WO2021132247A1 - 樹脂組成物、および成形体 - Google Patents

樹脂組成物、および成形体 Download PDF

Info

Publication number
WO2021132247A1
WO2021132247A1 PCT/JP2020/047977 JP2020047977W WO2021132247A1 WO 2021132247 A1 WO2021132247 A1 WO 2021132247A1 JP 2020047977 W JP2020047977 W JP 2020047977W WO 2021132247 A1 WO2021132247 A1 WO 2021132247A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
carbon atoms
ultraviolet absorbing
resin composition
Prior art date
Application number
PCT/JP2020/047977
Other languages
English (en)
French (fr)
Inventor
秋生 日水
僚一 辰巳
優美香 千葉
皓 胡
Original Assignee
東洋インキScホールディングス株式会社
トーヨーカラー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020180124A external-priority patent/JP7147827B2/ja
Priority claimed from JP2020189607A external-priority patent/JP2022078729A/ja
Application filed by 東洋インキScホールディングス株式会社, トーヨーカラー株式会社 filed Critical 東洋インキScホールディングス株式会社
Priority to KR1020227019241A priority Critical patent/KR20220121794A/ko
Priority to CN202080086665.2A priority patent/CN114846085B/zh
Publication of WO2021132247A1 publication Critical patent/WO2021132247A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the present invention relates to a resin composition containing a dye and a molded product.
  • molded products resin molded products
  • the organic substances contained in these packaging materials are generally deteriorated by the action of ultraviolet rays contained in sunlight and the like.
  • the molded body contains an ultraviolet absorber that also absorbs ultraviolet rays and light in a visible light short wavelength region having a wavelength of about 400 to 420 nm. Further, the ultraviolet absorber is required to have excellent light resistance without deteriorating its properties due to exposure to ultraviolet rays over a long period of time.
  • molded body uses such as a polarizing plate protective film and an antireflection film used in a liquid crystal display device, and a surface film for preventing deterioration of a light emitting element of an organic EL display device.
  • the molded product is required to have a high degree of dimensional stability.
  • the composition containing engineering plastics has a high molding temperature of, for example, 260 to 340 ° C.
  • the ultraviolet absorber needs to have heat resistance to withstand high temperatures.
  • Patent Documents 1 and 2 disclose benzotriazole-based ultraviolet absorbers that absorb a short wavelength region of visible light having a wavelength of about 400 to 420 nm.
  • the conventional UV absorber has a problem that it has low heat resistance and cannot be used for a molded product of a thermoplastic resin (for example, engineering plastic) having a high melting point or a high softening point. Further, the conventional ultraviolet absorber has a low absorption coefficient per unit weight, and it is necessary to thicken the molded body in order to absorb the visible light short wavelength region. On the other hand, there is also a problem that the transparency of the molded product is lowered when the amount of the ultraviolet absorber is increased.
  • An object of the present invention is to provide a resin composition capable of absorbing not only ultraviolet rays having a wavelength of less than 400 nm but also light in a visible light short wavelength region having a wavelength of about 400 to 420 nm and forming a molded product having good transparency. To do.
  • the resin composition of the present invention absorbs light in the ultraviolet region having a wavelength of less than 400 nm and visible light in the short wavelength region having a wavelength of 400 to 420 nm, and absorbs ultraviolet light which is a triazine compound bonded to 1, 2 or 3 naphthalene rings. It is a resin composition containing a dye (A) and a thermoplastic resin (B).
  • a resin composition capable of molding not only ultraviolet rays having a wavelength of less than 400 nm but also light in a visible light short wavelength region having a wavelength of about 400 to 420 nm and having good transparency. And a molded body can be provided.
  • the resin composition of the present embodiment is an ultraviolet ray which is a triazine compound which absorbs light in an ultraviolet region having a wavelength of less than 400 nm and a visible light short wavelength region having a wavelength of 400 to 420 nm and which is bonded to one, two or three naphthalene rings. It contains an absorbent dye (A) and a thermoplastic resin (B).
  • the ultraviolet absorbing dye (A) can absorb light in the visible light short wavelength region having a wavelength of about 400 to 420 nm in addition to the ultraviolet region having a wavelength of less than 400 nm by the action of the naphthalene ring bonded to the triazine ring. Further, the present ultraviolet absorbing dye (A) can absorb a desired wavelength with a smaller amount of addition than before. Therefore, it is possible to suppress a decrease in the transparency of the molded product. Further, the ultraviolet absorbing dye (A) has excellent heat resistance, for example, having heat resistance capable of withstanding melt kneading at 270 ° C. or higher.
  • the naphthalene ring is preferably directly bonded to the triazine ring without interposing a linking group. Further, it is more preferable to have a hydroxyl group at the 2-position of at least one naphthalene ring among 1 to 3 naphthalene rings directly bonded to the triazine ring.
  • the ultraviolet absorbing dye (A) is preferably a compound selected from the group consisting of the following general formulas (1), general formulas (2) and general formulas (3).
  • R 1b to R 1g , R 2a to R 2g , and R 3a to R 3g are independently hydrogen atom, hydroxyl group, fluorine atom, chlorine atom, bromine atom, and iodine. It is an atom, a nitrile group, a nitro group, a sulfo group, R 7 , Ar 1 , or a group represented by the following general formulas (4-1) to (4-3).
  • R 7 is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alcoholic group having 1 to 20 carbon atoms, and an alkenyloxy group having 2 to 20 carbon atoms.
  • It may have a chlorine atom, a bromine atom, an iodine atom, a nitrile group, a nitro group, a carboxyl group, or a sulfo group, and has an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and 1 to 1 carbon atoms.
  • Ar 1 is an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, and a biphenyl group, and as a substituent, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms.
  • R 4 , R 5 , and R 6 are independently hydroxyl groups, R 7 or Ar 1 .
  • X 1 is -CO-, -COO-, -OCO-, -CONH-, or -NHCO-.
  • R 8 is a hydrogen atom, a hydroxyl group, R 7 or Ar 1 .
  • * in the general formula (4-1) represents the binding site with the naphthalene ring of the general formulas (1) to (3).
  • X 2 and X 3 are independently -CO-, -COO-, -OCO-, -CONH-, or -NHCO-, respectively.
  • R 9 is an arylene group having 6 to 20 carbon atoms.
  • R 10 is R 7 or Ar 1 .
  • * in the general formula (4-2) represents the binding site with the naphthalene ring of the general formulas (1) to (3).
  • X 4, X 5 are each independently -CO -, - COO -, - OCO -, - CONH-, or -NHCO-.
  • R 11 is a linear or branched alkylene group having 1 to 20 carbon atoms or an arylene group having 6 to 20 carbon atoms.
  • R 12 is R 7 or Ar 1 .
  • n is 1 to 20.
  • * in the general formula (4-3) represents the binding site with the naphthalene ring of the general formulas (1) to (3).
  • the group represented by the general formula (4-1) is preferably the group represented by the general formula (4).
  • Y is -NH- or -O-.
  • R 13 is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alcoholic group having 1 to 20 carbon atoms, and 2 to 20 carbon atoms.
  • the * mark in the general formula (4) represents the binding site with the naphthalene ring in the general formulas (1) to (3).
  • Examples of the compound represented by the general formula (1) include the following compounds.
  • Examples of the compound represented by the general formula (2) include the following compounds.
  • Examples of the compound represented by the general formula (3) include the following compounds.
  • the above-mentioned method for synthesizing a triazine compound can be synthesized by using a known synthesis method for a compound having a triazine structure.
  • a method of adding naphthol or a naphthol derivative to cyanuric chloride using aluminum trichloride can be mentioned.
  • Another method also includes, for example, a method in which methyl 2-hydroxy-1-naphthoate and benzamidine hydrochloride are subjected to a condensation cyclization reaction using sodium methoxide.
  • the naphthalene ring linked to the triazine ring by a single bond and the substituents contained in R 4 , R 5 , and R 6 may be introduced after the triazine structure is formed, or may be introduced before the triazine structure is formed.
  • the content of the ultraviolet absorbing dye (A) is preferably 0.001 to 5% by mass, more preferably 0.005 to 1% by mass in 100% by mass of the resin composition.
  • the present resin composition contains a resin.
  • the resin preferably contains a thermoplastic resin, a thermosetting resin, or a photocurable resin from the viewpoint of easily forming a molded product. Since this resin composition contains an ultraviolet absorbing dye (A) having excellent heat resistance, even a thermoplastic resin (B) can be preferably used, for example.
  • thermoplastic resin (B) examples include polyolefin, polyacrylic, polyester resin, polyamide resin, polyacetal resin, polyphenylene sulfide resin, polyether ether ketone resin, cycloolefin resin, polyetherimide resin, polyamideimide resin, and polyethersulfone resin. , Polysulfone resin, polyallylate resin, polyphenylene ether resin, polycarbonate resin and the like.
  • the thermoplastic resin (B) can be used alone or in combination of two or more.
  • the thermoplastic resin (B) contains an ultraviolet absorbing dye (A) having excellent heat resistance, and therefore is a crystalline resin having a melting point of 200 ° C. or higher or an amorphous resin having a glass transition temperature of 120 ° C. or higher. Is preferably included.
  • the melting point of the crystalline resin is more preferably 220 ° C. or higher.
  • the melting point is preferably 500 ° C. or lower.
  • the glass transition temperature of the amorphous resin is more preferably 130 ° C. or higher.
  • the glass transition temperature is preferably 300 ° C. or lower. Both the melting point and the glass transition temperature can be measured with a differential scanning calorimeter, a thermogravimetric differential thermal analyzer, or the like.
  • Examples of the crystalline resin having a melting point of 200 ° C. or higher include polyester resin, polyamide resin, polyacetal resin, polyphenylene sulfide resin, polyetheretherketone resin and the like.
  • Examples of the amorphous resin having a glass transition temperature of 120 ° C. or higher include cycloolefin resin, polyetherimide resin, polyamideimide resin, polyethersulfone resin, polysulfone resin, polyarylate resin, polyphenylene ether resin, and polycardate resin. Can be mentioned.
  • the polyester resin is a crystalline resin having an ester bond in the main chain of the molecule, and is a polycondensate synthesized from a dicarboxylic acid (including a derivative thereof) and a diol (dihydric alcohol or dihydric phenol); a dicarboxylic acid (dicarboxylic acid). (Including the derivative) and a polycondensation product synthesized from the cyclic ether compound; a ring-opening polymer of the cyclic ether compound and the like can be mentioned.
  • the polyester resin may be a homopolymer composed of a polymer of a dicarboxylic acid and a diol, a copolymer using a plurality of raw materials, or a polymer blend obtained by mixing these.
  • Examples of the derivative of the dicarboxylic acid include acid anhydrides and esterified products.
  • the dicarboxylic acid may be either an aliphatic dicarboxylic acid or an aromatic dicarboxylic acid, but it is preferable to contain an aromatic dicarboxylic acid from the viewpoint of improving heat resistance.
  • the aromatic dicarboxylic acid is, for example, terephthalic acid, isophthalic acid, phthalic acid, chlorphthalic acid, nitrophthalic acid, p-carboxyphenylacetic acid, m-phenylenediglycolic acid, p-phenylenediglycolic acid, diphenyldiacetic acid, diphenyl-p.
  • P'-dicarboxylic acid diphenyl-4,4'-diacetic acid, diphenylmethane-p, p'-dicarboxylic acid, diphenylethane-m, m'-dicarboxylic acid, stillbenzylcarboxylic acid, diphenylbutane-p, p' -Dicarboxylic acid, benzophenone-4,4'-dicarboxylic acid, naphthalin-1,4-dicarboxylic acid, naphthalin-1,5-dicarboxylic acid, naphthalin-2,6-dicarboxylic acid, naphthalin-2,7-dicarboxylic acid, p-carboxyphenoxyacetic acid, p-carboxyphenoxybutyl acid, 1,2-diphenoxypropane-p, p'-dicarboxylic acid, 1,5-diphenoxypentane-p, p'-dicarboxylic acid, 1,6-d
  • aliphatic dicarboxylic acid examples include oxalic acid, succinic acid, adipic acid, corkic acid, mazeleic acid, sebacic acid, dodecanedicarboxylic acid, undecanedicarboxylic acid, maleic acid, fumaric acid and the like.
  • the dihydric alcohol is, for example, ethylene glycol, trimethylene glycol, butane-1,3-diol, butane-1,4-diol, 2,2-dimethylpropane-1,4-diol, cis-2-butene-1. , 4-diol, tetramethylene glycol, pentamethylene glycol, hexamethylene glycol, octamethylene glycol, decamethylene glycol, cyclohexanedimethanol and the like. Of these, ethylene glycol, butane-1,4-diol, and cyclohexanedimethanol are preferable.
  • the divalent phenol include hydroquinone, resorcinol, bisphenol A and the like.
  • the cyclic ether compound include ethylene oxide and propylene oxide.
  • Dicarboxylic acid and dihydric alcohol can be used alone or in combination of two or more.
  • the polyamide resin is a crystalline resin, and can be synthesized, for example, by subjecting a carboxylic acid component and a compound (Am) having two or more amino groups to a dehydration condensation reaction.
  • Examples of the carboxylic acid component include adipic acid, sebacic acid, isophthalic acid, terephthalic acid and the like.
  • a compound having two or more carboxyl groups can be used.
  • the compound (Am) having two or more amino groups for example, known ones can be used, for example, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, triethylene.
  • Aliphatic polyamines such as tetramine; aliphatic polyamines containing alicyclic polyamines such as isophoronediamine and dicyclohexylmethane-4,4'-diamine; aromatic polyamines such as phenylenediamine and xylylenediamine; 1,3-diamino-2 -Propanol, 1,4-diamino-2-butanol, 1-amino-3- (aminomethyl) -3,5,5-trimethylcyclohexane-1-ol, 4- (2-aminoethyl) -4,7, Examples thereof include diaminoalcohols such as 10-triazadecane-2-ol, 3- (2-hydroxypropyl) -o-xylene- ⁇ and ⁇ '-diamine.
  • Examples of commercially available polyamide resins include 6 nylon (manufactured by Toray Industries, Inc.), 66 nylon (manufactured by Toray Industries, Inc.),
  • the cycloolefin resin is an amorphous resin having an alicyclic structure in the main chain and / or the side chain.
  • Examples of the type of alicyclic structure include norbornene polymer, monocyclic cyclic olefin polymer, cyclic conjugated diene polymer, vinyl alicyclic hydrocarbon polymer, and hydrides thereof.
  • the norbornene polymer is preferable because it is excellent in moldability and transparency.
  • Norbornene monomers include, for example, bicyclo [2.2.1] hept-2-ene (trivial name: norbornene), tricyclo [4.3.0.12.5] deca-3,7-diene (common name: norbornene).
  • Examples of commercially available cycloolefin resins include Topas (manufactured by Polyplastics) and Appel (manufactured by Mitsui Chemicals).
  • the polyetherimide resin is an amorphous resin having a glass transition temperature of more than 180 ° C., has good transparency, high strength, high heat resistance, high elastic modulus, and a wide range of chemical resistance. Therefore, it is widely used in various applications such as automobiles, telecommunications, aerospace, electrical / electronic, transportation and healthcare.
  • One of the processes for producing a polyetherimide resin is a polymerization of an alkali metal salt of a dihydroxyaromatic compound such as bisphenol A disodium salt (BPA ⁇ Na 2) and bis (halophthalimide).
  • BPA ⁇ Na 2 bisphenol A disodium salt
  • halophthalimide bis (halophthalimide).
  • the molecular weight of the obtained polyetherimide resin can be controlled by two methods.
  • the first method is to use a molar excess of bis (halophthalimide) with respect to the alkali metal salt of the dihydroxyaromatic compound.
  • the second method is to prepare bis (halophthalic anhydride) in the presence of a monofunctional compound such as phthalic anhydride that forms the terminal capping agent. Phthalic anhydride reacts with some of the organic diamines to form monohalo-bis (phthalimide). Monohalo-bis (phthalimide) acts as a terminal capping agent in the polymerization step by reaction with phenoxide end groups in the growing polymer chain. Examples of commercially available polyetherimide resins include ULTEM (manufactured by Saudi Basic Industry Corporation).
  • the polycarbonate resin is an amorphous resin and is synthesized by reacting an aromatic dihydroxy compound with a carbonate precursor such as phosgene or carbonic acid diester.
  • a carbonate precursor such as phosgene or carbonic acid diester.
  • phosgene for example, an interfacial method is preferable.
  • a transesterification method in which the reaction is carried out in a molten state is preferable.
  • Aromatic dihydroxy compounds include, for example, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2 , 2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) Propane, 1,1-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3, Bis (hydroxyaryl) alkanes such as 5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1, Bis (hydroxyaryl) cycloalkanes such as 1-bis (4-hydroxyphenyl) cycl
  • Examples of the carbonate precursor include diaryl carbonates such as phosgene, diphenyl carbonate and ditril carbonate, and dialkyl carbonates such as dimethyl carbonate and diethyl carbonate.
  • the viscosity average molecular weight of the polycarbonate resin is preferably 15,000 to 30,000, more preferably 16,000 to 27,000.
  • the viscosity average molecular weight in the present specification is a value converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent.
  • polycarbonate resin products include, for example, Iupiron H-4000 (manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight 16,000), Iupiron S-3000 (manufactured by Mitsubishi Engineering Plastics, viscosity average molecular weight 23,000), and Iupiron E-2000. (Manufactured by Mitsubishi Engineering Plastics Co., Ltd., viscosity average molecular weight 27,000) and the like.
  • thermoplastic resin (B) has an appropriate melt flow rate (MFR)
  • MFR melt flow rate
  • the MFR of the thermoplastic resin (B) varies depending on the resin type, but is preferably 1 to 200 g / 10 min, more preferably 2 to 150 g / 10 min, and 5 to 10 min at a temperature exceeding the melting point or the glass transition temperature (about 200 to 320 ° C.). 100 g / 10 min is more preferable.
  • preferable MFRs for each resin will be described.
  • the MFR of the polyester resin is preferably 1 to 200 g / 10 min, more preferably 5 to 150 g / 10 min, and even more preferably 10 to 150 g / 10 min at 280 ° C./2.16 kg.
  • the MFR of the polycarbonate resin is preferably 1 to 100 g / 10 min, more preferably 2 to 80 g / 10 min, and even more preferably 2 to 50 g / 10 min at 300 ° C./1.2 kg.
  • the MFR of the cycloolefin resin is preferably 1 to 100 g / 10 min, more preferably 2 to 80 g / 10 min, and even more preferably 5 to 60 g / 10 min at 260 ° C./2.16 kg.
  • the MFR of the polyamide resin is preferably 1 to 100 g / 10 min, more preferably 2 to 80 g / 10 min, and even more preferably 5 to 80 g / 10 min at 235 ° C. / 2.16 kg.
  • the MFR of the polyetherimide resin is preferably 1 to 100 g / 10 min, more preferably 2 to 80 g / 10 min, and even more preferably 3 to 50 g / 10 min at 337 ° C./6.6 kg.
  • the present resin composition may contain additives in addition to the ultraviolet absorbing dye (A) and the thermoplastic resin (B).
  • the additive include a near-infrared absorber, a light stabilizer, an antioxidant, a colorant, a wax and the like.
  • compounds known for molding applications can be used.
  • the near-infrared absorber is used to impart near-infrared absorbing ability to the molded product.
  • the near-infrared absorber include compounds such as cyanine-based, diimonium-based, squarylium-based, and phthalocyanine-based compounds.
  • the content of the near-infrared absorber is preferably 0.01 to 5% by mass in 100% by mass of the resin composition.
  • the light stabilizer is used to impart UV resistance to the molded product.
  • a hindered amine light stabilizer is preferable.
  • the content of the light stabilizer is preferably 0.01 to 5% by mass in 100% by mass of the resin composition.
  • Antioxidants are used to reduce the deterioration of a molded product when it is exposed to natural light or an artificial light source and becomes hot.
  • the antioxidant for example, monophenol type, bisphenol type, polymer type phenol type, sulfur type, phosphoric acid type and the like are preferable.
  • the content of the antioxidant is preferably 0.01 to 5% by mass in 100% by mass of the resin composition.
  • Wax is used to more evenly disperse the UV absorbing pigment in the molded product.
  • the dispersant for example, polyolefin wax, fatty acid wax, fatty acid ester wax, partially saponified fatty acid ester wax, saponified fatty acid wax and the like are preferable.
  • the wax content is preferably 50 to 250 parts by mass with respect to 100 parts by mass of the ultraviolet absorbing dye (A).
  • Examples of the method for producing the present resin composition include a method of melt-kneading the ultraviolet absorbing dye (A) and the thermoplastic resin (B).
  • the resin composition after melt-kneading is preferably cooled.
  • the melt-kneading temperature may be appropriately adjusted according to the type of the thermoplastic resin (B) used.
  • the melt kneading temperature is preferably 270 ° C. or higher, more preferably 300 ° C. or higher. ..
  • resins such as engineering plastics having high heat resistance have low fluidity, so a processing process at a high temperature is preferable.
  • the upper limit of the melt-kneading temperature may be a temperature at which each component does not decompose or evaporate, and is preferably 500 ° C. or lower, more preferably 450 ° C. or lower.
  • melt kneading apparatus examples include a single-screw kneading extruder, a twin-screw kneading extruder, and a tandem twin-screw kneading extruder.
  • the resin composition is preferably prepared as a so-called masterbatch.
  • a masterbatch is prepared and then melt-kneaded with a diluting resin (thermoplastic resin (B)) to prepare a molded product
  • the ultraviolet absorbing dye (A) is compared with the molded product prepared without passing through the masterbatch. Can be easily uniformly dispersed in the molded product, and aggregation of the ultraviolet absorbing dye (A) can be suppressed. This improves the transparency of the molded product.
