。
[9] 化合物(b’)を10ppm以上含む、[7]または[8]に記載の光学材料用重合性組成物。
[10] ポリエーテルポリオール(a1)はポリオキシエチレン鎖を備える化合物を含む、[1]~[9]のいずれかに記載の光学材料用重合性組成物。
[11] ポリエーテルポリオール(a1)は下記一般式(a1)で表される化合物を含む、[1]~[10]のいずれかに記載の光学材料用重合性組成物。
Figure JPOXMLDOC01-appb-C000005
(一般式(a1)中、RおよびRは、水素原子あるいは炭素数1~18のアルキル基を表し、少なくともどちらか一方は水素原子である。複数存在するR同士は同一または相異なっていてもよく、複数存在するR同士は同一または相異なっていてもよい。mは15以上500以下の整数を示す。)
[12] ポリエステルポリオール(a2)は下記一般式(a2)で表される化合物を含む、[1]~[5]のいずれかに記載の光学材料用重合性組成物。
Figure JPOXMLDOC01-appb-C000006
(一般式(a2)中、Qは、ジオールから誘導される2価の基、または少なくとも3つの第1級アルコール基を有するポリオールから誘導される3~30価の基を表し、mは3~10の整数を示し、nは2~200の整数を示し、複数存在するnの数は同一でも異なっていてもよい。qは2~30の整数を示す。)
[13] 前記ポリイソ(チオ)シアネート化合物が、脂肪族ポリイソ(チオ)シアネート化合物、脂環族ポリイソ(チオ)シアネート化合物、または芳香族ポリイソ(チオ)シアネート化合物である、[1]~[12]のいずれかに記載の光学材料用重合性組成物。
[14] さらに内部離型剤(d)を含む、[1]~[13]のいずれかに記載の光学材料用重合性組成物。
[15] さらにスズ触媒(e)を含む、[1]~[14]のいずれかに記載の光学材料用重合性組成物。
[16] さらにフォトクロミック化合物(f)を含む、[1]~[15]のいずれかに記載の光学材料用重合性組成物。
[17] [1]~[16]のいずれかに記載の光学材料用重合性組成物を硬化した成形体。
[18] [1]~[5]のいずれかに記載の光学材料用重合性組成物を硬化してなり、ポリオール化合物(a)のミクロ相分離構造体を含む、成形体。
[19] 前記ミクロ相分離構造体の平均粒径は1~50nmである、[18]に記載の成形体。
[20] [18]または[19]に記載の成形体からなるレンズ基材と、
 ハードコート層と、
 反射防止層と、
をこの順で備える、積層体。
[21] 前記レンズ基材と前記ハードコート層との間に、プライマーコート層を備える、[20]に記載の積層体。
[22] [17]~[19]のいずれかに記載の成形体または[20]または[21]に記載の積層体からなる光学材料。
[23] [17]~[19]のいずれかに記載の成形体または[19]または[20]に記載の積層体からなるプラスチックレンズ。
[24] (a)ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物と、(b1)pKaが0未満の酸と、(c)ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(ポリオール(a)を除く)と、を含む、光学材料用重合性組成物の製造方法であって、
 前記ポリイソ(チオ)シアネート化合物と、ポリオール化合物(a)と、pKaが0未満の酸(b1)と、を混合する工程と、
 前記工程で得られた混合液に、二官能以上の前記活性水素化合物を混合する工程と、
を含む、光学材料用重合性組成物の製造方法。
[25] (a)ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物と、(b1)pKaが0未満の酸と、(c)ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(ポリオール(a)を除く)と、(e)内部離型剤とを含む、光学材料用重合性組成物の製造方法であって、
 二官能以上の前記活性水素化合物としてポリチオール化合物を含み、
 内部離型剤(d)と前記ポリイソ(チオ)シアネート化合物とを混合し、次いでポリオール化合物(a)を混合する工程と、
 前記工程で得られた混合液に、pKaが0未満の酸(b1)を混合し、次いでポリチオール化合物を混合する工程と、
を含む、光学材料用重合性組成物の製造方法。
That is, the present invention can be shown below.
[1] (a) At least one polyol compound selected from the polyether polyol (a1) and the polyester polyol (a2), and
(B) At least one compound selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
(C) Polymerization-reactive compounds (excluding polyol compound (a)) containing polyiso (thio) cyanate compounds and bifunctional or higher active hydrogen compounds, and
A polymerizable composition for an optical material, which comprises.
[2] The polymerizable composition for an optical material according to [1], wherein the compound (b) is an acid (b1) having a pKa of less than 0.
[3] The polymerizable property for an optical material according to [1] or [2], wherein the acid (b1) contains at least one selected from hydrochloric acid, methanesulfonic acid, p-toluenesulfonic acid, and vinylsulfonic acid. Composition.
[4] The polymerizable composition for an optical material according to any one of [1] to [3], which contains 200 ppm or more of an acid (b1).
[5] The polymerizable composition for an optical material according to any one of [1] to [4], wherein the polyol compound (a) has a weight average molecular weight of 2000 or more.
[6] The polymerizable composition for an optical material according to [1], wherein the polyol compound (a) is a polyether polyol (a1).
[7] The polymerizable composition for an optical material according to [1] or [6], wherein the compound (b) contains a compound (b') represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
(In the general formula (1), X represents a carbon atom or S (= O), and n represents 0 or 1.
R 1 represents an alkyl group of C1 to C5, a haloalkyl group of C1 to C5, and a substituted or unsubstituted phenyl group.
R 2 represents a hydrogen atom, an alkyl group of C1 ~ C5, a haloalkyl group of C1 ~ C5, a substituted or unsubstituted phenyl group.
However, this excludes the case where X is a carbon atom and R 1 is a haloalkyl group of C1 to C5. )
[8] The optical material according to [7], wherein the compound (b') contains at least one selected from methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic anhydride, and methanesulfonic acid anhydride. Polymerizable composition for use.
[9] The polymerizable composition for an optical material according to [7] or [8], which contains 10 ppm or more of the compound (b').
[10] The polymerizable composition for an optical material according to any one of [1] to [9], wherein the polyether polyol (a1) contains a compound having a polyoxyethylene chain.
[11] The polymerizable composition for an optical material according to any one of [1] to [10], wherein the polyether polyol (a1) contains a compound represented by the following general formula (a1).
Figure JPOXMLDOC01-appb-C000005
In (formula (a1), R 1 and R 2 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, is at least either a hydrogen atom. R 1 each other there are plural same or different R 2 may be the same or different from each other. M indicates an integer of 15 or more and 500 or less.)
[12] The polymerizable composition for an optical material according to any one of [1] to [5], wherein the polyester polyol (a2) contains a compound represented by the following general formula (a2).
Figure JPOXMLDOC01-appb-C000006
(In the general formula (a2), Q represents a divalent group derived from a diol, or a 3 to 30 valent group derived from a polyol having at least three primary alcohol groups, and m is 3 to 30. An integer of 10 is indicated, n is an integer of 2 to 200, and the number of multiple ns existing may be the same or different. Q indicates an integer of 2 to 30.)
[13] The polyiso (thio) cyanate compound is an aliphatic polyiso (thio) cyanate compound, an alicyclic polyiso (thio) cyanate compound, or an aromatic polyiso (thio) cyanate compound [1] to [12]. The polymerizable composition for an optical material according to any one of.
[14] The polymerizable composition for an optical material according to any one of [1] to [13], further comprising an internal mold release agent (d).
[15] The polymerizable composition for an optical material according to any one of [1] to [14], further comprising a tin catalyst (e).
[16] The polymerizable composition for an optical material according to any one of [1] to [15], which further comprises a photochromic compound (f).
[17] A molded product obtained by curing the polymerizable composition for an optical material according to any one of [1] to [16].
[18] A molded product obtained by curing the polymerizable composition for an optical material according to any one of [1] to [5] and containing a microphase-separated structure of the polyol compound (a).
[19] The molded product according to [18], wherein the microphase-separated structure has an average particle size of 1 to 50 nm.
[20] The lens base material made of the molded product according to [18] or [19],
Hard coat layer and
Anti-reflective layer and
In this order, a laminated body.
[21] The laminate according to [20], wherein a primer coat layer is provided between the lens base material and the hard coat layer.
[22] An optical material comprising the molded product according to any one of [17] to [19] or the laminate according to [20] or [21].
[23] A plastic lens made of the molded product according to any one of [17] to [19] or the laminated body according to [19] or [20].
[24] At least one polyol compound selected from (a) polyether polyol (a1) and polyester polyol (a2), (b1) an acid having a pKa of less than 0, and (c) a polyiso (thio) cyanate compound. A method for producing a polymerizable composition for an optical material, which comprises a polymerization-reactive compound (excluding polyol (a)) containing a bifunctional or higher active hydrogen compound.
A step of mixing the polyiso (thio) cyanate compound, the polyol compound (a), and the acid (b1) having a pKa of less than 0.
A step of mixing the bifunctional or higher active hydrogen compound with the mixed solution obtained in the above step, and a step of mixing the active hydrogen compound.
A method for producing a polymerizable composition for an optical material, which comprises.
[25] At least one polyol compound selected from (a) polyether polyol (a1) and polyester polyol (a2), (b1) an acid having a pKa of less than 0, and (c) a polyiso (thio) cyanate compound. A method for producing a polymerizable composition for an optical material, which comprises a polymerization-reactive compound (excluding polyol (a)) containing a bifunctional or higher active hydrogen compound and (e) an internal release agent.
A polythiol compound is contained as the bifunctional or higher active hydrogen compound, and the compound is contained.
A step of mixing the internal release agent (d) and the polyiso (thio) cyanate compound, and then mixing the polyol compound (a).
An acid (b1) having a pKa of less than 0 is mixed with the mixed solution obtained in the above step, and then a polythiol compound is mixed.
A method for producing a polymerizable composition for an optical material, which comprises.
 本発明によれば、ハンドリング性(ポットライフ)に優れた光学材料用重合性組成物を提供することができる。 According to the present invention, it is possible to provide a polymerizable composition for an optical material having excellent handleability (pot life).
実施例a1で作成した成形体のTEM写真である。It is a TEM photograph of the molded article prepared in Example a1. 実施例a2で作成した成形体のTEM写真である。It is a TEM photograph of the molded article prepared in Example a2. 実施例a3で作成した成形体のTEM写真である。It is a TEM photograph of the molded article prepared in Example a3. 実施例a4で作成した成形体のTEM写真である。It is a TEM photograph of the molded article prepared in Example a4. 実施例a5で作成した成形体のTEM写真である。It is a TEM photograph of the molded article prepared in Example a5. 実施例a6で作成した成形体のTEM写真である。It is a TEM photograph of the molded article prepared in Example a6. 比較例a1で作成した成形体のTEM写真である。It is a TEM photograph of the molded article prepared in the comparative example a1.
 本発明の光学材料用重合性組成物は、
 ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物(a)と、
 pKaが0未満の酸(b1)およびpKaが0未満の酸の無水物(b2)から選択される少なくとも1種の化合物(b)と、
 ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(c)(ポリオール化合物(a)を除く)と、
を含む。
 本発明によれば、ハンドリング性(ポットライフ)に優れた光学材料用重合性組成物を提供することができる。
 本発明の光学材料用重合性組成物は、さらに、内部離型剤(d)、スズ触媒(e)、フォトクロミック化合物(f)等を含むこともできる。なお、各成分については、下記の実施形態に記載の成分を用いることができる。
 以下、本発明を第1実施形態、第2実施形態により説明する。なお、同様な構成要素には同様の符号を付し、適宜説明を省略する。
The polymerizable composition for an optical material of the present invention is
At least one polyol compound (a) selected from the polyether polyol (a1) and the polyester polyol (a2), and
At least one compound (b) selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
Polymerization-reactive compounds (c) containing polyiso (thio) cyanate compounds and bifunctional or higher active hydrogen compounds (excluding polyol compound (a)), and
including.
According to the present invention, it is possible to provide a polymerizable composition for an optical material having excellent handleability (pot life).
The polymerizable composition for an optical material of the present invention may further contain an internal mold release agent (d), a tin catalyst (e), a photochromic compound (f) and the like. For each component, the components described in the following embodiments can be used.
Hereinafter, the present invention will be described with reference to the first embodiment and the second embodiment. The same components are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
[第1実施形態]
 本実施形態の光学材料用重合性組成物は、
 ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物(a)と、
 pKaが0未満の酸(b1)と、
 重合反応性化合物(c)(ポリオール化合物(a)を除く)と、を含む。
[First Embodiment]
The polymerizable composition for an optical material of the present embodiment is
At least one polyol compound (a) selected from the polyether polyol (a1) and the polyester polyol (a2), and
Acids with a pKa of less than 0 (b1) and
A polymerization-reactive compound (c) (excluding the polyol compound (a)) and.
 一般に、プラスチックレンズは落下等の衝撃による割れを防止するため耐衝撃性に優れることが要求される。また、プラスチックレンズは、ファッション性等の観点から染色性に優れることも要求される。
 特許文献1~4においては、耐衝撃性および染色性の両立において改善の余地があった。さらに、各成分を混合して得られた重合性組成物は、混合後の増粘速度が速い場合がありハンドリング性(ポットライフ)に改善の余地があった。
Generally, a plastic lens is required to have excellent impact resistance in order to prevent cracking due to an impact such as dropping. Further, the plastic lens is also required to have excellent dyeability from the viewpoint of fashionability and the like.
In Patent Documents 1 to 4, there is room for improvement in both impact resistance and dyeability. Further, the polymerizable composition obtained by mixing each component may have a high thickening rate after mixing, and there is room for improvement in handleability (pot life).
 本実施形態の光学材料用重合性組成物によれば、ハンドリング性(ポットライフ)に優れ、耐衝撃性および染色性に優れた成形体を得ることができる。さらに、本発明の光学材料用重合性組成物は、ハンドリング性(ポットライフ)に優れるとともに、さらに透明性、耐熱性、耐衝撃性および染色性に優れ、且つ光学歪み(脈理)の発生が抑制され、且つ耐光性に優れ、これらの特性のバランスに優れる成形体を得ることができる。 According to the polymerizable composition for optical materials of the present embodiment, it is possible to obtain a molded product having excellent handleability (pot life), impact resistance and dyeability. Further, the polymerizable composition for an optical material of the present invention is excellent in handleability (pot life), is also excellent in transparency, heat resistance, impact resistance and dyeability, and is capable of generating optical strain (pulse). It is possible to obtain a molded product that is suppressed, has excellent light resistance, and has an excellent balance of these characteristics.
[ポリオール化合物(a)]
 本実施形態のポリオール化合物(a)は、ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種からなる。
[Polyol compound (a)]
The polyol compound (a) of the present embodiment comprises at least one selected from the polyether polyol (a1) and the polyester polyol (a2).
 ポリオール化合物(a)の重量平均分子量は、本実施形態の効果の観点から、2000以上、好ましくは5000以上、さらに好ましくは10000以上とすることができる。また、樹脂の透明性を良好に保つ観点から、20000以下、好ましくは15000以下とすることができる。 From the viewpoint of the effect of the present embodiment, the weight average molecular weight of the polyol compound (a) can be 2000 or more, preferably 5000 or more, and more preferably 10000 or more. Further, from the viewpoint of maintaining good transparency of the resin, it can be set to 20000 or less, preferably 15000 or less.
(ポリエーテルポリオール(a1))
 ポリエーテルポリオール(a1)は、本発明の効果を得ることができれば公知の化合物を用いることができる。
 本実施形態において、ポリエーテルポリオール(a1)は、下記一般式(a1)で表される化合物を含むことができる。
(Polyester polyol (a1))
As the polyether polyol (a1), a known compound can be used as long as the effects of the present invention can be obtained.
In the present embodiment, the polyether polyol (a1) can contain a compound represented by the following general formula (a1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(a1)中、RおよびRは、水素原子あるいは炭素数1~18のアルキル基を表し、少なくともどちらか一方は水素原子である。複数存在するR同士は同一または相異なっていてもよく、複数存在するR同士は同一または相異なっていてもよい。mは15以上500以下の整数を示す。
 一般式(a1)で表される化合物は、本実施形態の効果の観点から、重量平均分子量が2000以上、好ましくは5000以上、さらに好ましくは10000以上とすることができる。また、樹脂の透明性を良好に保つ観点から、20000以下、好ましくは15000以下とすることができる。
In the general formula (a1), R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and at least one of them is a hydrogen atom. R 1 each other there are two or more may be the same or different, R 2 each other existing in plural numbers may be the same or different. m represents an integer of 15 or more and 500 or less.
From the viewpoint of the effect of the present embodiment, the compound represented by the general formula (a1) can have a weight average molecular weight of 2000 or more, preferably 5000 or more, and more preferably 10000 or more. Further, from the viewpoint of maintaining good transparency of the resin, it can be set to 20000 or less, preferably 15000 or less.
 本実施形態においては、ポリエーテルポリオール(a1)として一般式(a1)で表される化合物から選択される1種または2種以上を組み合わせて用いることができる。
 一般式(a1)で表される化合物としては、具体的に下記一般式(a1-1)で表される化合物を用いることができる。
In the present embodiment, one or a combination of two or more selected from the compounds represented by the general formula (a1) can be used as the polyether polyol (a1).
As the compound represented by the general formula (a1), a compound represented by the following general formula (a1-1) can be specifically used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(a1-1)中、RおよびRは、水素原子あるいは炭素数1~18のアルキル基を表し、少なくともどちらか一方は水素原子である。a+cは2以上499以下、好ましくは2以上400以下の整数であり、bは1以上300以下、好ましくは1以上100以下の整数を表す。複数存在するRおよびRは、同一でも異なっていてもよい。 In the general formula (a1-1), R 3 and R 4 represent a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, and at least one of them is a hydrogen atom. a + c is an integer of 2 or more and 499 or less, preferably 2 or more and 400 or less, and b is an integer of 1 or more and 300 or less, preferably 1 or more and 100 or less. A plurality of R 3 and R 4 may be the same or different.
