WO2021132025A1 - 蓄電装置用外装材及びこれを用いた蓄電装置 - Google Patents

蓄電装置用外装材及びこれを用いた蓄電装置 Download PDF

Info

Publication number
WO2021132025A1
WO2021132025A1 PCT/JP2020/047213 JP2020047213W WO2021132025A1 WO 2021132025 A1 WO2021132025 A1 WO 2021132025A1 JP 2020047213 W JP2020047213 W JP 2020047213W WO 2021132025 A1 WO2021132025 A1 WO 2021132025A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
exterior material
adhesive layer
power storage
storage device
Prior art date
Application number
PCT/JP2020/047213
Other languages
English (en)
French (fr)
Inventor
建人 沼澤
智彦 山▲崎▼
光司 村田
拓也 村木
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019239358A external-priority patent/JP2021108264A/ja
Priority claimed from JP2019239385A external-priority patent/JP2021108266A/ja
Priority claimed from JP2020068509A external-priority patent/JP2021166134A/ja
Priority claimed from JP2020071561A external-priority patent/JP2021168277A/ja
Priority claimed from JP2020119066A external-priority patent/JP2022015907A/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to KR1020227024905A priority Critical patent/KR20220122672A/ko
Priority to CN202080090250.2A priority patent/CN114846676A/zh
Priority to EP20907484.8A priority patent/EP4082778A4/en
Publication of WO2021132025A1 publication Critical patent/WO2021132025A1/ja
Priority to US17/845,176 priority patent/US20220328871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3221Polyhydroxy compounds hydroxylated esters of carboxylic acids other than higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6204Polymers of olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/6423Polyalkylene polyamines; polyethylenimines; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8025Masked aliphatic or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/752Corrosion inhibitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an exterior material for a power storage device and a power storage device using the same.
  • a secondary battery such as a lithium ion battery, a nickel hydrogen battery, and a lead storage battery
  • an electrochemical capacitor such as an electric double layer capacitor
  • Further miniaturization of power storage devices is required due to miniaturization of mobile devices or restrictions on installation space, and lithium ion batteries having high energy density are attracting attention.
  • metal cans have been used as exterior materials used in lithium-ion batteries, but multilayer films that are lightweight, have high heat dissipation, and can be manufactured at low cost are now being used.
  • a lithium ion battery using the above multilayer film as an exterior material is called a laminated lithium ion battery.
  • the exterior material covers the battery contents (positive electrode, separator, negative electrode, electrolyte, etc.) to prevent the ingress of moisture into the battery.
  • a laminated lithium-ion battery for example, a recess is formed in a part of the exterior material by cold molding, the battery contents are housed in the recess, the remaining part of the exterior material is folded back, and the edge portion is heat-sealed. Manufactured by sealing with (see, for example, Patent Document 1).
  • the all-solid-state battery has a feature that it does not use an organic electrolytic solution as an electrolytic substance but uses a solid electrolyte.
  • Lithium-ion batteries cannot be used under temperature conditions higher than the boiling point temperature of the electrolytic solution (about 80 ° C.), whereas all-solid-state batteries can be used under temperature conditions exceeding 100 ° C.
  • Lithium ion conductivity can be increased by operating under high temperature conditions (eg 100-150 ° C or 100-170 ° C).
  • the exterior material has, for example, a structure in which a base material layer, a metal foil layer (barrier layer), and a sealant layer are laminated via an adhesive layer or the like.
  • the adhesion between the base material layer and the metal foil layer tends to decrease.
  • Epoxy adhesives are known as heat-resistant adhesives, but the cured product of the epoxy adhesive tends to have high brittleness, and has the deep drawability required for exterior materials and lamination in a room temperature environment. The strength tends to be insufficient.
  • This disclosure has been made in view of the above problems, and uses an exterior material for a power storage device which can secure excellent lamination strength in both a room temperature environment and a high temperature environment and also has excellent deep drawing moldability.
  • the first to third objectives are to provide the existing power storage device.
  • the layers of the exterior material due to insufficient heat resistance of the exterior material. Delamination may occur between the material layer or sealant layer and the barrier layer), resulting in insufficient sealing of the all-solid-state battery package.
  • the present disclosure has been made in view of the above problems, and a fourth object is to provide an exterior material having excellent heat resistance.
  • the exterior material made of a multilayer film is required to have sufficient deep drawing moldability capable of forming recesses having a desired depth.
  • the present disclosure has been made in view of the above problems, and a fifth object is to provide an exterior material having excellent heat resistance and sufficient deep drawing moldability.
  • the present disclosure is an exterior material for a power storage device including at least a base material layer, a barrier layer, and a sealant layer in this order, and the base material layer and the barrier layer are included.
  • An adhesive layer containing a polyurethane compound composed of a reaction product of at least one kind of polyester polyol resin and at least one kind of polyfunctional isocyanate compound is provided between the two, and the polyfunctional isocyanate compound is an isophorone diisocyanate.
  • the content of the isocyanate group derived from the nurate compound of the isophorone diisocyanate in the polyfunctional isocyanate compound, which contains a nurate compound, is 5 to 100 mol% based on 100 mol% of the total amount of isocyanate groups contained in the polyfunctional isocyanate compound.
  • an exterior material for a power storage device is provided.
  • IPDI-nulate an isophorone diisocyanate nurate
  • the adhesive layer has higher toughness than the cured film of the epoxy adhesive, and can obtain excellent deep draw moldability and excellent laminating strength in a room temperature environment. Therefore, according to the exterior material for a power storage device of the present disclosure having the above configuration, excellent lamination strength can be ensured in both a room temperature environment and a high temperature environment, and excellent deep drawing moldability can be obtained. Furthermore, since IPDI-nulate has an alicyclic structure and does not have an aromatic ring, the adhesive layer using it as a curing agent causes yellowing (poor appearance) even when exposed to a high temperature environment for a long period of time. It has the advantage of being less likely to occur.
  • the ratio of the number of isocyanate groups contained in the polyfunctional isocyanate compound to the number of hydroxyl groups contained in the polyester polyol resin may be 2 to 60.
  • the lamination strength in a high temperature environment can be further improved.
  • the reason is as follows. That is, when the curing agent is present in a sufficiently larger amount than the main agent, the curing agents react with each other to produce by-products such as urea resin and biuret resin. Since these resins contain active hydrogen groups, they interact with polar groups in each layer to improve interfacial adhesion, and as a result, heat resistance is considered to be improved.
  • the ratio (NCO / OH) is set to 60 or less, it is possible to prevent the ratio of the curing agent from being too large and the curing becomes insufficient, and the lamination strength in a room temperature environment and a high temperature environment can be further increased. Can be improved. Further, if the ratio of the curing agent is too large, the ratio of the urea resin or the biuret resin in the cured film becomes large, and the brittleness of the cured film becomes high, which may reduce the moldability. By setting / OH) to 60 or less, the occurrence of such a problem can be prevented.
  • the polyfunctional isocyanate compound may further contain an adduct body of tolylene diisocyanate (hereinafter, also referred to as "TDI-adduct").
  • TDI-adduct has intermolecular interaction ( ⁇ - ⁇ stacking) and urethane bond, and has excellent cohesive force. Therefore, although it is inferior to IPDI-nulate, it has relatively good heat resistance. Moreover, in a room temperature environment, it is possible to exhibit better adhesion strength and deep draw moldability than IPDI-nulate.
  • the ratio of the number of isocyanate groups derived from the nurate form of isophorone diisocyanate to the number of isocyanate groups derived from the adduct body of the tolylene diisocyanate contained in the polyfunctional isocyanate compound may be 0.05 to 20.
  • Heat resistance by IPDI-nulate by setting the ratio (NCO A / NCO B ) of the number of isocyanate groups (NCO A ) derived from IPDI-nurate to the number of isocyanate groups (NCO B) derived from TDI-adduct to 0.05 or more. The effect of improving the properties can be sufficiently obtained, and the laminating strength in a high temperature environment can be more sufficiently secured.
  • the ratio (NCO A / NCO B ) is 0.05 or more, the occurrence of delamination when exposed to a high temperature after deep drawing molding can be sufficiently suppressed.
  • the ratio (NCO A / NCO B ) is set to 20 or less, the effect of improving the adhesion at room temperature by TDI-adduct can be sufficiently obtained, and the laminating strength and deep drawing moldability in a room temperature environment can be improved. It can be improved further.
  • the mass of the adhesive layer per unit area may be 2.0 to 6.0 g / m 2.
  • the mass per unit area By setting the mass per unit area to 2.0 g / m 2 or more, the thickness of the adhesive layer can be sufficiently secured, and the rigidity of the adhesive layer and the rigidity of the base material layer and the barrier layer can be brought close to each other. Therefore, the deep drawability and the lamination strength in both the room temperature environment and the high temperature environment can be further improved.
  • the mass per unit area exceeds 6.0 g / m 2 , it is difficult to obtain the effect of further improving the deep draw moldability and the laminate strength. Therefore, from the viewpoint of suppressing the thickening of the film and the increase in cost, the unit The mass per area is preferably 6.0 g / m 2 or less.
  • a corrosion prevention treatment layer may be provided on one or both surfaces of the barrier layer.
  • corrosion prevention treatment layer corrosion of the barrier layer can be prevented, and by interposing the corrosion prevention treatment layer, the adhesion between the barrier layer and the adjacent layer can be enhanced.
  • the all-solid battery it is possible to sulfide-based material is used as the electrolyte, when water has penetrated inside the exterior material, hydrogen sulfide reacts with water sulfide compound (H 2 S) Occurs. This H 2 S may reduce the adhesion between the barrier layer and the layer adjacent to it.
  • the corrosion prevention treatment layer on the barrier layer surface, it is possible to impart resistance to H 2 S resistance to the barrier layer, the barrier layer It is possible to prevent a decrease in the adhesion between the surface and the layer adjacent to the surface.
  • the base material layer may be made of a polyamide film or a polyester film.
  • a polyamide film or a polyester film for the base material layer, the deep drawing moldability can be further improved.
  • the adhesive force with the adhesive layer becomes higher, and as a result, the heat resistance and the deep drawing moldability tend to be further improved.
  • the exterior material for the power storage device may be for an all-solid-state battery.
  • the present disclosure also includes a power storage device main body, a current take-out terminal extending from the power storage device main body, and an exterior material for a power storage device of the present disclosure that sandwiches the current take-out terminal and accommodates the power storage device main body.
  • a power storage device including.
  • the power storage device may be an all-solid-state battery.
  • the present disclosure includes at least a base material layer, a first adhesive layer, a barrier layer, a second adhesive layer, and a sealant layer in this order. Consists of Baseline transmission when the substrate layer is removed, the first adhesive layer is exposed, and measured from the outermost surface side of the exposed adhesive layer by attenuated total reflection by Fourier transform infrared spectroscopy.
  • the rate T0, the minimum transmittance T1 detected in the range of 2100 cm -1 to 2400 cm -1 , and the minimum transmittance T2 detected in the range 1670 cm -1 to 1700 cm -1 are 0.06 ⁇ ( Provided is an exterior material for a power storage device, characterized in that the relationship of T0-T1) / (T0-T2) ⁇ 0.4 is satisfied.
  • the tensile strength and breaking elongation of the first adhesive layer are different for each layer (mainly the barrier layer and the group). It becomes close to the value of the material), and as a result, the moldability is improved. Further, when the molded product using the exterior material of the present disclosure is exposed to a high temperature environment (150 ° C.), the reaction between the unreacted curing agents is promoted, so that the Tg of the first adhesive layer rises. Heat resistance is improved.
  • the first adhesive layer contains a polyfunctional isocyanate compound
  • the polyfunctional isocyanate compound is composed of an alicyclic isocyanate multimer and an isocyanate multimer containing an aromatic ring in the molecular structure. It may consist of at least one polyfunctional isocyanate compound selected from the above group.
  • the first adhesive layer is formed of at least one polyol selected from the group consisting of polyester polyols, acrylic polyols, and polycarbonate diols, and the polyfunctional isocyanate multimer. It may contain urethane resin.
  • the polyol component is selected from three types of polyester polyol, acrylic polyol, and polycarbonate diol (PCD), heat resistance and moldability are improved. Of these, polyester polyol is preferable.
  • the ratio of the number of isocyanate groups contained in the polyfunctional isocyanate multimer to the number of hydroxyl groups contained in the polyol may be 5 to 60.
  • the amount of the urethane resin applied after drying may be 2.0 g / m 2 or more and 6.0 g / m 2 or less.
  • the coating amount is less than 2.0 g, the thickness of the adhesive layer becomes small, so that the stress dispersibility is lowered and the moldability may be lowered.
  • the coating amount is increased and the adhesive layer becomes thicker, the moldability is improved due to the improvement of stress dispersibility and the like.
  • the upper limit of the coating amount is preferably 6.00 g / m 2 from the viewpoint of cost and the like.
  • the barrier layer may be aluminum foil. Excellent overall balance of barrier properties, stretchability, cost, etc.
  • the thickness of the barrier layer may be 15 to 100 ⁇ m. The moldability is good and the cost can be suppressed.
  • a corrosion prevention treatment layer is provided between the first adhesive layer and the barrier layer, or between the second adhesive layer and the barrier layer, or both of the barrier layer. You can do it. Since the chemical adhesion with the adhesive layer is improved, the moldability is improved. In addition, it is possible to impart corrosion resistance to hydrogen sulfide generated when sulfide is used as the solid electrolyte.
  • the base material may be made of a polyamide film or a polyester film. Heat resistance and moldability can be improved by using a base material having excellent toughness and heat resistance.
  • the exterior material for the power storage device may be for an all-solid-state battery.
  • the present disclosure also includes a power storage device main body, a current extraction terminal extending from the power storage device main body, and an exterior material for a power storage device of the present disclosure that sandwiches the current extraction terminal and accommodates the power storage device main body.
  • a power storage device including.
  • the power storage device may be an all-solid-state battery.
  • the present disclosure is an exterior material for a power storage device including at least a base material layer, a barrier layer, and a sealant layer in this order.
  • an exterior material for a power storage device characterized in that an adhesive layer containing a polyurethane compound and a polyamide-imide resin is provided between the base material layer and the barrier layer.
  • the adhesive layer containing the polyurethane-based compound has higher toughness than the cured film of the epoxy-based adhesive, and can obtain excellent deep draw moldability and excellent laminating strength in a room temperature environment.
  • the lamination strength in a high temperature environment of 170 ° C. or higher is not sufficient.
  • a polyurethane compound composed of a reaction product of a polyester polyol and an isophorone diisocyanate nurate (IPDI-n) has relatively excellent heat resistance, but even in this case, the lamination strength in a high temperature environment of 170 ° C. or higher Is not enough.
  • the polyamide-imide resin is relatively brittle and therefore inferior in toughness, it is excellent in heat resistance.
  • a high temperature environment of 170 ° C. or higher can be obtained.
  • Sufficient laminating strength is exhibited even underneath, and deep drawing moldability is also excellent.
  • high lamination strength in a high temperature environment can be maintained.
  • the adhesive layer it is desirable that 1.0% by mass ⁇ A is satisfied when the solid content of the polyamide-imide resin is A mass% with respect to the solid content of the polyurethane compound.
  • the solid content A of the polyamide-imide resin is 1.0% by mass or less with respect to the solid content of the polyurethane compound, the lamination strength in a high temperature environment may be insufficient.
  • it is desirable that A ⁇ 20.0% by mass is satisfied.
  • the solid content A of the polyamide-imide resin is 20.0% by mass or more with respect to the solid content of the polyurethane compound, the deep drawing moldability is inferior.
  • the number average molecular weight Mn of the polyamide-imide resin is 3000 ⁇ Mn ⁇ 36000.
  • the number average molecular weight Mn of the polyamide-imide resin is 3000 or less, the glass transition temperature and the softening temperature of the polyamide-imide resin are low, and the lamination strength in a high temperature environment may be insufficient. There is. Further, when the number average molecular weight Mn of the polyamide-imide resin is 36000 or more, it is difficult to dissolve in a solvent, which makes it difficult to apply and form an adhesive layer.
  • the polyurethane compound may consist of a reaction product of at least one kind of polyol resin and at least one kind of polyfunctional isocyanate compound.
  • the polyol resin at least one kind of polyol resin selected from the group consisting of polyester polyol, acrylic polyol and polycarbonate polyol can be used.
  • the polyol resin is composed of these polyester polyols, acrylic polyols, or polycarbonate polyols, both the laminate strength and moldability in a high temperature environment are improved.
  • the polyfunctional isocyanate compound at least one kind of isocyanate multimer selected from the group consisting of an alicyclic isocyanate multimer and an isocyanate multimer having an aromatic ring in the molecular structure can be used.
  • the polyfunctional isocyanate compound is composed of these alicyclic isocyanate multimers or isocyanate multimers containing an aromatic ring in the molecular structure, both the laminate strength and the moldability are improved. The reason is not clear, but it can be inferred that the alicyclic isocyanate multimer has a bulky molecular structure, which makes it difficult to unravel the molecular chain even in a high temperature environment.
  • the cohesive force increases due to the interaction between the molecules and the heat resistance of the cured film itself increases, so that the lamination strength increases. ..
  • the ratio (NCO / OH) of the number of isocyanates contained in the polyfunctional isocyanate compound to the number of hydroxyl groups contained in the polyol resin is 1.5 ⁇ NCO / OH ⁇ 40.0.
  • the heat resistance is high. improves.
  • the number of isocyanates contained in the curing agent (polyfunctional isocyanate compound) of the polyurethane compound is sufficiently larger than the number of hydroxyl groups contained in the main agent (polyol resin) (NCO / OH >> 1.0)
  • the heat resistance is high. improves.
  • the number of NCO groups is sufficiently larger than that of OH groups
  • the curing agents react with each other to form by-products such as urea resin and biuret resin. Since these urea resins and biuret resins contain active hydrogen groups, it can be inferred that they interact with polar groups at each interface to increase the interfacial adhesion, and as a result, the heat resistance is improved. ..
  • the present disclosure comprises a laminated structure having a base material layer, a first adhesive layer, a barrier layer, a second adhesive layer, and a sealant layer in this order. At least one of the first adhesive layer and the second adhesive layer contains a urea compound which is a reaction product of an amine resin and a polyisocyanate compound, and the urea compound among the first adhesive layer and the second adhesive layer.
  • X1 defined by the following formula (1-A) is 10 in the layer containing.
  • an exterior material for a power storage device which is ⁇ 99.
  • X1 ⁇ B1 / (A1 + B1) ⁇ ⁇ 100 ... (1-A)
  • the exterior material for a power storage device has excellent heat resistance.
  • the present inventors consider the reason why such an effect is obtained as follows. That is, in the urea compound, the urea group has a very high cohesive force. Further, since the urea group has active hydrogen in the molecule, the interface to be bonded and the active hydrogen generate a hydrogen bond, thereby improving the adhesion of the interface. Further, in the adhesive layer, X1 obtained by using the infrared absorption spectrum peak intensity of 1680 to 1720 cm -1 derived from the urethane group and the infrared absorption spectrum peak intensity of 1590 to 1640 cm -1 derived from the urea group is 10.
  • the urea group of the urea-based compound exerts a high cohesive force, and when X1 is 99 or less, excessive curing of the adhesive layer is suppressed, and the adhesive layer has high adhesion. It becomes.
  • the exterior material for the power storage device is excellent in heat resistance.
  • the isocyanate group of the polyisocyanate compound may be bonded to the blocking agent. Further, the blocking agent may be desorbed from the isocyanate group of the polyisocyanate compound at 60 to 120 ° C. As a result, the obtained exterior material has excellent molding curl resistance.
  • the present disclosure may further have a corrosion prevention treatment layer at least between the second adhesive layer and the barrier layer. As a result, the heat resistance is further improved.
  • only the second adhesive layer may contain a urea compound.
  • the obtained exterior material has excellent heat resistance, and the rigidity of the first adhesive layer is easily relaxed, resulting in excellent deep drawing moldability.
  • only the second adhesive layer contains a urea compound, corrosion of the barrier layer due to hydrogen sulfide generated from the battery contents inside the exterior material can be suppressed.
  • the sealant layer may contain at least one of a polyolefin resin and a polyester resin.
  • the sealant layer contains at least one of a polyolefin resin and a polyester resin having a high melting point, the heat resistance is further improved.
  • At least one of the first adhesive layer and the second adhesive layer may contain a hydrogen sulfide adsorbent.
  • the present disclosure may be for an all-solid-state battery. Since the exterior material of the present disclosure has excellent heat resistance, it is suitable for all-solid-state battery applications that are expected to be used in a high temperature environment.
  • the present disclosure includes a laminated structure having a base material layer, a first adhesive layer, a metal foil layer, a second adhesive layer, and a sealant layer in this order.
  • the first adhesive layer and the second adhesive layer contain a urethane compound which is a reaction product of a polyol resin and a polyisocyanate compound, and the first adhesive layer and the second adhesive layer absorb infrared rays of 2250 to 2290 cm -1.
  • the spectrum peak intensity is A2
  • the infrared absorption spectrum peak intensity of 1680 to 1720 cm -1 is B2
  • X2 defined by the following formula (1-B) is 10 to 90, and the first adhesive layer and the second adhesive are bonded.
  • an exterior material for a power storage device (hereinafter, in some cases, simply referred to as “exterior material”) in which the glass transition temperature of the layer is 60 to 80 ° C.
  • X2 ⁇ B2 / (A2 + B2) ⁇ ⁇ 100 ... (1-B)
  • the exterior material for the power storage device has excellent heat resistance and sufficient deep drawing moldability.
  • the present inventors consider the reason why such an effect is obtained as follows.
  • the urethane group has a very high cohesive force. Further, since the urethane group has active hydrogen in the molecule, the interface to be bonded and the active hydrogen generate a hydrogen bond, thereby improving the adhesion of the interface. Further, in the adhesive layer, it is obtained by using the infrared absorption spectrum peak intensity of 1680 to 1720 cm -1 derived from the urethane group and the infrared absorption spectrum peak intensity of 2250 to 2290 cm -1 derived from the isocyanate group which is the raw material.
  • the urethane group of the urethane-based compound exerts a high cohesive force, and when X2 is 90 or less, excessive curing of the adhesive layer is suppressed, and the adhesive layer has high adhesion. Will have.
  • the adhesive layer has a sufficient crosslink density and is deep drawn.
  • the adhesive layer has the strength to withstand the shear stress applied when it is stretched in.
  • the adhesive layer does not become excessively rigid, and when stretched by deep drawing, the adhesive layer does not become excessively rigid. It is possible to follow the stretching of the base material layer, the metal foil layer, and the like, and suppress the occurrence of fine destruction of the adhesive layer.
  • the exterior material having both the first adhesive layer and the second adhesive layer containing a urethane compound, an X2 of 10 to 90, and a glass transition temperature of 60 to 80 ° C. has excellent heat resistance. Moreover, it has sufficient deep drawing moldability.
  • the polyol resin may be a polyester polyol resin.
  • polyester polyol-based resins tend to have a large amount of dicarboxylic acid (polar group) -derived esters in their molecules, resulting in high hydrogen bonding strength, thereby forming an adhesive layer and a base material. Adhesion with the layer, sealant layer and metal foil layer is improved. As a result, the obtained exterior material becomes more excellent in deep drawing moldability.
  • a corrosion prevention treatment layer can be further provided at least between the second adhesive layer and the metal foil layer.
  • the obtained exterior material is more excellent in deep drawing moldability, and even under high temperature conditions (for example, 100 to 150 ° C.), the layers of the exterior material (particularly, the base material layer or the sealant layer) Delamination is less likely to occur between the metal foil layer), and the heat resistance is further improved.
  • the sealant layer may contain at least one of a polyolefin resin and a polyester resin, and may contain a polyester resin.
  • the sealant layer contains a polyolefin resin having a high melting point, the obtained exterior material has excellent heat resistance, and when the sealant layer contains a polyester resin having a higher melting point, the obtained exterior material has heat resistance. It will be even better.
  • the polyisocyanate compound may contain an aromatic polyisocyanate compound, or may contain an adduct of an aromatic polyisocyanate compound.
  • the polyisocyanate compound contains these compounds, the ⁇ - ⁇ stacking action between the aromatic rings and the ⁇ -H interaction between the molecules are caused, and the cohesive force of the adhesive layer is improved. Therefore, when the polyisocyanate compound contains an aromatic polyisocyanate compound or an adduct body thereof, the obtained exterior material has excellent heat resistance. Further, since the adduct of the aromatic polyisocyanate compound has active hydrogen in the molecule, a hydrogen bond is generated between the interface to be bonded and the active hydrogen, thereby improving the adhesion of the interface. As a result, the obtained exterior material becomes more excellent in heat resistance.
  • At least the second adhesive layer may contain a hydrogen sulfide adsorbent.
  • the obtained exterior material has excellent hydrogen sulfide resistance, in which delamination between the metal foil layer and the sealant layer is unlikely to occur even when hydrogen sulfide is generated from the power storage device.
  • the present disclosure may be for an all-solid-state battery. Since the exterior material of the present disclosure has excellent heat resistance and sufficient deep drawing moldability, it is suitable for all-solid-state battery applications in which a recess is formed by cold molding and the battery contents are housed in the recess. ing.
  • an exterior material for a power storage device which can secure excellent lamination strength in both a room temperature environment and a high temperature environment and also has excellent deep drawing moldability, and the like. It is possible to provide a power storage device using the above.
  • the fifth aspect thereof it is possible to provide an exterior material for a power storage device having excellent heat resistance and sufficient deep drawing moldability.
  • FIG. 1 It is a perspective view which shows the process of manufacturing a secondary battery using the exterior material for a power storage device which concerns on one Embodiment of this disclosure, (a) shows the state which prepared the exterior material for a power storage device, (b). Indicates a state in which an embossed exterior material for a power storage device and a battery element are prepared, and (c) shows a state in which a part of the exterior material for a power storage device is folded back and the end portion is melted. ) Indicates a state in which both sides of the folded portion are folded upward.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment of the exterior material for a power storage device of the present disclosure.
  • the exterior material (exterior material for power storage device) 10 of the present embodiment includes a base material layer 11 and a first adhesive layer 12a provided on one surface side of the base material layer 11.
  • the barrier layer 13 provided on the opposite side of the first adhesive layer 12a from the base material layer 11 and having the first and second corrosion prevention treatment layers 14a and 14b on both sides, and the barrier layer 13 A second adhesive layer 12b provided on the side opposite to the first adhesive layer 12a, and a sealant layer 16 provided on the side opposite to the barrier layer 13 of the second adhesive layer 12b.
  • the first corrosion prevention treatment layer 14a is provided on the surface of the barrier layer 13 on the base material layer 11 side
  • the second corrosion prevention treatment layer 14b is provided on the surface of the barrier layer 13 on the sealant layer 16 side.
  • the base material layer 11 is the outermost layer and the sealant layer 16 is the innermost layer. That is, the exterior material 10 is used with the base material layer 11 facing the outside of the power storage device and the sealant layer 16 facing the inside of the power storage device.
  • the first adhesive layer 12a and the second adhesive layer 12b reacts with at least one kind of polyester polyol resin and at least one kind of polyfunctional isocyanate compound.
  • It is a layer containing a polyurethane compound composed of a substance.
  • the polyfunctional isocyanate compound contains a nurate form (IPDI-nulate) of isophorone diisocyanate, and the content of an isocyanate group derived from IPDI-nulate in the polyfunctional isocyanate compound is contained in the polyfunctional isocyanate compound.
  • the total amount of isocyanate groups is 5 to 100 mol% based on 100 mol%.
  • the base material layer 11 imparts heat resistance in the sealing process when manufacturing the power storage device, and plays a role of suppressing the generation of pinholes that may occur during molding and distribution.
  • scratch resistance, chemical resistance, insulation and the like can be imparted.
  • the base material layer 11 is preferably a layer made of a resin film formed of an insulating resin.
  • the resin film include stretched or unstretched films such as polyester film, polyamide film, polyimide film and polypropylene film.
  • the base material layer 11 may be a single-layer film composed of any one of these resin films, or may be a laminated film composed of two or more of these resin films.
  • a polyester film and a polyamide film are preferable, and a polyester film is more preferable, because the base material layer 11 is excellent in moldability.
  • These films are preferably biaxially stretched films.
  • the polyester resin constituting the polyester film include polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the polyamide resin constituting the polyamide film include nylon 6, nylon 6, 6, a copolymer of nylon 6 and nylon 6, 6, nylon 6, 10, polymethaxylylene adipamide (MXD6), and nylon 11. , Nylon 12 and the like.
  • nylon 6 ONy is preferable from the viewpoint of excellent heat resistance, piercing strength and impact strength.
  • Examples of the stretching method for the biaxially stretched film include a sequential biaxial stretching method, a tubular biaxial stretching method, and a simultaneous biaxial stretching method.
  • the biaxially stretched film is preferably stretched by the tubular biaxial stretching method from the viewpoint of obtaining more excellent deep draw moldability.
  • the base material layer 11 preferably has a melting peak temperature higher than the melting peak temperature of the sealant layer 16.
  • the melting peak temperature of the sealant layer 16 means the melting peak temperature of the layer having the highest melting peak temperature.
  • the melting peak temperature of the base material layer 11 is preferably 290 ° C. or higher, more preferably 290 to 350 ° C.
  • the resin film that can be used as the base material layer 11 and have a melting peak temperature in the above range include a nylon film, a PET film, a polyamide film, a polyimide film, and a polyphenylene sulfide film (PPS film).
  • the base material layer 11 a commercially available film may be used, or the base material layer 11 may be formed by coating (application and drying of a coating liquid).
  • the base material layer 11 may have a single-layer structure or a multi-layer structure, and may be formed by applying a thermosetting resin. Further, the base material layer 11 may contain, for example, various additives (for example, flame retardant, slip agent, antiblocking agent, antioxidant, light stabilizer, tackifier, etc.).
  • Differences in melting peak temperature T 16 of the melting peak temperature T 11 and the sealant layer 16 of the base layer 11 is preferably 20 ° C. or higher. When this temperature difference is 20 ° C. or higher, deterioration of the appearance of the exterior material 10 due to heat sealing can be further sufficiently suppressed.
  • the thickness of the base material layer 11 is preferably 5 to 50 ⁇ m, more preferably 6 to 40 ⁇ m, further preferably 10 to 30 ⁇ m, and particularly preferably 12 to 30 ⁇ m.
  • the thickness of the base material layer 11 is 5 ⁇ m or more, the pinhole resistance and the insulating property of the exterior material 10 for the power storage device tend to be improved. If the thickness of the base material layer 11 exceeds 50 ⁇ m, the total thickness of the exterior material 10 for the power storage device becomes large, and the electric capacity of the battery may have to be reduced, which is not desirable.
  • the first adhesive layer 12a is a layer that adheres the base material layer 11 and the barrier layer 13.
  • the first adhesive layer 12a contains a polyurethane-based compound composed of a reaction product of at least one kind of polyester polyol resin and at least one kind of polyfunctional isocyanate compound, and is described above.
  • the polyfunctional isocyanate compound contains IPDI-nulate, and the content of isocyanate groups derived from IPDI-nulate in the polyfunctional isocyanate compound is 5 to 100 based on 100 mol% of the total amount of isocyanate groups contained in the polyfunctional isocyanate compound. It is a layer that is mol% (hereinafter, also referred to as “specific adhesive layer”).
  • the content of isocyanate groups derived from IPDI-nulate in the polyfunctional isocyanate compound is 5 to 100 mol% based on 100 mol% of the total amount of isocyanate groups contained in the polyfunctional isocyanate compound, which is 25. It may be up to 95 mol% and may be 50 to 75 mol%. When this content is 5 mol% or more, the lamination strength in a high temperature environment can be ensured, and the occurrence of delamination when exposed to a high temperature after deep drawing molding can be suppressed. On the other hand, the above content may be 100 mol%, but may be less than 100 mol% by using a polyfunctional isocyanate compound other than IPDI-nulate in combination. When the content is 95 mol% or less, the laminate strength and deep drawing moldability in a room temperature environment tend to be further improved due to the combined effect of other polyfunctional isocyanate compounds.
  • the polyfunctional isocyanate compound is, in addition to IPDI-nulate, an adduct of tolylene diisocyanate (TDI-adduct), an adduct of hexamethylene diisocyanate, a biuret and nurate of hexamethylene diisocyanate, and a tri. It may contain at least one selected from the group consisting of biuret and nurate bodies of range isocyanate, adduct body of diphenylmethane diisocyanate, biuret body and nurate body, and adduct body, biuret body and nurate body of xylylene diisocyanate. , TDI-Adduct may be included.
  • the ratio (NCO A / NCO B ) of the number of isocyanate groups (NCO A ) derived from IPDI-nurate to the number of isocyanate groups (NCO B) derived from TDI-adduct is 0. It may be .05 to 20. From the viewpoint of heat resistance, the ratio (NCO A / NCO B ) may be 0.3 to 6, 2 to 4, or 3. Further, the ratio (NCO A / NCO B ) may be 7 to 20.
  • this ratio is 0.05 or more, the lamination strength in a high temperature environment can be sufficiently secured, and the occurrence of delamination when exposed to a high temperature after deep drawing molding can be sufficiently suppressed. it can.
  • the above ratio is 20 or less, the lamination strength and the deep drawing moldability in a room temperature environment can be further improved.
  • the ratio (NCO / OH) of the number of isocyanate groups contained in the polyfunctional isocyanate compound to the number of hydroxyl groups contained in the polyester polyol resin may be 2 to 60, or 5 to 50. It may be 10 to 30. When this ratio is 2 or more, the lamination strength in a high temperature environment can be further improved. When the above ratio is 60 or less, the lamination strength in a room temperature environment and a high temperature environment can be further improved.
  • the thickness of the first adhesive layer 12a is not particularly limited, but is preferably 1 to 10 ⁇ m, preferably 3 to 7 ⁇ m, from the viewpoint of obtaining desired adhesive strength, followability, processability, and the like. More preferred.
  • the first adhesive layer 12a is a specific adhesive layer, its mass per unit area can ensure better lamination strength both in a room temperature environment and a high temperature environment, and also has a better deep drawing. From the viewpoint of obtaining moldability, it may be 2.0 to 6.0 g / m 2 , 2.5 to 5.0 g / m 2 , or 3.0 to 4.0 g / m 2 . There may be.
  • the barrier layer 13 has a water vapor barrier property that prevents moisture from entering the inside of the power storage device. Further, the barrier layer 13 has malleability for deep drawing molding.
  • the barrier layer 13 includes, for example, various metal foils such as aluminum, stainless steel, and copper, a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, and a film provided with these vapor deposition films. Can be used.
  • the film provided with the vapor-deposited film for example, an aluminum-deposited film or an inorganic oxide-deposited film can be used. These can be used alone or in combination of two or more.
  • a metal foil is preferable, and an aluminum foil is more preferable, from the viewpoints of mass (specific gravity), moisture resistance, processability, and cost.
  • the aluminum foil a soft aluminum foil that has been annealed is particularly preferable because it can impart the desired malleability during molding, but further pinhole resistance and ductility during molding are imparted. It is more preferable to use an aluminum foil containing iron for the purpose of making the foil.
  • the iron content in the aluminum foil is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass, based on 100% by mass of the aluminum foil.
  • the exterior material 10 having more excellent pinhole resistance and ductility can be obtained.
  • the exterior material 10 having more excellent flexibility can be obtained.
  • untreated aluminum foil may be used, but it is preferable to use aluminum foil that has been degreased from the viewpoint of imparting electrolytic solution resistance.
  • aluminum foil is degreased, only one side of the aluminum foil may be degreased, or both sides may be degreased.
  • the thickness of the barrier layer 13 is not particularly limited, but is preferably 9 to 200 ⁇ m, more preferably 15 to 100 ⁇ m in consideration of barrier properties, pinhole resistance, and workability. If it is thinner than 15 ⁇ m, the moldability may decrease. Further, if the thickness is more than 100 ⁇ m, the weight energy density of the battery tends to decrease, which leads to an increase in cost.
  • the first and second corrosion prevention treatment layers 14a and 14b are layers provided on the surface of the barrier layer 13 in order to prevent corrosion of the metal foil (metal foil layer) and the like constituting the barrier layer 13. Further, the first corrosion prevention treatment layer 14a plays a role of enhancing the adhesion between the barrier layer 13 and the first adhesive layer 12a. Further, the second corrosion prevention treatment layer 14b plays a role of enhancing the adhesion between the barrier layer 13 and the second adhesive layer 12b.
  • the first corrosion prevention treatment layer 14a and the second corrosion prevention treatment layer 14b may have the same structure or may have different structures.
  • first and second corrosion prevention treatment layers 14a and 14b examples include degreasing treatment, hydrothermal transformation treatment, anodization treatment, chemical conversion treatment, or the like. It is formed by a combination of these processes.
  • Examples of the degreasing treatment include acid degreasing and alkaline degreasing.
  • the acid degreasing include a method in which an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid, or hydrofluoric acid is used alone, or a mixed solution thereof is used.
  • the acid degreasing by using an acid degreasing agent in which a fluorine-containing compound such as monosodium difluoride is dissolved in the above-mentioned inorganic acid, the degreasing effect of aluminum is particularly effective when an aluminum foil is used for the barrier layer 13. It is effective in terms of corrosion resistance because it is possible to form fluoride of passivated aluminum.
  • the alkaline degreasing include a method using sodium hydroxide and the like.
  • hot water transformation treatment examples include boehmite treatment in which an aluminum foil is immersed in boiling water to which triethanolamine is added.
  • Examples of the anodizing treatment include alumite treatment.
  • Examples of chemical conversion treatment include immersion type and coating type.
  • Examples of the immersion type chemical conversion treatment include chromate treatment, zirconium treatment, titanium treatment, vanadium treatment, molybdenum treatment, calcium phosphate treatment, strontium hydroxide treatment, cerium treatment, ruthenium treatment, and various chemical conversion treatments consisting of a mixed phase thereof. Be done.
  • a coating type chemical conversion treatment a method of coating a coating agent having corrosion prevention performance on the barrier layer 13 can be mentioned.
  • the corrosion prevention treatment layer is formed by any of the hydrothermal transformation treatment, the anodizing treatment, and the chemical conversion treatment, it is preferable to perform the above-mentioned degreasing treatment in advance.
  • a metal foil that has been degreased such as a metal foil that has undergone an annealing step, is used as the barrier layer 13, it is necessary to perform degreasing treatment again in the formation of the corrosion prevention treatment layers 14a and 14b.
  • the coating agent used for the coating type chemical conversion treatment preferably contains trivalent chromium. Further, the coating agent may contain at least one polymer selected from the group consisting of the cationic polymer and the anionic polymer described later.
  • the aluminum foil surface is dissolved by the treatment agent to form aluminum compounds (boehmite, alumite) having excellent corrosion resistance. Therefore, the barrier layer 13 using the aluminum foil to the corrosion prevention treatment layers 14a and 14b form a co-continuous structure, and the above treatment is included in the definition of the chemical conversion treatment.
  • the corrosion prevention treatment layers 14a and 14b it is also possible to form the corrosion prevention treatment layers 14a and 14b only by a pure coating method which is not included in the definition of chemical conversion treatment.
  • a sol of a rare earth element oxide such as cerium oxide having an average particle size of 100 nm or less is used as a material having an anticorrosion effect (inhibitor effect) of aluminum and also being environmentally suitable.
  • the method to be used can be mentioned. By using this method, it is possible to impart a corrosion prevention effect to a metal foil such as an aluminum foil even with a general coating method.
  • rare earth element oxide sol examples include sol using various solvents such as water-based, alcohol-based, hydrocarbon-based, ketone-based, ester-based, and ether-based sol. Of these, aqueous sol is preferable.
  • inorganic acids such as nitric acid, hydrochloric acid and phosphoric acid or salts thereof, and organic acids such as acetic acid, apple acid, ascorbic acid and lactic acid are usually dispersed and stabilized in order to stabilize the dispersion.
  • organic acids such as acetic acid, apple acid, ascorbic acid and lactic acid
  • phosphoric acid used as an agent.
  • phosphoric acid is used in the exterior material 10 to (1) stabilize the dispersion of the sol, and (2) improve the adhesion to the barrier layer 13 by utilizing the aluminum chelating ability of phosphoric acid. (3) It is expected that the cohesive force of the corrosion prevention treatment layers 14a and 14b (oxide layers) will be improved by easily causing dehydration condensation of phosphoric acid even at a low temperature.
  • Examples of the phosphoric acid or a salt thereof include orthophosphoric acid, pyrophosphoric acid, metaphosphoric acid, and alkali metal salts and ammonium salts thereof.
  • condensed phosphoric acids such as trimetaphosphoric acid, tetramethaphosphoric acid, hexametaphosphoric acid, and ultrametaphosphoric acid, or alkali metal salts and ammonium salts thereof are preferable for the functional expression in the exterior material 10.
  • the temperature is low.
  • Sodium salts are more preferable because they are excellent in dehydration condensation property.
  • As the phosphate a water-soluble salt is preferable.
  • the compounding ratio of phosphoric acid (or a salt thereof) to the rare earth element oxide is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the rare earth element oxide.
  • the compounding ratio is more preferably 5 parts by mass or more with respect to 100 parts by mass of the rare earth element oxide.
  • the compounding ratio is 100 parts by mass or less with respect to 100 parts by mass of the rare earth element oxide, the function of the rare earth element oxide sol is enhanced.
  • the compounding ratio is more preferably 50 parts by mass or less, still more preferably 20 parts by mass or less, based on 100 parts by mass of the rare earth element oxide.
  • the corrosion prevention treatment layers 14a and 14b formed by the rare earth element oxide sol are aggregates of inorganic particles, the cohesive force of the layers themselves may decrease even after the drying cure process. Therefore, the corrosion prevention treatment layers 14a and 14b in this case are preferably composited with the following anionic polymer or cationic polymer in order to supplement the cohesive force.
  • anionic polymer examples include polymers having a carboxy group, and examples thereof include poly (meth) acrylic acid (or a salt thereof) or a copolymer obtained by copolymerizing poly (meth) acrylic acid as a main component.
  • a copolymerization component of this copolymer an alkyl (meth) acrylate-based monomer (as an alkyl group, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, etc.
  • anionic polymers play a role in improving the stability of the corrosion prevention treatment layers 14a and 14b (oxide layers) obtained by using the rare earth element oxide sol. This is due to the effect of protecting the hard and brittle oxide layer with an acrylic resin component and the effect of capturing phosphate-derived ion contamination (particularly sodium ions) contained in the rare earth element oxide sol (cation catcher). Achieved. That is, when the corrosion prevention treatment layers 14a and 14b obtained by using the rare earth element oxide sol contain alkali metal ions such as sodium and alkaline earth metal ions, the starting point is the place containing these ions. The corrosion prevention treatment layers 14a and 14b are likely to deteriorate. Therefore, the resistance of the corrosion prevention treatment layers 14a and 14b is improved by immobilizing sodium ions and the like contained in the rare earth element oxide sol with the anionic polymer.
  • the corrosion prevention treatment layers 14a and 14b which are a combination of an anionic polymer and a rare earth element oxide sol, have the same corrosion prevention performance as the corrosion prevention treatment layers 14a and 14b formed by subjecting an aluminum foil to a chromate treatment.
  • the anionic polymer preferably has a structure in which an essentially water-soluble polyanionic polymer is crosslinked.
  • Examples of the cross-linking agent used for forming this structure include compounds having an isocyanate group, a glycidyl group, a carboxy group, and an oxazoline group.
  • Examples of the compound having an isocyanate group include tolylene diisocyanate, xylylene diisocyanate or a hydrogenated product thereof, hexamethylene diisocyanate, 4,4'diphenylmethane diisocyanate or a hydrogenated product thereof, diisocyanates such as isophorone diisocyanate; or these isocyanates.
  • Polyisocyanates such as adducts obtained by reacting with polyhydric alcohols such as trimethylolpropane, burettes obtained by reacting with water, or isocyanurates which are trimeric; or polyisocyanates thereof. Examples thereof include blocked polyisocyanates in which isocyanates are blocked with alcohols, lactams, oximes and the like.
  • Examples of the compound having a glycidyl group include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, polypropylene glycol, 14a, 14b-butanediol, 1,6-hexanediol, and the like.
  • Glycols such as neopentyl glycol and epoxy compounds on which epichlorohydrin is allowed to act; polyhydric alcohols such as glycerin, polyglycerin, trimethylolpropane, pentaerythritol, sorbitol and epoxy compounds on which epichlorohydrin is allowed to act; phthalic acid, terephthalate Examples thereof include an epoxy compound obtained by reacting a dicarboxylic acid such as an acid, oxalic acid or adipic acid with epichlorohydrin.
  • Examples of the compound having a carboxy group include various aliphatic or aromatic dicarboxylic acids. Further, poly (meth) acrylic acid and alkali (earth) metal salts of poly (meth) acrylic acid may be used.
  • Examples of the compound having an oxazoline group include a low molecular weight compound having two or more oxazoline units, or a (meth) acrylic acid or a (meth) acrylic acid alkyl ester when a polymerizable monomer such as isopropenyl oxazoline is used. , (Meta) Acrylic monomers such as hydroxyalkyl acrylate are copolymerized.
  • anionic polymer and the silane coupling agent may be reacted, and more specifically, the carboxy group of the anionic polymer and the functional group of the silane coupling agent may be selectively reacted, and the cross-linking point may be a siloxane bond. Good.
  • ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -chloropropylmethoxysilane, vinyltrichlorosilane, ⁇ -Mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane and the like can be used.
  • epoxysilane, aminosilane, and isocyanatesilane are preferable, particularly considering the reactivity with the anionic polymer or its copolymer.
  • the ratio of these cross-linking agents to the anionic polymer is preferably 1 to 50 parts by mass and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the anionic polymer.