  • the masterbatch is preferably molded into pellets using a pelletizer after the melt kneading.
  • the content of the ultraviolet absorbing dye (A) is preferably 0.01 to 20% by mass, more preferably 0.05 to 2% by mass in 100% by mass of the resin composition.
  • the resin composition is prepared by preparing a liquid masterbatch (F) containing an ultraviolet absorbing dye (A) and a liquid resin (E), and then melt-kneading it together with a diluted resin (thermoplastic resin (B)). Is more preferable.
  • the liquid resin (E) functions as a dispersion medium for dispersing the ultraviolet absorbing dye (A).
  • the liquid resin (E) is a resin having a viscosity at 25 ° C. of 10,000 mPa ⁇ s or less.
  • the viscosity is more preferably 10 to 5,000 mPa ⁇ s, more preferably 100 to 3,000 mPa ⁇ s.
  • the ultraviolet absorbing dye (A) can be easily dispersed in the liquid masterbatch.
  • the viscosity in the present specification is a value measured at 25 ° C. using a B-type viscometer according to JIS K7117-1: 1999.
  • the content of the liquid resin (E) is preferably 50% by mass or more, more preferably 60 to 95% by mass, and even more preferably 70 to 90% by mass in 100% by mass of the liquid masterbatch (F).
  • the melt viscosity can be suppressed, so that the ultraviolet absorbing dye (A) can be easily dispersed.
  • the number average molecular weight (Mn) of the liquid resin (E) is preferably 200 to 2000, more preferably 500 to 1500, and particularly preferably 1000 to 1500. With Mn200 or higher, it is easy to achieve both moldability and transparency. Further, when Mn is 2000 or less, dispersibility and antistatic property are improved.
  • liquid resin (E) examples include epoxy resins such as epoxidized soybean oil and epoxidized linseed oil, fatty acid polyester resins, polyalkylene glycol resins, polyether resins, polyether ester resins, and the like, but thermoplastic resins.
  • (B) is a fatty acid polyester resin, a polyalkylene glycol resin, or a polyether ester resin in that it has high heat resistance and excellent antistatic properties even when a high molding temperature such as polyethylene terephthalate (PET) or polycarbonate is required. Is preferable.
  • the fatty acid polyester resin is a resin obtained by reacting an aliphatic polyvalent carboxylic acid with a polyhydric alcohol.
  • the aliphatic polyvalent carboxylic acid is an aliphatic carboxylic acid having two or more carboxyl groups.
  • the aliphatic polyvalent carboxylic acid includes, for example, succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecandicarboxylic acid, tricarbaryl acid, 1,3,6-hexanetricarboxylic acid, 1 , 3,5-Hextricarboxylic acids and other aliphatic polyvalent carboxylic acids and the like can be mentioned.
  • the polyhydric alcohol is an alcohol having two or more hydroxyl groups.
  • Polyhydric alcohols include, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1 , 4-Butandiol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-n-butyl-2-ethyl-1 , 3-Propylenediol, 3-Methyl-1,5-pentanediol, 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, Examples thereof include aliphatic glycols such as 2-methyl-1,8-oc
  • Aliphatic polyvalent carboxylic acid and polyhydric alcohol can be used alone or in combination of two or more.
  • the freezing point of the fatty acid polyester resin is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 50 ° C. to ⁇ 10 ° C.
  • fatty acid polyester resins include, for example, ADEKA Sizer PN-170 (made by ADEKA, viscosity 800 mPa ⁇ s at 25 ° C, freezing point -15 ° C, polyester resin adipate), ADEKA Sizer P-200 (made by ADEKA, Viscosity at 25 ° C, 2,600 mPa ⁇ s, freezing point -20 ° C, polyester resin adipate), ADEKA Sizer PN-250 (manufactured by ADEKA, viscosity at 25 ° C, 4,500 mPa ⁇ s, freezing point -20 ° C, adipic acid Polyester resin) and the like.
  • ADEKA Sizer PN-170 made by ADEKA, viscosity 800 mPa ⁇ s at 25 ° C, freezing point -15 ° C, polyester resin adipate
  • ADEKA Sizer P-200 made by ADEKA, Viscosity at 25 ° C, 2,600 mP
  • the polyether resin is a resin having a repeating unit of an alkyleneoxy group.
  • the alkyleneoxy group preferably has 1 to 6 carbon atoms.
  • the polyether resin preferably has a viscosity at 25 ° C. of 10,000 mPa ⁇ s or less. This viscosity makes it suitable for use in liquid masterbatch applications.
  • the alkyleneoxy group preferably has 2 to 4 carbon atoms. As a result, compatibility can be improved, while water absorption can be suppressed.
  • polyether resin examples include polyethylene glycol having 2 carbon atoms in the repeating unit, polytrimethylene glycol and polypropylene glycol having 3 carbon atoms in the repeating unit, and all of them in the repeating unit.
  • polytetramethylene glycol and polybutylene glycol having 4 carbon atoms examples include polytetramethylene glycol and polybutylene glycol having 4 carbon atoms.
  • the polyether ester resin is an ester compound of an aliphatic polyvalent carboxylic acid resin and an alkylene glycol resin.
  • Commercially available products of the polyether ester resin include, for example, ADEKA Sizer RS-107 (manufactured by ADEKA, viscosity 20 mPa ⁇ s at 25 ° C., freezing point -47 ° C., adipic acid ether ester resin), ADEKA Sizer RS-700 (ADEKA). Co., Ltd., viscosity at 25 ° C., 30 mPa ⁇ s, freezing point-53 ° C., polyether ester resin) and the like.
  • the freezing point of the liquid resin (E) is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 50 ° C. to ⁇ 10 ° C.
  • This resin composition is produced by preparing a liquid masterbatch (F) and then melt-kneading it together with a diluting resin (thermoplastic resin (B)). Better transparency is obtained than the molded product produced from the solid masterbatch of.
  • the liquid masterbatch (F) contains the liquid resin (E) and is liquid, it has high fluidity in melt kneading with the thermoplastic resin (B) and makes the ultraviolet absorbing dye (A) very uniform. Can be dispersed.
  • engineering plastic resins having high heat resistance have a limit in fluidity even at the melt-kneading temperature. Therefore, it is difficult to uniformly disperse due to the aggregation of the dye, and it is difficult to improve the transparency. Therefore, in the case of a thermoplastic resin (B) which is a crystalline resin having a melting point of 200 ° C. or higher or an amorphous resin having a glass transition temperature of 120 ° C. or higher, the liquid masterbatch (F) is effective in improving transparency. In particular, it is particularly effective in applications that require high transparency, such as optical filters.
  • the content of the ultraviolet absorbing dye (A) in the liquid masterbatch (F) is preferably 1 to 30% by mass, more preferably 2 to 20% by mass in 100% by mass of the liquid masterbatch.
  • the liquid masterbatch (F) preferably contains a resin-type dispersant (G).
  • a resin-type dispersant (G) As a result, the ultraviolet absorbing dye (A) is more uniformly dispersed in the liquid masterbatch, and the obtained molded product has higher transparency. Further, by containing the resin type dispersant (G), the storage stability of the liquid masterbatch is improved.
  • the resin-type dispersant (G) is a compound having an adsorption site having a property of adsorbing to an ultraviolet absorbing dye and a relaxing site compatible with a component other than the ultraviolet absorbing dye.
  • the resin type dispersant (G) is, for example, a polycarboxylic acid ester such as polyurethane or polyacrylate, an unsaturated polyamide, a polycarboxylic acid, a polycarboxylic acid (partial) amine salt, a polycarboxylic acid ammonium salt, or a polycarboxylic acid alkylamine.
  • Salts polysiloxanes, long-chain polyaminoamide phosphates, hydroxyl group-containing polycarboxylic acid esters, modified products thereof, amides formed by the reaction of poly (lower alkyleneimine) with polyesters having free carboxyl groups, and amides thereof.
  • Oil-based dispersants such as salts, (meth) acrylic acid-styrene copolymer, (meth) acrylic acid- (meth) acrylic acid ester copolymer, styrene-maleic acid copolymer, polyvinyl alcohol, polyvinylpyrrolidone and other water-soluble Examples thereof include sex resins, water-soluble polymer compounds, polyester-based materials, modified polyacrylate-based compounds, ethylene oxide / propylene oxide-added compounds, and phosphoric acid ester-based compounds.
  • the resin type dispersant (G) can be used alone or in combination of two or more.
  • a polymer dispersant having a basic functional group is preferable because the viscosity of the dispersion decreases with a small amount of addition.
  • the amount of the resin-type dispersant (G) used is preferably about 5 to 200% by mass, more preferably about 10 to 100% by mass, based on the film-forming property.
  • resin-type dispersants include, for example, DisperbYk-101, 103, 107, 108, 110, 111, 116, 130, 140, 154, 161, 162, 163, 164, 165, 166, manufactured by Big Chemie Japan.
  • the resin type dispersant (G) When the resin type dispersant (G) is dissolved in an organic solvent, it is preferable to add the liquid resin (E), reduce the pressure and heat the mixture, and distill off the solvent before use.
  • the liquid masterbatch (F) can be produced by mixing and dispersing the ultraviolet absorbing dye (A) and the liquid resin (E).
  • a resin-type dispersant (G) can be used in combination with the dispersion.
  • a disperser such as a kneader, a two-roll mill, a three-roll mill, a ball mill, a horizontal sand mill, a vertical sand mill, an annual bead mill, or an attritor can be used.
  • the molded product of the present embodiment is characterized by molding a resin composition.
  • This molded product can be produced by molding the resin composition as it is.
  • a molded product can be produced by melt-kneading with a diluted resin (thermoplastic resin (B)) and then molding.
  • liquid masterbatch (F) When a liquid masterbatch (F) is used as the masterbatch, it is more preferable that the liquid masterbatch (F) is contained in an amount of 0.1 to 5% by mass in 100% by mass of the resin composition.
  • the molded product can be used, for example, in food packaging materials, pharmaceutical packaging materials, displays, glass interlayer films, and lens applications.
  • thermoplastic resin For food packaging materials and pharmaceutical packaging materials, it is preferable to use, for example, polyester-based resin, cycloolefin-based resin, or the like as the thermoplastic resin. These molded products have improved flexibility and visibility, and can suppress deterioration of the contents.
  • the molded product used for displays, glass interlayer films, and lenses is preferably a film made of a resin having a transparent property with respect to a desired wavelength.
  • the resin constituting such a molded product include polyetherimide resin, polyethersulfone resin, polyethylene terephthalate resin, polyimide resin, polysulfone resin, polyarylate resin, polyamide resin, polycarbonate resin, and alicyclic resin.
  • examples thereof include an olefin polymer resin having a structure (alicyclic olefin polymer resin) and a cellulose ester resin.
  • this molded product is used, for example, in optical films used in televisions, personal computers, smartphones, and the like.
  • the laminate using the molded product containing the present resin composition can suppress adverse effects on the eyes by absorbing light in a short wavelength region of ultraviolet rays and visible light contained in the backlight of the display. Further, the laminated body can suppress deterioration of the display element of the display by absorbing ultraviolet rays contained in sunlight and light in a short wavelength region of visible light.
  • this molded product is used, for example, in laminated glass used in automobiles, buildings, and the like.
  • the laminated glass using the molded body containing the present resin composition can suppress adverse effects on the eyes and the human body by absorbing ultraviolet rays contained in sunlight and light in a short wavelength region of visible light.
  • this molded product is used, for example, in lenses used for eyeglasses, optical sensors, and the like.
  • a lens using a molded body containing the above resin composition for example, in a spectacle application, absorbs ultraviolet rays contained in sunlight and light in a short wavelength region of visible light to suppress adverse effects on the eyes and the human body. It is possible to increase the sensitivity of the sensor by cutting light of unnecessary wavelengths that can become noise in optical sensor applications.
  • This molded product also includes, for example, medical chemicals, cosmetics, food containers and packaging materials, miscellaneous goods, textile products, pharmaceutical containers, various industrial coating materials, automobile parts, home appliances, housing materials, toiletries, etc. Can be widely used for applications such as supplies. Furthermore, it can be widely used in applications such as display materials, sensor materials, and optical control materials.
  • the structure was identified by NMR using the ultraviolet absorbing dye (A-1) as an example.
  • the structures of other UV-absorbing dyes were also identified by NMR in the same manner as above, but the data are omitted.
  • the ultraviolet absorbing dye (A-2) was produced in the same manner except that 1,3-dihydroxynaphthalene was added instead of 2-naphthol to obtain an ultraviolet absorbing dye (A-2).
  • UV absorbing dye (A-3) [Ultraviolet absorbing pigment (A-3)]
  • the ultraviolet absorbing dye (A-3) was obtained by the same method except that 6-bromo-2-naphthol was added instead of 2-naphthol.
  • the obtained wet cake was returned to 500 parts of water, reslurried at room temperature for 30 minutes, and filtered. Then, it was sprinkled and washed with 500 parts of water. The obtained wet cake was dried at 80 ° C. overnight to obtain an ultraviolet absorbing dye (A-4).
  • the obtained wet cake was returned to 500 parts of water, reslurried at room temperature for 30 minutes, and filtered. Then, it was sprinkled and washed with 500 parts of water. The obtained wet cake was dried at 80 ° C. overnight to obtain an ultraviolet absorbing dye (A-5).
  • UV absorbing pigment (A-6) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-6) was obtained by the same method except that 6-hydroxy-2-naphthonitrile was added instead of 2-naphthol.
  • UV absorbing pigment (A-7) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-7) was obtained by the same method except that 6-hydroxy-2-naphthoic acid was added instead of 2-naphthol.
  • UV absorbing pigment (A-8) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-8) was obtained by the same method except that methyl 6-hydroxy-2-naphthoate was added instead of 2-naphthol. ..
  • UV absorbing dye (A-9) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-9) was produced in the same manner except that 2-naphthol-6-sodium sulfonate hydrate was added instead of 2-naphthol. Got
  • UV absorbing pigment (A-10) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-10) was obtained by the same method except that 3-hydroxy-2-naphthoic acid was added instead of 2-naphthol.
  • UV absorbing pigment (A-11) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-11) was obtained by the same method except that methyl 3-hydroxy-2-naphthoate was added instead of 2-naphthol. ..
  • the obtained wet cake was returned to 500 parts of water, reslurried at room temperature for 30 minutes, and filtered. Then, it was sprinkled and washed with 500 parts of water. The obtained wet cake was dried at 80 ° C. overnight to obtain an ultraviolet absorbing dye (A-12).
  • UV absorbing pigment (A-13) [Ultraviolet absorbing pigment (A-13)]
  • the ultraviolet absorbing dye (A-12) was obtained by the same method except that pivaloyl chloride was added instead of acetyl chloride.
  • UV absorbing pigment (A-14) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-14) was obtained by the same method except that 5-acetyl-2-naphthol was added instead of 2-naphthol.
  • UV absorbing pigment (A-15) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-15) was obtained by the same method except that 3-hydroxy-2-naphthoanilide was added instead of 2-naphthol.
  • UV absorbing pigment (A-16) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-16) was produced in the same manner except that 3-hydroxy-2'-methoxy-2-naphthanylide was added instead of 2-naphthol. Got
  • UV absorbing pigment (A-17) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye was produced by the same method except that 5'-chloro-3-hydroxy-2'-methyl-2-naphthanylide was added instead of 2-naphthol. (A-17) was obtained.
  • UV absorbing pigment (A-18) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye was produced by the same method except that 5'-chloro-3-hydroxy-2'-methoxy-2-naphthanylide was added instead of 2-naphthol. (A-18) was obtained.
  • UV absorbing pigment (A-19) In the production of the ultraviolet absorbing dye (A-1), the ultraviolet absorbing dye (A-19) was produced by the same method except that 3-hydroxy-3'-nitro-2-naphthanylide was added instead of 2-naphthol. Got
  • UV absorbing pigment (A-23) [Ultraviolet absorbing pigment (A-23)]
  • ⁇ -carboxypolycaprolactone (n ⁇ 2) monoacrylate instead of 2-methacryloyloxyethyl succinic acid (light ester HO-MS (N), manufactured by Kyoeisha Chemical Co., Ltd.)
  • light ester HO-MS (N) manufactured by Kyoeisha Chemical Co., Ltd.
  • UV absorbing pigment (A-24) In the production of UV absorbing dye (A-22), monohydroxyethyl phthalate (Aronix M-5400, Toa) was used instead of 2-methacryloyloxyethyl succinic acid (light ester HO-MS (N), manufactured by Kyoeisha Chemical Co., Ltd.). It was produced in the same manner except that (manufactured by Synthetic Co., Ltd.) was added to obtain an ultraviolet absorbing dye (A-24).
  • UV absorbing pigment (A-27) In the production of UV absorbing dye (A-26), 2- (4-biphenylyl) -4,6-dichloro-1,3 instead of 2,4-dichloro-6-phenyl-1,3,5-triazine It was produced in the same manner except that 5-triazine was added to obtain an ultraviolet absorbing dye (A-27).
  • UV Absorbent Dye (A-28) 1 (A-28-1)
  • 2-chloro-4,6-diphenyl-1 instead of 2-chloro-4,6-di (naphthalene-1-yl) -1,3,5-triazine , 3,5-Triazine was added, and the mixture was produced in the same manner to obtain an ultraviolet absorbing dye (A-28).
  • an ultraviolet absorbing dye (A-28) of Production 2 synthesized the same compound (A-28) by a synthetic route different from that of Production 1.
  • UV absorbing dye (A-29) In the production of the ultraviolet absorbing dye (A-28-2), the ultraviolet absorbing dye (A-29) was obtained by the same method except that p-methylbenzoamidine hydrochloride was added instead of the benzoamidine hydrochloride. It was.
  • UV absorbing pigment (A-30) In the production of the ultraviolet absorbing dye (A-28-2), the ultraviolet absorbing dye (A-30) was obtained by the same method except that p-butoxybenzoamidine hydrochloride was added instead of benzoamidine hydrochloride. It was.
  • UV absorbing pigment (A-31) In the production of UV absorbing dye (A-25), 2-chloro-4,6-dimethoxy-1 instead of 2-chloro-4,6-di (naphthalene-1-yl) -1,3,5-triazine , 3,5-Triazine was added, but the same method was used to obtain an ultraviolet absorbing dye (A-31).
  • UV-absorbing pigment (A-32) [Ultraviolet absorbing pigment (A-32)]
  • 2,4-bis [4- (tert-) instead of 2-chloro-4,6-di (naphthalene-1-yl) -1,3,5-triazine Butyl) phenyl] -6-chloro-1,3,5-triazine was added, but the mixture was produced in the same manner to obtain an ultraviolet absorbing dye (A-32).
  • UV absorbing pigment (A-33) In the production of UV absorbing dye (A-25), 2-([1,1'-biphenyl] instead of 2-chloro-4,6-di (naphthalene-1-yl) -1,3,5-triazine] It was produced in the same manner except that -4-yl) -4-chloro-6-phenyl-1,3,5-triazine was added to obtain an ultraviolet absorbing dye (A-33).
  • Table 1 shows the results of measuring the ultraviolet to visible absorption spectra of the ultraviolet absorbing dyes (A-1) to (A-33) and the following comparative dyes (AA-1) to (AA-3). .. The following ultraviolet absorber was used as the comparative dye. All of these ultraviolet absorbers were evaluated for visible light absorption and the like after confirming that the transmittance was less than 10% in the wavelength range of 320 nm or more and less than 400 nm.
  • (AA-1) is a benzotriazole-based ultraviolet absorber, which is different from the structure of the present invention.
  • (AA-2) and (AA-3) are triazine-based ultraviolet absorbers, each of which does not have a naphthalene ring.
  • the solution preparation method for absorbance measurement and the measurement conditions are as follows.
  • ⁇ Solution preparation method 1 part of the ultraviolet absorbing dye (A-1) and 1000 parts of tetrahydrofuran were mixed and completely dissolved. Subsequently, 1 part of the above solution and 99 parts of tetrahydrofuran were uniformly mixed to prepare a solution having a concentration of 10 ppm.
  • the UV absorbers of the UV absorbing dyes (A-2) to (A-33) and the comparative dyes (AA-1) to (AA-3) were also prepared so as to have the concentrations shown in Table 1.
  • the evaluation criteria for the ultraviolet to visible absorption spectrum are as follows. ⁇ : Absorption of wavelength 400 to 420 nm is 0.3 or more over the entire region: Good ⁇ : Absorption of wavelength 400 to 420 nm is partly 0.3 or more, others are less than 0.3: Practical range ⁇ : Wavelength 400 to 420 nm Absorptivity is partly 0.1 or more and less than 0.3, others less than 0.1: Not practical ⁇ : Absorptivity at wavelengths of 400 to 420 nm is less than 0.1 over the entire region: Not practical
  • the ultraviolet absorbing dye (A) used in the resin composition of the present invention has visible light having a wavelength of 400 to 420 nm as compared with the ultraviolet absorbing agent (AA) used in the conventional resin composition. It can be seen that the absorbance per unit weight is high in the short wavelength region.
  • B-1 Polyester MA-2101M (polyester resin, manufactured by Unitika Ltd., crystalline resin, melting point 264 ° C., MFR 45 g / 10 min (280 ° C. / 2.16 kg))
  • B-2) Iupiron S-3000 (polycarbonate resin, manufactured by Mitsubishi Engineering Plastics, amorphous resin, glass transition temperature 145 ° C, MFR 15 g / 10 min (300 ° C / 1.2 kg))
  • B-4) Apel (cycloolefin resin, manufactured by Mitsui Chemicals, amorphous resin, glass transition temperature 135 ° C, MFR 11 g / 10 min or more (260 ° C / 2.16 kg))
  • B-5) Amylan CM3001-N (polyamide resin, manufactured by Toray Industries, Inc., crystalline resin, melting point 265 ° C., MFR 7 g / 10 min or more (235 ° C.
  • E-1 Uniol D-1200 (manufactured by NOF CORPORATION, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 1200, viscosity 200 mPa ⁇ s)
  • E-2 PEG-400 (manufactured by Sanyo Chemical Industries, Ltd., polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 400, viscosity 90 mPa ⁇ s)
  • E-3 Uniol D-400 (manufactured by NOF CORPORATION, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 400, viscosity 100 mPa ⁇ s)
  • E-4 ADEKA Sizer RS-107 (made by ADEKA, ether ester resin, adipic acid ether ester resin, number average molecular weight 430, viscosity 20 m