 このような化合物の例としてはBASF社製のプルロニック(Pluronic)シリーズなどが挙げられる。プルロニックに含まれる化合物の構造は非特許文献1に示される。
 なお、一般式(a1)で表される化合物の末端水酸基は、イソシアネート等の重合性化合物(c)と反応する場合もある。
Examples of such compounds include the Pluronic series manufactured by BASF. The structure of the compound contained in Pluronic is shown in Non-Patent Document 1.
The terminal hydroxyl group of the compound represented by the general formula (a1) may react with the polymerizable compound (c) such as isocyanate.
 本実施形態においては、一般式(a1-1)で表される化合物として下記一般式(a1-2)または下記一般式(a1-3)で表される化合物を用いることができる。 In the present embodiment, the compound represented by the following general formula (a1-2) or the following general formula (a1-3) can be used as the compound represented by the general formula (a1-1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(a1-2)中、a、b、cはそれぞれユニット数を示し、それぞれ独立に3以上300以下の整数である。
 このような化合物の例としてはPluronicシリーズ(BASF社製)などが挙げられる。
In the general formula (a1-2), a, b, and c each indicate the number of units, and each is an integer of 3 or more and 300 or less independently.
Examples of such compounds include the Pluronic series (manufactured by BASF).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(a1-3)中、a、b、cはそれぞれユニット数を示し、それぞれ独立に3以上300以下の整数である。
 このような化合物の例としてはPluronic Rシリーズ(BASF社製)などが挙げられる。
In the general formula (a1-3), a, b, and c each indicate the number of units, and each is an integer of 3 or more and 300 or less independently.
Examples of such compounds include the Pluronic R series (manufactured by BASF).
(ポリエステルポリオール(a2))
 ポリエステルポリオール(a2)は、本発明の効果を得ることができれば公知の化合物を用いることができる。
 本実施形態において、ポリエステルポリオール(a2)は下記一般式(a2)で表される化合物を含むことができる。
(Polyester polyol (a2))
As the polyester polyol (a2), a known compound can be used as long as the effects of the present invention can be obtained.
In the present embodiment, the polyester polyol (a2) can contain a compound represented by the following general formula (a2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(a2)中、Qは、ジオールから誘導される2価の基、または少なくとも3つの第1級アルコール基を有するポリオールから誘導される3~30価の基を表し、mは3~10の整数を示し、nは2~200の整数を示し、複数存在するnの数は同一でも異なっていてもよい。qは2~30の整数を示す。 In the general formula (a2), Q represents a divalent group derived from a diol, or a 3 to 30 valent group derived from a polyol having at least three primary alcohol groups, and m is 3 to 10 Indicates an integer of, n indicates an integer of 2 to 200, and the number of n that exists may be the same or different. q indicates an integer of 2 to 30.
 なお、式中、Qに直結する酸素原子は、ジオール由来の酸素原子またはポリオール由来の酸素原子である。 In the formula, the oxygen atom directly connected to Q is an oxygen atom derived from a diol or an oxygen atom derived from a polyol.
 ジオールとしては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,2-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール等を挙げることができる。 Examples of the diol include ethylene glycol, propylene glycol, neopentyl glycol, 1,2-propanediol, 1,4-butanediol, and 1,6-hexanediol.
 少なくとも3つの第1級アルコール基を有するポリオールとしては、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等を挙げることができる。 Examples of the polyol having at least three primary alcohol groups include trimethylolpropane, pentaerythritol, dipentaerythritol and the like.
 一般式(a2)で表される化合物としては、本実施形態の効果の観点から、重量平均分子量が1000以上、好ましくは2000以上、さらに好ましくは3000以上のものを用いることができる。また、樹脂の透明性を良好に保つ観点から、10000以下、好ましくは5000以下とすることができる。 As the compound represented by the general formula (a2), a compound having a weight average molecular weight of 1000 or more, preferably 2000 or more, and more preferably 3000 or more can be used from the viewpoint of the effect of the present embodiment. Further, from the viewpoint of maintaining good transparency of the resin, it can be 10,000 or less, preferably 5,000 or less.
 一般式(3b)で表されるアルコール化合物としては、PERSTORP社のCAPA polycaprolactone polyolシリーズ、DEICEL社のPLACCELシリーズ等を用いることができる。これらのアルコール化合物は単独で用いてもよく、2種以上の混合物として用いてもよい。 As the alcohol compound represented by the general formula (3b), CAPA polycaprolactone polyol series manufactured by PERSTORP, PLACCEL series manufactured by DEICEL, and the like can be used. These alcohol compounds may be used alone or as a mixture of two or more.
 本実施形態においては、一般式(a1)で表されるポリエーテルポリオール(a1)と一般式(a2)で表されるポリエステルポリオール(a2)とを併用することもできる。 In the present embodiment, the polyether polyol (a1) represented by the general formula (a1) and the polyester polyol (a2) represented by the general formula (a2) can be used in combination.
[pKaが0未満の酸(b1)]
 本実施形態の酸(b1)としては、本発明の効果を得ることができれば、pKaが0未満である公知の酸を用いることができる。
[Acid with pKa less than 0 (b1)]
As the acid (b1) of the present embodiment, a known acid having a pKa of less than 0 can be used as long as the effect of the present invention can be obtained.
 本実施形態の光学材料用重合性組成物は、(a)成分および(c)成分とともにpKaが0未満の酸(b1)を用いることにより、増粘が抑制されることからハンドリング性(ポットライフ)に優れ、さらに耐衝撃性および染色性に優れた成形体を得ることができる。 The polymerizable composition for an optical material of the present embodiment has handleability (pot life) because thickening is suppressed by using an acid (b1) having a pKa of less than 0 together with the component (a) and the component (c). ), And a molded product having excellent impact resistance and dyeability can be obtained.
 本実施形態においては、pKaが0未満の酸(b1)として、塩酸(pKa:-3.7)、メタンスルホン酸(pKa:-2.6)、p-トルエンスルホン酸(pKa:-2.8)、ビニルスルホン酸(pKa:-2.7)等を挙げることができ、塩酸、メタンスルホン酸、p-トルエンスルホン酸、ビニルスルホン酸が好ましく、塩酸、メタンスルホン酸、ビニルスルホン酸がより好ましい。pKaが0未満の酸(b1)は、これらから選択される少なくとも1種を含むことができる。
 これらの酸を用いることにより、増粘が抑制されることからハンドリング性(ポットライフ)により優れた光学材料用重合性組成物を得ることができ、当該組成物からより耐衝撃性および染色性に優れた成形体を得ることができる。
In the present embodiment, as the acid (b1) having a pKa of less than 0, hydrochloric acid (pKa: -3.7), methanesulfonic acid (pKa: -2.6), and p-toluenesulfonic acid (pKa: -2. 8), vinyl sulfonic acid (pKa: -2.7) and the like can be mentioned, with hydrochloric acid, methane sulfonic acid, p-toluene sulfonic acid and vinyl sulfonic acid being preferable, and hydrochloric acid, methane sulfonic acid and vinyl sulfonic acid being more preferable. preferable. The acid (b1) having a pKa of less than 0 can include at least one selected from these.
By using these acids, thickening is suppressed, so that a polymerizable composition for an optical material having excellent handleability (pot life) can be obtained, and the composition has more impact resistance and dyeability. An excellent molded product can be obtained.
 本実施形態の光学材料用重合性組成物は、pKaが0未満の酸(b1)を、本実施形態の効果の観点から、200ppm以上、好ましくは300ppm以上、より好ましくは500ppm以上含むことができる。上限値は特に限定されないが、光学材料用重合性組成物のハンドリング性の観点から、5000ppm以下、好ましくは3000ppm以下、より好ましくは2000ppm以下とすることができる。 The polymerizable composition for an optical material of the present embodiment can contain an acid (b1) having a pKa of less than 0 from the viewpoint of the effect of the present embodiment at 200 ppm or more, preferably 300 ppm or more, and more preferably 500 ppm or more. .. The upper limit is not particularly limited, but from the viewpoint of handleability of the polymerizable composition for optical materials, it can be 5000 ppm or less, preferably 3000 ppm or less, and more preferably 2000 ppm or less.
[重合反応性化合物(c)]
 重合反応性化合物(c)には、必要に応じて添加される開始剤および触媒等の添加剤の存在下あるいはそれら不存在下においても、自己重合、共重合、或いは付加重合できる重合性官能基を少なくとも1個以上有する重合反応性化合物が含まれる。なお、重合反応性化合物(c)は、重合体(a)を含まない。
[Polymerization-reactive compound (c)]
A polymerizable functional group capable of self-polymerization, copolymerization, or addition polymerization in the presence or absence of an initiator and an additive such as a catalyst added to the polymerization-reactive compound (c) as needed. A polymerization-reactive compound having at least one of the above is included. The polymerization-reactive compound (c) does not contain the polymer (a).
 重合反応性化合物としては、本発明の効果を得ることができれば公知の化合物を用いることができるが、例えば、イソシアナト基またはイソチオシアナト基を2個以上有するポリイソ(チオ)シアネート化合物、エポキシ基またはチオエポキシ基を1個以上有する(チオ)エポキシ化合物、オキセタニル基を1個以上有するオキセタン化合物、チエタニル基を1個以上有するチエタン化合物、またはオキセタニル基とチエタニル基を有するチエタン化合物、メタクリロイルオキシ基、アクリロイルオキシ基、メタクリロイルチオ基、アクリロイルチオ基、メタクリルアミド基、またはアクリルアミド基を1個以上有する(メタ)アクリル化合物、メタアリル基またはアリル基を1個以上有する(メタ)アリル化合物、メタクリロイルオキシ基、アクリロイルオキシ基、メタクリロイルチオ基、アクリロイルチオ基、メタクリルアミド基、アクリルアミド基、メタアリル基またはアリル基以外の重合性炭素炭素二重結合基を1個以上有するアルケン化合物、重合性炭素炭素三重結合基を1個以上有するアルキン化合物、二官能以上の活性水素化合物、酸無水基を1個以上有する酸無水物、などが挙げられ、これらから選択される1種または2種以上の化合物を用いることができる。 As the polymerization-reactive compound, a known compound can be used as long as the effects of the present invention can be obtained. For example, a polyiso (thio) cyanate compound having two or more isocyanato groups or isothiocyanato groups, an epoxy group or a thioepoxy group. (Thio) epoxy compound having one or more, oxetan compound having one or more oxetanyl groups, thietan compound having one or more thietanyl groups, or thietan compound having one or more oxetanyl groups and thietanyl groups, methacryloyloxy group, acryloyloxy group, A (meth) acrylic compound having one or more methacryloylthio groups, acryloylthio groups, methacrylamide groups, or acrylamide groups, (meth) allyl compounds having one or more methallyl groups or allyl groups, methacryloyloxy groups, acryloyloxy groups, An alkene compound having at least one polymerizable carbon-carbon double-binding group other than a methacryloylthio group, an acryloylthio group, a methacrylicamide group, an acrylamide group, a methallyl group, or an allyl group, and having one or more polymerizable carbon-carbon triple-binding groups. Examples thereof include acryloyl compounds, bifunctional or higher active hydrogen compounds, acid anhydrides having one or more acid anhydride groups, and one or more compounds selected from these can be used.
 これらの化合物としては、本発明の効果を得ることができれば従来公知の化合物から選択して用いることができ、例えば、国際公開第2018/070383号に記載の化合物を用いることができる。
 本実施形態においは、重合反応性化合物(c)が、前記ポリイソ(チオ)シアネート化合物および二官能以上の前記活性水素化合物を含むことが好ましい。
As these compounds, conventionally known compounds can be selected and used as long as the effects of the present invention can be obtained. For example, the compounds described in International Publication No. 2018/070383 can be used.
In the present embodiment, it is preferable that the polymerization-reactive compound (c) contains the polyiso (thio) cyanate compound and the bifunctional or higher active hydrogen compound.
 ポリイソ(チオ)シアネート化合物としては、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアナトメチルエステル、リジントリイソシアネート、キシリレンジイソシアネート等の脂肪族ポリイソシアネート化合物;
 イソホロンジイソシアネート、ビス(イソシアナトメチル)シクロヘキサン、ビス(イソシアナトシクロヘキシル)メタン、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソシアナトメチル)トリシクロデカン、3,9-ビス(イソシアナトメチル)トリシクロデカン、4,8-ビス(イソシアナトメチル)トリシクロデカン、4,9-ビス(イソシアナトメチル)トリシクロデカン等の脂環族ポリイソシアネート化合物;
 トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、ジフェニルスルフィド-4,4'-ジイソシアネート、フェニレンジイソシアネート等の芳香族ポリイソシアネート化合物;
 2,5-ジイソシアナトチオフェン、2,5-ビス(イソシアナトメチル)チオフェン、2,5-ジイソシアナトテトラヒドロチオフェン、2,5-ビス(イソシアナトメチル)テトラヒドロチオフェン、3,4-ビス(イソシアナトメチル)テトラヒドロチオフェン、2,5-ジイソシアナト-1,4-ジチアン、2,5-ビス(イソシアナトメチル)-1,4-ジチアン、4,5-ジイソシアナト-1,3-ジチオラン、4,5-ビス(イソシアナトメチル)-1,3-ジチオラン等の複素環ポリイソシアネート化合物;
 ヘキサメチレンジイソチオシアネート、リジンジイソチオシアネートメチルエステル、リジントリイソチオシアネート、m-キシリレンジイソチオシアネート、ビス(イソチオシアナトメチル)スルフィド、ビス(イソチオシアナトエチル)スルフィド、ビス(イソチオシアナトエチル)ジスルフィド等の脂肪族ポリイソチオシアネート化合物;
 イソホロンジイソチオシアネート、ビス(イソチオシアナトメチル)シクロヘキサン、ビス(イソチオシアナトシクロヘキシル)メタン、シクロヘキサンジイソチオシアネート、メチルシクロヘキサンジイソチオシアネート、2,5-ビス(イソチオシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソチオシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、3,8-ビス(イソチオシアナトメチル)トリシクロデカン、3,9-ビス(イソチオシアナトメチル)トリシクロデカン、4,8-ビス(イソチオシアナトメチル)トリシクロデカン、4,9-ビス(イソチオシアナトメチル)トリシクロデカン等の脂環族ポリイソチオシアネート化合物;
 トリレンジイソチオシアネート、4,4'-ジフェニルメタンジイソチオシアネート、ジフェニルジスルフィド-4,4'-ジイソチオシアネート等の芳香族ポリイソチオシアネート化合物;等を挙げることができ、これらから選択される少なくとも1種を含むことができる。
Examples of the polyiso (thio) cyanate compound include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate. , An aliphatic polyisocyanate compound such as lysine diisocyanatomethyl ester, lysine triisocyanate, xylylene diisocyanate;
Isophorone diisocyanate, bis (isocyanatomethyl) cyclohexane, bis (isocyanatocyclohexyl) methane, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) ) Bicyclo- [2.2.1] -heptane, 3,8-bis (isocyanatomethyl) tricyclodecane, 3,9-bis (isocyanatomethyl) tricyclodecane, 4,8-bis (isocyanatomethyl) ) Alicyclic polyisocyanate compounds such as tricyclodecane, 4,9-bis (isocyanatomethyl) tricyclodecane;
Aromatic polyisocyanate compounds such as tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, diphenylsulfide-4,4'-diisocyanate, phenylenediisocyanate;
2,5-Diisocyanatothiophene, 2,5-bis (isocyanatomethyl) thiophene, 2,5-diisocyanatotetrahydrothiophene, 2,5-bis (isocyanatomethyl) tetrahydrothiophene, 3,4-bis ( Isocyanatomethyl) tetrahydrothiophene, 2,5-diisocyanato-1,4-dithiane, 2,5-bis (isocyanatomethyl) -1,4-dithiane, 4,5-diisocyanato-1,3-dithiolan, 4, Heterocyclic polyisocyanate compounds such as 5-bis (isocyanatomethyl) -1,3-dithiolane;
Hexamethylene diisothiocyanate, lysine diisothiocyanate methyl ester, lysine triisothiocyanate, m-xylylene diisothiocyanate, bis (isothiocyanatomethyl) sulfide, bis (isothiocyanatoethyl) sulfide, bis (isothiocyanatoethyl) An aliphatic polyisothiocyanate compound such as disulfide;
Isophoron diisothiocyanate, bis (isothiocyanatomethyl) cyclohexane, bis (isothiocyanatocyclohexyl) methane, cyclohexanediisothiocyanate, methylcyclohexanediisothiocyanate, 2,5-bis (isothiocyanatomethyl) bicyclo- [2. 2.1] -Heptane, 2,6-bis (isothiocyanatomethyl) bicyclo- [2.2.1] -heptane, 3,8-bis (isothiocyanatomethyl) tricyclodecane, 3,9-bis Alicyclic polyisothiocyanate compounds such as (isothiocyanatomethyl) tricyclodecane, 4,8-bis (isothiocyanatomethyl) tricyclodecane, 4,9-bis (isothiocyanatomethyl) tricyclodecane;
Aromatic polyisothiocyanate compounds such as tolylene isothiocyanate, 4,4'-diphenylmethane diisothiocyanate, diphenyl disulfide-4,4'-diisothiocyanate; and the like; at least one selected from these. Can be included.
 二官能以上の活性水素化合物としては、ヒドロキシ基またはメルカプト基を2個以上有するポリ(チ)オール化合物、アミノ基または第二アミノ基を2個以上有するポリアミン化合物、カルボキシル基を2個以上有するポリカルボン酸化合物等を挙げることができる。また、一分子中に、ヒドロキシ基、メルカプト基、アミノ基、第二アミノ基、カルボキシル基等から選ばれる2個以上の活性水素基を有する化合物も挙げることができる。2個以上の活性水素基は同一でも異なっていてもよい。 Examples of the bifunctional or higher active hydrogen compound include a poly (thio) all compound having two or more hydroxy groups or mercapto groups, a polyamine compound having two or more amino groups or secondary amino groups, and a poly having two or more carboxyl groups. Examples thereof include carboxylic acid compounds. Further, a compound having two or more active hydrogen groups selected from a hydroxy group, a mercapto group, an amino group, a second amino group, a carboxyl group and the like in one molecule can also be mentioned. Two or more active hydrogen groups may be the same or different.