  • the ratio of the cross-linking agent is 1 part by mass or more with respect to 100 parts by mass of the anionic polymer, a sufficiently cross-linked structure is likely to be formed.
  • the ratio of the cross-linking agent is 50 parts by mass or less with respect to 100 parts by mass of the anionic polymer, the pot life of the coating liquid is improved.
  • the method of cross-linking the anionic polymer is not limited to the above-mentioned cross-linking agent, and may be a method of forming an ionic cross-link using a titanium or zirconium compound.
  • Examples of the cationic polymer include an amine-containing polymer, which includes polyethyleneimine, an ionic polymer complex composed of polyethyleneimine and a polymer having a carboxylic acid, and a primary amine-grafted acrylic resin in which a primary amine is grafted on an acrylic main skeleton.
  • examples thereof include polyallylamine, derivatives thereof, and cationic polymers such as aminophenol.
  • polyallylamine include homopolymers or copolymers such as allylamine, allylamine amide sulfate, diallylamine, and dimethylallylamine. These amines may be free amines or may be stabilized with acetic acid or hydrochloric acid.
  • maleic acid, sulfur dioxide and the like may be used as a copolymer component.
  • a type in which thermal crosslinkability is imparted by partially methoxylating a primary amine can be used, and aminophenol can also be used.
  • allylamine or a derivative thereof is preferable.
  • the cationic polymer is preferably used in combination with a cross-linking agent having a functional group capable of reacting with an amine / imine such as a carboxy group or a glycidyl group.
  • a cross-linking agent used in combination with the cationic polymer a polymer having a carboxylic acid forming an ionic polymer complex with polyethyleneimine can also be used, and for example, a polycarboxylic acid (salt) such as polyacrylic acid or an ionic salt thereof, or a polycarboxylic acid (salt) thereof.
  • the cationic polymer is a more preferable material in terms of improving adhesiveness. Further, since the cationic polymer is also water-soluble like the anionic polymer, it is more preferable to form a crosslinked structure to impart water resistance.
  • the cross-linking agent for forming the cross-linked structure on the cationic polymer the cross-linking agent described in the section of the anionic polymer can be used.
  • a rare earth element oxide sol is used as the corrosion prevention treatment layers 14a and 14b
  • a cationic polymer may be used instead of the anionic polymer as the protective layer thereof.
  • the corrosion prevention treatment layer by the chemical conversion treatment represented by the chromate treatment uses a chemical conversion treatment agent containing hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid or salts thereof, and the aluminum foil is used. Is then treated, and then a chromium or non-chromate compound is allowed to act on the aluminum foil to form a chemical conversion treatment layer.
  • the chemical conversion treatment uses an acid as the chemical conversion treatment agent, the working environment is deteriorated and the coating device is corroded.
  • the above-mentioned coating type corrosion prevention treatment layers 14a and 14b do not need to form an inclined structure with respect to the barrier layer 13 using aluminum foil, unlike the chemical conversion treatment typified by chromate treatment. Therefore, the properties of the coating agent are not restricted by acidity, alkalinity, neutrality, etc., and a good working environment can be realized.
  • coating type corrosion prevention treatment layers 14a and 14b are preferable from the viewpoint that alternatives are required in terms of environmental hygiene.
  • (1) and (4) to (7) are preferable, and (4) to (7) are particularly preferable.
  • this embodiment is not limited to the above combination.
  • the cationic polymer is a very preferable material in that it has good adhesion to the modified polyolefin resin described later in the description of the adhesive resin layer, and therefore has adhesiveness.
  • the resin layer is made of a modified polyolefin resin, it is possible to design such that a cationic polymer is provided on the surface in contact with the adhesive resin layer (for example, the configurations (5) and (6)).
  • the corrosion prevention treatment layers 14a and 14b are not limited to the above-mentioned layers.
  • it may be formed by using a treatment agent in which a phosphoric acid and a chromium compound are mixed in a resin binder (aminophenol or the like), such as coating type chromate which is a known technique.
  • a treatment agent in which a phosphoric acid and a chromium compound are mixed in a resin binder (aminophenol or the like), such as coating type chromate which is a known technique.
  • this treatment agent it is possible to obtain a layer having both a corrosion prevention function and adhesion.
  • a coating agent in which the rare earth element oxide sol and the polycationic polymer or the polyanionic polymer are preliminarily liquefied is used for both corrosion prevention function and adhesion. It can be a layer that combines.
  • the mass per unit area of the corrosion prevention treatment layers 14a and 14b is preferably 0.005 to 0.200 g / m 2 regardless of whether it is a multilayer structure or a single layer structure, and 0.010 to 0.100 g / m 2 Is more preferable.
  • the mass per unit area is 0.005 g / m 2 or more, it is easy to impart the corrosion prevention function to the barrier layer 13. Further, even if the mass per unit area exceeds 0.200 g / m 2 , the corrosion prevention function does not change much.
  • a rare earth element oxide sol is used, if the coating film is thick, curing due to heat during drying may be insufficient, and the cohesive force may be lowered.
  • the thickness of the corrosion prevention treatment layers 14a and 14b can be converted from their specific gravities.
  • the corrosion prevention treatment layers 14a and 14b are, for example, cerium oxide and 1 to 100 parts by mass of phosphoric acid or 1 to 100 parts by mass of phosphoric acid with respect to 100 parts by mass of the cerium oxide from the viewpoint of easily maintaining the adhesion between the sealant layer and the barrier layer. It may be an embodiment containing a phosphate and a cationic polymer, or it may be formed by subjecting the barrier layer 13 to a chemical conversion treatment, or it may be formed by subjecting the barrier layer 13 to a chemical conversion treatment. And may be an embodiment containing a cationic polymer.
  • the second adhesive layer 12b is a layer for adhering the barrier layer 13 on which the second corrosion prevention treatment layer 14b is formed and the sealant layer 16.
  • a general adhesive for adhering the barrier layer and the sealant layer can be used.
  • Specific examples of the material constituting the second adhesive layer 12b include polyurethane obtained by reacting a main agent such as a polyester polyol, a polyether polyol, an acrylic polyol, or a carbonate polyol with a bifunctional or higher functional isocyanate compound. Examples include resin.
  • various polyols can be used alone or in combination of two or more, depending on the function and performance required for the exterior material.
  • additives and stabilizers may be added to the above-mentioned polyurethane resin according to the performance required for the adhesive.
  • the second adhesive layer 12b may be the specific adhesive layer described above.
  • the thickness of the second adhesive layer 12b is not particularly limited, but is preferably 1 to 10 ⁇ m, more preferably 3 to 7 ⁇ m, from the viewpoint of obtaining desired adhesive strength, processability, and the like.
  • the second adhesive layer 12b is a specific adhesive layer, its mass per unit area can ensure better laminating strength in both room temperature and high temperature environments, as well as better deep drawing. From the viewpoint of obtaining moldability, it may be 2.0 to 6.0 g / m 2 , 2.5 to 5.0 g / m 2 , or 3.5 to 4.5 g / m 2 . There may be.
  • the sealant layer 16 is a layer that imparts sealing properties to the exterior material 10 by heat sealing.
  • Examples of the sealant layer 16 include a resin film made of a polyolefin resin or a polyester resin.
  • base resin As the resin constituting these sealant layers 16 (hereinafter, also referred to as “base resin”), one type may be used alone, or two or more types may be used in combination.
  • polystyrene resin examples include low-density, medium-density or high-density polyethylene; ethylene- ⁇ -olefin copolymer; polypropylene; block or random copolymer containing propylene as a copolymerization component; and propylene- ⁇ -olefin. Examples include copolymers.
  • polyester-based resin examples include polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyethylene naphthalate (PEN) resin, polybutylene terephthalate (PBN) resin, and polytrimethylene terephthalate (PTT) resin. Be done.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • the sealant layer 16 may contain a polyolefin-based elastomer.
  • the polyolefin-based elastomer may be compatible with the above-mentioned base resin or not compatible with the above-mentioned base resin, but may be compatible with the compatible polyolefin-based elastomer having compatibility. It may contain both incompatible polyolefin-based elastomers that it does not have.
  • Having compatibility (compatible system) means that the dispersed phase size is 1 nm or more and less than 500 nm in the base resin.
  • Incompatible (incompatible system) means that the dispersed phase size is 500 nm or more and less than 20 ⁇ m in the base resin.
  • examples of the compatible polyolefin-based elastomer include a propylene-butene-1 random copolymer
  • examples of the incompatible polyolefin-based elastomer include ethylene-butene-1 random. Copolymers can be mentioned.
  • the polyolefin-based elastomer may be used alone or in combination of two or more.
  • the sealant layer 16 may contain, for example, a slip agent, an anti-blocking agent, an antioxidant, a light stabilizer, a flame retardant, or the like as an additive component.
  • the content of these additive components is preferably 5 parts by mass or less when the total mass of the sealant layer 16 is 100 parts by mass.
  • the thickness of the sealant layer 16 is not particularly limited, but is preferably in the range of 5 to 100 ⁇ m, preferably in the range of 10 to 100 ⁇ m, from the viewpoint of achieving both thinning and improvement of heat seal strength in a high temperature environment.
  • the range is more preferably 100 ⁇ m, and even more preferably 20 to 80 ⁇ m.
  • the sealant layer 16 may be either a single-layer film or a multilayer film, and may be selected according to the required function.
  • FIG. 1 shows a case where the corrosion prevention treatment layers 14a and 14b are provided on both sides of the barrier layer 13, but only one of the corrosion prevention treatment layers 14a and 14b may be provided.
  • the corrosion prevention treatment layer may not be provided.
  • FIG. 1 shows a case where the barrier layer 13 and the sealant layer 16 are laminated by using the second adhesive layer 12b, but the adhesive resin layer is like the exterior material 20 for a power storage device shown in FIG.
  • the barrier layer 13 and the sealant layer 16 may be laminated using 15.
  • a second adhesive layer 12b may be provided between the barrier layer 13 and the adhesive resin layer 15.
  • the adhesive resin layer 15 is roughly configured to include an adhesive resin composition as a main component and, if necessary, an additive component.
  • the adhesive resin composition is not particularly limited, but preferably contains a modified polyolefin resin.
  • the modified polyolefin resin is preferably a polyolefin resin graft-modified with an unsaturated carboxylic acid and an unsaturated carboxylic acid derivative derived from either an acid anhydride or an ester thereof.
  • polystyrene resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene- ⁇ -olefin copolymer, homopolypropylene, block polypropylene, random polypropylene, and propylene- ⁇ -olefin copolymer.
  • the modified polyolefin resin is preferably a polyolefin resin modified with maleic anhydride.
  • the modified polyolefin resin for example, "Admer” manufactured by Mitsui Chemicals Corporation, "Modic” manufactured by Mitsubishi Chemical Corporation, and the like are suitable. Since such a modified polyolefin resin has excellent reactivity with various metals and polymers having various functional groups, it is possible to impart adhesion to the adhesive resin layer 15 by utilizing the reactivity, and an electrolytic solution resistant liquid. It is possible to improve the sex.
  • the adhesive resin layer 15 may be provided with, for example, various compatible and incompatible elastomers, flame retardants, slip agents, antiblocking agents, antioxidants, light stabilizers, tackifiers and the like, if necessary. May contain various additives of.
  • the thickness of the adhesive resin layer 15 is not particularly limited, but is preferably the same as or less than that of the sealant layer 16 from the viewpoint of stress relaxation and moisture / electrolytic solution permeation.
  • the total thickness of the adhesive resin layer 15 and the sealant layer 16 is 5 to 100 ⁇ m from the viewpoint of achieving both thinning and improvement of heat seal strength in a high temperature environment.
  • the range is preferably in the range of 20 to 80 ⁇ m, and more preferably in the range of 20 to 80 ⁇ m.
  • the method for manufacturing the exterior material 10 of the present embodiment includes a step of providing the corrosion prevention treatment layers 14a and 14b on the barrier layer 13 and a bonding of the base material layer 11 and the barrier layer 13 using the first adhesive layer 12a.
  • a schematic configuration including a step, a step of further laminating the sealant layer 16 via the second adhesive layer 12b to prepare a laminate, and, if necessary, a step of aging the obtained laminate. Has been done.
  • Step of laminating corrosion prevention treatment layers 14a and 14b on the barrier layer 13 This step is a step of forming the corrosion prevention treatment layers 14a and 14b on the barrier layer 13.
  • Examples of the method include a method of subjecting the barrier layer 13 to a degreasing treatment, a hydrothermal transformation treatment, an anodization treatment, a chemical conversion treatment, and a method of applying a coating agent having corrosion prevention performance to the barrier layer 13.
  • a coating liquid (coating agent) constituting the corrosion prevention treatment layer on the lower layer side (barrier layer 13 side) is applied to the barrier layer 13 and baked.
  • a coating liquid (coating agent) constituting the corrosion prevention treatment layer on the upper layer side may be applied to the first layer and baked to form the second layer.
  • the degreasing treatment may be performed by a spray method or a dipping method.
  • the hydrothermal transformation treatment and the anodizing treatment may be carried out by the dipping method.
  • a dipping method, a spray method, a coating method and the like may be appropriately selected according to the type of chemical conversion treatment.
  • the coating method of the coating agent having corrosion prevention performance various methods such as gravure coating, reverse coating, roll coating and bar coating can be used.
  • various treatments may be performed on either the double-sided surface or the single-sided surface of the metal foil, but in the case of the single-sided treatment, the treated surface is preferably applied to the side where the sealant layer 16 is laminated. If required, the surface of the base material layer 11 may also be subjected to the above treatment.
  • neither the coating amount of the coating agent for forming the first layer and the second layer is preferably 0.005 ⁇ 0.200g / m 2, more preferably 0.010 ⁇ 0.100g / m 2.
  • drying cure When drying cure is required, it can be performed in the range of 60 to 300 ° C. as the base material temperature depending on the drying conditions of the corrosion prevention treatment layers 14a and 14b to be used.
  • This step is a step of bonding the barrier layer 13 provided with the corrosion prevention treatment layers 14a and 14b and the base material layer 11 via the first adhesive layer 12a.
  • a method of bonding methods such as dry lamination, non-solvent lamination, and wet lamination are used, and both are bonded with the material constituting the first adhesive layer 12a described above.
  • the first adhesive layer 12a is provided in a dry coating amount in the range of 1 to 10 g / m 2 , more preferably in the range of 2 to 6 g / m 2 .
  • This step is a step of adhering the sealant layer 16 to the second corrosion prevention treatment layer 14b side of the barrier layer 13 via the second adhesive layer 12b.
  • Examples of the bonding method include a wet process and dry lamination.
  • a solution or dispersion of the adhesive constituting the second adhesive layer 12b is applied onto the second corrosion prevention treatment layer 14b, and the solvent is blown off at a predetermined temperature to form a dry film.
  • a baking process is performed as necessary.
  • the sealant layer 16 is laminated to manufacture the exterior material 10. Examples of the coating method include various coating methods exemplified above.
  • the preferable dry coating amount of the second adhesive layer 12b is the same as that of the first adhesive layer 12a.
  • the sealant layer 16 can be manufactured by a melt extrusion molding machine using, for example, a resin composition for forming a sealant layer containing the above-mentioned constituent components of the sealant layer 16.
  • the processing speed can be set to 80 m / min or more from the viewpoint of productivity.
  • This step is a step of aging (curing) the laminated body.
  • the aging treatment can be performed in the range of room temperature to 100 ° C.
  • the aging time is, for example, 1 to 10 days.
  • the exterior material 10 of the present embodiment as shown in FIG. 1 can be manufactured.
  • the manufacturing method of the exterior material 20 is not limited to the following method.
  • the method for manufacturing the exterior material 20 of the present embodiment includes a step of providing the corrosion prevention treatment layers 14a and 14b on the barrier layer 13 and a bonding of the base material layer 11 and the barrier layer 13 using the first adhesive layer 12a. It is roughly configured including a step, a step of further laminating the adhesive resin layer 15 and the sealant layer 16 to prepare a laminate, and, if necessary, a step of heat-treating the obtained laminate.
  • the steps up to the step of bonding the base material layer 11 and the barrier layer 13 can be performed in the same manner as the above-described method for manufacturing the exterior material 10.
  • This step is a step of forming the adhesive resin layer 15 and the sealant layer 16 on the second corrosion prevention treatment layer 14b formed in the previous step.
  • the method include a method of sand lamination the adhesive resin layer 15 together with the sealant layer 16 using an extrusion laminating machine.
  • the adhesive resin layer 15 and the sealant layer 16 can be laminated by a tandem laminating method or a coextrusion method. In the formation of the adhesive resin layer 15 and the sealant layer 16, for example, each component is blended so as to satisfy the above-mentioned constitutions of the adhesive resin layer 15 and the sealant layer 16.
  • the above-mentioned resin composition for forming a sealant layer is used for forming the sealant layer 16.
  • the base material layer 11 / first adhesive layer 12a / first corrosion prevention treatment layer 14a / barrier layer 13 / second corrosion prevention treatment layer 14b / adhesive resin layer A laminated body in which each layer is laminated in the order of 15 / sealant layer 16 is obtained.
  • the adhesive resin layer 15 may be laminated by directly extruding the dry-blended material with an extrusion laminating machine so as to have the above-mentioned material composition.
  • the adhesive resin layer 15 is an extrusion laminating machine that extrudes a granulated product that has been melt-blended using a melt-kneading device such as a single-screw extruder, a twin-screw extruder, or a brabender mixer in advance. It may be laminated by extruding with.
  • the sealant layer 16 may be laminated by directly extruding a material that has been dry-blended so as to have the above-mentioned material composition as a constituent component of the resin composition for forming the sealant layer by an extrusion laminating machine.
  • the adhesive resin layer 15 and the sealant layer 16 are granulated by melt-blending using a melt-kneading device such as a single-screw extruder, a twin-screw extruder, or a brabender mixer in advance.
  • the adhesive resin layer 15 and the sealant layer 16 may be laminated by an extrusion laminating machine by a tandem laminating method or a coextrusion method.
  • a sealant single film may be formed in advance as a cast film using the sealant layer forming resin composition, and the film may be laminated together with the adhesive resin by sand lamination.
  • the forming speed (processing speed) of the adhesive resin layer 15 and the sealant layer 16 can be, for example, 80 m / min or more from the viewpoint of productivity.
  • This step is a step of heat-treating the laminated body.
  • the adhesion between the barrier layer 13 / the second corrosion prevention treatment layer 14b / the adhesive resin layer 15 / the sealant layer 16 can be improved.
  • the exterior material 20 of the present embodiment as shown in FIG. 2 can be manufactured.
  • the exterior material for a power storage device of the present disclosure is suitable as an exterior material for a power storage device such as a secondary battery such as a lithium ion battery, a nickel hydrogen battery, and a lead storage battery, and an electrochemical capacitor such as an electric double layer capacitor. Can be used. Above all, the exterior material for a power storage device of the present disclosure is suitable as an exterior material for an all-solid-state battery using a solid electrolyte.
  • FIG. 3 is a perspective view showing an embodiment of a power storage device manufactured by using the above-mentioned exterior material.
  • the power storage device 50 includes a battery element (power storage device main body) 52, two metal terminals (current extraction terminals) 53 for extracting current from the battery element 52, and a battery element 52. It is configured to include an exterior material 10 that is included in an airtight state.
  • the exterior material 10 is the exterior material 10 according to the present embodiment described above.
  • the base material layer 11 is the outermost layer
  • the sealant layer 16 is the innermost layer.
  • the exterior material 10 is heat-sealed by folding one laminated film in half so that the base material layer 11 is on the outer side of the power storage device 50 and the sealant layer 16 is on the inner side of the power storage device 50.
  • the two laminated films are laminated and heat-sealed to form a configuration in which the battery element 52 is included inside.
  • the exterior material 20 may be used instead of the exterior material 10.
  • the battery element 52 is formed by interposing an electrolyte between the positive electrode and the negative electrode.
  • the metal terminal 53 is a part of the current collector taken out from the exterior material 10, and is made of a metal foil such as a copper foil or an aluminum foil.
  • the power storage device 50 of this embodiment may be an all-solid-state battery.
  • a solid electrolyte such as a sulfide-based solid electrolyte is used as the electrolyte of the battery element 52. Since the power storage device 50 of the present embodiment uses the exterior material 10 of the present embodiment, excellent lamination strength can be ensured even when used in a high temperature environment.
  • Second side The exterior material for a power storage device according to the second aspect of the present disclosure will be described. The description of the points common to the exterior material for the power storage device according to the first aspect will be omitted. Since the method for manufacturing the power storage device and the power storage device according to the second aspect and the method for manufacturing the power storage device and the power storage device according to the first side surface are common, the description thereof will be omitted.
  • the first adhesive layer 12a is different between the power storage device exterior material according to the second side surface and the power storage device exterior material according to the first side surface.
  • the first adhesive layer 12a is a layer that adheres the base material layer 11 and the barrier layer 13.
  • the first adhesive layer 12a is formed of at least one polyol selected from the group consisting of polyether polyols, polyester polyols, acrylic polyols and polycarbonate diols, and polyfunctional isocyanate compounds.
  • the polyfunctional isocyanate compound is composed of at least one polyfunctional isocyanate compound selected from the group consisting of an alicyclic isocyanate multimer and an isocyanate multimer containing an aromatic ring in the molecular structure.
  • the peak detected in the range of 2100 cm -1 to 2400 cm -1 is the peak of the carbonyl group derived from the isocyanate group, which is 1670 cm -1.
  • the peak detected in the range of 1700 cm -1 is the peak of the carbonyl group derived from the urethane bond.
  • the tensile strength and breaking elongation of the adhesive layer are close to the values of each layer (mainly the barrier layer and the base material), and as a result, the moldability is improved. Furthermore, when the molded product of the present disclosure is exposed to a high temperature environment (150 ° C.), the reaction between unreacted curing agents is promoted. The increase in urea resin and biuret resin increases the Tg of the adhesive layer and improves heat resistance.
  • the polyfunctional isocyanate compound used in the first adhesive layer 12a is the same as that of the first side surface.
  • the ratio (NCO / OH) of the number of isocyanate groups contained in the polyfunctional isocyanate compound to the number of hydroxyl groups contained in the polyester polyol resin is the same as that of the first aspect.
  • the thickness of the first adhesive layer 12a is the same as that of the first side surface.
  • the mass per unit area of the first adhesive layer 12a is the same as that of the first side surface.
  • the first adhesive layer 12a is different between the power storage device exterior material according to the third side surface and the power storage device exterior material according to the first side surface.
  • the first adhesive layer 12a is a layer that adheres the base material layer 11 and the barrier layer 13.
  • the first adhesive layer 12a needs to contain a polyurethane compound and a polyamide-imide resin.
  • the adhesive layer containing the polyurethane compound has high toughness, and can obtain excellent deep drawing moldability and excellent laminating strength in a room temperature environment.
  • the polyamide-imide resin has excellent heat resistance, and by blending this with the polyurethane-based compound to form an adhesive layer, for example, the base material layer 11 and the barrier layer 13 in a high temperature environment of 170 ° C. or higher are formed.
  • the solid content of the polyamide-imide resin is A mass% with respect to the solid content of the polyurethane compound, it is desirable to satisfy 1.0 mass% ⁇ A ⁇ 20.0 mass%, and in particular 10.0 mass% ⁇ . It is desirable to satisfy A ⁇ 20.0% by mass. Further, it is desirable that the number average molecular weight Mn of the polyamide-imide resin is 3000 ⁇ Mn ⁇ 36000.
  • the polyurethane compound may consist of a reaction product of at least one kind of polyol resin and at least one kind of polyfunctional isocyanate compound.
  • the type of the polyol resin may be arbitrary, but at least one type of polyol resin selected from the group consisting of polyester polyols, acrylic polyols and polycarbonate polyols can be preferably used. In this case, both the lamination strength between the base material layer 11 and the barrier layer 13 in a high temperature environment and the moldability of the exterior material 10 are improved.
  • the type of the polyfunctional isocyanate compound may be arbitrary, but at least one type of isocyanate multimer selected from the group consisting of an alicyclic isocyanate multimer and an isocyanate multimer having an aromatic ring in the molecular structure is preferably used. it can. In this case, both the laminate strength and the moldability are improved.
  • alicyclic isocyanate multimer for example, a nurate form (IPDI-nurate) of isophorone diisocyanate can be exemplified.
  • an isocyanate multimer containing an aromatic ring in the molecular structure an adduct body of tolylene diisocyanate (TDI-adduct) can be mentioned. Further, the adduct, biuret and nurate forms of diphenylmethane diisocyanate are also examples of isocyanate multimers containing an aromatic ring in the molecular structure. Further, as the isocyanate multimer containing an aromatic ring in the molecular structure, an adduct body, a biuret body and a nurate body of xylylene diisocyanate can be exemplified.
  • the exterior material 10 having the first adhesive layer 12a containing the polyurethane compound composed of the reaction product of the polyester polyol and IPDI-nulate is between the base material layer 11 and the barrier layer 13 in a high temperature environment.
  • the laminate strength of the above-mentioned exterior material 10 and the moldability of the exterior material 10 are particularly excellent.
  • the content of the isocyanate group derived from IPDI-nulate in the polyfunctional isocyanate compound is the same as that of the first aspect.
  • the ratio (NCO / OH) of the number of isocyanates contained in the polyfunctional isocyanate compound to the number of hydroxyl groups contained in the polyol resin is 1.5 ⁇ NCO / OH ⁇ 40.0. Is desirable.
  • the number of isocyanates contained in the curing agent (polyfunctional isocyanate compound) of the polyurethane compound is sufficiently larger than the number of hydroxyl groups contained in the main agent (polyol resin) (NCO / OH >> 1.0), the heat resistance is high. improves.
  • the polyurethane compound is composed of a reaction product of polyester polyol and IPDI-nulate, the optimum value of the above numerical value NCO / OH is 20.
  • FIG. 3 is a perspective view showing an embodiment of a power storage device manufactured by using the above-mentioned exterior material.
  • the power storage device 50 includes a battery element (power storage device main body) 52, two metal terminals (current extraction terminals) 53 for extracting current from the battery element 52, and a battery element 52. It is configured to include an exterior material 10 that is included in an airtight state.
  • the exterior material 10 is the exterior material 10 according to the present embodiment described above.
  • the base material layer 11 is the outermost layer
  • the sealant layer 16 is the innermost layer.
  • the exterior material 10 is formed by folding the base material 11 in half so that the base material 11 is on the outer side of the power storage device 50 and the sealant layer 16 on the inner side of the power storage device 50, deep drawing and molding one of them, and then heat-sealing. Therefore, the battery element 52 is housed inside and sealed.
  • a power storage device in which one of the two exterior materials 10 is deep-drawn and then the other exterior material 10 is overlapped and heat-sealed to accommodate and seal the battery element 52 inside. It can also be 50.
  • the exterior material 20 may be used instead of the exterior material 10.
  • the power storage device according to the third aspect has other points in common with the power storage device according to the first side surface.
  • FIG. 4 is a cross-sectional view schematically showing an embodiment of the exterior material for a power storage device of the present disclosure.
  • the exterior material (exterior material for power storage device) 25 of the present embodiment includes a base material layer 11 and a first adhesive layer 12 provided on one surface side of the base material layer 11.
  • the barrier layer 13 having corrosion prevention treatment layers 14a and 14b on both sides provided on the side opposite to the base material layer 11 of the first adhesive layer 12 and the side opposite to the first adhesive layer 12 of the barrier layer 13.
  • the second adhesive layer 17 provided on the surface of the second adhesive layer 17 and the sealant layer 16 provided on the side opposite to the barrier layer 13 of the second adhesive layer 17 are laminated.
  • the corrosion prevention treatment layer 14a is provided on the surface of the barrier layer 13 on the first adhesive layer 12 side
  • the corrosion prevention treatment layer 14b is provided on the surface of the barrier layer 13 on the second adhesive layer 17 side.
  • the base material layer 11 is the outermost layer
  • the sealant layer 16 is the innermost layer. That is, the exterior material 25 is used with the base material layer 11 facing the outside of the power storage device and the sealant layer 16 facing the inside of the power storage device.
  • the base material layer 11 imparts heat resistance in the sealing process when manufacturing a power storage device, and plays a role of suppressing the generation of pinholes that may occur during molding and distribution.
  • scratch resistance, chemical resistance, insulation and the like can be imparted.
  • the base material layer 11 preferably has a melting peak temperature higher than the melting peak temperature of the sealant layer 16. Since the base material layer 11 has a melting peak temperature higher than the melting peak temperature of the sealant layer 16, it is possible to prevent the appearance from being deteriorated due to melting of the base material layer 11 (outer layer) during heat sealing. it can.
  • the melting peak temperature of the sealant layer 16 means the melting peak temperature of the layer having the highest melting peak temperature.
  • the melting peak temperature of the base material layer 11 is preferably 290 ° C. or higher, more preferably 290 to 350 ° C.
  • Examples of the resin film that can be used as the base material layer 11 and have a melting peak temperature in the above range include a nylon film, a PET film, a polyamide film, a polyphenylene sulfide film (PPS film), a polyimide film, and a polyester film.
  • the melting peak temperature means a value obtained in accordance with the method described in JIS K7121-1987.
  • the base material layer 11 a commercially available film may be used, or the base material layer 11 may be formed by coating (application and drying of a coating liquid).
  • the base material layer 11 may have a single-layer structure or a multi-layer structure, and may be formed by applying a thermosetting resin. Further, the base material layer 11 may contain, for example, various additives (for example, flame retardant, slip agent, antiblocking agent, antioxidant, light stabilizer, tackifier, etc.).
  • the difference (T 11 -T 16 of the melting peak temperature T 16 of the melting peak temperature T 11 and the sealant layer 16 of the base layer 11 is preferably 20 ° C. or higher. By this temperature difference is 20 ° C. or higher, Deterioration of the appearance of the exterior material 20 due to heat sealing can be further sufficiently suppressed.
  • the thickness of the base material layer 11 is preferably 5 to 50 ⁇ m, and more preferably 12 to 30 ⁇ m.
  • the first adhesive layer 12 is a layer for adhering the barrier layer 13 provided with the corrosion prevention treatment layer 14a and the base material layer 11.
  • the first adhesive layer 12 has an adhesive force necessary for firmly adhering the base material layer 11 and the barrier layer 13, and the barrier layer 13 is broken by the base material layer 11 during cold molding. It also has followability to suppress this.
  • the followability is a property that the first adhesive layer 12 stays on the member without peeling even if the member is deformed due to expansion and contraction or the like.
  • Examples of the adhesive component forming the first adhesive layer 12 include urea compounds and urethane compounds. These compounds may be used alone or in combination of two or more.
  • the urea-based compound can be obtained by reacting them with an amine-based resin as a main agent and a polyisocyanate compound as a curing agent.
  • Urethane-based compounds can be obtained by reacting them with a polyol as a main agent and a polyisocyanate compound as a curing agent.
  • amine-based resins examples include polyacrylic amines.
  • polyol examples include polyester polyol, polyether polyol, acrylic polyol and the like.
  • polyester polyol examples include a polyester polyol obtained by reacting one or more of dicarboxylic acids with a diol.
  • polyether polyol examples include those produced by addition polymerization of ethylene oxide or propylene oxide to propylene glycol, glycerin, pentaerythritol or the like.
  • acrylic polyol examples include a copolymer obtained by copolymerizing at least a hydroxyl group-containing acrylic monomer and (meth) acrylic acid. In this case, it is preferable to contain a structural unit derived from (meth) acrylic acid as a main component.
  • the hydroxyl group-containing acrylic monomer examples include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • the polyisocyanate compound contains a plurality of isocyanate groups and has a function of cross-linking the above amine resin or polyol.
  • the polyisocyanate compound may be used alone or in combination of two or more.
  • Examples of the polyisocyanate compound include an aliphatic polyisocyanate compound, an alicyclic polyisocyanate compound and an aromatic polyisocyanate compound.
  • Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate (HDI) and xylylene diisocyanate (XDI).
  • Examples of the alicyclic polyisocyanate compound include isophorone diisocyanate (IPDI).
  • Examples of the aromatic polyisocyanate compound include tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI).
  • a multimer for example, a trimer
  • these compounds can also be used, and specifically, an adduct-form, a biuret-form, an isocyanurate-form, or the like can be used.
  • the isocyanate group is bonded to the blocking agent.
  • the blocking agent include methyl ethyl ketooxime (MEKO) and the like.
  • MEKO methyl ethyl ketooxime
  • the temperature at which the blocking agent is desorbed from the isocyanate group of the polyisocyanate compound may be 50 ° C. or higher, and is preferably 60 ° C. or higher because the pot life is further improved.
  • the temperature at which the blocking agent is desorbed from the isocyanate group of the polyisocyanate compound may be 140 ° C. or lower, and is preferably 120 ° C. or lower because the molding curl resistance of the exterior material is improved.
  • a catalyst that lowers the dissociation temperature may be used.
  • the catalyst for lowering the dissociation temperature include tertiary amines such as triethylenediamine and N-methylmorpholine, and metal organic acid salts such as dibutyltin dilaurate.
  • the molar ratio of the isocyanate group of the polyisocyanate compound to the amino group of the amine compound is preferably 1 to 10, more preferably 2 to 5.
  • the molar ratio of the isocyanate group of the polyisocyanate compound to the hydroxyl group of the polyol is preferably 1 to 50, more preferably 10 to 30.
  • the first adhesive layer 12 preferably contains a hydrogen sulfide adsorbent because it can suppress corrosion of the barrier layer 13 by hydrogen sulfide existing outside the exterior material.
  • hydrogen sulfide adsorbents include zinc oxide and potassium permanganate.
  • the content of the first adhesive layer 12 is 1 with respect to the total amount of the first adhesive layer 12 because the corrosion of the barrier layer 13 by hydrogen sulfide existing outside the exterior material can be suppressed. It is preferably ⁇ 50% by mass.
  • the thickness of the first adhesive layer 12 is preferably 1 to 10 ⁇ m, more preferably 2 to 6 ⁇ m, from the viewpoint of obtaining desired adhesive strength, followability, processability, and the like.
  • the first adhesive layer 12 can be obtained, for example, by applying a composition containing the above-mentioned main agent and curing agent of the adhesive component.
  • a coating method a known method can be used, and examples thereof include gravure direct, gravure reverse (direct, kiss), and microgravure.
  • the content ratio of the amine resin in the composition containing the amine resin and the polyisocyanate compound is 1 to 10 mass by mass with respect to the total amount of the amine resin and the polyisocyanate compound. It is preferably%.
  • the content ratio of the polyol in the composition containing the polyol and the polyisocyanate compound is preferably 50 to 80% by mass with respect to the total amount of the polyol and the polyisocyanate compound. ..
  • the second adhesive layer 17 is a layer for adhering the barrier layer 13 provided with the corrosion prevention treatment layer 14b and the sealant layer 16.
  • Examples of the adhesive component forming the second adhesive layer 17 include the same adhesive components as those mentioned in the first adhesive layer 12.
  • the second adhesive layer 17 preferably contains a hydrogen sulfide adsorbent because it can suppress corrosion of the barrier layer 13 due to hydrogen sulfide generated from the battery contents inside the exterior material.
  • a hydrogen sulfide adsorbent include hydrogen sulfide adsorbents similar to those mentioned in the first adhesive layer 12.
  • the content thereof is preferably 0.1 to 50% by mass with respect to the total amount of the second adhesive layer 17.
  • the second adhesive layer 17 is obtained in the same manner as the first adhesive layer 12.
  • the content ratio of the amine resin in the composition containing the amine resin and the polyisocyanate compound may be the same as that of the first adhesive layer 12.
  • the content ratio of the polyol in the composition containing the polyol and the polyisocyanate compound may be the same as that of the first adhesive layer 12.
  • the thickness of the second adhesive layer 17 is preferably 1 to 5 ⁇ m. When the thickness of the second adhesive layer 17 is 1 ⁇ m or more, sufficient adhesive strength between the barrier layer 13 and the sealant layer 16 can be easily obtained, and when the thickness is 5 ⁇ m or less, cracks in the second adhesive layer 17 occur. Can be suppressed.
  • At least one of the first adhesive layer 12 and the second adhesive layer 17 contains a urea compound which is a reaction product of an amine resin and a polyisocyanate compound, and of the first adhesive layer 12 and the second adhesive layer 17, urea is contained.
  • a urea compound which is a reaction product of an amine resin and a polyisocyanate compound
  • X1 defined by the following formula (1-A). Is 10 to 99, preferably 20 to 80.
  • X1 ⁇ B1 / (A1 + B1) ⁇ ⁇ 100 ... (1-A)
  • Infrared absorption spectrum peak intensity in the layer containing a urea compound 1680 infrared absorption spectrum peak intensity ⁇ 1720 cm -1 and 1590 ⁇ 1640 cm -1 of the first adhesive layer 12 and the second adhesive layer 17, FT-IR ( It can be measured by the ATR method (total reflection absorption infrared spectroscopy).
  • Both the first adhesive layer 12 and the second adhesive layer 17 may contain a urea-based compound, and of the first adhesive layer 12 and the second adhesive layer 17, only the first adhesive layer 12 contains a urea-based compound. Of the first adhesive layer 12 and the second adhesive layer 17, only the second adhesive layer 17 may contain a urea compound.
  • the obtained exterior material has excellent heat resistance, the rigidity of the first adhesive layer is easily relaxed, and the deep drawing moldability is excellent. Therefore, the first adhesive layer 12 does not contain a urea compound. It is preferable that only the second adhesive layer 17 contains a urea compound.
  • the urea group of the urea compound exerts a cohesive force, and hydrogen sulfide existing outside the exterior material is less likely to pass through the first adhesive layer 12, due to hydrogen sulfide. Corrosion of the barrier layer 13 can be suppressed.
  • the second adhesive layer 17 contains a urea-based compound, the urea group of the urea-based compound exerts a cohesive force, making it difficult for hydrogen sulfide generated from the battery contents inside the exterior material to pass through the second adhesive layer 17. Since corrosion of the barrier layer 13 by hydrogen sulfide can be suppressed, the second adhesive layer 17 preferably contains a urea compound.
  • the barrier layer 13 has a water vapor barrier property that prevents moisture from entering the inside of the power storage device. Further, the barrier layer 13 has malleability for deep drawing molding.
  • various metal foils such as aluminum, stainless steel, and copper, or a metal vapor deposition film, an inorganic oxide vapor deposition film, a carbon-containing inorganic oxide vapor deposition film, a film provided with these vapor deposition films, or the like is used. be able to.
  • the film provided with the vapor deposition film for example, an aluminum niu vapor deposition film or an inorganic oxide vapor deposition film can be used. These can be used alone or in combination of two or more.
  • a metal foil is preferable, and an aluminum foil is more preferable, from the viewpoints of mass (specific gravity), moisture resistance, processability, and cost.
  • the aluminum foil a soft aluminum foil that has been annealed is particularly preferable because it can impart the desired malleability during molding, but further pinhole resistance and ductility during molding are imparted. It is more preferable to use an aluminum foil containing iron for the purpose of making the foil.
  • the iron content in the aluminum foil is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass in 100% by mass of the aluminum foil (for example, 8021 material according to JIS standard). , 8079 material aluminum foil).
  • the exterior material 25 having more excellent pinhole resistance and ductility can be obtained.
  • the exterior material 25 having more excellent flexibility can be obtained.
  • the metal foil used for the barrier layer 13 is preferably degreased, for example, in order to obtain desired electrolytic resistance. Further, in order to simplify the manufacturing process, the metal foil is preferably one whose surface is not etched. Above all, as the metal foil used for the barrier layer 13, it is preferable to use an aluminum foil that has been subjected to a degreasing treatment in terms of imparting electrolytic solution resistance. When the aluminum foil is degreased, only one side of the aluminum foil may be degreased, or both sides may be degreased. As the degreasing treatment, for example, a wet type degreasing treatment or a dry type degreasing treatment can be used, but from the viewpoint of simplifying the manufacturing process, the dry type degreasing treatment is preferable.
  • Examples of the dry type degreasing treatment include a method of performing the degreasing treatment by lengthening the treatment time in the step of annealing the metal foil. Sufficient electrolytic solution resistance can be obtained even with the degreasing treatment performed at the same time as the annealing treatment applied to soften the metal foil.
  • the dry type degreasing treatment treatments such as frame treatment and corona treatment, which are treatments other than the annealing treatment, may be used. Further, as the dry type degreasing treatment, for example, a degreasing treatment for oxidatively decomposing and removing pollutants by active oxygen generated when a metal foil is irradiated with ultraviolet rays having a specific wavelength may be used.
  • a treatment such as an acid degreasing treatment or an alkaline degreasing treatment can be used.
  • the acid used for the acid degreasing treatment for example, an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid, or hydrofluoric acid can be used. These acids may be used alone or in combination of two or more.
  • the alkali used for the alkali degreasing treatment for example, sodium hydroxide having a high etching effect can be used.
  • the alkaline degreasing treatment may be performed using a weak alkaline material and a material containing a surfactant or the like.
  • the wet type degreasing treatment described above can be performed by, for example, a dipping method or a spraying method.
  • the thickness of the barrier layer 13 is preferably 9 to 200 ⁇ m, more preferably 15 to 150 ⁇ m, and even more preferably 15 to 100 ⁇ m from the viewpoint of barrier properties, pinhole resistance, and processability. ..
  • the thickness of the barrier layer 13 is 9 ⁇ m or more, it is difficult to break even if stress is applied by the molding process.
  • the thickness of the barrier layer 13 is 200 ⁇ m or less, the increase in the mass of the exterior material can be reduced, and the decrease in the weight energy density of the power storage device can be suppressed.
  • the corrosion prevention treatment layers 14a and 14b are layers provided on the surface of the thin metal layer and the like constituting the barrier layer 13 in order to prevent corrosion. Further, the corrosion prevention treatment layer 14a plays a role of enhancing the adhesion between the barrier layer 13 and the first adhesive layer 12. Further, the corrosion prevention treatment layer 14b plays a role of enhancing the adhesion between the barrier layer 13 and the second adhesive layer 17.
  • the corrosion prevention treatment layer 14a and the corrosion prevention treatment layer 14b may have the same structure or may have different structures. In the present embodiment, the corrosion prevention treatment layer is provided between the barrier layer 13 and the first adhesive layer 12 and between the barrier layer 13 and the second adhesive layer 17, but the barrier layer 13 and the second are provided. A corrosion prevention treatment layer may be provided only between the adhesive layer 17 and the adhesive layer 17.
  • the corrosion prevention treatment layers 14a and 14b are coating agents having, for example, degreasing treatment, hydrothermal transformation treatment, anodizing treatment, chemical conversion treatment, and corrosion prevention ability on the layers serving as the base material of the corrosion prevention treatment layers 14a and 14b. It can be formed by performing a coating type corrosion prevention treatment or a corrosion prevention treatment combining these treatments.
  • the degreasing treatment, the hydrothermal transformation treatment, the anodizing treatment, particularly the hydrothermal modification treatment and the anodizing treatment dissolve the surface of the metal foil (aluminum foil) with a treatment agent and are excellent in corrosion resistance.
  • This is a process for forming an aluminum compound (boehmite, alumite). Therefore, such a treatment may be included in the definition of chemical conversion treatment in order to obtain a structure forming a co-continuous structure from the barrier layer 13 to the corrosion prevention treatment layers 14a and 14b.
  • Examples of the degreasing treatment include acid degreasing and alkaline degreasing.
  • Examples of the acid degreasing include a method using acid degreasing obtained by using the above-mentioned inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, and hydrofluoric acid alone or in combination thereof.
  • the acid degreasing by using an acid degreasing agent in which a fluorine-containing compound such as monosodium ammonium difluoride is dissolved in the above-mentioned inorganic acid, not only the degreasing effect of the barrier layer 13 but also the immobile metal fluoride can be obtained. It can be formed and is effective in terms of resistance to fluorine acidity.
  • Examples of the alkaline degreasing include a method using sodium hydroxide and the like.
  • the hot water transformation treatment for example, a boehmite treatment obtained by immersing the barrier layer 13 in boiling water to which triethanolamine is added can be used.
  • the anodizing treatment for example, an alumite treatment can be used.
  • the chemical conversion treatment for example, chromate treatment, zirconium treatment, titanium treatment, vanadium treatment, molybdenum treatment, calcium phosphate treatment, strontium hydroxide treatment, cerium treatment, ruthenium treatment, or a treatment in which two or more of these are combined is used. be able to.
  • the chemical conversion treatment is not limited to the wet method, and for example, a method in which a treatment agent used for these treatments is mixed with a resin component and applied may be used. Further, as the corrosion prevention treatment, a coating type chromate treatment is preferable from the viewpoint of maximizing the effect and waste liquid treatment.
  • Examples of the coating agent used for the coating type corrosion prevention treatment include a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer.
  • a method using a coating agent containing a rare earth element oxide sol is preferable.
  • Corrosion treatment layer 14a per unit area of the 14b mass preferably in the range of 0.005 ⁇ 0.200g / m 2, more preferably in the range of 0.010 ⁇ 0.100g / m 2. If it is 0.005 g / m 2 or more, it is easy to impart a corrosion prevention function to the barrier layer 13. Further, even if the mass per unit area exceeds 0.200 g / m 2 , the corrosion prevention function is saturated and no further effect can be expected. In the above content, the mass per unit area is described, but if the specific gravity is known, the thickness can be converted from it.
  • the thickness of the corrosion prevention treatment layers 14a and 14b is preferably, for example, 10 nm to 5 ⁇ m, and more preferably 20 to 500 nm from the viewpoint of the corrosion prevention function and the function as an anchor.
  • the sealant layer 16 is a layer that imparts sealing properties to the exterior material 25 by heat sealing, and is a layer that is arranged inside and heat-sealed (heat-sealed) when the power storage device is assembled.
  • the sealant layer 16 examples include a film made of an acrylic resin, a polyolefin resin, or a polyester resin. Since the sealant layer 16 has a high melting point and the heat resistance of the obtained exterior material is further improved, a film made of a polyolefin resin or a polyester resin is preferable, and a film made of a polyester resin is more preferable.