  • the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate was 98% or more in terms of the non-volatile content.
  • the polymerization solution was sampled and the non-volatile content was measured, and it was confirmed that the polymerization conversion rate of the second block was 98% or more in terms of the non-volatile content, and the reaction solution was cooled to room temperature to stop the polymerization. did.
  • PGMAc was added to the previously synthesized block copolymer solution so that the non-volatile content was 40% by mass.
  • Example 1-1 Manufacturing of masterbatch> Two parts of the ultraviolet absorbing dye (A-1) and 98 parts of the thermoplastic resin (B-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port and melted at 300 ° C. After kneading, a master batch (D-1) was prepared by cutting into pellets using a pelletizer.
  • Example 1-2 to 1-40 Comparative Examples 1-1 to 1-6
  • the films (X-2) to (X-40) and (Y-1) to (Y-) having a thickness of 250 ⁇ m were used using the materials shown in Tables 2-1 to 2-2. 6) was molded.
  • a liquid masterbatch (F-1) was prepared by kneading 10 parts of the ultraviolet absorbing dye (A-1) and 90 parts of the liquid resin (E-1) with a roll.
  • ⁇ Film molding> 0.5 parts of the obtained liquid masterbatch (F-1) was mixed with 99.5 parts of the thermoplastic resin (B-3) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used. Then, the film (X-41) having a thickness of 250 ⁇ m was formed by melting and mixing at a temperature of 300 ° C.
  • Examples 1-42 to 1-58 In the same manner as in Example 1-41, films (X-42) to (X-58) having a thickness of 250 ⁇ m were formed using the materials shown in Tables 2-1 to 2-2.
  • a liquid masterbatch (F-19) is prepared by dispersing 10 parts of an ultraviolet absorbing dye (A-1), 20 parts of a resin type dispersant (G-1), and 70 parts of a liquid resin (E-1) with a bead mill. Made.
  • ⁇ Film molding> 0.5 parts of the obtained liquid masterbatch (F-19) was mixed with 99.5 parts of the thermoplastic resin (B-3) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used. Using, melt-mixed at a temperature of 300 ° C. to form a film (X-59) having a thickness of 250 ⁇ m.
  • Examples 1-60 to 1-77 Similar to Example 1-59, films (X-60) to (X-77) having a thickness of 250 ⁇ m were molded using the materials shown in Tables 2-1 to 2-2.
  • the transmittance of the obtained film was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation), and it was evaluated whether or not the following conditions were satisfied.
  • Light transmittance at a wavelength of 400 to 420 nm is less than 1% over the entire region: Good
  • Light transmittance at a wavelength of 400 to 420 nm is partially less than 1%, others are 1% or more: Practical range
  • Wavelength 400 to 420 nm
  • Light transmittance is partly 1% or more and less than 10%, others are 20% or more: Not practical
  • Light transmittance of wavelength 400 to 420 nm is 10% or more over the entire region: Not practical
  • the obtained film was exposed to light having a wavelength of 300 to 400 nm with an illuminance of 60 W / m 2 for 100 hours using a xenon weather meter.
  • Absorbance reduction rate of maximum absorption wavelength is less than 5%
  • Absorbance reduction rate of maximum absorption wavelength is 5% or more, less than 20%
  • Absorbance reduction rate of maximum absorption wavelength is 20% or more
  • ⁇ Haze value> The haze value of the obtained film was measured with a haze meter and evaluated according to the following criteria. ⁇ +: Less than 0.2 Very good ⁇ : 0.2 or more and less than 0.5 Very good ⁇ : 0.5 or more and less than 2 Good ⁇ : 2 or more and less than 5 Good ⁇ : 5 or more Not practical
  • the resin molded product of the present invention has a low transmittance per unit weight in the visible light short wavelength region having a wavelength of 400 to 420 nm. Since a small amount of the ultraviolet absorbing dye in the resin molded product is added to reach a practical range, the transparency of the film is good. In particular, as compared with the resin molded product using Tinuvin 970 of the comparative example, the addition of a small amount reaches a practical range, so that the transparency is excellent.
  • Example 2-1 Manufacturing of masterbatch> Two parts of the ultraviolet absorbing dye (A-1) and 98 parts of the thermoplastic resin (B-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port and melted at 300 ° C. After kneading, a master batch (D-1) was prepared by cutting into pellets using a pelletizer.
  • Example 2-2 to 2-40 Comparative Examples 2-1 to 2-6
  • films (XX-2) to (XX-40) and (YY-1) to (YY-6) having a thickness of 250 ⁇ m were formed.
  • a liquid masterbatch (F-1) was prepared by kneading 10 parts of the ultraviolet absorbing dye (A-1) and 90 parts of the liquid resin (E-1) with a roll.
  • ⁇ Film molding> 0.5 parts of the obtained liquid masterbatch (F-1) was mixed with 99.5 parts of the thermoplastic resin (B-3) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used.
  • a resin composition was prepared by melting and mixing at a temperature of 300 ° C. Then, after allowing the film to stay at 300 ° C. for 20 minutes, a film (XX-41) having a thickness of 250 ⁇ m was formed.
  • Example 2 Similar to Example 2-41, films (XX-42) to (XX-58) having a thickness of 250 ⁇ m were formed using the materials shown in Table 2.
  • a liquid masterbatch (F-19) is prepared by dispersing 10 parts of an ultraviolet absorbing dye (A-1), 20 parts of a resin type dispersant (G-1), and 70 parts of a liquid resin (E-1) with a bead mill. Made.
  • ⁇ Film molding> 0.5 parts of the obtained liquid masterbatch (F-19) was mixed with 99.5 parts of the thermoplastic resin (B-3) of the diluted resin, and a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) was used.
  • a resin composition was prepared by melting and mixing at a temperature of 300 ° C. Then, after allowing the film to stay at 300 ° C. for 20 minutes, a film (XX-59) having a thickness of 250 ⁇ m was formed.
  • Example 2-60 to 2-77 Similar to Example 2-59, films (XX-60) to (XX-77) having a thickness of 250 ⁇ m were formed using the materials shown in Table 2.
  • the transmittance of the obtained film was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation), and it was evaluated whether or not the following conditions were satisfied.
  • Light transmittance at a wavelength of 400 to 420 nm is less than 1% over the entire region: Good
  • Light transmittance at a wavelength of 400 to 420 nm is partially less than 1%, others are 1% or more: Practical range
  • Wavelength 400 to 420 nm
  • Light transmittance is partly 1% or more and less than 10%, others are 20% or more: Not practical
  • Light transmittance of wavelength 400 to 420 nm is 10% or more over the entire region: Not practical
  • Difference in light transmittance at wavelength 400 to 420 nm is less than 1%: Good ⁇ : Difference in light transmittance at wavelength 400 to 420 nm is less than 5%: Practical range ⁇ : Difference in light transmittance at wavelength 400 to 420 nm Less than 10%: Not practical ⁇ : Difference in light transmittance between wavelengths of 400 to 420 nm is 10% or more: Not practical
  • the resin molded product of the present invention has a small rate of change in ultraviolet absorption due to the residence time during melt mixing during film molding. Therefore, it was confirmed that it has good heat resistance.
  • thermoplastic resins used in Examples 3 to 7 below are shown below.
  • C-4) Polypropylene (Prime Polypro J226T, MFR 20g / 10min, manufactured by Prime Polymer Co., Ltd.)
  • H-1) Polycarbonate (Iupilon S3000, MFR 15g / 10min, manufactured by Mitsubishi Engineering Plastics)
  • H-1 Polycarbonate (Iupilon S3000
  • the liquid resin used in the examples is shown below.
  • (I-1) Uniol D-400 manufactured by NOF CORPORATION, polyalkylene glycol resin, polypropylene glycol resin, number average molecular weight 400, viscosity 100 mPa ⁇ s)
  • (I-2) ADEKA Sizer RS-107 made by ADEKA, ether ester resin, adipic acid ether ester resin, number average molecular weight 430, viscosity 20 mPa ⁇ s)
  • (I-3) ADEKA Sizer PN-6810 manufactured by ADEKA, tributyl acetylcitrate, number average molecular weight 190, viscosity 43 mPa ⁇ s)
  • (I-4) ADEKA Sizer PN-250 manufactured by ADEKA, aliphatic polyester resin, polyester resin with adipic acid, number average molecular weight 2100, viscosity 4,500 mPa
  • ⁇ Resin type dispersant (K)> Manufacturing of resin type dispersant solution (K-1)
  • Example 3-1 Manufacturing of masterbatch
  • Two parts of the ultraviolet absorbing dye (A-1) and 100 parts by mass of the polyolefin (C-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port, and melt-mixed at 240 ° C. After smelting, it was cut into pellets using a pelletizer to prepare a masterbatch.
  • Examples 3-2 to 3-38, Comparative Examples 3-1 to 3-6 A masterbatch was produced in the same manner as in Example 3-1 except that the materials of Example 3-1 were changed to the materials and blending amounts shown in Table 4, and then Examples 3-2 to 3-38, Comparative Example. Films 3-1 to 3-6 were produced, respectively.
  • the obtained film was exposed to light having a wavelength of 300 to 400 nm with an illuminance of 60 W / m 2 for 100 hours using a xenon weather meter.
  • Absorbance reduction rate of maximum absorption wavelength is less than 5%
  • Absorbance reduction rate of maximum absorption wavelength is 5% or more, less than 20%
  • Absorbance reduction rate of maximum absorption wavelength is 20% or more
  • the ultraviolet absorbing dye of the present invention has a low transmittance per unit weight in the visible light short wavelength region having a wavelength of 400 to 420 nm. It was found that the transparency of the film was not impaired because the addition of a small amount reached a practical range. In particular, it was found that a small amount of addition reached a practical range as compared with Tinuvin 970 of the comparative example.
  • Example 4-1 Manufacturing of masterbatch 100 parts of polycarbonate (H-1) and 2 parts of ultraviolet absorbing dye (A-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port and melt-kneaded at 280 ° C. Then, it was cut into pellets using a pelletizer to prepare a composition (master batch). (Film molding) 10 parts of the obtained composition was mixed with 100 parts of the diluted resin polycarbonate (H-1), and melt-mixed at a temperature of 280 ° C. using a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) to obtain a thickness. A 250 ⁇ m film was molded.
  • Example 4-2 to 4-8 Comparative Examples 4-1 to 4-6
  • a masterbatch was produced in the same manner as in Example 4-1 except that the materials of Example 4-1 were changed to the materials and blending amounts shown in Table 5-1 and then Examples 4-2 to 4-8. , Comparative Examples 4-1 to 4-6 were produced, respectively.
  • Example 4-9 Manufacturing of masterbatch 100 parts of polymethacrylic resin (H-2) and 2 parts of ultraviolet absorbing dye (A-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port and melted at 240 ° C. After kneading, the composition (master batch) was prepared by cutting into pellets using a pelletizer. (Film molding) 10 parts of the obtained composition was mixed with 100 parts of the methacrylic resin (H-2) of the diluted resin, melt-mixed at a temperature of 280 ° C. using a T-die molding machine (manufactured by Toyo Seiki), and thickened. A 250 ⁇ m T-die film was formed.
  • Examples 4-10 to 4-16 A masterbatch was produced in the same manner as in Example 4-9, except that the materials of Example 4-9 were changed to the materials and blending amounts shown in Table 5-1 and then Examples 4-10-4-16. Films were manufactured respectively.
  • Example 4-17 Manufacturing of masterbatch 100 parts of polyester (H-3) and 2 parts of ultraviolet absorbing dye (A-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port and melt-kneaded at 280 ° C. Then, it was cut into pellets using a pelletizer to prepare a composition (master batch). (Film molding) 10 parts of the obtained composition was mixed with 100 parts of the diluted resin polyester (H-3), and melt-mixed at a temperature of 280 ° C. using a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.) to obtain a thickness. A 250 ⁇ m film was molded.
  • Examples 4-18 to 4-24 A masterbatch was produced in the same manner as in Example 4-17, except that the materials of Example 4-17 were changed to the materials and blending amounts shown in Table 5-1 and then Examples 4-18 to 4-24. Films were manufactured respectively.
  • Example 4-25 Manufacturing of masterbatch 100 parts of cycloolefin resin (H-4) and 2 parts of ultraviolet absorbing dye (A-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port and melted at 240 ° C. After kneading, the composition (master batch) was prepared by cutting into pellets using a pelletizer. (Film molding) 10 parts of the obtained composition was mixed with 100 parts of the diluted resin cycloolefin resin (H-4), and melt-mixed at a temperature of 280 ° C. using a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.). A T-die film having a thickness of 250 ⁇ m was formed.
  • Examples 4-26 to 4-32 A masterbatch was produced in the same manner as in Example 4-25, except that the materials of Example 4-25 were changed to the materials and blending amounts shown in Table 5-1 and then Examples 4-26 to 4-32. Films were manufactured respectively.
  • Example 4-33 Manufacturing of masterbatch 100 parts of polyvinyl butyral resin (H-5) and 2 parts of ultraviolet absorbing dye (A-1) are put into a twin-screw extruder (manufactured by Japan Steel Works, Ltd.) with a screw diameter of 30 mm from the same supply port and melted at 240 ° C. After kneading, the composition (master batch) was prepared by cutting into pellets using a pelletizer. (Film molding) 10 parts of the obtained composition was mixed with 100 parts of the diluted resin polyvinyl butyral resin (H-5), and melt-mixed at a temperature of 280 ° C. using a T-die molding machine (manufactured by Toyo Seiki Co., Ltd.). A T-die film having a thickness of 250 ⁇ m was formed.
  • Examples 4-34 to 4-40 A masterbatch was produced in the same manner as in Example 4-25, except that the materials of Example 4-33 were changed to the materials and blending amounts shown in Table 5-1 and then Examples 4-34-4-40. Films were manufactured respectively.
  • Example 4-41 Manufacturing of liquid masterbatch
  • a liquid masterbatch was prepared by kneading 10 parts of the ultraviolet absorbing dye (A-1) and 90 parts of the liquid resin (I-1) with a roll.
  • Two parts of the obtained liquid masterbatch are mixed with 98 parts of the diluted resin polycarbonate (H-1), melt-mixed at a temperature of 280 ° C. using a T-die molding machine (manufactured by Toyo Seiki), and thickened. A 250 ⁇ m T-die film was formed.
  • Examples 4-42 to 82 A liquid masterbatch was produced using the materials shown in Table 5-2 in the same manner as in Example 4-41, and then the films of Examples 4-42 to 4-82 were produced, respectively.
  • plasticizer dispersion was prepared by bead-dispersing 10 parts of the ultraviolet absorbing dye (A-1) and 90 parts of the plasticizer (J-1). (Film molding) Two parts of the obtained plasticizer dispersion was mixed with 98 parts of the diluted resin polycarbonate (H-1), and melt-mixed at a temperature of 280 ° C. using a T-die molding machine (manufactured by Toyo Seiki). A T-die film having a thickness of 250 ⁇ m was formed.
  • Examples 4-84 to 4-122 In the same manner as in Example 4-83, the plasticizer dispersion was prepared using the materials shown in Table 5-3, and then the films of Examples 4-84 to 4-122 were produced, respectively.
  • the obtained film was exposed to light having a wavelength of 300 to 400 nm with an illuminance of 60 W / m 2 for 100 hours using a xenon weather meter.
  • Absorbance reduction rate of maximum absorption wavelength is less than 5%
  • Absorbance reduction rate of maximum absorption wavelength is 5% or more, less than 20%
  • Absorbance reduction rate of maximum absorption wavelength is 20% or more
  • ⁇ Haze value> The haze value of the obtained film was measured with a haze meter and evaluated according to the following criteria. ⁇ +: Less than 0.2 Very good ⁇ : 0.2 or more and less than 0.5 Very good ⁇ : 0.5 or more and less than 2 Good ⁇ : 2 or more and less than 5 Good ⁇ : 5 or more Not practical
  • the ultraviolet absorbing dye (A) has a low transmittance per unit weight in the visible light short wavelength region having a wavelength of 400 to 420 nm. It was found that the transparency of the film was not impaired because the addition of a small amount reached a practical range. In particular, it was found that a small amount of addition reached a practical range as compared with Tinuvin 970 of the comparative example.
  • TDI-TMP trimethylolpropan adduct of tolylene diisocyanate
  • this adhesive was applied on a release film of a polyethylene terephthalate base material having a thickness of 38 ⁇ m so as to have a thickness of 50 ⁇ m after drying, and dried in a hot air oven at 100 ° C. for 2 minutes. Then, a 25 ⁇ m polyethylene terephthalate film was attached to the pressure-sensitive adhesive layer side and aged in this state at room temperature for 7 days to obtain a pressure-sensitive adhesive sheet.
  • Example 5-2 to 5-7 Comparative Examples 5-1 to 5-2
  • Table 6 the adhesive sheets of Examples 5-2 to 5-7 and Comparative Examples 5-1 to 5-2 were obtained in the same manner as in Example 5-1.
  • Adhesive Strength The obtained adhesive sheet was prepared to have a width of 25 mm and a length of 150 mm. In an atmosphere of 23 ° C. and 50% relative humidity, the peelable film was peeled off from the pressure-sensitive adhesive sheet, the exposed pressure-sensitive adhesive layer was attached to a glass plate, and pressure-bonded once with a 2 kg roll. After leaving it for 24 hours, the adhesive strength was measured in a 180 ° peel test in which the material was peeled off at a speed of 300 mm / min in the 180 degree direction using a tensile tester, and evaluation was performed based on the following evaluation criteria. (Compliant with JISZ0237: 2000) ⁇ : “Adhesive strength is 10 N or more, which is good.” X: "Adhesive strength is less than 10N and is not practical.”
  • the obtained adhesive sheet was prepared to have a width of 25 mm and a length of 150 mm.
  • the peelable sheet is peeled off from the adhesive sheet, and an adhesive layer is attached to a polished stainless steel plate having a width of 30 mm and a length of 150 mm at the lower end of a stainless plate having a width of 25 mm and a width of 25 mm.
  • a load of 1 kg was applied in an atmosphere of 40 ° C., and the mixture was left for 70,000 seconds to measure the holding force.
  • the length at which the upper end of the adhesive sheet sticking surface was displaced downward was measured. Evaluation Criteria ⁇ : “The displaced length of the adhesive sheet is less than 0.5 mm. Good.”
  • X The displaced length of the adhesive sheet is 0.5 mm or more. It is not practical.”
  • the ultraviolet absorbing dye of the present invention has a low transmittance per unit weight in the visible light short wavelength region having a wavelength of 400 to 420 nm. It was found that the transparency of the adhesive sheet was not impaired because the addition of a small amount reached a practical range. In particular, it was found that a small amount of addition reached a practical range as compared with Tinuvin 970 of the comparative example.
  • Example 6-1 A paint was prepared by stirring and mixing with the following composition.
  • Ultraviolet absorbing dye (A-1) 0.2 parts Polyester (Byron GK250, manufactured by Toyobo Co., Ltd.) 9.0 parts Methyl ethyl ketone 90.0 parts
  • Example 7 Comparative Examples 6-1 to 6-2
  • Example 6-1 Comparative Examples 6-1 to 6-2
  • Table 7 the same adjustments as in Example 6-1 were performed to obtain the paints of Examples 6-2 to 6-7 and Comparative Examples 6-1 to 6-2, respectively.
  • the obtained paint was applied to a glass substrate having a thickness of 1000 ⁇ m using a bar coater so as to have a dry film thickness of 6 ⁇ m, and dried at 100 ° C. for 2 minutes to form a coating film.
  • the obtained coated material was evaluated by the following method.
  • the obtained coated material was exposed to light having a wavelength of 300 to 400 nm with an illuminance of 60 W / m 2 for 100 hours using a xenon weather meter.
  • Absorbance reduction rate of maximum absorption wavelength is less than 5%
  • Absorbance reduction rate of maximum absorption wavelength is 5% or more, less than 20%
  • Absorbance reduction rate of maximum absorption wavelength is 20% or more
  • the ultraviolet absorbing dye of the present invention has a low transmittance per unit weight in the visible light short wavelength region having a wavelength of 400 to 420 nm. It was found that the transparency of the coated product was not impaired because the addition of a small amount reached a practical range. In particular, it was found that a small amount of addition reached a practical range as compared with Tinuvin 970 of the comparative example.
  • Photocurable composition (Example 7-1) Each raw material was stirred and mixed with the following composition to prepare a photocurable composition.
  • UV Absorbing Dye (A-1) 1.0 Part Photopolymerizable Compound (Polyfunctional Acrylate "KAYARADDPHA” manufactured by Nippon Kayaku Co., Ltd.) 18.0 Part Photopolymerization Initiator (IGM ResinBV "Omnirad 184”) 1.0 Part Propylene Glycol monomethyl ether 80.0 parts
  • Example 7-2 to 7-11 Comparative Examples 7-1 to 7-2
  • Example 7-1 Comparative Examples 7-1 to 7-2
  • Table 8 the same preparations as in Example 7-1 were prepared, and the photocurable compositions of Examples 7-2 to 7-11 and Comparative Examples 7-1 to 7-2 were obtained, respectively.
  • the above photocurable composition was applied to a glass substrate having a thickness of 1 mm using a bar coater so as to have a dry film thickness of 6 ⁇ m.
  • the obtained coating layer was dried at 100 ° C. for 1 minute, and then cured by irradiating with an ultraviolet ray of 400 mJ / cm 2 with a high-pressure mercury lamp to prepare a coated product.
  • evaluation of coated material The obtained coated material was evaluated by the following method.
  • the obtained coated material was exposed to light having a wavelength of 300 to 400 nm with an illuminance of 60 W / m 2 for 100 hours using a xenon weather meter.
  • Absorbance reduction rate of maximum absorption wavelength is less than 5%
  • Absorbance reduction rate of maximum absorption wavelength is 5% or more, less than 20%
  • Absorbance reduction rate of maximum absorption wavelength is 20% or more
  • the ultraviolet absorbing dye of the present invention has a low transmittance per unit weight in the visible light short wavelength region having a wavelength of 400 to 420 nm. It was found that the transparency of the coated product was not impaired because the addition of a small amount reached a practical range. In particular, it was found that a small amount of addition reached a practical range as compared with Tinuvin 970 of the comparative example. It was also found that a structure having a photocurable portion gives a superior result in pencil hardness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dental Preparations (AREA)