 これらの化合物としては、本発明の効果を得ることができれば従来公知の化合物から選択して用いることができ、例えば、国際公開第2018/070383号に記載の化合物を用いることができる。 As these compounds, conventionally known compounds can be selected and used as long as the effects of the present invention can be obtained. For example, the compounds described in International Publication No. 2018/070383 can be used.
 ポリオール化合物としては、たとえばエチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ブタントリオール、1,2-メチルグルコサイド、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マニトール、ズルシトール、イジトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロース、ジグリペロール、トリエチレングリコール、ポリエチレングリコール、トリス(2-ヒドロキシエチル)イソシアヌレート、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ[5.2.1.02,6]デカン-ジメタノール、ビシクロ[4.3.0]-ノナンジオール、ジシクロヘキサンジオール、トリシクロ[5.3.1.1]ドデカンジオール、ビシクロ[4.3.0]ノナンジメタノール、トリシクロ[5.3.1.1]ドデカンジエタノール、ヒドロキシプロピルトリシクロ[5.3.1.1]ドデカノール、スピロ[3.4]オクタンジオール、ブチルシクロヘキサンジオール、1,1'-ビシクロヘキシリデンジオール、シクロヘキサントリオール、マルチトール、ラクトース等の脂肪族ポリオール;
ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ジヒドロキシベンゼン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン、ビスフェノールA、ビスフェノールF、キシリレングリコール、ジ(2-ヒドロキシエトキシ)ベンゼン、ビスフェノールA-ビス-(2-ヒドロキシエチルエーテル)、テトラブロムビスフェノールA、テトラブロムビスフェノールA-ビス-(2-ヒドロキシエチルエーテル)等の芳香族ポリオール;
ジブロモネオペンチルグリコール等のハロゲン化ポリオール;
エポキシ樹脂等の高分子ポリオールが挙げられる。本実施形態においては、これらから選択される少なくとも1種を組み合わせて用いることができる。
Examples of the polyol compound include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butylene glycol, methanolyl glycol, glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, butanetriol, 1,2-. Methylglucoside, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, sreitol, ribitol, arabinitol, xylitol, aritol, manitol, zulcitol, iditol, glycol, inositol, hexanetriol, triglycerose, diglycerol, triethylene Glycol, polyethylene glycol, tris (2-hydroxyethyl) isocyanurate, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, tricyclo [5.2.1. 0 2,6 ] Decane-dimethanol, bicyclo [4.3.0] -nonanediol, dicyclohexanediol, tricyclo [5.3.1.1] dodecanediol, bicyclo [4.3.0] nonane dimethanol , Tricyclo [5.3.1.1] dodecanediethanol, hydroxypropyltricyclo [5.3.1.1] dodecanol, spiro [3.4] octanediol, butylcyclohexanediol, 1,1'-bicyclohexyl Aliphatic polyols such as dendiol, cyclohexanetriol, martitol, and lactose;
Dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxybenzene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl) pyrogallol, trihydroxyphenanthrene, bisphenol A, bisphenol F, xylylene glycol, di (2-hydroxyethoxy) Aromatic polyols such as benzene, bisphenol A-bis- (2-hydroxyethyl ether), tetrabrom bisphenol A, tetrabrom bisphenol A-bis- (2-hydroxyethyl ether);
Halogenated polyols such as dibromo neopentyl glycol;
Examples thereof include high molecular weight polyols such as epoxy resins. In the present embodiment, at least one selected from these can be used in combination.
 ポリチオール化合物としては、メタンジチオール、1,2-エタンジチオール、1,2,3-プロパントリチオール、1,2-シクロヘキサンジチオール、ビス(2-メルカプトエチル)エーテル、テトラキス(メルカプトメチル)メタン、ジエチレングリコールビス(2-メルカプトアセテート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、エチレングリコールビス(2-メルカプトアセテート)、エチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(2-メルカプトアセテート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールエタントリス(2-メルカプトアセテート)、トリメチロールエタントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトメチル)スルフィド、ビス(メルカプトメチル)ジスルフィド、ビス(メルカプトエチル)スルフィド、ビス(メルカプトエチル)ジスルフィド、ビス(メルカプトプロピル)スルフィド、ビス(メルカプトメチルチオ)メタン、ビス(2-メルカプトエチルチオ)メタン、ビス(3-メルカプトプロピルチオ)メタン、1,2-ビス(メルカプトメチルチオ)エタン、1,2-ビス(2-メルカプトエチルチオ)エタン、1,2-ビス(3-メルカプトプロピルチオ)エタン、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、ビス(2,3-ジメルカプトプロピル)スルフィド、2,5-ジメルカプトメチル-1,4-ジチアン、2,5-ジメルカプト-1,4-ジチアン、2,5-ジメルカプトメチル-2,5-ジメチル-1,4-ジチアン、及びこれらのチオグリコール酸およびメルカプトプロピオン酸のエステル、ヒドロキシメチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシメチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシメチルジスルフィドビス(3-メルカプトプロピオネート)、ヒドロキシエチルジスルフィドビス(2-メルカプトアセテート)、ヒドロキシエチルジスルフィドビス(3-メルカプトプロピネート)、2-メルカプトエチルエーテルビス(2-メルカプトアセテート)、2-メルカプトエチルエーテルビス(3-メルカプトプロピオネート)、チオジグリコール酸ビス(2-メルカプトエチルエステル)、チオジプロピオン酸ビス(2-メルカプトエチルエステル)、ジチオジグリコール酸ビス(2-メルカプトエチルエステル)、ジチオジプロピオン酸ビス(2-メルカプトエチルエステル)、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス(メルカプトメチルチオ)メタン、トリス(メルカプトエチルチオ)メタン等の脂肪族ポリチオール化合物;
1,2-ジメルカプトベンゼン、1,3-ジメルカプトベンゼン、1,4-ジメルカプトベンゼン、1,2-ビス(メルカプトメチル)ベンゼン、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、1,2-ビス(メルカプトエチル)ベンゼン、1,3-ビス(メルカプトエチル)ベンゼン、1,4-ビス(メルカプトエチル)ベンゼン、1,3,5-トリメルカプトベンゼン、1,3,5-トリス(メルカプトメチル)ベンゼン、1,3,5-トリス(メルカプトメチレンオキシ)ベンゼン、1,3,5-トリス(メルカプトエチレンオキシ)ベンゼン、2,5-トルエンジチオール、3,4-トルエンジチオール、1,5-ナフタレンジチオール、2,6-ナフタレンジチオール等の芳香族ポリチオール化合物;
2-メチルアミノ-4,6-ジチオール-sym-トリアジン、3,4-チオフェンジチオール、ビスムチオール、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタン等の複素環ポリチオール化合物等が挙げられる。
Examples of polythiol compounds include methanedithiol, 1,2-ethanedithiol, 1,2,3-propanetrithiol, 1,2-cyclohexanedithiol, bis (2-mercaptoethyl) ether, tetrakis (mercaptomethyl) methane, and diethylene glycol bis. (2-Mercaptoacetate), Diethylene glycolbis (3-mercaptopropionate), Ethaneglycolbis (2-mercaptoacetate), Ethaneglycolbis (3-mercaptopropionate), Trimethylolpropanthris (2-mercaptoaceto) , Trimethylol Propanthris (3-mercaptopropionate), Trimethylol ethanetris (2-mercaptoacetate), Trimethylol ethanetris (3-mercaptopropionate), Pentaerythritol tetrakis (2-mercaptoacetate), Pentaerythritol Tetrakiss (3-mercaptopropionate), bis (mercaptomethyl) sulfide, bis (mercaptomethyl) disulfide, bis (mercaptoethyl) sulfide, bis (mercaptoethyl) disulfide, bis (mercaptopropyl) sulfide, bis (mercaptomethylthio) Methan, bis (2-mercaptoethylthio) methane, bis (3-mercaptopropylthio) methane, 1,2-bis (mercaptomethylthio) ethane, 1,2-bis (2-mercaptoethylthio) ethane, 1,2 -Bis (3-mercaptopropylthio) ethane, 1,2,3-tris (mercaptomethylthio) propane, 1,2,3-tris (2-mercaptoethylthio) propane, 1,2,3-tris (3- Mercaptopropylthio) Propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7 -Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecane, 4,8-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecane, Tetraquis (Mercaptomethylthiomethyl) ) Methane, tetrakis (2-mercaptoethylthiomethyl) methane, tetrakis (3-mercaptopropylthiomethyl) methane, bis (2,3-dimercaptopropyl) sulfide, 2,5-dimercaptomethyl-1,4-dithian , 2,5-Dimercapto-1 , 4-Ditian, 2,5-Dimercaptomethyl-2,5-dimethyl-1,4-Ditian, and esters of these thioglycolic acid and mercaptopropionic acid, hydroxymethyl sulfide bis (2-mercaptoacetate), hydroxy Methyl sulfide bis (3-mercaptopropionate), hydroxyethyl sulfide bis (2-mercapto acetate), hydroxyethyl sulfide bis (3-mercaptopropionate), hydroxymethyl disulfide bis (2-mercapto acetate), hydroxymethyl disulfide Bis (3-mercaptopropionate), hydroxyethyl disulfide bis (2-mercaptoacetate), hydroxyethyl disulfide bis (3-mercaptopropinate), 2-mercaptoethyl ether bis (2-mercaptoacetate), 2-mercaptoethyl Etherbis (3-mercaptopropionate), thiodiglycolic acid bis (2-mercaptoethyl ester), thiodipropionic acid bis (2-mercaptoethyl ester), dithiodiglycolic acid bis (2-mercaptoethyl ester), Dithiodipropionic acid bis (2-mercaptoethyl ester), 1,1,3,3-tetrakis (mercaptomethylthio) propane, 1,1,2,2-tetrakis (mercaptomethylthio) ethane, 4,6-bis (mercapto) An aliphatic polythiol compound such as methylthio) -1,3-dithian, tris (mercaptomethylthio) methane, tris (mercaptoethylthio) methane;
1,2-Dimercaptobenzene, 1,3-Dimercaptobenzene, 1,4-Dimercaptobenzene, 1,2-bis (mercaptomethyl) benzene, 1,3-bis (mercaptomethyl) benzene, 1,4- Bis (mercaptomethyl) benzene, 1,2-bis (mercaptoethyl) benzene, 1,3-bis (mercaptoethyl) benzene, 1,4-bis (mercaptoethyl) benzene, 1,3,5-trimercaptobenzene, 1,3,5-tris (mercaptomethyl) benzene, 1,3,5-tris (mercaptomethyleneoxy) benzene, 1,3,5-tris (mercaptoethyleneoxy) benzene, 2,5-toluenedithiol, 3, Aromatic polythiol compounds such as 4-toluenedithiol, 1,5-naphthalenedithiol, 2,6-naphthalenedithiol;
2-Methylamino-4,6-dithiol-thym-triazine, 3,4-thiophenedithiol, bismuthiol, 4,6-bis (mercaptomethylthio) -1,3-dithiane, 2- (2,2-bis (mercapto) Examples thereof include heterocyclic polythiol compounds such as methylthio) ethyl) -1,3-dithietane.
[内部離型剤(d)]
 本発明の光学材料用重合性組成物は、成形後におけるモールドからの離型性を改善する目的で、さらに内部離型剤(d)を含むことができる。
 内部離型剤(d)としては、特に限定されず従来公知のものを用いることができ、例えば酸性リン酸エステルを挙げることができる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独または2種類以上混合して使用することできる。
[Internal mold release agent (d)]
The polymerizable composition for an optical material of the present invention may further contain an internal mold release agent (d) for the purpose of improving the mold release property from the mold after molding.
The internal mold release agent (d) is not particularly limited, and conventionally known ones can be used, and examples thereof include acidic phosphoric acid esters. Examples of the acidic phosphoric acid ester include phosphoric acid monoester and phosphoric acid diester, which can be used alone or in combination of two or more.
 酸性リン酸エステルとしては、ZelecUN(STEPAN社製)、MR用内部離型剤(三井化学社製)、城北化学工業社製のJPシリーズ、東邦化学工業社製のフォスファノールシリーズ、大八化学工業社製のAP、DPシリーズ等を用いることができ、ZelecUN(STEPAN社製)、MR用内部離型剤(三井化学社製)、城北化学工業社製のJPシリーズがより好ましい。 As acidic phosphoric acid esters, ZelekUN (manufactured by STEPAN), internal mold release agent for MR (manufactured by Mitsui Chemicals), JP series manufactured by Johoku Chemical Industry Co., Ltd., Phosphanol series manufactured by Toho Chemical Industry Co., Ltd., Daihachi Chemical Industry Co., Ltd. AP, DP series and the like manufactured by Kogyo Co., Ltd. can be used, and ZelekUN (manufactured by STEPAN), an internal mold release agent for MR (manufactured by Mitsui Chemicals Co., Ltd.), and JP series manufactured by Johoku Chemical Industry Co., Ltd. are more preferable.
 内部離型剤(d)の使用量は、特に限定されるものではないが、光学材料用重合性組成物100重量部に対して0.0001~10重量部の範囲である。 The amount of the internal mold release agent (d) used is not particularly limited, but is in the range of 0.0001 to 10 parts by weight with respect to 100 parts by weight of the polymerizable composition for optical materials.
[スズ触媒(e)]
 本実施形態の光学材料用重合性組成物は、重合反応性化合物(c)がポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む場合、さらにスズ触媒(e)を含むことができる。
 スズ触媒(e)を含む場合、光学材料用重合性組成物が増粘しポットライフが短くなる傾向があるものの、本実施形態の光学材料用重合性組成物はpKaが0未満の酸(b1)を含むことから、増粘抑制効果に優れており、スズ触媒の触媒性能を生かしつつポットライフを改善することができる。
[Tin catalyst (e)]
When the polymerization-reactive compound (c) contains a polyiso (thio) cyanate compound and a bifunctional or higher-functional active hydrogen compound, the polymerizable composition for an optical material of the present embodiment may further contain a tin catalyst (e). ..
When the tin catalyst (e) is contained, the polymerizable composition for optical materials tends to thicken and the pot life tends to be shortened, but the polymerizable composition for optical materials of the present embodiment has an acid (b1) having a pKa of less than 0. ) Is included, so it is excellent in the effect of suppressing thickening, and the pot life can be improved while making the best use of the catalytic performance of the tin catalyst.
 スズ触媒(e)としては、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジメチル錫ジクロライド等を挙げることができ、1種または2種以上を併用することができる。 Examples of the tin catalyst (e) include dibutyl tin dilaurate, dibutyl tin dichloride, dimethyl tin dichloride, and the like, and one or more of them can be used in combination.
 スズ触媒(e)の使用量は、特に限定されるものではないが、重合反応性化合物(c)100重量部に対して0~10重量部の範囲である。 The amount of the tin catalyst (e) used is not particularly limited, but is in the range of 0 to 10 parts by weight with respect to 100 parts by weight of the polymerization-reactive compound (c).
[フォトクロミック化合物(f)]
 本実施形態の光学材料用重合性組成物は、さらにフォトクロミック化合物(f)を含むことができる。
[Photochromic compound (f)]
The polymerizable composition for an optical material of the present embodiment can further contain a photochromic compound (f).
 フォトクロミック化合物(f)としては、特定の波長の光に対して吸光特性(吸収スペクトル)が変化する化合物が挙げられる。フォトクロミック化合物としては、公知のものを使用することができ、例えば、ナフトピラン、クロメン、スピロピラン、スピロオキサジンおよびチオスピロピラン、ベンゾピラン、スチルベン、アゾベンゼン、チオインジゴ、ビスイミダゾール、スピロジヒドロインドリジン、キニーネ、ペリミジンスピロシクロヘキサジエノン、ビオロゲン、フルギド、フルギミド、ジアリールエテン、ヒドラジン、アニリン、アリールジスルフィド、アリールチオスルホネート、スピロペリミジン、トリアリールメタンなどの化合物から誘導される化合物が挙げられる。
 本実施形態においては、フォトクロミック化合物(f)としてナフトピラン誘導体を用いることが好ましい。
Examples of the photochromic compound (f) include compounds whose absorption characteristics (absorption spectrum) change with respect to light of a specific wavelength. Known photochromic compounds can be used, for example, naphthopyran, chromene, spiropyran, spiroxazine and thiospiropirane, benzopyran, stilbene, azobenzene, thioindigo, bisimidazole, spirodihydroindidine, quinine, perimidine spiro Examples include compounds derived from compounds such as cyclohexadienone, viologen, flugide, flugimid, diarylethene, hydrazine, aniline, aryldisulfide, arylthiosulfonate, spiroperimidine, triarylmethane.
In the present embodiment, it is preferable to use a naphthopyrane derivative as the photochromic compound (f).
(その他の成分)
 本実施形態においては、前記(a)、(b1)および(c)成分、必要に応じて添加される前記(d)成分、前記(e)成分または前記(f)成分に加えて、紫外線吸収剤、光安定剤、重合触媒、樹脂改質剤等をさらに含んでいてもよい。
(Other ingredients)
In the present embodiment, in addition to the components (a), (b1) and (c), the component (d) added as needed, the component (e) or the component (f), ultraviolet absorption is absorbed. It may further contain an agent, a light stabilizer, a polymerization catalyst, a resin modifier and the like.
<光学材料用重合性組成物の製造方法>
 本実施形態の光学材料用重合性組成物は、前記成分を従来公知の方法で混合することにより得ることができる。
<Manufacturing method of polymerizable composition for optical materials>
The polymerizable composition for an optical material of the present embodiment can be obtained by mixing the above components by a conventionally known method.
 本実施形態においては、重合反応性化合物(c)が、ポリイソ(チオ)シアネート化合物、および二官能以上の活性水素化合物を含む場合には、ハンドリング性や所望の組成物を得る観点から、以下の方法で得ることができる。 In the present embodiment, when the polymerization-reactive compound (c) contains a polyiso (thio) cyanate compound and a bifunctional or higher functional hydrogen compound, the following from the viewpoint of handleability and obtaining a desired composition, the following Can be obtained by the method.