  • acrylic resin examples include polymethyl methacrylate resin (PMMA) and the like. These acrylic resins may be used alone or in combination of two or more.
  • PMMA polymethyl methacrylate resin
  • polystyrene-based resin examples include low-density, medium-density and high-density polyethylene; ethylene- ⁇ -olefin copolymer; polypropylene; and propylene- ⁇ -olefin copolymer.
  • the polyolefin resin may be a block copolymer or a random copolymer.
  • polyester resin examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). These polyester resins may be used alone or in combination of two or more.
  • the sealant layer 16 may be a single-layer film or a multilayer film, and may be selected according to the required function. When the sealant layer 16 has a multi-layer structure, each layer may be laminated by coextrusion or may be laminated by dry lamination.
  • the sealant layer 16 may contain various additives such as flame retardants, slip agents, anti-blocking agents, antioxidants, light stabilizers and tackifiers.
  • the thickness of the sealant layer 16 is preferably 10 to 100 ⁇ m, more preferably 20 to 60 ⁇ m. When the thickness of the sealant layer 16 is 10 ⁇ m or more, sufficient heat seal strength can be obtained, and when it is 100 ⁇ m or less, the amount of water vapor infiltrated from the end portion of the exterior material can be reduced.
  • the melting peak temperature of the sealant layer 16 is preferably 200 to 280 ° C. because the heat resistance is improved.
  • Examples of the method for manufacturing the exterior material 25 include a method in which the following steps S11 to S13 are carried out in this order.
  • Step S11 A step of forming the corrosion prevention treatment layer 14a on one surface of the barrier layer 13 and forming the corrosion prevention treatment layer 14b on the other surface of the barrier layer 13.
  • Step S12 A step of bonding the surface of the corrosion prevention treatment layer 14a opposite to the barrier layer 13 and the base material layer 11 via the first adhesive layer 12.
  • Step S13 A step of forming the sealant layer 16 on the surface of the corrosion prevention treatment layer 14b opposite to the barrier layer 13 via the second adhesive layer 17.
  • the corrosion prevention treatment layer 14a is formed on one surface of the barrier layer 13, and the corrosion prevention treatment layer 14b is formed on the other surface of the barrier layer 13.
  • the corrosion prevention treatment layers 14a and 14b may be formed separately, or both may be formed at the same time.
  • the corrosion prevention treatment layer 14a is formed by applying a corrosion prevention treatment agent (base material of the corrosion prevention treatment layer) to both surfaces of the barrier layer 13 and then sequentially performing drying, curing, and baking. And 14b are formed at once. Further, after applying a corrosion prevention treatment agent to one surface of the barrier layer 13 and sequentially performing drying, curing, and baking to form a corrosion prevention treatment layer 14a, corrosion prevention is similarly performed on the other surface of the barrier layer 13.
  • the treated layer 14b may be formed.
  • the order of forming the corrosion prevention treatment layers 14a and 14b is not particularly limited. Further, as the corrosion prevention treatment agent, different ones may be used for the corrosion prevention treatment layer 14a and the corrosion prevention treatment layer 14b, or the same one may be used.
  • the method of applying the corrosion prevention treatment agent is not particularly limited, but for example, a gravure coating method, a gravure reverse coating method, a roll coating method, a reverse roll coating method, a die coating method, a bar coating method, a kiss coating method, a comma coating method, and a small diameter gravure. A method such as the coating method can be used.
  • step S12 the surface of the corrosion prevention treatment layer 14a opposite to the barrier layer 13 and the base material layer 11 are bonded to each other by a method such as dry lamination using an adhesive forming the first adhesive layer 12. ..
  • heat treatment may be performed in order to promote the adhesiveness of the first adhesive layer 12.
  • the temperature during the heat treatment is preferably 140 ° C. or lower because the exterior material is excellent in molding curl resistance, and is preferably 60 ° C. or higher because the pot life of the blocking agent is improved.
  • step S13 After the step S12, what is the barrier layer 13 of the corrosion prevention treatment layer 14b of the laminated body in which the base material layer 11, the first adhesive layer 12, the corrosion prevention treatment layer 14a, the barrier layer 13 and the corrosion prevention treatment layer 14b are laminated in this order?
  • the opposite surface and the sealant layer 16 are bonded to each other by a method such as dry lamination using an adhesive forming the second adhesive layer 17.
  • heat treatment may be performed in order to promote the adhesiveness of the second adhesive layer 17.
  • the temperature during the heat treatment is preferably 140 ° C. or lower, more preferably 120 ° C. or lower because the exterior material is excellent in molding curl resistance, and 60 ° C. because the pot life of the blocking agent is improved. The above is preferable.
  • the exterior material 25 is obtained by the steps S11 to S13 described above.
  • the process sequence of the method for manufacturing the exterior material 25 is not limited to the method in which the steps S11 to S13 are sequentially performed.
  • the order of the steps to be carried out may be changed as appropriate, such as performing the step S12 and then the step S11.
  • the power storage device includes a battery element 1 including an electrode, a lead 2 extending from the electrode, and a container for accommodating the battery element 1.
  • the container has a sealant layer 16 inside from the exterior material 25 for the power storage device. Is formed to be.
  • the container may be obtained by stacking two exterior materials with the sealant layers 16 facing each other and heat-sealing the peripheral edge of the stacked exterior materials 25, or by folding back one exterior material and stacking the two exterior materials. In addition, it may be obtained by heat-sealing the peripheral edge portion of the exterior material 25 in the same manner.
  • the reed 2 is sandwiched and sealed by an exterior material 25 that forms a container with the sealant layer 16 inside.
  • the reed 2 may be sandwiched by the exterior material 25 via the tab sealant.
  • the exterior material of this embodiment can be used in various power storage devices.
  • a power storage device examples include a secondary battery such as a lithium ion battery, a nickel hydrogen battery, a lead storage battery and an all-solid-state battery, and an electrochemical capacitor such as an electric double layer capacitor. Since the exterior material 25 of the present embodiment can maintain excellent heat-sealing properties even when used in a high-temperature environment after heat-sealing, it is suitable for all-solid-state battery applications that are expected to be used in such an environment. ing.
  • FIG. 5 is a diagram showing the embossed type exterior material 30.
  • 6 (a) to 6 (d) are perspective views showing a manufacturing process of a one-sided molded battery using the exterior material 25.
  • the secondary battery 40 may be a double-sided molded battery manufactured by preparing two exterior materials such as the embossed type exterior material 30 and laminating them while adjusting the alignment.
  • the secondary battery 40 which is a one-side molded processed battery, can be manufactured by, for example, the following steps S21 to S26.
  • Step S21 A step of preparing the exterior material 25, the battery element 1 including the electrode, and the lead 2 extending from the electrode.
  • Step S22 A step of forming a recess 32 for arranging the battery element 1 on one side of the exterior material 25 to obtain an embossed type exterior material 30 (see FIGS. 6A and 6B).
  • Step S23 The battery element 1 is arranged in the molding processing area (recess 32) of the embossed type exterior material 30, the embossed exterior material 30 is folded back and overlapped so that the lid 34 covers the recess 32, and extends from the battery element 1.
  • Step S24 A step of heat-sealing one side of the embossed type exterior material 30 so as to sandwich the lead 2 (see FIGS. 6 (b) and 6 (c)).
  • Step S24 A step of heat-sealing the other side while leaving one side other than the side holding the lead 2, then injecting an electrolytic solution from the remaining side and heat-sealing the remaining side in a vacuum state (FIG. 6 (FIG. 6). c) See).
  • Step S25 A step of charging and discharging under predetermined conditions such as a current value, a voltage value, and an environmental temperature to cause a chemical change (chemical reaction).
  • Step S26 A step of cutting the end of the heat-sealed side other than the side holding the reed 2 and bending it toward the molding processing area (recess 32) (see FIG. 6D).
  • step S21 the exterior material 25, the battery element 1 including the electrode, and the lead 2 extending from the electrode are prepared.
  • the exterior material 25 is prepared based on the above-described embodiment.
  • the battery element 1 and the lead 2 are not particularly limited, and known battery elements 1 and the lead 2 can be used.
  • a recess 32 for arranging the battery element 1 is formed on the sealant layer 16 side of the exterior material 25.
  • the planar shape of the recess 32 is a shape that matches the shape of the battery element 1, for example, a rectangular shape in a plan view.
  • the recess 32 is formed by, for example, pressing a pressing member having a rectangular pressure surface against a part of the exterior material 25 in the thickness direction thereof. Further, the pressing position, that is, the recess 32 is formed at a position biased toward one end in the longitudinal direction of the exterior material 25 from the center of the exterior material 25 cut out in a rectangular shape. As a result, the other end side on which the recess 32 is not formed after the molding process can be folded back to form a lid (cover portion 34).
  • a molding process using a mold can be mentioned.
  • a molding method a female mold and a male mold arranged so as to have a gap equal to or larger than the thickness of the exterior material 25 are used, and the male mold is pushed into the female mold together with the exterior material 25.
  • the depth (deep drawing amount) of the recess 32 can be adjusted to a desired amount.
  • the embossed type exterior material 30 can be obtained.
  • the embossed type exterior material 30 has a shape as shown in FIG. 2, for example.
  • FIG. 5A is a perspective view of the embossed type exterior material 30, and
  • FIG. 5B is a vertical cross section of the embossed type exterior material 30 shown in FIG. 5A along the line bb. It is a figure.
  • step S23 the battery element 1 composed of a positive electrode, a separator, a negative electrode, and the like is arranged in the molding processing area (recess 32) of the embossed type exterior material 30. Further, the leads 2 extending from the battery element 1 and joined to the positive electrode and the negative electrode, respectively, are pulled out from the molding processing area (recessed portion 32). After that, the embossed type exterior material 30 is folded back at substantially the center in the longitudinal direction, the sealant layers 16 are stacked so as to be inside, and one side of the embossed type exterior material 30 that sandwiches the lead 2 is heat-sealed.
  • the heat seal is controlled under three conditions of temperature, pressure and time, and is appropriately set.
  • the temperature of the heat seal is preferably equal to or higher than the temperature at which the sealant layer 16 is melted, and specifically, it can be 180 ° C. or higher.
  • a curing process is performed to further heat the entire sealant layer 16. As a result, crystallization other than the heat-sealed portion is promoted, and the heat resistance of the entire exterior material 25 is ensured.
  • the curing step can be carried out at 80-150 ° C.
  • the thickness of the sealant layer 16 before heat sealing is preferably 40% or more and 80% or less with respect to the thickness of the lead 2.
  • the resin constituting the sealant layer 16 tends to be able to sufficiently fill the two end portions of the reed, and when it is at least the above upper limit value, the secondary battery 40
  • the thickness of the 25-end portion of the exterior material can be appropriately suppressed, and the amount of water infiltrated from the 25-end portion of the exterior material can be reduced.
  • step S24 one side other than the side holding the lead 2 is left, and the other side is heat-sealed. After that, the electrolytic solution is injected from the remaining side, and the remaining side is heat-sealed in a vacuum state.
  • the heat sealing conditions are the same as in step S23.
  • step S25 the secondary battery 40 obtained by step S23 is charged and discharged to cause a chemical change (chemical formation: 3 days in an environment of 40 ° C.). Then, in order to remove the gas generated by the chemical formation and replenish the electrolytic solution, the secondary battery 40 is opened once, and then the final seal is performed. Note that this step S25 can be omitted.
  • the exterior material for the power storage device, the method for manufacturing the exterior material, and the power storage device according to the fifth aspect of the present disclosure will be described.
  • the description of the points common to the exterior material for the power storage device, the power storage device, and the method for manufacturing the power storage device according to the fourth aspect will be omitted. Since the method for manufacturing the power storage device according to the fifth aspect and the method for manufacturing the power storage device according to the fourth aspect are common, the description thereof will be omitted.
  • the power storage device exterior material according to the fifth side surface and the power storage device exterior material according to the fourth side surface are on the opposite side of the base material layer 11 of the first adhesive layer 12 in the power storage device exterior material according to the fourth side surface.
  • the barrier layer 13 is provided, whereas the power storage device exterior material according to the fifth side surface is different in that the metal foil layer 13 is provided.
  • the first adhesive layer 12 is different between the power storage device exterior material according to the fifth side surface and the power storage device exterior material according to the fourth side surface.
  • the first adhesive layer 12 is a layer for adhering the metal foil layer 13 provided with the corrosion prevention treatment layer 14a to the base material layer 11.
  • the first adhesive layer 12 has an adhesive force necessary for firmly adhering the base material layer 11 and the metal foil layer 13, and the metal foil layer 13 is broken by the base material layer 11 during cold molding. It also has followability to suppress being done. The followability is a property that the first adhesive layer 12 stays on the member without peeling even if the member is deformed due to expansion and contraction or the like.
  • Examples of the adhesive component forming the first adhesive layer 12 include urethane compounds and polyolefin resins.
  • the adhesive component one type may be used alone or two or more types may be used in combination.
  • Urethane-based compounds can be obtained by reacting them with a polyol-based resin as a main agent and a polyisocyanate compound as a curing agent.
  • polyol resin examples include polyester polyol resin, polyether polyol resin, and acrylic polyol resin.
  • the polyol-based resin is preferably a polyester polyol-based resin because the adhesion between the adhesive layer and the sealant layer and the metal foil layer is improved, and the obtained exterior material is more excellent in deep drawing moldability.
  • polyester polyol resin examples include those obtained by reacting one or more kinds of dicarboxylic acids with a diol.
  • polyether polyol resin examples include those produced by addition polymerization of ethylene oxide and propylene oxide to propylene glycol, glycerin, pentaerythritol and the like.
  • acrylic polyol resin examples include a copolymer obtained by copolymerizing at least a hydroxyl group-containing acrylic monomer and (meth) acrylic acid. In this case, it is preferable to contain a structural unit derived from (meth) acrylic acid as a main component.
  • the hydroxyl group-containing acrylic monomer examples include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate.
  • polystyrene-based resin examples include low-density polyethylene, medium-density polyethylene, high-density polyethylene, ethylene- ⁇ -olefin copolymer, homopolypropylene, block polypropylene, random polypropylene, and propylene- ⁇ -olefin copolymer.
  • the polyolefin-based resin one in which an acidic group is introduced into the polyolefin resin may be used in order to improve the adhesion to the base material layer 11 and the metal foil layer 13.
  • the acidic group to be introduced include a carboxy group and a sulfonic acid group, and a carboxy group is particularly preferable.
  • an unsaturated carboxylic acid or an acid anhydride thereof, or an ester of an unsaturated carboxylic acid or an acid anhydride thereof is used as a radical initiator with respect to the polyolefin-based resin.
  • examples thereof include acid-modified polyolefin-based resins that are graft-modified in the presence of.
  • unsaturated carboxylic acids include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, and bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid. Can be mentioned.
  • Acid anhydrides of unsaturated carboxylic acids include maleic anhydride, itaconic anhydride, citraconic anhydride, tetrahydrophthalic anhydride and bicyclo [2,2,1] hepto-2-ene-5,6-dicarboxylic acid anhydride. And so on.
  • ester of unsaturated carboxylic acid or its acid anhydride examples include methyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconic acid, diethyl citraconic acid, and the like.
  • ester of unsaturated carboxylic acid or its acid anhydride examples include dimethyl tetrahydroan anhydride and dimethyl bicyclo [2,2,1] hept-2-ene-5,6-dicarboxylic acid.
  • the ratio of the graft compound in the acid-modified polyolefin resin is preferably 0.2 to 100 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the polyisocyanate compound contains a plurality of isocyanate groups and plays a role of cross-linking the above-mentioned polyol resin.
  • the polyisocyanate compound may be used alone or in combination of two or more.
  • Examples of the polyisocyanate compound include an aliphatic polyisocyanate compound, an alicyclic polyisocyanate compound, and an aromatic polyisocyanate compound, which are aromatic polyisocyanate compounds because the heat resistance of the obtained exterior material is improved. Is preferable.
  • Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate (HDI) and xylylene diisocyanate (XDI).
  • Examples of the alicyclic polyisocyanate compound include isophorone diisocyanate (IPDI).
  • Examples of the aromatic polyisocyanate compound include tolylene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI).
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • a multimer for example, a trimer
  • an adduct-form, a biuret-form, an isocyanurate-form, or the like can be used.
  • the polyisocyanate compound is preferably an adduct body because the adhesion between the adhesive layer and the interface between the adhesive layer is improved and the heat resistance of the obtained exterior material is improved.
  • the molar ratio of the isocyanate group of the polyisocyanate compound to the hydroxyl group of the polyol resin is preferably 1 to 50, more preferably 10 to 30.
  • a catalyst for controlling the reaction may be used.
  • the polyisocyanate compound is hydrolyzed by reacting with water contained in the composition containing the main agent and the curing agent or in the atmosphere to produce an amine compound, and further, the amine compound and the polyisocyanate compound are formed. It may react and self-condensate.
  • a catalyst can suppress the progress of these side reactions. As a result, the abundance ratio of urethane groups of the urethane compound in the first adhesive layer can be increased.
  • examples of such a catalyst include organic tin compounds such as dibutyltin compounds and dioctyltin compounds, organic titanium compounds, and organic zirconium compounds.
  • the first adhesive layer 12 preferably contains a hydrogen sulfide adsorbing substance because it can suppress corrosion of the metal foil layer 13 due to hydrogen sulfide existing outside the exterior material.
  • hydrogen sulfide adsorbents include zinc oxide and potassium permanganate.
  • the content of the first adhesive layer 12 is relative to the total amount of the first adhesive layer 12 because the corrosion of the metal foil layer 13 by hydrogen sulfide existing outside the exterior material can be suppressed. It is preferably 1 to 50% by mass.
  • the thickness of the first adhesive layer 12 is preferably 1 to 10 ⁇ m, more preferably 2 to 6 ⁇ m, from the viewpoint of obtaining desired adhesive strength, followability, processability, and the like.
  • the first adhesive layer 12 can be obtained, for example, by applying a composition containing the above-mentioned main agent and curing agent of the adhesive component.
  • a coating method a known method can be used, and examples thereof include gravure direct, gravure reverse (direct, kiss), and microgravure.
  • the content ratio of the polyol-based resin in the composition containing the polyol-based resin and the polyisocyanate compound is 50 to 90 mass with respect to the total amount of the polyol-based resin and the polyisocyanate compound. It is preferably%.
  • the content ratio of the catalyst in the composition containing the polyol resin, the polyisocyanate compound and the catalyst is , 0.1 to 20% by mass is preferable with respect to the total amount of the polyisocyanate compound.
  • the first adhesive layer 12 contains an epoxy resin
  • two or more epoxy groups are contained in the molecule in the composition containing a polymer having two or more epoxy groups in the molecule and a compound having a functional group that reacts with the epoxy groups.
  • the content ratio of the polymer contained is preferably 30 to 60% by mass with respect to the total amount of these compounds.
  • Metal leaf layer 13 examples include various metal foils such as aluminum and stainless steel, and the metal foil layer 13 is preferably an aluminum foil from the viewpoint of processability such as moisture resistance and ductility and cost.
  • the aluminum foil may be a general soft aluminum foil, but is preferably an aluminum foil containing iron from the viewpoint of excellent pinhole resistance and ductility during molding.
  • the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass (for example).
  • Aluminum foil made of 8021 material and 8079 material according to JIS standard).
  • the exterior material 25 having more excellent pinhole resistance and ductility can be obtained.
  • the exterior material 25 having more excellent flexibility can be obtained.
  • a soft aluminum foil that has been annealed is more preferable because it can impart the desired ductility during molding.
  • the metal foil used for the metal foil layer 13 is preferably degreased, for example, in order to obtain desired electrolytic solution resistance. Further, in order to simplify the manufacturing process, the metal foil is preferably one whose surface is not etched.
  • the degreasing treatment for example, a wet type degreasing treatment or a dry type degreasing treatment can be used, but from the viewpoint of simplifying the manufacturing process, the dry type degreasing treatment is preferable.
  • the dry type degreasing treatment is the same as that of the power storage device according to the fourth aspect.
  • the wet type degreasing treatment is the same as that of the power storage device according to the fourth aspect.
  • the thickness of the metal foil layer 13 is the same as that of the power storage device according to the fourth side surface.
  • Step S12 and step 13 are different between the method for manufacturing the exterior material according to the fifth side surface and the method for manufacturing the exterior material according to the fourth side surface.
  • step S12 the surface of the corrosion prevention treatment layer 14a opposite to the metal foil layer 13 and the base material layer 11 are bonded to each other by a method such as dry lamination using an adhesive forming the first adhesive layer 12. Be done.
  • heat treatment may be performed in order to promote the adhesiveness of the first adhesive layer 12.
  • the temperature during the heat treatment is not particularly limited, but may be, for example, 40 to 120 ° C.
  • step S13 After step S12, the metal foil layer 13 of the corrosion prevention treatment layer 14b of the laminate in which the base material layer 11, the first adhesive layer 12, the corrosion prevention treatment layer 14a, the metal foil layer 13 and the corrosion prevention treatment layer 14b are laminated in this order.
  • the surface on the opposite side and the sealant layer 16 are bonded to each other by a method such as dry lamination using an adhesive forming the second adhesive layer 17.
  • heat treatment may be performed in order to promote the adhesiveness of the second adhesive layer 17.
  • the temperature during the heat treatment is not particularly limited, but may be, for example, 40 to 120 ° C.
  • the exterior material 25 is excellent in deep drawing moldability, it is suitable for all-solid-state battery applications in which a recess is formed by cold molding and the battery contents are housed in the recess.
  • ⁇ Base layer (thickness 25 ⁇ m)> Ny A nylon (Ny) film (manufactured by Toyobo Co., Ltd.) having a corona treatment on one surface was used.
  • PET A polyethylene terephthalate film having a corona treatment on one surface was used.
  • A-1 Polyester polyol (manufactured by Hitachi Kasei Co., Ltd., trade name: Tesslac 2505-63, hydroxyl value: 7-11 mgKOH / g)
  • A-2 Acrylic polyol (manufactured by Taisei Fine Chemicals, trade name: 6KW-700, hydroxyl value: 10mgKOH / g) (Hardener)
  • B-1 Nurate form of isophorone diisocyanate (manufactured by Mitsui Chemicals, trade name: Takenate 600)
  • B-2 Adduct of tolylene diisocyanate (manufactured by Mitsui Chemicals, trade name: Takenate 500)
  • B-3 Hexamethylene diisocyanate adduct (manufactured by Asahi Kasei Corporation, trade name: Duranate P301-75E)
  • B-4 Epoxy resin (manufactured by ADEKA CORPORATION, product name: ADEKA Resin EP4
  • the sodium polyphosphate stabilized cerium oxide sol was obtained by blending 10 parts by mass of Na salt of phosphoric acid with 100 parts by mass of cerium oxide.
  • ⁇ Sealant layer (thickness 80 ⁇ m)> A polyolefin film (a film in which the surface of the unstretched polypropylene film on the side of the second adhesive layer was corona-treated) was used.
  • Example A-1 The barrier layer was attached to the base material layer by a dry laminating method using a first adhesive (first adhesive layer).
  • first adhesive is applied on one surface of the barrier layer so that the applied amount (mass per unit area) after drying becomes the value shown in Table 1. After drying at 80 ° C. for 1 minute, it was laminated with a base material layer and aged at 80 ° C. for 120 hours.
  • the surface of the barrier layer opposite to the base material layer side was attached to the sealant layer (thickness 80 ⁇ m) using a polyurethane adhesive (second adhesive layer) by a dry laminating method.
  • a polyurethane adhesive is applied on the surface of the barrier layer opposite to the base material layer side, and the amount of application after drying (mass per unit area) is 3 g / m 2.
  • the amount of application after drying is 3 g / m 2.
  • Example A-2 in the same manner as in Example A-1 except that the composition of the first adhesive and at least one of the coating amounts of the first adhesive were changed as shown in Table 1.
  • the exterior materials (base material layer / first adhesive layer / barrier layer / second adhesive layer / sealant layer laminate) of A-16 were prepared.
  • the first and second corrosion prevention treatment layers were provided on the barrier layer by the following procedure. That is, (CL-1) was applied to both surfaces of the barrier layer by a microgravure coat so that the dry application amount was 70 mg / m 2, and the drying unit was baked at 200 ° C. Next, (CL-2) was applied onto the obtained layer by a microgravure coat so as to have a dry coating amount of 20 mg / m 2 , whereby a composite composed of (CL-1) and (CL-2) was applied. The layers were formed as first and second corrosion protection treatment layers. This composite layer exhibits corrosion prevention performance by combining two types of (CL-1) and (CL-2).
  • the first corrosion prevention treatment layer side of the barrier layer provided with the first and second corrosion prevention treatment layers is based by a dry laminating method using a first adhesive (first adhesive layer). It was attached to the material layer.
  • the sealant layer is provided on the second corrosion prevention treatment layer side of the barrier layer provided with the first and second corrosion prevention treatment layers by a dry laminating method using a polyurethane adhesive (second adhesive layer). It was attached to (thickness 80 ⁇ m).
  • the laminating conditions for the barrier layer and the base material layer and the laminating conditions for the barrier layer and the sealant layer are the same as in Example A-1.
  • Example A-18 The exterior material of Example A-18 (base material layer / first adhesive layer / first corrosion prevention treatment layer / barrier) is the same as in Example A-17 except that the base material layer is changed to PET. A layer / a second corrosion-preventing treatment layer / a second adhesive layer / a laminate of a sealant layer) was prepared.
  • Comparative Examples A-1 to A-5 The exterior materials (base material layer / first adhesion) of Comparative Examples A-1 to A-5 were the same as in Example A-1 except that the composition of the first adhesive was changed as shown in Table 1. An agent layer / barrier layer / second adhesive layer / sealant layer laminate) was prepared.
  • A Laminate strength of 6.0 N / 15 mm or more
  • B Laminate strength of 4.5 N / 15 mm or more and less than 6.0 N / 15 mm
  • C Laminate strength of 3.0 N / 15 mm or more and less than 4.5 N / 15 mm
  • D Laminate strength Less than 3.0N / 15mm
  • the exterior material cut to a width of 15 mm was left in a high temperature environment of 150 ° C. for 5 minutes. After that, the lamination strength between the barrier layer of the exterior material and the base material layer in an environment of 150 ° C. was peeled off by 90 degrees using a tensile tester (manufactured by Shimadzu Corporation) under the condition of a tensile speed of 50 mm / min. Measured by test. In addition, based on the obtained laminate strength, evaluation was performed according to the following criteria. The results are shown in Table 2.
  • Laminate strength is 3.5N / 15mm or more
  • the molding depth that enables deep drawing was evaluated by the following method.
  • the molding depth of the molding apparatus was set to 1.00 to 5.00 mm every 0.25 mm, and the exterior material was deep-drawn and molded.
  • For the sample after deep drawing visually check the presence or absence of breakage and pinholes while irradiating the sample with light, and determine the maximum value of the molding depth that could be deep drawn without any breakage or pinholes. I asked.
  • the molding depth was evaluated according to the following criteria. The results are shown in Table 2.
  • B Maximum molding depth is 3.50 mm or more and less than 4.00 mm
  • C Maximum molding depth is 3.00 mm or more and less than 3.50 mm
  • D Maximum molding depth Value is less than 3.00 mm
  • ⁇ Base layer (thickness 25 ⁇ m)> Ny A nylon (Ny) film (manufactured by Toyobo Co., Ltd.) having a corona treatment on one surface was used.
  • PET A polyethylene terephthalate film having a corona treatment on one surface was used.
  • ⁇ Barrier layer (thickness 40 ⁇ m)> Either a soft aluminum foil (manufactured by Toyo Aluminum Co., Ltd., "8079 material”) or a copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd., model number: HA) that had been annealed and degreased was used.
  • ⁇ Sealant layer (thickness 80 ⁇ m)> A polyolefin film (a film in which the surface of the unstretched polypropylene film on the side of the second adhesive layer was corona-treated) was used.
  • Example B-1 The barrier layer (aluminum foil) was attached to the base material layer (nylon) by a dry laminating method using a first adhesive (first adhesive layer).
  • first adhesive is applied on one surface of the barrier layer so that the applied amount (mass per unit area) after drying becomes the value shown in Table 3. After drying at 80 ° C. for 1 minute, it was laminated with a base material layer and aged at 80 ° C. for 120 hours.
  • the surface of the barrier layer opposite to the base material layer side was attached to the sealant layer (thickness 80 ⁇ m) using a polyurethane adhesive (second adhesive layer) by a dry laminating method.
  • a polyurethane adhesive is applied on the surface of the barrier layer opposite to the base material layer side, and the amount of application after drying (mass per unit area) is 3 g / m 2.
  • the amount of application after drying is 3 g / m 2.
  • Example B-2 in the same manner as in Example B-1 except that the composition of the first adhesive and at least one of the coating amounts of the first adhesive were changed as shown in Table 3.
  • the exterior materials (base material layer / first adhesive layer / barrier layer / second adhesive layer / sealant layer laminate) of B-17 were prepared.
  • Example B-18 The material of the barrier layer was copper foil (Cu), and the composition of the first adhesive and the amount of the first adhesive applied were changed as shown in Table 3 in the same manner as in Example B-1.
  • the exterior material of Example B-18 (a laminate of a base material layer / a first adhesive layer / a barrier layer / a second adhesive layer / a sealant layer) was prepared.
  • Example B-19 to B-21 The exterior material of Examples B-19 to B-21 (base material layer / first adhesion) is the same as that of Example B-18 except that the barrier layer is made of aluminum foil and the thickness thereof is changed as shown in Table 3. An agent layer / barrier layer / second adhesive layer / sealant layer laminate) was prepared.
  • Example B-22 The exterior material of Example B-22 (base material layer / first adhesive layer / barrier layer / second) has the same configuration as that of Example B-16 except that the barrier layer is not provided with a corrosion prevention layer. An adhesive layer / sealant layer laminate) was prepared.
  • Example B-23 The exterior material of Example B-23 (base material layer / first adhesive layer / barrier layer / second adhesive layer / sealant layer) has the same configuration as that of Example B-16 except that the base material is PET. (Laminated body) was prepared.
  • Comparative Examples B-1, B-2) Exterior materials of Comparative Examples B-1 and B-2 (base material layer / first adhesion) in the same manner as in Example B-1 except that the composition of the first adhesive was changed as shown in Table 3. A laminate of agent layer / barrier layer / second adhesive layer / sealant layer) was prepared.
  • IR measurement The exterior material was cut to an appropriate size, and a trigger was created from the end to peel off the base material layer and the barrier layer. Infrared rays are measured from the surface of the base material layer and the barrier layer on the side where more adhesive layers remain, as measured by Attenuated Total Reflection (ATR) by Fourier transform infrared (FT-IR) spectroscopy. and the transmittance T0 of the wavenumber baseline, the minimum value T1 of the transmittance detected from 2200 cm -1 in the range of 2300 cm -1, the minimum value of the transmittance detected from 1670 cm -1 in the range of 1710 cm -1 T2 was calculated.
  • ATR Attenuated Total Reflection
  • FT-IR Fourier transform infrared
  • Laminate strength is 4.5 N / 15 mm or more and less than 6.0 N / 15 mm.
  • C Laminate strength is 3.0N / 15mm or more and less than 4.5N / 15mm.
  • D Laminate strength is less than 3.0 N / 15 mm.
  • Laminate strength in high temperature environment The exterior material cut to a width of 15 mm was left in a high temperature environment of 150 ° C. for 5 minutes. Then, the laminate strength under the environment of 150 ° C. was measured. In addition, based on the obtained laminate strength, evaluation was performed according to the following criteria. The results are shown in Table 4.
  • C Laminate strength is 2.0 N / 15 mm or more and less than 2.5 N / 15 mm.
  • D Laminate strength is less than 2.0 N / 15 mm.
  • the molding depth that enables deep drawing was evaluated by the following method.
  • the molding depth of the molding apparatus was set to 1.00 to 5.00 mm every 0.25 mm, and the exterior material was deep-drawn and molded.
  • For the sample after deep drawing visually check the presence or absence of breakage and pinholes while irradiating the sample with light, and determine the maximum value of the molding depth that could be deep drawn without any breakage or pinholes. I asked.
  • the molding depth was evaluated according to the following criteria. The results are shown in Table 4.
  • B The maximum value of the molding depth is 4.00 mm or more and less than 5.00 mm.
  • D The maximum molding depth is less than 3.00 mm.
  • a 25 ⁇ m-thick nylon (Ny) film manufactured by Toyobo Co., Ltd. having a corona treatment on one surface was used.
  • the number average molecular weight (Mn) of each polyamide-imide is 2000, 5000, 20000, 30000 and 40,000, respectively.
  • a polyether polyol, a polyester polyol, an acrylic polyol, and a polycarbonate polyol (PCD) were prepared as the main agent (polyol resin) of the polyurethane-based compound constituting the first adhesive layer 12a.
  • a curing agent (polyfunctional isocyanate compound) of this polyurethane compound an adduct body of hexamethylene diisocyanate (HDI-a), an adduct body of isophorone diisocyanate (IPDI-n), and an adduct body of tolylene diisocyanate (TDI-a).
  • a soft aluminum foil manufactured by Toyo Aluminum Co., Ltd., “8079 material” provided with corrosion prevention treatment layers 14a and 14b on both sides was used.
  • the corrosion prevention treatment layers 14a and 14b were formed by using a sodium polyphosphate-stabilized cerium oxide sol produced by blending 10 parts by mass of Na salt of phosphoric acid with 100 parts by mass of cerium oxide.
  • the adhesive constituting the second adhesive layer 12b a polyurethane-based adhesive in which polyisocyanate was mixed with an acid-modified polyolefin dissolved in a mixed solvent of toluene and methylcyclohexane was used.
  • the second adhesive layer 12b was formed by applying 3 g / m 2.
  • sealant layer 16 a polyolefin film (a film in which the surface of the unstretched polypropylene film on the side of the second adhesive layer was corona-treated) was used.
  • the thickness of the sealant layer 16 is 80 ⁇ m.
  • Example C-1 The exterior material 10 of this example was produced as follows.
  • the ratio (NCO / OH) of is shown in Table 5.
  • the barrier layer 13 was attached to the base material layer 11 by a dry laminating method using a first adhesive (first adhesive layer) 12a.
  • a first adhesive is applied onto one surface of the barrier layer 13, dried at 80 ° C. for 1 minute, and then laminated with the base material layer 11 at 80 ° C. It was done by aging for 120 hours.
  • the surface of the barrier layer 13 opposite to the base material layer 11 side was formed into a sealant layer (thickness 80 ⁇ m) 16 by a dry laminating method using a polyurethane adhesive (second adhesive layer) 12b. I pasted it.
  • the barrier layer 13 and the sealant layer 16 are laminated by applying a polyurethane adhesive on the surface of the barrier layer 13 opposite to the base material layer 11 side, drying at 80 ° C. for 1 minute, and then laminating with the sealant layer. Then, it was aged at 120 ° C. for 3 hours.
  • an exterior material (a laminate of a base material layer 11 / first adhesive layer 12a / barrier layer 13 / second adhesive layer 12b / sealant layer 16) 10 was produced.
  • Comparative Examples C-1 to C-4 In these Comparative Examples C-1 to C-4, the influence of the presence or absence of the polyamide-imide compounding was investigated in comparison with the Example C-1 containing the polyamide-imide.
  • Table 5 shows the number average molecular weight (Mn) and compounding amount A of the polyamide-imide used in each comparative example, and the main agent, curing agent, and NCO / OH of the polyurethane compound.
  • Examples C-2 to C-5) In these examples, the influence of the amount A of the polyamide-imide compounded was investigated by comparing with Example 1.
  • Table 5 shows the number average molecular weight (Mn) and compounding amount A of the polyamide-imide, and the main agent, curing agent, and NCO / OH of the polyurethane compound.
  • Examples C-6 to C-9) In these examples, the influence of the number average molecular weight (Mn) of polyamide-imide was investigated by comparing with Example C-1.
  • Table 5 shows the number average molecular weight (Mn) and compounding amount A of the polyamide-imide, and the main agent, curing agent, and NCO / OH of the polyurethane compound.
  • Examples C-10 to C-12 the influence of the type of the main agent of the polyurethane compound was investigated by comparing with Example C-1.
  • Table 5 shows the number average molecular weight (Mn) and compounding amount A of the polyamide-imide, and the main agent, curing agent, and NCO / OH of the polyurethane compound.
  • Example 5 shows the number average molecular weight (Mn) and compounding amount A of the polyamide-imide, and the main agent, curing agent, and NCO / OH of the polyurethane compound.
  • Examples C-15 to C-19 the influence of NCO / OH of the polyurethane compound was investigated by comparing with Example C-1.
  • Table 5 shows the number average molecular weight (Mn) and compounding amount A of the polyamide-imide, and the main agent, curing agent, and NCO / OH of the polyurethane compound.
  • the exterior materials 10 produced in each Example and Comparative Example were evaluated from four kinds of viewpoints. That is, evaluation by measurement of laminate strength in a room temperature environment, evaluation by measurement of laminate strength in a high temperature (170 ° C.) environment, evaluation of deep drawing moldability, and high temperature (170 ° C.) environment of the exterior material 10 after molding. It is an evaluation of reliability (molding reliability) below.
  • a tensile tester manufactured by Shimadzu Corporation was used to determine the lamination strength between the barrier layer of the exterior material cut to a width of 15 mm and the base material layer at room temperature (25 ° C) under the condition of a tensile speed of 50 mm / min. It was measured by a 90 degree peel test. In addition, based on the obtained laminate strength, evaluation was performed according to the following criteria. The results are shown in Table 5.
  • B Laminate strength is 4.5 N / 15 mm or more and less than 6.0 N / 15 mm.
  • C Laminate strength is 3.0N / 15mm or more and less than 4.5N / 15mm.
  • D Laminate strength is less than 3.0 N / 15 mm.
  • Laminate strength is 2.0 N / 15 mm or more and less than 3.0 N / 15 mm.
  • C Laminate strength is 1.0 N / 15 mm or more and less than 2.0 N / 15 mm.
  • D Laminate strength is less than 1.0 N / 15 mm.
  • the molding depth that enables deep drawing was evaluated by the following method.
  • the molding depth of the molding apparatus was set to 1.00 to 5.00 mm every 0.25 mm, and the exterior material was deep-drawn and molded.
  • For the sample after deep drawing visually check the presence or absence of breakage and pinholes while irradiating the sample with light, and determine the maximum value of the molding depth that could be deep drawn without any breakage or pinholes. I asked.
  • the molding depth was evaluated according to the following criteria. The results are shown in Table 5.
  • D The maximum molding depth is less than 3.00 mm.
  • the polyurethane compound composed of a reaction product of polyester polyol and IPDI-n is said to have relatively high heat resistance, but polyamide-imide is also compared with Comparative Examples C-3 and C-4 using this.
  • Example C-1 in which the above is blended is excellent in terms of lamination strength and molding reliability in a high temperature environment.
  • Comparative Example C-4 although NCO / OH is increased to further improve the heat resistance, Example C-1 is superior to this.
  • the blending amount A of the polyamide-imide may be 1.0% by mass ⁇ A ⁇ 20.0% by mass in order to achieve both the lamination strength and the molding reliability in a high temperature environment.
  • the one having the best lamination strength in a high temperature environment is 10.0 to 15.0% by mass.
  • the lamination strength in a high temperature environment is higher than that when it is larger than this (Examples C-6 to C-9). Is low.
  • the number average molecular weight (Mn) is smaller than 5000 in this way, the brittleness of polyamide-imide increases as the number of functional groups per unit mass increases, and the melting point, glass transition temperature, softening point, etc. decrease. It can be inferred that the decrease in heat resistance is related to this.
  • ⁇ Corrosion prevention treatment layer> Distilled water was used as a solvent, and "sodium polyphosphate stabilized cerium oxide sol" adjusted to a solid content concentration of 10% by mass was used.
  • the sodium polyphosphate stabilized cerium oxide sol was obtained by blending 10 parts by mass of Na salt of phosphoric acid with 100 parts by mass of cerium oxide.
  • Examples D-1 to D-3, D-9 to D-12, Comparative Examples D-1, D-2> The barrier layer was attached to the base material layer using an adhesive (first adhesive layer) by a dry laminating method.
  • the sealant layer was attached to the surface of the barrier layer opposite to the surface to which the first adhesive layer was adhered, using an adhesive (second adhesive layer) by a dry laminating method.
  • the laminate thus obtained was heat-treated under the conditions shown in Table 7 to produce an exterior material (base material layer / first adhesive layer / barrier layer / second adhesive layer / sealant layer).
  • Examples D-4 to D-8> First, the barrier layer was coated with sodium polyphosphate-stabilized cerium oxide sol on both surfaces of the barrier layer by a gravure coat. Next, the applied sodium polyphosphate-stabilized cerium oxide sol was dried, and then the baking treatment was sequentially performed to form a corrosion prevention treatment layer on both surfaces of the barrier layer. At this time, the baking conditions were a temperature of 150 ° C. and a processing time of 30 seconds.
  • first adhesive layer an adhesive (first adhesive layer) by a dry laminating method.
  • second adhesive layer a sealant layer was attached to the other surface of the barrier layer on which the corrosion prevention treatment layer was formed by a dry laminating method using (second adhesive layer).
  • the laminate thus obtained is heat-treated under the conditions shown in Table 7, and the exterior material (base material layer / first adhesive layer / corrosion prevention treatment layer / barrier layer / corrosion prevention treatment layer / second adhesive layer) is subjected to heat treatment. / Sealant layer) was manufactured.
  • ⁇ Second adhesive layer> The barrier layer and the sealant layer in close contact with the second adhesive layer were peeled off to expose the second adhesive layer.
  • the urea abundance ratio was calculated for the exposed second adhesive layer in the same manner as for the first adhesive layer. The results are shown in Table 6.
  • the molding depth capable of deep drawing was evaluated by the following method.
  • the molding depth of the molding device was set to 1.0 to 5.0 mm every 0.25 mm, and the presence or absence of breakage and pinholes in the deeply drawn sample was visually confirmed while irradiating the exterior material with light.
  • the maximum value of the molding depth that could be deep-drawn without any breakage or pinhole was determined.
  • the molding depth was evaluated according to the following criteria. The results are shown in Table 8.
  • Step A A part of the coating liquid 4 hours after the preparation of the adhesive coating liquid was recovered, and the solvent of the coating liquid was dried.
  • Step B The weight of the mesh on which the sample was placed was measured (referred to as w1), and the total weight when the dry coating film of Step A was placed on this mesh was measured (referred to as w2).
  • Step C The dry coating film of Step A was immersed in xylene and stored at room temperature for 1 week.
  • Step D The xylene solution of step C was filtered through the mesh used in step B, and the residue was washed with a large amount of xylene.
  • Step E) The residue of Step D was dried and weighed (referred to as w3).
  • Step F) From the weight data obtained above, the gel fraction was calculated by the following formula.
  • Gel fraction (w3-w1) / (w2-w1) ⁇ Evaluation criteria> A: Gel fraction is less than 40% B: Gel fraction is 40% or more and less than 50% C: Gel fraction is 50% or more and less than 60% D: Gel fraction is 60% or more
  • Heat-resistant seal strength The exterior material is cut into a size of 120 mm x 60 mm, folded in half so that the sealant layer is on the inside, and the end opposite to the folded part is heat-sealed to a width of 10 mm at 190 ° C / 0.5 MPa / 3 seconds. , Stored at room temperature for 6 hours. Then, the central portion in the longitudinal direction of the heat seal portion was cut out with a width of 15 mm and a length of 300 mm to prepare a sample for measuring the heat seal strength. After leaving this sample in a test environment of 150 ° C.
  • ⁇ Corrosion prevention treatment layer> Distilled water was used as a solvent, and "sodium polyphosphate stabilized cerium oxide sol" adjusted to a solid content concentration of 10% by mass was used.
  • the sodium polyphosphate stabilized cerium oxide sol was obtained by blending 10 parts by mass of Na salt of phosphoric acid with 100 parts by mass of cerium oxide.
  • ⁇ Metal leaf layer (thickness 35 ⁇ m)> A soft aluminum foil (manufactured by Toyo Aluminum Co., Ltd., “8079 material”) that had been annealed and degreased was used.
  • Examples E-1 to E-5, Comparative Examples E-1 to E-3> The metal foil layer was attached to the base material layer using an adhesive (first adhesive layer) by a dry laminating method.
  • the sealant layer was attached to the surface of the metal foil layer opposite to the surface to which the first adhesive layer was adhered, using an adhesive (second adhesive layer) by a dry laminating method.
  • the laminate thus obtained was heat-treated under the conditions shown in Table 10 to produce an exterior material (base material layer / first adhesive layer / metal foil layer / second adhesive layer / sealant layer).
  • Examples E-6 to E-11> First, the metal foil layer was coated with sodium polyphosphate-stabilized cerium oxide sol by gravure coating on both surfaces of the metal foil layer. Next, the applied sodium polyphosphate-stabilized cerium oxide sol was dried, and then the baking treatment was sequentially performed to form a corrosion prevention treatment layer on both surfaces of the metal foil layer. At this time, the baking conditions were a temperature of 150 ° C. and a processing time of 30 seconds.
  • first adhesive layer an adhesive (first adhesive layer) by a dry laminating method.
  • second adhesive layer a sealant layer was attached to the other surface of the metal foil layer on which the corrosion prevention treatment layer was formed by a dry laminating method using (second adhesive layer).
  • the laminate thus obtained is heat-treated under the conditions shown in Table 10, and the exterior material (base material layer / first adhesive layer / corrosion prevention treatment layer / metal foil layer / corrosion prevention treatment layer / second adhesion) is subjected to heat treatment.
  • Layer / sealant layer was manufactured.
  • the molding depth capable of deep drawing was evaluated by the following method.
  • the molding depth of the molding device was set to 1.0 to 5.0 mm every 0.25 mm, and the presence or absence of breakage and pinholes in the deeply drawn sample was visually confirmed while irradiating the exterior material with light.
  • the maximum value of the molding depth that could be deep-drawn without any breakage or pinhole was determined.
  • the molding depth was evaluated according to the following criteria, and a value of ⁇ or higher was regarded as acceptable. The results are shown in Table 11.
  • Heat-resistant seal strength The exterior material is cut into a size of 120 mm x 60 mm, folded in half so that the sealant layer is on the inside, and the end opposite to the folded part is heat-sealed to a width of 10 mm at 190 ° C / 0.5 MPa / 3 seconds. , Stored at room temperature for 6 hours. Then, the central portion in the longitudinal direction of the heat seal portion was cut out with a width of 15 mm and a length of 300 mm to prepare a sample for measuring the heat seal strength. After leaving this sample in a test environment of 150 ° C.
  • an exterior material for a power storage device capable of ensuring excellent lamination strength in both a room temperature environment and a high temperature environment and also having excellent deep drawing moldability, and a power storage device using the same are provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本開示に係る蓄電装置外装材は、少なくとも基材層、バリア層、及び、シーラント層をこの順で備え、基材層とバリア層との間に、少なくとも1種類以上のポリエステルポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物からなるポリウレタン系化合物を含有する接着剤層を備え、多官能イソシアネート化合物は、イソホロンジイソシアネートのヌレート体を含み、多官能イソシアネート化合物におけるイソホロンジイソシアネートのヌレート体に由来するイソシアネート基の含有量が、多官能イソシアネート化合物に含まれるイソシアネート基全量100モル%を基準として5~100モル%である。