Abstract

本発明は、波長400nm未満の紫外線のみならず、波長400~420nm程度の可視光短波長領域の光も吸収し、かつ良好な透明性を有する成形体を成形できる樹脂組成物の提供を目的とする。波長400nm未満の紫外線領域および波長400~420nmの可視光短波長領域の光を吸収し、かつ1、2または3個のナフタレン環と結合するトリアジン化合物である紫外線吸収色素(A)と、樹脂とを含有する樹脂組成物。

Description

樹脂組成物、および成形体
 本発明は、色素を含有する樹脂組成物および成形体に関する。
 従来から樹脂成形体(以下、成形体という)は、医薬用薬剤や化粧品等の包装材料として使用されてきた。これらの包装材料の中身の有機物は、一般的に太陽光などに含まれる紫外線の作用によって劣化することが知られている。
 太陽光のうち、波長400nm未満の紫外線のみならず、波長400~420nm程度の可視光短波長領域の光も有機物や人体にダメージを与えることが指摘されている。そのため、成形体が紫外線および波長400~420nm程度の可視光短波長領域の光をも吸収する紫外線吸収剤を含有することは、内容物の劣化の抑制に効果的である。さらに、紫外線吸収剤は長期経時での紫外線の暴露によりその性質が劣化することなく、耐光性に優れることが求められている。
 他の成形体の用途として、光学用途、例えば、液晶表示装置に使用される偏光板保護フィルム、反射防止フィルム、有機EL表示装置の発光素子の劣化を防止する表面フィルム等が挙げられる。
 上記光学用途では、組成物に対して高温の加工プロセスがある一方、成形体は高度な寸法安定性が要求される。特にエンジニアリングプラスチックを含む組成物は、成形加工温度が例えば260~340℃と高いため、紫外線吸収剤には、高温に耐えうる耐熱性が必要である。
 特許文献1~2には、波長400~420nm程度の可視光短波長領域を吸収するベンゾトリアゾール系の紫外線吸収剤が開示されている。
特開2018-177696号公報 特表2016-514756号公報
 従来の紫外線吸収剤は、耐熱性が低く、高融点または高軟化点の熱可塑性樹脂(例えば、エンジニアリングプラスチック)の成形体に使用できない問題があった。また従来の紫外線吸収剤は単位重量あたりの吸光係数が低く、前記可視光短波長領域を吸収するには、成形体を厚くする必要があった。一方、紫外線吸収剤を増量すると成形体の透明性が低下する問題もあった。
 本発明は、波長400nm未満の紫外線のみならず、波長400~420nm程度の可視光短波長領域の光も吸収し、かつ良好な透明性を有する成形体を成形できる樹脂組成物の提供を目的とする。
 本発明の樹脂組成物は、波長400nm未満の紫外線領域および波長400~420nmの可視光短波長領域の光を吸収し、かつ1、2または3個のナフタレン環と結合するトリアジン化合物である紫外線吸収色素(A)と熱可塑性樹脂(B)とを含有する、樹脂組成物である。
 上記の本発明によれば、波長400nm未満の紫外線のみならず、波長400~420nm程度の可視光短波長領域の光も吸収し、かつ良好な透明性を有する成形体を成形できる樹脂組成物、および成形体を提供できる。
 以下、本実施形態の樹脂組成物、および成形体について説明する。
 なお、数値範囲を示す「~」は特に断りがない限り、その下限値および上限値を含むものとする。
[樹脂組成物]
 本実施形態の樹脂組成物は、波長400nm未満の紫外線領域および波長400~420nmの可視光短波長領域の光を吸収し、かつ1、2または3個のナフタレン環と結合するトリアジン化合物である紫外線吸収色素(A)と、熱可塑性樹脂(B)とを含有する。
<紫外線吸収色素(A)>
 本実施形態において紫外線吸収色素(A)は、トリアジン環に結合するナフタレン環の作用により、波長400nm未満の紫外線領域に加え波長400~420nm程度の可視光短波長領域の光を吸収できる。また、本紫外線吸収色素(A)は、従来よりも少量の添加で所望の波長吸収が可能になる。そのため、成形体の透明性の低下を抑制できる。また、本紫外線吸収色素(A)は耐熱性に優れ、例えば、270℃以上の溶融混錬に耐えうる耐熱性を備えている。本紫外線吸収色素(A)において、ナフタレン環は、連結基を介さずトリアジン環と直接結合することが好ましい。また、トリアジン環に直接結合する1~3個のナフタレン環の内、少なくとも一つのナフタレン環の2位に水酸基を有することがより好ましい。
 本紫外線吸収色素(A)は、下記一般式(1)、一般式(2)および一般式(3)からなる群より選択される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)~(3)中、R1b~R1g、R2a~R2g、R3a~R3gは、それぞれ独立に、水素原子、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、スルホ基、R、Ar、または下記一般式(4-1)~(4-3)で示す基である。
 Rは炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数1~20のアルコシキ基、炭素数2~20のアルケニルオキシ基であり、置換基として水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基を有してもよく、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数1~20のアルコシキ基、炭素数2~20のアルケニルオキシ基の炭素原子と炭素原子の間が一つまたは複数の-O-、-CO-、-COO-、-OCO-、-CONH-、または-NHCO-で連結されていてもよい。
 Arは炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、ビフェニル基であり、置換基として、水酸基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数1~20のアルコシキ基、炭素数2~20のアルケニルオキシ基、炭素数6~20のアリールオキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基を有してもよい。
 また、一般式(2)~(3)中、R、R、Rは、それぞれ独立に、水酸基、RまたはArである。
Figure JPOXMLDOC01-appb-C000006
 一般式(4-1)中、Xは-CO-、-COO-、-OCO-、-CONH-、または-NHCO-である。Rは、水素原子、水酸基、RまたはArである。ただし、一般式(4-1)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
Figure JPOXMLDOC01-appb-C000007
 一般式(4-2)中、X、Xはそれぞれ独立して-CO-、-COO-、-OCO-、-CONH-、または-NHCO-である。Rは炭素数6~20のアリーレン基である。R10はRまたはArである。ただし、一般式(4-2)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
Figure JPOXMLDOC01-appb-C000008
 一般式(4-3)中、X、Xはそれぞれ独立して-CO-、-COO-、-OCO-、-CONH-、または-NHCO-である。R11は直鎖または分岐鎖状の炭素数1~20のアルキレン基、または炭素数6~20のアリーレン基である。R12はRまたはArである。nは1~20である。ただし、一般式(4-3)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。)
 なお、一般式(4-1)で示す基は、一般式(4)で示す基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(4)中、Yは-NH-、または-O-である。R13は、水素原子、水酸基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数1~20のアルコシキ基、炭素数2~20のアルケニルオキシ基、炭素数6~20のアリールオキシ基、置換基としてフッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基を有する炭素数1~20のアルキル基または炭素数6~20のアリール基である。ただし、一般式(4)の*印は、一般式(1)~(3)のナフタレン環との結合部位を表す。
 一般式(1)で示す化合物は、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 一般式(2)で示す化合物は、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 一般式(3)で示す化合物は、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記トリアジン化合物の合成方法は、トリアジン構造を有する化合物の公知の合成法を使用して合成できる。例えば、塩化シアヌルにナフトールまたはナフトール誘導体を、三塩化アルミニウムを用いて付加反応させる方法が挙げられる。他にも、例えば、2-ヒドロキシ-1-ナフトエ酸メチルとベンズアミジン塩酸塩を、ナトリウムメトキシドを用いて縮合環化反応させる方法も挙げられる。トリアジン環に単結合で連結したナフタレン環やR、R、Rが備える置換基は、トリアジン構造を形成した後に導入してもよく、トリアジン構造を形成する前に導入してもよい。
 紫外線吸収色素(A)の含有量は、樹脂組成物100質量%中に0.001~5質量%が好ましく、0.005~1質量%がより好ましい。
<樹脂>
 本樹脂組成物は樹脂を含有する。樹脂は成形体を形成しやすい点から、熱可塑性樹脂、熱硬化性樹脂、または光硬化性樹脂を含むことが好ましい。本樹脂組成物は、耐熱性に優れた紫外線吸収色素(A)を含有するため、例えば熱可塑性樹脂(B)であっても好適に用いることができる。
 熱可塑性樹脂(B)としては、ポリオレフィン、ポリアクリル、ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、シクロオレフィン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂等が挙げられる。熱可塑性樹脂(B)は1種単独で又は2種以上を組み合わせて用いることができる。
 本樹脂組成物において熱可塑性樹脂(B)は、耐熱性に優れた紫外線吸収色素(A)を含有するため、融点200℃以上の結晶性樹脂、またはガラス転移温度120℃以上の非晶性樹脂を含むことが好ましい。結晶性樹脂の融点は、中でも220℃以上がより好ましい。一方前記融点は、500℃以下が好ましい。また非晶性樹脂のガラス転移温度は、130℃以上がより好ましい。一方、前記ガラス転移温度は、300℃以下が好ましい。融点、ガラス転移温度ともに、示差走査熱量計や熱重量示差熱分析装置等で測定できる。
 融点200℃以上の結晶性樹脂は、例えば、ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂等が挙げられる。
 ガラス転移温度120℃以上の非晶性樹脂は、例えば、シクロオレフィン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリカードネート樹脂等が挙げられる。
(ポリエステル樹脂)
 ポリエステル樹脂は、分子の主鎖にエステル結合を有する結晶性樹脂であり、ジカルボン酸(その誘導体を含む)と、ジオール(2価アルコールまたは2価フェノール)とから合成した重縮合物;ジカルボン酸(その誘導体を含む)と、環状エーテル化合物とから合成した重縮合物;環状エーテル化合物の開環重合物等が挙げられる。ポリエステル樹脂は、ジカルボン酸とジオールとの重合体によるホモポリマー、複数の原料を使用するコポリマー、これらを混合するポリマーブレンド体のいずれであってもよい。なお、ジカルボン酸の誘導体としては、酸無水物、エステル化物などが挙げられる。ジカルボン酸は、脂肪族ジカルボン酸、芳香族ジカルボン酸のいずれであってもよいが、耐熱性が向上する点から芳香族ジカルボン酸を含むことが好ましい。
 芳香族ジカルボン酸は、例えば、テレフタル酸、イソフタル酸、フタル酸、クロルフタル酸、ニトロフタル酸、p-カルボキシルフェニル酢酸、m-フェニレンジグリゴール酸、p-フェニレンジグリコール酸、ジフェニルジ酢酸、ジフェニル-p,p’-ジカルボン酸、ジフェニル-4,4’-ジ酢酸、ジフェニルメタン-p,p’-ジカルボン酸、ジフェニルエタン-m,m’-ジカルボン酸、スチルベンジルカルボン酸、ジフェニルブタン-p,p’-ジカルボン酸、ベンゾフェノン-4,4’-ジカルボン酸、ナフタリン-1,4-ジカルボン酸、ナフタリン-1,5-ジカルボン酸、ナフタリン-2,6-ジカルボン酸、ナフタリン-2,7-ジカルボン酸、p-カルボキシフェノキシ酢酸、p-カルボキシフェノキシブチル酸、1,2-ジフェノキシプロパン-p,p’-ジカルボン酸、1,5-ジフェノキシペンタン-p,p’-ジカルボン酸、1,6-ジフェノキシヘキサン-p,p’-ジカルボン酸、p-(p-カルボキシフェノキシ)安息香酸、1,2-ビス(2-メトキシフェノキシ)-エタン-p,p’-ジカルボン酸、1,3-ビス(2-メトキシフェノキシ)プロパン-p,p’-ジカルボン酸、1,4-ビス(2-メトキシフェノキシ)ブタン-p,p’-ジカルボン酸、1,5-ビス(2-メトキシフェノキシ)-3-オキシペンタン-p,p’-ジカルボン酸等が挙げられる。
 脂肪族ジカルボン酸は、例えば、シュウ酸、コハク酸、アジピン酸、コルク酸、マゼライン酸、セバシン酸、ドデカンジカルボン酸、ウンデカンジカルボン酸、マレイン酸、フマル酸等が挙げられる。
 2価アルコールは、例えば、エチレングリコール、トリメチレングリコール、ブタン-1,3-ジオール、ブタン-1,4-ジオール、2,2-ジメチルプロパン-1,4-ジオール、cis-2-ブテン-1,4-ジオール、テトラメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、オクタメチレングリコール、デカメチレングリコール、シクロヘキサンジメタノール等が挙げられる。これらの中でもエチレングリコール、ブタン-1,4-ジオール、シクロヘキサンジメタノールが好ましい。
 2価フェノールは、例えば、ヒドロキノン、レゾルシノール、ビスフェノールA等が挙げられる。
 環状エーテル化合物は、例えばエチレンオキサイド、プロピレンオキサイド等が挙げられる。
 ジカルボン酸や2価アルコールは、それぞれ単独または2種類以上を併用して使用できる。
(ポリアミド樹脂)
 ポリアミド樹脂は、結晶性樹脂であり、例えば、カルボン酸成分と、アミノ基を2個以上有する化合物(Am)とを脱水縮合反応させて合成できる。
 カルボン酸成分は、例えば、アジピン酸、セバシン酸、イソフタル酸、テレフタル酸等が挙げられる。なお、カルボン酸成分は、2以上のカルボキシル基を有する化合物を使用できる。
 アミノ基を2個以上有する化合物(Am)は、例えば、公知のものを使用することができ、例えば、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、トリエチレンテトラミン等の脂肪族ポリアミン;イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン等の脂環式ポリアミンを含む脂肪族ポリアミン;フェニレンジアミン、キシリレンジアミン等の芳香族ポリアミン;1,3-ジアミノ-2-プロパノール、1,4-ジアミノ-2-ブタノール、1-アミノ-3-(アミノメチル)-3,5,5-トリメチルシクロヘキサン-1-オール、4-(2-アミノエチル)-4,7,10-トリアザデカン-2-オール、3-(2-ヒドロキシプロピル)-o-キシレン-α,α’-ジアミン等のジアミノアルコールが挙げられる。
 ポリアミド樹脂の市販品は、例えば、6ナイロン(東レ社製)、66ナイロン(東レ社製)、610ナイロン等が挙げられる。
(シクロオレフィン樹脂)
 シクロオレフィン樹脂は、主鎖および又は側鎖に脂環構造を有する非晶性樹脂である。脂環構造の種類は、例えば、例えば、ノルボルネン重合体、単環の環状オレフィン重合体、環状共役ジエン重合体、およびビニル脂環式炭化水素重合体、ならびにこれらの水素化物等が挙げられる。これらの中でも成形性と透明性に優れることから、ノルボルネン重合体が好ましい。ノルボルネン単量体は、例えば、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)等が挙げられる。
 シクロオレフィン樹脂の市販品は、例えば、トパス(ポリプラスチックス社製)、アペル(三井化学社製)が挙げられる。
(ポリエーテルイミド樹脂)
 ポリエーテルイミド樹脂は、ガラス転移温度が180℃超の非晶性樹脂であり、透明性良好で高強度、高耐熱性、高弾性率および広範な耐薬品性を有している。そのため自動車、遠隔通信、航空宇宙、電気/電子、輸送およびヘルスケアなどの多様な用途で広範に使用されている。
 ポリエーテルイミド樹脂の製造プロセスの1つは、ビスフェノールA二ナトリウム塩(BPA・Na)などのジヒドロキシ芳香族化合物のアルカリ金属塩とビス(ハロフタルイミド)との重合によるものである。得られたポリエーテルイミド樹脂の分子量は2つの方法で制御できる。第1の方法は、ジヒドロキシ芳香族化合物のアルカリ金属塩に対して、モル過剰のビス(ハロフタルイミド)を使用することである。第2の方法は、末端キャッピング剤を形成する無水フタル酸などの単官能性化合物の存在下でビス(無水ハロフタル酸)を調製することである。無水フタル酸は、有機ジアミンの一部と反応してモノハロ-ビス(フタルイミド)を形成する。モノハロ-ビス(フタルイミド)は、成長中のポリマー鎖におけるフェノキシド末端基との反応による重合ステップにおいて、末端キャッピング剤として働く。
 ポリエーテルイミド樹脂の市販品は、ULTEM(サウジ基礎産業公社製)が挙げられる。
(ポリカーボネート樹脂)
 ポリカーボネート樹脂は、非晶性樹脂であり、芳香族ジヒドロキシ化合物に、ホスゲン或いは炭酸ジエステル等のカーボネート前駆体を反応させて合成する。ホスゲンを用いる合成反応の場合は、例えば、界面法が好ましい。また、炭酸ジエステルを用いる合成反応の場合、溶融状で反応させるエステル交換法が好ましい。
 芳香族ジヒドロキシ化合物は、例えば、例えば、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシアリール)シクロアルカン類4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等のジヒドロキシジアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィドのようなジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類等が挙げられる。また、ピペラジン、ジピペリジルハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル類を混合して使用してもよい。
 前記カーボネート前駆体は、例えば、例えば、ホスゲン、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類、ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類等が挙げられる。
 ポリカーボネート樹脂の粘度平均分子量は、15,000~30,000が好ましく、16,000~27,000がより好ましい。なお、本明細書における粘度平均分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算される値である。
 ポリカーボネート樹脂の市販品は、例えば、ユーピロンH-4000(三菱エンジニアリングプラスチック社製、粘度平均分子量16,000)ユーピロンS-3000(三菱エンジニアリングプラスチック社製、粘度平均分子量23,000)、ユーピロンE-2000(三菱エンジニアリングプラスチック社製、粘度平均分子量27,000)等が挙げられる。
 熱可塑性樹脂(B)は、適度なメルトフローレート(MFR)を有すると流動性と成形性を高度に両立できる。各樹脂のMFRは、日本工業規格 JIS. K 7210に準じて測定することができ、以下の範囲であることが好ましい。
 熱可塑性樹脂(B)のMFRは、樹脂種により異なるが融点またはガラス転移温度を超える温度(200~320℃程度)で1~200g/10minが好ましく、2~150g/10minがより好ましく、5~100g/10minがさらに好ましい。以下、樹脂別に好ましいMFRを説明する。
 ポリエステル樹脂のMFRは、280℃/2.16kgにおいて、1~200g/10minが好ましく、5~150g/10minがより好ましく、10~150g/10minがさらに好ましい。
 ポリカーボネート樹脂のMFRは、300℃/1.2kgにおいて、1~100g/10minが好ましく、2~80g/10minがより好ましく、2~50g/10minがさらに好ましい。
 シクロオレフィン樹脂のMFRは、260℃/2.16kgにおいて、1~100g/10minが好ましく、2~80g/10minがより好ましく、5~60g/10minがさらに好ましい。
 ポリアミド樹脂のMFRは、235℃/2.16kgにおいて、1~100g/10minが好ましく、2~80g/10minがより好ましく、5~80g/10minがさらに好ましい。
 ポリエーテルイミド樹脂のMFRは、337℃/6.6kgにおいて、1~100g/10minが好ましく、2~80g/10minがより好ましく、3~50g/10minがさらに好ましい。
 本樹脂組成物は、紫外線吸収色素(A)、および熱可塑性樹脂(B)以外に添加剤を含有してもよい。添加剤は、例えば近赤外線吸収剤、光安定剤、酸化防止剤、着色剤、ワックス等が挙げられる。これらの添加剤は、成形体用途において公知の化合物を用いることができる。
 近赤外線吸収剤は、成形品に近赤外線吸収能を付与するために使用する。近赤外線吸収剤は、例えばシアニン系、ジイモニウム系、スクアリリウム系、サフタロシアニン系などの化合物が挙げられる。近赤外線吸収剤の含有量は、樹脂組成物100質量%中に0.01~5質量%が好ましい。
 光安定剤は、成形品に紫外線耐性を付与するために使用する。光安定剤は、例えば、ヒンダードアミン光安定剤が好ましい。光安定剤の含有量は、樹脂組成物100質量%中に0.01~5質量%が好ましい。
 酸化防止剤は、成形品が自然光又は人工光源を浴びて高温になるときに、成形品の劣化を低減するために使用する。酸化防止剤は、例えばモノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系、燐酸系などが好ましい。酸化防止剤の含有量は、樹脂組成物100質量%中に0.01~5質量%が好ましい。
 ワックスは、成形品に紫外線吸収色素をより均一に分散させるために使用する。分散剤は、例えば、ポリオレフィンワックス、脂肪酸ワックス、脂肪酸エステルワックス、部分ケン化脂肪酸エステルワックス、ケン化脂肪酸ワックスなどが好ましい。ワックスの含有量は、紫外線吸収色素(A)100質量部に対して、50~250質量部が好ましい。
<樹脂組成物の製造>
 本樹脂組成物の製造方法としては、例えば、前記紫外線吸収色素(A)、および熱可塑性樹脂(B)を溶融混錬する方法が挙げられる。溶融混錬後の樹脂組成物は、冷却することが好ましい。
 溶融混錬温度は、使用する熱可塑性樹脂(B)の種類に応じて適宜調整すればよい。熱可塑性樹脂(B)として、融点200℃以上の結晶性樹脂、またはガラス転移温度120℃以上の非晶性樹脂を用いる場合、溶融混錬温度は270℃以上が好ましく、300℃以上がより好ましい。特に、耐熱性が高いエンジニアリングプラスチック等の樹脂は、流動性が低いため、高温での加工プロセスが好ましい。溶融混錬温度の上限は、各成分が分解乃至蒸発しない温度であればよく、500℃以下が好ましく、450℃以下がより好ましい。
 溶融混錬装置は、例えば、単軸混練押出機、二軸混練押出機、タンデム式二軸混練押出機等が挙げられる。
 樹脂組成物は、いわゆるマスターバッチとして作製することが好ましい。マスターバッチを作製し、次いで、希釈樹脂(熱可塑性樹脂(B))とともに溶融混錬して成形体を作製すると、マスターバッチを経ず作製した成形体と比較して、紫外線吸収色素(A)を成形体中に均一に分散し易く、紫外線吸収色素(A)の凝集を抑制できる。これにより成形体の透明性が向上する。マスターバッチは、前記溶融混錬後にペレタイザーを使用してペレット状に成形することが好ましい。
 マスターバッチとして作製する場合、紫外線吸収色素(A)の含有量は、樹脂組成物100質量%中に0.01~20質量%が好ましく、0.05~2質量%がより好ましい。
<液状マスターバッチ(F)>
 樹脂組成物は、紫外線吸収色素(A)、および液状樹脂(E)を含む液状マスターバッチ(F)を作製し、次いで、希釈樹脂(熱可塑性樹脂(B))とともに溶融混錬して作製することがより好ましい。
(液体樹脂(E))
 液体樹脂(E)は、紫外線吸収色素(A)を分散する分散媒として機能する。
 液体樹脂(E)は、25℃における粘度が10,000mPa・s以下の樹脂である。なお、前記粘度は、10~5,000mPa・sがより好ましく、100~3,000mPa・sがより好ましい。上記範囲内であると、紫外線吸収色素(A)を液体マスターバッチ中に容易に分散できる。本明細書における粘度はJIS K7117-1:1999に従ってB型粘度計を用いて25℃で測定した値である。
 液体樹脂(E)の含有量は、液状マスターバッチ(F)100質量%中、50質量%以上が好ましく、60~95質量%がより好ましく、70~90質量%がさらに好ましい。この範囲内であることにより、例えば、溶融混錬の際、溶融粘度を抑制できるため、紫外線吸収色素(A)を分散しやすくなる。