 まず、ポリイソ(チオ)シアネート化合物と、ポリオール化合物(a)と、pKaが0未満の酸(b1)と、を混合して混合液を調製し、次いで当該混合液に、二官能以上の活性水素化合物を混合する。
 二官能以上の活性水素化合物は混合液に一括で投入してもよく、徐々に添加してもよい。
First, a polyiso (thio) cyanate compound, a polyol compound (a), and an acid (b1) having a pKa of less than 0 are mixed to prepare a mixed solution, and then a bifunctional or higher active hydrogen is added to the mixed solution. Mix the compounds.
The bifunctional or higher active hydrogen compounds may be added to the mixed solution all at once, or may be added gradually.
 また、本実施形態の光学材料用重合性組成物は、内部離型剤(d)を含み、重合反応性化合物(c)が、ポリイソ(チオ)シアネート化合物、および二官能以上の活性水素化合物としてポリチオール化合物を含む場合には、ハンドリング性や所望の組成物を得る観点から、以下の方法で得ることができる。 Further, the polymerizable composition for an optical material of the present embodiment contains an internal mold release agent (d), and the polymerization reactive compound (c) is a polyiso (thio) cyanate compound and a bifunctional or higher functional hydrogen compound. When the polythiol compound is contained, it can be obtained by the following method from the viewpoint of handleability and obtaining a desired composition.
 内部離型剤(d)とポリイソ(チオ)シアネート化合物とを混合し、次いでポリオール化合物(a)を混合する。そして、得られた混合液に、pKaが0未満の酸(b1)を混合し、次いでポリチオール化合物を混合する。
 ポリオール化合物(a)および酸(b1)は混合液に一括で投入してもよく、徐々に添加してもよい。
The internal mold release agent (d) and the polyiso (thio) cyanate compound are mixed, and then the polyol compound (a) is mixed. Then, an acid (b1) having a pKa of less than 0 is mixed with the obtained mixed solution, and then a polythiol compound is mixed.
The polyol compound (a) and the acid (b1) may be added to the mixed solution all at once, or may be added gradually.
<成形体およびその用途>
 本実施形態においては、光学材料用重合性組成物を硬化することにより成形体を得ることができる。本実施形態の成形体は、ポリオール化合物(a)のミクロ相分離構造体を含む。成形体がミクロ相分離構造体を含むことにより、耐衝撃性および染色性により優れる。
<Molded body and its uses>
In the present embodiment, a molded product can be obtained by curing the polymerizable composition for an optical material. The molded product of the present embodiment contains a microphase-separated structure of the polyol compound (a). Since the molded product contains a microphase-separated structure, it is superior in impact resistance and dyeability.
 ミクロ相分離構造体と効果の関係は明らかではないものの、ミクロ相分離構造体が成形体に含まれ、特に成形体の表面近傍に多く存在することによって、衝撃吸収性や親水性が向上し、結果として耐衝撃性および染色性により優れると考えられる。
 ミクロ相分離構造体は成形体の表面近傍に偏在する傾向があり、衝撃吸収性や親水性がより向上すると考えられる。
 前記ミクロ相分離構造体の平均粒径は、本実施形態の効果の観点から、1~50nm、好ましくは2~30nm、さらに好ましくは5~20nmである。平均粒径は断面TEM分析によって測定することができる。
Although the relationship between the micro-phase separation structure and the effect is not clear, the impact absorption and hydrophilicity are improved by including the micro-phase separation structure in the molded body, especially in the vicinity of the surface of the molded body. As a result, it is considered to be superior in impact resistance and dyeability.
The microphase-separated structure tends to be unevenly distributed near the surface of the molded product, and it is considered that the shock absorption and hydrophilicity are further improved.
The average particle size of the microphase-separated structure is 1 to 50 nm, preferably 2 to 30 nm, and more preferably 5 to 20 nm from the viewpoint of the effect of the present embodiment. The average particle size can be measured by cross-sectional TEM analysis.
 光学材料用重合性組成物を重合させる際のモールド形状を変えることにより種々の形状の成形体およびかかる成形体からなる光学材料を得ることができる。本実施形態の成形体は、所望の形状とし、必要に応じて形成されるコート層や他の部材等を備えることにより、様々な光学材料として用いることができる。 By changing the mold shape when polymerizing the polymerizable composition for an optical material, it is possible to obtain a molded product having various shapes and an optical material composed of such a molded product. The molded product of the present embodiment can be used as various optical materials by forming a desired shape and providing a coat layer, other members, or the like formed as needed.
 光学材料としては、プラスチックレンズ、発光ダイオード(LED)、プリズム、光ファイバー、情報記録基板、フィルター等を挙げることができる。特に、プラスチックレンズとして好適である。
 以下、本実施形態の成形体からなるプラスチックレンズについて説明する。プラスチックレンズは以下のように製造することができる。
Examples of the optical material include a plastic lens, a light emitting diode (LED), a prism, an optical fiber, an information recording substrate, a filter, and the like. In particular, it is suitable as a plastic lens.
Hereinafter, the plastic lens made of the molded product of the present embodiment will be described. The plastic lens can be manufactured as follows.
<プラスチックレンズの製造方法>
 本実施形態のプラスチックレンズは、通常、上述の光学材料用重合性組成物を用いた注型重合法によって製造される。本実施形態のプラスチックレンズの製造方法は、具体的には、光学材料用重合性組成物を注型重合することによりレンズ基材を形成する工程を含む。
<Manufacturing method of plastic lenses>
The plastic lens of the present embodiment is usually produced by a casting polymerization method using the above-mentioned polymerizable composition for an optical material. Specifically, the method for producing a plastic lens of the present embodiment includes a step of forming a lens base material by cast polymerization of a polymerizable composition for an optical material.
 当該工程においては、得られた本実施形態の組成物をガラスモールドとガスケットまたはテープからなるキャビティーに注入し、加熱または赤外線以外の紫外線等の放射線を照射することにより、重合硬化せしめて本実施形態の樹脂およびその樹脂からなるプラスチックレンズ基材が製造される。当該工程により、重合反応性化合物(c)が重合して樹脂を形成するとともに重合体(a)がミクロ相分離構造体を形成し、前記樹脂と前記ミクロ相分離構造体と酸(b1)とからなるプラスチックレンズ基材を得ることができる。 In this step, the obtained composition of the present embodiment is injected into a cavity composed of a glass mold and a gasket or tape, and is polymerized and cured by heating or irradiating with radiation such as ultraviolet rays other than infrared rays. A resin of the form and a plastic lens base material made of the resin are manufactured. In this step, the polymerization-reactive compound (c) polymerizes to form a resin, and the polymer (a) forms a microphase-separated structure, and the resin, the microphase-separated structure, and the acid (b1) are combined. A plastic lens base material made of the above can be obtained.
 重合条件については、光学材料用重合性組成物、触媒の種類と使用量、モールドの形状等によって大きく条件が異なるため限定されるものではないが、およそ、-50~150℃の温度で1~50時間かけて行われる。
 モールドから離型して得られたレンズ基材は、重合完結化または残留応力による歪を取り除く目的等で、必要に応じて再加熱処理(アニーリング)を行ってもよい。
The polymerization conditions are not limited because they differ greatly depending on the polymerizable composition for optical materials, the type and amount of catalyst used, the shape of the mold, etc., but are not limited, but are approximately 1 to 150 ° C. It takes 50 hours.
The lens base material obtained by removing the mold from the mold may be reheated (annealed) as necessary for the purpose of completing polymerization or removing strain due to residual stress.
 本実施形態においては、成形体からなるレンズ基材上に、ハードコート層と、反射防止層と、をこの順で備える、積層体とすることができる。
 耐衝撃性の観点から、前記レンズ基材と前記ハードコート層との間に、プライマーコート層を備えることも好ましい。
In the present embodiment, a laminated body may be provided in which a hard coat layer and an antireflection layer are provided in this order on a lens base material made of a molded product.
From the viewpoint of impact resistance, it is also preferable to provide a primer coat layer between the lens base material and the hard coat layer.
 上記プライマー層に用いるコート剤としては、たとえば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレンおよびポリプロピレン等のポリオレフィン系樹脂またはその共重合体ないし変性樹脂、セルロース系樹脂等の樹脂をビヒクルの主成分とするコート剤を用いることができる。 Examples of the coating agent used for the primer layer include polyester resin, polyamide resin, polyurethane resin, epoxy resin, phenol resin, (meth) acrylic resin, polyvinyl acetate resin, polyethylene and polypropylene. A coating agent containing a polyolefin resin or a copolymer or a modified resin thereof, a resin such as a cellulose resin as the main component of the vehicle can be used.
 積層体は、その他の層として、調光コート層、帯電防止コート等の機能性コート層を設けることができる。さらに、ファッション性付与のための染色処理を行ったり、表面およびエッジの研磨等の処理を行ったり、さらには偏光性を付与する目的で偏光フィルムを内部に入れたり表面に貼り付けたり様々な機能性を付与する加工等を行ってもよい。 The laminated body can be provided with a functional coat layer such as a dimming coat layer and an antistatic coat as other layers. Furthermore, various functions such as dyeing for fashionability, polishing of the surface and edges, and putting a polarizing film inside or sticking to the surface for the purpose of imparting polarization. Processing or the like that imparts sex may be performed.
 さらにこれら機能性コート層と基材との密着性を向上させる等の目的で、得られたレンズ基材(成形体)の表面を、コロナ処理、オゾン処理、酸素ガスもしくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等による酸化処理、火炎処理等の物理的または化学的処理を施すこともできる。 Further, for the purpose of improving the adhesion between these functional coat layers and the base material, the surface of the obtained lens base material (molded body) was subjected to corona treatment, ozone treatment, oxygen gas, nitrogen gas, or the like. Physical or chemical treatments such as low temperature plasma treatment, glow discharge treatment, oxidation treatment with chemicals, flame treatment and the like can also be performed.
 こうして得られる成形体または積層体からなる本実施形態のプラスチックレンズは、メガネレンズ、カメラレンズ、ピックアップレンズ、フルネルレンズ、プリズムレンズ、およびレンチキュラレンズ等様々なレンズ用途に使用できる。それらの中でも特に好ましい用途として、表面が平滑なメガネレンズ、カメラレンズ、およびピックアップレンズが挙げられる。 The plastic lens of the present embodiment made of the molded body or laminated body thus obtained can be used for various lens applications such as a glasses lens, a camera lens, a pickup lens, a fullnel lens, a prism lens, and a lenticular lens. Among them, particularly preferable applications include spectacle lenses, camera lenses, and pickup lenses having a smooth surface.
[第2実施形態]
 本実施形態の光学材料用重合性組成物は、
 ポリエーテルポリオール(a1)と、
 pKaが0未満の酸(b1)およびpKaが0未満の酸の無水物(b2)から選択される少なくとも1種の化合物(b)と、
 ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(c)(ポリエーテルポリオール(a1)を除く)と、
を含む。
 本発明の光学材料用重合性組成物は、これらの成分を含むことによりハンドリング性(ポットライフ)に優れる。
[Second Embodiment]
The polymerizable composition for an optical material of the present embodiment is
With a polyether polyol (a1),
At least one compound (b) selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
Polymerization-reactive compounds (c) containing polyiso (thio) cyanate compounds and bifunctional or higher active hydrogen compounds (excluding polyether polyols (a1)), and
including.
The polymerizable composition for an optical material of the present invention is excellent in handleability (pot life) by containing these components.
[ポリエーテルポリオール(a1)]
 ポリエーテルポリオール(a1)は、本発明の効果を得ることができれば公知の化合物を用いることができる。
[Polyester polyol (a1)]
As the polyether polyol (a1), a known compound can be used as long as the effects of the present invention can be obtained.
 ポリエーテルポリオール(a1)の一実施形態は、少なくとも1つのポリエーテルのセグメントを含み、ポリエステル、ポリカーボネート、ポリ(メタ)アクリレート、ポリアミド、ポリエチレンイミン、ポリシロキサン、ポリスルフィド、ポリオレフィン、またはポリスチレンのいずれかの少なくとも1つのセグメントと組み合わされていてもよいブロックコポリマーである。 One embodiment of the polyether polyol (a1) comprises at least one segment of the polyether and is either polyester, polycarbonate, poly (meth) acrylate, polyamide, polyethyleneimine, polysiloxane, polysulfide, polyolefin, or polystyrene. A block copolymer that may be combined with at least one segment.
 ポリエーテルポリオール(a1)の他の実施形態は、少なくとも2つの異なるセグメントを有する、直鎖状のポリエーテルブロックコポリマーである。セグメントの構造としては、エチレングリコレート、プロピレングリコレート、ブチレングリコレートなどから誘導される2価の有機基や、エタンジチオレート、プロパンジチオレートなどのチオレートから誘導される2価の有機基を有するセグメント構造を挙げることができる。 Another embodiment of the polyether polyol (a1) is a linear polyether block copolymer having at least two different segments. The structure of the segment has a divalent organic group derived from ethylene glycolate, propylene glycolate, butylene glycolate and the like, and a divalent organic group derived from thiolates such as ethanedithiolate and propanedithiolate. The segment structure can be mentioned.
 ポリエーテルポリオール(a1)の別の実施形態では、ポリエーテルブロックコポリマーは、デンドリマー、星型ブロックコポリマー、グラフトブロックコポリマーなどの分岐状のブロックコポリマーである。 分岐ブロックコポリマーは、少なくとも2つの異なるセグメントの組み合わせによって作られた少なくとも3つの分岐鎖を有してもよい。
 分岐鎖部分の構造としては、例えば、グリセロール、トリオキシエチルアミン、トリオキシエチル(アルキル)アンモニウム塩などから誘導される3価の有機基、エチレンジアミン、アルキルアンモニウム塩などから誘導される4価の有機基、テトラオキシエチレンジアミン、ペンタエリスリトールのオキシ型などから誘導される4価の有機基、ジペンタエリスリトールのオキシ型などから誘導される6価の有機基のような、3価以上の有機基を有する構造を挙げることができる。
In another embodiment of the polyether polyol (a1), the polyether block copolymer is a branched block copolymer such as a dendrimer, a star block copolymer, a graft block copolymer or the like. Branched block copolymers may have at least three branched chains made from a combination of at least two different segments.
The structure of the branched chain portion includes, for example, a trivalent organic group derived from glycerol, trioxyethylamine, trioxyethyl (alkyl) ammonium salt, etc., and a tetravalent organic group derived from ethylenediamine, alkylammonium salt, etc. , Tetraoxyethylenediamine, tetravalent organic group derived from oxy form of pentaerythritol, hexavalent organic group derived from oxy form of dipentaerythritol, etc., structure having trivalent or higher organic group Can be mentioned.
 前記ポリエーテルとしては、特に限定されないが、ポリエチレングリコール、ポリプロピレングリコール、またはポリブチレングリコール等を挙げることができる。
 前記ポリエステルとしては、特に限定されないが、ジカルボン酸とジオールとの縮合から得られる組成物が含まれる。
 前記ジカルボン酸としては、アジピン酸、コハク酸等、またはこれらの組み合わせを挙げることができる。
The polyether is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, and polybutylene glycol.
The polyester includes, but is not limited to, a composition obtained from the condensation of a dicarboxylic acid and a diol.
Examples of the dicarboxylic acid include adipic acid, succinic acid and the like, or a combination thereof.
 前記ジオールとしては、エチレン-1,2- ジオール、ブタン-1,4-ジオール、ヘキサン-1,6-ジオール、プロパン-1,2-ジオール、3-メチルペンタン-1,5-ジオール、2-メチルプロパン-1,3-ジオール、2,2- ジメチルプロパン-1,3-ジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ペンタン-1,5-ジオール、ヘプタン-1,7-ジオール等、またはそれらの組み合わせを挙げることができる。 Examples of the diol include ethylene-1,2-diol, butane-1,4-diol, hexane-1,6-diol, propane-1,2-diol, 3-methylpentane-1,5-diol, and 2-. Methylpropane-1,3-diol, 2,2-dimethylpropane-1,3-diol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, pentane-1,5-diol, heptane-1,7- Examples thereof include diols and the like, or combinations thereof.
 前記ポリエステルとしては、ポリカプロラクトン、ポリブチロラクトン、ポリバレロラクトン、ポリ乳酸、ポリグリコール酸、またはそれらの組み合わせを挙げることもできる。
 前記ポリカーボネートとしては、特に限定されないが、カーボネートとジオールとの縮合によって得られた組成物を挙げることができる。
Examples of the polyester include polycaprolactone, polybutyrolactone, polyvalerolactone, polylactic acid, polyglycolic acid, or a combination thereof.
The polycarbonate is not particularly limited, and examples thereof include a composition obtained by condensation of carbonate and diol.
 前記ジオールとしては、エチレン-1,2-ジオール、ブタン-1,4-ジオール、ヘキサン-1,6-ジオール、プロパン-1,2-ジオール、3-メチルペンタン-1,5-ジオール、2-メチルプロパン-1,3-ジオール、2,2-ジメチルプロパン-1,3-ジオール、ペンタン-1,5-ジオール、ヘプタン -1,7-ジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等、あるいはこれらの組み合わせを挙げることができる。 Examples of the diol include ethylene-1,2-diol, butane-1,4-diol, hexane-1,6-diol, propane-1,2-diol, 3-methylpentane-1,5-diol, and 2-. Methylpropane-1,3-diol, 2,2-dimethylpropane-1,3-diol, pentane-1,5-diol, heptane-1,7-diol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene Glycol and the like, or a combination thereof can be mentioned.
 前記ポリ(メタ)アクリレートとしては、特に限定されないが、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ )アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート等、あるいはこれらの組み合わせを挙げることができる。 The poly (meth) acrylate is not particularly limited, but is limited to methyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and benzyl. (Meta) acrylate, phenyl (meth) acrylate and the like, or a combination thereof can be mentioned.