Description

蓄電装置用外装材及びこれを用いた蓄電装置
 本開示は、蓄電装置用外装材及びこれを用いた蓄電装置に関する。
 蓄電装置として、例えば、リチウムイオン電池、ニッケル水素電池、及び鉛蓄電池等の二次電池、並びに電気二重層キャパシタ等の電気化学キャパシタが知られている。携帯機器の小型化又は設置スペースの制限等により蓄電装置の更なる小型化が求められており、エネルギー密度が高いリチウムイオン電池が注目されている。リチウムイオン電池に用いられる外装材として、従来は金属製の缶が用いられていたが、軽量で、放熱性が高く、低コストで作製できる多層フィルムが用いられるようになっている。
 上記多層フィルムを外装材に用いるリチウムイオン電池は、ラミネート型リチウムイオン電池と称される。外装材が電池内容物(正極、セパレータ、負極、電解液等)を覆っており、内部への水分の浸入を防止する。ラミネート型のリチウムイオン電池は、例えば、外装材の一部に冷間成型によって凹部を形成し、該凹部内に電池内容物を収容し、外装材の残りの部分を折り返して縁部分をヒートシールで封止することによって製造される(例えば、特許文献1参照)。
特開2013-101765号公報
 ところで、リチウムイオン電池の次世代電池として、全固体電池と称される蓄電装置の研究開発がなされている。全固体電池は、電解物質として有機電解液を使用せず、固体電解質を使用するという特徴を有する。リチウムイオン電池は、電解液の沸点温度(80℃程度)よりも高い温度条件で使用することができないのに対し、全固体電池は100℃を超える温度条件で使用することが可能であるとともに、高い温度条件下(例えば100~150℃又は100~170℃)で作動させることによってリチウムイオンの伝導度を高めることができる。
 しかし、外装材として上記のような多層フィルムを使用してラミネート型の全固体電池を製造する場合、外装材の耐熱性が不十分であると、高温環境下での層間密着性が確保できず、ラミネート強度が低下して全固体電池のパッケージの密封性が低下するおそれがある。外装材は、特許文献1に示されているように、例えば、基材層、金属箔層(バリア層)及びシーラント層が接着剤層等を介して積層された構造を有しているが、高温環境下では基材層と金属箔層間の密着性が低下しやすい。また、耐熱性接着剤としてエポキシ系接着剤が知られているが、エポキシ系接着剤の硬化物は脆性が高くなりやすく、外装材に求められる深絞り成型性、及び、室温環境下でのラミネート強度が不十分となりやすい。
 本開示は上記課題に鑑みてなされたものであり、室温環境下及び高温環境下の両方で優れたラミネート強度を確保できると共に、深絞り成型性にも優れた蓄電装置用外装材及びこれを用いた蓄電装置を提供することを第1~3の目的とする。
 また、外装材として上記のような多層フィルムを使用し、ラミネート型の全固体電池を製造する場合、外装材の耐熱性が不十分であることに起因して、外装材の層間(特に、基材層又はシーラント層と、バリア層との間)においてデラミネーションが発生し、全固体電池のパッケージの密封性が不十分になるおそれがある。
 本開示は、上記課題に鑑みてなされたものであり、耐熱性に優れる外装材を提供することを第4の目的とする。
 また、このような全固体電池では、冷間成型によって成型される凹部を深くするほど、多くの電池内容物を収容できるため、エネルギー密度をより高くすることができる。そのため、多層フィルムからなる外装材には、所望の深さの凹部を形成できる十分な深絞り成型性が求められている。
 本開示は、上記課題に鑑みてなされたものであり、耐熱性に優れ、且つ、十分な深絞り成型性を有する外装材を提供することを第5の目的とする。
 上記第1の目的を達成するために、本開示は、少なくとも基材層、バリア層、及び、シーラント層をこの順で備える蓄電装置用外装材であって、上記基材層と上記バリア層との間に、少なくとも1種類以上のポリエステルポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物からなるポリウレタン系化合物を含有する接着剤層を備え、上記多官能イソシアネート化合物は、イソホロンジイソシアネートのヌレート体を含み、上記多官能イソシアネート化合物における上記イソホロンジイソシアネートのヌレート体に由来するイソシアネート基の含有量が、上記多官能イソシアネート化合物に含まれるイソシアネート基全量100モル%を基準として5~100モル%である、蓄電装置用外装材を提供する。
 主剤にポリエステルポリオール樹脂、硬化剤にイソホロンジイソシアネートのヌレート体(以下、「IPDI-ヌレート」とも言う)を特定の割合で含む多官能イソシアネート化合物を用いた接着剤の硬化膜(接着剤層)は、高温に曝された場合であっても、IPDI-ヌレートの嵩高い分子構造により、分子鎖混合が緩和されにくくなる。そのため、高温環境下においても層間密着性が低下しにくく、上記接着剤層が介在する上記基材層と上記バリア層との間のラミネート強度を十分に確保することができる。また、上記接着剤層は、エポキシ系接着剤の硬化膜よりも靱性が高く、優れた深絞り成型性、及び、室温環境下での優れたラミネート強度を得ることができる。したがって、上記構成を有する本開示の蓄電装置用外装材によれば、室温環境下及び高温環境下の両方で優れたラミネート強度を確保できると共に、優れた深絞り成型性を得ることができる。更に、IPDI-ヌレートは脂環式構造を有し芳香環を有さないため、それを硬化剤として用いた接着剤層は、高温環境下に長期間暴露しても黄変(外観不良)が生じ難いという利点がある。
 上記蓄電装置用外装材において、上記ポリエステルポリオール樹脂に含まれる水酸基数に対する、上記多官能イソシアネート化合物に含まれるイソシアネート基数の比率は、2~60であってもよい。
 水酸基数に対するイソシアネート基数の比率(NCO/OH)を2以上とすることで、高温環境下でのラミネート強度をより向上させることができる。その理由は以下の通りである。すなわち、硬化剤が主剤よりも十分に多く存在することで、硬化剤同士が反応してウレア樹脂やビウレット樹脂といった副生成物が生成する。これらの樹脂には、活性水素基が含まれているため、各層中の極性基と相互作用を起こし、界面密着力が向上するため、結果として耐熱性が向上するものと考えられる。一方、比率(NCO/OH)を60以下とすることで、硬化剤の割合が多すぎて硬化が不十分になることを防ぐことができ、室温環境下及び高温環境下でのラミネート強度をより向上させることができる。また、硬化剤の割合が多すぎる場合、硬化膜中のウレア樹脂やビウレット樹脂の比率が多くなり、硬化膜の脆性が高くなってしまうことで成型性が低下することがあるが、比率(NCO/OH)を60以下とすることで、そのような問題の発生を防止することができる。
 上記蓄電装置用外装材において、上記多官能イソシアネート化合物が、トリレンジイソシアネートのアダクト体(以下、「TDI-アダクト」とも言う)を更に含んでいてもよい。TDI-アダクトは、分子間相互作用(π-πスタッキング)やウレタン結合を有し、且つ、凝集力に優れることから、IPDI-ヌレートには劣るものの比較的良好な耐熱性を有しており、且つ、室温環境下ではIPDI-ヌレートよりも優れた密着強度及び深絞り成型性を発現することができる。そのため、IPDI-ヌレートとTDI-アダクトとを併用することで、室温環境下及び高温環境下の両方で優れたラミネート強度をバランス良く高水準で確保できると共に、より優れた深絞り成型性を得ることができる。
 ここで、上記多官能イソシアネート化合物に含まれる上記トリレンジイソシアネートのアダクト体に由来するイソシアネート基数に対する、上記イソホロンジイソシアネートのヌレート体に由来するイソシアネート基数の比率が0.05~20であってもよい。TDI-アダクトに由来するイソシアネート基数(NCO)に対する、IPDI-ヌレートに由来するイソシアネート基数(NCO)の比率(NCO/NCO)を0.05以上とすることで、IPDI-ヌレートによる耐熱性向上効果を十分に得ることができ、高温環境下でのラミネート強度をより十分に確保することができる。また、比率(NCO/NCO)が0.05以上であると、深絞り成型後に高温に曝された場合のデラミネーションの発生を十分に抑制することができる。一方、比率(NCO/NCO)を20以下とすることで、TDI-アダクトによる室温での密着性向上効果を十分に得ることができ、室温環境下でのラミネート強度及び深絞り成型性をより向上させることができる。
 上記蓄電装置用外装材において、上記接着剤層の単位面積当たりの質量は2.0~6.0g/mであってもよい。単位面積当たりの質量を2.0g/m以上とすることで、接着剤層の厚さを十分に確保でき、接着剤層の剛性と基材層及びバリア層の剛性とを近付けることができるため、深絞り成型性及び室温環境下及び高温環境下の両方のラミネート強度をより向上させることができる。一方、単位面積当たりの質量が6.0g/mを超えると、深絞り成形性及びラミネート強度の更なる向上効果が得られ難いため、厚膜化及びコストの上昇を抑制する観点から、単位面積当たりの質量は6.0g/m以下とすることが好ましい。
 上記蓄電装置用外装材において、上記バリア層の一方又は両方の面に腐食防止処理層が設けられていてもよい。腐食防止処理層を設けることで、バリア層の腐食を防止できるとともに、腐食防止処理層が介在することでバリア層とそれに隣接する層との密着力を高めることができる。また、全固体電池において、電解質に硫化物系の材料が用いられることがあるが、外装材内部に水分が侵入した場合、硫化物系化合物と水とが反応して硫化水素(HS)が発生する。このHSによってバリア層とそれに隣接する層との密着力が低下する場合がある。しかしながら、上記蓄電装置用外装材を全固体電池の外装材として用いた場合、バリア層表面に腐食防止処理層を備えることで、バリア層に耐HS性を付与することができ、バリア層とそれに隣接する層との密着力の低下を防ぐことができる。
 上記蓄電装置用外装材において、上記基材層はポリアミドフィルム又はポリエステルフィルムからなるものであってもよい。基材層にポリアミドフィルム又はポリエステルフィルムを用いることで、深絞り成型性をより向上させることができる。また、基材層にポリエチレンテレフタレートフィルムを用いた場合、接着剤層との密着力がより高くなり、結果として耐熱性及び深絞り成型性がより向上する傾向がある。
 上記蓄電装置用外装材は、全固体電池用であってもよい。
 本開示はまた、蓄電装置本体と、上記蓄電装置本体から延在する電流取出し端子と、上記電流取出し端子を挟持し且つ上記蓄電装置本体を収容する、上記本開示の蓄電装置用外装材と、を備える蓄電装置を提供する。上記蓄電装置は、全固体電池であってもよい。
 上記第2の目的を達成するため、本開示は、少なくとも、基材層と、第1の接着剤層と、バリア層と、第2の接着剤層と、シーラント層とをこの順に備える積層体からなり、
前記基材層を除去し、前記第1の接着剤層を露出させ、露出した接着剤層の最表面側からフーリエ変換赤外分光分析法の減衰全反射で測定した場合に、ベースラインの透過率T0と、2100cm-1から2400cm-1の範囲に検出される透過率の最小値T1と、1670cm-1から1700cm-1の範囲に検出される透過率の最小値T2が0.06≦(T0-T1)/(T0-T2)≦0.4の関係を充足している事を特徴とする、蓄電装置用外装材を提供する。
 0.06≦(T0-T1)/(T0-T2)≦0.4の関係を充足している場合、第1の接着剤層の引張強度や破断伸度が各層(主にバリア層及び基材)の値に近くなり、結果として成型性は向上する。また本開示の外装材を用いた成型品が高温環境下(150℃)に曝された場合、未反応の硬化剤同士の反応が促進される事で第1の接着剤層のTgがあがり、耐熱性が向上する。
 上記蓄電装置用外装材おいて、前記第1の接着剤層が、多官能イソシアネート化合物を含み、前記多官能イソシアネート化合物は脂環式イソシアネート多量体及び分子構造内に芳香環を含むイソシアネート多量体からなる群より選ばれる少なくとも1種の多官能イソシアネート化合物からなっていて良い。イソシアネート化合物の構造を脂環式とベンゼン環含有のものに規定することで、初期密着力及び耐熱性の向上が可能となる。
 上記蓄電装置用外装材おいて、前記第1の接着剤層が、ポリエステルポリオール及びアクリルポリオール及びポリカーボネートジオールからなる群より選ばれる少なくとも1種のポリオールと、前記多官能イソシアネート多量体とにより形成されたウレタン樹脂を含んでいて良い。ポリオール成分をポリエステルポリオール、アクリルポリオール、ポリカーボネートジオール(PCD)の三種類から選定した場合、耐熱性及び成型性が向上する。なかでもポリエステルポリオールが好ましい。
 上記蓄電装置用外装材おいて、前記ポリオールに含まれる水酸基数に対する、多官能イソシアネート多量体に含まれるイソシアネート基数の比率が5~60であって良い。NCO/OHの比率をこの範囲の値とすることで、高温環境下でのラミネート強度が向上し、かつ成型性の低下を防ぐことができる。
 上記蓄電装置用外装材おいて、前記ウレタン樹脂の、乾燥後の塗布量が2.0g/m以上6.0g/m以下であって良い。塗布量が2.0gより少ない場合、接着剤層としての厚みが小さくなるため、応力分散性が低下し、成型性が低下するおそれがある。一方、塗布量を多くした場合、接着剤層が厚くなると応力分散性の向上等により成型性が向上する。ただし塗布量を6.00g/mより大きくしても成型性の大きな向上は見られず、コストの点等からも塗布量の上限は6.00g/mとすると好ましい。
 上記蓄電装置用外装材おいて、前記バリア層が、アルミニウム箔であって良い。バリア性、延伸性、コストなど総合的なバランスに優れる。
 上記蓄電装置用外装材おいて、前記バリア層の厚みが、15~100μmであって良い。成型性が良く、コストを抑えることができる。
 上記蓄電装置用外装材おいて、前記バリア層の、第1の接着剤層とバリア層の間、もしくは第2の接着剤層とバリア層の間、またはその両方に、腐食防止処理層を有していて良い。接着層との化学的密着力が向上するため、成型性が向上する。また、固体電解質に硫化物を使用したときに発生する硫化水素に対する耐腐食性を付与することができる。
 上記蓄電装置用外装材おいて、前記基材がポリアミドフィルムもしくはポリエステル系フィルムからなっていて良い。優れた靭性及び耐熱性を有する基材を使用することで耐熱性及び成型性を向上させることができる。
 上記蓄電装置用外装材は、全固体電池用であって良い。
 本開示はまた、蓄電装置本体と、上記蓄電装置本体から延在する電流取出し端子と、前記電流取出し端子を挟持しかつ上記蓄電装置本体を収容する、上記本開示の蓄電装置用外装材と、を備える蓄電装置を提供する。上記蓄電装置は、全固体電池であってもよい。
 また、上記第3の目的を達成するために、本開示は、少なくとも基材層、バリア層、及び、シーラント層をこの順で備える蓄電装置用外装材であって、
 前記基材層と前記バリア層との間に、ポリウレタン系化合物とポリアミドイミド樹脂を含む接着剤層を備えることを特徴とする蓄電装置用外装材を提供する。
 ポリウレタン系化合物を含む接着剤層はエポキシ系接着剤の硬化膜よりも靱性が高く、優れた深絞り成型性、及び、室温環境下での優れたラミネート強度を得ることができる。しかしながら、例えば170℃以上の高温環境下におけるラミネート強度は十分ではない。ポリエステルポリオールとイソホロンジイソシアネートのヌレート体(IPDI-n)との反応物から成るポリウレタン系化合物は比較的耐熱性に優れているが、この場合であっても、170℃以上の高温環境下におけるラミネート強度は十分とはいえない。
 ポリアミドイミド樹脂は比較的脆性が高く、したがって靱性に劣るものの、耐熱性に優れており、これと前記ポリウレタン系化合物とを配合して接着剤層を構成することにより、例えば170℃以上の高温環境下においても十分なラミネート強度を発揮し、また、深絞り成型性も優れたものとなる。しかも、こうして深絞り成型した後にも、高温環境下における高いラミネート強度を維持できるのである。
 なお、前記接着剤層において、前記ポリウレタン系化合物の固形分量に対して前記ポリアミドイミド樹脂の固形分量をA質量%としたとき、1.0質量%<Aを満たすことが望ましい。これに反して、ポリウレタン系化合物の固形分量に対するポリアミドイミド樹脂の固形分量Aが1.0質量%以下である場合には、高温環境下におけるラミネート強度が不十分となるおそれがある。また、A<20.0質量%を満たすことが望ましい。これに反して、ポリウレタン系化合物の固形分量に対するポリアミドイミド樹脂の固形分量Aが20.0質量%以上である場合には深絞り成型性に劣る。
 次に、前記ポリアミドイミド樹脂の数平均分子量Mnは3000<Mn<36000であることが望ましい。これに反して、ポリアミドイミド樹脂の数平均分子量Mnが3000以下である場合には、このポリアミドイミド樹脂のガラス転移温度や軟化温度が低いこととなり、高温環境下におけるラミネート強度が不十分となるおそれがある。また、ポリアミドイミド樹脂の数平均分子量Mnが36000以上である場合には溶剤に溶解し難く、このため、接着剤層を塗布形成することが困難となる。
 次に、前記ポリウレタン系化合物は、少なくとも1種類以上のポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物から成るものであってよい。そして、この際、前記ポリオール樹脂としては、ポリエステルポリオール、アクリルポリオール及びポリカーボネートポリオールから成る群より選択された少なくとも1種類のポリオール樹脂を使用できる。ポリオール樹脂が、これらポリエステルポリオール、アクリルポリオールあるいはポリカーボネートポリオールで構成されている場合には、高温環境下におけるラミネート強度と成型性とが両者共に向上する。
 また、前記多官能イソシアネート化合物としては、脂環式イソシアネート多量体及び分子構造内に芳香環を含むイソシアネート多量体から成る群より選択された少なくとも1種類のイソシアネート多量体を使用できる。多官能イソシアネート化合物がこれら脂環式イソシアネート多量体あるいは分子構造内に芳香環を含むイソシアネート多量体で構成されている場合には、ラミネート強度と成型性とが両者共に向上する。その理由は明確ではないが、脂環式イソシアネート多量体は嵩高い分子構造を有するため、高温環境下でも分子鎖が解けにくくなることに起因していると推測できる。また、分子構造内に芳香環を含むイソシアネート多量体では、分子間の相互作用のため、凝集力が増大し、硬化膜自身の耐熱性が増大する事で、ラミネート強度が増大するものと推測できる。
 次に、前記ポリオール樹脂中に含まれる水酸基の数に対する前記多官能イソシアネート化合物に含まれるイソシアネートの数の比率(NCO/OH)は1.5<NCO/OH<40.0であることが望ましい。
 ポリウレタン系化合物の硬化剤(多官能イソシアネート化合物)に含まれるイソシアネートの数が主剤(ポリオール樹脂)中に含まれる水酸基の数より十分に多い(NCO/OH>>1.0)場合、耐熱性が向上する。このようにNCO基がOH基より十分に多い場合には、硬化剤同士が反応してウレア樹脂やビウレット樹脂という副生成物を生成する。これらウレア樹脂やビウレット樹脂には、活性水素基が含まれているため、各界面中の極性基と相互作用を生じて界面密着力が増大し、この結果、耐熱性が向上するものと推測できる。
 また、上記第4の目的を達成するために、本開示は、基材層と、第一接着層と、バリア層と、第二接着層と、シーラント層と、をこの順で有する積層構造を備え、第一接着層及び第二接着層のうち少なくとも一方が、アミン系樹脂とポリイソシアネート化合物との反応物であるウレア系化合物を含み、第一接着層及び第二接着層のうちウレア系化合物を含む層において、1680~1720cm-1の赤外線吸収スペクトルピーク強度をA1、1590~1640cm-1の赤外線吸収スペクトルピーク強度をB1としたとき、下記式(1-A)で定義されるX1が10~99である、蓄電装置用外装材を提供する。
X1={B1/(A1+B1)}×100   …(1-A)
 上記蓄電装置用外装材は、耐熱性に優れる。このような効果が奏される理由について本発明者らは以下のように考えている。すなわち、ウレア系化合物は、ウレア基が非常に高い凝集力を有する。また、ウレア基は分子内に活性水素を有するため、接着対象の界面と、該活性水素とが水素結合を発生させ、それにより界面の密着力が向上する。更に、該接着層において、ウレタン基に由来する1680~1720cm-1の赤外線吸収スペクトルピーク強度と、ウレア基に由来する1590~1640cm-1の赤外線吸収スペクトルピーク強度とを用いて求められるX1が10以上であることで、ウレア系化合物のウレア基が高い凝集力を発揮し、また、X1が99以下であることにより、接着層の過度な硬化が抑制され、接着層は高い密着性を有するものとなる。その結果、上記蓄電装置用外装材は、耐熱性に優れる。
 本開示において、ポリイソシアネート化合物のイソシアネート基は、ブロック剤と結合していてもよい。更に、ブロック剤は、ポリイソシアネート化合物のイソシアネート基から60~120℃で脱離してよい。それにより、得られる外装材は成型カール耐性に優れる。
 本開示は、少なくとも第二接着層とバリア層との間に腐食防止処理層を更に有することができる。これにより、耐熱性が一層向上する。
 本開示において、第一接着層及び第二接着層のうち第二接着層のみがウレア系化合物を含んでいてよい。それにより、得られる外装材は耐熱性に優れ、且つ、第一接着層の剛性が緩和され易くなり、深絞り成型性に優れたものとなる。また、第二接着層のみがウレア系化合物を含むことで、外装材内部の電池内容物から発生した硫化水素によるバリア層の腐食を抑制できる。
 本開示において、シーラント層はポリオレフィン系樹脂及びポリエステル系樹脂のうち少なくとも一方を含んでいてよい。シーラント層が融点の高いポリオレフィン系樹脂及びポリエステル系樹脂のうち少なくとも一方を含むことで、耐熱性が一層向上する。
 本開示において、第一接着層及び第二接着層のうち少なくとも一方が硫化水素吸着物質を含んでいてよい。それにより、得られる外装材は、蓄電装置から硫化水素が発生した場合、又は外装材の外部に硫化水素が存在する場合であっても、バリア層と、基材層及びシーラント層とのデラミネーションが発生しにくい、耐硫化水素性に優れたものとなる。
 本開示は、全固体電池用であってよい。本開示の外装材は耐熱性に優れるため、高温環境下での使用が想定される全固体電池用途に適している。
 上記第5の目的を達成するために、本開示は、基材層と、第一接着層と、金属箔層と、第二接着層と、シーラント層と、をこの順で有する積層構造を備え、第一接着層及び第二接着層が、ポリオール系樹脂とポリイソシアネート化合物との反応物であるウレタン系化合物を含み、第一接着層及び第二接着層において、2250~2290cm-1の赤外線吸収スペクトルピーク強度をA2、1680~1720cm-1の赤外線吸収スペクトルピーク強度をB2としたとき、下記式(1-B)で定義されるX2が10~90であり、第一接着層及び第二接着層のガラス転移温度が、60~80℃である、蓄電装置用外装材(以下、場合により単に「外装材」という。)を提供する。
X2={B2/(A2+B2)}×100   …(1-B)
 上記蓄電装置用外装材は、耐熱性に優れ、且つ、十分な深絞り成型性を有する。このような効果が奏される理由について本発明者らは以下のように考えている。
 すなわち、ウレタン系化合物は、ウレタン基が非常に高い凝集力を有する。また、ウレタン基は分子内に活性水素を有するため、接着対象の界面と、該活性水素とが水素結合を発生させ、それにより界面の密着力が向上する。更に、接着層において、ウレタン基に由来する1680~1720cm-1の赤外線吸収スペクトルピーク強度と、原料であるイソシアネート基由来に由来する2250~2290cm-1の赤外線吸収スペクトルピーク強度とを用いて求められるX2が10以上であることで、ウレタン系化合物のウレタン基が高い凝集力を発揮し、また、X2が90以下であることにより、接着層の過度な硬化が抑制され、接着層は高い密着性を有するものとなる。
 さらに、上記一般式(1-B)で定義されるX2が10~90であり、且つ、ガラス転移温度が60~80℃であることで、接着層は、架橋密度が十分となり、深絞り成型で延伸された際にかかるずり応力に接着層が耐えられる強度を有するものとなる。また、上記一般式(1-B)で定義されるX2及びガラス転移温度が上記範囲にあることで、接着層は、過度に剛直なものとならず、深絞り成型で延伸された際に、基材層及び金属箔層等の延伸に追随し、接着層の微細な破壊の発生を抑制することができる。
 その結果、第一接着層及び第二接着層の両方がウレタン系化合物を含み、X2が10~90であり、且つ、ガラス転移温度が60~80℃である上記外装材は、耐熱性に優れ、且つ、十分な深絞り成型性を有する。
 本開示において、ポリオール系樹脂は、ポリエステルポリオール系樹脂であってよい。ポリエステルポリオール系樹脂は、他のポリオール系樹脂と比較して、分子内にジカルボン酸(極性基)由来のエステルを多く有する傾向にあるため水素結合力が高く、それにより、接着層と、基材層、シーラント層及び金属箔層との密着性が向上する。その結果、得られる外装材は深絞り成型性に一層優れたものとなる。
 本開示は、少なくとも第二接着層と金属箔層との間に腐食防止処理層を更に有することができる。これにより、得られる外装材は、深絞り成型性に一層優れ、また、高い温度条件下(例えば100~150℃)であっても、外装材の層間(特に、基材層又はシーラント層と、金属箔層との間)においてデラミネーションが発生しにくい、耐熱性に一層優れたものとなる。
 本開示において、シーラント層は、ポリオレフィン系樹脂及びポリエステル系樹脂のうち少なくとも一方を含んでいてよく、ポリエステル系樹脂を含んでいてよい。シーラント層が融点の高いポリオレフィン系樹脂を含むことで、得られる外装材は耐熱性に優れたものとなり、シーラント層が融点のより高いポリエステル系樹脂を含むことで、得られる外装材は耐熱性に一層優れたものとなる。
 本開示において、ポリイソシアネート化合物は、芳香族ポリイソシアネート化合物を含んでいてよく、芳香族ポリイソシアネート化合物のアダクト体を含んでいてよい。ポリイソシアネート化合物がこれらの化合物を含む場合、分子間での芳香族環同士のπ-πスタッキング作用やπ-H相互作用等をおこし、接着層の凝集力が向上する。そのため、ポリイソシアネート化合物が芳香族ポリイソシアネート化合物又はそのアダクト体を含むことで、得られる外装材は耐熱性に優れたものとなる。また、芳香族ポリイソシアネート化合物のアダクト体は、分子内に活性水素を有するため、接着対象の界面と、該活性水素との間で水素結合が発生し、それにより界面の密着力が向上する。その結果、得られる外装材は耐熱性に一層優れたものとなる。
 本開示において、少なくとも第二接着層が、硫化水素吸着物質を含んでいてよい。それにより、得られる外装材は、蓄電装置から硫化水素が発生した場合であっても、金属箔層と、シーラント層とのデラミネーションが発生しにくい、耐硫化水素性に優れたものとなる。
 本開示は、全固体電池用であってよい。本開示の外装材は、耐熱性に優れ、且つ、十分な深絞り成型性を有するため、冷間成型によって凹部を形成し、該凹部内に電池内容物を収容する、全固体電池用途に適している。
 本開示によれば、その第1~第3の側面において、室温環境下及び高温環境下の両方で優れたラミネート強度を確保できると共に、深絞り成型性にも優れた蓄電装置用外装材及びこれを用いた蓄電装置を提供することができる。
 本開示によれば、その第4の側面において、耐熱性に優れる蓄電装置用外装材を提供することができる。
 本開示によれば、その第5の側面において、耐熱性に優れ、且つ、十分な深絞り成型性を有する蓄電装置用外装材を提供することができる。
本開示の一実施形態に係る蓄電装置用外装材の概略断面図である。 本開示の一実施形態に係る蓄電装置用外装材の概略断面図である。 本開示の一実施形態に係る蓄電装置の斜視図である。 本開示の一実施形態に係る蓄電デバイス用外装材の概略断面図である。 本開示の一実施形態に係る蓄電デバイス用外装材を用いて得られるエンボスタイプ外装材を示す図であり、(a)は、その斜視図であり、(b)は、(a)に示すエンボスタイプ外装材のb-b線に沿った縦断面図である。 本開示の一実施形態に係る蓄電デバイス用外装材を用いて二次電池を製造する工程を示す斜視図であり、(a)は、蓄電デバイス用外装材を準備した状態を示し、(b)は、エンボスタイプに加工された蓄電デバイス用外装材と電池要素を準備した状態を示し、(c)は、蓄電デバイス用外装材の一部を折り返して端部を溶融した状態を示し、(d)は、折り返された部分の両側を上方に折り返した状態を示す。
 以下、図面を適宜参照しながら、本開示の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
《第一側面》
 本開示の第1側面に係る蓄電装置用外装材、外装材の製造方法及び蓄電装置について説明する。
[蓄電装置用外装材]
 図1は、本開示の蓄電装置用外装材の一実施形態を模式的に表す断面図である。図1に示すように、本実施形態の外装材(蓄電装置用外装材)10は、基材層11と、該基材層11の一方の面側に設けられた第1の接着剤層12aと、該第1の接着剤層12aの基材層11とは反対側に設けられた、両面に第1及び第2の腐食防止処理層14a,14bを有するバリア層13と、該バリア層13の第1の接着剤層12aとは反対側に設けられた第2の接着剤層12bと、該第2の接着剤層12bのバリア層13とは反対側に設けられたシーラント層16と、が積層された積層体である。ここで、第1の腐食防止処理層14aはバリア層13の基材層11側の面に、第2の腐食防止処理層14bはバリア層13のシーラント層16側の面に、それぞれ設けられている。外装材10において、基材層11が最外層、シーラント層16が最内層である。すなわち、外装材10は、基材層11を蓄電装置の外部側、シーラント層16を蓄電装置の内部側に向けて使用される。
 本実施形態の外装材10において、第1の接着剤層12a及び第2の接着剤層12bの少なくとも一方が、少なくとも1種類以上のポリエステルポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物からなるポリウレタン系化合物を含有する層である。ここで、上記多官能イソシアネート化合物は、イソホロンジイソシアネートのヌレート体(IPDI-ヌレート)を含み、上記多官能イソシアネート化合物におけるIPDI-ヌレートに由来するイソシアネート基の含有量が、上記多官能イソシアネート化合物に含まれるイソシアネート基全量100モル%を基準として5~100モル%である。
 以下、外装材10を構成する各層について具体的に説明する。
<基材層11>
 基材層11は、蓄電装置を製造する際のシール工程における耐熱性を付与し、成型加工や流通の際に起こりうるピンホールの発生を抑制する役割を果たす。特に大型用途の蓄電装置の外装材の場合等は、耐擦傷性、耐薬品性、絶縁性等も付与できる。
 基材層11は、絶縁性を有する樹脂により形成された樹脂フィルムからなる層であることが好ましい。樹脂フィルムとしては、ポリエステルフィルム、ポリアミドフィルム、ポリイミドフィルム、ポリプロピレンフィルム等の延伸又は未延伸フィルム等が挙げられる。基材層11は、これらいずれかの樹脂フィルムで構成された単層フィルムであってもよく、これらの樹脂フィルムの2種以上で構成された積層フィルムであってもよい。
 これらの中でも、基材層11としては、成型性に優れることから、ポリエステルフィルム及びポリアミドフィルムが好ましく、ポリエステルフィルムがより好ましい。これらのフィルムは二軸延伸フィルムであることが好ましい。ポリエステルフィルムを構成するポリエステル樹脂としては、例えばポリエチレンテレフタレート(PET)が挙げられる。ポリアミドフィルムを構成するポリアミド樹脂としては、例えば、ナイロン6、ナイロン6,6、ナイロン6とナイロン6,6との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)、ナイロン11、ナイロン12等が挙げられる。ポリアミドフィルムの中では、耐熱性、突刺強度及び衝撃強度に優れる観点から、ナイロン6(ONy)が好ましい。
 二軸延伸フィルムにおける延伸方法としては、例えば、逐次二軸延伸法、チューブラー二軸延伸法、同時二軸延伸法等が挙げられる。二軸延伸フィルムは、より優れた深絞り成型性が得られる観点から、チューブラー二軸延伸法により延伸されたものであることが好ましい。
 また、基材層11は、シーラント層16の融解ピーク温度よりも高い融解ピーク温度を有することが好ましい。シーラント層16が多層構造である場合、シーラント層16の融解ピーク温度は最も融解ピーク温度が高い層の融解ピーク温度を意味する。基材層11の融解ピーク温度は好ましくは290℃以上であり、より好ましくは290~350℃である。基材層11として使用でき且つ上記範囲の融解ピーク温度を有する樹脂フィルムとしては、ナイロンフィルム、PETフィルム、ポリアミドフィルム、ポリイミドフィルム、ポリフェニレンスルファイドフィルム(PPSフィルム)などが挙げられる。基材層11として、市販のフィルムを使用してもよいし、コーティング(塗工液の塗布及び乾燥)によって基材層11を形成してもよい。なお、基材層11は単層構造であっても多層構造であってもよく、熱硬化性樹脂を塗工することによって形成してもよい。また、基材層11は、例えば、各種添加剤(例えば、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等)を含んでもよい。
 基材層11の融解ピーク温度T11とシーラント層16の融解ピーク温度T16の差(T11-T16)は、好ましくは20℃以上である。この温度差が20℃以上であることで、ヒートシールに起因する外装材10の外観の悪化をより一層十分に抑制できる。
 基材層11の厚さは、5~50μmであることが好ましく、6~40μmであることがより好ましく、10~30μmであることが更に好ましく、12~30μmであることが特に好ましい。基材層11の厚さが5μm以上であることにより、蓄電装置用外装材10の耐ピンホール性及び絶縁性を向上できる傾向がある。基材層11の厚さが50μmを超えると蓄電装置用外装材10の総厚が大きくなり、電池の電気容量を小さくしなければならない場合があるため望ましくない。
<第1の接着剤層12a>
 第1の接着剤層12aは、基材層11とバリア層13とを接着する層である。本実施形態の外装材10において、第1の接着剤層12aは、少なくとも1種類以上のポリエステルポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物からなるポリウレタン系化合物を含有し、上記多官能イソシアネート化合物がIPDI-ヌレートを含み、上記多官能イソシアネート化合物におけるIPDI-ヌレートに由来するイソシアネート基の含有量が、上記多官能イソシアネート化合物に含まれるイソシアネート基全量100モル%を基準として5~100モル%である層(以下、「特定の接着剤層」とも言う)である。
 特定の接着剤層において、多官能イソシアネート化合物におけるIPDI-ヌレートに由来するイソシアネート基の含有量は、多官能イソシアネート化合物に含まれるイソシアネート基全量100モル%を基準として5~100モル%であり、25~95モル%であってもよく、50~75モル%であってもよい。この含有量が5モル%以上であることで、高温環境下でのラミネート強度を確保することができると共に、深絞り成型後に高温に曝された場合のデラミネーションの発生を抑制することができる。一方、上記含有量は100モル%であってもよいが、IPDI-ヌレート以外の多官能イソシアネート化合物を併用することで100モル%未満としてもよい。上記含有量が95モル%以下であると、他の多官能イソシアネート化合物の併用効果により、室温環境下でのラミネート強度及び深絞り成型性をより向上させることができる傾向がある。
 特定の接着剤層において、多官能イソシアネート化合物は、IPDI-ヌレートの他に、トリレンジイソシアネートのアダクト体(TDI-アダクト)、ヘキサメチレンジイソシアネートのアダクト体、ヘキサメチレンジイソシアネートのビウレット体及びヌレート体、トリレンジイソシアネートのビウレット体及びヌレート体、ジフェニルメタンジイソシアネートのアダクト体、ビウレット体及びヌレート体、並びに、キシリレンジイソシアネートのアダクト体、ビウレット体及びヌレート体からなる群より選択される少なくとも一種を含んでいてもよく、TDI-アダクトを含んでいてもよい。このような多官能イソシアネート化合物をIPDI-ヌレートと併用することで、室温環境下でのラミネート強度及び深絞り成型性をより向上させることができる。
 多官能イソシアネート化合物がTDI-アダクトを含む場合、TDI-アダクトに由来するイソシアネート基数(NCO)に対する、IPDI-ヌレートに由来するイソシアネート基数(NCO)の比率(NCO/NCO)は、0.05~20であってもよい。耐熱性の観点からは、比率(NCO/NCO)は0.3~6であってもよく、2~4であってもよく、3であってもよい。また、比率(NCO/NCO)は7~20であってもよい。この比率が0.05以上であると、高温環境下でのラミネート強度を十分に確保することができると共に、深絞り成型後に高温に曝された場合のデラミネーションの発生を十分に抑制することができる。上記比率が20以下であると、室温環境下でのラミネート強度及び深絞り成型性をより向上させることができる。
 特定の接着剤層において、ポリエステルポリオール樹脂に含まれる水酸基数に対する、多官能イソシアネート化合物に含まれるイソシアネート基数の比率(NCO/OH)は、2~60であってもよく、5~50であってもよく、10~30であってもよい。この比率が2以上であると、高温環境下でのラミネート強度をより向上させることができる。上記比率が60以下であると、室温環境下及び高温環境下でのラミネート強度をより向上させることができる。
 第1の接着剤層12aの厚さは、特に限定されるものではないが、所望の接着強度、追随性、及び加工性等を得る観点から、例えば、1~10μmが好ましく、3~7μmがより好ましい。
 第1の接着剤層12aが特定の接着剤層である場合、その単位面積当たりの質量は、室温環境下及び高温環境下の両方でより優れたラミネート強度を確保できると共に、より優れた深絞り成型性を得る観点から、2.0~6.0g/mであってもよく、2.5~5.0g/mであってもよく、3.0~4.0g/mであってもよい。
<バリア層13>
 バリア層13は、水分が蓄電装置の内部に浸入することを防止する水蒸気バリア性を有する。また、バリア層13は、深絞り成型をするために延展性を有する。バリア層13としては、例えば、アルミニウム、ステンレス鋼、銅等の各種金属箔、あるいは、金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどを用いることができる。蒸着膜を設けたフィルムとしては、例えば、アルミニウム蒸着フィルム、無機酸化物蒸着フィルムを使用することができる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。バリア層13としては、質量(比重)、防湿性、加工性及びコストの面から、金属箔が好ましく、アルミニウム箔がより好ましい。
 アルミニウム箔としては、所望の成型時の延展性を付与できる点から、特に焼鈍処理を施した軟質アルミニウム箔を好ましく用いることができるが、更なる耐ピンホール性、及び成型時の延展性を付与させる目的で、鉄を含むアルミニウム箔を用いることがより好ましい。アルミニウム箔中の鉄の含有量は、アルミニウム箔100質量%中、0.1~9.0質量%が好ましく、0.5~2.0質量%がより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた耐ピンホール性及び延展性を有する外装材10を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた外装材10を得ることができる。アルミニウム箔としては、未処理のアルミニウム箔を用いてもよいが、耐電解液性を付与する点で脱脂処理を施したアルミニウム箔を用いることが好ましい。アルミニウム箔に脱脂処理を施す場合は、アルミニウム箔の片面のみに脱脂処理を施してもよく、両面に脱脂処理を施してもよい。
 バリア層13の厚さは、特に限定されるものではないが、バリア性、耐ピンホール性、加工性を考慮して9~200μmとすることが好ましく、15~100μmとすることがより好ましい。15μmよりも薄くなると成型性が低下することがある。また100μmよりも厚くなると電池の重量エネルギー密度が低下する傾向となり、また高コスト化につながる。
<第1及び第2の腐食防止処理層14a,14b>
 第1及び第2の腐食防止処理層14a,14bは、バリア層13を構成する金属箔(金属箔層)等の腐食を防止するためにバリア層13の表面に設けられる層である。また、第1の腐食防止処理層14aは、バリア層13と第1の接着剤層12aとの密着力を高める役割を果たす。また、第2の腐食防止処理層14bは、バリア層13と第2の接着剤層12bとの密着力を高める役割を果たす。第1の腐食防止処理層14a及び第2の腐食防止処理層14bは、同一の構成の層であってもよく、異なる構成の層であってもよい。第1及び第2の腐食防止処理層14a,14b(以下、単に「腐食防止処理層14a,14b」とも言う)としては、例えば、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、あるいはこれらの処理の組み合わせにより形成される。
 脱脂処理としては、酸脱脂あるいはアルカリ脱脂が挙げられる。酸脱脂としては、硫酸、硝酸、塩酸、フッ酸などの無機酸の単独、又はこれらの混合液を使用する方法などが挙げられる。また、酸脱脂として、一ナトリウム二フッ化アンモニウムなどのフッ素含有化合物を上記無機酸で溶解させた酸脱脂剤を用いることで、特にバリア層13にアルミニウム箔を用いた場合に、アルミニウムの脱脂効果が得られるだけでなく、不動態であるアルミニウムのフッ化物を形成させることができ、耐腐食性という点で有効である。アルカリ脱脂としては、水酸化ナトリウムなどを使用する方法が挙げられる。
 熱水変成処理としては、例えば、トリエタノールアミンを添加した沸騰水中にアルミニウム箔を浸漬処理するベーマイト処理が挙げられる。
 陽極酸化処理としては、例えば、アルマイト処理が挙げられる。
 化成処理としては、浸漬型、塗布型が挙げられる。浸漬型の化成処理としては、例えばクロメート処理、ジルコニウム処理、チタニウム処理、バナジウム処理、モリブデン処理、リン酸カルシウム処理、水酸化ストロンチウム処理、セリウム処理、ルテニウム処理、あるいはこれらの混合相からなる各種化成処理が挙げられる。一方、塗布型の化成処理としては、腐食防止性能を有するコーティング剤をバリア層13上に塗布する方法が挙げられる。
 これら腐食防止処理のうち、熱水変成処理、陽極酸化処理、化成処理のいずれかで腐食防止処理層の少なくとも一部を形成する場合は、事前に上述した脱脂処理を行うことが好ましい。なお、バリア層13として焼鈍工程を通した金属箔など脱脂処理済みの金属箔を用いる場合は、腐食防止処理層14a,14bの形成において改めて脱脂処理する必要なはい。
 塗布型の化成処理に用いられるコーティング剤は、好ましくは3価クロムを含有する。また、コーティング剤には、後述するカチオン性ポリマー及びアニオン性ポリマーからなる群より選択される少なくとも1種のポリマーが含まれていてもよい。
 また、上記処理のうち、特に熱水変成処理、陽極酸化処理では、処理剤によってアルミニウム箔表面を溶解させ、耐腐食性に優れるアルミニウム化合物(ベーマイト、アルマイト)を形成させる。そのため、アルミニウム箔を用いたバリア層13から腐食防止処理層14a,14bまで共連続構造を形成した形態になるので、上記処理は化成処理の定義に包含される。一方、後述するように化成処理の定義に含まれない、純粋なコーティング手法のみで腐食防止処理層14a,14bを形成することも可能である。この方法としては、例えば、アルミニウムの腐食防止効果(インヒビター効果)を有し、且つ、環境側面的にも好適な材料として、平均粒径100nm以下の酸化セリウムのような希土類元素酸化物のゾルを用いる方法が挙げられる。この方法を用いることで、一般的なコーティング方法でも、アルミニウム箔などの金属箔に腐食防止効果を付与することが可能となる。
 上記希土類元素酸化物のゾルとしては、例えば、水系、アルコール系、炭化水素系、ケトン系、エステル系、エーテル系などの各種溶媒を用いたゾルが挙げられる。中でも、水系のゾルが好ましい。