 液体樹脂(E)の数平均分子量(Mn)は、200~2000が好ましく、500~1500がさらに好ましく、1000~1500が特に好ましい。Mn200以上により成形性と透明性を両立しやすい。また、Mnが2000以下により、分散性と帯電防止性が向上する。
 液体樹脂(E)は、例えば、エポキシ化大豆油、エポキシ化アマニ油等のエポキシ系樹脂、脂肪酸ポリエステル樹脂、ポリアルキレングリコール樹脂、ポリエーテル樹脂またはポリエーテルエステル樹脂等が挙げられるが、熱可塑性樹脂(B)がポリエチレンテレフタレート(PET)やポリカーボネートなどの高い成型温度が必要な場合にも、耐熱性が高く、帯電防止性も優れる点で、脂肪酸ポリエステル樹脂、ポリアルキレングリコール樹脂、またはポリエーテルエステル樹脂が好ましい。
 脂肪酸ポリエステル樹脂は、脂肪族多価カルボン酸と多価アルコールとの反応によって得られる樹脂である。
 前記脂肪族多価カルボン酸は、カルボキシル基を2つ以上有する脂肪族カルボン酸である。脂肪族多価カルボン酸は、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、トリカルバリル酸、1,3,6-ヘキサントリカルボン酸、1,3,5-ヘキサントリカルボン酸等の脂肪族多価カルボン酸等が挙げられる。
 前記多価アルコールは、水酸基を2つ以上有するアルコールである。多価アルコールは、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等の脂肪族グリコール及びジエチレングリコール、ジプロピレングリコール等のポリアルキレングリコール等が挙げられる。
 脂肪族多価カルボン酸および多価アルコールは、それぞれ単独または2種類以上併用して使用できる。
 脂肪酸ポリエステル樹脂の凝固点は、-5℃以下が好ましく、-50℃~-10℃がより好ましい。
 脂肪酸ポリエステル樹脂の市販品は、例えば、アデカサイザーPN‐170(ADEKA社製、25℃での粘度800mPa・s、凝固点-15℃、アジピン酸ポリエステル樹脂)、アデカサイザーP-200(ADEKA社製、25℃での粘度2,600mPa・s、凝固点-20℃、アジピン酸ポリエステル樹脂)、アデカサイザーPN-250(ADEKA社製、25℃での粘度4,500mPa・s、凝固点-20℃、アジピン酸ポリエステル樹脂)等が挙げられる。
 ポリエーテル樹脂は、アルキレンオキシ基の繰り返し単位を有する樹脂である。アルキレンオキシ基の炭素数は1~6が好ましい。ポリエーテル樹脂は、25℃における粘度が10,000mPa・s以下が好ましい。この粘度であれば、液状マスターバッチ用途の使用に適している。なお、アルキレンオキシ基の炭素数は、2~4が好ましい。これにより相溶性が向上する一方、吸水性を抑制できる。
 ポリエーテル樹脂は、例えば、いずれも繰り返し単位中の炭素数が2であるポリエチレングリコールや、いずれも繰り返し単位中の炭素数が3であるポリトリメチレングリコールおよびポリプロピレングリコールや、いずれも繰り返し単位中の炭素数が4であるポリテトラメチレングリコールおよびポリブチレングリコール等が挙げられる。
 ポリエーテルエステル樹脂は、脂肪族多価カルボン酸樹脂とアルキレングリコール樹脂とのエステル化合物である。
 ポリエーテルエステル樹脂の市販品は、例えば、アデカサイザーRS‐107(ADEKA社製、25℃での粘度20mPa・s、凝固点-47℃、アジピン酸エーテルエステル系樹脂)、アデカサイザーRS-700(ADEKA社製、25℃での粘度30mPa・s、凝固点-53℃、ポリエーテルエステル系樹脂)等が挙げられる。
 液体樹脂(E)の凝固点は、-5℃以下が好ましく、-50℃~-10℃がより好ましい。
 本樹脂組成物は、液状マスターバッチ(F)を作製し、次いで、希釈樹脂(熱可塑性樹脂(B))とともに溶融混錬して作製することにより、これを用いて作製する成形体は、従来の固形マスターバッチから作製する成形体よりも、良好な透明性が得られる。
 液状マスターバッチ(F)は、液状樹脂(E)を含み液状であるため、熱可塑性樹脂(B)との溶融混錬において高い流動性を有し、紫外線吸収色素(A)を非常に均一に分散することができる。特に、耐熱性の高いエンジニアリングプラスチックの樹脂は、溶融混錬温度においても流動性に限界がある。そのため、色素の凝集により均一な分散が難しく、透明性の向上が難しい。そこで融点200℃以上の結晶性樹脂、またはガラス転移温度120℃以上の非晶性樹脂である熱可塑性樹脂(B)の場合、液状マスターバッチ(F)は透明性向上に有効となる。特に、光学フィルタなど高い透明性が必要な用途で特に有効である。
 液状マスターバッチ(F)中の紫外線吸収色素(A)の含有量は、液状マスターバッチ100質量%中に1~30質量%が好ましく、2~20質量%がより好ましい。
(樹脂型分散剤(G))
 液状マスターバッチ(F)は、樹脂型分散剤(G)を含むことが好ましい。これにより、液状マスターバッチ中で、紫外線吸収色素(A)がより均一に分散され、得られる成形体はさらに高い透明性が得られる。また、樹脂型分散剤(G)を含むことで、液状マスターバッチの保存安定性が向上する。
 樹脂型分散剤(G)は、紫外線吸収色素に吸着する性質を有する吸着部位と、紫外線吸収色素以外の成分と相溶性のある緩和部位とを有する化合物である。
 樹脂型分散剤(G)は、例えば、ポリウレタン、ポリアクリレート等のポリカルボン酸エステル、不飽和ポリアミド、ポリカルボン酸、ポリカルボン酸(部分)アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アルキルアミン塩、ポリシロキサン、長鎖ポリアミノアマイドリン酸塩、水酸基含有ポリカルボン酸エステルや、これらの変性物、ポリ(低級アルキレンイミン)と遊離のカルボキシル基を有するポリエステルとの反応により形成されたアミドやその塩等の油性分散剤、(メタ)アクリル酸-スチレン共重合体、(メタ)アクリル酸-(メタ)アクリル酸エステル共重合体、スチレン-マレイン酸共重合体、ポリビニルアルコール、ポリビニルピロリドン等の水溶性樹脂や水溶性高分子化合物、ポリエステル系、変性ポリアクリレート系、エチレンオキサイド/プロピレンオキサイド付加化合物、リン酸エステル系等が挙げられる。
 樹脂型分散剤(G)は、単独または2種類以上を併用して使用できる。
 前記樹脂型分散剤のうち、少量の添加量で分散体の粘度が低くなるため塩基性官能基を有する高分子分散剤が好ましい。さらに、窒素原子含有グラフト共重合体や、側鎖に3級アミノ基、4級アンモニウム塩基、含窒素複素環などを含む官能基を有する、窒素原子含有アクリル系ブロック共重合体およびウレタン系高分子分散剤などが好ましい。
 樹脂型分散剤(G)の使用量は、紫外線吸収色素(A)に対して、5~200質量%程度が好ましく、成膜性の観点から10~100質量%程度がより好ましい。
 市販の樹脂型分散剤は、例えば、ビックケミー・ジャパン社製のDisperbYk-101、103、107、108、110、111、116、130、140、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、2000、2001、2020、2025、2050、2070、2095、2150、2155またはAnti-Terra-U、203、204、またはBYK-P104、P104S、220S、6919、またはLactimon、Lactimon-WSまたはBYkumen等、日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、76500等、チバ・ジャパン社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503、等、味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。
 なお、樹脂型分散剤(G)が有機溶剤に溶解した状態の場合は、液体樹脂(E)を添加し、減圧して加熱し、溶媒を留去して使用することが好ましい。
<液状マスターバッチ(F)の製造方法>
 液状マスターバッチ(F)は、紫外線吸収色素(A)と液体樹脂(E)を混合し分散して作製できる。なお、前記分散には樹脂型分散剤(G)を併用できる。前記分散は、例えば、ニーダー、2本ロールミル、3本ロールミル、ボールミル、横型サンドミル、縦型サンドミル、アニュラー型ビーズミル、またはアトライター等の分散装置を使用できる。
[成形体]
 本実施形態の成形体は、樹脂組成物を成形してなることを特徴とする。本成形体は前記樹脂組成物を、そのまま成形して製造できる。また、前記樹脂組成物をマスターバッチとして調製する場合、希釈樹脂(熱可塑性樹脂(B))とともに溶融混錬し、次いで成形することで成形体を製造できる。マスターバッチ(X)と希釈樹脂(Y)との質量比は、X/Y=1/5~1/500が好ましい。この範囲にすると成形品は、良好な光特性が得やすい。
 マスターバッチとして液状マスターバッチ(F)を用いる場合、樹脂組成物100質量%中に液状マスターバッチ(F)を0.1~5質量%含有することがより好ましい。
<成形体の用途>
 本成形体は、例えば、食品包装材、医薬品包装材、ディスプレイ、ガラス中間膜、レンズ用途に使用することができる。
 食品包装材や医薬品包装材は、熱可塑性樹脂に、例えば、ポリエステル系樹脂、シクロオレフィン系樹脂等を使用することが好ましい。これら成形体は、柔軟性および視認性が向上し、内容物の劣化を抑制できる。
 ディスプレイ、ガラス中間膜、レンズ用途で使用される成形体は、所望の波長に対して透明な性質を有する樹脂からなるフィルムであることが好ましい。このような成形体を構成する樹脂としては、ポリエーテルイミド樹脂、ポリエーテルスルホン系樹脂、ポリエチレンテレフタレート系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂、ポリアリレート系樹脂、ポリアミド樹脂、ポリカーボネート系樹脂、脂環構造を有するオレフィンポリマー系樹脂(脂環式オレフィンポリマー系樹脂)、セルロースエステル系樹脂などが挙げられる。
 ディスプレイ用途では、本成形体は、例えば、テレビ、パソコン、スマホ等に使用される光学フィルム等で使用される。上記本樹脂組成物を含む成形体を使用した積層体は、ディスプレイのバックライトに含まれる紫外線や可視光の短波長領域の光を吸収することで、目への悪影響を抑制することができる。また、当該積層体は太陽光に含まれる紫外線や可視光の短波長領域の光を吸収することで、ディスプレイの表示素子の劣化を抑制することができる。
 ガラス中間膜用途では、本成形体は、例えば自動車や建築物等に使用される合わせガラス等で使用される。上記本樹脂組成物を含む成形体を使用した合わせガラスは、太陽光に含まれる紫外線や可視光の短波長領域の光を吸収することで、目や人体への悪影響を抑制することができる。
 レンズ用途では、本成形体は、例えば眼鏡や光学センサー等に使用されるレンズ等で使用される。上記本樹脂組成物を含む成形体を使用したレンズは、例えば眼鏡用途では太陽光に含まれる紫外線や可視光の短波長領域の光を吸収することで、目や人体への悪影響を抑制することができ、光学センサー用途ではノイズに成り得る不要な波長の光をカットすることで、センサーの感度を高めることができる。
 本成形品は、また、例えば、医療用薬剤、化粧品、食品用容器および包装材、雑貨、繊維製品、医薬品用容器、各種産業用被覆材、自動車用部品、家電製品、住宅等の建材、トイレタリー用品などの用途で幅広く使用できる。さらに、ディスプレイ用材料、センサー用材料、光学制御材料などの用途でも幅広く使用できる。
 以下、本発明をさらに詳しく説明する。なお、本発明は実施例に限定されない。また、「質量部」は「部」、「質量%」は「%」と記載する。
<紫外線吸収色素(A)の製造方法>
[紫外線吸収色素(A-1)]
 300mL三角フラスコに、クロロベンゼンを170部、塩化シアヌルを43.4mmol、塩化アルミニウムを65.1mmol仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを151.8mmol、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌した。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、先の反応液を少しずつ滴下した。さらに、メタノール45.0部を複数回に分けて三角フラスコに添加して洗浄しながら500mLビーカーに添加した。沈殿物をろ別し、水/メタノール=75部/75部の混合溶媒でふりかけ洗浄した。得られたウエットケーキを水150部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水150部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-1)を得た。
 紫外線吸収色素(A-1)のNMR測定を行った結果、上記構造を支持する結果が得られた。測定条件は次のとおりである。
<測定条件>
  装置:BRUKER AVANCE400
  共振周波数:400MHz(1H-NMR)
  溶媒:ジメチルスルホキシド-d
 1H-NMRの内部標準物質として、テトラメチルシランを用い、ケミカルシフト値はδ値(ppm)、カップリング定数はHertzで示した。またsはsinglet、dはdoublet、mはmultipletの略とする。得られたNMRスペクトルの内容は以下のとおりである。
 δ=12.05(s,3H),8.70(d,J=8.4Hz,3H),8.07(d,J=8.8Hz,3H),7.93(d,J=8.0Hz,3H),7.46-7.50(m,3H),7.38-7.42(m,3H),7.34(d,J=9.2Hz,3H)
 上記の通り、紫外線吸収色素(A-1)を例にしてNMRで構造同定を行った。他の紫外線吸収色素も上記同様にNMRで構造同定を行ったがデータは省略する。
[紫外線吸収色素(A-2)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに1,3-ジヒドロキシナフタレンを添加した以外は同様な方法で製造し、紫外線吸収色素(A-2)を得た。
[紫外線吸収色素(A-3)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに6-ブロモ-2-ナフトールを添加した以外は同様な方法で製造し、紫外線吸収色素(A-3)を得た。
[紫外線吸収色素(A-4)]
 200mL三角フラスコに、N-メチル-2-ピロリドンを100部、紫外線吸収色素(A-1)を20.0mmol、炭酸カリウムを40.0mmol仕込み、撹拌しながら90℃まで加温した。次に、1-ヨードヘキサンを40.0mmol仕込み、90℃で4時間撹拌した。一方、1Lビーカーに水を500部仕込み、先の反応液を少しずつ滴下した。沈殿物をろ別し、水500部でふりかけ洗浄した。得られたウエットケーキを水500部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水500部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-4)を得た。
[紫外線吸収色素(A-5)]
 200mL三角フラスコに、N-メチル-2-ピロリドンを100部、紫外線吸収色素(A-2)を20.0mmol、炭酸カリウムを60.0mmol仕込み、撹拌しながら90℃まで加温した。次に、1-ヨードブタンを60.0mmol仕込み、90℃で4時間撹拌した。一方、1Lビーカーに水を500部仕込み、先の反応液を少しずつ滴下した。沈殿物をろ別し、水500部でふりかけ洗浄した。得られたウエットケーキを水500部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水500部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-5)を得た。
[紫外線吸収色素(A-6)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに6-ヒドロキシ-2-ナフトニトリルを添加した以外は同様な方法で製造し、紫外線吸収色素(A-6)を得た。
[紫外線吸収色素(A-7)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに6-ヒドロキシ-2-ナフトエ酸を添加した以外は同様な方法で製造し、紫外線吸収色素(A-7)を得た。
[紫外線吸収色素(A-8)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに6-ヒドロキシ-2-ナフトエ酸メチルを添加した以外は同様な方法で製造し、紫外線吸収色素(A-8)を得た。
[紫外線吸収色素(A-9)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに2-ナフトール-6-スルホン酸ナトリウム水和物を添加した以外は同様な方法で製造し、紫外線吸収色素(A-9)を得た。
[紫外線吸収色素(A-10)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに3-ヒドロキシ-2-ナフトエ酸を添加した以外は同様な方法で製造し、紫外線吸収色素(A-10)を得た。
[紫外線吸収色素(A-11)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに3-ヒドロキシ-2-ナフトエ酸メチルを添加した以外は同様な方法で製造し、紫外線吸収色素(A-11)を得た。
[2,4,6-トリス(2,7-ジヒドロキシナフチル)-1,3,5-トリアジン]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに2,7-ジヒドロキシナフタレンを添加した以外は同様な方法で製造し、2,4,6-トリス(2,7-ジヒドロキシナフチル)-1,3,5-トリアジンを得た。
[紫外線吸収色素(A-12)]
 200mL三角フラスコに、N-メチル-2-ピロリドンを100部、2,4,6-トリス(2,7-ジヒドロキシナフチル)-1,3,5-トリアジンを20.0mmol、トリエチルアミンを60.0mmol仕込み、撹拌しながらアセチルクロリドを60.0mmol仕込み、室温で4時間撹拌した。一方、1Lビーカーに水を500部仕込み、先の反応液を少しずつ滴下した。沈殿物をろ別し、水500部でふりかけ洗浄した。得られたウエットケーキを水500部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水500部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-12)を得た。
[紫外線吸収色素(A-13)]
 紫外線吸収色素(A-12)の製造において、アセチルクロリドの代わりにピバロイルクロリドを添加した以外は同様な方法で製造し、紫外線吸収色素(A-13)を得た。
[紫外線吸収色素(A-14)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに5-アセチル-2-ナフトールを添加した以外は同様な方法で製造し、紫外線吸収色素(A-14)を得た。
[紫外線吸収色素(A-15)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに3-ヒドロキシ-2-ナフトアニリドを添加した以外は同様な方法で製造し、紫外線吸収色素(A-15)を得た。
[紫外線吸収色素(A-16)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに3-ヒドロキシ-2’-メトキシ-2-ナフトアニリドを添加した以外は同様な方法で製造し、紫外線吸収色素(A-16)を得た。
[紫外線吸収色素(A-17)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに5’-クロロ-3-ヒドロキシ-2’-メチル-2-ナフトアニリドを添加した以外は同様な方法で製造し、紫外線吸収色素(A-17)を得た。
[紫外線吸収色素(A-18)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに5’-クロロ-3-ヒドロキシ-2’-メトキシ-2-ナフトアニリドを添加した以外は同様な方法で製造し、紫外線吸収色素(A-18)を得た。
[紫外線吸収色素(A-19)]
 紫外線吸収色素(A-1)の製造において、2-ナフトールの代わりに3-ヒドロキシ-3’-ニトロ-2-ナフトアニリドを添加した以外は同様な方法で製造し、紫外線吸収色素(A-19)を得た。
[紫外線吸収色素(A-20)]
 200mL三角フラスコに、N-メチル-2-ピロリドンを100部、紫外線吸収色素(A-1)を20.0mmol、トリエチルアミンを60.0mmol仕込み、撹拌しながら塩化アクリロイルを40.0mmol仕込み、室温で4時間撹拌した。一方、1Lビーカーに水を500部仕込み、先の反応液を少しずつ滴下した。沈殿物をろ別し、水500部でふりかけ洗浄した。得られたウエットケーキを水500部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水500部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-20)を得た。
[紫外線吸収色素(A-21)]
 200mL三角フラスコに、N-メチル-2-ピロリドンを100部、2-メタクリロイロキシエチルコハク酸(ライトエステルHO-MS(N)、共栄社化学製)を20.0mmol仕込み、氷冷しながら攪拌した。塩化チオニルを20mmol滴下し、氷冷しながら2時間攪拌した。その後、紫外線吸収色素(A-1)を20.0mmol仕込み、室温で4時間撹拌した。一方、1Lビーカーに水を500部仕込み、先の反応液を少しずつ滴下した。沈殿物をろ別し、水500部でふりかけ洗浄した。得られたウエットケーキを水500部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水500部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-21)を得た。
[紫外線吸収色素(A-22)]
 200mL三角フラスコに、N-メチル-2-ピロリドンを100部、2-メタクリロイロキシエチルコハク酸(ライトエステルHO-MS(N)、共栄社化学製)を40.0mmol仕込み、氷冷しながら攪拌した。塩化チオニルを40mmol滴下し、氷冷しながら2時間攪拌した。その後、紫外線吸収色素(A-1)を20.0mmol仕込み、室温で4時間撹拌した。一方、1Lビーカーに水を500部仕込み、先の反応液を少しずつ滴下した。沈殿物をろ別し、水500部でふりかけ洗浄した。得られたウエットケーキを水500部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水500部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-22)を得た。
[紫外線吸収色素(A-23)]
 紫外線吸収色素(A-22)の製造において、2-メタクリロイロキシエチルコハク酸(ライトエステルHO-MS(N)、共栄社化学製)の代わりにω―カルボキシーポリカプロラクトン(n≒2)モノアクリレート(アロニックスM-5300、東亜合成社製)を添加した以外は同様な方法で製造し、紫外線吸収色素(A-23)を得た。
[紫外線吸収色素(A-24)]
 紫外線吸収色素(A-22)の製造において、2-メタクリロイロキシエチルコハク酸(ライトエステルHO-MS(N)、共栄社化学製)の代わりにフタル酸モノヒドロキシエチルアクリレート(アロニックスM-5400、東亜合成社製)を添加した以外は同様な方法で製造し、紫外線吸収色素(A-24)を得た。
[紫外線吸収色素(A-25)]
 300mL三角フラスコに、クロロベンゼンを170部、2-クロロ-4,6-ジ(ナフタレン-1-イル)-1,3,5-トリアジンを43.4mmol、塩化アルミニウムを65.1mmol仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを65.1mmol、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌した。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、先の反応液を少しずつ滴下した。さらに、メタノール45.0部を複数回に分けて三角フラスコに添加して洗浄しながら500mLビーカーに添加した。沈殿物をろ別し、水/メタノール=75部/75部の混合溶媒でふりかけ洗浄した。得られたウエットケーキを水150部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水150部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-25)を得た。
[紫外線吸収色素(A-26)]
 300mL三角フラスコに、クロロベンゼンを170部、2,4-ジクロロ-6-フェニル-1,3,5-トリアジンを43.4mmol、塩化アルミニウムを65.1mmol仕込み、撹拌して懸濁させた。次に、氷水で冷却しながら、2-ナフトールを108.5mmol、少しずつ添加した。その後、徐々に室温に戻しながら終夜撹拌した。一方、500mLビーカーに水を38.1部、35%塩酸を10.0部、メタノールを45.0部仕込み、先の反応液を少しずつ滴下した。さらに、メタノール45.0部を複数回に分けて三角フラスコに添加して洗浄しながら500mLビーカーに添加した。沈殿物をろ別し、水/メタノール=75部/75部の混合溶媒でふりかけ洗浄した。得られたウエットケーキを水150部中に戻して室温で30分リスラリーを行い、ろ別した。その後、水150部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-26)を得た。