 前記ポリアミドとしては、特に限定されないが、ジカルボン酸とジアミンとの縮合によって得られた組成物を挙げることができる。
 前記ジカルボン酸としては、アジピン酸、コハク酸等、あるいはこれらの組み合わせを挙げることができる。前記ジアミンとしては、ヘキサメチレンジアミン等を挙げることができる。
The polyamide is not particularly limited, and examples thereof include a composition obtained by condensation of a dicarboxylic acid and a diamine.
Examples of the dicarboxylic acid include adipic acid, succinic acid and the like, or a combination thereof. Examples of the diamine include hexamethylenediamine and the like.
 前記ポリアミドとしては、ポリカプロラクタムなどのラクタムを挙げることもできる。
 ポリマー鎖であるポリエチレンイミン鎖としては、ポリエチレンイミン鎖、ポリプロピオニルアジリジン鎖、ポリアセチルアジリジン鎖、およびポリホルミルアジリジン鎖等を挙げることができる。
Examples of the polyamide include lactam such as polycaprolactam.
Examples of the polyethyleneimine chain which is a polymer chain include a polyethyleneimine chain, a polypropionyl aziridine chain, a polyacetyl aziridine chain, and a polyformyl aziridine chain.
 ポリマー鎖であるポリシロキサン鎖としては、ポリジメチルシロキサン鎖、ポリメチルフェニルシロキサン鎖等を挙げることができる。
 前記ポリスルフィドは、ポリエチレンスルフィド鎖等を含むことができる。
 前記ポリオレフィンとしては、ポリエチレン、ポリプロピレン等、またはそれらの組み合わせを挙げることができる。
 前記ポリスチレンとしては、ポリスチレン、ポリスチレンスルホネート等、またはそれらの組み合わせを挙げることができる。
Examples of the polysiloxane chain, which is a polymer chain, include a polydimethylsiloxane chain and a polymethylphenylsiloxane chain.
The polysulfide may contain a polyethylene sulfide chain or the like.
Examples of the polyolefin include polyethylene, polypropylene and the like, or a combination thereof.
Examples of the polystyrene include polystyrene, polystyrene sulfonate, and the like, or a combination thereof.
 本実施形態のポリエーテルブロックコポリマーは、ミクロ相分離により好ましくはミセルを形成し、均一に分散したナノサイズ構造体を提供することができる。ミセル構造は、硬化したポリウレタン熱硬化性樹脂中に含まれていてもよく、硬化プロセス中に形成されてもよい。ミセルの形態は、ブロック共重合体の性質、濃度、および温度に依存し、たとえば、球状、ワーム(worm)状、および小胞(vesicular)等を挙げることができる。
ミセル構造は、樹脂靭性の改善などの有用な特性に寄与し、さらにポリ(チオ)ウレタン樹脂のガラス転移温度、機械的および光学的特性を維持しながら、フォトクロミック染料などの機能性分子を効果的に分散させることができる。
The polyether block copolymer of the present embodiment can preferably form micelles by microphase separation and provide a uniformly dispersed nano-sized structure. The micellar structure may be contained in the cured polyurethane thermosetting resin or may be formed during the curing process. The morphology of micelles depends on the nature, concentration, and temperature of the block copolymer and can include, for example, spherical, worm-like, and vesicular.
The micellar structure contributes to useful properties such as improved resin toughness, and is effective for functional molecules such as photochromic dyes while maintaining the glass transition temperature, mechanical and optical properties of poly (thio) urethane resins. Can be dispersed in.
 本実施形態において、ポリエーテルポリオール(a1)は、第1実施形態において前記一般式(a1)で表される化合物を含むことができる。前記一般式(a1)で表される前記化合物は第1実施形態と同様であるので説明を省略する。 In the present embodiment, the polyether polyol (a1) can contain the compound represented by the general formula (a1) in the first embodiment. Since the compound represented by the general formula (a1) is the same as that of the first embodiment, the description thereof will be omitted.
[化合物(b)]
 本実施形態において、化合物(b)は、pKaが0未満の酸(b1)およびpKaが0未満の酸の無水物(b2)から選択される少なくとも1種である。
 pKaが0未満の酸(b1)は、第1実施形態で例示された化合物を用いることができる。
 pKaが0未満の酸の無水物(b2)は、本発明の効果を得ることができれば公知の化合物を用いることができ、酸(b1)の無水物を挙げることができる。
[Compound (b)]
In the present embodiment, the compound (b) is at least one selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
As the acid (b1) having a pKa of less than 0, the compound exemplified in the first embodiment can be used.
As the anhydride (b2) of the acid having a pKa of less than 0, a known compound can be used as long as the effect of the present invention can be obtained, and the anhydride of the acid (b1) can be mentioned.
 化合物(b)としては、例えば、下記一般式(1)で表される化合物(b’)等を挙げることができ、1種または2種以上を混合して用いることができる。本実施形態においては化合物(b’)を含むことが好ましい。 Examples of the compound (b) include a compound (b') represented by the following general formula (1), and one kind or a mixture of two or more kinds can be used. In this embodiment, it is preferable to include compound (b').
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(1)中、Xは炭素原子またはS(=O)を示す。なお、XがS(=O)を示す場合、硫黄原子には2つの=Oが結合する。nは0または1を示す。
 RはC1~C5のアルキル基、C1~C5のハロアルキル基、置換または無置換のフェニル基を示す。Rは水素原子、C1~C5のアルキル基、C1~C5のハロアルキル基、置換または無置換のフェニル基を示す。
In the general formula (1), X represents a carbon atom or S (= O). When X indicates S (= O), two = O are bonded to the sulfur atom. n represents 0 or 1.
R 1 represents an alkyl group of C1 to C5, a haloalkyl group of C1 to C5, and a substituted or unsubstituted phenyl group. R 2 represents a hydrogen atom, an alkyl group of C1 ~ C5, a haloalkyl group of C1 ~ C5, a substituted or unsubstituted phenyl group.
 置換フェニル基の置換基としては、ハロゲン原子、水酸基、カルボキシル基、アミノ基、C1~C3のアルキル基、C1~C3のハロアルキル基等が挙げられる。 Examples of the substituent of the substituted phenyl group include a halogen atom, a hydroxyl group, a carboxyl group, an amino group, an alkyl group of C1 to C3, a haloalkyl group of C1 to C3, and the like.
 化合物(b’)としては、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸無水物、メタンスルホン酸無水物から選択される少なくとも1種を含む。
 化合物(b’)としてこれらの化合物を含むことにより、よりハンドリング性(ポットライフ)に優れた光学材料用重合性組成物を得ることができる。
The compound (b') contains at least one selected from methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic anhydride, and methanesulfonic acid anhydride.
By including these compounds as the compound (b'), a polymerizable composition for an optical material having more excellent handleability (pot life) can be obtained.
 本実施形態の光学材料用重合性組成物は、本実施形態の効果の観点から、化合物(b’)を10ppm以上、好ましくは50ppm以上、より好ましくは100ppm以上の量で含む。 The polymerizable composition for an optical material of the present embodiment contains the compound (b') in an amount of 10 ppm or more, preferably 50 ppm or more, more preferably 100 ppm or more, from the viewpoint of the effect of the present embodiment.
 なお、本実施形態において、化合物(b’)は一般式(1)においてXが炭素原子であり、かつRがC1~C5のハロアルキル基である化合物や、Xが炭素原子であり、かつRがC1のアルキル基であり、nが0であり、Rが水素原子である酢酸を含まない。化合物(b’)から除外される当該化合物としては、トリフルオロ酢酸無水物等が挙げられる。 In the present embodiment, the compound (b') is a compound in which X is a carbon atom and R 1 is a haloalkyl group of C1 to C5 in the general formula (1), or X is a carbon atom and R. 1 is an alkyl group of C1, n is 0, and R 2 is free of acetic acid, which is a hydrogen atom. Examples of the compound excluded from the compound (b') include trifluoroacetic anhydride and the like.
 本実施形態においては、前述のpKaが0未満の酸(b1)とpKaが0未満の酸の無水物(b2)とを混合して用いることができる。その場合の混合比(b1:b2)は特に限定されないが5:95~95:5である。
 本実施形態の効果の観点から、化合物(b)は前記一般式(1)で表される化合物(b’)であることがより好ましい。
In the present embodiment, the above-mentioned acid (b1) having a pKa of less than 0 and the anhydride (b2) of the acid having a pKa of less than 0 can be mixed and used. The mixing ratio (b1: b2) in that case is not particularly limited, but is 5:95 to 95: 5.
From the viewpoint of the effect of the present embodiment, the compound (b) is more preferably the compound (b') represented by the general formula (1).
[重合反応性化合物(c)]
 重合反応性化合物(c)は、必要に応じて添加される開始剤および触媒等の添加剤の存在下あるいはそれら不存在下においても、自己重合、共重合、或いは付加重合できる重合性官能基を少なくとも1個以上有する重合反応性化合物が含まれる。なお、重合反応性化合物(c)は、ポリエーテルポリオール(a1)を含まない。
 本実施形態における重合反応性化合物(c)は、第1実施形態と同様であるので説明を省略する。
[Polymerization-reactive compound (c)]
The polymerization-reactive compound (c) has a polymerizable functional group capable of self-polymerization, copolymerization, or addition polymerization in the presence or absence of an initiator and an additive such as a catalyst, which are added as necessary. A polymerization-reactive compound having at least one is included. The polymerization-reactive compound (c) does not contain the polyether polyol (a1).
Since the polymerization-reactive compound (c) in the present embodiment is the same as that in the first embodiment, the description thereof will be omitted.
[内部離型剤(d)]
 本発明の光学材料用重合性組成物は、成形後におけるモールドからの離型性を改善する目的で、さらに内部離型剤(d)を含むことができる。
 内部離型剤(d)としては、第1実施形態と同様のものを用いることができる。
[Internal mold release agent (d)]
The polymerizable composition for an optical material of the present invention may further contain an internal mold release agent (d) for the purpose of improving the mold release property from the mold after molding.
As the internal mold release agent (d), the same one as in the first embodiment can be used.
[スズ触媒(e)]
 本実施形態の光学材料用重合性組成物は、重合反応性化合物(c)がポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む場合、さらにスズ触媒(e)を含むことができる。
[Tin catalyst (e)]
When the polymerization-reactive compound (c) contains a polyiso (thio) cyanate compound and a bifunctional or higher-functional active hydrogen compound, the polymerizable composition for an optical material of the present embodiment may further contain a tin catalyst (e). ..
 スズ触媒(e)を含む場合、光学材料用重合性組成物が増粘しポットライフが短くなる傾向があるものの、本実施形態の光学材料用重合性組成物はpKaが0未満の酸の無水物(b2)を含むことから、増粘抑制効果に優れており、スズ触媒の触媒性能を生かしつつポットライフを改善することができる。 When the tin catalyst (e) is contained, the polymerizable composition for optical materials tends to thicken and the pot life tends to be shortened, but the polymerizable composition for optical materials of the present embodiment is anhydrous with an acid having a pKa of less than 0. Since it contains a substance (b2), it has an excellent effect of suppressing thickening, and can improve the pot life while making the best use of the catalytic performance of the tin catalyst.
 スズ触媒(e)としては、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジメチル錫ジクロライド等を挙げることができ、1種または2種以上を併用することができる。
 スズ触媒(e)の使用量は、特に限定されるものではないが、重合反応性化合物(c)100重量部に対して0~10重量部の範囲である。
Examples of the tin catalyst (e) include dibutyl tin dilaurate, dibutyl tin dichloride, dimethyl tin dichloride, and the like, and one or more of them can be used in combination.
The amount of the tin catalyst (e) used is not particularly limited, but is in the range of 0 to 10 parts by weight with respect to 100 parts by weight of the polymerization-reactive compound (c).
[フォトクロミック化合物(f)]
 本実施形態の光学材料用重合性組成物は、さらにフォトクロミック化合物(f)を含むことができる。
[Photochromic compound (f)]
The polymerizable composition for an optical material of the present embodiment can further contain a photochromic compound (f).
 フォトクロミック化合物(f)としては、第1実施形態と同様のものを用いることができる。 As the photochromic compound (f), the same compound as in the first embodiment can be used.
(その他の成分)
 本実施形態においては、前記(a1)、(b2)および(c)成分、必要に応じて添加される前記(d)成分、前記(e)成分または前記(f)成分に加えて、紫外線吸収剤、光安定剤、重合触媒、樹脂改質剤等をさらに含んでいてもよい。
(Other ingredients)
In the present embodiment, in addition to the components (a1), (b2) and (c), the component (d) added as needed, the component (e) or the component (f), ultraviolet absorption is absorbed. It may further contain an agent, a light stabilizer, a polymerization catalyst, a resin modifier and the like.
<光学材料用重合性組成物の製造方法>
 本実施形態の光学材料用重合性組成物は、前記成分を従来公知の方法で混合することにより得ることができる。
<Manufacturing method of polymerizable composition for optical materials>
The polymerizable composition for an optical material of the present embodiment can be obtained by mixing the above components by a conventionally known method.
<成形体およびその用途>
 本実施形態においては、光学材料用重合性組成物を硬化することにより成形体を得ることができる。
<Molded body and its uses>
In the present embodiment, a molded product can be obtained by curing the polymerizable composition for an optical material.
 光学材料用重合性組成物を重合させる際のモールド形状を変えることにより種々の形状の成形体およびかかる成形体からなる光学材料を得ることができる。本実施形態の成形体は、所望の形状とし、必要に応じて形成されるコート層や他の部材等を備えることにより、様々な光学材料として用いることができる。 By changing the mold shape when polymerizing the polymerizable composition for an optical material, it is possible to obtain a molded product having various shapes and an optical material composed of such a molded product. The molded product of the present embodiment can be used as various optical materials by forming a desired shape and providing a coat layer, other members, or the like formed as needed.
 光学材料としては、プラスチックレンズ、発光ダイオード(LED)、プリズム、光ファイバー、情報記録基板、フィルター等を挙げることができる。特に、プラスチックレンズとして好適である。
 以下、本実施形態の成形体からなるプラスチックレンズについて説明する。プラスチックレンズは以下のように製造することができる。
Examples of the optical material include a plastic lens, a light emitting diode (LED), a prism, an optical fiber, an information recording substrate, a filter, and the like. In particular, it is suitable as a plastic lens.
Hereinafter, the plastic lens made of the molded product of the present embodiment will be described. The plastic lens can be manufactured as follows.
<プラスチックレンズの製造方法>
 本実施形態のプラスチックレンズは、通常、上述の光学材料用重合性組成物を用いた注型重合法によって製造される。本実施形態のプラスチックレンズの製造方法は、具体的には、光学材料用重合性組成物を注型重合することによりレンズ基材を形成する工程を含む。各工程は第1実施形態と同様であり説明を省略する。
<Manufacturing method of plastic lenses>
The plastic lens of the present embodiment is usually produced by a casting polymerization method using the above-mentioned polymerizable composition for an optical material. Specifically, the method for producing a plastic lens of the present embodiment includes a step of forming a lens base material by cast polymerization of a polymerizable composition for an optical material. Each step is the same as that of the first embodiment, and the description thereof will be omitted.
 こうして得られる成形体または積層体からなる本実施形態のプラスチックレンズは、メガネレンズ、カメラレンズ、ピックアップレンズ、フルネルレンズ、プリズムレンズ、およびレンチキュラレンズ等様々なレンズ用途に使用できる。それらの中でも特に好ましい用途として、表面が平滑なメガネレンズ、カメラレンズ、およびピックアップレンズが挙げられる。 The plastic lens of the present embodiment made of the molded body or laminated body thus obtained can be used for various lens applications such as a glasses lens, a camera lens, a pickup lens, a fullnel lens, a prism lens, and a lenticular lens. Among them, particularly preferable applications include spectacle lenses, camera lenses, and pickup lenses having a smooth surface.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted as long as the effects of the present invention are not impaired.
 以下に、実施例A、実施例Bにより本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples A and B, but the present invention is not limited thereto.
[実施例A]
 まず、本発明の実施例Aにおける評価方法を以下に示す。
<評価方法>
・粘度:本実施形態の光学材料用重合性組成物を調整したのち、窒素雰囲気下、15℃で5時間攪拌を続けたのちに、BROOKFIELD ENGINEERING LABS.INC.社製のB型粘度計(モデル:LVT)を用いて該組成物の粘度を測定した。
[Example A]
First, the evaluation method in Example A of the present invention is shown below.
<Evaluation method>
-Viscosity: After adjusting the polymerizable composition for an optical material of the present embodiment, stirring was continued at 15 ° C. for 5 hours in a nitrogen atmosphere, and then BROOKFIELD ENGINEERING LABS. INC. The viscosity of the composition was measured using a B-type viscometer (model: LVT) manufactured by the same company.
・透明性:得られた樹脂を暗所にてプロジェクターに照射して、曇り(テープからの溶出を含む)、不透明物質の有無を目視にて判断した。曇り(テープからの溶出を含む)、不透明物質が確認されないものを「○」(透明性あり)、確認されたものを「×」(透明性なし)とした。 -Transparency: The obtained resin was irradiated to the projector in a dark place, and the presence or absence of cloudiness (including elution from the tape) and opaque substances was visually judged. Those that were cloudy (including elution from the tape) and no opaque substances were confirmed were marked with "○" (transparent), and those that were confirmed were marked with "x" (not transparent).
・ヘイズ値:日本電色工業株式会社製のヘイズメーター(型番:NDH 2000)を使用し、2.5mm厚の平板の樹脂のHAZE値を測定した。なお、HAZE値は、0.70未満であれば、レンズとして問題なく使用することができる。 -Haze value: Using a haze meter (model number: NDH 2000) manufactured by Nippon Denshoku Kogyo Co., Ltd., the HAZE value of a 2.5 mm thick flat plate resin was measured. If the HAZE value is less than 0.70, it can be used as a lens without any problem.
・歪み(脈理):得られたレンズを高圧UVランプに投影して、レンズ内に歪みが見られないものを「◎」(脈理なし)、目視観察にてレンズ内に歪みが見られないものを「○」、目視観察にてレンズ内に歪みが見られるものを「×」(脈理あり)とした。 -Distortion (pulse): The obtained lens is projected onto a high-voltage UV lamp, and if there is no distortion in the lens, "◎" (no pulse), distortion is seen in the lens by visual observation. Those without it were marked with "○", and those with distortion in the lens by visual observation were marked with "x" (with pulse).