 上記希土類元素酸化物のゾルには、通常その分散を安定化させるために、硝酸、塩酸、リン酸などの無機酸又はその塩、酢酸、りんご酸、アスコルビン酸、乳酸などの有機酸が分散安定化剤として用いられる。これらの分散安定化剤のうち、特にリン酸は、外装材10において、(1)ゾルの分散安定化、(2)リン酸のアルミキレート能力を利用したバリア層13との密着性の向上、(3)低温でもリン酸の脱水縮合を起こしやすいことによる腐食防止処理層14a,14b(酸化物層)の凝集力の向上、などが期待される。
 上記リン酸又はその塩としては、オルトリン酸、ピロリン酸、メタリン酸、又はこれらのアルカリ金属塩やアンモニウム塩が挙げられる。中でも、外装材10における機能発現には、トリメタリン酸、テトラメタリン酸、ヘキサメタリン酸、ウルトラメタリン酸などの縮合リン酸、又はこれらのアルカリ金属塩やアンモニウム塩が好ましい。また、上記希土類元素酸化物のゾルを用いて、各種コーティング法により希土類元素酸化物からなる腐食防止処理層14a,14bを形成させる時の乾燥造膜性(乾燥能力、熱量)を考慮すると、低温での脱水縮合性に優れる点から、ナトリウム塩がより好ましい。リン酸塩としては、水溶性の塩が好ましい。
 希土類元素酸化物に対するリン酸(あるいはその塩)の配合比は、希土類元素酸化物100質量部に対して、1~100質量部が好ましい。上記配合比が希土類元素酸化物100質量部に対して1質量部以上であれば、希土類元素酸化物ゾルがより安定になり、外装材10の機能がより良好になる。上記配合比は、希土類元素酸化物100質量部に対して5質量部以上がより好ましい。また、上記配合比が希土類元素酸化物100質量部に対して100質量部以下であれば、希土類元素酸化物ゾルの機能が高まる。上記配合比は、希土類元素酸化物100質量部に対して、50質量部以下がより好ましく、20質量部以下がさらに好ましい。
 上記希土類元素酸化物ゾルにより形成される腐食防止処理層14a,14bは、無機粒子の集合体であるため、乾燥キュアの工程を経ても層自身の凝集力が低くなるおそれがある。そこで、この場合の腐食防止処理層14a,14bは、凝集力を補うために、下記アニオン性ポリマー、又はカチオン性ポリマーにより複合化されていることが好ましい。
 アニオン性ポリマーとしては、カルボキシ基を有するポリマーが挙げられ、例えば、ポリ(メタ)アクリル酸(あるいはその塩)、あるいはポリ(メタ)アクリル酸を主成分として共重合した共重合体が挙げられる。この共重合体の共重合成分としては、アルキル(メタ)アクリレート系モノマー(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基など。);(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド(アルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基など。)、N-アルコキシ(メタ)アクリルアミド、N,N-ジアルコキシ(メタ)アクリルアミド、(アルコキシ基としては、メトキシ基、エトキシ基、ブトキシ基、イソブトキシ基など。)、N-メチロール(メタ)アクリルアミド、N-フェニル(メタ)アクリルアミドなどのアミド基含有モノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有モノマー;グリシジル(メタ)アクリレート、アリルグリシジルエーテルなどのグリシジル基含有モノマー;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルトリエトキシランなどのシラン含有モノマー;(メタ)アクリロキシプロピルイソシアネートなどのイソシアネート基含有モノマーなどが挙げられる。
 これらアニオン性ポリマーは、希土類元素酸化物ゾルを用いて得られた腐食防止処理層14a,14b(酸化物層)の安定性を向上させる役割を果たす。これは、硬くて脆い酸化物層をアクリル系樹脂成分で保護する効果、及び、希土類元素酸化物ゾルに含まれるリン酸塩由来のイオンコンタミ(特にナトリウムイオン)を捕捉する(カチオンキャッチャー)効果によって達成される。つまり、希土類元素酸化物ゾルを用いて得られた腐食防止処理層14a,14b中に、特にナトリウムなどのアルカリ金属イオンやアルカリ土類金属イオンが含まれると、このイオンを含む場所を起点にして腐食防止処理層14a,14bが劣化しやすくなる。そのため、アニオン性ポリマーによって希土類元素酸化物ゾルに含まれるナトリウムイオンなどを固定化することで、腐食防止処理層14a,14bの耐性が向上する。
 アニオン性ポリマーと希土類元素酸化物ゾルを組み合わせた腐食防止処理層14a,14bは、アルミニウム箔にクロメート処理を施して形成した腐食防止処理層14a,14bと同等の腐食防止性能を有する。アニオン性ポリマーは、本質的に水溶性であるポリアニオン性ポリマーが架橋された構造であることが好ましい。この構造の形成に用いる架橋剤としては、例えば、イソシアネート基、グリシジル基、カルボキシ基、オキサゾリン基を有する化合物が挙げられる。
 イソシアネート基を有する化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネートあるいはその水素添加物、ヘキサメチレンジイソシアネート、4,4’ジフェニルメタンジイソシアネートあるいはその水素添加物、イソホロンジイソシアネートなどのジイソシアネート類;あるいはこれらのイソシアネート類を、トリメチロールプロパンなどの多価アルコールと反応させたアダクト体、水と反応させることで得られたビューレット体、あるいは三量体であるイソシアヌレート体などのポリイソシアネート類;あるいはこれらのポリイソシアネート類をアルコール類、ラクタム類、オキシム類などでブロック化したブロックポリイソシアネートなどが挙げられる。
 グリシジル基を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリプロピレングリコール、14a,14b-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコールなどのグリコール類と、エピクロルヒドリンを作用させたエポキシ化合物;グリセリン、ポリグリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトールなどの多価アルコール類と、エピクロルヒドリンを作用させたエポキシ化合物;フタル酸、テレフタル酸、シュウ酸、アジピン酸などのジカルボン酸と、エピクロルヒドリンとを作用させたエポキシ化合物などが挙げられる。
 カルボキシ基を有する化合物としては、例えば、各種脂肪族あるいは芳香族ジカルボン酸などが挙げられる。また、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸のアルカリ(土類)金属塩を用いてもよい。
 オキサゾリン基を有する化合物としては、例えば、オキサゾリンユニットを2つ以上有する低分子化合物、あるいはイソプロペニルオキサゾリンのような重合性モノマーを用いる場合には、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキルなどのアクリル系モノマーを共重合させたものが挙げられる。
 また、アニオン性ポリマーとシランカップリング剤とを反応させ、より具体的には、アニオン性ポリマーのカルボキシ基とシランカップリング剤の官能基とを選択的に反応させ、架橋点をシロキサン結合としてもよい。この場合、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-イソシアナートプロピルトリエトキシシランなどが使用できる。中でも、特にアニオン性ポリマーあるいはその共重合物との反応性を考慮すると、エポキシシラン、アミノシラン、イソシアネートシランが好ましい。
 アニオン性ポリマーに対するこれらの架橋剤の比率は、アニオン性ポリマー100質量部に対して、1~50質量部が好ましく、10~20質量部がより好ましい。架橋剤の比率がアニオン性ポリマー100質量部に対して1質量部以上であれば、架橋構造が十分に形成されやすい。架橋剤の比率がアニオン性ポリマー100質量部に対して50質量部以下であれば、塗液のポットライフが向上する。
 アニオン性ポリマーを架橋する方法は、上記架橋剤に限らず、チタニウム、ジルコニウム化合物を用いてイオン架橋を形成する方法などであってもよい。
 カチオン性ポリマーとしては、アミンを有するポリマーが挙げられ、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフトさせた1級アミングラフトアクリル樹脂、ポリアリルアミンあるいはこれらの誘導体、アミノフェノールなどのカチオン性のポリマーが挙げられる。ポリアリルアミンとしては、例えば、アリルアミン、アリルアミンアミド硫酸塩、ジアリルアミン、ジメチルアリルアミンなどの単独重合体あるいは共重合体などが挙げられる。これらのアミンは、フリーのアミンであってもよく、酢酸あるいは塩酸による安定化物であってもよい。また、共重合体成分として、マレイン酸、二酸化硫黄などを使用してもよい。さらに、1級アミンを部分メトキシ化させることで熱架橋性を付与したタイプも使用でき、また、アミノフェノールも使用できる。特に、アリルアミンあるいはその誘導体が好ましい。
 カチオン性ポリマーは、カルボキシ基やグリシジル基などのアミン/イミンと反応が可能な官能基を有する架橋剤と併用することが好ましい。カチオン性ポリマーと併用する架橋剤としては、ポリエチレンイミンとイオン高分子錯体を形成するカルボン酸を有するポリマーも使用でき、例えば、ポリアクリル酸あるいはそのイオン塩などのポリカルボン酸(塩)、あるいはこれにコモノマーを導入した共重合体、カルボキシメチルセルロースあるいはそのイオン塩などのカルボキシ基を有する多糖類などが挙げられる。
 カチオン性ポリマーは、接着性の向上という点でより好ましい材料である。また、カチオン性ポリマーも、上記アニオン性ポリマーと同様に、水溶性であることから、架橋構造を形成させて耐水性を付与することがより好ましい。カチオン性ポリマーに架橋構造を形成する際の架橋剤は、アニオン性ポリマーの項で説明した架橋剤を使用できる。腐食防止処理層14a,14bとして希土類元素酸化物ゾルを用いた場合、その保護層として上記アニオン性ポリマーを用いる代わりに、カチオン性ポリマーを用いてもよい。
 クロメート処理に代表される化成処理による腐食防止処理層は、アルミニウム箔との傾斜構造を形成させるため、特にフッ酸、塩酸、硝酸、硫酸あるいはこれらの塩を配合した化成処理剤を用いてアルミニウム箔に処理を施し、次いでクロムやノンクロム系の化合物を作用させて化成処理層をアルミニウム箔に形成させるものである。しかしながら、上記化成処理は、化成処理剤に酸を用いていることから、作業環境の悪化やコーティング装置の腐食を伴う。一方、前述したコーティングタイプの腐食防止処理層14a,14bは、クロメート処理に代表される化成処理とは異なり、アルミニウム箔を用いたバリア層13に対して傾斜構造を形成させる必要がない。そのため、コーティング剤の性状は、酸性、アルカリ性、中性などの制約を受けることがなく、良好な作業環境を実現できる。加えて、クロム化合物を用いるクロメート処理は、環境衛生上、代替案が求められている点からも、コーティングタイプの腐食防止処理層14a,14bが好ましい。
 以上の内容から、上述したコーティングタイプの腐食防止処理の組み合わせの事例として、(1)希土類元素酸化物ゾルのみ、(2)アニオン性ポリマーのみ、(3)カチオン性ポリマーのみ、(4)希土類元素酸化物ゾル+アニオン性ポリマー(積層複合化)、(5)希土類元素酸化物ゾル+カチオン性ポリマー(積層複合化)、(6)(希土類元素酸化物ゾル+アニオン性ポリマー:積層複合化)/カチオン性ポリマー(多層化)、(7)(希土類元素酸化物ゾル+カチオン性ポリマー:積層複合化)/アニオン性ポリマー(多層化)、等が挙げられる。中でも(1)及び(4)~(7)が好ましく、(4)~(7)が特に好ましい。ただし、本実施形態は、上記組み合わせに限られるわけではない。例えば腐食防止処理の選択の事例として、カチオン性ポリマーは、後述する接着性樹脂層の説明で挙げる変性ポリオレフィン樹脂との接着性が良好であるという点でも非常に好ましい材料であることから、接着性樹脂層が変性ポリオレフィン樹脂で構成される場合においては、接着性樹脂層に接する面にカチオン性ポリマーを設ける(例えば、構成(5)及び(6)などの構成)といった設計が可能である。
 また、腐食防止処理層14a,14bは、前述した層には限定されない。例えば、公知技術である塗布型クロメートのように、樹脂バインダー(アミノフェノールなど)にリン酸とクロム化合物を配合した処理剤を用いて形成してもよい。この処理剤を用いれば、腐食防止機能と密着性の両方を兼ね備えた層とすることができる。また、塗液の安定性を考慮する必要があるものの、希土類元素酸化物ゾルとポリカチオン性ポリマーあるいはポリアニオン性ポリマーとを事前に一液化したコーティング剤を使用して腐食防止機能と密着性の両方を兼ね備えた層とすることができる。
 腐食防止処理層14a,14bの単位面積当たりの質量は、多層構造、単層構造いずれであっても、0.005~0.200g/mが好ましく、0.010~0.100g/mがより好ましい。上記単位面積当たりの質量が0.005g/m以上であれば、バリア層13に腐食防止機能を付与しやすい。また、上記単位面積当たりの質量が0.200g/mを超えても、腐食防止機能はあまり変らない。一方、希土類元素酸化物ゾルを用いた場合には、塗膜が厚いと乾燥時の熱によるキュアが不十分となり、凝集力の低下を伴うおそれがある。なお、腐食防止処理層14a,14bの厚さについては、その比重から換算できる。
 腐食防止処理層14a,14bは、シーラント層とバリア層との密着性を保持しやすくなる観点から、例えば、酸化セリウムと、該酸化セリウム100質量部に対して1~100質量部のリン酸又はリン酸塩と、カチオン性ポリマーと、を含む態様であってもよく、バリア層13に化成処理を施して形成されている態様であってもよく、バリア層13に化成処理を施して形成されており、且つ、カチオン性ポリマーを含む態様であってもよい。
<第2の接着剤層12b>
 第2の接着剤層12bは、第2の腐食防止処理層14bが形成されたバリア層13とシーラント層16とを接着する層である。第2の接着剤層12bには、バリア層とシーラント層とを接着するための一般的な接着剤を用いることができる。第2の接着剤層12bを構成する材料としては、具体的には、例えば、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、カーボネートポリオールなどの主剤に対し、2官能以上のイソシアネート化合物を作用させたポリウレタン樹脂等が挙げられる。
 上述した各種ポリオールは、外装材に求められる機能や性能に応じて、単独又は2種以上を組み合わせて用いることができる。
 また、接着剤に求められる性能に応じて、上述したポリウレタン樹脂に、その他の各種添加剤や安定剤を配合してもよい。
 本実施形態の外装材10において、第2の接着剤層12bは、上述した特定の接着剤層であってもよい。
 第2の接着剤層12bの厚さは、特に限定されるものではないが、所望の接着強度、及び加工性等を得る観点から、1~10μmが好ましく、3~7μmがより好ましい。
 第2の接着剤層12bが特定の接着剤層である場合、その単位面積当たりの質量は、室温環境下及び高温環境下の両方でより優れたラミネート強度を確保できると共に、より優れた深絞り成型性を得る観点から、2.0~6.0g/mであってもよく、2.5~5.0g/mであってもよく、3.5~4.5g/mであってもよい。
<シーラント層16>
 シーラント層16は、外装材10にヒートシールによる封止性を付与する層である。シーラント層16としては、ポリオレフィン系樹脂又はポリエステル系樹脂からなる樹脂フィルムが挙げられる。これらのシーラント層16を構成する樹脂(以下、「ベース樹脂」とも言う)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 ポリオレフィン系樹脂としては、例えば、低密度、中密度又は高密度のポリエチレン;エチレン-αオレフィン共重合体;ポリプロピレン;プロピレンを共重合成分として含むブロック又はランダム共重合体;及び、プロピレン-αオレフィン共重合体等が挙げられる。
 ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂と、ポリエチレンナフタレート(PEN)樹脂、ポリブチレンナフタレート(PBN)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂挙げられる。
 シーラント層16は、ポリオレフィン系エラストマーを含んでいてもよい。ポリオレフィン系エラストマーは、上述したベース樹脂に対して相溶性を有するものであっても、相溶性を有さないものであってもよいが、相溶性を有する相溶系ポリオレフィン系エラストマーと、相溶性を有さない非相溶系ポリオレフィン系エラストマーの両方を含んでいてもよい。相溶性を有する(相溶系)とは、ベース樹脂中に分散相サイズ1nm以上500nm未満で分散することを意味する。相溶性を有さない(非相溶系)とは、ベース樹脂中に分散相サイズ500nm以上20μm未満で分散することを意味する。
 ベース樹脂がポリプロピレン系樹脂である場合、相溶系ポリオレフィン系エラストマーとしては、例えば、プロピレン-ブテン-1ランダム共重合体が挙げられ、非相溶系ポリオレフィン系エラストマーとしては、例えば、エチレン-ブテン-1ランダム共重合体が挙げられる。ポリオレフィン系エラストマーは、1種を単独で又は2種以上を組み合わせて用いることができる。
 また、シーラント層16は、添加成分として、例えば、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、難燃剤等を含んでいてもよい。これらの添加成分の含有量は、シーラント層16の全質量を100質量部とした場合、5質量部以下であることが好ましい。
 シーラント層16の厚さは、特に限定されるものではないが、薄膜化と高温環境下でのヒートシール強度の向上とを両立する観点から、5~100μmの範囲であることが好ましく、10~100μmの範囲であることがより好ましく、20~80μmの範囲であることが更に好ましい。
 シーラント層16は、単層フィルム及び多層フィルムのいずれであってもよく、必要とされる機能に応じて選択すればよい。
 以上、本実施形態の蓄電装置用外装材の好ましい実施の形態について詳述したが、本開示はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。
 例えば、図1では、バリア層13の両面に腐食防止処理層14a,14bが設けられている場合を示したが、腐食防止処理層14a,14bのいずれか一方のみが設けられていてもよく、腐食防止処理層が設けられていなくてもよい。
 図1では、第2の接着剤層12bを用いてバリア層13とシーラント層16とが積層されている場合を示したが、図2に示す蓄電装置用外装材20のように接着性樹脂層15を用いてバリア層13とシーラント層16とが積層されていてもよい。また、図2に示す蓄電装置用外装材20において、バリア層13と接着性樹脂層15との間に第2の接着剤層12bを設けてもよい。
<接着性樹脂層15>
 接着性樹脂層15は、主成分となる接着性樹脂組成物と必要に応じて添加剤成分とを含んで概略構成されている。接着性樹脂組成物は、特に制限されないが、変性ポリオレフィン樹脂を含むことが好ましい。
 変性ポリオレフィン樹脂は、不飽和カルボン酸、並びにその酸無水物及びエステルのいずれかから導かれる不飽和カルボン酸誘導体により、グラフト変性されたポリオレフィン樹脂であることが好ましい。
 ポリオレフィン樹脂としては、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-αオレフィン共重合体、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン、及びプロピレン-αオレフィン共重合体等が挙げられる。
 変性ポリオレフィン樹脂は無水マレイン酸により変性されたポリオレフィン樹脂であることが好ましい。変性ポリオレフィン樹脂には、例えば、三井化学株式会社製の「アドマー」、三菱化学株式会社製の「モディック」などが適している。このような変性ポリオレフィン樹脂は、各種金属及び各種官能基を有するポリマーとの反応性に優れるため、該反応性を利用して接着性樹脂層15に密着性を付与することができ、耐電解液性を向上させることができる。また、接着性樹脂層15は、必要に応じて、例えば、各種相溶系及び非相溶系の、エラストマー、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、並びに粘着付与剤等の各種添加剤を含有してもよい。
 接着性樹脂層15の厚さは、特に限定されないが、応力緩和や水分・電解液透過の観点から、シーラント層16と同じ又はそれ未満であることが好ましい。
 また、蓄電装置用外装材20においては、接着性樹脂層15及びシーラント層16の合計の厚さは、薄膜化と高温環境下でのヒートシール強度の向上とを両立する観点から、5~100μmの範囲であることが好ましく、20~80μmの範囲であることがより好ましい。
[外装材の製造方法]
 次に、図1に示す外装材10の製造方法の一例について説明する。なお、外装材10の製造方法は以下の方法に限定されない。
 本実施形態の外装材10の製造方法は、バリア層13に腐食防止処理層14a,14bを設ける工程と、第1の接着剤層12aを用いて基材層11とバリア層13とを貼り合わせる工程と、第2の接着剤層12bを介してシーラント層16をさらに積層して積層体を作製する工程と、必要に応じて、得られた積層体をエージング処理する工程とを含んで概略構成されている。
(バリア層13への腐食防止処理層14a,14bの積層工程)
 本工程は、バリア層13に対して、腐食防止処理層14a,14bを形成する工程である。その方法としては、上述したように、バリア層13に脱脂処理、熱水変成処理、陽極酸化処理、化成処理を施したり、腐食防止性能を有するコーティング剤を塗布したりする方法などが挙げられる。
 また、腐食防止処理層14a,14bが多層の場合は、例えば、下層側(バリア層13側)の腐食防止処理層を構成する塗布液(コーティング剤)をバリア層13に塗布し、焼き付けて第一層を形成した後、上層側の腐食防止処理層を構成する塗布液(コーティング剤)を第一層に塗布し、焼き付けて第二層を形成すればよい。
 脱脂処理についてはスプレー法又は浸漬法にて行えばよい。熱水変成処理や陽極酸化処理については浸漬法にて行えばよい。化成処理については化成処理のタイプに応じ、浸漬法、スプレー法、コート法などを適宜選択して行えばよい。
 腐食防止性能を有するコーティング剤のコート法については、グラビアコート、リバースコート、ロールコート、バーコートなど各種方法を用いることが可能である。
 上述したように、各種処理は金属箔の両面又は片面のどちらでも構わないが、片面処理の場合、その処理面はシーラント層16を積層する側に施すことが好ましい。なお、要求に応じて、基材層11の表面にも上記処理を施してもよい。
 また、第一層及び第二層を形成するためのコーティング剤の塗布量はいずれも、0.005~0.200g/mが好ましく、0.010~0.100g/mがより好ましい。
 また、乾燥キュアが必要な場合は、用いる腐食防止処理層14a,14bの乾燥条件に応じて、母材温度として60~300℃の範囲で行うことができる。
(基材層11とバリア層13との貼り合わせ工程)
 本工程は、腐食防止処理層14a,14bを設けたバリア層13と、基材層11とを、第1の接着剤層12aを介して貼り合わせる工程である。貼り合わせの方法としては、ドライラミネーション、ノンソルベントラミネーション、ウエットラミネーションなどの手法を用い、上述した第1の接着剤層12aを構成する材料にて両者を貼り合わせる。第1の接着剤層12aは、ドライ塗布量として1~10g/mの範囲、より好ましくは2~6g/mの範囲で設ける。
(第2の接着剤層12b及びシーラント層16の積層工程)
 本工程は、バリア層13の第2の腐食防止処理層14b側に、第2の接着剤層12bを介してシーラント層16を貼り合わせる工程である。貼り合わせの方法としては、ウェットプロセス、ドライラミネーション等が挙げられる。
 ウェットプロセスの場合は、第2の接着剤層12bを構成する接着剤の溶液又は分散液を、第2の腐食防止処理層14b上に塗工し、所定の温度で溶媒を飛ばし乾燥造膜、又は乾燥造膜後に必要に応じて焼き付け処理を行う。その後、シーラント層16を積層し、外装材10を製造する。塗工方法としては、先に例示した各種塗工方法が挙げられる。第2の接着剤層12bの好ましいドライ塗布量は、第1の接着剤層12aと同様である。
 この場合、シーラント層16は、例えば、上述したシーラント層16の構成成分を含有するシーラント層形成用樹脂組成物を用いて、溶融押出成形機により製造することができる。溶融押出成形機では、生産性の観点から、加工速度を80m/分以上とすることができる。
(エージング処理工程)
 本工程は、積層体をエージング(養生)処理する工程である。積層体をエージング処理することで、バリア層13/第2の腐食防止処理層14b/第2の接着剤層12b/シーラント層16間の接着を促進させることができる。エージング処理は、室温~100℃の範囲で行うことができる。エージング時間は、例えば、1~10日である。
 このようにして、図1に示すような、本実施形態の外装材10を製造することができる。
 次に、図2に示す外装材20の製造方法の一例について説明する。なお、外装材20の製造方法は以下の方法に限定されない。
 本実施形態の外装材20の製造方法は、バリア層13に腐食防止処理層14a,14bを設ける工程と、第1の接着剤層12aを用いて基材層11とバリア層13とを貼り合わせる工程と、接着性樹脂層15及びシーラント層16をさらに積層して積層体を作製する工程と、必要に応じて、得られた積層体を熱処理する工程とを含んで概略構成されている。なお、基材層11とバリア層13とを貼り合わせる工程までは、上述した外装材10の製造方法と同様に行うことができる。
(接着性樹脂層15及びシーラント層16の積層工程)
 本工程は、先の工程により形成された第2の腐食防止処理層14b上に、接着性樹脂層15及びシーラント層16を形成する工程である。その方法としては、押出ラミネート機を用いて接着性樹脂層15をシーラント層16とともにサンドラミネーションする方法が挙げられる。さらには、接着性樹脂層15とシーラント層16とを押出すタンデムラミネート法、共押出法でも積層可能である。接着性樹脂層15及びシーラント層16の形成では、例えば、上述した接着性樹脂層15及びシーラント層16の構成を満たすように、各成分が配合される。シーラント層16の形成には、上述したシーラント層形成用樹脂組成物が用いられる。
 本工程により、図2に示すような、基材層11/第1の接着剤層12a/第1の腐食防止処理層14a/バリア層13/第2の腐食防止処理層14b/接着性樹脂層15/シーラント層16の順で各層が積層された積層体が得られる。
 なお、接着性樹脂層15は、上述した材料配合組成になるように、ドライブレンドした材料を直接、押出ラミネート機により押出すことで積層させてもよい。あるいは、接着性樹脂層15は、事前に単軸押出機、二軸押出機、ブラベンダーミキサーなどの溶融混練装置を用いてメルトブレンドを施した後の造粒した造粒物を、押出ラミネート機を用いて押出すことで積層させてもよい。
 シーラント層16は、シーラント層形成用樹脂組成物の構成成分として上述した材料配合組成になるようにドライブレンドした材料を直接、押出ラミネート機により押し出すことで積層させてもよい。あるいは、接着性樹脂層15及びシーラント層16は、事前に単軸押出機、二軸押出機、ブラベンダーミキサーなどの溶融混練装置を用いてメルトブレンドを施した後の造粒物を用いて、押出ラミネート機で接着性樹脂層15とシーラント層16とを押出すタンデムラミネート法、又は共押出法で積層させてもよい。また、シーラント層形成用樹脂組成物を用いて、事前にキャストフィルムとしてシーラント単膜を製膜し、このフィルムを接着性樹脂とともにサンドラミネーションする方法により積層させてもよい。接着性樹脂層15及びシーラント層16の形成速度(加工速度)は、生産性の観点から、例えば、80m/分以上であることができる。
(熱処理工程)
 本工程は、積層体を熱処理する工程である。積層体を熱処理することで、バリア層13/第2の腐食防止処理層14b/接着性樹脂層15/シーラント層16間での密着性を向上させることができる。熱処理の方法としては、少なくとも接着性樹脂層15の融点以上の温度で処理することが好ましい。
 このようにして、図2に示すような、本実施形態の外装材20を製造することができる。
 以上、本開示の蓄電装置用外装材の好ましい実施の形態について詳述したが、本開示はかかる特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本開示の要旨の範囲内において、種々の変形・変更が可能である。
 本開示の蓄電装置用外装材は、例えば、リチウムイオン電池、ニッケル水素電池、及び鉛蓄電池等の二次電池、並びに電気二重層キャパシタ等の電気化学キャパシタなどの蓄電装置用の外装材として好適に用いることができる。中でも、本開示の蓄電装置用外装材は、固体電解質を用いた全固体電池用の外装材として好適である。
[蓄電装置]
 図3は、上述した外装材を用いて作製した蓄電装置の一実施形態を示す斜視図である。図3に示されるように、蓄電装置50は、電池要素(蓄電装置本体)52と、電池要素52から電流を外部に取り出すための2つの金属端子(電流取出し端子)53と、電池要素52を気密状態で包含する外装材10とを含んで構成される。外装材10は、上述した本実施形態に係る外装材10である。外装材10では、基材層11が最外層であり、シーラント層16が最内層である。すなわち、外装材10は、基材層11を蓄電装置50の外部側、シーラント層16を蓄電装置50の内部側となるように、1つのラミネートフィルムを2つ折りにして熱融着することにより、又は、2つのラミネートフィルムを重ねて熱融着することにより、内部に電池要素52を包含した構成となる。なお、蓄電装置50では、外装材10に代えて外装材20を用いてもよい。
 電池要素52は、正極と負極との間に電解質を介在させてなるものである。金属端子53は、集電体の一部が外装材10の外部に取り出されたものであり、銅箔やアルミ箔等の金属箔からなる。
 本実施形態の蓄電装置50は、全固体電池であってもよい。この場合、電池要素52の電解質には硫化物系固体電解質等の固体電解質が用いられる。本実施形態の蓄電装置50は、本実施形態の外装材10を用いているため、高温環境下で使用された場合であっても優れたラミネート強度を確保することができる。
《第2側面》
 本開示の第2側面に係る蓄電装置用外装材について説明する。第1側面に係る蓄電装置用外装材と共通する点の説明は省略する。第2側面に係る蓄電装置の製造方法及び蓄電装置と、第1側面に係る蓄電装置の製造方法及び蓄電装置とは、共通するため、説明は省略する。
[蓄電装置用外装材]
 第2側面に係る蓄電装置外装材と、第1側面に係る蓄電装置外装材とは、第1の接着剤層12aが異なる。
 <第1の接着剤層12a>
 第1の接着剤層12aは、基材層11とバリア層13とを接着する層である。本実施形態の外装材10において、第1の接着剤層12aは、ポリエーテルポリオール、ポリエステルポリオール、アクリルポリオール及びポリカーボネートジオールからなる群より選ばれる少なくとも1種のポリオールと多官能イソシアネート化合物とにより形成されたウレタン樹脂を含み、前記多官能イソシアネート化合物は、脂環式イソシアネート多量体及び分子構造内に芳香環を含むイソシアネート多量体からなる群より選ばれる少なくとも1種の多官能イソシアネート化合物からなっている。
 また第1の接着剤層12aは、基材層11を剥離して露出させ、露出した第1の接着剤層12aの最表面側からフーリエ変換赤外分光分析法の減衰全反射で測定した場合に、ベースラインの透過率T0と、2100cm-1から2400cm-1の範囲に検出される透過率の最小値T1と、1670cm-1から1700cm-1の範囲に検出される透過率の最小値T2が0.06≦(T0-T1)/(T0-T2)≦0.4の関係を充足している。
 フーリエ変換赤外分光分析法の減衰全反射で測定より得られたIRスペクトルにおいて、2100cm-1から2400cm-1の範囲に検出されるピークはイソシアネート基由来のカルボニル基のピークであり、1670cm-1から1700cm-1の範囲に検出されるピークはウレタン結合由来のカルボニル基のピークである。イソシアネート基とウレタン結合の比率が0.06≦(T0-T1)/(T0-T2)≦0.4を充足している場合、接着剤層には未反応のイソシアネート基及び一部の硬化剤同士が反応し生成したウレア樹脂やビウレット樹脂が存在している。ウレア樹脂やビウレット樹脂中に存在する活性水素基などにより、接着剤層の引張強度や破断伸度が各層(主にバリア層及び基材)の値に近くなり、結果として成型性は向上する。さらに、本開示の成型品が高温環境下(150℃)に曝された場合、未反応の硬化剤同士の反応が促進される。ウレア樹脂やビウレット樹脂が増加する事で接着剤層のTgがあがり、耐熱性が向上する。
 これに対し、(T0-T1)/(T0-T2)<0.06の場合は、NCO/OH≒1.0の条件で主剤及び硬化剤が定量的に反応したパターンあるいはNCO/OH>1.0の条件で硬化剤同士の反応が定量的に反応した2パターンが存在する。前者の場合、接着剤層のTgが高温環境下(150℃)よりも著しく低下してしまう事で接着剤層の凝集破壊が生じてしまう。後者の場合、エージング中の段階で、ほぼすべての硬化剤が反応しており、0.06≦(T0-T1)/(T0-T2)≦0.4を充足している場合の接着剤層よりも脆性が上がっているため、成型性は著しく低下してしまう。
 また、(T0-T1)/(T0-T2)>0.4の場合、接着剤層中に未反応の硬化剤が過剰に存在しているパターンが挙げられる。高温環境下にこの接着剤層が曝された場合、過剰量の硬化剤同士の反応により発泡が生じる恐れがある。これにより、高温環境下でデラミネーションが発生してしまうため、耐熱性が低下してしまう。
 第1の接着剤層12aにおいて用いられる多官能イソシアネート化合物は、第1側面と同様である。第1の接着剤層12aにおいて、ポリエステルポリオール樹脂に含まれる水酸基数に対する、多官能イソシアネート化合物に含まれるイソシアネート基数の比率(NCO/OH)は、第1側面と同様である。第1の接着剤層12aの厚さは、第1側面と同様である。第1の接着剤層12aの単位面積当たりの質量は、第1側面と同様である。
《第3側面》
 本開示の第3側面に係る蓄電装置用外装材及び蓄電装置について説明する。第1側面に係る蓄電装置用外装材及び蓄電装置と共通する点の説明は省略する。第3側面に係る蓄電装置の製造方法と、第1側面に係る蓄電装置の製造方法とは、共通するため、説明は省略する。
[蓄電装置用外装材]
 第3側面に係る蓄電装置外装材と、第1側面に係る蓄電装置外装材とは、第1の接着剤層12aが異なる。
 <第1の接着剤層12a>
 第1の接着剤層12aは、基材層11とバリア層13とを接着する層である。本開示において、第1の接着剤層12aは、ポリウレタン系化合物とポリアミドイミド樹脂を含む必要がある。ポリウレタン系化合物を含む接着剤層は靱性が高く、優れた深絞り成型性、及び、室温環境下での優れたラミネート強度を得ることができる。一方、ポリアミドイミド樹脂は耐熱性に優れており、これと上記ポリウレタン系化合物とを配合して接着剤層を構成することにより、例えば170℃以上の高温環境下における基材層11とバリア層13との間の十分なラミネート強度と上記外装材10の優れた深絞り成型性とを得ることができ、深絞り成型した後の外装材10においても、高温環境下における基材層11とバリア層13との間の高いラミネート強度を維持できる。
 ポリウレタン系化合物の固形分量に対して上記ポリアミドイミド樹脂の固形分量をA質量%としたとき、1.0質量%<A<20.0質量%を満たすことが望ましく、特に10.0質量%<A<20.0質量%を満たすことが望ましい。また、ポリアミドイミド樹脂の数平均分子量Mnは3000<Mn<36000であることが望ましい。
 次に、ポリウレタン系化合物は、少なくとも1種類以上のポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物からなるものであってよい。ポリオール樹脂の種類は任意でよいが、ポリエステルポリオール、アクリルポリオール及びポリカーボネートポリオールから成る群より選択された少なくとも1種類のポリオール樹脂を好ましく使用できる。この場合には、高温環境下における基材層11とバリア層13との間のラミネート強度と上記外装材10の成型性とが両者共に向上する。
 また、上記多官能イソシアネート化合物の種類も任意でよいが、脂環式イソシアネート多量体及び分子構造内に芳香環を含むイソシアネート多量体から成る群より選択された少なくとも1種類のイソシアネート多量体を好ましく使用できる。この場合には、ラミネート強度と成型性とが両者共に向上する。
 脂環式イソシアネート多量体としては、例えば、イソホロンジイソシアネートのヌレート体(IPDI-ヌレート)を例示できる。
 また、分子構造内に芳香環を含むイソシアネート多量体としては、トリレンジイソシアネートのアダクト体(TDI-アダクト)を挙げることができる。また、ジフェニルメタンジイソシアネートのアダクト体、ビウレット体及びヌレート体も分子構造内に芳香環を含むイソシアネート多量体の例である。また、分子構造内に芳香環を含むイソシアネート多量体として、キシリレンジイソシアネートのアダクト体、ビウレット体及びヌレート体を例示することもできる。
 なお、望ましくは、ポリオール樹脂の少なくとも一部としてポリエステルポリオールを使用し、多官能イソシアネート化合物の少なくとも一部としてIPDI-ヌレートを使用して、この両者を反応して生成したポリウレタン系化合物である。このようにポリエステルポリオールとIPDI-ヌレートとの反応物からなるポリウレタン系化合物を含有する第1の接着剤層12aを有する外装材10は、高温環境下における基材層11とバリア層13との間のラミネート強度と上記外装材10の成型性とが特に優れている。
 特定の接着剤層において、多官能イソシアネート化合物におけるIPDI-ヌレートに由来するイソシアネート基の含有量は、第1側面と同様である。
 特定の接着剤層において、ポリオール樹脂中に含まれる水酸基の数に対する上記多官能イソシアネート化合物に含まれるイソシアネートの数の比率(NCO/OH)は1.5<NCO/OH<40.0であることが望ましい。ポリウレタン系化合物の硬化剤(多官能イソシアネート化合物)に含まれるイソシアネートの数が主剤(ポリオール樹脂)中に含まれる水酸基の数より十分に多い(NCO/OH>>1.0)場合、耐熱性が向上する。なお、ポリウレタン系化合物がポリエステルポリオールとIPDI-ヌレートとの反応物からなる場合、上記数値NCO/OHの最適値は20である。
 [蓄電装置]
 図3は、上述した外装材を用いて作製した蓄電装置の一実施形態を示す斜視図である。図3に示されるように、蓄電装置50は、電池要素(蓄電装置本体)52と、電池要素52から電流を外部に取り出すための2つの金属端子(電流取出し端子)53と、電池要素52を気密状態で包含する外装材10とを含んで構成される。外装材10は、上述した本実施形態に係る外装材10である。外装材10では、基材層11が最外層であり、シーラント層16が最内層である。すなわち、外装材10は、基材11を蓄電装置50の外部側、シーラント層16を蓄電装置50の内部側となるように2つ折りにし、その一方を深絞り成型した後、熱融着することにより、内部に電池要素52を収容して密封した構成としたものである。あるいは、2枚の外装材10のうち一方の外装材10を深絞り成型した後、他方の外装材10を重ねて熱融着することにより、内部に電池要素52を収容して密封した蓄電装置50とすることもできる。なお、蓄電装置50では、外装材10に代えて外装材20を用いてもよい。
 第3側面に係る蓄電装置において、その他の点は、第1側面に係る蓄電装置と共通する。
《第4側面》
 本開示の第4側面に係る蓄電装置用外装材、外装材の製造方法及び蓄電装置について説明する。
[蓄電デバイス用外装材]
 図4は、本開示の蓄電デバイス用外装材の一実施形態を模式的に表す断面図である。図4に示すように、本実施形態の外装材(蓄電デバイス用外装材)25は、基材層11と、該基材層11の一方の面側に設けられた第一接着層12と、該第一接着層12の基材層11とは反対側に設けられた、両面に腐食防止処理層14a,14bを有するバリア層13と、該バリア層13の第一接着層12とは反対側に設けられた第二接着層17と、該第二接着層17のバリア層13とは反対側に設けられたシーラント層16と、が積層された積層体である。ここで、腐食防止処理層14aはバリア層13の第一接着層12側の面に、腐食防止処理層14bはバリア層13の第二接着層17側の面に、それぞれ設けられている。外装材25において、基材層11が最外層、シーラント層16が最内層である。すなわち、外装材25は、基材層11を蓄電デバイスの外部側、シーラント層16を蓄電デバイスの内部側に向けて使用される。以下、各層について説明する。
<基材層11>
 基材層11は、蓄電デバイスを製造する際のシール工程における耐熱性を付与し、成型加工や流通の際に起こりうるピンホールの発生を抑制する役割を果たす。特に大型用途の蓄電デバイスの外装材の場合等は、耐擦傷性、耐薬品性、絶縁性等も付与できる。
 基材層11は、シーラント層16の融解ピーク温度よりも高い融解ピーク温度を有することが好ましい。基材層11がシーラント層16の融解ピーク温度よりも高い融解ピーク温度を有することで、ヒートシール時に基材層11(外側の層)が融解することに起因して外観が悪くなることを抑制できる。シーラント層16が多層構造である場合、シーラント層16の融解ピーク温度は最も融解ピーク温度が高い層の融解ピーク温度を意味する。基材層11の融解ピーク温度は好ましくは290℃以上であり、より好ましくは290~350℃である。基材層11として使用でき且つ上記範囲の融解ピーク温度を有する樹脂フィルムとしては、ナイロンフィルム、PETフィルム、ポリアミドフィルム、ポリフェニレンスルファイドフィルム(PPSフィルム)、ポリイミドフィルム、ポリエステルフィルム等が挙げられる。融解ピーク温度は、JIS K7121-1987に記載の方法に準拠して求められる値を意味する。
 基材層11として、市販のフィルムを使用してもよいし、コーティング(塗工液の塗布及び乾燥)によって基材層11を形成してもよい。なお、基材層11は単層構造であっても多層構造であってもよく、熱硬化性樹脂を塗工することによって形成してもよい。また、基材層11は、例えば、各種添加剤(例えば、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等)を含んでもよい。
 基材層11の融解ピーク温度T11とシーラント層16の融解ピーク温度T16の差(T11-T16は、好ましくは20℃以上である。この温度差が20℃以上であることで、ヒートシールに起因する外装材20の外観の悪化をより一層十分に抑制できる。基材層11の厚さは好ましくは5~50μmであり、より好ましくは12~30μmである。
<第一接着層12及び第二接着層17>
 以下、第一接着層12と、第二接着層17それぞれについて詳述する。
(第一接着層12)
 第一接着層12は、腐食防止処理層14aが設けられたバリア層13と基材層11とを接着する層である。第一接着層12は、基材層11とバリア層13とを強固に接着するために必要な接着力を有すると共に、冷間成型する際において、基材層11によってバリア層13が破断されることを抑制するための追随性も有する。なお、追随性とは、部材が伸縮等により変形したとしても、第一接着層12が剥離することなく部材上に留まる性質である。
 第一接着層12を形成する接着成分としては、ウレア系化合物及びウレタン系化合物等が挙げられる。これらの化合物は、1種を単独で又は2種以上を組み合わせて用いてもよい。ウレア系化合物は、アミン系樹脂を主剤、ポリイソシアネート化合物を硬化剤としてこれらを反応させることで得られる。ウレタン系化合物は、ポリオールを主剤、ポリイソシアネート化合物を硬化剤としてこれらを反応させることで得られる。
 アミン系樹脂としては、例えば、ポリアクリルアミン等が挙げられる。
 ポリオールとしては、例えば、ポリエステルポリオール、ポリエーテルポリオール及びアクリルポリオール等が挙げられる。
 ポリエステルポリオールとしては、例えば、ジカルボン酸の一種以上とジオールとを反応させることで得られるポリエステルポリオールが挙げられる。