[紫外線吸収色素(A-27)]
 紫外線吸収色素(A-26)の製造において、2,4-ジクロロ-6-フェニル-1,3,5-トリアジンの代わりに2-(4-ビフェニリル)-4,6-ジクロロ-1,3,5-トリアジンを添加した以外は同様な方法で製造し、紫外線吸収色素(A-27)を得た。
[紫外線吸収色素(A-28)の製造1(A-28-1)]
 紫外線吸収色素(A-25)の製造において、2-クロロ-4,6-ジ(ナフタレン-1-イル)-1,3,5-トリアジンの代わりに2-クロロ-4,6-ジフェニル-1,3,5-トリアジンを添加した以外は同様な方法で製造し、紫外線吸収色素(A-28)を得た。
[紫外線吸収色素(A-28)の製造2(A-28-2)]
 500mL三角フラスコに、2-ヒドロキシ-1-ナフトエ酸メチルを420mmоl仕込み、撹拌しながら90℃まで加温した。次に、ベンゾアミジン塩酸塩を128mmоl、ナトリウムメチラートの30%溶液を26部仕込み、90℃で22時間攪拌した。このあと、メタノールを200部仕込み、室温まで冷却し、ろ過した。得られたウエットケーキをメタノール150部中に戻して室温で30分リスラリーを行い、ろ別した。その後、メタノール150部でふりかけ洗浄を行った。得られたウエットケーキを80℃で終夜乾燥し、紫外線吸収色素(A-28)を得た。このように製造2の紫外線吸収色素(A-28)は、前記製造1とは異なる合成経路で同じ化合物(A-28)を合成した。
[紫外線吸収色素(A-29)]
 紫外線吸収色素(A-28-2)の製造において、ベンゾアミジン塩酸塩の代わりにp-メチルベンゾアミジン塩酸塩を添加した以外は同様な方法で製造し、紫外線吸収色素(A-29)を得た。
[紫外線吸収色素(A-30)]
 紫外線吸収色素(A-28-2)の製造において、ベンゾアミジン塩酸塩の代わりにp-ブトキシベンゾアミジン塩酸塩を添加した以外は同様な方法で製造し、紫外線吸収色素(A-30)を得た。
[紫外線吸収色素(A-31)]
 紫外線吸収色素(A-25)の製造において、2-クロロ-4,6-ジ(ナフタレン-1-イル)-1,3,5-トリアジンの代わりに2-クロロ-4,6-ジメトキシ-1,3,5-トリアジンを添加した以外は同様な方法で製造し、紫外線吸収色素(A-31)を得た。
[紫外線吸収色素(A-32)]
 紫外線吸収色素(A-25)の製造において、2-クロロ-4,6-ジ(ナフタレン-1-イル)-1,3,5-トリアジンの代わりに2,4-ビス[4-(tert-ブチル)フェニル]-6-クロロ-1,3,5-トリアジンを添加した以外は同様な方法で製造し、紫外線吸収色素(A-32)を得た。
[紫外線吸収色素(A-33)]
 紫外線吸収色素(A-25)の製造において、2-クロロ-4,6-ジ(ナフタレン-1-イル)-1,3,5-トリアジンの代わりに2-([1,1’-ビフェニル]-4-イル)-4-クロロ-6-フェニル-1,3,5-トリアジンを添加した以外は同様な方法で製造し、紫外線吸収色素(A-33)を得た。
[吸光度測定]
(試験例1~35、比較試験例1~6)
 紫外線吸収色素(A-1)~(A-33)、および下記比較色素(AA-1)~(AA-3)の紫外線吸収剤について、紫外~可視吸収スペクトルを測定した結果を表1に示す。なお、比較色素は下記の紫外線吸収剤を用いた。これらの紫外線吸収剤は、全て波長320nm以上400nm未満の波長域で透過率10%未満を確認した上で可視光吸収性等を評価した。
 (AA-1)Tinuvin970(BASFジャパン社製、ベンゾトリアゾール系紫外線吸収剤)
 (AA-2)Tinuvin460(BASFジャパン社製、トリアジン系紫外線吸収剤)
 (AA-3)LA-F70(ADEKA社製、トリアジン系紫外線吸収剤)
 (AA-1)はベンゾトリアゾール系の紫外線吸収剤であり、本発明の構造と異なる。(AA-2)、(AA-3)はトリアジン系の紫外線吸収剤であり、それぞれナフタレン環を有さない。
 また、吸光度測定用の溶液調製方法、および測定条件は以下の通りである。
<溶液調製方法>
 紫外線吸収色素(A-1)1部、テトラヒドロフラン1000部を混合し、完全に溶解させた。続いて先の溶解液1部、テトラヒドロフラン99部を均一に混合し、濃度10ppmの溶液を調製した。
 紫外線吸収色素(A-2)~(A-33)、比較色素(AA-1)~(AA-3)の紫外線吸収剤についても、表1に記載の濃度になるように調製した。
<測定条件>
  装置:紫外可視近赤外分光光度計U-3500(日立製作所社製)
  測定波長:260~700nm
  溶媒:テトラヒドロフラン
  濃度:表1に記載
 紫外~可視吸収スペクトルの評価基準は以下の通りである。
◎:波長400~420nmの吸光度が全領域にわたって0.3以上:良好
〇:波長400~420nmの吸光度が一部0.3以上、その他が0.3未満:実用域
△:波長400~420nmの吸光度が一部0.1以上0.3未満、その他0.1未満:実用不可
×:波長400~420nmの吸光度が全領域にわたって0.1未満:実用不可
Figure JPOXMLDOC01-appb-T000016
 表1に示す通り、本発明の樹脂組成物に用いた紫外線吸収色素(A)は、従来の樹脂組成物に使用されている紫外線吸収剤(AA)と比較して波長400~420nmの可視光短波長領域において、単位重量当たりの吸光度が高いことがわかる。
<熱可塑性樹脂(B)>
 (B-1)ポリエステルMA-2101M(ポリエステル樹脂、ユニチカ社製、結晶性樹脂、融点264℃、MFR45g/10min(280℃/2.16kg))
 (B-2)ユーピロンS-3000(ポリカーボネート樹脂、三菱エンジニアリングプラスチック社製、非晶性樹脂、ガラス転移温度145℃、MFR15g/10min(300℃/1.2kg))
 (B-3)トパス6013M-07(シクロオレフィン樹脂、ポリプラスチックス社製、非晶性樹脂、ガラス転移温度142℃、MFR13g/10min(260℃/2.16kg))
 (B-4)アペル(シクロオレフィン樹脂、三井化学社製、非晶性樹脂、ガラス転移温度135℃、MFR11g/10min以上(260℃/2.16kg))
 (B-5)アミランCM3001-N(ポリアミド樹脂、東レ社製、結晶性樹脂、融点265℃、MFR7g/10min以上(235℃/2.16kg))
 (B-6)ULTEM(ポリエーテルイミド樹脂、サウジ基礎産業公社製、非晶性樹脂、ガラス転移温度217℃、MFR8g/10min以上(337℃/6.6kg))
<液体樹脂(E)>
 (E-1):ユニオールD-1200(日油社製、ポリアルキレングリコール樹脂、ポリプロピレングリコール樹脂、数平均分子量1200、粘度200mPa・s)
 (E-2):PEG-400(三洋化成工業社製、ポリアルキレングリコール樹脂、ポリプロピレングリコール樹脂、数平均分子量400、粘度90mPa・s)
 (E-3):ユニオールD-400(日油社製、ポリアルキレングリコール樹脂、ポリプロピレングリコール樹脂、数平均分子量400、粘度100mPa・s)
 (E-4):アデカサイザーRS-107(ADEKA社製、エーテルエステル樹脂、アジピン酸エーテルエステル樹脂、数平均分子量430、粘度20mPa・s)
 (E-5):アデカサイザーRS-700(ADEKA社製、エーテルエステル樹脂、数平均分子量550、粘度30mPa・s)
 (E-6):アデカサイザーPN-250(ADEKA社製、脂肪酸ポリエステル樹脂、アジピン酸ポリエステル樹脂、数平均分子量2100、粘度4,500mPa・s)
 (E-7):アデカサイザーPN-350(ADEKA社製、脂肪酸ポリエステル樹脂、アジピン酸ポリエステル樹脂、数平均分子量4500、粘度10,000mPa・s)
<樹脂型分散剤(G)>
(樹脂型分散剤溶液(G-1)の製造)
 不揮発分60%であるビックケミー・ジャパン社製のBYK-LPN6919に、BYK-LPN6919と同量の液体樹脂(E-4)を加え、100℃に加熱し減圧して溶剤を留去することにより、BYK-LPN6919の不揮発分/液体樹脂(E-4)=1/1の樹脂型分散剤溶液(G-1)を得た。
[エチレン性不飽和単量体(b-5)の合成]
 攪拌機、温度計を備えた反応容器に、メタクリル酸2-イソシアナトエチル60部、3-(ジメチルアミノ)プロピルアミン29部、テトラヒドロフラン(THF)120部を仕込み、室温で5時間撹拌した。FT-IRで反応が完結していることを確認したのち、ロータリーエバポレーターで溶媒を留去し、淡黄色透明の液体として、下記のエチレン性不飽和単量体(b-5)を73部得た(収率82%)。得られた化合物の同定は、1H-NMRで実施した。
[エチレン性不飽和単量体(b-9)の合成]
 攪拌機、温度計を備えた反応容器に、エチレン性不飽和単量体(b-5)の合成で得られた、エチレン性不飽和単量体(b-5)6.6部、イオン交換水5部を仕込み、室温で撹拌したのち、35%塩酸水溶液8部を滴下した。アミン価測定で反応が完結していることを確認し、淡黄色透明液体として、エチレン性不飽和単量体(b-9)水溶液を20部得た。得られた化合物の同定は、1H-NMRで実施した。
Figure JPOXMLDOC01-appb-C000017
(樹脂型分散剤溶液(G-2)の製造)
 ガス導入管、コンデンサー、攪拌翼、及び温度計を備え付けた反応槽に、メチルメタクリレート17.7部、n-ブチルメタクリレート53.2部、テトラメチルエチレンジアミン13.2部を仕込み、窒素を流しながら50℃で1時間撹拌し、系内を窒素置換した。次に、ブロモイソ酪酸エチル2.6部、塩化第一銅5.6部、PGMAc100部を仕込み、窒素気流下で、110℃まで昇温して第一ブロックの重合を開始した。4時間重合後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して重合転化率が98%以上であることを確認した。
 次に、この反応槽に、PGMAc20部、第二ブロックモノマーとしてエチレン性不飽和単量体(b-5)21.2部、エチレン性不飽和単量体(b-9)水溶液27部(不揮発分38%)を投入し、110℃・窒素雰囲気下を保持したまま撹拌し、反応を継続した。2時間後、重合溶液をサンプリングして不揮発分測定を行い、不揮発分から換算して第二ブロックの重合転化率が98%以上であることを確認し、反応溶液を室温まで冷却して重合を停止した。
 先に合成したブロック共重合体溶液に不揮発分が40質量%になるようにPGMAcを添加した。このようにして、不揮発分当たりのアミン価が50mgKOH/g、4級アンモニウム塩価が20mgKOH/g、重量平均分子量(Mw)9,800、不揮発分が40質量%の樹脂型分散剤溶液を得た。
 さらに、この樹脂型分散剤溶液の不揮発分と同量の液体樹脂(E-4)を加え、100℃に加熱し減圧してPGMAcと水を留去することにより、この樹脂型分散剤溶液の不揮発分/液体樹脂(E-4)=1/1の樹脂型分散剤溶液(G-2)を得た。
(実施例1-1)
<マスターバッチの製造>
 紫外線吸収色素(A-1)2部と熱可塑性樹脂(B-1)98部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、300℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(D-1)を作製した。
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(B-1)90部に対して、得られたマスターバッチ(D-1)10部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度300℃で溶融混合し、厚さ250μmのフィルム(X-1)を成形した。
(実施例1-2~1-40、比較例1-1~1-6)
 実施例1-1と同様に、表2-1~2-2記載の材料を用いて、厚さ250μmのフィルム(X-2)~(X-40)、(Y-1)~(Y-6)を成形した。
(実施例1-41)
<液状マスターバッチ(F)の製造>
 紫外線吸収色素(A-1)10部と液体樹脂(E-1)90部とをロールで混錬することにより、液状マスターバッチ(F-1)を作製した。
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(B-3)99.5部に対して、得られた液状マスターバッチ(F-1)0.5部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度300℃で溶融混合し、厚さ250μmのフィルム(X-41)を成形した。
(実施例1-42~1-58)
 実施例1-41と同様に、表2-1~2-2記載の材料を用いて、厚さ250μmのフィルム(X-42)~(X-58)を成形した。
(実施例1-59)
<液状マスターバッチ(F)の製造>
 紫外線吸収色素(A-1)10部、樹脂型分散剤(G-1)20部と液体樹脂(E-1)70部とをビーズミルで分散することにより、液状マスターバッチ(F-19)を作製した。
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(B-3)99.5部に対して、得られた液状マスターバッチ(F-19)0.5部を混合し、T-ダイ成形機(東洋精機社製)を用いて、温度300℃で溶融混合し、厚さ250μmのフィルム(X-59)を成形した。
(実施例1-60~1-77)
 実施例1-59と同様に、表2-1~2-2に記載の材料を用いて、厚さ250μmのフィルム(X-60)~(X-77)を成形した。
[成形物の外観評価]
 (X-1)~(X-77)、(Y-1)~(Y-6)に関しては、均一なフィルムが成形されていることが確認された。
[紫外線吸収性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(島津製作所社製)を用いて測定し、以下の条件を満たすか否かを評価した。
◎:波長400~420nmの光透過率が全領域にわたって1%未満:良好
〇:波長400~420nmの光透過率が一部1%未満、その他が1%以上:実用域
△:波長400~420nmの光透過率が一部1%以上10%未満、その他が20%以上:実用不可
×:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[透明性]得られたフィルムの透明性を目視評価した。評価基準は以下の通りである。
○:濁りが全く認められない。良好
△:濁りが若干認められる。実用域
×:明らかに濁りが認められる。実用不可
[耐光性]
 得られたフィルムをキセノンウェザーメーターで、波長300~400nmの光を60W/mの照度で100時間暴露した。
〇:極大吸収波長の吸光度の減少率が5%未満
△:極大吸収波長の吸光度の減少率が5%以上、20%未満
×:極大吸収波長の吸光度の減少率が20%以上
<ヘーズ値>
 得られたフィルムに対し、ヘーズメーターでヘーズ値を測定し、下記基準で評価した。
◎+:0.2未満       極めて良好
◎ :0.2以上0.5未満  非常に良好
〇 :0.5以上2未満    良好
△ :2以上5未満      良好
× :5以上         実用不可
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表2-1~2-2に示す通り、本発明の樹脂成形物は波長400~420nmの可視光短波長領域において、単位重量当たりの透過率が低い。樹脂成形物中の紫外線吸収色素が少量添加で実用域に至るため、フィルムの透明性が良好である。特に比較例のTinuvin970を用いた樹脂成形物と比較して少量の添加で実用域に至るため、透明性に優れている。
(実施例2-1)
<マスターバッチの製造>
 紫外線吸収色素(A-1)2部と熱可塑性樹脂(B-1)98部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、300℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチ(D-1)を作製した。
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(B-1)90部に対して、得られたマスターバッチ(D-1)10部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度300℃で溶融混合し樹脂組成物を作製した。次いで、20分間300℃で滞留させてから厚さ250μmのフィルム(XX-1)を成形した。
(実施例2-2~2-40、比較例2-1~2-6)
 実施例2-1と同様に、表2記載の材料を用いて、厚さ250μmのフィルム(XX-2)~(XX-40)、(YY-1)~(YY-6)を成形した。
(実施例2-41)
<液状マスターバッチ(F)の製造>
 紫外線吸収色素(A-1)10部と液体樹脂(E-1)90部とをロールで混錬することにより、液状マスターバッチ(F-1)を作製した。
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(B-3)99.5部に対して、得られた液状マスターバッチ(F-1)0.5部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度300℃で溶融混合し樹脂組成物を作製した。次いで、20分間300℃で滞留させてから厚さ250μmのフィルム(XX-41)を成形した。
(実施例2-42~2-58)
 実施例2-41と同様に、表2記載の材料を用いて、厚さ250μmのフィルム(XX-42)~(XX-58)を成形した。
(実施例2-59)
<液状マスターバッチ(F)の製造>
 紫外線吸収色素(A-1)10部、樹脂型分散剤(G-1)20部と液体樹脂(E-1)70部とをビーズミルで分散することにより、液状マスターバッチ(F-19)を作製した。
<フィルム成形>
 希釈樹脂の熱可塑性樹脂(B-3)99.5部に対して、得られた液状マスターバッチ(F-19)0.5部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度300℃で溶融混合し樹脂組成物を作製した。次いで、20分間300℃で滞留させてから厚さ250μmのフィルム(XX-59)を成形した。
(実施例2-60~2-77)
 実施例2-59と同様に、表2記載の材料を用いて、厚さ250μmのフィルム(XX-60)~(XX-77)を成形した。
[成形物の外観評価]
 (XX-1)~(XX-77)、(YY-1)~(YY-6)に関しては、均一なフィルムが形成されていることが確認された。
[紫外線吸収性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(島津製作所社製)を用いて測定し、以下の条件を満たすか否かを評価した。
◎:波長400~420nmの光透過率が全領域にわたって1%未満:良好
〇:波長400~420nmの光透過率が一部1%未満、その他が1%以上:実用域
△:波長400~420nmの光透過率が一部1%以上10%未満、その他が20%以上:実用不可
×:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[耐熱性]
 得られたフィルム(XX-1)~(XX-77)、(YY-1)~(YY-8)について、実施例(1-1)~(1-77)、比較例(1-1)~(1-8)で得られたフィルム(X-1)~(X-40)、(Y-1)~(Y-8)との紫外線吸収性の差を比較し評価した。評価基準は以下の通りである。
◎:波長400~420nmの光透過率の差が1%未満:良好
〇:波長400~420nmの光透過率の差が5%未満:実用域
△:波長400~420nmの光透過率の差が10%未満:実用不可
×:波長400~420nmの光透過率の差が10%以上:実用不可
 なお、実施例2-1~2-77および比較例2-1~2-8の原料および配合比は、それぞれ実施例1-1~1-77および比較例1-1~1-8と同一であるため表3には結果のみを記載する。
Figure JPOXMLDOC01-appb-T000020
 表3に示す通り、本発明の樹脂成形物は、フィルム成形時の溶融混合時の滞留時間による紫外線吸収性の変化率が小さい。よって良好な耐熱性を保有していることが確認された。
 下記実施例3~7で使用した熱可塑性樹脂(全て数平均分子量が30,000以上)を以下に示す。
(C-1)ポリエチレン(サンテックLD M2270、MFR=7g/10min、旭化成ケミカルズ社製)
(C-2)ポリエチレン(ノバテックUJ790、MFR=50g/10min、日本ポリエチレン社製)
(C-3)ポリプロピレン(ノバテックPP FA3EB、MFR=10.5g/10min、日本ポリプロ社製)
(C-4)ポリプロピレン(プライムポリプロJ226T、MFR=20g/10min、プライムポリマー社製)
(H-1)ポリカーボネート(ユーピロンS3000、MFR=15g/10min、三菱エンジニアリングプラスチックス社製)
(H-2)ポリメタクリル樹脂(アクリペットMF、MFR=14g/10min、三菱レイヨン社製)
(H-3)ポリエステル(三井ペットSA135、三井化学社製)
(H-4)シクロオレフィン樹脂(TOPAS5013L-10、三井化学社製)
(H-5)ポリビニルブチラール樹脂(モビタールB20H、クラレ社製)
実施例で使用した液体樹脂を以下に示す。
(I-1)ユニオールD-400(日油社製、ポリアルキレングリコール樹脂、ポリプロピレングリコール樹脂、数平均分子量400、粘度100mPa・s)
(I-2)アデカサイザーRS-107(ADEKA社製、エーテルエステル樹脂、アジピン酸エーテルエステル樹脂、数平均分子量430、粘度20mPa・s)
(I-3)アデカサイザーPN-6810(ADEKA社製、アセチルクエン酸トリブチル、数平均分子量190、粘度43mPa・s)
(I-4)アデカサイザーPN-250(ADEKA社製、脂肪族ポリエステル樹脂、アジピン酸ポリエステル樹脂、数平均分子量2100、粘度4,500mPa・s)
実施例で使用した可塑剤を以下に示す。
(J-1)トリエチレングリコール-ジ-2-エチルヘキサノエート
(J-2)トリエチレングリコール-ジ-n-ヘプタノエート
<樹脂型分散剤(K)>
(樹脂型分散剤溶液(K-1)の製造)
不揮発分60%であるビックケミー・ジャパン社製のBYK-LPN6919に、BYK-LPN6919の不揮発分と同量の液体樹脂(I-2)を加え、100℃に加熱し減圧して溶剤を留去することにより、BYK-LPN6919の不揮発分/液体樹脂(I-2)=1/1の樹脂型分散剤溶液(K-1)を得た。
(樹脂型分散剤溶液(K-2)の製造)
不揮発分40%であるビックケミー・ジャパン社製のDisperbyk-2000に、Disperbyk-2000の不揮発分と同量の液体樹脂(I-2)を加え、100℃に加熱し減圧して溶剤を留去することにより、Disperbyk-2000の不揮発分/液体樹脂(I-2)=1/1の樹脂型分散剤溶液K-2)を得た。
(実施例3-1)
[マスターバッチの製造]
 紫外線吸収色素(A-1)2部とポリオレフィン(C-1)100質量部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングしてマスターバッチを作製した。
[フィルム成形]
 得られたマスターバッチ10質量部と、希釈樹脂としてポリオレフィン(C-1)100質量部を混合した。次いで、T-ダイ成形機(東洋精機社製)を用いて、温度180℃で溶融混合し成形を行い厚さ250μmのフィルムを得た。
(実施例3-2~3-38、比較例3-1~3-6)
 実施例3-1の材料を表4に示す材料および配合量に変更した以外は、実施例3-1と同様にしてマスターバッチを製造し、次いで実施例3-2~3-38、比較例3-1~3-6のフィルムをそれぞれ製造した。
[可視光吸収性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(島津製作所社製)を用いて測定し、以下の条件を満たすか否かを評価した。
◎:波長400~420nmの光透過率が全領域にわたって1%未満:良好
〇:波長400~420nmの光透過率が一部1%未満、その他が1%以上:実用域
△:波長400~420nmの光透過率が一部1%以上10%未満、その他が20%以上:実用不可
×:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[透明性]
 得られたフィルムの透明性を目視評価した。評価基準は以下の通りである。
○:濁りが全く認められない。良好
△:濁りが若干認められる。実用域
×:明らかに濁りが認められる。実用不可
[耐光性]
 得られたフィルムをキセノンウェザーメーターで、波長300~400nmの光を60W/mの照度で100時間暴露した。
〇:極大吸収波長の吸光度の減少率が5%未満
△:極大吸収波長の吸光度の減少率が5%以上、20%未満
×:極大吸収波長の吸光度の減少率が20%以上
Figure JPOXMLDOC01-appb-T000021
 表4に示す通り、本発明の紫外線吸収色素は波長400~420nmの可視光短波長領域において、単位重量当たりの透過率が低い。少量添加で実用域に至るためフィルムの透明性を損なわないことがわかった。特に比較例のTinuvin970と比較して少量の添加で実用域に至ることがわかった。
(実施例4-1)
(マスターバッチの製造)
 ポリカーボネート(H-1)100部と紫外線吸収色素(A-1)2部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、280℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングして組成物(マスターバッチ)を作製した。
(フィルム成形)