・屈折率(ne)、アッベ数(νe):島津製作所製プルフリッヒ屈折計KPR-30を用い、波長546.1nm(水銀e線)、波長480.0nm(Cd F’線)及び波長643.9nm(Cd C’線)での屈折率(ne、nF’、nC’)をそれぞれ測定し、屈折率(ne)及びアッベ数(νe)をそれぞれ求めた。 Refractive index (ne), Abbe number (νe): Using Shimadzu's Purfrich refractometer KPR-30, wavelength 546.1 nm (mercury e-line), wavelength 480.0 nm (Cd F'line) and wavelength 643.9 nm. The refractive index (ne, nF', nC') at (CdC'line) was measured, and the refractive index (ne) and Abbe number (νe) were determined, respectively.
・耐熱性:TMAペネートレーション法(50g荷重、ピン先0.5mmφ、昇温速度10℃/min)でのガラス転移温度Tgを測定した。
・比重:アルキメデス法により測定した。
-Heat resistance: The glass transition temperature Tg was measured by the TMA penation method (50 g load, pin tip 0.5 mmφ, heating rate 10 ° C./min).
-Relative density: Measured by the Archimedes method.
・耐衝撃性(ドロップボール試験):中心厚1mmのレンズにハードコート層(SDC Technologies Inc.社製C-415)、反射防止層(Optotech社製Duracote 1.60)を積層したのち、米国FDAに準拠し、127cmの高さより軽い鋼球から重い鋼球へ、破断するまで順に落下させて、破断した鋼球重量により耐衝撃性を評価した。鋼球は8g→16g→28g→33g→45g→67g→95g→112g→174g→225g→530gの順で実施した。 -Impact resistance (drop ball test): After laminating a hard coat layer (C-415 manufactured by SDC Steelologies Inc.) and an antireflection layer (Duracote 1.60 manufactured by Optotech) on a lens with a center thickness of 1 mm, the US FDA The impact resistance was evaluated by the weight of the broken steel balls, which were dropped in order from a steel ball lighter than 127 cm in height to a heavy steel ball until it broke. The steel balls were carried out in the order of 8 g → 16 g → 28 g → 33 g → 45 g → 67 g → 95 g → 112 g → 174 g → 225 g → 530 g.
・耐衝撃性(High Mass Impact Test):中心厚2mmのレンズに米国ANSI Z87.1に準拠し、127cmの高さから重さ500gの鉄錘を落下させ、樹脂が破断しなかった割合を合格率として評価した。 -Impact resistance (High Mass Impact Test): In accordance with American National Standards Institute Z87.1, a weight of 500 g was dropped from a height of 127 cm on a lens with a center thickness of 2 mm, and the resin did not break. Evaluated as a rate.
・耐衝撃性(High Velocity Impact Test):実施例および比較例で得られた中心厚2mmのレンズに、以下のプライマー層、ハードコート層、および反射防止層を積層したのち、米国ANSI Z87.1に準拠し、直径6.35mmの鉄球を秒速45メートル毎秒でレンズに発射し、樹脂が破断しなかった割合を合格率として評価した。
 プライマー層:(SDC Technologies Inc.社製PR-1135、膜厚1.3μm)
 ハードコート層:(SDC Technologies Inc.社製C-415、膜厚2.5μm)
 反射防止層:(Optotech社製Duracote 1.60、膜厚2.6nm)
-Impact resistance (High Velocity Impact Test): The following primer layer, hard coat layer, and antireflection layer are laminated on the lenses having a center thickness of 2 mm obtained in Examples and Comparative Examples, and then ANSI Z87.1 in the United States. An iron ball having a diameter of 6.35 mm was fired at a lens at a speed of 45 meters per second per second, and the rate at which the resin did not break was evaluated as the pass rate.
Primer layer: (PR-1135 manufactured by SDC Technologies Inc., film thickness 1.3 μm)
Hard coat layer: (C-415 manufactured by SDC Technologies Inc., film thickness 2.5 μm)
Anti-reflection layer: (Duracote 1.60 manufactured by Optotech, film thickness 2.6 nm)
・染色性:水1960gに染料(BPI grey/Brain Power Inc.社製)40gを溶解した染色液を90℃に加熱し、9.0mm×50.0mm×1.4mmの試験片を60分浸漬させたのち、紫外可視分光光度計にて各波長での透過率を測定した。 -Stainability: A dyeing solution prepared by dissolving 40 g of a dye (BPI gray / Brain Power Inc.) in 1960 g of water is heated to 90 ° C., and a 9.0 mm × 50.0 mm × 1.4 mm test piece is immersed for 60 minutes. After that, the transmittance at each wavelength was measured with an ultraviolet-visible spectrophotometer.
・耐光性:2.5mm厚平板を用いてQ-Lab製促進耐候性試験機にてQUV試験(光源:UVA-340、強度:0.50W/m、試験条件:50℃×150時間)を実施し、照射前後の色相変化を測定した。 -Light resistance: QUV test using a 2.5 mm thick flat plate with a Q-Lab accelerated weather resistance tester (light source: UVA-340, intensity: 0.50 W / m 2 , test conditions: 50 ° C. x 150 hours) Was carried out, and the hue change before and after irradiation was measured.
・耐溶剤性:得られたレンズの表面に、アセトンを染み込ませた不織布を10秒間押し当て、レンズ表面に膨潤の跡が確認されないものを「○」(耐溶剤性あり)、膨潤の跡が確認されるものを「×」(耐溶剤性なし)とした。 -Solvent resistance: A non-woven fabric impregnated with acetone is pressed against the surface of the obtained lens for 10 seconds, and if no trace of swelling is confirmed on the lens surface, "○" (solvent resistance), swelling traces Those confirmed were marked with "x" (no solvent resistance).
・ナノドメインの観察:得られた樹脂中のナノドメインの形状観察は、試料を四酸化ルテニウムにより染色した後、透過型電子顕微鏡(TEM/日立ハイテクノロジーズ社製H-7650)で100kVの条件にて行った。 -Observation of nanodomains: To observe the shape of nanodomains in the obtained resin, after staining the sample with ruthenium tetroxide, use a transmission electron microscope (TEM / Hitachi High-Technologies Corporation H-7650) under the condition of 100 kV. I went.
[実施例a1]
 メタキシリレンジイソシアネート49.56重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリ(エチレングリコール)ポリ(プロピレングリコール)ポリ(エチレングリコール)ブロックコポリマー(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にメタンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体はナノドメインの観察の結果、TEM写真から直径5~8nmの粒子が樹脂中に均一分散している様子が観察された。組成および得られた成形体の評価結果を表-1に示し、TEM写真を図1に示す。
[Example a1]
49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (manufactured by Sigma Aldrich; trade name: Pluronic F-127) 1.98 weight The part was charged and reacted at 20 ° C. for 1 hour. 0.1 part by weight of methanesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 45 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was observed from the TEM photograph that particles having a diameter of 5 to 8 nm were uniformly dispersed in the resin. The composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
[実施例a2]
 メタキシリレンジイソシアネート49.58重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が6800のポリ(エチレングリコール)ポリ(プロピレングリコール)ポリ(エチレングリコール)ブロックコポリマー(Sigma Aldrich社製;商品名 Pluronic F-77)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にメタンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.44重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体はナノドメインの観察の結果、TEM写真ではドメインの観察および粒径の測長は困難であった。組成および得られた成形体の評価結果を表-1に示し、TEM写真を図2に示す。
[Example a2]
49.58 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (manufactured by Sigma Aldrich; trade name: Pluronic F-77) 1.98 weight The part was charged and reacted at 20 ° C. for 1 hour. 0.1 part by weight of methanesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 44 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was difficult to observe the domains and measure the particle size in the TEM photograph. The composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
[実施例a3]
 メタキシリレンジイソシアネート49.61重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が2900のポリ(エチレングリコール)ポリ(プロピレングリコール)ポリ(エチレングリコール)ブロックコポリマー(Sigma Aldrich社製;商品名 Pluronic L-64)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にメタンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.40重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体はナノドメインの観察の結果、TEM写真でわずかながらドメインが均一分散している様子を観察できたが、粒径の測長は困難であった。組成および得られた成形体の評価結果を表-1に示し、TEM写真を図3に示す。
[Example a3]
49.61 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (manufactured by Sigma Aldrich; trade name: Pluronic L-64) 1.98 weight The part was charged and reacted at 20 ° C. for 1 hour. 0.10 parts by weight of methanesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 40 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was possible to observe that the domains were slightly uniformly dispersed on the TEM photograph, but it was difficult to measure the particle size. The composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
[実施例a4]
 メタキシリレンジイソシアネート49.61重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が3000のポリカプロラクトンジオール(Perstorp社製;商品名 CAPA 2302A)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にメタンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.41重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体はナノドメインの観察の結果、TEM写真から直径5~10nmの粒子が樹脂中に均一分散している様子が観察された。組成および得られた成形体の評価結果を表-1に示し、TEM写真を図4に示す。
[Example a4]
49.61 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Was mixed and dissolved to prepare a uniform solution, and then 1.98 parts by weight of polycaprolactone diol (manufactured by Perstop; trade name CAPA 2302A) having a weight average molecular weight of 3000 was charged and reacted at 20 ° C. for 1 hour. 0.1 part by weight of methanesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 41 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was observed from the TEM photograph that particles having a diameter of 5 to 10 nm were uniformly dispersed in the resin. The composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
[実施例a5]
 メタキシリレンジイソシアネート39.60重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が4000のポリカプロラクトンジオール(Perstorp社製;商品名 CAPA 2403D)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にメタンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.42重量部を混合溶解し、均一溶液とした。さらに、メタキシリレンジイソシアネート10.0重量部にスズ触媒としてジメチルスズジクロライド(本荘ケミカル社製;商品名 ネスチンP)0.0060重量部を混合溶解し得た均一溶液を当該調合液に加え、混合溶解し、均一溶液を得た。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体はナノドメインの観察の結果、TEM写真から直径5~20nmの粒子が樹脂中に均一分散している様子が観察された。組成および得られた成形体の評価結果を表-1に示し、TEM写真を図5に示す。
[Example a5]
39.60 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Was mixed and dissolved to prepare a uniform solution, and then 1.98 parts by weight of polycaprolactone diol (manufactured by Perstop; trade name CAPA 2403D) having a weight average molecular weight of 4000 was charged and reacted at 20 ° C. for 1 hour. 0.1 part by weight of methanesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 42 parts by weight were mixed and dissolved to prepare a uniform solution. Further, a uniform solution obtained by mixing and dissolving 0.0060 parts by weight of dimethyltin dichloride (manufactured by Honjo Chemical Co., Ltd .; trade name Nestin P) as a tin catalyst in 10.0 parts by weight of metaxylylene diisocyanate is added to the prepared solution and mixed. It was dissolved to give a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was observed from the TEM photograph that particles having a diameter of 5 to 20 nm were uniformly dispersed in the resin. The composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
[実施例a6]
 メタキシリレンジイソシアネート39.61重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が3000のポリカプロラクトンジオール(Perstorp社製;商品名 CAPA 2302A)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にメタンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.41重量部を混合溶解し、均一溶液とした。さらに、メタキシリレンジイソシアネート10.0重量部にスズ触媒としてジメチルスズジクロライド(本荘ケミカル社製;商品名 ネスチンP)0.0060重量部を混合溶解し得た均一溶液を当該調合液に加え、混合溶解し、均一溶液を得た。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体はナノドメインの観察の結果、TEM写真から直径5~8nmの粒子が樹脂中に均一分散している様子が観察された。組成および得られた成形体の評価結果を表-1に示し、TEM写真を図6に示す。
[Example a6]
39.61 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) Was mixed and dissolved to prepare a uniform solution, and then 1.98 parts by weight of polycaprolactone diol (manufactured by Perstop; trade name CAPA 2302A) having a weight average molecular weight of 3000 was charged and reacted at 20 ° C. for 1 hour. 0.1 part by weight of methanesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 41 parts by weight were mixed and dissolved to prepare a uniform solution. Further, a uniform solution obtained by mixing and dissolving 0.0060 parts by weight of dimethyltin dichloride (manufactured by Honjo Chemical Co., Ltd .; trade name Nestin P) as a tin catalyst in 10.0 parts by weight of metaxylylene diisocyanate is added to the prepared solution and mixed. It was dissolved to give a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, it was observed from the TEM photograph that particles having a diameter of 5 to 8 nm were uniformly dispersed in the resin. The composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
[実施例a7]
 メタキシリレンジイソシアネートに塩化水素ガスを吹き込み溶解させ、塩化水素濃度が3000ppmとなる溶液を作製した。本溶液33.3重量部にメタキシリレンジイソシアネート16.3重量部を加え、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリオキシエチレンポリオキシプロピレングリコール(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。組成および得られた成形体の評価結果を表-1に示す。
[Example a7]
Hydrogen chloride gas was blown into metaxylylene diisocyanate to dissolve it, and a solution having a hydrogen chloride concentration of 3000 ppm was prepared. To 33.3 parts by weight of this solution, 16.3 parts by weight of metaxylylene diisocyanate was added, 1.50 parts by weight of an ultraviolet absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name: Biosorb 583), and an internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; Product name JP506H) After mixing and dissolving 0.30 parts by weight to make a uniform solution, polyoxyethylene polyoxypropylene glycol having a weight average molecular weight of 13300 (manufactured by Sigma Aldrich; trade name Pluronic F-127) 1.98 parts by weight Was charged and reacted at 20 ° C. for 1 hour. 5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan in the solution , 4,8-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithioundecane was mixed and dissolved in 48.45 parts by weight to prepare a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. Table 1 shows the composition and the evaluation results of the obtained molded product.
[実施例a8]
 メタキシリレンジイソシアネート49.56重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリオキシエチレンポリオキシプロピレングリコール(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にビニルスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。組成および得られた成形体の評価結果を表-1に示す。
[Example a8]
49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) To obtain a uniform solution, 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time. 0.1 part by weight of vinyl sulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 45 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. Table 1 shows the composition and the evaluation results of the obtained molded product.
[実施例a9]
 メタキシリレンジイソシアネート49.56重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリオキシエチレンポリオキシプロピレングリコール(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にパラトルエンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。組成および得られた成形体の評価結果を表-1に示す。
[Example a9]
49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) To obtain a uniform solution, 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time. 0.10 parts by weight of paratoluenesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4, Composition 48 containing 7-dimercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48 .45 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. Table 1 shows the composition and the evaluation results of the obtained molded product.
[実施例a10]
 メタキシリレンジイソシアネート39.56重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリオキシエチレンポリオキシプロピレングリコール(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にメタンスルホン酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。さらに、メタキシリレンジイソシアネート10.0重量部にスズ触媒としてジメチルスズジクロライド(本荘ケミカル社製;商品名 ネスチンP)0.0020重量部を混合溶解し得た均一溶液を当該調合液に加え、混合溶解し、均一溶液を得た。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。組成および得られた成形体の評価結果を表-1に示す。
[Example a10]
39.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) To obtain a uniform solution, 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time. 0.1 part by weight of methanesulfonic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7. Compositions comprising-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 45 parts by weight were mixed and dissolved to prepare a uniform solution. Further, a uniform solution obtained by mixing and dissolving 0.0020 parts by weight of dimethyltin dichloride (manufactured by Honjo Chemical Co., Ltd .; trade name Nestin P) as a tin catalyst in 10.0 parts by weight of metaxylylene diisocyanate is added to the prepared solution and mixed. It was dissolved to give a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. Table 1 shows the composition and the evaluation results of the obtained molded product.
[比較例a1]
 メタキシリレンジイソシアネート40.70重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(三井化学社製;商品名MR用内部離型剤)0.10重量部を混合溶解し均一溶液とした後、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物49.30重量部を混合溶解し、均一溶液とした。さらに、メタキシリレンジイソシアネート10.0重量部にスズ触媒としてジメチルスズジクロライド(本荘ケミカル社製;商品名 ネスチンP)0.0080重量部を混合溶解し得た均一溶液を当該調合液に加え、混合溶解し、均一溶液を得た。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体はナノドメインの観察の結果、TEM写真から樹脂中に粒子は確認されなかった。組成および得られた成形体の評価結果を表-1に示し、TEM写真を図-7に示す。
[Comparative Example a1]
40.70 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), internal mold release agent (manufactured by Mitsui Chemicals Co., Ltd .; internal mold release agent for MR) After 0.10 parts by weight were mixed and dissolved to make a uniform solution, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11 49.30 parts by weight of the composition containing -dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane was mixed and dissolved. It was made into a uniform solution. Further, a uniform solution obtained by mixing and dissolving 0.0080 parts by weight of dimethyltin dichloride (manufactured by Honjo Chemical Co., Ltd .; trade name Nestin P) as a tin catalyst in 10.0 parts by weight of metaxylylene diisocyanate is added to the prepared solution and mixed. It was dissolved to give a homogeneous solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. As a result of observing the nanodomains of the obtained molded product, no particles were confirmed in the resin from the TEM photograph. The composition and the evaluation results of the obtained molded product are shown in Table 1, and the TEM photograph is shown in FIG.
[比較例a2]
 メタキシリレンジイソシアネート49.56重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリオキシエチレンポリオキシプロピレングリコール(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にギ酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。得られた成形体は耐熱性が95℃であり、透明性があるものの多数のクラックが生じていたため物性評価を行うことが出来なかった。
[Comparative Example a2]
49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) To obtain a uniform solution, 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time. 0.10 parts by weight of formic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-di. Composition 48.45 weight containing mercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane The parts were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. The obtained molded product had a heat resistance of 95 ° C. and was transparent, but many cracks were generated, so that the physical properties could not be evaluated.