 ポリエーテルポリオールとしては、例えば、プロピレングリコール、グリセリン、ペンタエリスリトール等に、エチレンオキサイドやプロピレンオキサイドを付加重合させて製造されるものが挙げられる。
 アクリルポリオールとしては、例えば、少なくとも水酸基含有アクリルモノマーと(メタ)アクリル酸とを共重合して得られる共重合体が挙げられる。この場合、(メタ)アクリル酸に由来する構造単位を主成分として含んでいることが好ましい。水酸基含有アクリルモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。
 ポリイソシアネート化合物は、複数のイソシアネート基を含み、上記アミン系樹脂又はポリオールを架橋する働きを担う。ポリイソシアネート化合物は、1種を単独で又は2種以上を組み合わせて用いてもよい。ポリイソシアネート化合物としては、例えば、脂肪族ポリイソシアネート化合物、脂環式ポリイソシアネート化合物及び芳香族ポリイソシアネート化合物が挙げられる。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)等が挙げられる。脂環式ポリイソシアネート化合物としては、イソホロンジイソシアネート(IPDI)等が挙げられる。芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)等が挙げられる。ポリイソシアネート化合物は、これらの化合物の多量体(例えば、三量体)も用いることができ、具体的には、アダクト体、ビウレット体、イソシアヌレート体等を用いることができる。
 ポリイソシアネート化合物は、ポットライフが向上するため、そのイソシアネート基がブロック剤と結合していることが好ましい。ブロック剤としては、例えば、メチルエチルケトオキシム(MEKO)等が挙げられる。ブロック剤がポリイソシアネート化合物のイソシアネート基から脱離する温度は、50℃以上であってよく、ポットライフが一層向上することから、60℃以上であることが好ましい。ブロック剤がポリイソシアネート化合物のイソシアネート基から脱離する温度は、140℃以下であってよく、外装材の成型カール耐性が向上することから、120℃以下であることが好ましい。
 ブロック剤の解離温度を低下させるため、解離温度を低下させる触媒を用いてもよい。そのような解離温度を低下させる触媒としては、例えば、トリエチレンジアミン及びN-メチルモルホリン等の三級アミン、並びに、ジブチル錫ジラウレート等の金属有機酸塩などが挙げられる。
 ウレア系化合物において、アミン系樹脂のアミノ基に対するポリイソシアネート化合物のイソシアネート基のモル比は、1~10が好ましく、2~5がより好ましい。ウレタン系化合物において、ポリオールの水酸基に対するポリイソシアネート化合物のイソシアネート基のモル比は、1~50が好ましく、10~30がより好ましい。
 第一接着層12は、外装材の外部に存在する硫化水素によるバリア層13の腐食を抑制できるため、硫化水素吸着物質を含むことが好ましい。このような硫化水素吸着物質としては、例えば、酸化亜鉛、過マンガン酸カリウム等が挙げられる。第一接着層12が硫化水素吸着物質を含む場合、外装材の外部に存在する硫化水素によるバリア層13の腐食を抑制できることから、その含有量は、第一接着層12の全量に対して1~50質量%であることが好ましい。
 第一接着層12の厚さは、所望の接着強度、追随性、及び加工性等を得る観点から、1~10μmが好ましく、2~6μmがより好ましい。
 第一接着層12は、例えば、上述した接着成分の主剤及び硬化剤を含む組成物を塗工することで得られる。塗工方法は、公知の手法を用いることができるが、例えば、グラビアダイレクト、グラビアリバース(ダイレクト、キス)及びマイクログラビア等が挙げられる。
 第一接着層12がウレア系化合物を含む場合、アミン系樹脂及びポリイソシアネート化合物を含む組成物におけるアミン系樹脂の含有割合は、アミン系樹脂及びポリイソシアネート化合物の全量に対して、1~10質量%であることが好ましい。
 第一接着層12がウレタン系化合物を含む場合、ポリオール及びポリイソシアネート化合物を含む組成物におけるポリオールの含有割合は、ポリオール及びポリイソシアネート化合物の全量に対して、50~80質量%であることが好ましい。
(第二接着層17)
 第二接着層17は、腐食防止処理層14bが設けられたバリア層13とシーラント層16とを接着する層である。
 第二接着層17を形成する接着成分としては、例えば、第一接着層12で挙げたものと同様の接着成分が挙げられる。
 第二接着層17は、外装材内部の電池内容物から発生した硫化水素によるバリア層13の腐食を抑制できるため、硫化水素吸着物質を含むことが好ましい。このような硫化水素吸着物質としては、第一接着層12で挙げたものと同様の硫化水素吸着物質が挙げられる。また、その含有量は、第二接着層17の全量に対して0.1~50質量%であることが好ましい。
 第二接着層17は、第一接着層12と同様の方法で得られる。第二接着層17がウレア系化合物を含む場合、アミン系樹脂及びポリイソシアネート化合物を含む組成物におけるアミン系樹脂の含有割合は、第一接着層12と同様であってよい。第二接着層17がウレタン系化合物を含む場合、ポリオール及びポリイソシアネート化合物を含む組成物におけるポリオールの含有割合は、第一接着層12と同様であってよい。
 第二接着層17の厚さは、1~5μmであることが好ましい。第二接着層17の厚さが1μm以上であることにより、バリア層13とシーラント層16との十分な接着強度が得られ易く、5μm以下であることにより、第二接着層17の割れの発生を抑制することができる。
 第一接着層12及び第二接着層17のうち少なくとも一方は、アミン系樹脂とポリイソシアネート化合物との反応物であるウレア系化合物を含み、第一接着層12及び第二接着層17のうちウレア系化合物を含む層において、1680~1720cm-1の赤外線吸収スペクトルピーク強度をA1、1590~1640cm-1の赤外線吸収スペクトルピーク強度をB1としたとき、下記式(1-A)で定義されるX1が10~99であり、20~80であることが好ましい。
X1={B1/(A1+B1)}×100   …(1-A)
 第一接着層12及び第二接着層17のうちウレア系化合物を含む層における、1680~1720cm-1の赤外線吸収スペクトルピーク強度及び1590~1640cm-1の赤外線吸収スペクトルピーク強度は、FT-IR(ATR法(全反射吸収赤外分光法))により測定することができる。
 第一接着層12及び第二接着層17は、両方がウレア系化合物を含んでいてもよく、第一接着層12及び第二接着層17のうち第一接着層12のみがウレア系化合物を含んでいてもよく、第一接着層12及び第二接着層17のうち第二接着層17のみがウレア系化合物を含んでいてもよい。得られる外装材は耐熱性に優れ、且つ、第一接着層の剛性が緩和され易くなり、深絞り成型性に優れたものとなることから、第一接着層12はウレア系化合物を含まず、第二接着層17のみがウレア系化合物を含むことが好ましい。第一接着層12がウレア系化合物を含む場合、ウレア系化合物のウレア基が凝集力を発揮し、外装材の外部に存在する硫化水素が第一接着層12を通過しにくくなり、硫化水素によるバリア層13の腐食を抑制できる。第二接着層17がウレア系化合物を含む場合、ウレア系化合物のウレア基が凝集力を発揮し、外装材内部の電池内容物から発生した硫化水素が第二接着層17を通過しにくくなり、硫化水素によるバリア層13の腐食を抑制できることから、第二接着層17は、ウレア系化合物を含むことが好ましい。
<バリア層13>
 バリア層13は、水分が蓄電装置の内部に浸入することを防止する水蒸気バリア性を有する。また、バリア層13は、深絞り成型をするために延展性を有する。バリア層13としては、例えばアルミニウム、ステンレス鋼、銅等の各種金属箔、あるいは、金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜、これらの蒸着膜を設けたフィルムなどを用いることができる。蒸着膜を設けたフィルムとしては、例えば、アルミニウ蒸着フィルム、無機酸化物蒸着フィルムを使用することができる。これらは1種を単独で又は2種以上を組み合わせて用いることができる。バリア層13としては、質量(比重)、防湿性、加工性及びコストの面から、金属箔が好ましく、アルミニウム箔がより好ましい。
 アルミニウム箔としては、所望の成型時の延展性を付与できる点から、特に焼鈍処理を施した軟質アルミニウム箔を好ましく用いることができるが、更なる耐ピンホール性、及び成型時の延展性を付与させる目的で、鉄を含むアルミニウム箔を用いるのがより好ましい。アルミニウム箔中の鉄の含有量は、アルミニウム箔100質量%中、0.1~9.0質量%が好ましく、0.5~2.0質量%がより好ましい(例えば、JIS規格でいう8021材、8079材よりなるアルミニウム箔)。鉄の含有量が0.1質量%以上であることにより、より優れた耐ピンホール性及び延展性を有する外装材25を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた外装材25を得ることができる。
 バリア層13に使用する金属箔は、所望の耐電解液性を得るために、例えば、脱脂処理が施されていることが好ましい。また、製造工程を簡便にするためには、上記金属箔としては、表面がエッチングされていないものが好ましい。中でも、バリア層13に使用する金属箔は、耐電解液性を付与する点で脱脂処理を施したアルミニウム箔を用いるのが好ましい。アルミニウム箔に脱脂処理する場合は、アルミニウム箔の片面のみに脱脂処理を施してもよく、両面に脱脂処理を施してもよい。上記脱脂処理としては、例えば、ウェットタイプの脱脂処理、又はドライタイプの脱脂処理を用いることができるが、製造工程を簡便にする観点から、ドライタイプの脱脂処理が好ましい。
 上記ドライタイプの脱脂処理としては、例えば、金属箔を焼鈍処理する工程において、処理時間を長くすることで脱脂処理を行う方法が挙げられる。金属箔を軟質化するために施される焼鈍処理の際に、同時に行われる脱脂処理程度でも充分な耐電解液性が得られる。
 また、上記ドライタイプの脱脂処理としては、上記焼鈍処理以外の処理であるフレーム処理及びコロナ処理等の処理を用いてもよい。さらに、上記ドライタイプの脱脂処理としては、例えば、金属箔に特定波長の紫外線を照射した際に発生する活性酸素により、汚染物質を酸化分解及び除去する脱脂処理を用いてもよい。
 上記ウェットタイプの脱脂処理としては、例えば、酸脱脂処理、アルカリ脱脂処理等の処理を用いることができる。上記酸脱脂処理に使用する酸としては、例えば、硫酸、硝酸、塩酸、フッ酸等の無機酸を用いることができる。これらの酸は、1種を単独で使用してもよいし、2種以上を併用してもよい。また、アルカリ脱脂処理に使用するアルカリとしては、例えば、エッチング効果が高い水酸化ナトリウムを用いることができる。また、弱アルカリ系の材料及び界面活性剤等が配合された材料を用いて、アルカリ脱脂処理を行ってもよい。上記説明したウェットタイプの脱脂処理は、例えば、浸漬法、スプレー法により行うことができる。
 バリア層13の厚さは、バリア性、耐ピンホール性及び加工性の点から、9~200μmであることが好ましく、15~150μmであることがより好ましく、15~100μmであることが更に好ましい。バリア層13の厚さが9μm以上であることにより、成型加工により応力がかかっても破断しにくくなる。バリア層13の厚さが200μm以下であることにより、外装材の質量増加を低減でき、蓄電デバイスの重量エネルギー密度低下を抑制することができる。
<腐食防止処理層14a,14b>
 腐食防止処理層14a,14bは、バリア層13を構成する金属薄層等の腐食を防止するためにその表面に設けられる層である。また、腐食防止処理層14aは、バリア層13と第一接着層12との密着力を高める役割を果たす。また、腐食防止処理層14bは、バリア層13と第二接着層17との密着力を高める役割を果たす。腐食防止処理層14a及び腐食防止処理層14bは、同一の構成の層であってもよく、異なる構成の層であってもよい。本実施形態においては、バリア層13と第一接着層12との間、及びバリア層13と第二接着層17との間に腐食防止処理層が設けられているが、バリア層13と第二接着層17との間にのみ腐食防止処理層が設けられていてもよい。
 腐食防止処理層14a,14bは、例えば、腐食防止処理層14a,14bの母材となる層に対して、脱脂処理、熱水変成処理、陽極酸化処理、化成処理、腐食防止能を有するコーティング剤を塗工するコーティングタイプの腐食防止処理あるいはこれらの処理を組み合わせた腐食防止処理を実施することで形成することができる。
 上述した処理のうち脱脂処理、熱水変成処理、陽極酸化処理、特に熱水変性処理及び陽極酸化処理は、処理剤によって金属箔(アルミニウム箔)表面を溶解させ、耐腐食性に優れる金属化合物(アルミニウム化合物(ベーマイト、アルマイト))を形成させる処理である。このため、このような処理は、バリア層13から腐食防止処理層14a,14bまで共連続構造を形成している構造を得るために、化成処理の定義に包含されるケースもある。
 脱脂処理としては、酸脱脂、アルカリ脱脂が挙げられる。酸脱脂としては上述した硫酸、硝酸、塩酸、フッ酸等の無機酸を単独あるいはこれらを混合して得られた酸脱脂を用いる方法などが挙げられる。また酸脱脂として、一ナトリウム二フッ化アンモニウム等のフッ素含有化合物を上記無機酸で溶解させた酸脱脂剤を用いることで、バリア層13の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、耐フッ酸性という点で有効である。アルカリ脱脂としては、水酸化ナトリウム等を用いる方法が挙げられる。
 上記熱水変成処理としては、例えば、トリエタノールアミンを添加した沸騰水中にバリア層13を浸漬処理することで得られるベーマイト処理を用いることができる。上記陽極酸化処理としては、例えば、アルマイト処理を用いることができる。また、上記化成処理としては、例えば、クロメート処理、ジルコニウム処理、チタニウム処理、バナジウム処理、モリブデン処理、リン酸カルシウム処理、水酸化ストロンチウム処理、セリウム処理、ルテニウム処理、或いはこれらを2種以上組み合わせた処理を用いることができる。これらの熱水変成処理、陽極酸化処理、化成処理は、上述した脱脂処理を事前に施すことが好ましい。
 なお、上記化成処理としては、湿式法に限らず、例えば、これらの処理に使用する処理剤を樹脂成分と混合し、塗布する方法を用いてもよい。また、上記腐食防止処理としては、その効果を最大限にすると共に、廃液処理の観点から、塗布型クロメート処理が好ましい。
 コーティングタイプの腐食防止処理に用いられるコーティング剤としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤が挙げられる。特に、希土類元素酸化物ゾルを含有するコーティング剤を用いる方法が好ましい。
 腐食防止処理層14a,14bの単位面積あたりの質量は0.005~0.200g/mの範囲内が好ましく、0.010~0.100g/mの範囲内がより好ましい。0.005g/m以上であれば、バリア層13に腐食防止機能を付与し易い。また、上記単位面積当たりの質量が0.200g/mを超えても、腐食防止機能は飽和しこれ以上の効果が見込めない。なお、上記内容では単位面積あたりの質量で記載しているが、比重がわかればそこから厚さを換算することも可能である。
 腐食防止処理層14a,14bの厚さは、腐食防止機能、及びアンカーとしての機能の点から、例えば10nm~5μmであることが好ましく、20~500nmであることがより好ましい。
<シーラント層16>
 シーラント層16は、外装材25に対し、ヒートシールによる封止性を付与する層であり、蓄電デバイスの組み立て時に内側に配置されてヒートシール(熱融着)される層である。
 シーラント層16としては、例えば、アクリル系樹脂、ポリオレフィン系樹脂、又はポリエステル系樹脂からなるフィルムが挙げられる。シーラント層16は、融点が高く、得られる外装材の耐熱性が一層向上することから、ポリオレフィン系樹脂、又はポリエステル系樹脂からなるフィルムが好ましく、ポリエステル系樹脂からなるフィルムがより好ましい。
 アクリル系樹脂としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)等が挙げられる。これらアクリル系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 ポリオレフィン系樹脂としては、例えば、低密度、中密度及び高密度のポリエチレン;エチレン-αオレフィン共重合体;ポリプロピレン;並びに、プロピレン-αオレフィン共重合体等が挙げられる。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
 ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート(PET)及びポリブチレンテレフタレート(PBT)等が挙げられる。これらポリエステル系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 シーラント層16は、単層フィルムであってもよく、多層フィルムであってもよく、必要とされる機能に応じて選択すればよい。シーラント層16が多層構成である場合は、各層同士を共押出により積層してもよく、ドライラミネートにより積層してもよい。
 シーラント層16は、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤及び粘着付与剤等の各種添加材を含んでいてもよい。
 シーラント層16の厚さは、10~100μmであることが好ましく、20~60μmであることがより好ましい。シーラント層16の厚さが10μm以上であることにより、十分なヒートシール強度を得ることができ、100μm以下であることにより、外装材端部からの水蒸気の浸入量を低減することができる。
 シーラント層16の融解ピーク温度は、耐熱性が向上することから、200~280℃であることが好ましい。
[外装材の製造方法]
 次に、外装材25の製造方法について説明する。なお、外装材25の製造方法は以下の方法に限定されない。
 外装材25の製造方法として、例えば、下記の工程S11~S13をこの順に実施する方法が挙げられる。
工程S11:バリア層13の一方の面上に腐食防止処理層14aを形成し、バリア層13の他方の面上に腐食防止処理層14bを形成する工程。
工程S12:腐食防止処理層14aのバリア層13とは反対側の面と、基材層11とを、第一接着層12を介して貼り合わせる工程。
工程S13:腐食防止処理層14bのバリア層13とは反対側の面上に、第二接着層17を介してシーラント層16を形成する工程。
<工程S11>
 工程S11では、バリア層13の一方の面上に腐食防止処理層14aを形成し、バリア層13の他方の面上に腐食防止処理層14bを形成する。腐食防止処理層14a及び14bは、それぞれ別々に形成されてもよく、両方が一度に形成されてもよい。具体的には、例えば、バリア層13の両方の面に腐食防止処理剤(腐食防止処理層の母材)を塗布し、その後、乾燥、硬化、焼付けを順次行うことで、腐食防止処理層14a及び14bを一度に形成する。また、バリア層13の一方の面に腐食防止処理剤を塗布し、乾燥、硬化、焼き付けを順次行って腐食防止処理層14aを形成した後、バリア層13の他方の面に同様にして腐食防止処理層14bを形成してもよい。腐食防止処理層14a及び14bの形成順序は特に制限されない。また、腐食防止処理剤は、腐食防止処理層14aと腐食防止処理層14bとで異なるものを用いてもよく、同じのものを用いてもよい。腐食防止処理剤の塗布方法は、特に限定されないが、例えば、グラビアコート法、グラビアリバースコート法、ロールコート法、リバースロールコート法、ダイコート法、バーコート法、キスコート法、コンマコート法、小径グラビアコート法等の方法を用いることができる。
<工程S12>
 工程S12では、腐食防止処理層14aのバリア層13とは反対側の面と、基材層11とが、第一接着層12を形成する接着剤を用いてドライラミネーション等の手法で貼り合わせられる。工程S12では、第一接着層12の接着性の促進のため、加熱処理を行ってもよい。加熱処理時の温度は、外装材が成型カール耐性に優れることから、140℃以下であることが好ましく、ブロック剤のポットライフが向上することから、60℃以上であることが好ましい。
<工程S13>
 工程S12後、基材層11、第一接着層12、腐食防止処理層14a、バリア層13及び腐食防止処理層14bがこの順に積層された積層体の腐食防止処理層14bのバリア層13とは反対側の面と、シーラント層16とが、第二接着層17を形成する接着剤を用いてドライラミネーション等の手法で貼り合わせられる。工程S13では、第二接着層17の接着性の促進のため、加熱処理を行ってもよい。加熱処理時の温度は、外装材が成型カール耐性に優れることから、140℃以下であることが好ましく、120℃以下であることがより好ましく、ブロック剤のポットライフが向上することから、60℃以上であることが好ましい。
 以上説明した工程S11~S13により、外装材25が得られる。なお、外装材25の製造方法の工程順序は、上記工程S11~S13を順次実施する方法に限定されない。例えば、工程S12を行ってから工程S11を行う等、実施する工程の順序を適宜変更してもよい。
[蓄電デバイス]
 次に、外装材25を容器として備える蓄電デバイスについて説明する。蓄電デバイスは、電極を含む電池要素1と、上記電極から延在するリード2と、電池要素1を収容する容器とを備え、上記容器は蓄電デバイス用外装材25から、シーラント層16が内側となるように形成される。上記容器は、2つの外装材をシーラント層16同士を対向させて重ね合わせ、重ねられた外装材25の周縁部をヒートシールして得られてもよく、また、1つの外装材を折り返して重ね合わせ、同様に外装材25の周縁部をヒートシールして得られてもよい。リード2は、シーラント層16を内側として容器を形成する外装材25によって挟持され、密封されている。リード2は、タブシーラントを介して、外装材25によって挟持されていてもよい。
 本実施形態の外装材は、様々な蓄電デバイスにおいて使用可能である。そのような蓄電デバイスとしては、例えば、リチウムイオン電池、ニッケル水素電池、鉛蓄電池及び全固体電池等の二次電池、並びに電気二重層キャパシタ等の電気化学キャパシタが挙げられる。本実施形態の外装材25はヒートシール後の高温環境下での使用に際しても優れたヒートシール性を維持することができるため、そのような環境での使用が想定される全固体電池用途に適している。
[蓄電デバイスの製造方法]
 次に、上述した外装材25を用いて蓄電デバイスを製造する方法について説明する。なお、ここでは、エンボスタイプ外装材30を用いて二次電池40を製造する場合を例に挙げて説明する。図5は上記エンボスタイプ外装材30を示す図である。図6の(a)~(d)は、外装材25を用いた片側成型加工電池の製造工程を示す斜視図である。二次電池40としては、エンボスタイプ外装材30のような外装材を2つ準備し、それらをアライメントの調整をしつつ貼り合わせて製造される、両側成型加工電池であってもよい。
 片側成型加工電池である二次電池40は、例えば、以下の工程S21~S26により製造することができる。
工程S21:外装材25、電極を含む電池要素1、並びに上記電極から延在するリード2を準備する工程。
工程S22:外装材25の片面に電池要素1を配置するための凹部32を形成し、エンボスタイプ外装材30を得る工程(図6(a)及び図6(b)参照)。
工程S23:エンボスタイプ外装材30の成型加工エリア(凹部32)に電池要素1を配置し、凹部32を蓋部34が覆うようにエンボスタイプ外装材30を折り返し重ねて、電池要素1から延在するリード2を挟持するようにエンボスタイプ外装材30の一辺をヒートシールする工程(図6(b)及び図6(c)参照)。
工程S24:リード2を挟持する辺以外の一辺を残し、他の辺をヒートシールし、その後、残った一辺から電解液を注入し、真空状態で残った一辺をヒートシールする工程(図6(c)参照)。
工程S25:電流値や電圧値、環境温度等を所定の条件にして充放電を行い、化学変化を起こさせる(化成)工程。
工程S26:リード2を挟持する辺以外のヒートシールされた辺の端部をカットし、成型加工エリア(凹部32)側に折り曲げる工程(図6(d)参照)。
<工程S21>
 工程S21では、外装材25、電極を含む電池要素1、並びに上記電極から延在するリード2を準備する。外装材25は、上述した実施形態に基づき準備する。電池要素1及びリード2としては特に制限はなく、公知の電池要素1及びリード2を用いることができる。
<工程S22>
 工程S22では、外装材25のシーラント層16側に電池要素1を配置するための凹部32が形成される。凹部32の平面形状は、電池要素1の形状に合致する形状、例えば平面視矩形状とされる。凹部32は、例えば矩形状の圧力面を有する押圧部材を、外装材25の一部に対してその厚さ方向に押圧することで形成される。また、押圧する位置、すなわち凹部32は、長方形に切り出した外装材25の中央より、外装材25の長手方向の一方の端部に偏った位置に形成する。これにより、成型加工後に凹部32を形成していないもう片方の端部側を折り返し、蓋(蓋部34)とすることができる。
 凹部32を形成する方法としてより具体的には、金型を用いた成型加工(深絞り成型)が挙げられる。成型方法としては、外装材25の厚さ以上のギャップを有するように配置された雌型と雄型の金型を用い、雄型の金型を外装材25と共に雌型の金型に押し込む方法が挙げられる。雄型の金型の押込み量を調整することで、凹部32の深さ(深絞り量)を所望の量に調整できる。外装材25に凹部32が形成されることにより、エンボスタイプ外装材30が得られる。このエンボスタイプ外装材30は、例えば図2に示すような形状を有している。ここで、図5(a)は、エンボスタイプ外装材30の斜視図であり、図5(b)は、図5(a)に示すエンボスタイプ外装材30のb-b線に沿った縦断面図である。
<工程S23>
 工程S23では、エンボスタイプ外装材30の成型加工エリア(凹部32)内に、正極、セパレータ及び負極等から構成される電池要素1が配置され。また、電池要素1から延在し、正極と負極にそれぞれ接合されたリード2が成型加工エリア(凹部32)から外に引き出される。その後、エンボスタイプ外装材30は、長手方向の略中央で折り返され、シーラント層16同士が内側となるように重ねられ、エンボスタイプ外装材30のリード2を挟持する一辺がヒートシールされる。ヒートシールは、温度、圧力及び時間の3条件で制御され、適宜設定される。ヒートシールの温度は、シーラント層16を融解する温度以上であることが好ましく、具体的には180℃以上とすることができる。
 ヒートシール後、さらにシーラント層16全体を加熱するキュア工程を行う。これにより、ヒートシール部分以外の結晶化を進行させ、外装材25全体の耐熱性を確保する。キュア工程は80~150℃で実施することができる。
 なお、シーラント層16のヒートシール前の厚さは、リード2の厚さに対し40%以上80%以下であることが好ましい。シーラント層16の厚さが上記下限値以上であることにより、シーラント層16を構成する樹脂がリード2端部を十分充填できる傾向があり、上記上限値以下であることにより、二次電池40の外装材25端部の厚さを適度に抑えることができ、外装材25端部からの水分の浸入量を低減することができる。
<工程S24>
 工程S24では、リード2を挟持する辺以外の一辺を残し、他の辺のヒートシールが行われる。その後、残った一辺から電解液を注入し、残った一辺が真空状態でヒートシールされる。ヒートシールの条件は工程S23と同様である。
<工程S25>
 工程S25では、工程S23までに得られた二次電池40に対して充放電を行い、化学変化を起こさせる(化成:40℃環境にて3日間)。そして、化成によって発生したガスの除去や電解液の補充のため、二次電池40を一度開封し、その後最終シールを行う。なお、この工程S25は省略することができる。
<工程S26>
 リード2を挟持する辺以外のヒートシール辺の端部がカットされ、端部からははみだしたシーラント層16が除去される。その後、ヒートシール部を成型加工エリア32側に折り返し、折り返し部42を形成することで、二次電池40が得られる。
 以上、本発明の蓄電デバイス用外装材の好ましい実施の形態について詳述したが、本発明は当該形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
《第5側面》
 本開示の第5側面に係る蓄電装置用外装材、外装材の製造方法及び蓄電装置について説明する。第4側面に係る蓄電装置用外装材、蓄電装置及び蓄電装置の製造方法と共通する点の説明は省略する。第5側面に係る蓄電装置の製造方法と、第4側面に係る蓄電装置の製造方法とは、共通するため、説明は省略する。
[蓄電装置用外装材]
 第5側面に係る蓄電装置外装材と、第4側面に係る蓄電装置外装材とは、第4側面に係る蓄電装置外装材においては、第一接着層12の基材層11とは反対側にバリア層13が設けられているのに対し、第5側面に係る蓄電装置外装材においては、金属箔層13が設けられている点が異なる。また、第5側面に係る蓄電装置外装材と、第4側面に係る蓄電装置外装材とは、第一接着層12が異なる。
(第一接着層12)
 第一接着層12は、腐食防止処理層14aが設けられた金属箔層13と基材層11とを接着する層である。第一接着層12は、基材層11と金属箔層13とを強固に接着するために必要な接着力を有すると共に、冷間成型する際において、基材層11によって金属箔層13が破断されることを抑制するための追随性も有する。なお、追随性とは、部材が伸縮等により変形したとしても、第一接着層12が剥離することなく部材上に留まる性質である。
 第一接着層12を形成する接着成分としては、例えば、ウレタン系化合物及びポリオレフィン系樹脂が挙げられる。接着成分は、1種を単独で又は2種以上を組み合わせて用いてもよい。ウレタン系化合物は、ポリオール系樹脂を主剤、ポリイソシアネート化合物を硬化剤としてこれらを反応させることで得られる。
 ポリオール系樹脂としては、例えば、ポリエステルポリオール系樹脂、ポリエーテルポリオール系樹脂、及びアクリルポリオール系樹脂が挙げられる。ポリオール系樹脂は、接着層と、シーラント層及び金属箔層との密着性が向上し、得られる外装材が深絞り成型性に一層優れることから、ポリエステルポリオール系樹脂であることが好ましい。
 ポリエステルポリオール系樹脂としては、例えば、ジカルボン酸の1種以上とジオールとを反応させることで得られるものが挙げられる。
 ポリエーテルポリオール系樹脂としては、例えば、プロピレングリコール、グリセリン、ペンタエリスリトール等に、エチレンオキサイドやプロピレンオキサイドを付加重合させて製造されるものが挙げられる。
 アクリルポリオール系樹脂としては、例えば、少なくとも水酸基含有アクリルモノマーと(メタ)アクリル酸とを共重合して得られる共重合体が挙げられる。この場合、(メタ)アクリル酸に由来する構造単位を主成分として含んでいることが好ましい。水酸基含有アクリルモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。
 ポリオレフィン系樹脂としては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-αオレフィン共重合体、ホモポリプロピレン、ブロックポリプロピレン、ランダムポリプロピレン及びプロピレン-αオレフィン共重合体等が挙げられる。
 ポリオレフィン系樹脂は、基材層11、及び金属箔層13との密着性を向上させるため、ポリオレフィン樹脂内に酸性基導入したものを用いてもよい。導入する酸性基としては、カルボキシ基及びスルホン酸基等が挙げられ、カルボキシ基が特に好ましい。
 カルボキシ基をポリオレフィン系樹脂に導入した酸変性ポリオレフィン系樹脂としては、例えばポリオレフィン系樹脂に対し、不飽和カルボン酸もしくはその酸無水物、又は不飽和カルボン酸もしくはその酸無水物のエステルをラジカル開始剤の存在下でグラフト変性してなる酸変性ポリオレフィン系樹脂が挙げられる。
 不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、テトラヒドロフタル酸及びビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸等が挙げられる。
 不飽和カルボン酸の酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、テトラヒドロ無水フタル酸及びビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸無水物等が挙げられる。
 不飽和カルボン酸もしくはその酸無水物のエステルとしては、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、マレイン酸ジメチル、マレイン酸モノメチル、フマール酸ジエチル、イタコン酸ジメチル、シトラコン酸ジエチル、テトラヒドロ無水フタル酸ジメチル及びビシクロ[2,2,1]ヘプト-2-エン-5,6-ジカルボン酸ジメチル等が挙げられる。
 酸変性ポリオレフィン系樹脂中のグラフト化合物の割合は、ポリオレフィン系樹脂100質量部に対して、0.2~100質量部が好ましい。
 ポリイソシアネート化合物は、複数のイソシアネート基を含み、上記ポリオール系樹脂を架橋する働きを担う。ポリイソシアネート化合物は、1種を単独で又は2種以上を組み合わせて用いてもよい。ポリイソシアネート化合物としては、例えば、脂肪族ポリイソシアネート化合物、脂環式ポリイソシアネート化合物及び芳香族ポリイソシアネート化合物が挙げられ、得られる外装材の耐熱性が向上することから、芳香族ポリイソシアネート化合物であることが好ましい。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)等が挙げられる。脂環式ポリイソシアネート化合物としては、イソホロンジイソシアネート(IPDI)等が挙げられる。芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)等が挙げられる。ポリイソシアネート化合物は、これらの化合物の多量体(例えば、三量体)も用いることができ、具体的には、アダクト体、ビウレット体、イソシアヌレート体等を用いることができる。ポリイソシアネート化合物は、接着層と、接着対象との界面の密着力が向上し、得られる外装材の耐熱性が向上することから、アダクト体であることが好ましい。
 ウレタン系化合物において、ポリオール系樹脂の水酸基に対するポリイソシアネート化合物のイソシアネート基のモル比は、1~50が好ましく、10~30がより好ましい。
 主剤であるポリオール系樹脂と、硬化剤であるポリイソシアネート化合物との反応の際には、反応を制御するための触媒を用いてもよい。ポリイソシアネート化合物は、主剤及び硬化剤を含む組成物中又は大気中に含まれる水分と反応することで加水分解し、アミン系化合物が生成し、更に、該アミン系化合物と、ポリイソシアネート化合物とが反応し、自己縮合する場合がある。しかし、触媒を用いることでこれらの副反応の進行を抑制することができる。その結果、第一接着層における、ウレタン系化合物のウレタン基の存在比を高めることができる。このような触媒としては、例えば、ジブチルスズ化合物及びジオクチルスズ化合物等の有機スズ化合物、有機チタン化合物並びに有機ジルコニウム化合物が挙げられる。
 第一接着層12は、外装材の外部に存在する硫化水素による金属箔層13の腐食を抑制できるため、硫化水素吸着物質を含むことが好ましい。このような硫化水素吸着物質としては、例えば、酸化亜鉛及び過マンガン酸カリウム等が挙げられる。第一接着層12が硫化水素吸着物質を含む場合、外装材の外部に存在する硫化水素による金属箔層13の腐食を抑制できることから、その含有量は、第一接着層12の全量に対して1~50質量%であることが好ましい。
 第一接着層12の厚さは、所望の接着強度、追随性、及び加工性等を得る観点から、1~10μmが好ましく、2~6μmがより好ましい。
 第一接着層12は、例えば、上述した接着成分の主剤及び硬化剤を含む組成物を塗工することで得られる。塗工方法は、公知の手法を用いることができるが、例えば、グラビアダイレクト、グラビアリバース(ダイレクト、キス)及びマイクログラビア等が挙げられる。
 第一接着層12がウレタン系化合物を含む場合、ポリオール系樹脂及びポリイソシアネート化合物を含む組成物におけるポリオール系樹脂の含有割合は、ポリオール系樹脂及びポリイソシアネート化合物の全量に対して、50~90質量%であることが好ましい。
 第一接着層12がウレタン系化合物を含み、ポリオール系樹脂と、ポリイソシアネート化合物との反応の際に触媒を用いる場合、ポリオール系樹脂、ポリイソシアネート化合物及び触媒を含む組成物における触媒の含有割合は、ポリイソシアネート化合物の全量に対して、0.1~20質量%であることが好ましい。
 第一接着層12がエポキシ系樹脂を含む場合、分子内に2以上のエポキシ基を有するポリマー及び該エポキシ基と反応する官能基を有する化合物を含む組成物における分子内に2以上のエポキシ基を有するポリマーの含有割合は、これらの化合物の全量に対して、30~60質量%であることが好ましい。
<金属箔層13>
 金属箔層13としては、アルミニウム及びステンレス鋼等の各種金属箔が挙げられ、防湿性及び延展性等の加工性、並びにコストの面から、金属箔層13はアルミニウム箔であることが好ましい。アルミニウム箔は一般の軟質アルミニウム箔であってもよいが、耐ピンホール性及び成形時の延展性に優れる点から、鉄を含むアルミニウム箔であることが好ましい。
 鉄を含むアルミニウム箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい(例えば、JIS規格でいう8021材、8079材よりなるアルミニウム箔)。鉄の含有量が0.1質量%以上であることにより、より優れた耐ピンホール性及び延展性を有する外装材25を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた外装材25を得ることができる。
 また、アルミニウム箔としては、所望の成型時の延展性を付与できる点から、焼鈍処理を施した軟質アルミニウム箔がさらに好ましい。
 金属箔層13に使用する金属箔は、所望の耐電解液性を得るために、例えば、脱脂処理が施されていることが好ましい。また、製造工程を簡便にするためには、上記金属箔としては、表面がエッチングされていないものが好ましい。上記脱脂処理としては、例えば、ウェットタイプの脱脂処理、又はドライタイプの脱脂処理を用いることができるが、製造工程を簡便にする観点から、ドライタイプの脱脂処理が好ましい。
 上記ドライタイプの脱脂処理は、第4側面に係る蓄電装置と同様である。上記ウェットタイプの脱脂処理は、第4側面に係る蓄電装置と同様である。金属箔層13の厚さは、第4側面に係る蓄電装置と同様である。
[外装材の製造方法]
 第5側面に係る外装材の製造方法と、第4側面に係る外装材の製造方法とは、工程S12及び工程13が異なる。
<工程S12>
 工程S12では、腐食防止処理層14aの金属箔層13とは反対側の面と、基材層11とが、第一接着層12を形成する接着剤を用いてドライラミネーション等の手法で貼り合わせられる。工程S12では、第一接着層12の接着性の促進のため、加熱処理を行ってもよい。加熱処理時の温度は、特に制限されないが、例えば、40~120℃であってよい。
<工程S13>
 工程S12後、基材層11、第一接着層12、腐食防止処理層14a、金属箔層13及び腐食防止処理層14bがこの順に積層された積層体の腐食防止処理層14bの金属箔層13とは反対側の面と、シーラント層16とが、第二接着層17を形成する接着剤を用いてドライラミネーション等の手法で貼り合わせられる。工程S13では、第二接着層17の接着性の促進のため、加熱処理を行ってもよい。加熱処理時の温度は、特に制限されないが、例えば、40~120℃であってよい。
[蓄電デバイス]
 外装材25は深絞り成型性に優れるため、冷間成型によって凹部を形成し、該凹部内に電池内容物を収容する、全固体電池用途に適している。
 以下、実施例に基づいて本開示をより具体的に説明するが、本開示は以下の実施例に限定されるものではない。
《第1の検討》
[使用材料]
 実施例及び比較例で使用した材料を以下に示す。
<基材層(厚さ25μm)>
Ny:一方の面にコロナ処理を施したナイロン(Ny)フィルム(東洋紡社製)を用いた。
PET:一方の面にコロナ処理を施したポリエチレンテレフタレートフィルムを用いた。
<第1の接着剤層>
 表1に示す主剤及び硬化剤を、NCO/OH比、又は、エポキシ基/OH比が同表に示す比率となるように配合し、酢酸エチルで固形分26質量%に希釈した第1の接着剤を用いた。硬化剤を2種類用いた場合は、硬化剤中の全NCO基に占める各硬化剤のNCO基の割合が表1に示す値となるように混合して用いた。第1の接着剤を構成する各成分の詳細は以下の通りである。
(主剤)
A-1:ポリエステルポリオール(日立化成社製、商品名:テスラック2505-63、水酸基価:7~11mgKOH/g)
A-2:アクリルポリオール(大成ファインケミカル社製、商品名:6KW-700、水酸基価:10mgKOH/g)
(硬化剤)
B-1:イソホロンジイソシアネートのヌレート体(三井化学社製、商品名:タケネート600)
B-2:トリレンジイソシアネートのアダクト体(三井化学社製、商品名:タケネート500)
B-3:ヘキサメチレンジイソシアネートのアダクト体(旭化成社製、商品名:デュラネートP301-75E)
B-4:エポキシ系樹脂(アデカ社製、商品名:アデカレジンEP4100)
<第1の腐食防止処理層(基材層側)及び第2の腐食防止処理層(シーラント層側)>
(CL-1):溶媒として蒸留水を用い、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」を用いた。なお、ポリリン酸ナトリウム安定化酸化セリウムゾルは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して得た。
(CL-2):溶媒として蒸留水を用い固形分濃度5質量%に調整した「ポリアリルアミン(日東紡社製)」90質量%と、「ポリグリセロールポリグリシジルエーテル(ナガセケムテックス社製)」10質量%からなる組成物を用いた。
<バリア層(厚さ40μm)>
 焼鈍脱脂処理した軟質アルミニウム箔(東洋アルミニウム社製、「8079材」)を用いた。
<第2の接着剤層(塗布量3g/m)>
 トルエン及びメチルシクロヘキサンの混合溶媒に溶解させた酸変性ポリオレフィンにポリイソシアネートを配合したポリウレタン系接着剤を用いた。
<シーラント層(厚さ80μm)>
 ポリオレフィンフィルム(無延伸ポリプロピレンフィルムの第2の接着剤層側の面をコロナ処理したフィルム)を用いた。
[外装材の作製]
(実施例A-1)
 バリア層をドライラミネート手法により、第1の接着剤(第1の接着剤層)を用いて基材層に貼りつけた。バリア層と基材層との積層は、バリア層の一方の面上に第1の接着剤を、乾燥後の塗布量(単位面積当たりの質量)が表1に示す値となるように塗布し、80℃で1分間乾燥した後、基材層とラミネートし、80℃で120時間エージングすることで行った。
 次いで、バリア層の基材層側とは反対側の面をドライラミネート手法により、ポリウレタン系接着剤(第2の接着剤層)を用いて、シーラント層(厚さ80μm)に貼り付けた。バリア層とシーラント層との積層は、バリア層の基材層側とは反対側の面上にポリウレタン系接着剤を、乾燥後の塗布量(単位面積当たりの質量)が3g/mとなるように塗布し、80℃で1分間乾燥した後、シーラント層とラミネートし、120℃で3時間エージングすることで行った。以上の方法で、外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
(実施例A-2~A-16)
 第1の接着剤の組成、及び、第1の接着剤の塗布量のうちの少なくとも一種を表1に示す通りに変更したこと以外は実施例A-1と同様にして、実施例A-2~A-16の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
(実施例A-17)
 まず、バリア層に、第1及び第2の腐食防止処理層を以下の手順で設けた。すなわち、バリア層の両方の面に(CL-1)を、ドライ塗布量として70mg/mとなるようにマイクログラビアコートにより塗布し、乾燥ユニットにおいて200℃で焼き付け処理を施した。次いで、得られた層上に(CL-2)を、ドライ塗布量として20mg/mとなるようにマイクログラビアコートにより塗布することで、(CL-1)と(CL-2)からなる複合層を第1及び第2の腐食防止処理層として形成した。この複合層は、(CL-1)と(CL-2)の2種を複合化させることで腐食防止性能を発現させたものである。