 希釈樹脂のポリカーボネート(H-1)100部に対して、得られた組成物10部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度280℃で溶融混合し、厚さ250μmのフィルムを成形した。
(実施例4-2~4-8、比較例4-1~4-6)
 実施例4-1の材料を表5-1に示す材料および配合量に変更した以外は、実施例4-1と同様にして、マスターバッチを製造し、次いで実施例4-2~4-8、比較例4-1~4-6のフィルムをそれぞれ製造した。
(実施例4-9)
(マスターバッチの製造)
 ポリメタクリル樹脂(H-2)100部と紫外線吸収色素(A-1)2部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングして組成物(マスターバッチ)を作製した。
(フィルム成形)
 希釈樹脂のメタクリル樹脂(H-2)100部に対して、得られた組成物10部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度280℃で溶融混合し、厚さ250μmのT-ダイフィルムを成形した。
(実施例4-10~4-16)
 実施例4-9の材料を表5-1に示す材料および配合量に変更した以外は、実施例4-9と同様にして、マスターバッチを製造し、次いで実施例4-10~4-16のフィルムをそれぞれ製造した。
(実施例4-17)
(マスターバッチの製造)
 ポリエステル(H-3)100部と紫外線吸収色素(A-1)2部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、280℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングして組成物(マスターバッチ)を作製した。
(フィルム成形)
 希釈樹脂のポリエステル(H-3)100部に対して、得られた組成物10部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度280℃で溶融混合し、厚さ250μmのフィルムを成形した。
(実施例4-18~4-24)
 実施例4-17の材料を表5-1に示す材料および配合量に変更した以外は、実施例4-17と同様にして、マスターバッチを製造し、次いで実施例4-18~4-24のフィルムをそれぞれ製造した。
(実施例4-25)
(マスターバッチの製造)
 シクロオレフィン樹脂(H-4)100部と紫外線吸収色素(A-1)2部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングして組成物(マスターバッチ)を作製した。
(フィルム成形)
 希釈樹脂のシクロオレフィン樹脂(H-4)100部に対して、得られた組成物10部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度280℃で溶融混合し、厚さ250μmのT-ダイフィルムを成形した。
(実施例4-26~4-32)
 実施例4-25の材料を表5-1に示す材料および配合量に変更した以外は、実施例4-25と同様にして、マスターバッチを製造し、次いで実施例4-26~4-32のフィルムをそれぞれ製造した。
(実施例4-33)
(マスターバッチの製造)
 ポリビニルブチラール樹脂(H-5)100部と紫外線吸収色素(A-1)2部とを同じ供給口からスクリュー径30mmの二軸押出機(日本製鋼所社製)に投入し、240℃で溶融混錬した上で、ペレタイザーを用いてペレット状にカッティングして組成物(マスターバッチ)を作製した。
(フィルム成形)
 希釈樹脂のポリビニルブチラール樹脂(H-5)100部に対して、得られた組成物10部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度280℃で溶融混合し、厚さ250μmのT-ダイフィルムを成形した。
(実施例4-34~4-40)
 実施例4-33の材料を表5-1に示す材料および配合量に変更した以外は、実施例4-25と同様にして、マスターバッチを製造し、次いで実施例4-34~4-40のフィルムをそれぞれ製造した。
(実施例4-41)
(液状マスターバッチの製造)
 紫外線吸収色素(A-1)10部と液体樹脂(I-1)90部とをロールで混錬することにより、液状マスターバッチを作製した。
(フィルム成形)
 希釈樹脂のポリカーボネート(H-1)98部に対して、得られた液状マスターバッチ2部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度280℃で溶融混合し、厚さ250μmのT-ダイフィルムを成形した。
(実施例4-42~82)
 実施例4-41と同様に、表5-2記載の材料を用いて、液状マスターバッチを製造し、次いで実施例4-42~4-82のフィルムをそれぞれ製造した。
(実施例4-83)
(可塑剤分散液の製造)
紫外線吸収色素(A-1)10部と可塑剤(J-1)90部とをビーズ分散することにより、可塑剤分散液を作製した。
(フィルム成形)
 希釈樹脂のポリカーボネート(H-1)98部に対して、得られた可塑剤分散液2部を混合し、T-ダイ成形機(東洋精機製)を用いて、温度280℃で溶融混合し、厚さ250μmのT-ダイフィルムを成形した。
(実施例4-84~4-122)
 実施例4-83と同様に、表5-3記載の材料を用いて、可塑剤分散液を製造し、次いで実施例4-84~4-122のフィルムをそれぞれ製造した。
[可視光吸収性]
 得られたフィルムの透過率を、紫外可視近赤外分光光度計(島津製作所社製)を用いて測定し、以下の条件を満たすか否かを評価した。
◎:波長400~420nmの光透過率が全領域にわたって1%未満:良好
〇:波長400~420nmの光透過率が一部1%未満、その他が1%以上:実用域
△:波長400~420nmの光透過率が一部1%以上10%未満、その他が20%以上:実用不可
×:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[透明性]
 得られたフィルムの透明性を目視評価した。なお評価基準は以下の通りである。
○:濁りが全く認められない。良好
△:濁りが若干認められる。実用域
×:明らかに濁りが認められる。実用不可
[耐光性]
 得られたフィルムをキセノンウェザーメーターで、波長300~400nmの光を60W/mの照度で100時間暴露した。
〇:極大吸収波長の吸光度の減少率が5%未満
△:極大吸収波長の吸光度の減少率が5%以上、20%未満
×:極大吸収波長の吸光度の減少率が20%以上)
<ヘーズ値>
 得られたフィルムに対し、ヘーズメーターでヘーズ値を測定し、下記基準で評価した。
◎+:0.2未満       極めて良好
◎ :0.2以上0.5未満  非常に良好
〇 :0.5以上2未満    良好
△ :2以上5未満      良好
× :5以上         実用不可
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表5-1~表5-3に示す通り、紫外線吸収色素(A)は波長400~420nmの可視光短波長領域において、単位重量当たりの透過率が低い。少量添加で実用域に至るためフィルムの透明性を損なわないことがわかった。特に比較例のTinuvin970と比較して少量の添加で実用域に至ることがわかった。
(粘着性樹脂の製造例K-1)
 攪拌機、還流冷却機、窒素導入管、温度計、滴下管を備えた反応装置を使用して、窒素雰囲気下にてn-ブチルアクリレート96.0部と、2-ヒドロキシルエチルアクリレート4.0部の合計量のうちの50%、及び重合開始剤として2,2’-アゾビスイソブチルニトリルを0.2部、溶剤として酢酸エチルを150部反応槽に仕込み、前記合計量の残りの50%と適量の酢酸エチルを滴下槽に仕込んだ。次いで、加熱を開始して反応槽内での反応開始を確認してから、還流下、滴下管の内容物、及び0.01部の2,2’-アゾビスイソブチルニトリルの酢酸エチル希釈液を滴下した。滴下終了後、還流状態を維持したまま5時間反応を行った。反応終了後、冷却し、適量の酢酸エチルを添加することで、アクリル系樹脂である粘着性樹脂の製造例K-1を得た。得られた製造例K-1の粘着剤樹脂の重量平均分子量は50万、不揮発分は40%、粘度は3,200mPa・sであった。
(粘着性樹脂の製造例K-2)
 攪拌機、還流冷却機、窒素導入管、温度計、滴下管を備えた反応装置を使用して、窒素雰囲気下にてn-ブチルアクリレート96.0部と、アクリル酸4.0部の合計量のうちの50%、及び重合開始剤として2,2’-アゾビスイソブチルニトリルを0.2部、溶剤として酢酸エチルを150部反応槽に仕込み、前記合計量の残りの50%と適量の酢酸エチルを滴下槽に仕込んだ。次いで、加熱を開始して反応槽内での反応開始を確認してから、還流下、滴下管の内容物、及び0.01部の2,2’-アゾビスイソブチルニトリルの酢酸エチル希釈液を滴下した。滴下終了後、還流状態を維持したまま5時間反応を行った。反応終了後、冷却し、適量の酢酸エチルを添加することで、アクリル系樹脂である粘着性樹脂の製造例K-2を得た。得られた製造例K-2の粘着剤樹脂の重量平均分子量は60万、不揮発分は40%、粘度は4,000mPa・sであった。
(実施例5-1)
 粘着性樹脂として、製造例K-1の粘着性樹脂の不揮発分100部に対して、紫外線吸収色素(A-1)0.2部を混合し、シランカップリング剤としてKBM-403(信越化学工業製)を0.1部、硬化剤としてトリレンジイソシアネートのトリメチロールプロパンアダクト体(略号:TDI-TMP、NCO価=13.2、不揮発分=75%)を0.4部加え、よく攪拌し粘着剤を得た。その後、この粘着剤を厚さ38μmのポリエチレンテレフタレート基材の剥離フィルム上に、乾燥後の厚みが50μmになるように塗布し、100℃の熱風オーブンで2分間乾燥させた。そして、粘着剤層側に25μmのポリエチレンテレフタレートフィルムを貼り合せ、この状態で室温にて7日間エージングさせ、粘着シートを得た。
(実施例5-2~5-7、比較例5-1~5-2)
 表6に示すように、実施例5-1と同様に調製して、それぞれ実施例5-2~5-7、比較例5-1~5-2の粘着シートを得た。
(粘着シートの評価)
(1)粘着力
 得られた粘着シートを幅25mm・縦150mmの大きさに準備した。23℃、相対湿度50%雰囲気下、前記粘着シートから剥離性フィルムを剥がして露出した粘着剤層をガラス板に貼り付け、2kgロールで1往復圧着した。24時間放置した後に引張試験機を用いて180度方向に300mm/分の速度で引き剥がす180°ピール試験において粘着力を測定し、下記の評価基準に基づいて評価を行った。(JISZ0237:2000に準拠)
○:「粘着力が10N以上であり、良好。」
×:「粘着力が10N未満であり、実用不可。」
(2)保持力
 得られた粘着シートを幅25mm・縦150mmの大きさに準備した。JISZ0237:2000に準拠して前記粘着シートから剥離性シートを剥がして、研磨した幅30mm・縦150mmのステンレス板の下端部幅25mm・横25mmの部分に粘着剤層を貼着し、2kgロールで1往復圧着した後、40℃雰囲気で1kgの荷重をかけ、7万秒放置することで保持力を測定した。評価は、粘着シート貼付面上端部が下にずれた長さを測定した。
評価基準
○:「粘着シートのずれた長さが0.5mm未満である。良好。」
×:「粘着シートのずれた長さが0.5mm以上である。実用不可。」
(3)可視光吸収性
 得られた粘着シートの透過率を、紫外可視近赤外分光光度計(島津製作所社製)を用いて測定し、以下の条件を満たすか否かを評価した。
◎:波長400~420nmの光透過率が全領域にわたって1%未満:良好
〇:波長400~420nmの光透過率が一部1%未満、その他が1%以上:実用域
△:波長400~420nmの光透過率が一部1%以上10%未満、その他が20%以上:実用不可
×:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
(4)透明性
 得られた粘着シートの透明性を目視評価した。なお評価基準は以下の通りである。
○:濁りが全く認められない。良好
△:濁りが若干認められる。実用域
×:明らかに濁りが認められる。実用不可
(5)耐光性
 得られた粘着シートをキセノンウェザーメーターで、波長300~400nmの光を60W/mの照度で100時間暴露した。
〇:極大吸収波長の吸光度の減少率が5%未満
△:極大吸収波長の吸光度の減少率が5%以上、20%未満
×:極大吸収波長の吸光度の減少率が20%以上
Figure JPOXMLDOC01-appb-T000025
 表6に示す通り、本発明の紫外線吸収色素は波長400~420nmの可視光短波長領域において、単位重量当たりの透過率が低い。少量添加で実用域に至るため粘着シートの透明性を損なわないことがわかった。特に比較例のTinuvin970と比較して少量の添加で実用域に至ることがわかった。
<塗料>
(実施例6-1)
以下の組成で、撹拌混合を行い塗料を調製した。
紫外線吸収色素(A-1)           0.2部
ポリエステル(バイロンGK250、東洋紡社製)  9.0部
メチルエチルケトン                90.0部
(実施例6-2~6-7、比較例6-1~6-2)
 表7に示すように、実施例6-1と同様に調整し、それぞれ実施例6-2~6-7、比較例6-1~6-2の塗料を得た。
(塗工物の作製)
 得られた塗料を厚さ1000μmのガラス基板にバーコーターを用いて乾燥膜厚で6μmとなるよう塗布し、100℃2分で乾燥させて塗膜を形成した。
(塗工物の評価)
 得られた塗工物を、以下の方法で評価した。
[可視光吸収性]
 得られた塗工物の透過率を、紫外可視近赤外分光光度計(島津製作所社製)を用いて測定し、以下の条件を満たすか否かを評価した。
◎:波長400~420nmの光透過率が全領域にわたって1%未満:良好
〇:波長400~420nmの光透過率が一部1%未満、その他が1%以上:実用域
△:波長400~420nmの光透過率が一部1%以上10%未満、その他が20%以上:実用不可
×:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[透明性]
 得られた塗工物の透明性を目視評価した。なお評価基準は以下の通りである。
○:濁りが全く認められない。良好
△:濁りが若干認められる。実用域
×:明らかに濁りが認められる。実用不可
[耐光性]
 得られた塗工物をキセノンウェザーメーターで、波長300~400nmの光を60W/mの照度で100時間暴露した。
〇:極大吸収波長の吸光度の減少率が5%未満
△:極大吸収波長の吸光度の減少率が5%以上、20%未満
×:極大吸収波長の吸光度の減少率が20%以上
Figure JPOXMLDOC01-appb-T000026
 表7に示す通り、本発明の紫外線吸収色素は波長400~420nmの可視光短波長領域において、単位重量当たりの透過率が低い。少量添加で実用域に至るため塗工物の透明性を損なわないことがわかった。特に比較例のTinuvin970と比較して少量の添加で実用域に至ることがわかった。
<光硬化性組成物>
(実施例7-1)
 以下の組成で、各原料を撹拌混合し、光硬化性組成物を調製した。
紫外線吸収色素(A-1)            1.0部
光重合性化合物(多官能アクリレート「KAYARADDPHA」日本化薬社製) 18.0部
光重合開始剤(IGM ResinBV製「Omnirad184」) 1.0部
プロピレングリコールモノメチルエーテル   80.0部
(実施例7-2~7-11、比較例7-1~7-2)
 表8に示すように、実施例7-1と同様に調製し、それぞれ実施例7-2~7-11、比較例7-1~7-2の光硬化性組成物を得た。
(塗工物の作製)
 上記の光硬化性組成物をバーコーターを用いて厚さ1mmのガラス基板に乾燥膜厚で6μmとなるよう塗布した。得られた塗布層を、100℃1分で乾燥したのち、高圧水銀ランプで400mJ/cmの紫外線を照射して硬化し塗工物を作製した。
(塗工物の評価)
 得られた塗工物を、以下の方法で評価した。
[可視光吸収性]
 得られた塗工物の透過率を、紫外可視近赤外分光光度計(島津製作所社製)を用いて測定し、以下の条件を満たすか否かを評価した。
◎:波長400~420nmの光透過率が全領域にわたって1%未満:良好
〇:波長400~420nmの光透過率が一部1%未満、その他が1%以上:実用域
△:波長400~420nmの光透過率が一部1%以上10%未満、その他が20%以上:実用不可
×:波長400~420nmの光透過率が全領域にわたって10%以上:実用不可
[透明性]
 得られた塗工物の透明性を目視評価した。なお評価基準は以下の通りである。
○:濁りが全く認められない。良好
△:濁りが若干認められる。実用域
×:明らかに濁りが認められる。実用不可
[耐擦傷性]
 塗工物を学振試験機にセットし、スチールウールを用いて、荷重250gで10回学振させた。取り出した塗工物について、キズのつき具合を以下の5段階の目視評価に従って判断した。数値が大きいほど、硬化膜の耐擦傷性が良好であることを示す。
5:キズが全くない。
4:僅かにキズが付いている。
3:キズは付いているが、基材は見えていない。
2:キズが付き、一部硬化膜が剥がれている。
1:硬化膜が剥がれてしまい、基材が剥き出しの状態。
[鉛筆硬度]
 JIS-K5600に準拠し、鉛筆硬度試験機(HEIDON社製ScratchingTester HEIDON-14)を用い、鉛筆の芯の硬さを種々変えて、塗工物の硬化膜に対して荷重500gにて5回試験をした。5回中、1回も傷がつかない、もしくは1回のみ傷が付く時の芯の硬さを、その硬化膜の鉛筆硬度とした。評価基準は以下の通りである。
A:2H以上。
B:H。
C:Hより低い。
[耐光性]
 得られた塗工物をキセノンウェザーメーターで、波長300~400nmの光を60W/mの照度で100時間暴露した。
〇:極大吸収波長の吸光度の減少率が5%未満
△:極大吸収波長の吸光度の減少率が5%以上、20%未満
×:極大吸収波長の吸光度の減少率が20%以上
Figure JPOXMLDOC01-appb-T000027
 表8に示す通り、本発明の紫外線吸収色素は波長400~420nmの可視光短波長領域において、単位重量当たりの透過率が低い。少量添加で実用域に至るため塗工物の透明性を損なわないことがわかった。特に比較例のTinuvin970と比較して少量の添加で実用域に至ることがわかった。また、光硬化性部位を持つ構造の方が鉛筆硬度において優位な結果が得られることがわかった。
 この出願は、2019年12月24日に出願された日本出願特願2019-232191号、2020年8月31日に出願された日本出願特願2020-145817号、2020年10月28日に出願された日本出願特願2020-180124号、及び、2020年11月13日に出願された日本出願特願2020-189607号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1.  波長400nm未満の紫外線領域および波長400~420nmの可視光短波長領域の光を吸収し、かつ1、2または3個のナフタレン環と結合するトリアジン化合物である紫外線吸収色素(A)と、樹脂とを含有する、樹脂組成物。
  2.  前記樹脂が熱可塑性樹脂(B)を含む、請求項1に記載の樹脂組成物。
  3.  前記熱可塑性樹脂(B)が、融点200℃以上の結晶性樹脂、またはガラス転移温度120℃以上の非晶性樹脂であり、
     前記紫外線吸収色素(A)と前記熱可塑性樹脂(B)との溶融混錬物である、請求項2に記載の樹脂組成物。
  4.  前記紫外線吸収色素(A)は、少なくとも一つのナフタレン環が、トリアジン環に直接結合し、当該トリアジン環に直接するナフタレン環のうち少なくとも一つが2位に水酸基を有する、請求項1~3のいずれか一項に記載の樹脂組成物。
  5.  前記紫外線吸収色素(A)が、下記一般式(1)、一般式(2)および一般式(3)からなる群より選択される化合物である、請求項1~4のいずれか一項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)~(3)中、R1b~R1g、R2a~R2g、R3a~R3gは、それぞれ独立に、水素原子、水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、スルホ基、R、Ar、または下記一般式(4-1)~(4-3)で示す基である。
     Rは炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数1~20のアルコシキ基、炭素数2~20のアルケニルオキシ基であり、置換基として水酸基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基を有してもよく、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数1~20のアルコシキ基、炭素数2~20のアルケニルオキシ基の炭素原子と炭素原子の間が一つまたは複数の-O-、-CO-、-COO-、-OCO-、-CONH-、または-NHCO-で連結されていてもよい。
     Arは炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、ビフェニル基であり、置換基として、水酸基、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数6~20のアリール基、炭素数1~20のアルコシキ基、炭素数2~20のアルケニルオキシ基、炭素数6~20のアリールオキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ニトリル基、ニトロ基、カルボキシル基、またはスルホ基を有してもよい。
    また、一般式(2)~(3)中、R、R、Rは、それぞれ独立に、水酸基、RまたはArである。
    Figure JPOXMLDOC01-appb-C000002
    一般式(4-1)中、Xは-CO-、-COO-、-OCO-、-CONH-、または-NHCO-である。Rは、水素原子、水酸基、RまたはArである。ただし、一般式(4-1)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000003
    一般式(4-2)中、X、Xはそれぞれ独立して-CO-、-COO-、-OCO-、-CONH-、または-NHCO-である。Rは炭素数6~20のアリーレン基である。R10はRまたはArである。ただし、一般式(4-2)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。
    Figure JPOXMLDOC01-appb-C000004
    一般式(4-3)中、X、Xはそれぞれ独立して-CO-、-COO-、-OCO-、-CONH-、または-NHCO-である。R11は直鎖または分岐鎖状の炭素数1~20のアルキレン基、または炭素数6~20のアリーレン基である。R12はRまたはArである。nは1~20である。ただし、一般式(4-3)中の*は、一般式(1)~(3)のナフタレン環との結合部位を表す。)
  6.  樹脂組成物中に前記紫外線吸収色素(A)を0.001~5質量%含有する、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記紫外線吸収色素(A)と、25℃における粘度が10,000mPa・s以下である液体樹脂(E)とを含有する液状マスターバッチ(F)を含む、請求項1~6のいずれか一項に記載の樹脂組成物。
  8.  前記液状マスターバッチ(F)が、さらに樹脂型分散剤(G)を含有する、請求項7に記載の樹脂組成物。
  9.  前記液状マスターバッチ(F)100質量%中、前記液体樹脂(E)を50質量%以上含有する、請求項7または8に記載の樹脂組成物。
  10.  前記液体樹脂(E)の数平均分子量が200~2000である、請求項7~9のいずれか1項に記載の樹脂組成物。
  11.  前記液体樹脂(E)が、脂肪酸ポリエステル樹脂、ポリアルキレングリコール樹脂、およびポリエーテルエステル樹脂からなる群より選ばれる1種以上である、請求項7~10のいずれか1項に記載の樹脂組成物。
  12.  樹脂組成物100質量部中に前記液状マスターバッチ(F)を0.1~5質量%を含有する、請求項7~11のいずれか1項に記載の樹脂組成物。
  13.  請求項1~12のいずれか1項に記載の樹脂組成物を成形してなる、成形体。
PCT/JP2020/047977 2019-12-24 2020-12-22 樹脂組成物、および成形体 WO2021132247A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227019241A KR20220121794A (ko) 2019-12-24 2020-12-22 수지 조성물, 및 성형체
CN202080086665.2A CN114846085B (zh) 2019-12-24 2020-12-22 树脂组合物、及成形体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019232191 2019-12-24
JP2019-232191 2019-12-24
JP2020-145817 2020-08-31
JP2020145817 2020-08-31
JP2020180124A JP7147827B2 (ja) 2019-12-24 2020-10-28 紫外線吸収剤、組成物、成形体および積層体
JP2020-180124 2020-10-28
JP2020-189607 2020-11-13
JP2020189607A JP2022078729A (ja) 2020-11-13 2020-11-13 樹脂組成物、および成形体