[比較例a3]
 メタキシリレンジイソシアネート49.56重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリオキシエチレンポリオキシプロピレングリコール(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にシュウ酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。組成および得られた成形体の評価結果を表-1に示す。
[Comparative Example a3]
49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) To obtain a uniform solution, 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time. 0.10 parts by weight of oxalic acid was mixed and dissolved in the solution to make a uniform solution, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7- Composition 48.45 containing dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane. The parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. Table 1 shows the composition and the evaluation results of the obtained molded product.
[比較例a4]
 メタキシリレンジイソシアネート49.56重量部に、紫外線吸収剤(共同薬品社製;商品名バイオソーブ583)1.50重量部、内部離型剤(城北化学社製;商品名JP506H)0.30重量部を混合溶解し均一溶液とした後、重量平均分子量が13300のポリオキシエチレンポリオキシプロピレングリコール(Sigma Aldrich社製;商品名 Pluronic F-127)1.98重量部を装入し、20℃で1時間反応させた。当該溶液にトリフルオロ酢酸0.10重量部を混合溶解し、均一溶液とした後、更に5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含む組成物48.45重量部を混合溶解し、均一溶液とした。400Paにて脱泡を行った後に成型モールドへ注入した。これを重合オーブンへ投入して、20℃~120℃まで24時間かけて徐々に昇温して重合した。重合終了後、オーブンから取り出して成型モールドからの離型作業を行った。離型性は良好であり、モールドの剥離は見られなかった。得られた成形体をさらに120℃で2時間アニール処理を行った。組成および得られた成形体の評価結果を表-1に示す。
[Comparative Example a4]
49.56 parts by weight of metaxylylene diisocyanate, 1.50 parts by weight of UV absorber (manufactured by Kyodo Yakuhin Co., Ltd .; trade name Biosorb 583), 0.30 parts by weight of internal mold release agent (manufactured by Johoku Chemical Co., Ltd .; trade name JP506H) To obtain a uniform solution, 1.98 parts by weight of polyoxyethylene polyoxypropylene glycol (manufactured by Sigma Aldrich; trade name: Pluronic F-127) having a weight average molecular weight of 13300 was charged, and 1 at 20 ° C. Reacted for time. After mixing and dissolving 0.10 parts by weight of trifluoroacetic acid in the solution to make a uniform solution, further 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7 Composition containing -dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane 48. 45 parts by weight were mixed and dissolved to prepare a uniform solution. After defoaming at 400 Pa, it was injected into the molding mold. This was put into a polymerization oven, and the temperature was gradually raised from 20 ° C. to 120 ° C. over 24 hours for polymerization. After the polymerization was completed, it was taken out from the oven and removed from the molding mold. The releasability was good, and no peeling of the mold was observed. The obtained molded product was further annealed at 120 ° C. for 2 hours. Table 1 shows the composition and the evaluation results of the obtained molded product.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
(ポリオール化合物)
P1:重量平均分子量13333のポリ(エチレングリコール)ポリ(プロピレングリコール)ポリ(エチレングリコール)ブロックコポリマー(Sigma Aldrich社製 Pluronic F-127)
P2:重量平均分子量6800のポリ(エチレングリコール)ポリ(プロピレングリコール)ポリ(エチレングリコール)ブロックコポリマー(Sigma Aldrich社製 Pluronic F-77)
P3:重量平均分子量2900のポリ(エチレングリコール)ポリ(プロピレングリコール)ポリ(エチレングリコール)ブロックコポリマー(Sigma Aldrich社製 Pluronic L-64)
P4:重量平均分子量3000のポリ(カプロラクトン)ジオール(Perstorp社製 CAPA2302A)
P5:重量平均分子量4000のポリ(カプロラクトン)ジオール(Perstorp社製 CAPA2403D)
(Polyol compound)
P1: Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (Pluronic F-127 manufactured by Sigma Aldrich) having a weight average molecular weight of 13333.
P2: Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (Pluronic F-77 manufactured by Sigma Aldrich) having a weight average molecular weight of 6800.
P3: Poly (ethylene glycol) poly (propylene glycol) poly (ethylene glycol) block copolymer (Pluronic L-64 manufactured by Sigma Aldrich) having a weight average molecular weight of 2900.
P4: Poly (caprolactone) diol having a weight average molecular weight of 3000 (CAPA2302A manufactured by Polyester)
P5: Poly (caprolactone) diol having a weight average molecular weight of 4000 (CAPA2403D manufactured by Perstop)
(酸)
A1:メタンスルホン酸
A2:塩酸
A3:ビニルスルホン酸
A4:パラトルエンスルホン酸
A5:ギ酸
A6:シュウ酸
A7:トリフルオロ酢酸
(acid)
A1: Methanesulfonic acid A2: Hydrochloric acid A3: Vinyl sulfonic acid A4: Paratoluenesulfonic acid A5: Formic acid A6: Sulfuric acid A7: Trifluoroacetic acid
(イソ(チオ)シアネート化合物)
I1:メタキシリレンジイソシアネート
(Iso (thio) cyanate compound)
I1: Metaxylylene diisocyanate
(ポリチオール化合物)
T1:5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物
(Polythiol compound)
With T1: 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane Mixture with 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane
(スズ触媒)
S1:ジメチルスズジクロライド
(Tin catalyst)
S1: Dimethyltin dichloride
 実施例a1~a10のチオウレタンウレタン成形体は、ポリオール化合物(a)および酸(b1)を含まないチオウレタン成形体である比較例a1と比較して、耐衝撃性および染色性に優れており、その他光学材料としての諸物性とのバランスに優れていた。 The thiourethane urethane molded products of Examples a1 to a10 are excellent in impact resistance and dyeability as compared with Comparative Example a1 which is a thiourethane molded product containing no polyol compound (a) and acid (b1). It was excellent in balance with various physical properties as other optical materials.
 さらに、実施例a1~a10のチオウレタンウレタン成形体は、pKaが0以上の酸を添加剤として用いたチオウレタンウレタン成形体(比較例a2~a4)と比較し、調合液の粘度上昇が緩やかなためハンドリング性に優れ、光学材料を製造する工程において円滑に取り扱うことが可能であるとともに、光学歪みの発生が少なく外観に優れていた。
 また、ギ酸を添加したチオウレタンウレタン成形体(比較例a2)では、硬化過程で樹脂中に大量のクラックが発生し、物性評価を行うことが出来なかった。
Further, the thiourethane urethane molded articles of Examples a1 to a10 have a gradual increase in the viscosity of the formulation as compared with the thiourethane urethane molded articles (Comparative Examples a2 to a4) in which an acid having a pKa of 0 or more is used as an additive. Therefore, it is excellent in handleability, can be handled smoothly in the process of manufacturing an optical material, and has an excellent appearance with less occurrence of optical distortion.
Further, in the thiourethane urethane molded product to which formic acid was added (Comparative Example a2), a large amount of cracks were generated in the resin during the curing process, and the physical properties could not be evaluated.
 実施例a1のチオウレタンウレタン成形体にハードコート層および反射防止層を積層した積層体は、実施例a2~a10のチオウレタンウレタン成形体にハードコート層および反射防止層を積層した積層体と比較して耐衝撃性により優れ、さらに成形体自体に脈理が確認されず外観により優れていた。 The laminate in which the hard coat layer and the antireflection layer are laminated on the thiourethane urethane molded body of Example a1 is compared with the laminate in which the hard coat layer and the antireflection layer are laminated on the thiourethane urethane molded body of Examples a2 to a10. As a result, it was superior in impact resistance, and the appearance was superior because no veins were confirmed in the molded body itself.
 実施例a1および実施例a10のチオウレタンウレタン成形体にプライマー層、ハードコート層および反射防止層を積層した積層体は、比較例a1のチオウレタン成形体にプライマー層、ハードコート層および反射防止層を積層した積層体と比較して耐衝撃性に優れていた。 The laminate obtained by laminating the primer layer, the hard coat layer and the antireflection layer on the thiourethane urethane molded body of Example a1 and Example a10 is the thiourethane molded body of Comparative Example a1 and the primer layer, the hard coat layer and the antireflection layer. It was superior in impact resistance as compared with the laminated body in which the above was laminated.
 このように、本発明の光学材料用重合性組成物から得られるチオウレタンウレタン成形体は、透明性、耐熱性、耐衝撃性および染色性に優れ、且つ光学歪み(脈理)の発生が抑制され、且つ耐光性に優れ、これらの特性のバランスに優れていた。 As described above, the thiourethane urethane molded product obtained from the polymerizable composition for optical materials of the present invention is excellent in transparency, heat resistance, impact resistance and dyeability, and the occurrence of optical strain (pulse) is suppressed. It was excellent in light resistance and a good balance of these characteristics.
 本発明の光学材料用重合性組成物から得られるチオウレタンウレタン成形体は、高い透明性が要求される各種光学材料、特に眼鏡レンズにおいて好適に使用することができる。 The thiourethane urethane molded product obtained from the polymerizable composition for optical materials of the present invention can be suitably used in various optical materials that require high transparency, especially in spectacle lenses.
[実施例B]
 まず、本発明の実施例Bにおける評価方法を以下に示す。
<評価方法>
・粘度:JIS K 7117に準拠し測定した。
・フォトクロミック特性
 測定方法:
・ΔT%@550nm:2mm厚に加工した成形体に、温度23℃で、ウシオ電機MS-35AAF/FBキセノンランプ光源装置(照度50000ルクス)を用いて、15分間照射した後の550nmにおける透過率を測定し、発色前後の550nmでの光線透過率変化量を算出した。この変化量が大きいほど発色時の遮光性が高いことを示す。
・Fading speed t1/2(退色半減期):上記と同様に成形体に15分間光線照射した後、光線照射を止めてから成形体サンプルの550nmにおける吸光度が発色前後の吸光度の中間値まで回復するのに要する時間(s)を測定した。この時間を退色半減期とした。退色半減期が速い成形体を調光性能が良好と判断する。
[Example B]
First, the evaluation method in Example B of the present invention is shown below.
<Evaluation method>
-Viscosity: Measured in accordance with JIS K 7117.
・ Photochromic characteristic measurement method:
-ΔT% @ 550 nm: Transmittance at 550 nm after irradiating a molded body processed to a thickness of 2 mm at a temperature of 23 ° C. using a Ushio Electric MS-35AAF / FB xenon lamp light source device (illuminance 50,000 lux) for 15 minutes. Was measured, and the amount of change in light transmittance at 550 nm before and after color development was calculated. The larger the amount of change, the higher the light-shielding property at the time of color development.
-Fading speed t1 / 2 (fading half-life): After irradiating the molded product with light for 15 minutes in the same manner as above, the absorbance of the molded product sample at 550 nm recovers to an intermediate value before and after color development after the light irradiation is stopped. The time (s) required for the above was measured. This time was defined as the fading half-life. A molded product with a fast fading half-life is judged to have good dimming performance.
〔実施例b1〕
 ポリエーテルポリオール(a)としてポリオールL64(カネカ社製)2.0重量部と、酸性リン酸エステルJP-506H(城北化学工業社製)0.2重量部と、化合物(b)としてメタンスルホン酸(東京化成社製)0.01重量部と、メタキシリレンジイソシアネート40.22重量部とを室温で混合した。続いてこの混合物に、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含むポリチオール組成物47.82重量部を添加し、さらに、スズ触媒(d)としてジメチルスズジクロリド(東京化成製)0.005重量部が溶解したメタキシリレンジイソシアネート10重量部を添加して重合性組成物を調製した。この重合性組成物を20℃で攪拌して、重合性組成物調製直後からそれぞれ1時間、3時間、5時間経過後の重合性組成物の粘度を、B型粘度計(Brookfield製)を使用して測定した。測定結果を表-1に示す。
[Example b1]
2.0 parts by weight of polyol L64 (manufactured by Kaneka) as a polyether polyol (a), 0.2 parts by weight of acidic phosphate ester JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), and methanesulfonic acid as a compound (b). 0.01 part by weight of (manufactured by Tokyo Kasei Co., Ltd.) and 40.22 parts by weight of metaxylylene diisocyanate were mixed at room temperature. Subsequently, this mixture was added to 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-. 47.82 parts by weight of a polythiol composition containing trithiaundecane and 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane was added, and a tin catalyst (d) was added. A polymerizable composition was prepared by adding 10 parts by weight of metaxylylene diisocyanate in which 0.005 parts by weight of dimethyltin dichloride (manufactured by Tokyo Kasei) was dissolved. This polymerizable composition is stirred at 20 ° C., and the viscosity of the polymerizable composition after 1 hour, 3 hours, and 5 hours have passed immediately after the preparation of the polymerizable composition is measured using a B-type viscometer (manufactured by Brookfield). And measured. The measurement results are shown in Table-1.
〔参考例b1、実施例b2~b13、比較例b1~b10〕
 ポリエーテルポリオール(a)、化合物(b)の種類と添加量、およびスズ触媒(d)の添加量を表-1および表-2に記載の値に変更した以外は、実施例b1に記載の方法にて重合性組成物を調製して粘度を測定した。測定結果を表-4および表-5に示す。
[Reference Example b1, Examples b2 to b13, Comparative Examples b1 to b10]
The description in Example b1 except that the types and amounts of the polyether polyol (a) and the compound (b) and the amount of the tin catalyst (d) added were changed to the values shown in Tables 1 and 2. A polymerizable composition was prepared by the method and the viscosity was measured. The measurement results are shown in Table 4 and Table-5.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
〔実施例b14〕
 フォトクロミック化合物(f)としてReversacol Wembley Grey(Vivimed社製)0.078重量部、Reversacol Heath green(Vivimed社製)0.064重量部と、ポリエーテルポリオール(a)としてポリオールL64(カネカ社製)2.0重量部と、酸性リン酸エステルJP-506H(城北化学工業社製)0.2重量部と、化合物(b)としてメタンスルホン酸(東京化成製)0.05重量部と、メタキシリレンジイソシアネート40.22重量部とを室温で混合した。続いてこの混合物に、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、および、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含むポリチオール組成物47.82重量部を添加し、さらに、スズ触媒(d)としてジメチルスズジクロリド(東京化成社製)0.004重量部が溶解したメタキシリレンジイソシアネート10重量部を添加して重合性組成物を調製した後、この重合性組成物を20℃で1時間攪拌した。真空ポンプを用いて133~400Paの減圧度で減圧しながら、1μmのPTFE製メンブランフィルターで重合性組成物を濾過し、攪拌しながら泡が消えるまで40分間真空ポンプで減圧脱気操作を実施した。重合性組成物を2mm厚のガラスモールドに注入し、オーブンで室温から120℃まで昇温して重合性組成物を硬化させて成形体を調製した。重合性組成物の調製時に重合性組成物の粘度が急速に上昇することはなく、ガラスモールドに重合性組成物を注入することができた。フォトクロミック特性の測定結果を表-6に示す。
[Example b14]
0.078 parts by weight of Reveracol Wembley Gray (manufactured by Vivid) as a photochromic compound (f), 0.064 parts by weight of Reveracol Heath green (manufactured by Vivimed), and polyol L64 (manufactured by Kaneka) 2 as a polyether polyol (a). .0 parts by weight, 0.2 parts by weight of acidic phosphate ester JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), 0.05 parts by weight of methanesulfonic acid (manufactured by Tokyo Kasei) as compound (b), and metaxylylene. 40.22 parts by weight of isocyanate was mixed at room temperature. Subsequently, this mixture was added to 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-. 47.82 parts by weight of a polythiol composition containing trithiaundecane and 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane was added, and a tin catalyst (d) was added. To prepare a polymerizable composition by adding 10 parts by weight of methylxylylene diisocyanate in which 0.004 parts by weight of dimethyltin dichloride (manufactured by Tokyo Kasei Co., Ltd.) was dissolved, the polymerizable composition was stirred at 20 ° C. for 1 hour. did. The polymerizable composition was filtered through a 1 μm PTFE membrane filter while depressurizing at a depressurization degree of 133 to 400 Pa using a vacuum pump, and degassing was performed with a vacuum pump for 40 minutes while stirring until the bubbles disappeared. .. The polymerizable composition was poured into a glass mold having a thickness of 2 mm, and the temperature was raised from room temperature to 120 ° C. in an oven to cure the polymerizable composition to prepare a molded product. The viscosity of the polymerizable composition did not increase rapidly during the preparation of the polymerizable composition, and the polymerizable composition could be injected into the glass mold. The measurement results of the photochromic characteristics are shown in Table-6.
〔実施例b15〕
 化合物(b)の種類および添加量を表-3に記載の値に変更した以外は、実施例b14に記載の方法にて成形体を調製してフォトクロミック特性を測定した。測定結果を表-6に示す。
[Example b15]
A molded product was prepared by the method described in Example b14 and the photochromic characteristics were measured, except that the type and the amount of compound (b) added were changed to the values shown in Table 3. The measurement results are shown in Table-6.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表-4~表-6に記載の化合物は以下の通り。
 PEG2000:ポリエチレングリコール(重量平均分子量2000、Sigma Aldrich社製)
 PPG2000:ポリプロピレングリコール(重量平均分子量2000、Sigma Aldrich社製)
 Polyol L64:ブロックPEG/PPG(カネカ社製)
 DMC:ジメチル錫ジクロライド(東京化成工業社製)
 MSA:メタンスルホン酸(東京化成工業社製)、pKa:-2.6
 MSANa:メタンスルホン酸ナトリウム(和光化学社製)
 MSAA:メタンスルホン酸無水物(和光化学社製)
 Phosphoric acid:リン酸(和光化学社製)、pKa:2.12
 PTSA:p-トルエンスルホン酸(東京化成工業社製)、pKa:-2.8
 PTSAA:p-トルエンスルホン酸無水物(東京化成工業社製)
 Triflic anhydride:トリフルオロメタンスルホン酸無水物(東京化成工業社製)、トリフルオロメタンスルホン酸のpKa:-3.9
 TFA:トリフルオロ酢酸(和光化学社製)、pKa:0.5
 Reversacol Wembley Grey:フォトクロミック化合物(Vivimed社製)
 Reversacol Heath Green:フォトクロミック化合物(Vivimed社製)
The compounds listed in Tables 4 to 6 are as follows.