 次に、第1及び第2の腐食防止処理層を設けたバリア層の第1の腐食防止処理層側をドライラミネート手法により、第1の接着剤(第1の接着剤層)を用いて基材層に貼りつけた。次いで、第1及び第2の腐食防止処理層を設けたバリア層の第2の腐食防止処理層側をドライラミネート手法により、ポリウレタン系接着剤(第2の接着剤層)を用いて、シーラント層(厚さ80μm)に貼り付けた。バリア層と基材層との積層条件、及び、バリア層とシーラント層との積層条件は、実施例A-1と同様である。以上の方法で、外装材(基材層/第1の接着剤層/第1の腐食防止処理層/バリア層/第2の腐食防止処理層/第2の接着剤層/シーラント層の積層体)を作製した。
(実施例A-18)
 基材層をPETに変更したこと以外は実施例A-17と同様にして、実施例A-18の外装材(基材層/第1の接着剤層/第1の腐食防止処理層/バリア層/第2の腐食防止処理層/第2の接着剤層/シーラント層の積層体)を作製した。
(比較例A-1~A-5)
 第1の接着剤の組成を表1に示す通りに変更したこと以外は実施例A-1と同様にして、比較例A-1~A-5の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
[ラミネート強度の測定]
(室温環境下でのラミネート強度)
 15mm幅にカットした外装材のバリア層と基材層間の室温(25℃)環境下でのラミネート強度を、引張速度50mm/minの条件にて、引張試験機(株式会社島津製作所社製)を用いて90度剥離試験により測定した。また、得られたラミネート強度に基づき、以下の基準にて評価を行った。結果を表2に示す。
A:ラミネート強度が6.0N/15mm以上
B:ラミネート強度が4.5N/15mm以上6.0N/15mm未満
C:ラミネート強度が3.0N/15mm以上4.5N/15mm未満
D:ラミネート強度が3.0N/15mm未満
(高温環境下でのラミネート強度)
 15mm幅にカットした外装材を、150℃の高温環境に5分間放置した。その後、外装材のバリア層と基材層間の150℃の環境下でのラミネート強度を、引張速度50mm/minの条件にて、引張試験機(株式会社島津製作所社製)を用いて90度剥離試験により測定した。また、得られたラミネート強度に基づき、以下の基準にて評価を行った。結果を表2に示す。
A:ラミネート強度が3.5N/15mm以上
B:ラミネート強度が2.5N/15mm以上3.5N/15mm未満
C:ラミネート強度が2.0N/15mm以上2.5N/15mm未満
D:ラミネート強度が2.0N/15mm未満
[深絞り成型性の評価]
 外装材について、深絞り成型が可能な成型深度を以下の方法で評価した。成型装置の成型深さを0.25mmごとに1.00~5.00mmに設定して外装材を深絞り成型した。深絞り成型後のサンプルについて、破断及びピンホールの有無を、サンプルにライトを照射しながら目視にて確認し、破断及びピンホールのいずれも生じることなく深絞り成型できた成型深度の最大値を求めた。また、成型深度について以下の基準に従って評価した。結果を表2に示す。
A:成型深度の最大値が4.00mm以上
B:成型深度の最大値が3.50mm以上4.00mm未満
C:成型深度の最大値が3.00mm以上3.50mm未満
D:成型深度の最大値が3.00mm未満
[環境信頼性の評価]
 上記深絞り成型性の評価で作製した成型深度2.00mmのサンプル(各5検体ずつ)について、150℃の環境に1週間保管した。その後、サンプルの成型凸部近傍にライトを照射しながら目視にて確認し、基材層とバリア層間のデラミネーション発生具合を調べた。また、環境信頼性について以下の基準に従って評価した。結果を表2に示す。
A:5検体中いずれの検体でもデラミネーションが発生しなかった
D:5検体中1検体以上でデラミネーションが発生した
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
《第2の検討》
 [使用材料]
 実施例及び比較例で使用した材料を以下に示す。
 <基材層(厚さ25μm)>
Ny:一方の面にコロナ処理を施したナイロン(Ny)フィルム(東洋紡社製)を用いた。
PET:一方の面にコロナ処理を施したポリエチレンテレフタレートフィルムを用いた。
 <第1の接着剤層>
表3に示す主剤及び硬化剤を、NCO/OH比が同表に示す比率となるように配合し、酢酸エチルで固形分26質量%に希釈した第1の接着剤を用いた。硬化剤を2種類用いた場合は、硬化剤中の全NCO基に占める各硬化剤のNCO基の割合が表3に示す値となるように混合して用いた。第1の接着剤を構成する各成分の詳細は以下の通りである。
(主剤)
・ポリエーテルポリオール(AGC社製、商品名:EXCENOL、品番:837、水酸基価:27mgKOH/g)
・ポリエステルポリオール(日立化成社製、商品名:テスラック2505-63、水酸基価:7~11mgKOH/g)
・アクリルポリオール(大成ファインケミカル社製、商品名:6KW-700、水酸基価:10mgKOH/g)
・ポリカーボネートジオール(PCD)(旭化成社製、商品名:デュラノール T5651、水酸基価:113mgKOH/g)
(硬化剤)
・IPDI-n:イソホロンジイソシアネートのヌレート体(三井化学社製、商品名:タケネート600)
・HDI-a:ヘキサメチレンジイソシアネートのアダクト体(旭化成社製、商品名:デュラネートP301-75E)
・MDI多量体:ジフェニルメタンジイソシアネートの多量体(東ソー社製、商品名:コロネート 139)
・TDI-a:トリレンジイソシアネートのアダクト体(三井化学社製、商品名:タケネート500)
 <第1の腐食防止処理層(基材層側)及び第2の腐食防止処理層(シーラント層側)>(CL-1):溶媒として蒸留水を用い、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」を用いた。なお、ポリリン酸ナトリウム安定化酸化セリウムゾルは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して得た。(CL-2):溶媒として蒸留水を用い固形分濃度5質量%に調整した「ポリアリルアミン(日東紡社製)」90質量%と、「ポリグリセロールポリグリシジルエーテル(ナガセケムテックス社製)」10質量%からなる組成物を用いた。
 <バリア層(厚さ40μm)>
 焼鈍脱脂処理した軟質アルミニウム箔(東洋アルミニウム社製、「8079材」)と、銅箔(JX金属社製、型番:HA)のいずれかを用いた。
 <第2の接着剤層(塗布量3g/m)>
 トルエン及びメチルシクロヘキサンの混合溶媒に溶解させた酸変性ポリオレフィンにポリイソシアネートを配合したポリウレタン系接着剤を用いた。
 <シーラント層(厚さ80μm)>
 ポリオレフィンフィルム(無延伸ポリプロピレンフィルムの第2の接着剤層側の面をコロナ処理したフィルム)を用いた。
 [外装材の作製]
(実施例B-1)
 バリア層(アルミニウム箔)をドライラミネート手法により、第1の接着剤(第1の接着剤層)を用いて基材層(ナイロン)に貼りつけた。バリア層と基材層との積層は、バリア層の一方の面上に第1の接着剤を、乾燥後の塗布量(単位面積当たりの質量)が表3に示す値となるように塗布し、80℃で1分間乾燥した後、基材層とラミネートし、80℃で120時間エージングすることで行った。
 次いで、バリア層の基材層側とは反対側の面をドライラミネート手法により、ポリウレタン系接着剤(第2の接着剤層)を用いて、シーラント層(厚さ80μm)に貼り付けた。バリア層とシーラント層との積層は、バリア層の基材層側とは反対側の面上にポリウレタン系接着剤を、乾燥後の塗布量(単位面積当たりの質量)が3g/mとなるように塗布し、80℃で1分間乾燥した後、シーラント層とラミネートし、120℃で3時間エージングすることで行った。以上の方法で、外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
 (実施例B-2~B-17)
 第1の接着剤の組成、及び、第1の接着剤の塗布量のうちの少なくとも一種を表3に示す通りに変更したこと以外は実施例B-1と同様にして、実施例B-2~B-17の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
 (実施例B-18)
 バリア層の材質を銅箔(Cu)とし、第1の接着剤の組成、及び、第1の接着剤の塗布量を表3に示す通りに変更したこと以外は実施例B-1と同様にして実施例B-18の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
 (実施例B-19~B-21)
 バリア層をアルミニウム箔とし、その厚みを表3に示すとおりに変更した以外は実施例B-18と同様にして実施例B-19~B-21の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
 (実施例B-22)
 バリア層に腐食防止層を設けない構成とした以外は実施例B-16と同様の構成として実施例B-22の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
 (実施例B-23)
 基材をPETとした以外、実施例B-16と同様の構成として実施例B-23の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
 (比較例B-1、B-2)
 第1の接着剤の組成を表3に示す通りに変更したこと以外は実施例B-1と同様にして、比較例B-1、B-2の外装材(基材層/第1の接着剤層/バリア層/第2の接着剤層/シーラント層の積層体)を作製した。
 [IR測定]
 外装材を適当なサイズにカットし、端部からきっかけを作って基材層とバリア層間を剥離した。基材層とバリア層のうち接着層がより多く残っている側の表面からフーリエ変換赤外線(FT-IR)分光分析法の減衰全反射(ATR:Attenuated Total Reflection)で測定した場合に、赤外線の波数がベースラインの透過率T0と、2200cm-1から2300cm-1の範囲に検出される透過率の最小値T1と、1670cm-1から1710cm-1の範囲に検出される透過率の最小値T2を算出した。
算出したそれぞれの値が0.06≦(T0-T1)/(T0-T2)≦0.4の関係を充足しているか評価した。結果を表3に示す。
〈測定条件〉
プリズム:ゲルマニウム
波数分解能:4cm-1
積算回数:4回
ベースライン:波数2500~2700cm-1間の強度の平均値。
〈測定装置〉
PerkinElmer製:Spectrum Spotlight 400
Figure JPOXMLDOC01-appb-T000003
 [外装側耐熱ラミネート強度の評価]
 15mm幅にカットした外装材のバリア層と基材層間を剥離した。引張速度50mm/minの条件にて、引張試験機(株式会社島津製作所社製)を用いて90度剥離試験により測定した。なお以下の評価においてはC以上の評価を合格と判定する。
(室温環境下でのラミネート強度)
 室温(25℃)環境下でのラミネート強度を測定した。また、得られたラミネート強度に基づき、以下の基準にて評価を行った。結果を表4に示す。
A:ラミネート強度が6.0N/15mm以上。
B:ラミネート強度が4.5N/15mm以上6.0N/15mm未満。
C:ラミネート強度が3.0N/15mm以上4.5N/15mm未満。
D:ラミネート強度が3.0N/15mm未満。
 (高温環境下でのラミネート強度)
 15mm幅にカットした外装材を、150℃の高温環境に5分間放置した。その後、150℃の環境下でのラミネート強度を測定した。また、得られたラミネート強度に基づき、以下の基準にて評価を行った。結果を表4に示す。
A:ラミネート強度が3.5N/15mm以上。
B:ラミネート強度が2.5N/15mm以上3.5N/15mm未満。
C:ラミネート強度が2.0N/15mm以上2.5N/15mm未満。
D:ラミネート強度が2.0N/15mm未満。
 [深絞り成型性の評価]
 外装材について、深絞り成型が可能な成型深度を以下の方法で評価した。成型装置の成型深さを0.25mmごとに1.00~5.00mmに設定して外装材を深絞り成型した。深絞り成型後のサンプルについて、破断及びピンホールの有無を、サンプルにライトを照射しながら目視にて確認し、破断及びピンホールのいずれも生じることなく深絞り成型できた成型深度の最大値を求めた。また、成型深度について以下の基準に従って評価した。結果を表4に示す。
A:成型深度の最大値が5.00mm以上。
B:成型深度の最大値が4.00mm以上5.00mm未満。
C:成型深度の最大値が3.00mm以上4.00mm未満。
D:成型深度の最大値が3.00mm未満。
 [深絞り信頼性の評価]
 上記深絞り成型性の評価で作製した成型深度2.00mmのサンプル(各5検体ずつ)について、150℃の環境に1週間保管した。その後、サンプルの成型凸部近傍にライトを照射しながら目視にて確認し、基材層とバリア層間のデラミネーション発生具合を調べた。また、環境信頼性について以下の基準に従って評価した。結果を表4に示す。
A:5検体中いずれの検体でもデラミネーションが発生しなかった。
D:5検体中1検体以上でデラミネーションが発生した。
Figure JPOXMLDOC01-appb-T000004
《第3の検討》
 [使用材料]
 実施例及び比較例で使用した材料を以下に示す。
 基材層11として、一方の面にコロナ処理を施した厚さ25μmのナイロン(Ny)フィルム(東洋紡社製)を用いた。
 次に、第1の接着剤層12aを構成する材料として、互いに数平均分子量(Mn)が異なる5種類のポリアミドイミドを準備した。
 各ポリアミドイミドの数平均分子量(Mn)は、それぞれ、2000、5000、20000、30000及び40000である。
 また、これに加えて、第1の接着剤層12aを構成するポリウレタン系化合物の主剤(ポリオール樹脂)として、ポリエーテルポリオール、ポリエステルポリオール、アクリルポリオール及びポリカーボネートポリオール(PCD)を準備した。また、このポリウレタン系化合物の硬化剤(多官能イソシアネート化合物)として、ヘキサメチレンジイソシアネートのアダクト体(HDI-a)、イソホロンジイソシアネートのヌレート体(IPDI-n)及びトリレンジイソシアネートのアダクト体(TDI-a)を準備した。
 バリア層13としては、両面に腐食防止処理層14a,14bを設けた軟質アルミニウム箔(東洋アルミニウム社製、「8079材」)を用いた。なお、腐食防止処理層14a,14bは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して製造したポリリン酸ナトリウム安定化酸化セリウムゾルを使用して形成した。
 次に、第2の接着剤層12bを構成する接着剤としては、トルエン及びメチルシクロヘキサンの混合溶媒に溶解させた酸変性ポリオレフィンにポリイソシアネートを配合したポリウレタン系接着剤を用いた。なお、第2の接着剤層12bは、3g/m塗布して形成した。
 シーラント層16としてはポリオレフィンフィルム(無延伸ポリプロピレンフィルムの第2の接着剤層側の面をコロナ処理したフィルム)を用いた。シーラント層16の厚さは80μmである。
 [外装材10の作製]
 (実施例C-1)
 この実施例の外装材10は、次のように作製した。なお、使用したポリアミドイミドの数平均分子量(Mn)と配合量(ポリウレタン系化合物の固形分量に対するポリアミドイミド樹脂の固形分量)A、及びポリウレタン系化合物の主剤と硬化剤及びこれらに含まれるイソシアネートの数の比率(NCO/OH)を表5に示す。
 すなわち、バリア層13をドライラミネート手法により、第1の接着剤(第1の接着剤層)12aを用いて基材層11に貼りつけた。バリア層13と基材層11との積層は、バリア層13の一方の面上に第1の接着剤を塗布し、80℃で1分間乾燥した後、基材層11とラミネートし、80℃で120時間エージングすることで行った。
 次いで、バリア層13の基材層11側とは反対側の面をドライラミネート手法により、ポリウレタン系接着剤(第2の接着剤層))12bを用いて、シーラント層(厚さ80μm)16に貼り付けた。バリア層13とシーラント層16との積層は、バリア層13の基材層11側とは反対側の面上にポリウレタン系接着剤を塗布し、80℃で1分間乾燥した後、シーラント層とラミネートし、120℃で3時間エージングすることで行った。以上の方法で、外装材(基材層11/第1の接着剤層12a/バリア層13/第2の接着剤層12b/シーラント層16の積層体)10を作製した。
 (比較例C-1~C-4)
 これらの比較例C-1~C-4は、ポリアミドイミドを配合した実施例C-1と対比して、ポリアミドイミド配合の有無の影響を調べたものである。各比較例で使用したポリアミドイミドの数平均分子量(Mn)と配合量A、及びポリウレタン系化合物の主剤と硬化剤及びNCO/OHを表5に示す。
 (実施例C-2~C-5)
 これらの例は、実施例1と対比することにより、ポリアミドイミドの配合量Aの影響を調べたものである。ポリアミドイミドの数平均分子量(Mn)と配合量A、及びポリウレタン系化合物の主剤と硬化剤及びNCO/OHを表5に示す。
 (実施例C-6~C-9)
 これらの例は、実施例C-1と対比することにより、ポリアミドイミドの数平均分子量(Mn)の影響を調べたものである。ポリアミドイミドの数平均分子量(Mn)と配合量A、及びポリウレタン系化合物の主剤と硬化剤及びNCO/OHを表5に示す。
 (実施例C-10~C-12)
 これらの例は、実施例C-1と対比することにより、ポリウレタン系化合物の主剤の種類による影響を調べたものである。ポリアミドイミドの数平均分子量(Mn)と配合量A、及びポリウレタン系化合物の主剤と硬化剤及びNCO/OHを表5に示す。
 (実施例C-13~C-14)
 これらの例は、実施例C-1と対比することにより、ポリウレタン系化合物の硬化剤の種類による影響を調べたものである。ポリアミドイミドの数平均分子量(Mn)と配合量A、及びポリウレタン系化合物の主剤と硬化剤及びNCO/OHを表5に示す。
 (実施例C-15~C-19)
 これらの例は、実施例C-1と対比することにより、ポリウレタン系化合物のNCO/OHの影響を調べたものである。ポリアミドイミドの数平均分子量(Mn)と配合量A、及びポリウレタン系化合物の主剤と硬化剤及びNCO/OHを表5に示す。
 [外装材10の評価]
 各実施例及び比較例で作製した外装材10について、4種類の観点から評価した。すなわち、室温環境下でのラミネート強度の測定による評価、高温(170℃)環境下でのラミネート強度の測定による評価、深絞り成型性の評価及び成型後の外装材10の高温(170℃)環境下での信頼性(成型信頼性)の評価である。
 (室温環境下でのラミネート強度の測定)
 15mm幅にカットした外装材のバリア層と基材層間の室温(25℃)環境下でのラミネート強度を、引張速度50mm/minの条件にて、引張試験機(株式会社島津製作所社製)を用いて90度剥離試験により測定した。また、得られたラミネート強度に基づき、以下の基準にて評価を行った。結果を表5に示す。
A:ラミネート強度が6.0N/15mm以上。
B:ラミネート強度が4.5N/15mm以上6.0N/15mm未満。
C:ラミネート強度が3.0N/15mm以上4.5N/15mm未満。
D:ラミネート強度が3.0N/15mm未満。
 (高温環境下でのラミネート強度の測定)
 15mm幅にカットした外装材を、170℃の高温環境に5分間放置した。その後、外装材のバリア層と基材層間の150℃の環境下でのラミネート強度を、引張速度50mm/minの条件にて、引張試験機(株式会社島津製作所社製)を用いて90度剥離試験により測定した。また、得られたラミネート強度に基づき、以下の基準にて評価を行った。結果を表5に示す。
A:ラミネート強度が3.0N/15mm以上。
B:ラミネート強度が2.0N/15mm以上3.0N/15mm未満。
C:ラミネート強度が1.0N/15mm以上2.0N/15mm未満。
D:ラミネート強度が1.0N/15mm未満。
 (深絞り成型性の評価)
 外装材について、深絞り成型が可能な成型深度を以下の方法で評価した。成型装置の成型深さを0.25mmごとに1.00~5.00mmに設定して外装材を深絞り成型した。深絞り成型後のサンプルについて、破断及びピンホールの有無を、サンプルにライトを照射しながら目視にて確認し、破断及びピンホールのいずれも生じることなく深絞り成型できた成型深度の最大値を求めた。また、成型深度について以下の基準に従って評価した。結果を表5に示す。
A:成型深度の最大値が4.00mm以上。
B:成型深度の最大値が3.50mm以上4.00mm未満。
C:成型深度の最大値が3.00mm以上3.50mm未満。
D:成型深度の最大値が3.00mm未満。
 (成型信頼性の評価)
 上記深絞り成型性の評価で作製した成型深度2.00mmのサンプル(各5検体ずつ)について、170℃の環境に1週間保管した。その後、サンプルの成型凸部近傍にライトを照射しながら目視にて確認し、基材層とバリア層間のデラミネーション発生具合を調べ、成型信頼性として以下の基準に従って評価した。結果を表5に示す。
A: デラミネーションの発生件数が、5検体中0であった。
B:デラミネーションの発生件数が、5検体中1~2であった。
C:デラミネーションの発生件数が、5検体中3以上であった。
Figure JPOXMLDOC01-appb-T000005
 [考察]
 (ポリアミドイミド配合の有無の影響に関する考察)
 実施例C-1及び比較例C-1~C-4の結果から、室温環境下でのラミネート強度についてはポリアミドイミド配合の有無による大きな相違は見られないものの、高温環境下でのラミネート強度や深絞り成型性については、ポリアミドイミドの配合によってその性能が大きく向上する。また、成型後の外装材10の高温環境下での信頼性(成型信頼性)も同様である。
 なお、ポリエステルポリオールとIPDI-nとの反応物から成るポリウレタン系化合物は比較的耐熱性が高いとされているが、これを使用した比較例C-3,C-4に比べても、ポリアミドイミドを配合した実施例C-1は、高温環境下でのラミネート強度や成型信頼性の点優れている。しかも、比較例C-4においてはNCO/OHを大きくしてさらに耐熱性を向上させているのにも拘わらず、実施例C-1はこれよりも優れているのである。
 (ポリアミドイミドの配合量Aに関する考察)
 実施例C-1~C-4の結果から、ポリアミドイミドの配合量(ポリウレタン系化合物の固形分量に対するポリアミドイミド樹脂の固形分量)Aが多いほど高温環境下でのラミネート強度や成型信頼性が向上することが理解できる。もっとも、この配合量Aが20.0質量%に達した実施例C-5では、配合量Aが15.0質量%以下の実施例C-1~C-4より、高温環境下でのラミネート強度が低く、しかも、深絞り成型性が大きく低下している。
 このため、高温環境下でのラミネート強度と成型信頼性とを両立させるため、ポリアミドイミドの配合量Aは1.0質量%<A<20.0質量%であればよいことが分かる。高温環境下でのラミネート強度がもっとも優れるものは、10.0~15.0質量%である。
 (ポリアミドイミドの数平均分子量(Mn)に関する考察)
 実施例C-1,C-6~C-9の結果から、ポリアミドイミド樹脂は、その数平均分子量(Mn)が3000<Mn<36000を満たすとき(実施例C-6~C-8)、高温環境下でのラミネート強度に優れており、この範囲内では特に数平均分子量(Mn)が小さい方が優れていることが理解できる。その理由は明確ではないが、例えば、低分子量のポリアミドイミド樹脂では単位質量当たりの官能基数が多いことから、界面密着性に優れていることが関連していると推測できる。
 なお、数平均分子量(Mn)が5000より小さい場合(実施例C-1)には、これより大きい場合(実施例C-6~C-9)に比較して、高温環境下でのラミネート強度が低い。このように数平均分子量(Mn)が5000より小さい場合には、単位質量当たりの官能基数の増加に伴い、ポリアミドイミドの脆性が増大し、また、融点、ガラス転移温度あるいは軟化点等が低下してその耐熱性が低下することが関連していると推測できる。
 なお、ポリアミドイミドの数平均分子量(Mn)が36000より大きくなると(実施例C-9)、このような高分子量のポリアミドイミドは溶剤に溶解せず、このため、これを配合したものは接着剤として使用できない。
 (ポリウレタン系化合物の主剤の種類に関する考察)
 実施例C-1,C-10~C-12の結果から、ポリウレタン系化合物の主剤(ポリオール樹脂)としてポリエーテルポリオールを使用した場合(実施例C-1)より、ポリエステルポリオール、アクリルポリオール及びポリカーボネートポリオール(PCD)から成る群より選択されたポリオール樹脂を使用した場合(実施例C-10~C-12)の方が、高温環境下でのラミネート強度に優れていることが理解できる。これらの中でもポリエステルポリオールを使用した場合(実施例C-10)の方が、アクリルポリオールやPCDを使用した場合(実施例C-11,C-12)よりも高温環境下でのラミネート強度に優れている。なお、深絞り成型性や成型信頼性についても優れている。
 (ポリウレタン系化合物の硬化剤の種類に関する考察)
 実施例C-1,C-13,C-14の結果から、ポリウレタン系化合物の硬化剤(多官能イソシアネート化合物)として脂肪族のHDI-aを使用した場合(実施例C-1)より、脂環式のIPDI-nや分子構造内に芳香環を含むTDI-aを使用した場合(実施例C-13,C-14)の方が、高温環境下でのラミネート強度に優れていることが理解できる。また、深絞り成型性や成型信頼性についても優れている。
 (ポリウレタン系化合物のNCO/OHに関する考察)
 実施例C-1,C-15~C-19の結果から、ポリウレタン系化合物のNCO/OHが1.5<NCO/OH<40.0を満たせば(実施例C-1,C-15~C-19)、高温環境下でのラミネート強度、深絞り成型性及び成型信頼性のいずれについても改善できることが理解できる。特に、NCO/OHが10.0~30.0のとき(実施例C-16~C-18)、高温環境下でのラミネート強度と深絞り成型性の両者に優れている。
《第4の検討》
[使用材料]
 実施例及び比較例で使用した材料を以下に示す。
<基材層(厚さ25μm)>
 一方の面をコロナ処理したポリエチレンテレフタレートフィルムを用いた。
<第一接着層(厚さ4μm)及び第二接着層(厚さ3μm)>
 表6に記載の主剤、硬化剤及び硫化水素吸着物質を表7に示す割合で配合した接着剤を用いた。表6及び表7に示す主剤及び硬化剤の詳細は、以下のとおりである。また、硫化水素吸着物質は以下の化合物を用いた。
{主剤}
・アミン系樹脂(株式会社日本触媒製、商品名:ポリメントMK-380)
・エポキシ系樹脂(荒川化学工業株式会社製、商品名:アラキード9201N)
・ポリエステルポリオール系樹脂(ユニチカ株式会社製、商品名:エリーテルUE-3600)
{硬化剤}
・HDI-B(ヘキサメチレンジイソシアネート-ビウレット体、旭化成株式会社製、商品名:デュラネート24A-100)
・HDI-N1(ヘキサメチレンジイソシアネート-イソシアヌレート体、旭化成株式会社製、商品名:デュラネートTPA-100)
・HDI-N2(ヘキサメチレンジイソシアネート-イソシアヌレート体のイソシアネート基がブロック剤と結合している化合物、旭化成株式会社製、商品名:デュラネートMF-K60B)
・HDI-N3(ヘキサメチレンジイソシアネート-イソシアヌレート体のイソシアネート基がブロック剤と結合している化合物、旭化成株式会社製、商品名:デュラネートMF-B60B)
・HDI-A(ヘキサメチレンジイソシアネート-アダクト体、東洋インキ株式会社製、商品名:CAT-10L)
・ビスフェノールA(三菱化学株式会社製、商品名:ビスフェノールA)
{硫化水素吸着物質}
・酸化亜鉛(石原産業株式会社製、商品名:FZO-50)
<腐食防止処理層>
 溶媒として蒸留水を用い、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」を用いた。なお、ポリリン酸ナトリウム安定化酸化セリウムゾルは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して得た。
<バリア層(厚さ35μm)>
 焼鈍脱脂処理した軟質アルミニウム箔(東洋アルミニウム社製、「8079材」)を用いた。
<シーラント層(厚さ40μm)>
 シーラント層として、表6に記載のフィルムを準備した。
[外装材の製造]
<実施例D-1~D-3、D-9~D-12、比較例D-1、D-2>
 ドライラミネート手法により接着剤(第一接着層)を用いてバリア層を基材層に貼り付けた。次いで、バリア層の第一接着層が接着している面とは反対の面にドライラミネート手法により接着剤(第二接着層)を用いてシーラント層を貼り付けた。
 このようにして得られた積層体を、表7に示す条件で加熱処理し、外装材(基材層/第一接着層/バリア層/第二接着層/シーラント層)を製造した。
<実施例D-4~D-8>
 まず、バリア層に、バリア層の両方の面にポリリン酸ナトリウム安定化酸化セリウムゾルを、グラビアコートにより塗布した。次いで、塗布されたポリリン酸ナトリウム安定化酸化セリウムゾルを乾燥させた後、焼付け処理を順次行うことで、バリア層の両方の面に腐食防止処理層を形成した。このとき、焼き付け条件としては、温度を150℃、処理時間を30秒とした。
 次に、腐食防止処理層が形成されたバリア層の一方の面に、ドライラミネート手法により、接着剤(第一接着層)を用いて基材層に貼りつけた。次いで、腐食防止処理層が形成されたバリア層のもう一方の面に、ドライラミネート手法により、(第二接着層)を用いてシーラント層を貼り付けた。
 このようにして得られた積層体を、表7に示す条件で加熱処理し、外装材(基材層/第一接着層/腐食防止処理層/バリア層/腐食防止処理層/第二接着層/シーラント層)を製造した。
[ウレア存在比の測定]
<第一接着層>
 第一接着層と密着しているバリア層及び基材層を剥離し、第一接着層を露出させた。露出させた第一接着層を赤外分光法(IR)により赤外線吸収スペクトルピーク強度を測定した。1680~1720cm-1の赤外線吸収スペクトルピーク強度をA1、1590~1640cm-1の赤外線吸収スペクトルピーク強度をB1としたとき下記式(2-A)によりウレア存在比(X1)を算出した。結果を表6に示した。
ウレア存在比(X1)={B1/(A1+B1)}×100   …(2-A)
<第二接着層>
 第二接着層と密着しているバリア層及びシーラント層を剥離し、第二接着層を露出させた。露出させた第二接着層について第一接着層と同様にしてウレア存在比を算出した。結果を表6に示した。
[シーラント層側耐熱ラミネート強度の評価]
<測定方法>
 外装材を15mm幅にカットし、外装材のバリア層と、シーラント層との間のラミネート強度を以下の条件1~3のいずれかの条件で測定した。剥離は、90°剥離とし、剥離速度は50mm/分とした。
条件1:外装材を80℃で5分間加熱後、80℃に加熱しながらラミネート強度を測定した。
条件2:外装材を150℃で5分間加熱後、150℃に加熱しながらラミネート強度を測定した。
条件3:外装材を100℃で加熱しながら、濃度が20ppmの硫化水素に1週間暴露した後、上記条件2と同一の方法でラミネート強度を測定した。
<評価基準>
 ラミネート強度は、以下の評価基準に基づき評価し、C以上を合格とした。結果を表8に示した。
A:ラミネート強度が2.5N/15mm以上
B:ラミネート強度が2.0N/15mm以上2.5N/15mm未満
C:ラミネート強度が1.5N/15mm以上2.0N/15mm未満
D:ラミネート強度が1.5N/15mm未満
[深絞り成型性]
<測定方法>
 各例で得られた外装材について、深絞り成型が可能な成型深度を以下の方法で評価した。成型装置の成型深さを0.25mmごとに1.0~5.0mmに設定し、深絞りしたサンプルについて破断及びピンホールの有無を、外装材にライトを照射しながら目視にて確認し、破断及びピンホールのいずれも生じることなく深絞り成型できた成型深度の最大値を求めた。また、成型深度について以下の基準に従って評価した。結果を表8に示した。
<評価基準>
A:成型深度の最大値が4.00mm以上
B:成型深度の最大値が3.50mm以上4.00mm未満
C:成型深度の最大値が3.00mm以上3.50mm未満
D:成型深度の最大値が3.00mm未満
[深絞り成型後の耐熱性]
 上記[深絞り成型性]の評価で得られた成型深度2.00mmの外装材(各5検体ずつ)を、80℃、又は150℃に加熱しながら1週間保管した。その後、成型凸部近傍にライトを照射しながら、基材層、バリア層間のデラミネーション発生具合を目視にて確認した。本試験については以下の基準に従って評価した。結果を表8に示した。
<評価基準>
A:5検体中0~1検体でデラミネーションが発生
B:5検体中2~4検体でデラミネーションが発生
D:5検体中5検体でデラミネーションが発生
[ポットライフ]
 接着剤の塗液の所定時間ごとのゲル分率からポットライフを評価した。ゲル分率は、以下の方法で測定した。ゲル分率は以下の基準に基づき評価した。結果を表8に示した。
<ゲル分率測定>
工程A)接着剤塗液作製後、4時間経過した塗液を一部回収し、その塗液の溶剤を乾燥させた。
工程B)試料を乗せるメッシュの重量を測定し(w1とする)、このメッシュに工程Aの乾燥塗膜を乗せた際の合計重量を測定した(w2とする)。
工程C)工程Aの乾燥塗膜をキシレンに浸漬し、室温で1週間保管した。
工程D)工程Cのキシレン溶液を工程Bで用いたメッシュでろ過し、残渣を多量のキシレンで洗浄した。
工程E)工程Dの残渣を乾燥させ、重量を測定した(w3とする)。
工程F)上記で得られた重量データから、下記式によりゲル分率を計算した。
ゲル分率=(w3-w1)/(w2-w1)
<評価基準>
A:ゲル分率が40%未満
B:ゲル分率が40%以上50%未満
C:ゲル分率が50%以上60%未満
D:ゲル分率が60%以上
[成型カール耐性]
 上記[深絞り成型性]の評価で得られた成型深度2.00mmの外装材を平面に静置した。このとき、外装材の凹部が形成された面と、平面とが接するように外装材を静置した。静置した外装材について外装材の4角における平面からのカール高さを測定し、その合計値を算出した。合計値を下記の評価基準に基づき評価した。結果を表8に示した。
<評価基準>
A:4角のカール高さの合計値が40mm未満
B:4角のカール高さの合計値が40mm以上、100mm未満
D:4角のカール高さの合計値が100mm以上
[耐熱シール強度]
 外装材を、120mm×60mmサイズに切り出し、シーラント層が内側になるように半分に折りたたみ、折りたたんだ部分とは反対側の端部を190℃/0.5MPa/3秒で10mm幅にヒートシールし、6時間室温で保管した。その後、ヒートシール部の長手方向中央部を幅15mm×長さ300mmで切り出し、ヒートシール強度測定用サンプルを製作した。このサンプルを150℃の試験環境に5分間放置した後、サンプルのヒートシール部に対し、引張速度50mm/分の条件にて、引張試験機(株式会社島津製作所社製)を用いてT字剥離試験を行った。そして、ヒートシール強度を下記の評価基準に基づき評価した。結果を表8に示した。
<評価基準>
A:ヒートシール強度が15N/15mm以上
B:ヒートシール強度が10N/15mm以上、15N/15mm未満
C:ヒートシール強度が5N/15mm以上、10N/15mm未満
D:ヒートシール強度が5N/15mm未満
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 80℃加熱時及び150℃加熱時のシーラント層側の耐熱ラミネート強度の測定結果から、ウレア存在比(X1)が10~99である場合(実施例D-1~D-12)に、ウレア存在比(X1)が10未満又は99を超える場合(比較例D-1~D-3)と比較して、耐熱性に優れることがわかる。更に、深絞り成型後の耐熱性の評価からも、ウレア存在比(X1)が10~99である場合(実施例D-1~D-12)に、ウレア存在比(X1)が10未満又は99を超える場合(比較例D-1~D-3)と比較して、耐熱性に優れることがわかる。
《第5の検討》
[使用材料]
 実施例及び比較例で使用した材料を以下に示す。
<基材層(厚さ25μm)>
 一方の面をコロナ処理したポリエチレンテレフタレートフィルムを用いた。
<第一接着層(厚さ4μm)及び第二接着層(厚さ3μm)>
 表1に記載の主剤、硬化剤、触媒及び硫化水素吸着物質を表10に示す割合で配合した接着剤を用いた。表9及び表10に示す主剤及び硬化剤の詳細は、以下のとおりである。また、触媒及び硫化水素吸着物質は以下の化合物を用いた。
{主剤}
・アクリルポリオール系樹脂(東栄化成株式会社社製、商品名:YS#6158)
・ポリエステルポリオール系樹脂(ユニチカ株式会社社製、商品名:エリーテルUE-3220)
・ポリオレフィン系樹脂(三井化学株式会社製、商品名:ユニストールP501)
{硬化剤}
・HDI-B(ヘキサメチレンジイソシアネート-ビウレット体、旭化成株式会社社製、商品名:デュラネート24A-100)
・HDI-A(ヘキサメチレンジイソシアネート-アダクト体、東洋インキ株式会社社製、商品名:SP硬化剤)
・TDI-A(トルレンジイソシアネート-アダクト体、東洋インキ株式会社社製、商品名:CAT-10L)
・TDI-N(トルレンジイソシアネート-ヌレート体、三井化学株式会社社製、商品名:タケネートD-204EA―1)
{触媒}
・有機チタン化合物(マツモトファインケミカル社製、商品名:オルガチックスTC-401)
{硫化水素吸着物質}
・酸化亜鉛(石原産業株式会社社製、商品名:FZO-50)
<腐食防止処理層>
 溶媒として蒸留水を用い、固形分濃度10質量%に調整した「ポリリン酸ナトリウム安定化酸化セリウムゾル」を用いた。なお、ポリリン酸ナトリウム安定化酸化セリウムゾルは、酸化セリウム100質量部に対して、リン酸のNa塩を10質量部配合して得た。
<金属箔層(厚さ35μm)>
 焼鈍脱脂処理した軟質アルミニウム箔(東洋アルミニウム社製、「8079材」)を用いた。
<シーラント層(厚さ40μm)>
 シーラント層として、表9に記載のフィルムを準備した。
[外装材の製造]
<実施例E-1~E-5、比較例E-1~E-3>
 ドライラミネート手法により接着剤(第一接着層)を用いて金属箔層を基材層に貼り付けた。次いで、金属箔層の第一接着層が接着している面とは反対の面にドライラミネート手法により接着剤(第二接着層)を用いてシーラント層を貼り付けた。
 このようにして得られた積層体を、表10に示す条件で加熱処理し、外装材(基材層/第一接着層/金属箔層/第二接着層/シーラント層)を製造した。
<実施例E-6~E-11>
 まず、金属箔層に、金属箔層の両方の面にポリリン酸ナトリウム安定化酸化セリウムゾルを、グラビアコートにより塗布した。次いで、塗布されたポリリン酸ナトリウム安定化酸化セリウムゾルを乾燥させた後、焼付け処理を順次行うことで、金属箔層の両方の面に腐食防止処理層を形成した。このとき、焼き付け条件としては、温度を150℃、処理時間を30秒とした。
 次に、腐食防止処理層が形成された金属箔層の一方の面に、ドライラミネート手法により、接着剤(第一接着層)を用いて基材層に貼りつけた。次いで、腐食防止処理層が形成された金属箔層のもう一方の面に、ドライラミネート手法により、(第二接着層)を用いてシーラント層を貼り付けた。
 このようにして得られた積層体を、表10に示す条件で加熱処理し、外装材(基材層/第一接着層/腐食防止処理層/金属箔層/腐食防止処理層/第二接着層/シーラント層)を製造した。
[ウレタン存在比の測定]
<第一接着層>
 第一接着層と密着している金属箔層及び基材層を剥離し、第一接着層を露出させた。露出させた第一接着層を赤外分光法(IR)により赤外線吸収スペクトルピーク強度を測定した。2250~2290cm-1の赤外線吸収スペクトルピーク強度をA2、1680~1720cm-1の赤外線吸収スペクトルピーク強度をB2としたとき、下記式(2-B)によりウレタン存在比(X2)を算出した。結果を表1に示した。
ウレタン存在比(X2)={B2/(A2+B2)}×100   …(2-B)
<第二接着層>
 第二接着層と密着している金属箔層及びシーラント層を剥離し、第二接着層を露出させた。露出させた第二接着層について第一接着層と同様にしてウレタン存在比を算出した。結果を表9に示した。
[ガラス転移温度Tgの測定]
<第一接着層及び第二接着層>
 第一接着層及び第二接着層のガラス転移温度Tgは、測定温度20~300℃、昇温速度10℃/分の条件にて示差走査熱量(DSC)測定を行い決定した。結果を表9に示した。
[シーラント層側耐熱ラミネート強度の評価]
<測定方法>
 外装材を15mm幅にカットし、外装材の金属箔層と、シーラント層との間のラミネート強度を以下の条件1~3のいずれかの条件で測定した。剥離は、90°剥離とし、剥離速度は50mm/分とした。
条件1:外装材を80℃で5分間加熱後、80℃に加熱しながらラミネート強度を測定した。
条件2:外装材を150℃で5分間加熱後、150℃に加熱しながらラミネート強度を測定した。
条件3:外装材を100℃で加熱しながら、濃度が20ppmの硫化水素に1週間暴露した後、上記条件2と同一の方法でラミネート強度を測定した。
<評価基準>
 ラミネート強度は、以下の評価基準に基づき評価した。結果を表11に示した。
A:ラミネート強度が2.5N/15mm以上
B:ラミネート強度が2.0N/15mm以上2.5N/15mm未満
C:ラミネート強度が1.5N/15mm以上2.0N/15mm未満
D:ラミネート強度が1.5N/15mm未満
[深絞り成型性]
<測定方法>
 各例で得られた外装材について、深絞り成型が可能な成型深度を以下の方法で評価した。成型装置の成型深さを0.25mmごとに1.0~5.0mmに設定し、深絞りしたサンプルについて破断及びピンホールの有無を、外装材にライトを照射しながら目視にて確認し、破断及びピンホールのいずれも生じることなく深絞り成型できた成型深度の最大値を求めた。また、成型深度について以下の基準に従って評価し、△以上を合格とした。結果を表11に示した。
<評価基準>
A:成型深度の最大値が4.00mm以上
B:成型深度の最大値が3.50mm以上4.00mm未満
C:成型深度の最大値が3.00mm以上3.50mm未満
D:成型深度の最大値が3.00mm未満
[深絞り成型後の耐熱性]
 上記[深絞り成型性]の評価で得られた成型深度2.00mmの外装材(各5検体ずつ)を、80℃、又は150℃に加熱しながら1週間保管した。その後、成型凸部近傍にライトを照射しながら、基材層、金属箔層間のデラミネーション発生具合を目視にて確認した。本試験については以下の基準に従って評価した。結果を表11に示した。
<評価基準>
A:5検体中0~1検体でデラミネーションが発生
C:5検体中2~4検体でデラミネーションが発生
D:5検体中5検体でデラミネーションが発生
[耐熱シール強度]
 外装材を、120mm×60mmサイズに切り出し、シーラント層が内側になるように半分に折りたたみ、折りたたんだ部分とは反対側の端部を190℃/0.5MPa/3秒で10mm幅にヒートシールし、6時間室温で保管した。その後、ヒートシール部の長手方向中央部を幅15mm×長さ300mmで切り出し、ヒートシール強度測定用サンプルを製作した。このサンプルを150℃の試験環境に5分間放置した後、サンプルのヒートシール部に対し、引張速度50mm/分の条件にて、引張試験機(株式会社島津製作所社製)を用いてT字剥離試験を行った。そして、ヒートシール強度を下記の評価基準に基づき評価した。結果を表11に示した。
<評価基準>
A:ヒートシール強度が15N/15mm以上
B:ヒートシール強度が10N/15mm以上、15N/15mm未満
C:ヒートシール強度が5N/15mm以上、10N/15mm未満
D:ヒートシール強度が5N/15mm未満
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 本開示によれば、室温環境下及び高温環境下の両方で優れたラミネート強度を確保できると共に、深絞り成型性にも優れた蓄電装置用外装材及びこれを用いた蓄電装置が提供される。
 1…電池要素、2…リード、10,20,25…蓄電装置用外装材、11…基材層、12a…第1の接着剤層(第一接着層)、12b…第2の接着剤層、13…バリア層、14a…第1の腐食防止処理層、14b…第2の腐食防止処理層、15…接着性樹脂層、16…シーラント層、17…第二接着層、30…エンボスタイプ外装材、32…成型加工エリア(凹部)、34…蓋部、40…二次電池、50…蓄電装置、52…電池要素、53…金属端子。

Claims (38)

  1.  少なくとも基材層、バリア層、及び、シーラント層をこの順で備える蓄電装置用外装材であって、
     前記基材層と前記バリア層との間に、少なくとも1種類以上のポリエステルポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物からなるポリウレタン系化合物を含有する接着剤層を備え、
     前記多官能イソシアネート化合物は、イソホロンジイソシアネートのヌレート体を含み、
     前記多官能イソシアネート化合物における前記イソホロンジイソシアネートのヌレート体に由来するイソシアネート基の含有量が、前記多官能イソシアネート化合物に含まれるイソシアネート基全量100モル%を基準として5~100モル%である、蓄電装置用外装材。
  2.  前記ポリエステルポリオール樹脂に含まれる水酸基数に対する、前記多官能イソシアネート化合物に含まれるイソシアネート基数の比率が2~60である、請求項1に記載の蓄電装置用外装材。
  3.  前記多官能イソシアネート化合物が、トリレンジイソシアネートのアダクト体を更に含む、請求項1又は2に記載の蓄電装置用外装材。
  4.  前記多官能イソシアネート化合物に含まれる前記トリレンジイソシアネートのアダクト体に由来するイソシアネート基数に対する、前記イソホロンジイソシアネートのヌレート体に由来するイソシアネート基数の比率が0.05~20である、請求項3に記載の蓄電装置用外装材。
  5.  前記接着剤層の単位面積当たりの質量が2.0~6.0g/mである、請求項1~4のいずれか一項に記載の蓄電装置用外装材。
  6.  前記バリア層の一方又は両方の面に腐食防止処理層が設けられている、請求項1~5のいずれか一項に記載の蓄電装置用外装材。
  7.  少なくとも、基材層と、第1の接着剤層と、バリア層と、第2の接着剤層と、シーラント層とをこの順に備える積層体からなり、
    前記基材層を除去し、前記第1の接着剤層を露出させ、露出した接着剤層の最表面側からフーリエ変換赤外分光分析法の減衰全反射で測定した場合に、ベースラインの透過率T0と、2100cm-1から2400cm-1の範囲に検出される透過率の最小値T1と、1670cm-1から1700cm-1の範囲に検出される透過率の最小値T2が0.06≦(T0-T1)/(T0-T2)≦0.4の関係を充足している事を特徴とする蓄電装置用外装材。
  8.  前記第1の接着剤層が、多官能イソシアネート化合物を含み、前記多官能イソシアネート化合物は脂環式イソシアネート多量体及び分子構造内に芳香環を含むイソシアネート多量体からなる群より選ばれる少なくとも1種の多官能イソシアネート化合物からなる事を特徴とする請求項7に記載の蓄電装置用外装材。
  9.  前記第1の接着剤層が、ポリエステルポリオール及びアクリルポリオール及びポリカーボネートジオールからなる群より選ばれる少なくとも1種のポリオールと、前記多官能イソシアネート化合物とにより形成されたウレタン樹脂を含む請求項8に記載の蓄電装置用外装材。
  10.  前記ポリオールに含まれる水酸基数に対する、多官能イソシアネート多量体に含まれるイソシアネート基数の比率が5~60である事を特徴とする請求項9に記載の蓄電装置用外装材。
  11.  前記ウレタン樹脂の、乾燥後の塗布量が2.0g/m以上6.0g/m以下である事を特徴とする請求項9に記載の蓄電装置用外装材。
  12.  前記バリア層が、アルミニウム箔である事を特徴とする請求項7~11のいずれか一項に記載の蓄電装置用外装材。
  13.  前記バリア層の厚みが、15~100μmである事を特徴とする請求項7~12のいずれか一項に記載の蓄電装置用外装材。
  14.  前記バリア層において、第1の接着剤層とバリア層の間、もしくは第2の接着剤層とバリア層の間、またはその両方に、腐食防止処理層を有することを特徴とする請求項7~13のいずれか一項に記載の蓄電装置用外装材。
  15.  前記基材層がポリアミドフィルムもしくはポリエステル系フィルムからなる事を特徴とする請求項1~14のいずれか一項に記載の蓄電装置用外装材。
  16.  少なくとも基材層、バリア層、及び、シーラント層をこの順で備える蓄電装置用外装材であって、
     前記基材層と前記バリア層との間に、ポリウレタン系化合物とポリアミドイミド樹脂を含む接着剤層を備えることを特徴とする蓄電装置用外装材。
  17.  前記接着剤層において、前記ポリウレタン系化合物の固形分量に対して前記ポリアミドイミド樹脂の固形分量(A)が1.0質量%<A<20.0質量%であることを特徴とする請求項16に記載の蓄電装置用外装材。
  18.  前記ポリアミドイミド樹脂の数平均分子量(Mn)が3000<Mn<36000であることを特徴とする請求項16又は17に記載の蓄電装置用外装材。
  19.  前記ポリウレタン系化合物が、少なくとも1種類以上のポリオール樹脂と少なくとも1種類以上の多官能イソシアネート化合物との反応物から成ることを特徴とする請求項16~18のいずれか一項に記載の蓄電装置用外装材。
  20.  前記ポリオール樹脂が、ポリエステルポリオール、アクリルポリオール及びポリカーボネートポリオールから成る群より選択された少なくとも1種類のポリオール樹脂であることを特徴とする請求項19に記載の蓄電装置用外装材。
  21.  前記多官能イソシアネート化合物が、脂環式イソシアネート多量体及び分子構造内に芳香環を含むイソシアネート多量体から成る群より選択された少なくとも1種類のイソシアネート多量体であることを特徴とする請求項19又は20に記載の蓄電装置用外装材。
  22.  前記ポリオール樹脂中に含まれる水酸基の数に対する前記多官能イソシアネート化合物に含まれるイソシアネートの数の比率(NCO/OH)が1.5<NCO/OH<40.0であることを特徴とする請求項19~21のいずれか一項に記載の蓄電装置用外装材。
  23.  蓄電装置本体と、
     前記蓄電装置本体から延在する電流取出し端子と、
     前記電流取出し端子を挟持し且つ前記蓄電装置本体を収容する、請求項1~22のいずれか一項に記載の蓄電装置用外装材と、
     を備える蓄電装置。
  24.  蓄電デバイス用外装材であって、
     基材層と、
     第一接着層と、
     バリア層と、
     第二接着層と、
     シーラント層と、
    をこの順で有する積層構造を備え、
     前記第一接着層及び前記第二接着層のうち少なくとも一方が、アミン系樹脂とポリイソシアネート化合物との反応物であるウレア系化合物を含み、
     前記第一接着層及び前記第二接着層のうち前記ウレア系化合物を含む層において、1680~1720cm-1の赤外線吸収スペクトルピーク強度をA1、1590~1640cm-1の赤外線吸収スペクトルピーク強度をB1としたとき、下記式(1-A)で定義されるX1が10~99である、外装材。
    X1={B1/(A1+B1)}×100   …(1-A)
  25.  前記ポリイソシアネート化合物のイソシアネート基が、ブロック剤と結合してなる、請求項24に記載の外装材。
  26.  前記ブロック剤が、前記ポリイソシアネート化合物のイソシアネート基から60~120℃で脱離する、請求項25に記載の外装材。
  27.  少なくとも前記第二接着層と前記バリア層との間に腐食防止処理層を更に有する、請求項24~26のいずれか一項に記載の外装材。
  28.  前記第一接着層及び前記第二接着層のうち前記第二接着層のみが前記ウレア系化合物を含む、請求項24~27のいずれか一項に記載の外装材。
  29.  前記第一接着層及び前記第二接着層のうち少なくとも一方が硫化水素吸着物質を含む、請求項24~28のいずれか一項に記載の外装材。
  30.  蓄電デバイス用外装材であって、
     基材層と、
     第一接着層と、
     金属箔層と、
     第二接着層と、
     シーラント層と、
    をこの順で有する積層構造を備え、
     前記第一接着層及び前記第二接着層が、ポリオール系樹脂とポリイソシアネート化合物との反応物であるウレタン系化合物を含み、
     前記第一接着層及び前記第二接着層において、2250~2290cm-1の赤外線吸収スペクトルピーク強度をA2、1680~1720cm-1の赤外線吸収スペクトルピーク強度をB2としたとき、下記式(1-B)で定義されるX2が10~90であり、
     前記第一接着層及び前記第二接着層のガラス転移温度が、60~80℃である、外装材。
    X2={B2/(A2+B2)}×100   …(1-B)
  31.  前記ポリオール系樹脂が、ポリエステルポリオール系樹脂である、請求項30に記載の外装材。
  32.  少なくとも前記第二接着層と、前記金属箔層との間に腐食防止処理層を更に有する、請求項30又は31に記載の外装材。
  33.  前記ポリイソシアネート化合物が、芳香族ポリイソシアネート化合物を含む、請求項30~32のいずれか一項に記載の外装材。
  34.  前記ポリイソシアネート化合物が、芳香族ポリイソシアネート化合物のアダクト体を含む、請求項30~33のいずれか一項に記載の外装材。
  35.  少なくとも前記第二接着層が、硫化水素吸着物質を含む、請求項30~34のいずれか一項に記載の外装材。
  36.  前記シーラント層が、ポリオレフィン系樹脂及びポリエステル系樹脂のうち少なくとも一方を含む、請求項24~35のいずれか一項に記載の外装材。
  37.  前記シーラント層が、ポリエステル系樹脂を含む、請求項24~36のいずれか一項に記載の外装材。
  38.  全固体電池用である、請求項1~37のいずれか一項に記載の外装材。
PCT/JP2020/047213 2019-12-27 2020-12-17 蓄電装置用外装材及びこれを用いた蓄電装置 WO2021132025A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227024905A KR20220122672A (ko) 2019-12-27 2020-12-17 축전 장치용 외장재 및 이것을 사용한 축전 장치
CN202080090250.2A CN114846676A (zh) 2019-12-27 2020-12-17 蓄电装置用封装材料及使用了该蓄电装置用封装材料的蓄电装置
EP20907484.8A EP4082778A4 (en) 2019-12-27 2020-12-17 ENCLOSURE FOR AN ENERGY STORAGE DEVICE AND ENERGY STORAGE DEVICE THEREOF
US17/845,176 US20220328871A1 (en) 2019-12-27 2022-06-21 Power storage device packaging material and power storage device using the same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2019239358A JP2021108264A (ja) 2019-12-27 2019-12-27 蓄電装置用外装材及びこれを用いた蓄電装置
JP2019239385A JP2021108266A (ja) 2019-12-27 2019-12-27 蓄電デバイス用外装材
JP2019-239385 2019-12-27
JP2019-239358 2019-12-27
JP2020068509A JP2021166134A (ja) 2020-04-06 2020-04-06 蓄電デバイス用外装材
JP2020-068509 2020-04-06
JP2020-071561 2020-04-13
JP2020071561A JP2021168277A (ja) 2020-04-13 2020-04-13 蓄電装置用外装材およびこれを用いた蓄電装置
JP2020119066A JP2022015907A (ja) 2020-07-10 2020-07-10 蓄電装置用外装材及びこれを用いた蓄電装置
JP2020-119066 2020-07-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/845,176 Continuation US20220328871A1 (en) 2019-12-27 2022-06-21 Power storage device packaging material and power storage device using the same

Publications (1)

Publication Number Publication Date
WO2021132025A1 true WO2021132025A1 (ja) 2021-07-01

Family

ID=76574484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047213 WO2021132025A1 (ja) 2019-12-27 2020-12-17 蓄電装置用外装材及びこれを用いた蓄電装置

Country Status (5)

Country Link
US (1) US20220328871A1 (ja)
EP (1) EP4082778A4 (ja)
KR (1) KR20220122672A (ja)
CN (1) CN114846676A (ja)
WO (1) WO2021132025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004729A1 (ja) * 2020-06-29 2022-01-06 大日本印刷株式会社 全固体電池用外装材、その製造方法、及び全固体電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046889A1 (ja) 2011-09-30 2013-04-04 東洋紡株式会社 接着剤組成物、積層体およびポリエステルポリオール
WO2014068986A1 (ja) 2012-11-01 2014-05-08 東洋インキScホールディングス株式会社 電池用包装材用ポリウレタン接着剤、電池用包装材、電池用容器および電池
WO2016199551A1 (ja) * 2015-06-10 2016-12-15 昭和電工株式会社 金属箔と樹脂フィルムのラミネート用接着剤、積層体、電池外装用包装材並びに電池ケース及びその製造方法
WO2017047634A1 (ja) * 2015-09-16 2017-03-23 凸版印刷株式会社 蓄電装置用外装材及び蓄電装置用外装材の製造方法
WO2018025924A1 (ja) * 2016-08-05 2018-02-08 凸版印刷株式会社 蓄電デバイス用外装材、及び蓄電デバイス用外装材の製造方法
WO2018117080A1 (ja) * 2016-12-20 2018-06-28 Dic株式会社 電池用包装材用接着剤、電池用包装材、電池用容器及び電池
WO2019054008A1 (ja) * 2017-09-14 2019-03-21 昭和電工パッケージング株式会社 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP2019117706A (ja) * 2017-12-27 2019-07-18 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942385B2 (ja) 2011-11-07 2016-06-29 凸版印刷株式会社 蓄電デバイス用外装材
KR20220026582A (ko) * 2014-03-06 2022-03-04 도판 인사츠 가부시키가이샤 리튬 전지용 외장재
JP6254933B2 (ja) * 2014-12-26 2017-12-27 大日精化工業株式会社 樹脂組成物及びリチウムイオン電池用外装体
WO2017135361A1 (ja) * 2016-02-03 2017-08-10 凸版印刷株式会社 蓄電デバイス用外装材、及び蓄電デバイス用外装材の製造方法
CN108886113B (zh) * 2016-04-01 2022-04-26 凸版印刷株式会社 蓄电装置用封装材料以及蓄电装置用封装材料的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046889A1 (ja) 2011-09-30 2013-04-04 東洋紡株式会社 接着剤組成物、積層体およびポリエステルポリオール
WO2014068986A1 (ja) 2012-11-01 2014-05-08 東洋インキScホールディングス株式会社 電池用包装材用ポリウレタン接着剤、電池用包装材、電池用容器および電池
WO2016199551A1 (ja) * 2015-06-10 2016-12-15 昭和電工株式会社 金属箔と樹脂フィルムのラミネート用接着剤、積層体、電池外装用包装材並びに電池ケース及びその製造方法
WO2017047634A1 (ja) * 2015-09-16 2017-03-23 凸版印刷株式会社 蓄電装置用外装材及び蓄電装置用外装材の製造方法
WO2018025924A1 (ja) * 2016-08-05 2018-02-08 凸版印刷株式会社 蓄電デバイス用外装材、及び蓄電デバイス用外装材の製造方法
WO2018117080A1 (ja) * 2016-12-20 2018-06-28 Dic株式会社 電池用包装材用接着剤、電池用包装材、電池用容器及び電池
WO2019054008A1 (ja) * 2017-09-14 2019-03-21 昭和電工パッケージング株式会社 成形用包装材、蓄電デバイス用外装ケース及び蓄電デバイス
JP2019117706A (ja) * 2017-12-27 2019-07-18 昭和電工パッケージング株式会社 蓄電デバイス用外装材及び蓄電デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022004729A1 (ja) * 2020-06-29 2022-01-06 大日本印刷株式会社 全固体電池用外装材、その製造方法、及び全固体電池

Also Published As

Publication number Publication date
CN114846676A (zh) 2022-08-02
EP4082778A4 (en) 2023-01-25
KR20220122672A (ko) 2022-09-02
US20220328871A1 (en) 2022-10-13
EP4082778A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
TWI684301B (zh) 蓄電裝置用外裝材
US10468639B2 (en) Lithium battery packaging material
CN109314194B (zh) 蓄电装置用封装材料
EP3413371B1 (en) Exterior material for power storage device and method for manufacturing exterior material for power storage device
JP7102683B2 (ja) 蓄電装置用外装材
US10651433B2 (en) Packaging material for power storage device, and method of producing packaging material for power storage device
JP7172132B2 (ja) 蓄電装置用外装材
EP3439067B1 (en) Exterior material for power storage device and method for manufacturing exterior material for power storage device
US20210359361A1 (en) Solid-state battery packaging material and solid-state battery using the same
WO2021132025A1 (ja) 蓄電装置用外装材及びこれを用いた蓄電装置
JP6977272B2 (ja) 蓄電装置用外装材及び蓄電装置
EP3531464B1 (en) Exterior material for power storage device and power storage device in which same is used
JP7240081B2 (ja) 蓄電装置用外装材及び蓄電装置用外装材の製造方法
JP7213004B2 (ja) 蓄電装置用外装材及びそれを用いた蓄電装置
JP7185995B2 (ja) 蓄電装置用外装材の製造方法及び蓄電装置の製造方法
JP2021168277A (ja) 蓄電装置用外装材およびこれを用いた蓄電装置
JP2016207564A (ja) 蓄電装置用外装材
JP2022015907A (ja) 蓄電装置用外装材及びこれを用いた蓄電装置
WO2022270548A1 (ja) 蓄電デバイス用外装材
JP2021108264A (ja) 蓄電装置用外装材及びこれを用いた蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227024905

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907484

Country of ref document: EP

Effective date: 20220727