Publications (1)

Publication Number Publication Date
WO2021132247A1 true WO2021132247A1 (ja) 2021-07-01

Family

ID=76573170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047977 WO2021132247A1 (ja) 2019-12-24 2020-12-22 樹脂組成物、および成形体

Country Status (3)

Country Link
KR (1) KR20220121794A (ja)
CN (1) CN114846085B (ja)
WO (1) WO2021132247A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164783B1 (ja) * 2021-07-14 2022-11-02 東洋インキScホールディングス株式会社 紫外線吸収剤及びその製造方法、組成物、成形体、塗膜
WO2023008750A1 (ko) * 2021-07-27 2023-02-02 덕산네오룩스 주식회사 수지 조성물 및 이를 이용한 표시장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1107143A (en) * 1966-02-01 1968-03-20 Ciba Ltd Di-(hydroxynaphthyl)-triazines and processes for their manufacture and use
JPH09176135A (ja) * 1995-12-19 1997-07-08 Givaudan Roure Internatl Sa 遮光剤として有用な化合物
US20030088098A1 (en) * 2001-09-27 2003-05-08 Gupta Ram Baboo Novel red-shifted triazine ultravioletlight absorbers
JP2005506384A (ja) * 2001-10-18 2005-03-03 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 有機材料の安定剤としてのナフチルトリアジン
JP2011088885A (ja) * 2009-07-29 2011-05-06 Fujifilm Corp 新規なトリアジン誘導体、紫外線吸収剤及び樹脂組成物
JP2015520013A (ja) * 2012-04-05 2015-07-16 フジフィルム イメージング カラーランツ リミテッド ポリマー分散剤、分散液、分散液を調製する工程およびポリマー分散剤の使用
JP2018131615A (ja) * 2017-02-15 2018-08-23 東洋インキScホールディングス株式会社 着色樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6309614B2 (ja) 2013-04-02 2018-04-11 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 被覆されている炭素繊維強化プラスチック部品
WO2015093093A1 (ja) * 2013-12-18 2015-06-25 横浜ゴム株式会社 紫外線硬化型樹脂組成物および積層体
JP6586346B2 (ja) * 2014-11-17 2019-10-02 株式会社Adeka 紫外線吸収剤及び合成樹脂組成物
CN113683877A (zh) * 2016-11-28 2021-11-23 三菱工程塑料株式会社 聚碳酸酯树脂组合物
JP6994748B2 (ja) 2017-04-13 2022-01-14 シプロ化成株式会社 ベンゾトリアゾール誘導体化合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1107143A (en) * 1966-02-01 1968-03-20 Ciba Ltd Di-(hydroxynaphthyl)-triazines and processes for their manufacture and use
JPH09176135A (ja) * 1995-12-19 1997-07-08 Givaudan Roure Internatl Sa 遮光剤として有用な化合物
US20030088098A1 (en) * 2001-09-27 2003-05-08 Gupta Ram Baboo Novel red-shifted triazine ultravioletlight absorbers
JP2005506384A (ja) * 2001-10-18 2005-03-03 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 有機材料の安定剤としてのナフチルトリアジン
JP2011088885A (ja) * 2009-07-29 2011-05-06 Fujifilm Corp 新規なトリアジン誘導体、紫外線吸収剤及び樹脂組成物
JP2015520013A (ja) * 2012-04-05 2015-07-16 フジフィルム イメージング カラーランツ リミテッド ポリマー分散剤、分散液、分散液を調製する工程およびポリマー分散剤の使用
JP2018131615A (ja) * 2017-02-15 2018-08-23 東洋インキScホールディングス株式会社 着色樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7164783B1 (ja) * 2021-07-14 2022-11-02 東洋インキScホールディングス株式会社 紫外線吸収剤及びその製造方法、組成物、成形体、塗膜
WO2023286725A1 (ja) * 2021-07-14 2023-01-19 東洋インキScホールディングス株式会社 紫外線吸収剤及びその製造方法、組成物、成形体、塗膜
WO2023008750A1 (ko) * 2021-07-27 2023-02-02 덕산네오룩스 주식회사 수지 조성물 및 이를 이용한 표시장치

Also Published As

Publication number Publication date
CN114846085A (zh) 2022-08-02
KR20220121794A (ko) 2022-09-01
CN114846085B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
JP6245240B2 (ja) ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
CN1211673C (zh) 制造偏振衍射薄膜的方法
TWI588192B (zh) Optical filter, solid-state imaging device and camera module using the optical filter
JP6108651B2 (ja) ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
JP4759680B2 (ja) 赤外線吸収フィルター
CN100343308C (zh) 脂环式或芳族聚酰胺、聚酰胺膜、使用所述聚酰胺或聚酰胺膜的光学部件以及聚酰胺的共聚物
JP2021088721A (ja) ポリイミド材料、その製造方法およびその製造に用いられるポリイミド前駆体組成物
JP7082872B2 (ja) 高耐熱性ポリカーボネート樹脂及び成形体
WO2021132247A1 (ja) 樹脂組成物、および成形体
TW201506461A (zh) 濾光器及使用前述濾光器的裝置
TW201506462A (zh) 濾光器及使用前述濾光器的裝置
KR20140051074A (ko) 광배향성을 갖는 열경화성 조성물, 경화막, 컬러 필터, 액정 표시 소자, 고체 촬상 소자, 패턴화 위상차판 및 광 디바이스
JP4740844B2 (ja) 着色ポリマー樹脂組成物、その製品及び製造方法
JP7147827B2 (ja) 紫外線吸収剤、組成物、成形体および積層体
JP2022078729A (ja) 樹脂組成物、および成形体
JP7164783B1 (ja) 紫外線吸収剤及びその製造方法、組成物、成形体、塗膜
JP2023012693A (ja) 紫外線吸収剤、およびその利用
WO2014168087A1 (ja) 塗工液、積層体、光学機器および電子機器
JP2023013321A (ja) 組成物、成形体および塗膜
WO2020138050A1 (ja) 熱可塑性樹脂組成物及びそれを用いた光学部材
JP2023152199A (ja) 紫外線吸収剤、組成物、成形体および塗膜
JP6294114B2 (ja) 芳香族−脂肪族ポリカーボネートおよび、それらからなるプラスチックレンズ
JP7231466B2 (ja) 透明樹脂積層体
JP2017137396A (ja) 感圧式接着剤及びそれを用いたフィルム、積層体
JP2006104323A (ja) ポリカーボネート樹脂組成物及び位相差フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904958

Country of ref document: EP

Kind code of ref document: A1