PEG2000: Polyethylene glycol (weight average molecular weight 2000, manufactured by Sigma Aldrich)
PPG2000: Polypropylene glycol (weight average molecular weight 2000, manufactured by Sigma Aldrich)
Polyol L64: Block PEG / PPG (manufactured by Kaneka Corporation)
DMC: Dimethyltin dichloride (manufactured by Tokyo Chemical Industry Co., Ltd.)
MSA: Methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), pKa: -2.6
MSANA: Sodium methanesulfonate (manufactured by Wako Kagaku)
MSAA: Methanesulfonic acid anhydride (manufactured by Wako Kagaku)
Phosphoric acid: Phosphoric acid (manufactured by Wako Kagaku), pKa: 2.12
PTSA: p-toluenesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), pKa: -2.8
PTSAA: p-toluenesulfonic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.)
Triflic anhydride: Trifluoromethanesulfonic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.), pKa of trifluoromethanesulfonic anhydride: -3.9
TFA: Trifluoroacetic acid (manufactured by Wako Kagaku), pKa: 0.5
Reversacol Wembley Gray: Photochromic compound (made by Vivimed)
Reversacol Heath Green: Photochromic compound (manufactured by Vivimed)
 表-4および表-5の比較例の結果から、重合性組成物にポリエーテルポリオールまたはポリエーテルポリオールおよびスズ触媒の両方を添加すると重合性組成物の粘度が上昇するが、実施例の結果から、これらの重合性組成物に、一般式(1)で表される化合物を添加することにより、重合性組成物の粘度上昇を抑制することが可能であり、ハンドリング性(ポットライフ)に優れた光学材料用重合性組成物を提供できることが明らかとなった。
 また、表-6の結果から、本発明の一般式(1)で表される化合物を含む重合性組成物にフォトクロミック化合物を添加した場合においても、得られる成形体(フォトクロミック材料)は、良好なフォトクロミック特性を示すことが明らかとなった。
From the results of Comparative Examples in Tables 4 and 5, the addition of both the polyether polyol or the polyether polyol and the tin catalyst to the polymerizable composition increases the viscosity of the polymerizable composition, but from the results of Examples. By adding the compound represented by the general formula (1) to these polymerizable compositions, it is possible to suppress an increase in the viscosity of the polymerizable composition, and the handleability (pot life) is excellent. It has become clear that a polymerizable composition for an optical material can be provided.
Further, from the results in Table 6, even when the photochromic compound is added to the polymerizable composition containing the compound represented by the general formula (1) of the present invention, the obtained molded product (photochromic material) is good. It was revealed that it exhibits photochromic properties.
 この出願は、2019年12月26日に出願された日本出願特願2019-235967号および2020年2月27日に出願された日本出願特願2020-031316号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-23967 filed on December 26, 2019 and Japanese Application Patent Application No. 2020-031316 filed on February 27, 2020. , All of its disclosures are taken here.

Claims (25)

  1. (a)ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物と、
    (b)pKaが0未満の酸(b1)およびpKaが0未満の酸の無水物(b2)から選択される少なくとも1種の化合物と、
    (c)ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(ポリオール化合物(a)を除く)と、
    を含む、光学材料用重合性組成物。
    (A) At least one polyol compound selected from the polyether polyol (a1) and the polyester polyol (a2), and
    (B) At least one compound selected from an acid (b1) having a pKa of less than 0 and an anhydride (b2) of an acid having a pKa of less than 0.
    (C) Polymerization-reactive compounds (excluding polyol compound (a)) containing polyiso (thio) cyanate compounds and bifunctional or higher active hydrogen compounds, and
    A polymerizable composition for an optical material, which comprises.
  2.  化合物(b)がpKaが0未満の酸(b1)である、請求項1に記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to claim 1, wherein the compound (b) is an acid (b1) having a pKa of less than 0.
  3.  酸(b1)は、塩酸、メタンスルホン酸、p-トルエンスルホン酸、およびビニルスルホン酸から選択される少なくとも1種を含む、請求項1または2に記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to claim 1 or 2, wherein the acid (b1) contains at least one selected from hydrochloric acid, methanesulfonic acid, p-toluenesulfonic acid, and vinylsulfonic acid.
  4.  酸(b1)を200ppm以上含む、請求項1~3のいずれかに記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to any one of claims 1 to 3, which contains 200 ppm or more of an acid (b1).
  5.  ポリオール化合物(a)の重量平均分子量が2000以上である、請求項1~4のいずれかに記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to any one of claims 1 to 4, wherein the polyol compound (a) has a weight average molecular weight of 2000 or more.
  6.  ポリオール化合物(a)がポリエーテルポリオール(a1)である、請求項1に記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to claim 1, wherein the polyol compound (a) is a polyether polyol (a1).
  7.  化合物(b)が、下記一般式(1)で表される化合物(b’)を含む、請求項1または6に記載の光学材料用重合性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Xは炭素原子またはS(=O)を示す。nは0または1を示す。
    はC1~C5のアルキル基、C1~C5のハロアルキル基、置換または無置換のフェニル基を示す。
    は水素原子、C1~C5のアルキル基、C1~C5のハロアルキル基、置換または無置換のフェニル基を示す。
    ただし、Xが炭素原子であり、かつRがC1~C5のハロアルキル基である場合を除く。)
    The polymerizable composition for an optical material according to claim 1 or 6, wherein the compound (b) contains a compound (b') represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), X represents a carbon atom or S (= O), and n represents 0 or 1.
    R 1 represents an alkyl group of C1 to C5, a haloalkyl group of C1 to C5, and a substituted or unsubstituted phenyl group.
    R 2 represents a hydrogen atom, an alkyl group of C1 ~ C5, a haloalkyl group of C1 ~ C5, a substituted or unsubstituted phenyl group.
    However, this excludes the case where X is a carbon atom and R 1 is a haloalkyl group of C1 to C5. )
  8.  化合物(b’)は、メタンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸無水物、メタンスルホン酸無水物から選択される少なくとも1種を含む、請求項7に記載の光学材料用重合性組成物。 The polymerizable property for an optical material according to claim 7, wherein the compound (b') contains at least one selected from methanesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic anhydride, and methanesulfonic acid anhydride. Composition.
  9.  化合物(b’)を10ppm以上含む、請求項7または8に記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to claim 7 or 8, which contains 10 ppm or more of the compound (b').
  10.  ポリエーテルポリオール(a1)はポリオキシエチレン鎖を備える化合物を含む、請求項1~9のいずれかに記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to any one of claims 1 to 9, wherein the polyether polyol (a1) contains a compound having a polyoxyethylene chain.
  11.  ポリエーテルポリオール(a1)は下記一般式(a1)で表される化合物を含む、請求項1~10のいずれかに記載の光学材料用重合性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(a1)中、RおよびRは、水素原子あるいは炭素数1~18のアルキル基を表し、少なくともどちらか一方は水素原子である。複数存在するR同士は同一または相異なっていてもよく、複数存在するR同士は同一または相異なっていてもよい。mは15以上500以下の整数を示す。)
    The polymerizable composition for an optical material according to any one of claims 1 to 10, wherein the polyether polyol (a1) contains a compound represented by the following general formula (a1).
    Figure JPOXMLDOC01-appb-C000002
    In (formula (a1), R 1 and R 2 represents a hydrogen atom or an alkyl group having 1 to 18 carbon atoms, is at least either a hydrogen atom. R 1 each other there are plural same or different R 2 may be the same or different from each other. M indicates an integer of 15 or more and 500 or less.)
  12.  ポリエステルポリオール(a2)は下記一般式(a2)で表される化合物を含む、請求項1~5のいずれかに記載の光学材料用重合性組成物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(a2)中、Qは、ジオールから誘導される2価の基、または少なくとも3つの第1級アルコール基を有するポリオールから誘導される3~30価の基を表し、mは3~10の整数を示し、nは2~200の整数を示し、複数存在するnの数は同一でも異なっていてもよい。qは2~30の整数を示す。)
    The polymerizable composition for an optical material according to any one of claims 1 to 5, wherein the polyester polyol (a2) contains a compound represented by the following general formula (a2).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (a2), Q represents a divalent group derived from a diol, or a 3 to 30 valent group derived from a polyol having at least three primary alcohol groups, and m is 3 to 30. An integer of 10 is indicated, n is an integer of 2 to 200, and the number of multiple ns existing may be the same or different. Q indicates an integer of 2 to 30.)
  13.  前記ポリイソ(チオ)シアネート化合物が、脂肪族ポリイソ(チオ)シアネート化合物、脂環族ポリイソ(チオ)シアネート化合物、または芳香族ポリイソ(チオ)シアネート化合物である、請求項1~12のいずれかに記載の光学材料用重合性組成物。 The invention according to any one of claims 1 to 12, wherein the polyiso (thio) cyanate compound is an aliphatic polyiso (thio) cyanate compound, an alicyclic polyiso (thio) cyanate compound, or an aromatic polyiso (thio) cyanate compound. Polymeric composition for optical materials.
  14.  さらに内部離型剤(d)を含む、請求項1~13のいずれかに記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to any one of claims 1 to 13, further comprising an internal mold release agent (d).
  15.  さらにスズ触媒(e)を含む、請求項1~14のいずれかに記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to any one of claims 1 to 14, further comprising a tin catalyst (e).
  16.  さらにフォトクロミック化合物(f)を含む、請求項1~15のいずれかに記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to any one of claims 1 to 15, further comprising a photochromic compound (f).
  17.  請求項1~16のいずれかに記載の光学材料用重合性組成物を硬化した成形体。 A molded product obtained by curing the polymerizable composition for an optical material according to any one of claims 1 to 16.
  18.  請求項1~5のいずれかに記載の光学材料用重合性組成物を硬化してなり、ポリオール化合物(a)のミクロ相分離構造体を含む、成形体。 A molded product obtained by curing the polymerizable composition for an optical material according to any one of claims 1 to 5, and containing a microphase-separated structure of the polyol compound (a).
  19.  前記ミクロ相分離構造体の平均粒径は1~50nmである、請求項18に記載の成形体。 The molded product according to claim 18, wherein the microphase-separated structure has an average particle size of 1 to 50 nm.
  20.  請求項18または19に記載の成形体からなるレンズ基材と、
     ハードコート層と、
     反射防止層と、
    をこの順で備える、積層体。
    The lens base material made of the molded product according to claim 18 or 19.
    Hard coat layer and
    Anti-reflective layer and
    In this order, a laminated body.
  21.  前記レンズ基材と前記ハードコート層との間に、プライマーコート層を備える、請求項20に記載の積層体。 The laminate according to claim 20, further comprising a primer coat layer between the lens base material and the hard coat layer.
  22.  請求項17~19のいずれかに記載の成形体または請求項20または21に記載の積層体からなる光学材料。 An optical material composed of the molded product according to any one of claims 17 to 19 or the laminated body according to claim 20 or 21.
  23.  請求項17~19のいずれかに記載の成形体または請求項19または20に記載の積層体からなるプラスチックレンズ。 A plastic lens made of the molded product according to any one of claims 17 to 19 or the laminated body according to claim 19 or 20.
  24.  (a)ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物と、(b1)pKaが0未満の酸と、(c)ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(ポリオール(a)を除く)と、を含む、光学材料用重合性組成物の製造方法であって、
     前記ポリイソ(チオ)シアネート化合物と、ポリオール化合物(a)と、pKaが0未満の酸(b1)と、を混合する工程と、
     前記工程で得られた混合液に、二官能以上の前記活性水素化合物を混合する工程と、
    を含む、光学材料用重合性組成物の製造方法。
    (A) At least one polyol compound selected from the polyether polyol (a1) and the polyester polyol (a2), (b1) an acid having a pKa of less than 0, (c) a polyiso (thio) cyanate compound and bifunctionality. A method for producing a polymerizable composition for an optical material, which comprises a polymerization-reactive compound (excluding polyol (a)) containing the above-mentioned active hydrogen compound.
    A step of mixing the polyiso (thio) cyanate compound, the polyol compound (a), and the acid (b1) having a pKa of less than 0.
    A step of mixing the bifunctional or higher active hydrogen compound with the mixed solution obtained in the above step, and a step of mixing the active hydrogen compound.
    A method for producing a polymerizable composition for an optical material, which comprises.
  25.  (a)ポリエーテルポリオール(a1)およびポリエステルポリオール(a2)から選択される少なくとも1種のポリオール化合物と、(b1)pKaが0未満の酸と、(c)ポリイソ(チオ)シアネート化合物および二官能以上の活性水素化合物を含む重合反応性化合物(ポリオール(a)を除く)と、(e)内部離型剤とを含む、光学材料用重合性組成物の製造方法であって、
     二官能以上の前記活性水素化合物としてポリチオール化合物を含み、
     内部離型剤(d)と前記ポリイソ(チオ)シアネート化合物とを混合し、次いでポリオール化合物(a)を混合する工程と、
     前記工程で得られた混合液に、pKaが0未満の酸(b1)を混合し、次いでポリチオール化合物を混合する工程と、
    を含む、光学材料用重合性組成物の製造方法。
    (A) At least one polyol compound selected from the polyether polyol (a1) and the polyester polyol (a2), (b1) an acid having a pKa of less than 0, (c) a polyiso (thio) cyanate compound and bifunctionality. A method for producing a polymerizable composition for an optical material, which comprises a polymerization-reactive compound (excluding the polyol (a)) containing the above active hydrogen compound and (e) an internal release agent.
    A polythiol compound is contained as the bifunctional or higher active hydrogen compound, and the compound is contained.
    A step of mixing the internal release agent (d) and the polyiso (thio) cyanate compound, and then mixing the polyol compound (a).
    An acid (b1) having a pKa of less than 0 is mixed with the mixed solution obtained in the above step, and then a polythiol compound is mixed.
    A method for producing a polymerizable composition for an optical material, which comprises.
PCT/JP2020/048717 2019-12-26 2020-12-25 Polymerizable composition for optical material, molded object obtained from said composition, and use application thereof WO2021132559A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-235967 2019-12-26
JP2019235967A JP2023011059A (en) 2019-12-26 2019-12-26 Polymerizable composition for optical material, molded object obtained from that composition, and applications thereof
JP2020-031316 2020-02-27
JP2020031316A JP2023011060A (en) 2020-02-27 2020-02-27 Polymerizable composition for optical material, molded object obtained from that composition, and applications thereof

Publications (1)

Publication Number Publication Date
WO2021132559A1 true WO2021132559A1 (en) 2021-07-01

Family

ID=76575558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048717 WO2021132559A1 (en) 2019-12-26 2020-12-25 Polymerizable composition for optical material, molded object obtained from said composition, and use application thereof

Country Status (1)

Country Link
WO (1) WO2021132559A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921090A (en) * 2022-06-08 2022-08-19 浙江海正生物材料股份有限公司 Optical polylactic acid composition, preparation method and application thereof
WO2024024918A1 (en) * 2022-07-29 2024-02-01 三井化学株式会社 Polymerizable composition, resin, molded article, optical material, and lens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359008A (en) * 1991-06-06 1992-12-11 Mitsui Toatsu Chem Inc Reaction-retarding method
JP2001348415A (en) * 2000-06-05 2001-12-18 Canon Inc Urethane rubber composition, cleaning blade, and production method for cleaning blade
JP2002351277A (en) * 2001-05-23 2002-12-06 Canon Inc Urethane composite for cleaning blade and method of manufacturing the same
WO2017047744A1 (en) * 2015-09-16 2017-03-23 三井化学株式会社 Molded body and polymerizable composition for optical materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359008A (en) * 1991-06-06 1992-12-11 Mitsui Toatsu Chem Inc Reaction-retarding method
JP2001348415A (en) * 2000-06-05 2001-12-18 Canon Inc Urethane rubber composition, cleaning blade, and production method for cleaning blade
JP2002351277A (en) * 2001-05-23 2002-12-06 Canon Inc Urethane composite for cleaning blade and method of manufacturing the same
WO2017047744A1 (en) * 2015-09-16 2017-03-23 三井化学株式会社 Molded body and polymerizable composition for optical materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921090A (en) * 2022-06-08 2022-08-19 浙江海正生物材料股份有限公司 Optical polylactic acid composition, preparation method and application thereof
CN114921090B (en) * 2022-06-08 2023-12-29 浙江海正生物材料股份有限公司 Optical polylactic acid composition, preparation method and application thereof
WO2024024918A1 (en) * 2022-07-29 2024-02-01 三井化学株式会社 Polymerizable composition, resin, molded article, optical material, and lens

Similar Documents

Publication Publication Date Title
EP3081965B1 (en) Polymerizable composition for optical materials
US9778397B2 (en) Polymerizable composition, optical material, and manufacturing method of the same
JP6359231B1 (en) Polymerizable composition for optical material, optical material obtained from the composition, and method for producing the same
JP4934039B2 (en) Polythiourethane-based polymerizable composition and optical resin comprising them
KR20190049926A (en) Polymerizable composition for optical material, optical material, and use thereof
EP3351574A1 (en) Polymerizable composition for optical materials, optical material obtained from said composition, and plastic lens
EP3103822A1 (en) Polymerizable composition for optical material, and optical material and plastic lens obtained from said composition
EP3650480A1 (en) Polymerizable composition for optical materials and molded body
EP3168246B1 (en) Polymerizable composition for optical material, and application for same
KR102323294B1 (en) Photochromic lenses and polymerizable compositions
WO2021132559A1 (en) Polymerizable composition for optical material, molded object obtained from said composition, and use application thereof
US11866648B2 (en) Process for producing polymerizable composition for optical materials
JP6691990B1 (en) Thiol-containing composition for optical material, polymerizable composition for optical material
WO2015088011A1 (en) Polymerizable composition for optical materials, optical material and use of same
JP7357451B2 (en) Polymerizable composition for optical materials
JP2023011059A (en) Polymerizable composition for optical material, molded object obtained from that composition, and applications thereof
JP2020084064A (en) Polymerizable composition for optical material, and optical material formed from that composition
JP2023011060A (en) Polymerizable composition for optical material, molded object obtained from that composition, and applications thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP